WO2022183861A1 - 发动机和车辆 - Google Patents

发动机和车辆 Download PDF

Info

Publication number
WO2022183861A1
WO2022183861A1 PCT/CN2022/072821 CN2022072821W WO2022183861A1 WO 2022183861 A1 WO2022183861 A1 WO 2022183861A1 CN 2022072821 W CN2022072821 W CN 2022072821W WO 2022183861 A1 WO2022183861 A1 WO 2022183861A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
water jacket
water
cylinder
thickness
Prior art date
Application number
PCT/CN2022/072821
Other languages
English (en)
French (fr)
Inventor
刘明亮
张楠
潘世翼
郝胜杰
袁兵兵
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP22762330.3A priority Critical patent/EP4253746A4/en
Priority to AU2022229339A priority patent/AU2022229339A1/en
Publication of WO2022183861A1 publication Critical patent/WO2022183861A1/zh
Priority to US18/214,444 priority patent/US11976607B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/16Cylinder liners of wet type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/40Cylinder heads having cooling means for liquid cooling cylinder heads with means for directing, guiding, or distributing liquid stream 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/14Cylinders with means for directing, guiding or distributing liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/027Cooling cylinders and cylinder heads in parallel

Definitions

  • the present application relates to the technical field of engines, and more particularly, to an engine and a vehicle.
  • the engine cools and cools the engine through the flow of coolant in the engine, but the cooling effect of the cylinder head will be unsatisfactory.
  • the maximum temperature of the key area of the cylinder head, such as the nose bridge area, may be too high, which may cause problems such as creep of the fire surface material, which may cause problems such as creep of the material inside the engine.
  • the cooling effect of each part is unbalanced, which promotes local overheating of the engine; at the same time, the temperature of the lower part of the cylinder is low, and most of the flow through the lower part of the cylinder fails to absorb more heat to achieve the cooling effect, which may also cause the lower part of the cylinder to pass through.
  • An object of the present application is to provide an engine and a vehicle that at least solve the problem of poor cooling effect of the engine cylinder head.
  • an engine comprising a cylinder head and a cylinder block, wherein the cylinder head has a first water jacket passage, an exhaust passage and a second water jacket passage, the exhaust passage is located in the between the first water jacket passage and the second water jacket passage, the first water jacket passage and the second water jacket passage are arranged close to the exhaust passage, the first water jacket passage and the The second water jacket passage is in communication, the second water jacket passage is configured to communicate with the cylinder, and the second water jacket passage has a water inlet passage.
  • the first water jacket passage has a first water outlet passage
  • the first water outlet passage is located on a side of the first water jacket passage away from the water inlet passage
  • the cylinder body has a first water outlet passage.
  • Two water outlet passages, the second water outlet passage is arranged away from the water inlet passage, and the cooling liquid is divided after passing through the water inlet passage and flows out from the first water outlet passage and the second water outlet passage respectively.
  • the second water jacket passage communicates with the first water jacket passage through a plurality of first passages, and the plurality of first passages are distributed along the arrangement direction of the cylinders in the cylinder and close to the cylinder;
  • the water inlet passage is located on the opposite side of the side of the second water jacket passage that communicates with the first passage, and the extending direction of the water inlet passage is the same as the arrangement direction of the cylinders.
  • the second water jacket passageway includes a second main water jacket area, at least two nose bridge areas and a second secondary water jacket area, the second main water jacket area and the second secondary water jacket area The area is communicated through the nose bridge area, and the second water jacket sub area is located on the peripheral side of the spark plug;
  • the first passage communicates with a portion of the second water jacket passage near the bridge of the nose.
  • the cylinder head further includes a first set of diverting ribs and a second set of diverting ribs, and the first set of diverting ribs and the second set of diverting ribs are located in the second water jacket the main area; of which,
  • At least part of the first diversion rib group is located at a first position in the main area of the second water jacket, and the first position corresponds to the area between two adjacent bridge areas;
  • the second guide rib group is located at a second position in the main area of the second water jacket, and the second position corresponds to the nose bridge area and is close to the nose bridge area.
  • the cylinder head further includes a third guide rib group, the third guide rib group is located in the first water jacket passage, and the third guide rib connects the first water
  • the branches formed by dividing the sleeve passages correspond to the exhaust passages, and the branch passages are arranged close to the exhaust passages.
  • the cylinder body has a third water jacket passage, the third water jacket passage is surrounded by the outer wall of the cylinder in the cylinder body, the second water jacket passage and the first water jacket passage The three water jacket passages are connected.
  • the second water jacket passage communicates with the third water jacket passage through at least one second passage, and the second passage is disposed adjacent to the water inlet passage.
  • the thickness of the third water jacket passage on the side close to the combustion chamber in the cylinder bore is the first thickness
  • the thickness of the third water jacket passage on the side away from the combustion chamber in the cylinder bore is the second thickness
  • the first thickness is greater than the second thickness
  • the engine includes an insert piece, the insert piece is inserted in the gap between the cylinder block and the cylinder bore, and the third water jacket passage is provided between the insert piece and the cylinder.
  • the distance between the outer wall of the cylinder bore near the combustion chamber portion and the insert is the first thickness
  • the distance between the outer wall of the cylinder bore away from the combustion chamber portion to the insert is the first thickness.
  • the distance is a second thickness, and the first thickness is greater than the second thickness.
  • the third water jacket passage further includes a third passage, the third passage is located between the adjacent cylinders, and the third passage is bent.
  • a vehicle comprising the above-described engine.
  • an exhaust passage is provided on the cylinder head of the engine, a first water jacket passage and a second water jacket passage are arranged on both sides of the exhaust passage, and the exhaust passage can be absorbed through the first water jacket passage and the second water jacket passage.
  • the high temperature gas in the air passage and the temperature of the fire surface on the cylinder head effectively reduce the temperature of the cylinder head, so that the cylinder head has a better cooling effect.
  • Fig. 1 is the first perspective structural schematic diagram of the overall structure of the water jacket passage
  • Fig. 2 is a second perspective structural schematic diagram of the overall structure of the water jacket passage
  • Figure 3 is a left side view of the overall structure of the water jacket passage
  • Figure 4 is an exploded view of the overall structure of the water jacket passage
  • Fig. 5 is the structural representation of the second water jacket passage
  • Fig. 6 is the structural representation of the first water jacket passage
  • Fig. 7 is the schematic diagram of the insert structure
  • FIG. 8 is a schematic structural diagram of the cylinder block and the insert after assembling.
  • an engine comprising a cylinder head, wherein the cylinder head has a first water jacket passage 10, an exhaust passage and a second water jacket passage 11 in sequence from top to bottom, that is to say , the exhaust passage is located between the first water jacket passage 10 and the second water jacket passage 11, and the first water jacket passage 10 and the second water jacket passage 11 are close to the exhaust passage
  • the first water jacket passage 10 and the second water jacket passage 11 communicate with each other, that is, the first water jacket passage 10, the exhaust passage and the second water jacket passage 11 are connected by the cylinder head.
  • the directions from the surface to the cylinder block 12 are arranged in order, and the two adjacent ones are arranged in close proximity.
  • the cooling liquid When the cooling liquid flows in the first water jacket passage 10 and the second water jacket passage 11, the cooling liquid can be It is closer to the exhaust passage, thereby enabling rapid heat exchange between the high-temperature gas flowing in the exhaust pipe and the cooling liquid, thereby effectively reducing the temperature of the high-temperature gas flowing in the exhaust passage, and the first water
  • the jacket passage 10 and the second water jacket passage 11 are located at the upper and lower ends of the cylinder head, respectively, so that the cooling liquid can be distributed in most areas of the cylinder head, and the cooling of the cylinder head can be effectively achieved.
  • the second water jacket passage 11 is configured to communicate with the cylinder block 12 , and can continue to flow to the cylinder block 12 after the coolant cools the cylinder head to cool the cylinder block 12 , and the second water jacket passage 11 has a water inlet passage. 14, that is to say, the coolant first enters from the second water jacket passage 11 located on the cylinder head, and the temperature of the coolant that enters the circulation first must be the lowest in the entire coolant circulation system, which makes the cylinder head Having better cooling effect provides convenience.
  • the exhaust passage is used to discharge the gas generated by the engine.
  • the engine has an independent exhaust manifold connected to the engine for discharging the gas generated by the engine.
  • the independent exhaust manifold is integrated on the cylinder head to form the exhaust passage in the present application, so that the engine integration degree is higher, and the independent exhaust manifold is avoided, thereby reducing the overall weight of the engine , save fuel consumption;
  • the cylinder block 12 has an opening, the cylinder head is buckled on the cylinder block 12 to cover the opening on the cylinder block 12, and the cylinder head is fastened on the cylinder block 12 , forming the overall outline of the engine, wherein, there is a cylinder gasket between the cylinder head and the cylinder block 12, which can prevent the liquid in the engine and the liquid flowing between the cylinder head and the cylinder block 12 from leaking, ensuring that the cylinder head and the cylinder block 12. tightness between.
  • the first water jacket passage 10 and the second water jacket passage 11 may be irregular cavities adapted to the cylinder head, and a cooling liquid circulates in the cavities for cooling the engine.
  • the cooling liquid can be flowable substances such as water and ethylene glycol.
  • an exhaust passage is provided on the cylinder head of the engine, and a first water jacket passage 10 and a second water jacket passage 11 are provided on the upper and lower sides of the exhaust passage, and the first water jacket passage 10 and the second water jacket pass through.
  • the passage 11 can absorb the high temperature gas in the exhaust passage and the temperature of the heating surface on the cylinder head, effectively reduce the temperature of the cylinder head, and make the cylinder head have a better cooling effect.
  • the exhaust passage is located in the cylinder head, and both sides of the exhaust passage have the first water jacket passage 10 and the second water jacket passage 11 for circulating coolant, the temperature of the gas flowing in the exhaust passage can be lowered, Reduce the temperature of the gas exhausted from the engine to avoid the problem that the temperature of the exhaust gas is high and the thermal fatigue of the parts makes the engine unable to work normally.
  • a plurality of branched gases are concentrated into the same pipeline for discharge, and the concentrated high-temperature gas is inconvenient to reduce the temperature due to its large volume.
  • the branched gases are concentrated in different pipelines and discharged.
  • a four-cylinder engine has four corresponding branch passages, and the four branch passages are collected in two to form two pipelines for discharge, which can increase the heat generation between the high-temperature gas and the coolant.
  • the exchange area effectively cools the high-temperature gas generated by the engine.
  • the part of the second water jacket passage 11 close to the water inlet passage 14 is also provided with a warm air and EGR outlet, which can quickly obtain warm air, cool the EGR, and ensure the normal operation of the EGR;
  • the position of the first water jacket passage 10 close to the first water outlet passage 15 is provided with an exhaust outlet, and the exhaust outlet is used to discharge the gas in the first water jacket passage 10, so as to avoid the heat transfer coefficient being reduced when the bubbles gather and the heat cannot be discharged. Causes localized overheating.
  • the first water jacket passage 10 has a first water outlet passage 15, and the first water outlet passage 15 is located on the side of the first water jacket passage 10 away from the water inlet passage 14, so that the The cooling liquid flows through a longer thread, which increases the heat exchange area and improves the heat exchange capacity.
  • the cylinder block 12 has a second water outlet passage 16.
  • the second water outlet passage 16 is arranged away from the water inlet passage 14, and the cooling liquid passes through.
  • the water inlet passages 14 are divided and flow out from the first water outlet passages 15 and the second water outlet passages 16 respectively, which can increase the thread of the cooling liquid flow and increase the cooling efficiency.
  • the above solution can be understood as that the cooling liquid enters the second water jacket passage 11 through the water inlet passage 14, and then splits in the second cooling passage, and the split coolant flows into the first water jacket passage 10 and the cylinder block 12 respectively. , and are respectively discharged from the engine through the first water outlet passage 15 and the second water outlet passage 16 to realize heat transfer and cool the engine.
  • the second water jacket passage 11 communicates with the first water jacket passage 10 through a plurality of first passages 17 , so that the cooling liquid can pass through the second water jacket in the plurality of first passages 17 .
  • the jacket passage 11 enters the first water jacket passage 10, which increases the cooling liquid circulation area, thereby increasing the cooling liquid flow rate, and effectively transferring heat.
  • the plurality of first passages 17 are distributed along the arrangement direction of the cylinder bores 121 in the cylinder block 12 and are close to the cylinder bores 121 , so that the coolant in the second water jacket passage 11 can enter the first water jacket passage 10 uniformly. In the process, the flow distribution of the cooling liquid flowing through each first passage 17 is made as reasonable as possible, so as to ensure the cooling balance of the exhaust passage.
  • the water inlet passage 14 is located on the opposite side of the side of the second water jacket passage 11 that communicates with the first passage 17 , between the position where the water inlet passage 14 and the first passage 17 communicate with each other. It has the largest span as possible to ensure that the cooling liquid completely circulates in the second water jacket passage 11 to ensure the heat exchange capacity, and the extension direction of the water inlet passage 14 is the same as the arrangement direction of the cylinder 121, so that the cooling The liquid can flow along the direction in which the cylinders 121 are arranged, so that the cooling liquid flowing into the water inlet passage 14 flows evenly to the first passage 17, so as to ensure the same degree of heat absorption of each part of the cooling liquid as possible, and ensure the balance of engine cooling.
  • the second water jacket passage 11 includes a second main water jacket area 111 , at least two nose bridge areas 112 and a second water jacket sub area 113 , the second water jacket main area 111 and the The second water jacket sub-region 113 is communicated through the nose bridge region 112, the second water jacket sub-region 113 is located on the peripheral side of the spark plug, and the second water jacket main region 111 mainly cools the cylinder head and the exhaust passage, and all the The second water jacket main area 111 is the main body part of the second water jacket passage 11.
  • the width of the nose bridge area 112 is narrow, mainly for cooling and cooling the fire surface of the cylinder head, and the nose bridge area 112 is set narrower to speed up cooling.
  • the flow rate of the liquid improves the heat exchange efficiency between the coolant and the cylinder head thermal surface, and can effectively reduce the temperature of the cylinder head thermal surface.
  • the second water jacket sub-region 113 is mainly used to cool the spark plug.
  • the structural layout of the water jacket passage 11 is reasonable, which can simultaneously cool down each part on the cylinder head, and provides a convenient condition for the balanced cooling of each part of the engine.
  • the first passage 17 is communicated with the part of the second water jacket passage 11 close to the nose bridge area 112. Since the nose bridge area 112 is partially narrow, parameters such as the flow speed of the cooling liquid flowing through the nose bridge area 112 must be determined. A change will occur, which is not conducive to the coolant in the second water jacket passage 11 flowing to the first water jacket passage 10 through the first passage 17, and the position where the first passage 17 communicates with the second water jacket passage 11 is avoided.
  • the nose bridge area 112 can avoid the above problems, which is beneficial to the flow of the cooling liquid to the first water jacket passage 10.
  • the position where the first passage 17 communicates with the second water jacket passage 11 is close to the nose bridge area 112, and the nose bridge
  • the distance between the location of the zone 112 and the location of the water inlet passage 14 is relatively far, that is to say, the cooling liquid can flow in a larger range in the second water jacket passage 11, which can ensure sufficient heat exchange of the cooling liquid and ensure that the cylinder Effective cooling of the cover.
  • the cylinder head further includes a first set of diverting ribs 21 and a second set of diverting ribs 22, and the first set of diverting ribs 21 and the second set of diverting ribs 22 are located in the In the second water jacket main area 111, the first diversion rib group 21 and the second diversion rib group 22 are mainly used to divert the cooling liquid in the second water jacket main area 111, so as to achieve as much as possible Even distribution of coolant.
  • At least part of the first diversion rib group 21 is located at a first position in the second water jacket main area 111 , and the first position is connected to two adjacent bridges of the nose.
  • the areas between the zones 112 are opposite to each other.
  • the second water jacket main area 111 has the first guide rib 211
  • the first The position of the guide ribs 211 corresponds to the position between the two adjacent nose bridge regions 112, and the function of the first guide ribs 211 is to separate the cooling liquid and make the separated cooling liquid flow into the first
  • a flow guide rib 211 is located near the nose bridge area 112 on both sides to achieve a diversion effect, so that the flow of the cooling liquid entering the nose bridge area 112 is evenly distributed.
  • the first guide rib group 21 further includes a second guide rib 212 disposed close to the water inlet passage 14 , so that the cooling liquid flowing into the water inlet passage 14 can be divided for the first time.
  • the first guide rib group 21 further includes a third guide rib 213 disposed close to the second guide rib 212, and the third guide rib 213 conducts a secondary distribution of the cooling liquid after the first distribution, and further The approximate flow distribution of the coolant in the main area 111 of the second water jacket is realized, which provides a convenient condition for the engine to achieve the effect of balanced cooling.
  • each guide rib of the first guide rib group 21 extends along the general flow direction of the cooling liquid, and forms an inclined state substantially the same as the water flow direction.
  • the first baffle group 21 in the present application has six baffles and four nose bridge regions 112 , and the second baffle 212 is located in the second water jacket passage 11 At the position close to the water inlet passage 14, the second guide ribs 212 have a length, the length direction of the second guide ribs 212 is generally arranged along the flow direction of the cooling liquid, and the width of the second guide ribs 212 is along the The direction increases from the direction close to the water inlet passage 14 to the direction away from the water inlet passage 14, so that a part of the cooling liquid flows to the right, and a part of the cooling liquid flows to the lower right, so as to realize the approximate distribution of the cooling liquid flow; the fifth guide rib 215 is located in the second At the lower position on the right side of the guide rib 212, the fifth guide rib 215 is a long rod-shaped structure, and the lower side of the fifth guide rib 215 is inclined to the left, and the fifth guide rib 215 can
  • the lower side of the flow rib 212 is to the right, the sixth guide rib 216 is in the shape of a long bar, and the sixth guide rib 216 is located between the first nose bridge area 112 and the second nose bridge area 112 , and the first nose bridge area 112 Located directly below the water inlet passage 14, the second nose bridge area 112 is located on the right side of the first nose bridge area 112, adjacent to the first nose bridge area 112, and one end of the sixth guide rib 216 It points obliquely downward to the first nose bridge area 112 , the other end of the sixth guide rib 216 points to the fifth guide rib 215 , and the sixth guide rib 216 restricts the flow of the coolant flowing into the first nose bridge area 112 , so that part of the The cooling liquid flows to the right; the third diversion rib 213 is arranged at a position away from the water inlet passage 14 in the extending direction of the water inlet passage 14, and the third diversion rib 213 is elliptical, and conducts secondary
  • the fourth guide rib 214 is in the shape of a long bar, and one end of the fourth guide rib 214 points obliquely downward to the second guide rib 212 .
  • the other end of the flow rib 214 points obliquely upward to the third flow guide rib 213 , and the fourth flow guide rib 214 can reasonably distribute the flow of the cooling liquid to the second nose bridge area 112 and the third nose bridge area 112 ;
  • a fourth nose bridge area 112 is arranged adjacent to the third nose bridge area 112, the first guide ribs 211 are arranged between the third nose bridge area 112 and the fourth nose bridge area 112, and the first guide ribs 211 are Long rod-shaped, one end of the first guide rib 211 points to the fourth nose bridge area 112, and the other end of the first guide rib 211 points to the third guide rib 213.
  • the first guide rib 211 can reasonably distribute the cooling liquid to the third nose bridge.
  • the second rib group 22 is located at a second position in the second water jacket main area 111 , and the second position corresponds to the nose bridge area 112 and is close to the nose bridge area 112 , so that the guide ribs of the second guide rib group 22 can reasonably distribute the flow of the left and right two streams flowing into the nose bridge area 112 , increase the speed at which the coolant flows into the nose bridge area 112 , and effectively cool the fire surface.
  • the second guide rib group 22 in the present application includes four guide ribs, and the guide ribs in each second guide rib group correspond to one nose bridge area 112 , the shape of the baffle ribs in the second baffle rib group 22 is a triangle-like shape, the first side of the above-mentioned triangle-like baffle ribs is opposite to the nose bridge area 112, and the triangle-like angle opposite to the first side points away from the nose bridge area
  • the direction of 112 can further ensure that the second guide rib group 22 reasonably distributes the flow of the left and right into the nose bridge area 112, increases the speed at which the coolant flows into the nose bridge area 112, and effectively cools the corresponding parts on the cylinder head.
  • the cylinder head further includes a third guide rib group 23, the third guide rib group 23 is located in the first water jacket passage 10, and the third guide rib group 23
  • the branches formed by the separation of the first water jacket passages 10 correspond to the exhaust passages, and the branches are arranged close to the exhaust passages, that is, each flow guide of the third guide rib group 23
  • the ribs guide the cooling liquid flowing in the first water jacket passage 10, and guide the cooling liquid into a plurality of main liquid flows, and the plurality of liquid flows guided out are in phase with the exhaust passages provided in the cylinder head.
  • the flow path of the first liquid flow is matched with the path of the first exhaust passage in the exhaust passage, so that the cooling liquid in the first water jacket passage 10 can be accurately discharged while cooling the cylinder head.
  • the high temperature gas in the gas passage is cooled.
  • the water inlet side of the first water jacket passage 10 in the present application is on the lower side of the first water jacket passage 10 , and the cooling liquid flows from the lower side of the first water jacket passage 10 to the lower side of the first water jacket passage 10 .
  • the water flows in the direction of the water outlet located on the upper side of the first water jacket passage 10, and a fourteenth diversion rib 234 is arranged in the middle of the first water jacket passage 10.
  • the fourteenth diversion rib 234 is thick rod-shaped, and the fourteenth diversion rib
  • the upper end of the rib 234 is slightly inclined to the right, which can divert the cooling liquid to both sides of the fourteenth guide rib 234 to cool the corresponding exhaust passages on both sides of the fourteenth guide rib 234; along the fourteenth guide rib
  • the upper end of 234 is in a semi-circular shape from left to right with the sixteenth diversion rib 236, the fifteenth diversion rib 235, the thirteenth diversion rib 233 and the twelfth diversion rib 232, and the sixteenth diversion rib 232.
  • the rib 236 , the fifteenth guide rib 235 , the thirteenth guide rib 233 and the twelfth guide rib 232 are all long rods, wherein the length of the sixteenth guide rib 236 and the twelfth guide rib 232
  • the direction is distributed along the flow direction of the cooling liquid, which is used to distribute the water flow reasonably, so that the distributed water flow can correspond to the exhaust passage.
  • the seventeenth guide ribs 237 and the eleventh guide ribs 231 are located on the left and right sides of the first water jacket passage 10, respectively, to separate cooling
  • the action of the liquid enables the cooling liquid to cool the corresponding exhaust passage.
  • the cylinder 12 has a third water jacket passage 13 , the third water jacket passage 13 is surrounded by the outer wall of the cylinder 121 in the cylinder 12 , and the second water jacket The passage 11 communicates with the third water jacket passage 13 .
  • the cylinder block 12 has a cylinder bore 121 and a third water jacket passage 13.
  • the cylinder bore 121 has a combustion chamber.
  • the combustion chamber of the cylinder bore 121 is the main source of engine heat.
  • the third water jacket passage 13 surrounds the cylinder. It is arranged on the outer wall of the cylinder tube 121.
  • the second water jacket passage 11 is located between the first water jacket passage 10 and the third water jacket passage 13 , and the second water jacket passage 11 communicates with the third water jacket passage 13 .
  • the second water jacket passage 11 communicates with the third water jacket passage 13 through at least one second passage 18, and the second passage 18 is disposed close to the water inlet passage 14 to enable cooling
  • the coolant enters the third water jacket passage 13 only after it flows sufficiently in the second water jacket, so as to prevent the cooling liquid from entering the third water jacket passage 13 before it flows out and fully flowing in the second water jacket passage 11 .
  • the second water outlet passage 16 is located on the side of the third water jacket passage 13 away from the water inlet passage 14 .
  • the third water jacket passage 13 is located in the gap;
  • the thickness of the water jacket passage 13 is the first thickness
  • the thickness of the third water jacket passage 13 on the side away from the combustion chamber in the cylinder bore 121 is the second thickness, and the first thickness is greater than the second thickness, as shown in FIG. 1 , As shown in FIG. 2 or FIG.
  • the first thickness is greater than the second thickness, that is to say, the coolant flow rate close to the combustion chamber of the cylinder bore 121 is greater than the coolant flow rate of the portion away from the combustion chamber of the cylinder bore 121 , which can be aimed at
  • the higher temperature combustion chamber distributes a larger coolant flow rate, and the relatively lower temperature part far from the combustion chamber distributes a relatively smaller coolant flow rate, so as to prevent most of the flow rate from passing through the lower part of the cylinder bore 121 and failing to absorb the higher coolant flow. Too much heat achieves the cooling effect, and may also cause the cylinder block 12 to be overcooled.
  • the engine includes an insert 19, the insert 19 is inserted in the gap between the cylinder block 12 and the cylinder bore 121, and the third water jacket passage 13 is provided in the Between the insert 19 and the cylinder bore 121, the distance from the outer wall of the cylinder bore 121 close to the combustion chamber to the insert 19 is the first thickness, and the portion of the cylinder bore 121 away from the combustion chamber The distance between the outer wall of 12 and the insert 19 is the second thickness, and the first thickness is greater than the second thickness, that is, the insert 19 is inserted into the gap between the cylinder block 12 and the cylinder 121 Inside, the effect of different distances from the insert piece 19 to the cylinder bore 121 can be formed.
  • the space occupied by the insert piece 19 makes the thickness of the third water jacket passage 13 close to the combustion chamber of the cylinder bore 121 larger and away from the cylinder bore 121
  • the thickness of the combustion chamber part is small, and at the same time, the insert 19 is easy to disassemble, which avoids the problem of re-molding the cylinder block 12 and increasing the manufacturing cost.
  • the third water jacket passage 13 further includes a third passage 20, the third passage 20 is located between the adjacent cylinders 121, and the third passage 20 is bent.
  • the bent third passage 20 can increase the flow path of the cooling liquid and absorb more heat as much as possible, wherein the bent third passage 20 can be bent at a sharp angle, such as the third passage 20
  • the third passage 20 can be U-shaped, etc.
  • the third passage 20 can also be a non-bending structure, for example, the third passage 20 is a relatively The passage is inclined to the axis of the cylinder tube 121 .
  • a vehicle including the above-mentioned engine. Since the engine according to the above-mentioned embodiments of the present application has the above-mentioned technical effects, the vehicle according to the above-mentioned embodiments of the present application also has corresponding technical effects. , even if the cylinder head of the engine has a better cooling effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

一种发动机,发动机包括缸盖和缸体(12),缸盖内具有第一水套通路(10)、排气通路和第二水套通路(11),排气通路位于第一水套通路(10)和第二水套通路(11)之间,第一水套通路(10)和第二水套通路(11)靠近排气通路设置,第一水套通路(10)和第二水套通路(11)连通,第二水套通路(11)和缸体(12)连通,第二水套通路(11)具有进水通路(14)。在实际使用中,第一水套通路(10)和第二水套通路(11)能够吸收排气通路中的高温气体和缸盖上面的温度,有效降低缸盖的温度,使缸盖具有较佳的冷却效果。

Description

发动机和车辆
本公开要求于2021年03月01日提交中国专利局,申请号为202110227871.7,申请名称为“发动机和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本申请涉及发动机技术领域,更具体地,涉及一种发动机和车辆。
背景技术
发动机通过冷却液在发动机内流动而为发动机降温冷却,但是会出现缸盖的冷却效果不理想,缸盖的关键区域如鼻梁区最高温度可能过高导致火力面材料蠕变等问题,使发动机内各部分的冷却效果不均衡,促使发动机局部过热;同时缸筒下部分温度低,大部分流量经缸筒下部分未能吸收较多热量到达降温的效果,还有可能导致缸筒下半部分过冷的情况,且相邻缸筒之间的温度高,易于疲劳导致发动机无法正常工作;某些发动机采用缸盖与排气歧管独立的方式,排气歧管未经冷却液冷却,排出气体温度高,以致零部件热疲劳使发动机无法正常工作,应用于高功率发动机不理想,同时缸盖与排气歧管相互独立,重量增加,增加油耗。
发明内容
本申请的一个目的是提供一种发动机和车辆,至少解决了发动机缸盖的冷却效果不佳的问题。
根据本申请的第一方面,提供了一种发动机,包括缸盖和缸体,所述缸盖内具有第一水套通路、排气通路和第二水套通路,所述排气通路位于所述第一水套通路和所述第二水套通路之间,所述第一水套通路和所述第二水套通路靠近所述排气通路设置,所述第一水套通路和所述第二水套通路连通,所述第二水套通路被配置为与所述缸体连通,所述第二水套通路具有进水通路。
在进一步实施例中,所述第一水套通路具有第一出水通路,所述第一出水通路位 于所述第一水套通路的远离所述进水通路的一侧,所述缸体具有第二出水通路,所述第二出水通路远离所述进水通路设置,冷却液通过所述进水通路后分流并分别从所述第一出水通路和所述第二出水通路流出。
在进一步实施例中,所述第二水套通路通过多个第一通路与所述第一水套通路连通,多个所述第一通路沿所述缸体内的缸筒的排列方向分布且靠近所述缸筒;
所述进水通路位于所述第二水套通路的与所述第一通路连通的一侧的相对侧,且所述进水通路的延伸方向与所述缸筒排列方向相同。
在进一步实施例中,所述第二水套通路包括第二水套主区、至少两个鼻梁区和第二水套副区,所述第二水套主区和所述第二水套副区通过所述鼻梁区连通,所述第二水套副区位于火花塞周侧;
所述第一通路连通于所述第二水套通路的靠近所述鼻梁区的部位。
在进一步实施例中,所述缸盖还包括第一导流筋组和第二导流筋组,所述第一导流筋组和所述第二导流筋组位于所述第二水套主区内;其中,
至少部分所述第一导流筋组位于所述第二水套主区内的第一位置,所述第一位置与两个相邻的所述鼻梁区之间的区域相对应;
所述第二导流筋组位于所述第二水套主区内的第二位置,所述第二位置与所述鼻梁区相对应且靠近所述鼻梁区。
在进一步实施例中,所述缸盖还包括第三导流筋组,所述第三导流筋组位于所述第一水套通路内,所述第三导流筋将所述第一水套通路分隔形成的支路与所述排气通路相对应,且所述支路靠近所述排气通路设置。
在进一步实施例中,所述缸体内具有第三水套通路,所述第三水套通路围设于所述缸体内的缸筒的外壁,所述第二水套通路和所述第三水套通路连通。
在进一步实施例中,所述第二水套通路通过至少一个第二通路与所述第三水套通路连通,所述第二通路靠近所述进水通路设置。
在进一步实施例中,所述缸体与所述缸筒之间具有间隙,所述第三水套通路位于所述间隙内;
在靠近所述缸筒内的燃烧室一侧的第三水套通路的厚度为第一厚度,在远离所述缸筒内的燃烧室一侧的第三水套通路的厚度为第二厚度,所述第一厚度大于所述第二厚度。
在进一步实施例中,所述发动机包括插片,所述插片插设于所述缸体与所述缸筒之间的间隙内,所述第三水套通路设于所述插片与所述缸筒之间,所述缸筒的靠近燃烧室部分的外壁至所述插片之间的距离为第一厚度,所述缸筒的远离燃烧室部分的外壁至所述插片之间的距离为第二厚度,所述第一厚度大于所述第二厚度。
在进一步实施例中,所述第三水套通路还包括第三通路,所述第三通路位于相邻的所述缸筒之间,所述第三通路呈弯折状。
根据本申请的第二方面,提供了一种车辆,包括以上所述的发动机。
本申请在发动机的缸盖上设置有排气通路,在排气通路的两侧设置有第一水套通路和第二水套通路,通过第一水套通路和第二水套通路能够吸收排气通路中的高温气体和缸盖上火力面的温度,有效降低缸盖的温度,使缸盖具有较佳的冷却效果。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本申请的实施例,并且连同其说明一起用于解释本申请的原理。
图1是水套通路整体结构的第一视角结构示意图;
图2是水套通路整体结构的第二视角结构示意图;
图3是水套通路整体结构的左视图;
图4是水套通路整体结构的爆炸图;
图5是第二水套通路的结构示意图;
图6是第一水套通路的结构示意图;
图7是插片结构示意图;
图8是缸体及插片装配后的结构示意图。
附图标记:
10、第一水套通路;11、第二水套通路;111、第二水套主区;112、鼻梁区;113、第二水套副区;12、缸体;121、缸筒;13、第三水套通路;14、进水通路;15、第一出水通路;16、第二出水通路;17、第一通路;18、第二通路;19、插片;20、第三 通路;21、第一导流筋组;211、第一导流筋;212、第二导流筋;213、第三导流筋;214、第四导流筋;215、第五导流筋;216、第六导流筋;22、第二导流筋组;23、第三导流筋组;231、第十一导流筋;232、第十二导流筋;233、第十三导流筋;234、第十四导流筋;235、第十五导流筋;236、第十六导流筋;237、第十七导流筋。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
下面首先结合附图1至附图8具体描述根据本申请实施例的发动机。
根据本申请的第一方面,提供了一种发动机,包括缸盖,所述缸盖内由上至下依次具有第一水套通路10、排气通路和第二水套通路11,也就是说,所述排气通路位于所述第一水套通路10和所述第二水套通路11之间,所述第一水套通路10和所述第二水套通路11靠近所述排气通路设置,所述第一水套通路10和所述第二水套通路11连通,即,所述第一水套通路10、所述排气通路和所述第二水套通路11由缸盖上表面至缸体12的方向依次排列,且上述相邻的二者之间紧邻设置,当所述第一水套通路10和所述第二水套通路11中流通冷却液时,能够使冷却液更加接近排气通路,进而能够使排气管路中流动的高温气体与冷却液之间进行快速的热交换,进而能够有效的实现对排气通路中流动的高温气体的降温,且第一水套通路10和第二水套通路11分别位于缸盖内部的上下两端,能够使冷却液分布在缸盖的大部分区域,有效的实现对缸盖的降温。所述第二水套通路11被配置为与缸体12连通,能够在冷却液冷却缸盖后继 续流向缸体12,对缸体12进行冷却,所述第二水套通路11具有进水通路14,也就是说,冷却液首先是从位于缸盖上的第二水套通路11进入的,首先进入循环的冷却液的温度在整个冷却液循环系统中必然是最低的,这为使缸盖具有较佳的冷却效果提供了便利条件。
本申请实施例中,所述排气通路用于将发动机产生的气体排出,在现有技术中,发动机上具有与发动机连接的独立的排气歧管,用于排放发动机产生的气体,在本申请中,将独立的排气歧管集成在缸盖上,形成了本申请中的排气通路,使发动机集成度更高,且避免了设置独立的排气歧管,减轻了发动机整体的重量,节省油耗;所述缸体12具有开口,所述缸盖扣设于所述缸体12将所述缸体12上的开口覆盖,并将所述缸盖紧固在所述缸体12上,形成发动机的整体轮廓,其中,所述缸盖缸体12之间具有缸垫,能够防止发动机内的液体以及在缸盖和缸体12之间流动的液体泄漏,保证缸盖和缸体12之间的密封性。
本申请实施例中,所述第一水套通路10和所述第二水套通路11可以为与缸盖相适配的不规则的腔体,腔体内流通有冷却液用于为发动机降温,所述冷却液可以为水和乙二醇等可流动物质。
本申请在发动机的缸盖上设置有排气通路,在排气通路的上下两侧设置有第一水套通路10和第二水套通路11,通过第一水套通路10和第二水套通路11能够吸收排气通路中的高温气体和缸盖上火力面的温度,有效降低缸盖的温度,使缸盖具有较佳的冷却效果。
同时,由于排气通路位于缸盖内,且排气通路的两侧均具有流通冷却液的第一水套通路10和第二水套通路11,能够为在排气通路中流动的气体降温,降低排出发动机的气体的温度,避免排出气体温度较高以致零部件热疲劳使发动机无法正常工作的问题。进一步地,现有技术中的排气歧管是将多个分支的气体集中至同一个管路中排放,集中后的高温气体由于体积较大不便于降低温度,因而本申请中,将多个分支的气体分别集中在不同的管路中排放,比如四缸发动机具有相对应的四个分支通路,四个分支通路两两汇集形成两个管路排放,能够增大高温气体与冷却液进行热交换的面积,有效地对发动机产生的高温气体进行降温。
本申请实施例中,在第二水套通路11上靠近进水通路14的部分还设置有暖风及EGR出口,能够快速地获取暖风,并对EGR冷却,保证EGR的正常工作;同时在第 一水套通路10上靠近第一出水通路15的部位设置有排气出口,排气出口用于排出第一水套通路10中的气体,避免气泡聚集时使换热系数降低以致热量无法排出导致局部区域过热现象。
在进一步实施例中,所述第一水套通路10具有第一出水通路15,所述第一出水通路15位于所述第一水套通路10上远离所述进水通路14的一侧,使冷却液流经线程较长,增大换热面积,提高换热能力,所述缸体12具有第二出水通路16,所述第二出水通路16远离所述进水通路14设置,冷却液通过所述进水通路14后分流并分别从所述第一出水通路15和所述第二出水通路16流出,能够增长冷却液流动的线程,增大冷却效率。上述方案可以理解成,冷却液通过所述进水通路14进入所述第二水套通路11,然后在第二冷却通路内分流,分流的冷却液分别流入第一水套通路10和缸体12,并分别通过所述第一出水通路15和所述第二出水通路16排出发动机,实现热量的传递,为发动机冷却。
在进一步实施例中,所述第二水套通路11通过多个第一通路17与所述第一水套通路10连通,使冷却液能够在多个第一通路17中由所述第二水套通路11进入所述第一水套通路10,增大了冷却液流通面积,进而增大了冷却液的流动速率,有效地将热量转移。多个所述第一通路17沿缸体12内的缸筒121的排列方向分布且靠近所述缸筒121,能够使第二水套通路11中的冷却液均匀的进入第一水套通路10中,尽可能使流经每个第一通路17的冷却液的流量分配合理,保证排气通路的冷却均衡。
所述进水通路14位于所述第二水套通路11的与所述第一通路17连通的一侧的相对侧,使所述进水通路14和所述第一通路17连通的位置之间尽可能具有最大的跨度,以保证冷却液完全流通于第二水套通路11,以保证换热能力,且所述进水通路14的延伸方向与所述缸筒121的排列方向相同,使冷却液能够沿缸筒121排列的方向流动,使流进进水通路14的冷却液均匀的流向第一通路17,尽可能保证冷却液各部分的吸热程度相同,保证了发动机冷却的均衡性。
在进一步实施例中,所述第二水套通路11包括第二水套主区111、至少两个鼻梁区112和第二水套副区113,所述第二水套主区111和所述第二水套副区113通过所述鼻梁区112连通,所述第二水套副区113位于火花塞周侧,所述第二水套主区111主要为缸盖和排气通路降温,且所述第二水套主区111为所述第二水套通路11的主体部分,所述鼻梁区112的宽度较窄,主要为缸盖火力面降温冷却,鼻梁区112设置得 较窄能够加快冷却液的流速,提高冷却液与缸盖火力面之间的换热效率,能够有效地降低缸盖火力面部分的温度,所述第二水套副区113主要为火花塞降温,本申请的第二水套通路11的结构布局合理,能够同时为缸盖上的各个部分降温,为发动机各个部分的均衡冷却提供了便利条件。
所述第一通路17连通于所述第二水套通路11的靠近所述鼻梁区112的部位,由于所述鼻梁区112部分较窄,流经鼻梁区112的冷却液的流动速度等参数必定会发生变化,该变化不利于第二水套通路11的冷却液通过第一通路17流向第一水套通路10,而将第一通路17与第二水套通路11连通的位置避开所述鼻梁区112,就能够避免上述的问题,有利于冷却液向第一水套通路10的流动,同时,所述第一通路17与第二水套通路11连通的位置靠近鼻梁区112,而鼻梁区112所在位置和进水通路14所在位置之间的距离较远,也就是说,冷却液能够在第二水套通路11内流动的范围较大,能够保证冷却液充分换热,保证对缸盖的有效降温冷却。
在进一步实施例中,所述缸盖还包括第一导流筋组21和第二导流筋组22,所述第一导流筋组21和所述第二导流筋组22位于所述第二水套主区111内,所述第一导流筋组21和所述第二导流筋组22主要用于对在第二水套主区111内的冷却液进行导流,尽量实现冷却液的均匀分布。
进一步地,如图5所示,至少部分所述第一导流筋组21位于所述第二水套主区111内的第一位置,所述第一位置与两个相邻的所述鼻梁区112之间的区域相对,比如以第一导流筋组21的其中一个特定的第一导流筋211为例,在第二水套主区111内具有第一导流筋211,第一导流筋211所在的位置与其中两个相邻的鼻梁区112之间的部位相对应,而第一导流筋211的作用是能够将冷却液分隔,并使分隔的冷却液分别流进第一导流筋211两侧的鼻梁区112附近从而实现导流作用,使冷却液进入上述鼻梁区112的流量分配均匀。
本申请实施例中,如图5所示,所述第一导流筋组21还包括靠近进水通路14设置的第二导流筋212,使进水通路14流进的冷却液实现首次分流,同时,所述第一导流筋组21还包括靠近第二导流筋212而设置的第三导流筋213,第三导流筋213对首次分流后的冷却液进行二次分流,进而实现冷却液在第二水套主区111内的大致流量分配,为发动机实现均衡冷却的效果提供了便利条件。进一步地,所述第一导流筋组21的各个导流筋均沿冷却液的大致流向延伸,而形成与水的流向大致相同的倾斜状 态。
在进一步实施例中,如图5所示,本申请中的第一导流筋组21具有六个导流筋和四个鼻梁区112,第二导流筋212位于第二水套通路11中靠近所述进水通路14的部位,第二导流筋212具有长度,第二导流筋212的长度方向大致沿冷却液的流动方向排布,且所述第二导流筋212的宽度沿着从靠近进水通路14至远离进水通路14的方向递增,使一部分冷却液向右流动,一部分冷却液向右下方流动,实现冷却液流量的大致分配;第五导流筋215位于第二导流筋212右侧靠下的位置,第五导流筋215为长棒状结构,且第五导流筋215的下侧向左倾斜,第五导流筋215能够避免大部分冷却液向右流动,通过对冷却液的阻隔导向,使得部分冷却液流向第五导流筋215下侧靠左的鼻梁区112,实现了对冷却液的二次分流;第六导流筋216位于第二导流筋212下侧靠右的位置,第六导流筋216为长棒状,所述第六导流筋216位于第一鼻梁区112和第二鼻梁区112之间,所述第一鼻梁区112位于所述进水通路14正下方,所述第二鼻梁区112位于所述第一鼻梁区112的右侧,与所述第一鼻梁区112相邻,所述第六导流筋216的一端斜向下指向第一鼻梁区112,所述第六导流筋216的另一端指向第五导流筋215,第六导流筋216限制流入冷却液流入第一鼻梁区112的流量,使一部分冷却液向右流动;第三导流筋213在进水通路14的延伸方向上远离所述进水通路14的位置设置,第三导流筋213为椭圆形,对冷却液进行二次分流,使冷却液的流量分配更加合理;在第二鼻梁区112的右侧,与所述第二鼻梁区112相邻的设置有第三鼻梁区112,所述第四导流筋214设置在第二鼻梁区112和第三鼻梁区112之间,所述第四导流筋214为长棒状,所述第四导流筋214的一端斜向下指向第二导流筋212,所述第四导流筋214的另一端斜向上指向第三导流筋213,第四导流筋214能够合理分配冷却液流向第二鼻梁区112和第三鼻梁区112的流量;在第三鼻梁区112的右侧,与所述第三鼻梁区112相邻的设置有第四鼻梁区112,第一导流筋211设置在第三鼻梁区112和第四鼻梁区112之间,第一导流筋211为长棒状,第一导流筋211的一端指向第四鼻梁区112,第一导流筋211的另一端指向第三导流筋213,第一导流筋211能够合理分配冷却液流向第三鼻梁区112和第四鼻梁区112的流量。
如图5所示,所述第二导流筋组22位于所述第二水套主区111内的第二位置,所述第二位置与所述鼻梁区112相对应且靠近所述鼻梁区112,使第二导流筋组22的导流筋能够合理分配左右两股流入鼻梁区112的流量,增加冷却液汇入鼻梁区112的 速度,有效冷却火力面。
在进一步实施例中,如图5所示,本申请中的第二导流筋组22包括四个导流筋,每个第二导流筋组内的导流筋均对应于一个鼻梁区112,第二导流筋组22内的导流筋的形状为类三角形,上述类三角形的导流筋的第一边与鼻梁区112相对,与第一边相对的类三角形的角指向远离鼻梁区112的方向,能够进一步保证第二导流筋组22合理分配左右两股流入鼻梁区112的流量,增加冷却液汇入鼻梁区112的速度,有效冷却缸盖上的对应部位。
在进一步实施例中,所述缸盖还包括第三导流筋组23,所述第三导流筋组23位于所述第一水套通路10内,所述第三导流筋组23将所述第一水套通路10分隔形成的支路与所述排气通路相对应,且所述支路靠近所述排气通路设置,也就是说,第三导流筋组23的各个导流筋将所述第一水套通路10内流动的冷却液进行导流,将冷却液导流成多个主要的液流,且导流出的多个液流与缸盖内设置的排气通路相对应,比如,第一液流的流动路径与排气通路中的第一排气道的路径相匹配,使第一水套通路10中的冷却液在冷却缸盖的同时,能够精确的对排气通路中的高温气体进行冷却。
在进一步实施例中,如图6所示,本申请中的第一水套通路10的进水侧在第一水套通路10的下侧,冷却液由第一水套通路10的下侧向位于第一水套通路10上侧的出水口方向流动,在第一水套通路10的中部设置有第十四导流筋234,第十四导流筋234为粗棒状,第十四导流筋234的上端稍向右倾斜,能够将冷却液向第十四导流筋234的两侧分流,冷却第十四导流筋234两侧相对应的排气通路;沿第十四导流筋234的上端呈半环形由左至右依次分布有第十六导流筋236、第十五导流筋235、第十三导流筋233和第十二导流筋232,第十六导流筋236、第十五导流筋235、第十三导流筋233和第十二导流筋232均为长棒状,其中,第十六导流筋236和第十二导流筋232的长度方向沿冷却液的流向分布,用于合理分配水流,使分配的水流能够与排气通路相对应,第十五导流筋235、第十三导流筋233主要起到阻隔冷却液向左流动的作用,保证冷却液能够顺利流动到第一出水通路15;第十七导流筋237和第十一导流筋231分别位于所述第一水套通路10的左右两侧,起到分隔冷却液的作用,使冷却液能够冷却相对应的排气通路。
在进一步实施例中,所述缸体12内具有第三水套通路13,所述第三水套通路13围设于所述缸体12内的缸筒121的外壁,所述第二水套通路11和所述第三水套通路 13连通。
所述缸体12内具有缸筒121和第三水套通路13,所述缸筒121内具有燃烧室,缸筒121的燃烧室是发动机热量的主要来源,所述第三水套通路13围设于所述缸筒121的外壁,当冷却液在所述第三水套通路13内流动时,冷却液能够与缸筒121的外壁之间进行热交换,将热量经由冷却液带出发动机,从源头上冷却发热源,有效的实现对发动机的冷却。所述第二水套通路11位于所述第一水套通路10和所述第三水套通路13之间,所述第二水套通路11和所述第三水套通路13连通。
在进一步实施例中,所述第二水套通路11通过至少一个第二通路18与所述第三水套通路13连通,所述第二通路18靠近所述进水通路14设置,能够使冷却液在第二水套内充分的流动后才进入第三水套通路13,避免冷却液流出后还没来的及在第二水套通路11中充分流动就进入第三水套通路13,所述第二出水通路16位于所述第三水套通路13上远离所述进水通路14的一侧。
在进一步实施例中,所述缸体12与所述缸筒121之间具有间隙,所述第三水套通路13位于所述间隙内;靠近所述缸筒121内燃烧室一侧的第三水套通路13厚度为第一厚度,远离所述缸筒121内燃烧室一侧的第三水套通路13厚度为第二厚度,所述第一厚度大于所述第二厚度,如图1、图2或者图4所示,所述第一厚度大于所述第二厚度,也就是说,靠近缸筒121燃烧室的冷却液流量多于远离缸筒121燃烧室部分的冷却液流量,能够针对温度较高的燃烧室分配较大的冷却液流量,针对温度相对较低的远离燃烧室的部分分配相对较小的冷却液的流量,避免了大部分流量经缸筒121下部分未能吸收较多热量到达降温的效果,还有可能导致缸体12过冷的情况。
在进一步实施例中,所述发动机包括插片19,所述插片19插设于所述缸体12与所述缸筒121之间的间隙内,所述第三水套通路13设于所述插片19与所述缸筒121之间,所述缸筒121的靠近燃烧室部分的外壁至所述插片19之间的距离为第一厚度,所述缸筒121的远离燃烧室部分的外壁至所述插片19之间的距离为第二厚度,所述第一厚度大于所述第二厚度,也就是说,插片19插入缸体12与所述缸筒121之间的间隙内,能够形成插片19上至缸筒121的距离不同的效果,通过插片19占据的空间使第三水套通路13形成靠近缸筒121燃烧室的部分的厚度较大,远离缸筒121燃烧室部分的厚度较小,同时,插片19方便拆卸,避免了重新为缸体12开模,增加制造成本的问题。
在进一步实施例中,所述第三水套通路13还包括第三通路20,所述第三通路20位于相邻的所述缸筒121之间,所述第三通路20呈弯折状,弯折状的第三通路20能够增大冷却液的流通路径,能够尽可能的吸收更多的热量,其中,弯折的所述第三通路20可以为尖角弯折,比如第三通路20为V字形等,也可以为圆角弯折,比如第三通路20可以为U字形等,当然,所述第三通路20也可以为非弯折结构,比如所述第三通路20为一相对于所述缸筒121的轴线倾斜设置的通路。
根据本申请的第二方面,提供了一种车辆,包括以上所述的发动机,由于根据本申请上述实施例的发动机具有上述技术效果,因此,根据本申请实施例的车辆也具有相应的技术效果,即使发动机的缸盖具有较佳的冷却效果。
虽然已经通过例子对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。

Claims (12)

  1. 一种发动机,其特征在于,包括缸盖和缸体,所述缸盖内具有第一水套通路、排气通路和第二水套通路,所述排气通路位于所述第一水套通路和所述第二水套通路之间,所述第一水套通路和所述第二水套通路靠近所述排气通路设置,所述第一水套通路和所述第二水套通路连通,所述第二水套通路被配置为与所述缸体连通,所述第二水套通路具有进水通路。
  2. 根据权利要求1所述的发动机,其特征在于,所述第一水套通路具有第一出水通路,所述第一出水通路位于所述第一水套通路的远离所述进水通路的一侧,所述缸体具有第二出水通路,所述第二出水通路远离所述进水通路设置,冷却液通过所述进水通路后分流并分别从所述第一出水通路和所述第二出水通路流出。
  3. 根据权利要求1所述的发动机,其特征在于,所述第二水套通路通过多个第一通路与所述第一水套通路连通,多个所述第一通路所述沿缸体内的缸筒的排列方向分布且靠近所述缸筒;
    所述进水通路位于所述第二水套通路的与所述第一通路连通的一侧的相对侧,且所述进水通路的延伸方向与所述缸筒排列方向相同。
  4. 根据权利要求3所述的发动机,其特征在于,所述第二水套通路包括第二水套主区、至少两个鼻梁区和第二水套副区,所述第二水套主区和所述第二水套副区通过所述鼻梁区连通,所述第二水套副区位于火花塞周侧;
    所述第一通路连通于所述第二水套通路的靠近所述鼻梁区的部位。
  5. 根据权利要求4所述的发动机,其特征在于,所述缸盖还包括第一导流筋组和第二导流筋组,所述第一导流筋组和所述第二导流筋组位于所述第二水套主区内;其中,
    至少部分所述第一导流筋组位于所述第二水套主区内的第一位置,所述第一位置与两个相邻的所述鼻梁区之间的区域相对应;
    所述第二导流筋组位于所述第二水套主区内的第二位置,所述第二位置与所述鼻梁区相对应且靠近所述鼻梁区。
  6. 根据权利要求3所述的发动机,其特征在于,所述缸盖还包括第三导流筋组,所述第三导流筋组位于所述第一水套通路内,所述第三导流筋将所述第一水套通路分隔形成的支路与所述排气通路相对应,且所述支路靠近所述排气通路设置。
  7. 根据权利要求1所述的发动机,其特征在于,所述缸体内具有第三水套通路,所述第三水套通路围设于所述缸体内的缸筒的外壁,所述第二水套通路和所述第三水套通路连通。
  8. 根据权利要求7所述的发动机,其特征在于,所述第二水套通路通过至少一个第二通路与所述第三水套通路连通,所述第二通路靠近所述进水通路设置。
  9. 根据权利要求7所述的发动机,其特征在于,所述缸体与所述缸筒之间具有间隙,所述第三水套通路位于所述间隙内;
    在靠近所述缸筒内的燃烧室一侧的第三水套通路的厚度为第一厚度,在远离所述缸筒内的燃烧室一侧的第三水套通路的厚度为第二厚度,所述第一厚度大于所述第二厚度。
  10. 根据权利要求9所述的发动机,其特征在于,所述发动机包括插片,所述插片插设于所述缸体与所述缸筒之间的间隙内,所述第三水套通路设于所述插片与所述缸筒之间,所述缸筒的靠近燃烧室部分的外壁至所述插片之间的距离为第一厚度,所述缸筒的远离燃烧室部分的外壁至所述插片之间的距离为第二厚度,所述第一厚度大于所述第二厚度。
  11. 根据权利要求7所述的发动机,其特征在于,所述第三水套通路还包括第三通路,所述第三通路位于相邻的所述缸筒之间,所述第三通路呈弯折状。
  12. 一种车辆,其特征在于,包括权利要求1-11中任一项所述的发动机。
PCT/CN2022/072821 2021-03-01 2022-01-19 发动机和车辆 WO2022183861A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22762330.3A EP4253746A4 (en) 2021-03-01 2022-01-19 ENGINE AND VEHICLE
AU2022229339A AU2022229339A1 (en) 2021-03-01 2022-01-19 Engine and vehicle
US18/214,444 US11976607B2 (en) 2021-03-01 2023-06-26 Engine and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110227871.7A CN114991983A (zh) 2021-03-01 2021-03-01 发动机和车辆
CN202110227871.7 2021-03-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/214,444 Continuation US11976607B2 (en) 2021-03-01 2023-06-26 Engine and vehicle

Publications (1)

Publication Number Publication Date
WO2022183861A1 true WO2022183861A1 (zh) 2022-09-09

Family

ID=83018138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072821 WO2022183861A1 (zh) 2021-03-01 2022-01-19 发动机和车辆

Country Status (5)

Country Link
US (1) US11976607B2 (zh)
EP (1) EP4253746A4 (zh)
CN (1) CN114991983A (zh)
AU (1) AU2022229339A1 (zh)
WO (1) WO2022183861A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138938A (ja) * 2001-11-02 2003-05-14 Honda Motor Co Ltd 内燃機関
EP2500558A1 (en) * 2011-03-10 2012-09-19 Fiat Powertrain Technologies S.p.A. Cylinder head for an internal combustion engine, with integrated exhaust manifold and subgroups of exhaust conduits merging into manifold portions which are superimposed and spaced apart from each other
DE102014012503A1 (de) * 2014-08-22 2016-02-25 Audi Ag Brennkraftmaschine
CN108894888A (zh) * 2018-06-20 2018-11-27 浙江吉利控股集团有限公司 发动机缸盖
CN110284990A (zh) * 2019-08-13 2019-09-27 重庆小康工业集团股份有限公司 气缸盖冷却水套及发动机
CN111852683A (zh) * 2019-04-30 2020-10-30 长城汽车股份有限公司 气缸盖冷却结构和发动机冷却结构和发动机

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10213006A (ja) * 1997-01-29 1998-08-11 Yamaha Motor Co Ltd エンジンのシリンダブロック
JP4036200B2 (ja) * 2004-03-10 2008-01-23 マツダ株式会社 多気筒エンジンのシリンダブロック構造及びその製造方法
US7367294B2 (en) * 2006-03-14 2008-05-06 Gm Global Technology Operations, Inc. Cylinder head with integral tuned exhaust manifold
US8146544B2 (en) * 2009-03-05 2012-04-03 GM Global Technology Operations LLC Engine cylinder head cooling features and method of forming
AT506468B1 (de) * 2009-03-24 2010-12-15 Avl List Gmbh Zylinderkopf einer brennkraftmaschine
US8584628B2 (en) * 2010-07-14 2013-11-19 Ford Global Technologies, Llc Engine with cylinder head cooling
US8857385B2 (en) * 2011-06-13 2014-10-14 Ford Global Technologies, Llc Integrated exhaust cylinder head
US8960137B2 (en) * 2011-09-07 2015-02-24 Ford Global Technologies, Llc Integrated exhaust cylinder head
JP6131920B2 (ja) * 2014-07-28 2017-05-24 トヨタ自動車株式会社 内燃機関の冷却構造
JP6036858B2 (ja) * 2015-01-07 2016-11-30 マツダ株式会社 エンジンの冷却装置
JP6475360B2 (ja) * 2015-10-23 2019-02-27 本田技研工業株式会社 水冷式エンジンの冷却構造
JP6299737B2 (ja) * 2015-12-18 2018-03-28 マツダ株式会社 多気筒エンジンの冷却構造
CN209483492U (zh) * 2018-12-25 2019-10-11 长城汽车股份有限公司 气缸盖、发动机和车辆
CN210977700U (zh) * 2019-10-17 2020-07-10 广州汽车集团股份有限公司 发动机缸盖冷却水套及发动机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138938A (ja) * 2001-11-02 2003-05-14 Honda Motor Co Ltd 内燃機関
EP2500558A1 (en) * 2011-03-10 2012-09-19 Fiat Powertrain Technologies S.p.A. Cylinder head for an internal combustion engine, with integrated exhaust manifold and subgroups of exhaust conduits merging into manifold portions which are superimposed and spaced apart from each other
DE102014012503A1 (de) * 2014-08-22 2016-02-25 Audi Ag Brennkraftmaschine
CN108894888A (zh) * 2018-06-20 2018-11-27 浙江吉利控股集团有限公司 发动机缸盖
CN111852683A (zh) * 2019-04-30 2020-10-30 长城汽车股份有限公司 气缸盖冷却结构和发动机冷却结构和发动机
CN110284990A (zh) * 2019-08-13 2019-09-27 重庆小康工业集团股份有限公司 气缸盖冷却水套及发动机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4253746A4 *

Also Published As

Publication number Publication date
CN114991983A (zh) 2022-09-02
US11976607B2 (en) 2024-05-07
EP4253746A4 (en) 2024-05-01
US20230340923A1 (en) 2023-10-26
EP4253746A1 (en) 2023-10-04
AU2022229339A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
US10151279B2 (en) Apparatus for cooling vehicle engine
JPS60190646A (ja) シリンダブロツクの冷却装置
JPS627914A (ja) 内燃機関の冷却装置
US10738680B2 (en) Cylinder head of multi-cylinder engine
JPH1113551A (ja) Egrクーラ
WO2022183861A1 (zh) 发动机和车辆
JP4905573B2 (ja) 内燃機関排気冷却システム
JPS61175217A (ja) シリンダヘツドの冷却構造
JPH1113549A (ja) Egrクーラ
JP4340070B2 (ja) 往復動機関用の冷却通路系統付きシリンダヘッド
CN210948921U (zh) 集成排气歧管式四缸机缸盖冷却水套
CN207145048U (zh) 发动机排气岐管
US11022020B2 (en) Cylinder head with improved valve bridge cooling
CN106014671A (zh) 一种发动机缸盖水套
US20200063641A1 (en) Intake device for multi-cylinder engine
CN217002037U (zh) 发动机冷却系统和具有其的车辆
US11181032B2 (en) Cylinder head with improved valve bridge cooling
CN218816677U (zh) 发动机气缸盖水套以及发动机
US20170362992A1 (en) Cylinder head of multi-cylinder engine
JP7354796B2 (ja) シリンダヘッドの冷却水通路構造
CN218325042U (zh) 发动机缸盖水套及发动机
CN216642295U (zh) 发动机缸盖冷却水套及发动机
CN209621484U (zh) 一种新型大功率柴油机气缸盖
CN110446844B (zh) 液冷式内燃机
CN116753083A (zh) 一种发动机及摩托车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762330

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022762330

Country of ref document: EP

Effective date: 20230629

ENP Entry into the national phase

Ref document number: 2022229339

Country of ref document: AU

Date of ref document: 20220119

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023014799

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023014799

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230724

NENP Non-entry into the national phase

Ref country code: DE