WO2022164266A1 - 가소제 조성물 및 이를 포함하는 수지 조성물 - Google Patents

가소제 조성물 및 이를 포함하는 수지 조성물 Download PDF

Info

Publication number
WO2022164266A1
WO2022164266A1 PCT/KR2022/001612 KR2022001612W WO2022164266A1 WO 2022164266 A1 WO2022164266 A1 WO 2022164266A1 KR 2022001612 W KR2022001612 W KR 2022001612W WO 2022164266 A1 WO2022164266 A1 WO 2022164266A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
terephthalate
weight
citrate
hexyl
Prior art date
Application number
PCT/KR2022/001612
Other languages
English (en)
French (fr)
Inventor
김현규
김주호
정석호
김은석
최우혁
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202280006712.7A priority Critical patent/CN116323780A/zh
Priority to JP2023520354A priority patent/JP7515957B2/ja
Priority to US18/029,435 priority patent/US20230365780A1/en
Priority to EP22746292.6A priority patent/EP4286466A4/en
Priority to MX2023004286A priority patent/MX2023004286A/es
Publication of WO2022164266A1 publication Critical patent/WO2022164266A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a plasticizer composition comprising a terephthalate-based composition and a citrate-based composition, and a resin composition comprising the same.
  • Plasticizers typically react with alcohols with polycarboxylic acids such as phthalic acid and adipic acid to form the corresponding esters.
  • polycarboxylic acids such as phthalic acid and adipic acid
  • plasticizer compositions that can replace phthalate-based plasticizers such as terephthalate, adipate, and other polymer-based plasticizers is continuing.
  • additives such as plasticizers, fillers, stabilizers, viscosity reducing agents, dispersants, defoamers, foaming agents, etc. are blended with PVC resin according to the characteristics required by industry such as tensile strength, elongation, light resistance, transferability, gelling property or absorption rate, etc. will do
  • plasticizer compositions applicable to PVC when di(2-ethylhexyl) terephthalate (DEHTP), which is relatively inexpensive and most commonly used, is applied, hardness or sol viscosity is high and the absorption rate of the plasticizer is relatively slow, and the transferability and stress transferability were not good.
  • DEHTP di(2-ethylhexyl) terephthalate
  • composition containing DEHTP it may be considered to apply the product of the transesterification reaction with butanol as a plasticizer, but while the plasticization efficiency is improved, the reduction in heating or thermal stability is poor, and mechanical properties Improvement of physical properties is required, such as a slight decrease in this, and there is currently no solution other than adopting a method that compensates for this through mixing with other secondary plasticizers in general.
  • Eco-friendly plasticizers for solving environmental issues of phthalate-based products which are existing commercial products, or for improving environmental issues of phthalate-based products have very good specific properties, but have poor other specific properties, so Can not use it. Accordingly, there is a need to develop a blending plasticizer product that has excellent balance between physical properties without poor physical properties and can implement only the advantages between two components during blending.
  • An object of the present invention is to provide a plasticizer composition that can significantly improve migration resistance and stress resistance while maintaining and improving mechanical properties and plasticization efficiency at equal or higher levels compared to conventional plasticizers.
  • the present invention provides a plasticizer composition and a resin composition.
  • the present invention includes a terephthalate-based composition and a citrate-based composition, wherein the terephthalate-based composition comprises dihexyl terephthalate, hexyl(2-ethylhexyl) terephthalate and di(2-ethylhexyl) terephthalate.
  • the citrate-based composition includes trihexyl citrate, the hexyl group of terephthalate and the hexyl group of citrate are derived from a mixture of isomers of hexyl alcohol, and the mixture of isomers of hexyl alcohol is 1-hexanol , 1-methylpentanol, 2-methylpentanol, 3-methylpentanol, 4-methylpentanol, 1,1-dimethylbutanol, 1,2-dimethylbutanol, 1,3-dimethylbutanol, 2,2- A plasticizer composition comprising at least two selected from the group consisting of dimethylbutanol, 2,3-dimethylbutanol, 3,3-dimethylbutanol, 1-ethylbutanol, 2-ethylbutanol, 3-ethylbutanol and cyclopentyl methanol to provide.
  • the present invention according to the above (1), wherein the terephthalate-based composition, dihexyl terephthalate 0.5 to 50.0% by weight; 3.0 to 70.0 wt% of hexyl (2-ethylhexyl) terephthalate; And di (2-ethylhexyl) terephthalate 0.5 to 95.0% by weight; provides a plasticizer composition comprising a.
  • the present invention provides a plasticizer composition according to (1) or (2), wherein the citrate-based composition contains at least one citrate represented by the following formula (1):
  • R 1 to R 3 are each independently an n-hexyl group, a branched hexyl group, or a cyclopentyl methyl group, and R 4 is hydrogen.
  • the present invention provides a plasticizer composition according to any one of (1) to (3), which comprises the terephthalate-based composition and the citrate-based composition in a weight ratio of 95:5 to 5:95. do.
  • the present invention provides a plasticizer composition according to any one of (1) to (4), which comprises the terephthalate-based composition and the citrate-based composition in a weight ratio of 95:5 to 50:50. do.
  • the present invention provides a plasticizer composition according to any one of (1) to (5), wherein the isomer mixture of hexyl alcohol comprises 2-methylpentanol and 3-methylpentanol.
  • the present invention provides a plasticizer composition according to any one of (1) to (8), wherein the isomer mixture of hexyl alcohol further comprises 1-hexanol.
  • the present invention provides a plasticizer composition according to any one of (1) to (10), wherein the isomer mixture of hexyl alcohol further comprises 4-methylpentanol.
  • the present invention provides a plasticizer composition according to any one of (1) to (11), wherein the isomer mixture of hexyl alcohol further comprises cyclopentyl methanol.
  • the present invention according to any one of (1) to (12), wherein the isomer mixture of hexyl alcohol contains 20 parts by weight or less of cyclopentyl methanol based on 100 parts by weight of the isomer mixture.
  • a composition is provided.
  • the present invention provides a resin composition comprising 100 parts by weight of a resin and 5 to 150 parts by weight of the plasticizer composition of any one of (1) to (13).
  • the resin is a straight vinyl chloride polymer, a paste vinyl chloride polymer, an ethylene vinyl acetate copolymer, an ethylene polymer, a propylene polymer, a polyketone, polystyrene, polyurethane, polylactic acid, natural It provides a resin composition that is at least one selected from the group consisting of rubber and synthetic rubber.
  • the plasticizer composition according to an embodiment of the present invention when used in a resin composition, maintains and improves mechanical properties and plasticization efficiency at equal or higher levels compared to conventional plasticizers, and at the same time can significantly improve migration resistance and stress resistance. have.
  • FIG. 1 is a view showing the evaluation results of carbonization properties of a plasticizer composition according to Examples 1-5 and a plasticizer composition according to Comparative Examples 1 to 6 of the present invention.
  • composition includes reaction products and decomposition products formed from materials of the composition, as well as mixtures of materials comprising the composition.
  • straight vinyl chloride polymer is one of the types of vinyl chloride polymer, and is polymerized through suspension polymerization or bulk polymerization. This polymer is a porous particle having a plurality of pores, has a size of several tens to several hundreds of micrometers, has no cohesiveness, and has excellent flowability.
  • paste vinyl chloride polymer is one of the types of vinyl chloride polymer, and is polymerized through microsuspension polymerization, microseed polymerization, or emulsion polymerization. This polymer is fine, dense particles without pores, has a size of several tens to several thousand nanometers, is cohesive, and has poor flowability.
  • compositions claimed through use of the term 'comprising' unless stated to the contrary, contain any additional additives, adjuvants, or compounds, whether polymeric or otherwise. may include
  • the term 'consisting essentially of' excludes from the scope of any subsequent description any other component, step, or procedure, except as is not essential to operability.
  • the term 'consisting of' excludes any component, step or procedure not specifically described or listed.
  • the content analysis of the components in the composition is performed through gas chromatography measurement, and Agilent's gas chromatography instrument (product name: Agilent 7890 GC, column: HP-5, carrier gas: helium (flow rate 2.4 mL/min)) , detector: F.I.D, injection volume: 1uL, initial value: 70°C/4.2min, end value: 280°C/7.8min, program rate: 15°C/min).
  • 'hardness' means shore hardness (Shore "A” and/or Shore “D”) at 25° C. using ASTM D2240, measured under the conditions of 3T 10s, and plasticized It can be an index to evaluate the efficiency, and the lower it is, the better the plasticizing efficiency is.
  • 'tensile strength' is a crosshead speed of 200 mm/min (1T) using a test device, U.T.M (manufacturer; Instron, model name; 4466), according to the ASTM D638 method. ), measure the point at which the specimen is cut, and calculate by Equation 1 below.
  • Tensile strength (kgf/cm 2 ) load value (kgf) / thickness (cm) x width (cm)
  • 'elongation rate' is measured by the ASTM D638 method, after pulling the cross head speed to 200 mm/min (1T) using the U.T.M, and then measuring the point at which the specimen is cut. Then, it is calculated by Equation 2 below.
  • Elongation (%) length after stretching / initial length x 100
  • 'migration loss' refers to obtaining a test piece having a thickness of 2 mm or more according to KSM-3156, attaching a glass plate to both sides of the test piece, and applying a load of 1 kgf/cm 2 . After leaving the test piece in a hot air circulation oven (80°C) for 72 hours, take it out and cool it at room temperature for 4 hours. Then, after removing the glass plate attached to both sides of the test piece, measure the weight before and after leaving the glass plate and the specimen plate in the oven to calculate the transfer loss by Equation 3 below.
  • Transition loss (%) ⁇ [(weight of initial specimen) - (weight of specimen after leaving in oven)] / (weight of initial specimen) ⁇ x 100
  • 'volatile loss' refers to measuring the weight of the specimen after working the specimen at 80° C. for 72 hours.
  • Loss on heating (%) ⁇ [(Initial specimen weight) - (Specimen weight after work)] / (Initial specimen weight) ⁇ x 100
  • the plasticizer composition includes a terephthalate-based composition and a citrate-based composition
  • the terephthalate-based composition includes dihexyl terephthalate, hexyl (2-ethylhexyl) terephthalate and di (2- ethylhexyl) terephthalate
  • the citrate-based composition includes trihexyl citrate
  • the hexyl group of terephthalate and the hexyl group of citrate are derived from a mixture of isomers of hexyl alcohol, and isomers of hexyl alcohol
  • the mixture is 1-hexanol, 1-methylpentanol, 2-methylpentanol, 3-methylpentanol, 4-methylpentanol, 1,1-dimethylbutanol, 1,2-dimethylbutanol, 1,3-dimethyl Contains at least two selected from the group consisting of butanol, 2,2-di
  • a terephthalate-based composition is used as a component of the plasticizer composition according to an embodiment of the present invention, and the terephthalate-based composition includes dihexyl terephthalate, hexyl (2-ethylhexyl) terephthalate, and di (2-ethylhexyl) terephthalate. Contains phthalates.
  • the terephthalate-based composition may use an alcohol having a large difference in carbon number to have both the advantages of having a small number of carbon atoms and a large number of carbon atoms.
  • the plasticization efficiency is excellent, the mechanical properties are not poor, and the weight loss characteristics are excellent. I confirmed that I could catch it.
  • the hexyl group is derived from hexanol in which isomers are mixed, thereby obtaining a maximized synergistic effect when mixed with another component, a citrate-based composition.
  • the terephthalate-based composition may include 0.5 to 50.0 wt% of dihexyl terephthalate; 3.0 to 70.0 wt% of hexyl (2-ethylhexyl) terephthalate; and 0.5 to 95.0 wt% of di (2-ethylhexyl) terephthalate.
  • the terephthalate-based composition comprises 0.5 to 30.0 wt% of dihexyl terephthalate; 10.0 to 60.0 wt% of hexyl (2-ethylhexyl) terephthalate; and 35.0 to 90.0 wt% of di(2-ethylhexyl) terephthalate.
  • the reproducibility of the above-described effect is excellent, and there is an advantage in that the balance between physical properties is appropriate.
  • a citrate-based composition is used as another component, and the citrate-based composition includes trihexyl citrate, wherein the hexyl group is derived from hexanol in which isomers are mixed. .
  • the terephthalate-based composition tends to have relatively inferior elongation among the migration resistance, stress resistance, and mechanical properties, compared to conventional commercial plasticizers, and has excellent properties such as heat loss and carbonization characteristics, and residual rate characteristics.
  • the citrate-based composition has inferior thermal properties and tensile strength compared to conventional commercial plasticizers, but has excellent plasticization efficiency, migration resistance and stress resistance.
  • the plasticizer composition of the present invention is a terephthalate-based composition and a citrate-based composition 95:5 to 5:95, 95:5 to 10:90, 95:5 to 20:80, 95: 5 to 30:70, 95:5 to 50:50, 95:5 to 70:30, 90:10 to 10:90, 90:10 to 30:70, 90:10 to 50:50 or 90:10 to It may be included in a weight ratio of 70:30.
  • the content of the terephthalate-based composition is relatively small when work in a high-temperature environment is required.
  • a plasticizer composition having a high content of the composition can be used, and conversely, in that the elongation and migration resistance of the citrate-based composition are superior to those of the terephthalate-based composition, for products requiring high elongation and high migration resistance, the citrate-based composition is A plasticizer composition having a high content and a low content of the terephthalate-based composition may be used.
  • the citrate-based composition according to an embodiment of the present invention may contain one or more citrates represented by Formula 1 below.
  • R 1 to R 3 are each independently an n-hexyl group, a branched hexyl group, or a cyclopentyl methyl group, and R 4 is hydrogen.
  • the hexyl group of terephthalate and the hexyl group of citrate are derived from a mixture of isomers of hexyl alcohol.
  • the isomer mixture of hexyl alcohol is 1-hexanol, 1-methylpentanol, 2-methylpentanol, 3-methylpentanol, 4-methylpentanol, 1,1-dimethylbutanol, 1,2-dimethylbutanol, From the group consisting of 1,3-dimethylbutanol, 2,2-dimethylbutanol, 2,3-dimethylbutanol, 3,3-dimethylbutanol, 1-ethylbutanol, 2-ethylbutanol, 3-ethylbutanol and cyclopentyl methanol It contains two or more selected.
  • the hexyl group of the terephthalate and the citrate may be determined, and the ratio of the components in each final composition may be determined according to the component ratio of the reacting alcohols.
  • the plasticizer composition according to an embodiment of the present invention may include 2-methylpentanol and 3-methylpentanol in a mixture of hexyl alcohol isomers, and in some cases 1-hexanol, 2-methylpentanol and 3-methylpentanol methylpentanol, or 2-methylpentanol, 3-methylpentanol and 4-methylpentanol, or 1-hexanol, 2-methylpentanol, 3-methylpentanol and 4-methylpentanol may include.
  • Including 2-methylpentanol and 3-methylpentanol together can maintain a balance between physical properties, and an excellent effect can be obtained in terms of reduction in heating.
  • the branched hexyl alcohol including at least one of 2-methylpentanol, 3-methylpentanol and 4-methylpentanol may be included in an amount of 40 parts by weight or more, 50 parts by weight or more, 60 parts by weight based on 100 parts by weight of the isomer mixture. It may be included in parts or more, preferably 65 parts by weight or more, 70 parts by weight or more.
  • the maximum amount may be all branched, and may include 99 parts by weight or less, 98 parts by weight or less, preferably 95 parts by weight or less, or 90 parts by weight or less.
  • the linear alcohol of 1-hexanol may be included in an amount of 50 parts by weight or less based on 100 parts by weight of the isomer mixture, and may be 40 parts by weight or less, preferably 30 parts by weight or less.
  • the 1-hexanol may not be present in the component, but may be included in at least 2 parts by weight or more, and in this case, the mechanical properties may be improved while maintaining the balance between the physical properties. It is known that linear alcohol can produce excellent effects in theory, but in the present invention, results different from these theoretical results were obtained, and it was confirmed that the balance of physical properties was more excellent when a mixture of isomers containing a branched alcohol was applied.
  • the plasticizer composition according to an embodiment of the present invention may further include cyclopentyl methanol in the isomer mixture of the hexyl alcohol described above.
  • heat loss can be further improved while maintaining the balance between physical properties.
  • the amount of cyclopentyl methanol may be 20 parts by weight or less, preferably 15 parts by weight or less, more preferably 10 parts by weight or less, based on 100 parts by weight of the isomer mixture, and it is not present, or the minimum amount to obtain the effect is 2 parts by weight.
  • R 4 of Formula 1 is hydrogen bonded.
  • R 4 is hydrogen, generally excellent effects can be realized in plasticization efficiency, migration resistance, and light resistance, and the absorption rate is well maintained at an appropriate level.
  • the method for preparing a plasticizer composition according to an embodiment of the present invention is a method known in the art, and may be applied without particular limitation if it can prepare the above-described plasticizer composition.
  • a terephthalate-based composition may be prepared by directly esterifying a mixture of an isomer of hexyl alcohol and an alcohol mixture of 2-ethylhexanol with terephthalic acid or an anhydride thereof, and an isomer mixture of citric acid or an anhydride thereof and hexyl alcohol
  • the citrate-based composition may be prepared by direct esterification.
  • a terephthalate-based composition can be prepared by transesterifying a mixture of isomers of di(2-ethylhexyl) terephthalate and hexyl alcohol, and transesterifying a mixture of isomers of trihexyl citrate and hexyl alcohol. can also be manufactured.
  • the plasticizer composition according to an embodiment of the present invention is a material prepared by appropriately performing the esterification reaction, and it satisfies the above conditions, in particular, control of the ratio of branched alcohol in isomer mixed alcohol and a specific component. If it is, there is no particular limitation on the manufacturing method.
  • the direct esterification reaction includes the steps of adding an acid or a derivative thereof and two or more mixed alcohols, then adding a catalyst and reacting in a nitrogen atmosphere; removing unreacted raw materials; neutralizing (or deactivating) unreacted raw materials and catalyst; and filtering to remove impurities (eg, vacuum distillation, etc.).
  • the components and weight ratios of the components of the isomer mixture of hexyl alcohol are the same as described above.
  • the alcohol in the direct esterification reaction may be used within the range of 150 to 900 mol%, 200 to 700 mol%, 200 to 600 mol%, 250 to 500 mol%, or 270 to 400 mol% based on 100 mol% of the acid. And by controlling the content of this alcohol, it is possible to control the component ratio in the final composition.
  • the catalyst is, for example, an acid catalyst such as sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, para-toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, alkyl sulfuric acid, aluminum lactate, lithium fluoride, potassium chloride, cesium chloride, calcium chloride, It may be at least one selected from metal salts such as iron chloride and aluminum phosphate, metal oxides such as heteropolyacids, natural/synthetic zeolites, cation and anion exchange resins, tetraalkyl titanate and organometallics such as polymers thereof. As a specific example, the catalyst may be tetraalkyl titanate.
  • para-toluenesulfonic acid, methanesulfonic acid, etc. may be suitable as the acid catalyst having a low activation temperature.
  • the amount of catalyst used may vary depending on the type, for example, in the case of a homogeneous catalyst, 0.01 to 5% by weight, 0.01 to 3% by weight, 1 to 5% by weight, or 2 to 4% by weight based on 100% by weight of the total reactant. and in the case of a heterogeneous catalyst, it may be in the range of 5 to 200 wt%, 5 to 100 wt%, 20 to 200 wt%, or 20 to 150 wt% of the total amount of reactants.
  • reaction temperature may be in the range of 100 °C to 280 °C, 100 °C to 250 °C, or 120 °C to 230 °C.
  • terephthalate or citrate may be reacted with an alcohol having an alkyl radical different from the alkyl radical of terephthalate or citrate.
  • the alkyl groups of each of the esters and the alcohol may cross each other.
  • transesterification reaction refers to a reaction in which an alcohol and an ester are reacted to exchange an alkyl of an ester and an alkyl of an alcohol with each other:
  • the composition ratio of the mixture may be controlled according to the amount of alcohol added.
  • the amount of the alcohol added may be 0.1 to 200 parts by weight, specifically 1 to 150 parts by weight, and more specifically 5 to 100 parts by weight based on 100 parts by weight of terephthalate or citrate.
  • determining the component ratio in the final composition may be the amount of alcohol added as in the direct esterification reaction.
  • the transesterification reaction is carried out at a reaction temperature of 120°C to 190°C, preferably 135°C to 180°C, more preferably 141°C to 179°C for 10 minutes to 10 hours, preferably Preferably, it is carried out in 30 minutes to 8 hours, more preferably in 1 to 6 hours.
  • the reaction time may be calculated from the point at which the reaction temperature is reached after the reactant is heated.
  • the transesterification reaction may be carried out under an acid catalyst or a metal catalyst, and in this case, the reaction time is shortened.
  • the acid catalyst may be, for example, sulfuric acid, methanesulfonic acid or p-toluenesulfonic acid
  • the metal catalyst may be, for example, an organometallic catalyst, a metal oxide catalyst, a metal salt catalyst, or a metal itself.
  • the metal component may be, for example, any one selected from the group consisting of tin, titanium, and zirconium, or a mixture of two or more thereof.
  • the method may further include removing unreacted alcohol and reaction by-products by distillation after the transesterification reaction.
  • the distillation may be, for example, a two-step distillation in which the alcohol and the reaction by-product are separated by using a difference in boiling point.
  • the distillation may be mixed distillation. In this case, there is an effect of relatively stably securing the ester-based plasticizer composition in a desired composition ratio.
  • the mixed distillation means simultaneously distilling unreacted alcohol and reaction by-products.
  • a resin composition comprising the above-described plasticizer composition and resin.
  • the resin a resin known in the art may be used.
  • straight vinyl chloride polymer paste vinyl chloride polymer, ethylene vinyl acetate copolymer, ethylene polymer, propylene polymer, polyketone, polystyrene, polyurethane, polylactic acid, natural rubber, synthetic rubber and thermoplastic elastomer selected from the group consisting of One or more mixtures may be used, but the present invention is not limited thereto.
  • the plasticizer composition may be included in an amount of 5 to 150 parts by weight, preferably 5 to 130 parts by weight, or 10 to 120 parts by weight based on 100 parts by weight of the resin.
  • the resin in which the plasticizer composition is used may be manufactured into a resin product through melt processing or plastisol processing, and the melt processing resin and the plastisol processing resin may be produced differently according to each polymerization method.
  • a vinyl chloride polymer when used for melt processing, solid resin particles with a large average particle diameter are used because it is prepared by suspension polymerization, etc., and this vinyl chloride polymer is called a straight vinyl chloride polymer, and is used for plastisol processing.
  • a resin in a sol state is used as a fine resin particle prepared by emulsion polymerization, etc., and such a vinyl chloride polymer is called a paste vinyl chloride resin.
  • the plasticizer is preferably included in the range of 5 to 80 parts by weight based on 100 parts by weight of the polymer, and in the case of the paste vinyl chloride polymer, in the range of 40 to 120 parts by weight based on 100 parts by weight of the polymer. It is preferable to include in
  • the resin composition may further include a filler.
  • the filler may be 0 to 300 parts by weight, preferably 50 to 200 parts by weight, more preferably 100 to 200 parts by weight based on 100 parts by weight of the resin.
  • the filler may use a filler known in the art, and is not particularly limited.
  • a filler known in the art, and is not particularly limited.
  • it may be a mixture of one or more selected from silica, magnesium carbonate, calcium carbonate, coal, talc, magnesium hydroxide, titanium dioxide, magnesium oxide, calcium hydroxide, aluminum hydroxide, aluminum silicate, magnesium silicate and barium sulfate.
  • the resin composition may further include other additives such as a stabilizer, if necessary.
  • additives such as the stabilizer may be, for example, 0 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the resin.
  • the stabilizer may be, for example, a calcium-zinc (Ca-Zn-based) stabilizer or a barium-zinc (Ba-Zn-based) stabilizer such as a calcium-zinc complex stearate salt, but is not particularly limited thereto. not.
  • the resin composition may be applied to both melt processing and plastisol processing as described above, for example, melt processing may be calendering processing, extrusion processing, or injection processing, and plastisol processing may include coating processing, etc. This can be applied.
  • the content of the components in the isomer mixture of hexyl alcohol is measured by gas chromatography, and Agilent's gas chromatography instrument (product name: Agilent 7890 GC, column: HP-5, carrier gas: helium (flow rate 2.4 mL/min) ), detector: F.I.D, injection volume: 1uL, initial value: 70°C/4.2min, end value: 280°C/7.8min, program rate: 15°C/min).
  • distillation extraction was performed under reduced pressure. After distillation extraction, a terephthalate-based composition containing dihexyl terephthalate, hexyl (2-ethylhexyl) terephthalate and di (2-ethylhexyl) terephthalate was obtained through a neutralization process, a dehydration process, and a filtration process.
  • a plurality of terephthalate-based compositions by changing the type of isomer included in the isomer mixture of hexyl alcohol used in the above process, the composition of each isomer, the isomer mixture of hexyl alcohol, and 2-ethylhexanol was prepared, and the composition of the isomer mixture of hexyl alcohol used in each case and the composition ratio between the isomer mixture of hexyl alcohol and 2-ethylhexanol are summarized in Table 1 below.
  • “hexyl” is an expression that collectively refers to all hexyl groups having various structures derived from a mixture of isomers of hexyl alcohol.
  • distillation extraction was performed under reduced pressure. After distillation extraction, a citrate-based composition containing trihexyl citrate was obtained through a neutralization process, a dehydration process, and a filtration process.
  • a plurality of citrate-based compositions were prepared by changing the type of isomer included in the isomer mixture of hexyl alcohol used in the above process and the composition of each isomer, and the isomer mixture composition of hexyl alcohol used in each case is as follows: It is summarized in Table 2. Meanwhile, in the present preparation example, “hexyl” is an expression that collectively refers to all hexyl groups having various structures derived from a mixture of isomers of hexyl alcohol.
  • a plasticizer composition was prepared by mixing the previously prepared terephthalate-based composition and the citrate-based composition in a specific weight ratio.
  • the types and weight ratios between the terephthalate-based composition and the citrate-based composition used in each Example are summarized in Table 3 below.
  • Comparative Example 1 was dioctyl phthalate (DOP)
  • Comparative Example 2 was diisononyl phthalate (DINP)
  • Comparative Example 3 was di(2-ethylhexyl) terephthalate (product name: GL300, Manufacturer: LG Chem)
  • Comparative Example As No. 4 a mixture of di(2-ethylhexyl)terephthalate, butyl(2-ethylhexyl)terephthalate, and dibutyl terephthalate (product name: GL500, manufacturer: LG Chem) was used.
  • the terephthalate-based composition prepared in Preparation Example 1-5 was used as the sole plasticizer as Comparative Example 5, and the citrate-based composition prepared in Preparation Example 2-1 was used as the sole plasticizer as Comparative Example 6.
  • Hardness Using ASTM D2240, shore hardness (Shore “A” and “D” at 25° C. was measured for 10 seconds with a 3T specimen. The smaller the number, the better the plasticizing efficiency is. .
  • Tensile strength After pulling the cross head speed to 200 mm/min using a test device, UTM (manufacturer; Instron, model name; 4466), according to ASTM D638 method, 1T specimen The cut point was measured. Tensile strength was calculated as follows:
  • Tensile strength (kgf/cm 2 ) load value (kgf) / thickness (cm) x width (cm)
  • Elongation (%) length after stretching / initial length x 100 was calculated.
  • a test piece having a thickness of 2 mm or more was obtained according to KSM-3156, and after attaching a glass plate to both sides of the 1T specimen, a load of 1 kgf/cm 2 was applied.
  • the specimens were left in a hot air circulation oven (80° C.) for 72 hours, then taken out and cooled at room temperature for 4 hours. Then, after removing the glass plate attached to both sides of the test piece, the weight before and after leaving the glass plate and the specimen plate in the oven was measured to calculate the transfer loss by the following formula.
  • Transition loss (%) ⁇ (Initial weight of test piece at room temperature - Weight of test piece after leaving the oven) / Initial weight of test piece at room temperature ⁇ x 100
  • Stress test stress resistance: After leaving a specimen with a thickness of 2 mm in a bent state at 23° C. for 168 hours, the degree of transition (the degree of seepage) was observed, and the result was written as a numerical value, at 0 The closer it was, the better the properties were.
  • the absorption rate was evaluated by measuring the time it takes for the resin and the ester compound to be mixed with each other and the torque of the mixer is stabilized using a planatary mixer (Brabender, P600) under the conditions of 77° C. and 60 rpm.
  • Example 1-1 0.5 5:45
  • Example 1-2 0.5 5:50
  • Examples 1-3 0.5 5:50
  • Examples 1-4 0.5 5:35 Examples 1-5 0.5 5:50
  • Example 2-1 0.0 4:20
  • Example 2-2 0.5 6:00
  • Example 2-3 1.0 6:20
  • Example 3 0.5 5:50
  • Example 3-2 0.5 5:45
  • Example 4-1 0.5 5:55
  • Example 4-2 0.5 5:55
  • Example 4-3 0.5 6:00
  • 0.5 6:50 Comparative Example 3 3.0 7:30 Comparative Example 4 1.5 5:30 Comparative Example 5 1.5 6:00 Comparative Example 6 0.5 5:55
  • plasticizer compositions according to Examples of the present invention exhibited equal or higher plasticization efficiency compared to the plasticizer compositions of Comparative Examples 1 to 4, which are conventional plasticizer products, and mechanical properties, migration resistance and thermal stability aspects It can be seen that an excellent effect was exhibited in
  • Comparative Examples 1 and 2 are the most commonly used phthalate-based plasticizer products.
  • Examples of the present invention show a similar level of plasticization efficiency to Comparative Example 1, and the same tensile strength and elongation as compared to Comparative Example 1. It shows an improved effect in mechanical properties.
  • Comparative Example 2 shows improved plasticization efficiency and elongation, and similar results are shown in the remaining physical properties.
  • the plasticizer products of Comparative Examples 1 and 2 are not easy to use due to current environmental regulations, it can be confirmed that the plasticizer composition according to the embodiment of the present invention can be sufficiently used as an eco-friendly substitute for existing plasticizer products.
  • Comparative Examples 3 and 4 are eco-friendly plasticizers to replace Comparative Examples 1 and 2, and it can be seen that the plasticizer compositions of Comparative Examples 3 and 4 have significantly lower migration resistance and stress resistance compared to the plasticizer composition of Examples of the present invention. have.
  • the migration resistance and stress resistance are inferior as in Comparative Examples 3 and 4, there is a fatal disadvantage that the plasticizer mixed with the resin composition is easily eluted and may be harmful to the human body.
  • Comparative Examples 5 and 6 use only one of a terephthalate-based composition and a citrate-based composition, which are components of the plasticizer composition of Examples of the present invention.
  • a terephthalate-based composition and a citrate-based composition, which are components of the plasticizer composition of Examples of the present invention.
  • plasticization efficiency, elongation, and transition In terms of loss the result was inferior compared to the Example, and Comparative Example 6 using only the citrate-based composition showed a disadvantage that the plasticized product could be easily damaged due to the significantly inferior tensile strength compared to the Example.
  • Example 4-4 in which the terephthalate-based composition and the citrate-based composition were mixed in a weight ratio of 9:1, with Comparative Example 5 using only the terephthalate-based composition, a large decrease in tensile strength was observed in Comparative Example 5. , it can be seen that the migration loss is also greatly increased. From this, it can be confirmed that, when the citrate-based composition is included in the plasticizer composition even in a small amount, improvement in mechanical properties and migration resistance occurs.
  • a terephthalate-based composition and a citrate-based composition are used in combination, but those derived from a mixture of isomers of hexyl alcohol as the alkyl radical of the terephthalate-based composition and the citrate-based composition are applied, and the alkyl of the terephthalate-based composition is applied.
  • a hexyl group and a 2-ethylhexyl group are applied as radicals, it was confirmed that it could successfully replace the existing plasticizer products by implementing the performance equivalent to or higher than that of the existing plasticizer products while being eco-friendly.
  • the plasticizer composition according to Examples 1-5 of the present invention showed comparable carbonization properties similarly to the existing plasticizer products, whereas the plasticizer composition of Comparative Example 6 using only citrate was extremely hot. carbonization properties for This is due to the poor thermal stability of the citrate compound itself, resulting in discoloration when exposed to high temperatures, and it can be confirmed that the plasticizer composition of the present invention overcomes the above disadvantages of the citrate-based composition itself by mixing it with terephthalate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 테레프탈레이트계 조성물 및 시트레이트계 조성물을 포함하고, 상기 테레프탈레이트계 조성물은 다이(2-에틸헥실) 테레프탈레이트, 헥실(2-에틸헥실) 테레프탈레이트 및 다이헥실 테레프탈레이트를 포함하며, 상기 시트레이트계 조성물은 트리헥실 시트레이트를 포함하고, 상기 테레프탈레이트의 헥실기 및 시트레이트의 헥실기는 헥실 알코올의 이성질체 혼합물로부터 유래되는 것을 특징으로 하며, 수지에 적용할 경우, 내이행성과 내스트레스성이 개선될 수 있고, 다른 한편으로는 기계적 물성이 개선될 수 있다.

Description

가소제 조성물 및 이를 포함하는 수지 조성물
관련 출원과의 상호 인용
본 출원은 2021년 1월 29일자 한국 특허 출원 제 10-2021-0013021호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 테레프탈레이트계 조성물과 시트레이트계 조성물을 포함하는 가소제 조성물 및 이를 포함하는 수지 조성물에 관한 것이다.
통상적으로 가소제는 알코올이 프탈산 및 아디프산과 같은 폴리카복시산과 반응하여 이에 상응하는 에스터를 형성한다. 또한 인체에 유해한 프탈레이트계 가소제의 국내외 규제를 고려하여, 테레프탈레이트계, 아디페이트계, 기타 고분자계 등의 프탈레이트계 가소제를 대체할 수 있는 가소제 조성물들에 대한 연구가 계속되고 있다.
한편, 바닥재, 벽지, 연질 및 경질 시트 등의 플라스티졸 업종, 캘린더링 업종, 압출/사출 컴파운드 업종을 막론하고, 이러한 친환경 제품에 대한 요구가 증대고 있으며, 이에 대한 완제품별 품질 특성, 가공성 및 생산성을 강화하기 위하여 변색 및 이행성, 기계적 물성 등을 고려하여 적절한 가소제를 사용하여야 한다.
이러한 다양한 사용 영역에서 업종별 요구되는 특성인 인장강도, 신율, 내광성, 이행성, 겔링성 혹은 흡수속도 등에 따라 PVC 수지에 가소제, 충전제, 안정제, 점도저하제, 분산제, 소포제, 발포제 등의 부원료등을 배합하게 된다.
일례로, PVC에 적용 가능한 가소제 조성물 중, 가격이 상대적으로 저렴하면서 가장 범용적으로 사용되는 디(2-에틸헥실) 테레프탈레이트(DEHTP)를 적용할 경우, 경도 혹은 졸 점도가 높고 가소제의 흡수 속도가 상대적으로 느리며, 이행성 및 스트레스 이행성도 양호하지 않았다.
이에 대한 개선으로 DEHTP를 포함하는 조성물로서, 부탄올과의 트랜스 에스터화 반응의 생성물을 가소제로 적용하는 것을 고려할 수 있으나, 가소화 효율은 개선되는 반면, 가열감량이나 열안정성 등이 열악하고, 기계적 물성이 다소 저하되는 등 물성의 개선이 요구되어 일반적으로 다른 2차 가소제와의 혼용을 통해서 이를 보완하는 방식을 채용하는 것 외에는 현재로써 해결책이 없는 상황이다.
그러나, 2차 가소제를 적용하는 경우에는 물성 변화에 대한 예측이 어렵고, 제품 단가가 상승하는 요인으로 작용할 수 있으며, 특정한 경우 이외에는 물성의 개선이 뚜렷하게 나타나지 않으며, 수지와의 상용성에 문제를 일으키는 등 예상치 못한 문제점이 발생한다는 단점이 있다.
또한, 상기 DEHTP 제품의 열악한 이행성과 감량 특성 및 내광성을 개선하기 위해 트리멜리테이트 계열의 제품으로서 트리(2-에틸헥실) 트리멜리테이트나 트리이소노닐 트리멜리테이트와 같은 물질을 적용하는 경우, 이행성이나 감량 특성은 개선되는 반면에, 가소화 효율이 열악해져, 수지에 적절한 가소화 효과를 부여하기 위해서는 상당량 투입하여야 하는 문제가 있고, 이에 비교적 단가가 높은 제품들이라는 점에서, 상용화가 불가능한 실정에 있다.
이처럼, 각 물질들이 혼합되는 경우 모두 우수한 물성만 구현되는 것이 아니라, 열악한 물성만 구현되는 경우도 발생하고 혼합되는 성분들간 장점이 희석되어 개선품으로의 기능을 하지 못하는 경우도 매우 빈번하다는 문제 또한 업계의 해결 과제이다.
기존 상용품인 프탈레이트계 제품의 환경적 이슈를 해결하기 위한 제품 또는 프탈레이트계 제품의 환경 이슈를 개선하기 위한 친환경 가소제들은 특정 물성은 매우 우수하지만, 이 외 다른 특정 물성이 열악하여, 가소제로 유의미하게 사용할 수 없다. 이에, 어느 한 물성의 열악함 없이 물성간 균형이 우수하고 블렌딩시 두 성분 사이의 장점만을 구현할 수 있는 블렌딩 가소제 제품 등의 개발이 요구되는 실정이다.
본 발명은 기존 가소제 대비 기계적 물성과 가소화 효율을 동등 이상의 수준으로 유지 및 개선함과 동시에, 내이행성 및 내스트레스성을 현저히 개선할 수 있는 가소제 조성물을 제공하고자 하는 것이다.
상기 과제를 해결하기 위하여 본 발명은 가소제 조성물 및 수지 조성물을 제공한다.
(1) 본 발명은 테레프탈레이트계 조성물 및 시트레이트계 조성물을 포함하고, 상기 테레프탈레이트계 조성물은 다이헥실 테레프탈레이트, 헥실(2-에틸헥실) 테레프탈레이트 및 다이(2-에틸헥실) 테레프탈레이트를 포함하며, 상기 시트레이트계 조성물은 트리헥실 시트레이트를 포함하고, 상기 테레프탈레이트의 헥실기 및 시트레이트의 헥실기는 헥실 알코올의 이성질체 혼합물로부터 유래되며, 상기 헥실 알코올의 이성질체 혼합물은 1-헥산올, 1-메틸펜탄올, 2-메틸펜탄올, 3-메틸펜탄올, 4-메틸펜탄올, 1,1-디메틸부탄올, 1,2-디메틸부탄올, 1,3-디메틸부탄올, 2,2-디메틸부탄올, 2,3-디메틸부탄올, 3,3-디메틸부탄올, 1-에틸부탄올, 2-에틸부탄올, 3-에틸부탄올 및 사이클로펜틸 메탄올로 이루어진 군에서 선택된 2 이상을 포함하는 것인 가소제 조성물을 제공한다.
(2) 본 발명은 상기 (1)에 있어서, 상기 테레프탈레이트계 조성물은, 다이헥실 테레프탈레이트 0.5 내지 50.0 중량%; 헥실(2-에틸헥실) 테레프탈레이트 3.0 내지 70.0 중량%; 및 다이(2-에틸헥실) 테레프탈레이트 0.5 내지 95.0 중량%;를 포함하는 것인 가소제 조성물을 제공한다.
(3) 본 발명은 상기 (1) 또는 (2)에 있어서, 상기 시트레이트계 조성물은 하기 화학식 1의 시트레이트가 1 이상 포함되는 것인 가소제 조성물을 제공한다:
[화학식 1]
Figure PCTKR2022001612-appb-I000001
상기 화학식 1에서, R1 내지 R3는 각각 독립적으로, n-헥실기, 분지형 헥실기 또는 사이클로펜틸 메틸기이고, R4는 수소이다.
(4) 본 발명은 상기 (1) 내지 (3) 중 어느 하나에 있어서, 상기 테레프탈레이트계 조성물과 상기 시트레이트계 조성물을 95:5 내지 5:95의 중량비로 포함하는 것인 가소제 조성물을 제공한다.
(5) 본 발명은 상기 (1) 내지 (4) 중 어느 하나에 있어서, 상기 테레프탈레이트계 조성물과 상기 시트레이트계 조성물을 95:5 내지 50:50의 중량비로 포함하는 것인 가소제 조성물을 제공한다.
(6) 본 발명은 상기 (1) 내지 (5) 중 어느 하나에 있어서, 상기 헥실 알코올의 이성질체 혼합물은 2-메틸펜탄올 및 3-메틸펜탄올을 포함하는 것인 가소제 조성물을 제공한다.
(7) 본 발명은 상기 (1) 내지 (6) 중 어느 하나에 있어서, 상기 헥실 알코올의 이성질체 혼합물은, 이성질체 혼합물 100 중량부에 대하여, 분지형 알코올이 40 중량부 이상으로 포함되는 것인 가소제 조성물을 제공한다.
(8) 본 발명은 상기 (1) 내지 (7) 중 어느 하나에 있어서, 상기 헥실 알코올의 이성질체 혼합물은, 이성질체 혼합물 100 중량부에 대하여, 분지형 알코올이 50 내지 95 중량부로 포함되는 것인 가소제 조성물을 제공한다.
(9) 본 발명은 상기 (1) 내지 (8) 중 어느 하나에 있어서, 상기 헥실 알코올의 이성질체 혼합물은 1-헥산올을 더 포함하는 것인 가소제 조성물을 제공한다.
(10) 본 발명은 상기 (1) 내지 (9) 중 어느 하나에 있어서, 상기 헥실 알코올의 이성질체 혼합물은, 이성질체 혼합물 100 중량부에 대하여, 1-헥산올이 40 중량부 이하로 포함되는 것인 가소제 조성물을 제공한다.
(11) 본 발명은 상기 (1) 내지 (10) 중 어느 하나에 있어서, 상기 헥실 알코올의 이성질체 혼합물은 4-메틸펜탄올을 더 포함하는 것인 가소제 조성물을 제공한다.
(12) 본 발명은 상기 (1) 내지 (11) 중 어느 하나에 있어서, 상기 헥실 알코올의 이성질체 혼합물은 사이클로펜틸 메탄올을 더 포함하는 것인 가소제 조성물을 제공한다.
(13) 본 발명은 상기 (1) 내지 (12) 중 어느 하나에 있어서, 상기 헥실 알코올의 이성질체 혼합물은, 이성질체 혼합물 100 중량부에 대하여, 사이클로펜틸 메탄올이 20 중량부 이하로 포함되는 것인 가소제 조성물을 제공한다.
(14) 본 발명은 수지 100 중량부 및 상기 (1) 내지 (13) 중 어느 하나의 가소제 조성물 5 내지 150 중량부를 포함하는 수지 조성물을 제공한다.
(15) 본 발명은 상기 (14)에 있어서, 상기 수지는 스트레이트 염화비닐 중합체, 페이스트 염화비닐 중합체, 에틸렌 비닐 아세테이트 공중합체, 에틸렌 중합체, 프로필렌 중합체, 폴리케톤, 폴리스티렌, 폴리우레탄, 폴리젖산, 천연고무 및 합성고무로 이루어진 군에서 선택된 1 종 이상인 것인 수지 조성물을 제공한다.
본 발명의 일 실시예에 따른 가소제 조성물은, 수지 조성물에 사용할 경우, 기존 가소제 대비 기계적 물성과 가소화 효율을 동등 이상의 수준으로 유지 및 개선함과 동시에, 내이행성 및 내스트레스성을 현저히 개선할 수 있다.
도 1은 본 발명의 실시예 1-5에 따른 가소제 조성물과 비교예 1 내지 6에 따른 가소제 조성물의 탄화특성 평가 결과를 나타낸 도이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
용어의 정의
본 명세서에서 이용되는 바와 같은 "조성물"이란 용어는, 해당 조성물의 재료로부터 형성된 반응 생성물 및 분해 생성물뿐만 아니라 해당 조성물을 포함하는 재료들의 혼합물을 포함한다.
본 명세서에서 이용되는 바와 같은 "스트레이트 염화비닐 중합체"는, 염화비닐 중합체의 종류 중 하나로서, 현탁 중합 또는 벌크 중합 등을 통해 중합된 다. 이 중합체는, 기공이 다수 개 존재하는 다공성 입자로, 수십 내지 수백 마이크로미터 크기를 갖고, 응집성이 없으며, 흐름성이 우수하다.
본 명세서에서 이용되는 바와 같은 "페이스트 염화비닐 중합체"는, 염화비닐 중합체의 종류 중 하나로서, 미세현탁 중합, 미세시드 중합, 또는 유화 중합 등을 통해 중합된다. 이 중합체는, 공극이 없는 미세하고 치밀한 입자로, 수십 내지 수천 나노미터 크기를 갖고, 응집성이 있으며, 흐름성이 열악하다.
'포함하는', '가지는'이란 용어 및 이들의 파생어는, 이들이 구체적으로 개시되어 있든지 그렇치 않든지 간에, 임의의 추가의 성분, 단계 혹은 절차의 존재를 배제하도록 의도된 것은 아니다. 어떠한 불확실함도 피하기 위하여, '포함하는'이란 용어의 사용을 통해 청구된 모든 조성물은, 반대로 기술되지 않는 한, 중합체든지 혹은 그 밖의 다른 것이든지 간에, 임의의 추가의 첨가제, 보조제, 혹은 화합물을 포함할 수 있다. 이와 대조적으로, '로 본질적으로 구성되는'이란 용어는, 조작성에 필수적이지 않은 것을 제외하고, 임의의 기타 성분, 단계 혹은 절차를 임의의 연속하는 설명의 범위로부터 배제한다. '로 구성되는'이란 용어는 구체적으로 기술되거나 열거되지 않은 임의의 성분, 단계 혹은 절차를 배제한다.
측정 방법
본 명세서에서 조성물 내의 성분들의 함량 분석은 가스 크로마토그래피 측정을 통해 수행하며, Agilent 사의 가스 크로마토그래피 기기(제품명: Agilent 7890 GC, 컬럼: HP-5, 캐리어 가스: 헬륨(flow rate 2.4mL/min), 디텍터: F.I.D, 인젝션 볼륨: 1uL, 초기값: 70℃/4.2min, 종기값: 280℃/7.8min, program rate: 15℃/min)로 분석한다.
본 명세서에서, '경도(hardness)'는 ASTM D2240을 이용하여, 25℃에서의 쇼어 경도(Shore "A" 및/또는 Shore "D")를 의미하며, 3T 10s의 조건에서 측정하고, 가소화 효율을 평가하는 지표가 될 수 있으며 낮을수록 가소화 효율이 우수함을 의미한다.
본 명세서에서, '인장강도(tensile strength)'는 ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정하고 하기 수학식 1로 계산한다.
[수학식 1]
인장 강도(kgf/cm2) = 로드 (load)값(kgf) / 두께(cm) x 폭(cm)
본 명세서에서 '신율(elongation rate)'은 ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정한 후, 하기 수학식 2로 계산한다.
[수학식 2]
신율(%) = 신장 후 길이 / 초기 길이 x 100
본 명세서에서 '이행 손실(migration loss)'은 KSM-3156에 따라 두께 2 mm 이상의 시험편을 얻고, 시험편 양면에 Glass Plate를 붙인 후 1 kgf/cm2 의 하중을 가한다. 시험편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시킨다. 그런 후 시험편의 양면에 부착된 Glass Plate를 제거한 후 Glass Plate와 Specimen Plate를 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 하기 수학식 3에 의하여 계산한다.
[수학식 3]
이행손실량(%) = {[(초기 시편 중량) - (오븐 방치후 시편 중량)] / (초기 시편 중량)} x 100
본 명세서에서 '가열 감량(volatile loss)'은 시편을 80℃에서 72시간 동안 작업한 후, 시편의 무게를 측정한다.
[수학식 4]
가열 감량(%) = {[(초기 시편 중량) - (작업 후 시편 중량)] / (초기 시편 중량)} x 100
상기 다양한 측정 조건들의 경우, 온도, 회전속도, 시간 등의 세부 조건은 경우에 따라 다소 상이해질 수 있으며, 상이한 경우에는 별도로 그 측정 방법 및 조건을 명시한다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 발명의 일 실시예에 따르면, 가소제 조성물은 테레프탈레이트계 조성물 및 시트레이트계 조성물을 포함하고, 상기 테레프탈레이트계 조성물은 다이헥실 테레프탈레이트, 헥실(2-에틸헥실) 테레프탈레이트 및 다이(2-에틸헥실) 테레프탈레이트를 포함하며, 상기 시트레이트계 조성물은 트리헥실 시트레이트를 포함하고, 상기 테레프탈레이트의 헥실기 및 시트레이트의 헥실기는 헥실 알코올의 이성질체 혼합물로부터 유래되며, 상기 헥실 알코올의 이성질체 혼합물은 1-헥산올, 1-메틸펜탄올, 2-메틸펜탄올, 3-메틸펜탄올, 4-메틸펜탄올, 1,1-디메틸부탄올, 1,2-디메틸부탄올, 1,3-디메틸부탄올, 2,2-디메틸부탄올, 2,3-디메틸부탄올, 3,3-디메틸부탄올, 1-에틸부탄올, 2-에틸부탄올, 3-에틸부탄올 및 사이클로펜틸 메탄올로 이루어진 군에서 선택된 2 이상을 포함하는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 가소제 조성물의 일 성분으로 테레프탈레이트계 조성물이 사용되며, 테레프탈레이트계 조성물은 다이헥실 테레프탈레이트, 헥실(2-에틸헥실) 테레프탈레이트 및 다이(2-에틸헥실) 테레프탈레이트를 포함한다.
일반적으로 테레프탈레이트계 조성물은 탄소수 차이가 큰 알코올을 사용하여 탄소수가 작은 것과 탄소수가 큰 것이 가지는 각각의 장점을 모두 갖도록 하는 것이 목적일 수 있다. 그러나, 본 발명에서는 탄소수 차이가 크지 않은 두 알코올로서, 헥산올과 2-에틸헥산올을 조합하여, 가소화 효율이 우수하면서도 기계적 물성은 열악하지 않고, 감량 특성이 우수하게 나타나, 물성간 균형을 잡을 수 있다는 것을 확인하였다.
또한, 본 발명의 일 실시예에 따르면, 상기 테레프탈레이트계 조성물에서, 헥실기를 이성질체가 혼합된 헥산올로부터 유래시킴으로써, 또 다른 일 성분인 시트레이트계 조성물과 혼합할 때 극대화된 시너지 효과를 얻을 수 있다.
상기 테레프탈레이트계 조성물은, 다이헥실 테레프탈레이트 0.5 내지 50.0 중량%; 헥실(2-에틸헥실) 테레프탈레이트 3.0 내지 70.0 중량%; 및 다이(2-에틸헥실) 테레프탈레이트 0.5 내지 95.0 중량%;를 포함할 수 있다. 바람직하게는, 상기 테레프탈레이트계 조성물은, 다이헥실 테레프탈레이트 0.5 내지 30.0 중량%; 헥실(2-에틸헥실) 테레프탈레이트 10.0 내지 60.0 중량%; 및 다이(2-에틸헥실) 테레프탈레이트 35.0 내지 90.0 중량%;를 포함할 수 있다. 이와 같은 조성비를 가지는 경우, 전술한 효과의 재현성이 우수하고, 물성 간 균형이 적절한 장점이 있다.
본 발명의 일 실시예에 따른 가소제 조성물은 다른 일 성분으로 시트레이트계 조성물이 사용되며, 시트레이트계 조성물은 트리헥실 시트레이트를 포함하여, 이 때 헥실기는 이성질체가 혼합된 헥산올로부터 유래된다.
이와 같이, 시트레이트계 조성물을 적용함에 있어서 탄소수가 6인 알코올을 사용하여 제조된 트리헥실 시트레이트를 적용하면, 탄소수가 6이 미달되는 시트레이트 대비 적정 수준의 흡수속도를 확보함으로써 가공성 개선을 달성할 수 있고, 인장강도, 신율 및 가열감량이 크게 개선될 수 있으며, 탄소수가 6이 넘는 시트레이트에 대비하여 가소화 효율이 우수할 수 있고, 내이행성 및 내스트레스성을 크게 기대할 수 있다.
한편, 상기 테레프탈레이트계 조성물은, 기존 상용 가소제 대비, 내이행성과 내스트레스성, 그리고 기계적 물성 중에서도 신율이 상대적으로 열위한 경향이 있고, 가열감량과 탄화 특성, 그리고 잔율 특성이 우수한 특징이 있다. 또한, 시트레이트계 조성물은 열적 특성과 인장강도가 기존 상용 가소제 대비 떨어지나, 가소화 효율과 내이행성 및 내스트레스성이 우수한 특징이 있다.
일반적으로 두 조성물을 혼합하는 경우, 두 성분의 장단점을 희석하는 결과를 나타내지만, 본 발명에서와 같은 특징을 갖는 테레프탈레이트계 조성물과 시트레이트계 조성물을 혼합하는 경우에는, 두 성분의 장점만이 구현되는 특성을 보일 수 있다. 이는 두 성분에 있어서, 동일하게 헥실기를 적용하되, 이성질체가 혼합된 헥산올을 통해서 헥실기를 적용함으로써, 이와 같은 시너지 효과를 구현할 수 있다.
이러한 시너지 효과는, 두 성분에 있어서 공통 사항인 헥실기의 적용 및 헥실 알코올의 이성질체 혼합물의 적용이 없는 경우, 구현되지 않을 수 있고, 두 성분의 장단점이 상호 희석되는 결과를 나타낼 수 있다.
상기 시너지 효과를 극대화하기 위해, 본 발명의 가소제 조성물은 테레프탈레이트계 조성물 및 시트레이트계 조성물을 95:5 내지 5:95, 95:5 내지 10:90, 95:5 내지 20:80, 95:5 내지 30:70, 95:5 내지 50:50, 95:5 내지 70:30, 90:10 내지 10:90, 90:10 내지 30:70, 90:10 내지 50:50 또는 90:10 내지 70:30의 중량비로 포함할 수 있다. 본 발명의 가소제 조성물을 적용함에 있어, 테레프탈레이트계 조성물의 열안정성이 시트레이트계 조성물 대비 우수하다는 점에서, 고온 환경에서의 작업이 요구되는 경우 상대적으로 시트레이트계 조성물의 함량이 적고 테레프탈레이트계 조성물의 함량이 높은 가소제 조성물을 사용할 수 있고, 반대로 시트레이트계 조성물의 신율 및 내이행성이 테레프탈레이트계 조성물 대비 우수하다는 점에서, 고신율 및 고내이행성이 요구되는 제품에 대해서는 시트레이트계 조성물의 함량이 높고 테레프탈레이트계 조성물의 함량이 낮은 가소제 조성물을 사용할 수 있다.
본 발명의 일 실시예에 따른 시트레이트계 조성물은 하기 화학식 1의 시트레이트가 1 이상 포함될 수 있다.
[화학식 1]
Figure PCTKR2022001612-appb-I000002
상기 화학식 1에서, R1 내지 R3는 각각 독립적으로, n-헥실기, 분지형 헥실기 또는 사이클로펜틸 메틸기이고, R4는 수소이다.
본 발명의 일 실시예에 따르면, 상기 테레프탈레이트의 헥실기와 시트레이트의 헥실기는 헥실 알코올의 이성질체 혼합물로부터 유래된다.
상기 헥실 알코올의 이성질체 혼합물은 1-헥산올, 1-메틸펜탄올, 2-메틸펜탄올, 3-메틸펜탄올, 4-메틸펜탄올, 1,1-디메틸부탄올, 1,2-디메틸부탄올, 1,3-디메틸부탄올, 2,2-디메틸부탄올, 2,3-디메틸부탄올, 3,3-디메틸부탄올, 1-에틸부탄올, 2-에틸부탄올, 3-에틸부탄올 및 사이클로펜틸 메탄올로 이루어진 군에서 선택된 2 이상을 포함한다.
이러한 헥실 알코올 이성질체 내 포함된 알코올에 따라, 상기 테레프탈레이트와 시트레이트의 헥실기가 결정될 수 있고, 각각의 최종 조성물 내 성분들의 비율은 반응하는 알코올들의 성분 비율에 따라 정해질 수 있다.
본 발명의 일 실시예에 따른 가소제 조성물은 헥실 알코올 이성질체 혼합물 내 2-메틸펜탄올 및 3-메틸펜탄올을 포함할 수 있고, 경우에 따라서는 1-헥산올, 2-메틸펜탄올 및 3-메틸펜탄올을 포함하거나, 2-메틸펜탄올, 3-메틸펜탄올 및 4-메틸펜탄올을 포함하거나, 1-헥산올, 2-메틸펜탄올, 3-메틸펜탄올 및 4-메틸펜탄올을 포함하는 것일 수 있다. 2-메틸펜탄올과 3-메틸펜탄올을 함께 포함하는 것이 물성간 균형을 유지할 수 있고, 가열감량 측면에서 우수한 효과를 얻을 수 있다.
상기 2-메틸펜탄올, 3-메틸펜탄올 및 4-메틸펜탄올 중 하나 이상을 포함하는 분지형 헥실 알코올은 이성질체 혼합물 100 중량부 대비 40 중량부 이상 포함될 수 있고, 50 중량부 이상, 60 중량부 이상 포함될 수 있고, 바람직하게 65 중량부 이상, 70 중량부 이상 포함될 수 있다. 최대량으로는 전부 분지형일 수 있으며, 99 중량부 이하, 98 중량부가 포함될 수 있고, 바람직하게 95 중량부 이하, 또는 90 중량부 이하로 포함될 수 있다. 이 범위로 분지형 헥실 알코올이 포함되는 경우에는 기계적 물성 개선을 기대할 수 있다.
또한, 상기 1-헥산올의 선형 알코올은 이성질체 혼합물 100 중량부 대비 50 중량부 이하로 포함될 수 있고, 40 중량부 이하일 수 있으며, 바람직하게 30 중량부 이하일 수 있다. 상기 1-헥산올은 성분 내 존재하지 않을 수 있으나, 최소 2 중량부 이상 포함될 수 있고, 이 경우 물성간 균형을 유지하면서도 기계적 물성이 개선되는 장점을 취할 수 있다. 선형 알코올은 이론상 우수한 효과를 낼 수 있는 것으로 알려져 있으나, 본 발명에서는 이러한 이론상 결과와 상이한 결과를 얻었고 분지형의 알코올이 포함된 이성질체 혼합물이 적용되는 경우가 보다 더 물성의 균형이 우수함을 확인하였다.
본 발명의 일 실시예에 따른 가소제 조성물은 앞서 설명한 상기 헥실 알코올의 이성질체 혼합물 내 사이클로펜틸 메탄올을 더 포함하는 것일 수 있다. 바람직하게 사이클로펜틸 메탄올을 더 포함함으로써, 물성간 균형은 유지하면서도 가열 감량을 더 개선할 수 있다.
이 경우, 상기 사이클로펜틸 메탄올은 이성질체 혼합물 100 중량부 대비 20 중량부 이하일 수 있고, 바람직하게 15 중량부 이하, 더 바람직하게 10 중량부 이하일 수 있으며, 존재하지 않거나, 이에 따른 효과를 얻기 위한 최소량은 2 중량부일 수 있다.
구체적으로, 최종 조성물 내에 분지형 알킬기가 전체 알킬 라디칼 중 어느 정도의 비율로 존재하는지, 더 나아가서는 분지형 알킬기 중 특정 분지 알킬 라디칼이 어느 비율로 존재하는지 등의 특징들로 인해서, 가소화 효율과 이행성/감량 특성의 물성에 균형을 맞출 수 있고, 인장강도와 신율과 같은 기계적 물성 및 내스트레스성도 동등 이상의 수준을 유지할 수 있다.
이를 통해 기존의 프탈레이트계 제품의 환경적인 이슈를 제거하면서도 감량 특성을 더 개선한 제품의 구현이 가능하며, 기존 상용 제품들 대비하여 물성간 균형이 대폭 개선된 제품의 구현이 가능할 수 있다.
본 발명의 일 실시예에 따르면, 상기 시트레이트계 조성물 내 포함되는 시트레이트로서 화학식 1의 R4는 수소가 결합된다. R4가 수소인 경우에는 일반적으로 가소화 효율, 내이행성, 내광성에서 우수한 효과를 구현할 수 있으며, 흡수속도가 적정 수준으로 잘 유지되는 장점을 가진다.
본 발명의 일 실시예에 따른 가소제 조성물을 제조하는 방법은 당업계에 알려진 방법으로서, 전술한 가소제 조성물을 제조할 수 있는 경우라면 특별히 제한되지 않고 적용될 수 있다.
예를 들면, 헥실 알코올의 이성질체 혼합물과 2-에틸헥산올의 알코올 혼합물을 테레프탈산 또는 이의 무수물과 직접 에스터화 반응시켜 테레프탈레이트계 조성물을 제조할 수 있고, 시트르산 또는 이의 무수물과 헥실 알코올의 이성질체 혼합물을 직접 에스터화 반응시켜 상기 시트레이트계 조성물을 제조할 수 있다.
또, 디(2-에틸헥실) 테레프탈레이트와 헥실 알코올의 이성질체 혼합물을 트랜스 에스터화 반응시켜 테레프탈레이트계 조성물을 제조할 수 있고, 트리헥실 시트레이트와 헥실 알코올의 이성질체 혼합물을 트랜스 에스터화 반응시켜 조성물을 제조할 수도 있다.
본 발명의 일 실시예에 따른 가소제 조성물은 상기 에스터화 반응을 적절하게 수행하여 제조된 물질로서, 전술한 조건에 부합하는 것, 특히 이성질체 혼합 알코올 내 분지형 알코올의 비율 제어 및 특정 성분이 포함된 것이라면, 제조방법에 특별히 제한되는 바는 없다.
일례로, 상기 직접 에스터화 반응은, 산 또는 이의 유도체와 2 종 이상의 혼합 알코올을 투입한 다음 촉매를 첨가하고 질소분위기 하에서 반응시키는 단계; 미반응 원료를 제거하는 단계; 미반응 원료 및 촉매를 중화(또는 비활성화)시키는 단계; 및 불순물을 제거(예컨대, 감압증류 등) 여과하는 단계;로 수행될 수 있다.
상기 헥실 알코올의 이성질체 혼합물의 성분 및 성분들의 중량비율은, 전술한 것과 같다. 상기 직접 에스터화 반응에 있어서의 알코올은, 산 100 몰% 기준으로 150 내지 900 몰%, 200 내지 700 몰%, 200 내지 600 몰%, 250 내지 500 몰%, 혹은 270 내지 400 몰% 범위 내로 사용될 수 있으며, 이 알코올의 함량을 제어하는 것으로써 최종 조성물 내 성분비를 제어할 수 있다.
상기 촉매는 일례로, 황산, 염산, 인산, 질산, 파라톨루엔술폰산, 메탄술폰산, 에탄술폰산, 프로판술폰산, 부탄술폰산, 알킬 황산 등의 산 촉매, 유산 알루미늄, 불화리튬, 염화칼륨, 염화세슘, 염화칼슘, 염화철, 인산알루미늄 등의 금속염, 헤테로폴리산 등의 금속 산화물, 천연/합성 제올라이트, 양이온 및 음이온 교환수지, 테트라알킬 티타네이트(tetra alkyl titanate) 및 그 폴리머 등의 유기금속 중에서 선택된 1종 이상일 수 있다. 구체적인 예로, 상기 촉매는 테트라알킬 티타네이트를 사용할 수 있다. 바람직하게는 활성 온도가 낮은 산촉매로서 파라톨루엔술폰산, 메탄술폰산 등이 적절할 수 있다.
촉매의 사용량은 종류에 따라 상이할 수 있으며, 일례로 균일 촉매의 경우에는 반응물 총 100 중량%에 대하여 0.01 내지 5 중량%, 0.01 내지 3 중량%, 1 내지 5 중량% 혹은 2 내지 4 중량% 범위 내, 그리고 불균일 촉매의 경우에는 반응물 총량의 5 내지 200 중량%, 5 내지 100 중량%, 20 내지 200 중량%, 혹은 20 내지 150 중량% 범위 내일 수 있다.
이때 상기 반응 온도는 100℃ 내지 280℃, 100℃내지 250℃, 혹은 120℃ 내지 230℃ 범위 내일 수 있다.
다른 일례로, 상기 트랜스 에스터화 반응은 테레프탈레이트 또는 시트레이트와, 상기 테레프탈레이트 또는 시트레이트의 알킬 라디칼과는 다른 알킬 라디칼을 갖는 알코올이 반응하는 것일 수 있다. 여기서 상기 각 에스터와 알코올이 갖는 알킬기는 서로 교차되어도 무방하다.
본 발명에서 사용되는 "트랜스 에스터화 반응"은 알코올과 에스터가 반응하여 에스터의 알킬과 알코올의 알킬이 서로 상호 교환되는 반응을 의미한다:
상기 트랜스 에스터화 반응에 의해 제조된 혼합물은 알코올의 첨가량에 따라 상기 혼합물의 조성 비율을 제어할 수 있다. 상기 알코올의 첨가량은 테레프탈레이트 또는 시트레이트 100 중량부에 대해 0.1 내지 200 중량부, 구체적으로는 1 내지 150 중량부, 더욱 구체적으로는 5 내지 100 중량부일 수 있다. 참고로, 최종 조성물 내 성분비를 결정하는 것은 상기 직접 에스터화 반응에서와 같이 알코올의 첨가량일 수 있다.
본 발명의 일 실시예에 따르면, 상기 트랜스 에스터화 반응은 120℃ 내지 190℃, 바람직하게는 135℃ 내지 180℃, 더욱 바람직하게는 141℃ 내지 179℃의 반응 온도 하에서 10분 내지 10시간, 바람직하게는 30분 내지 8시간, 더욱 바람직하게는 1 내지 6 시간에서 수행되는 것이 바람직하다. 상기 온도 및 시간 범위 내에서는 최종 가소제 조성물의 성분비를 효율적으로 제어할 수 있다. 이때, 상기 반응 시간은 반응물을 승온 후 반응 온도에 도달한 시점부터 계산될 수 있다.
상기 트랜스 에스터화 반응은 산 촉매 또는 금속 촉매 하에서 실시될 수 있고, 이 경우 반응시간이 단축되는 효과가 있다.
상기 산 촉매는 일례로 황산, 메탄설폰산 또는 p-톨루엔설폰산 등일 수 있고, 상기 금속 촉매는 일례로 유기금속 촉매, 금속 산화물 촉매, 금속염 촉매 또는 금속 자체일 수 있다.
상기 금속 성분은 일례로 주석, 티탄 및 지르코늄으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
또한, 상기 트랜스 에스터화 반응 후 미반응 알코올과 반응 부산물 등을 증류시켜 제거하는 단계를 더 포함할 수 있다. 상기 증류는 일례로 상기 알코올과 반응 부산물의 끊는점 차이를 이용하여 따로 분리하는 2단계 증류일 수 있다. 또 다른 일례로, 상기 증류는 혼합증류일 수 있다. 이 경우 에스터계 가소제 조성물을 원하는 조성비로 비교적 안정적으로 확보할 수 있는 효과가 있다. 상기 혼합증류는 미반응 알코올과 반응 부산물을 동시에 증류하는 것을 의미한다.
본 발명의 다른 일 실시예에 따르면, 전술한 가소제 조성물 및 수지를 포함하는 수지 조성물이 제공된다.
상기 수지는 당 분야에 알려져 있는 수지를 사용할 수 있다. 예를 들면, 스트레이트 염화비닐 중합체, 페이스트 염화비닐 중합체, 에틸렌초산비닐 공중합체, 에틸렌 중합체, 프로필렌 중합체, 폴리케톤, 폴리스티렌, 폴리우레탄, 폴리젖산, 천연고무, 합성고무 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1종 이상의 혼합물 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 가소제 조성물은 상기 수지 100 중량부를 기준으로 5 내지 150 중량부, 바람직하게 5 내지 130 중량부, 또는 10 내지 120 중량부로 포함될 수 있다.
일반적으로, 가소제 조성물이 사용되는 수지는 용융 가공 또는 플라스티졸 가공을 통해 수지 제품으로 제조될 수 있으며, 용융 가공 수지와 플라스티졸 가공 수지는 각 중합 방법에 따라 다르게 생산되는 것일 수 있다.
예를 들어, 염화비닐 중합체는 용융 가공에 사용되는 경우 현탁 중합 등으로 제조되어 평균 입경이 큰 고체상의 수지 입자가 사용되며 이러한 염화비닐 중합체는 스트레이트 염화비닐 중합체로 불리우며, 플라스티졸 가공에 사용되는 경우 유화 중합 등으로 제조되어 미세한 수지 입자로서 졸 상태의 수지가 사용되며 이러한 염화비닐 중합체는 페이스트 염화비닐 수지로 불리운다.
이 때, 상기 스트레이트 염화비닐 중합체의 경우, 가소제는 중합체 100 중량부 대비 5 내지 80 중량부의 범위 내에서 포함되는 것이 바람직하며, 페이스트 염화비닐 중합체의 경우 중합체 100 중량부 대비 40 내지 120 중량부의 범위 내에서 포함되는 것이 바람직하다.
상기 수지 조성물은 충진제를 더 포함할 수 있다. 상기 충진제는 상기 수지 100 중량부를 기준으로 0 내지 300 중량부, 바람직하게는 50 내지 200 중량부, 더욱 바람직하게는 100 내지 200 중량부일 수 있다.
상기 충진제는 당 분야에 알려져 있는 충진제를 사용할 수 있으며, 특별히 제한되지 않는다. 예를 들면, 실리카, 마그네슘 카보네이트, 칼슘 카보네이트, 경탄, 탈크, 수산화 마그네슘, 티타늄 디옥사이드, 마그네슘 옥사이드, 수산화 칼슘, 수산화 알루미늄, 알루미늄 실리케이트, 마그네슘 실리케이트 및 황산바륨 중에서 선택된 1종 이상의 혼합물일 수 있다.
또한, 상기 수지 조성물은 필요에 따라 안정화제 등의 기타 첨가제를 더 포함할 수 있다. 상기 안정화제 등의 기타 첨가제는 일례로 각각 상기 수지 100 중량부를 기준으로 0 내지 20 중량부, 바람직하게는 1 내지 15 중량부일 수 있다.
상기 안정화제는 예를 들어 칼슘-아연의 복합 스테아린산 염 등의 칼슘-아연계(Ca-Zn계) 안정화제 또는 바륨-아연(Ba-Zn계) 안정화제를 사용할 수 있으나, 이에 특별히 제한되는 것은 아니다.
상기 수지 조성물은 전술한 것과 같이 용융 가공 및 플라스티졸 가공에 모두 적용될 수 있고, 예를 들어 용융 가공은 카렌더링 가공, 압출 가공, 또는 사출 가공이 적용될 수 있고, 플라스티졸 가공은 코팅 가공 등이 적용될 수 있다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
상기 헥실 알코올의 이성질체 혼합물 내 성분들의 함량은 가스 크로마토그래피 측정을 통해 수행하며, Agilent 사의 가스 크로마토그래피 기기(제품명: Agilent 7890 GC, 컬럼: HP-5, 캐리어 가스: 헬륨(flow rate 2.4mL/min), 디텍터: F.I.D, 인젝션 볼륨: 1uL, 초기값: 70℃/4.2min, 종기값: 280℃/7.8min, program rate: 15℃/min)로 분석하였다.
제조예 1. 테레프탈레이트계 조성물의 제조
냉각기, 콘덴서, 디캔터, 환류 펌프, 온도 컨트롤러, 교반기 등을 갖춘 4구의 3 리터 반응기에 테레프탈산 498g, 헥실 알코올의 이성질체 혼합물 343g, 2-에틸헥산올 656g, 촉매로 테트라 이소프로필 티타네이트 1.5g을 투입하고, 반응 온도를 220℃로 설정하고 질소 가스를 계속 투입하면서, 약 8시간 동안 직접 에스터화 반응을 수행하고, 산가가 0.1에 도달하였을 때 반응을 완료하였다.
반응 완료 후, 미반응 원료를 제거하기 위하여, 감압 하에서 증류 추출을 실시하였다. 증류 추출 후, 중화공정, 탈수공정 및 여과공정을 거쳐 다이헥실 테레프탈레이트, 헥실(2-에틸헥실)테레프탈레이트 및 다이(2-에틸헥실)테레프탈레이트를 포함하는 테레프탈레이트계 조성물을 얻었다.
상기 조성물 외에, 상기 과정 중에서 사용된 헥실 알코올의 이성질체 혼합물 내 포함되는 이성질체의 종류 및 각 이성질체의 조성과 헥실 알코올의 이성질체 혼합물 및 2-에틸헥산올 사이의 조성비를 변화시켜 복수 종의 테레프탈레이트계 조성물을 제조하였으며, 각 경우에 사용된 헥실 알코올의 이성질체 혼합물 조성 및 헥실 알코올의 이성질체 혼합물과 2-에틸헥산올 사이의 조성비를 하기 표 1로 정리하였다. 한편, 본 제조예에 있어서, “헥실”은 헥실 알코올의 이성질체 혼합물로부터 유래된 다양한 구조의 헥실기를 모두 통칭하는 표현이다.
헥실 알코올의 이성질체 혼합물 조성(중량비) 2-에틸헥산올:헥실 알코올 중량비
제조예 1-1 2-메틸펜탄올:3-메틸펜탄올 = 5:5 66:34
제조예 1-2 2-메틸펜탄올:3-메틸펜탄올:1-헥산올 = 4:4:2 66:34
제조예 1-3 2-메틸펜탄올:3-메틸펜탄올:사이클로펜틸 메탄올 = 4:4:2 66:34
제조예 1-4 2-메틸펜탄올:3-메틸펜탄올:4-메틸펜탄올 = 4:4:2 66:34
제조예 1-5 2-메틸펜탄올:3-메틸펜탄올:4-메틸펜탄올:1-헥산올:사이클로펜틸 메탄올 = 38:41:4:11:6 66:34
제조예 1-6 2-메틸펜탄올:3-메틸펜탄올:4-메틸펜탄올:1-헥산올:사이클로펜틸 메탄올 = 38:41:4:11:6 30:70
제조예 1-7 2-메틸펜탄올:3-메틸펜탄올:4-메틸펜탄올:1-헥산올:사이클로펜틸 메탄올 = 38:41:4:11:6 70:30
제조예 1-8 2-메틸펜탄올:3-메틸펜탄올:4-메틸펜탄올:1-헥산올:사이클로펜틸 메탄올 = 38:41:4:11:6 90:10
제조예 2. 시트레이트계 조성물의 제조
냉각기, 콘덴서, 디캔터, 환류 펌프, 온도 컨트롤러, 교반기 등을 갖춘 4구의 3 리터 반응기에 시트르산 384g, 헥실 알코올의 이성질체 혼합물 857g, 촉매로 테트라 이소프로필 티타네이트 1.5g을 투입하고, 반응 온도를 200℃로 설정하고 질소 가스를 계속 투입하면서, 약 8시간 동안 직접 에스터화 반응을 수행하고, 산가가 1에 도달하였을 때 반응을 완료하였다.
반응 완료 후, 미반응 원료를 제거하기 위하여, 감압 하에서 증류 추출을 실시하였다. 증류 추출 후, 중화공정, 탈수공정 및 여과공정을 거쳐 트리헥실 시트레이트를 포함하는 시트레이트계 조성물을 얻었다.
상기 조성물 외에, 상기 과정 중에서 사용된 헥실 알코올의 이성질체 혼합물 내 포함되는 이성질체의 종류 및 각 이성질체의 조성을 변화시켜 복수 종의 시트레이트계 조성물을 제조하였으며, 각 경우에 사용된 헥실 알코올의 이성질체 혼합물 조성을 하기 표 2로 정리하였다. 한편, 본 제조예에 있어서, “헥실”은 헥실 알코올의 이성질체 혼합물로부터 유래된 다양한 구조의 헥실기를 모두 통칭하는 표현이다.
헥실 알코올의 이성질체 혼합물 조성(중량비)
제조예 2-1 2-메틸펜탄올:3-메틸펜탄올:4-메틸펜탄올:1-헥산올:사이클로펜틸 메탄올 = 38:41:4:11:6
제조예 2-2 2-메틸펜탄올:3-메틸펜탄올 = 5:5
제조예 2-3 2-메틸펜탄올:3-메틸펜탄올:1-헥산올 = 4:4:2
실시예
앞서 제조한 테레프탈레이트계 조성물과 시트레이트계 조성물을 특정 중량비로 혼합하여 가소제 조성물을 제조하였다. 각 실시예에서 사용된 테레프탈레이트계 조성물과 시트레이트계 조성물의 종류 및 이들 사이의 중량비를 하기 표 3으로 정리하였다.
테레프탈레이트계 조성물 시트레이트계 조성물 테레프탈레이트 : 시트레이트 중량비
실시예 1-1 제조예 1-1 제조예 2-1 8 : 2
실시예 1-2 제조예 1-2 제조예 2-1 8 ; 2
실시예 1-3 제조예 1-3 제조예 2-1 8 : 2
실시예 1-4 제조예 1-4 제조예 2-1 8 : 2
실시예 1-5 제조예 1-5 제조예 2-1 8 : 2
실시예 2-1 제조예 1-6 제조예 2-1 8 : 2
실시예 2-2 제조예 1-7 제조예 2-1 8 : 2
실시예 2-3 제조예 1-8 제조예 2-1 8 : 2
실시예 3-1 제조예 1-5 제조예 2-2 8 : 2
실시예 3-2 제조예 1-5 제조예 2-3 8 : 2
실시예 4-1 제조예 1-5 제조예 2-1 1 : 9
실시예 4-2 제조예 1-5 제조예 2-1 3 : 7
실시예 4-3 제조예 1-5 제조예 2-1 5 : 5
실시예 4-4 제조예 1-5 제조예 2-1 9 : 1
비교예 1 내지 4
종래 가소제로 사용되던 제품 4종을 비교예 1 내지 4로 사용하였다. 비교예 1로는 디옥틸 프탈레이트(DOP), 비교예 2로는 디이소노닐 프탈레이트(DINP), 비교예 3으로는 디(2-에틸헥실)테레프탈레이트(제품명: GL300, 제조사: LG화학), 비교예 4로는 디(2-에틸헥실)테레프탈레이트, 부틸(2-에틸헥실)테레프탈레이트 및 디부틸 테레프탈레이트의 혼합물(제품명: GL500, 제조사: LG화학)을 사용하였다.
비교예 5 및 6
상기 제조예 1-5에서 제조된 테레프탈레이트계 조성물을 단독 가소제로 사용한 것을 비교예 5로, 상기 제조예 2-1에서 제조된 시트레이트계 조성물을 단독 가소제로 사용한 것을 비교예 6으로 하였다.
실험예 1: 시트 성능 평가
실시예 및 비교예의 가소제를 사용하여, ASTM D638에 따라 다음과 같은 처방 및 제작 조건으로 시편을 제작하였다.
(1) 처방: 스트레이트 염화비닐 중합체(LS100S) 100 중량부, 가소제 50 중량부 및 안정제(BZ-153T) 3 중량부
(2) 배합: 98℃에서 700 rpm으로 믹싱
(3) 시편 제작: 롤 밀(Roll mill)로 160℃에서 4 분, 프레스(press)로 180℃에서 2.5분(저압) 및 2분(고압) 작업하여 1T, 2T 및 3T 시트를 제작
(4) 평가 항목
1) 경도(hardness): ASTM D2240을 이용하여, 25℃에서의 쇼어 경도(Shore "A" 및 “D”를 3T 시편으로 10초 동안 측정하였다. 수치가 작을수록 가소화 효율이 우수한 것으로 평가된다.
2) 인장강도(tensile strength): ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min으로 당긴 후, 1T 시편이 절단되는 지점을 측정하였다. 인장강도는 다음과 같이 계산하였다:
인장 강도(kgf/cm2) = 로드 (load)값(kgf) / 두께(cm) x 폭(cm)
3) 신율(elongation rate) 측정: ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min으로 당긴 후, 1T 시편이 절단되는 지점을 측정한 후, 신율을 다음과 같이 계산하였다:
신율 (%) = 신장 후 길이 / 초기 길이 x 100으로 계산하였다.
4) 이행 손실(migration loss) 측정: KSM-3156에 따라 두께 2 mm 이상의 시험편을 얻었고, 1T 시편 양면에 Glass Plate를 붙인 후 1kgf/cm2 의 하중을 가하였다. 시편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시켰다. 그런 후 시험편의 양면에 부착된 Glass Plate를 제거한 후 Glass Plate와 Specimen Plate를 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 아래와 같은 식에 의하여 계산하였다.
이행손실량(%) = {(상온에서의 시험편의 초기 중량 - 오븐 방치후 시험편의 중량) / 상온에서의 시험편의 초기 중량} x 100
5) 가열 감량(volatile loss) 측정: 상기 제작된 시편을 80℃에서 72시간 동안 작업한 후, 시편의 무게를 측정하였다.
가열 감량 (중량%) = 초기 시편 무게 - (80℃, 72시간 작업 후 시편 무게) / 초기 시편 무게 x 100으로 계산하였다.
6) 스트레스 테스트(내스트레스성): 두께 2 ㎜인 시편을 구부린 상태로 23℃에서 168 시간 동안 방치한 후, 이행 정도(배어나오는 정도)를 관찰하고, 그 결과를 수치로 기재하였으며, 0에 가까울 수록 우수한 특성을 나타내었다.
7) 흡수 속도 측정
흡수속도는 77℃, 60rpm의 조건 하에서, Planatary mixer(Brabender, P600)를 사용하여 수지와 에스테르 화합물이 서로 혼합되어 믹서의 토크가 안정화되는 상태가 되는데 까지 소요된 시간을 측정하여 평가하였다.
각 실시예 및 비교예의 평가 결과를 하기 표 4 및 5로 정리하였다.
구분 경도 기계적 물성 이행손실
(%)
가열감량
(%)
Shore A Shore D 인장강도
(kgf/cm2)
신율
(%)
실시예 1-1 84.5 37.9 219.0 313.2 3.45 1.20
실시예 1-2 84.2 37.8 220.1 314.5 3.21 1.25
실시예 1-3 84.4 37.8 218.5 320.5 3.05 1.03
실시예 1-4 84.5 37.7 221.3 318.6 3.42 1.31
실시예 1-5 84.8 38.0 217.5 311.8 3.56 1.37
실시예 2-1 82.4 34.2 210.5 338.9 1.55 1.87
실시예 2-2 85.7 38.8 225.6 310.2 3.60 1.17
실시예 2-3 86.0 34.0 230.2 311.1 3.64 1.06
실시예 3-1 84.7 37.9 219.2 310.4 3.25 1.35
실시예 3-2 84.5 37.6 220.1 314.6 3.22 1.26
실시예 4-1 84.3 37.4 209.1 326.5 1.77 1.12
실시예 4-2 84.6 38.1 209.5 320.6 2.42 1.20
실시예 4-3 85.0 38.8 210.3 311.4 3.55 1.22
실시예 4-4 85.8 39.8 225.8 291.1 3.60 1.20
비교예 1 84.7 38.0 200.6 303.6 1.74 1.60
비교예 2 86.4 40.1 209.7 308.9 2.38 0.69
비교예 3 87.1 40.7 216.1 300.7 6.88 0.74
비교예 4 84.7 38.9 220.5 307.3 5.68 3.05
비교예 5 86.1 40.2 211.9 288.2 5.26 1.59
비교예 6 84.1 37.2 208.5 337.5 1.62 1.09
구분 스트레스 테스트 흡수 속도(mm:ss)
실시예 1-1 0.5 5:45
실시예 1-2 0.5 5:50
실시예 1-3 0.5 5:50
실시예 1-4 0.5 5:35
실시예 1-5 0.5 5:50
실시예 2-1 0.0 4:20
실시예 2-2 0.5 6:00
실시예 2-3 1.0 6:20
실시예 3-1 0.5 5:50
실시예 3-2 0.5 5:45
실시예 4-1 0.5 5:55
실시예 4-2 0.5 5:55
실시예 4-3 0.5 6:00
실시예 4-4 0.5 6:00
비교예 1 0.5 5:30
비교예 2 0.5 6:50
비교예 3 3.0 7:30
비교예 4 1.5 5:30
비교예 5 1.5 6:00
비교예 6 0.5 5:55
상기 표 4 및 5의 결과를 참조하면, 본 발명의 실시예에 따른 가소제 조성물들은 기존 가소제 제품인 비교예 1 내지 4의 가소제 조성물 대비 동등 이상의 가소화 효율을 나타내면서, 기계적 물성, 내이행성 및 열안정성 측면에서 우수한 효과를 나타내었음을 확인할 수 있다.
구체적으로, 비교예 1 및 2는 가장 흔히 사용되던 프탈레이트계 가소제 제품인데, 본 발명의 실시예는 상기 비교예 1과 유사한 수준의 가소화 효율을 나타내면서도, 비교예 1 대비 인장강도와 신율과 같은 기계적 물성에서는 개선된 효과를 나타낸다. 또한, 비교예 2 대비 하여서는, 본 발명의 실시예가 개선된 가소화 효율 및 신율을 나타내며, 나머지 물성에서는 유사한 결과를 나타낸다. 상기 비교예 1 및 2의 가소제 제품은 현재 환경 규제로 사용이 쉽지 않다는 점을 고려할 때, 본 발명의 실시예에 따른 가소제 조성물이 기존 가소제 제품의 친환경 대체재로써 충분히 사용될 수 있음을 확인할 수 있다.
또한, 비교예 3 및 4는 상기 비교예 1 및 2를 대체하기 위한 친환경 가소제인데, 비교예 3 및 4의 가소제 조성물은 본 발명 실시예의 가소제 조성물 대비 내이행성 및 내스트레스성이 크게 떨어짐을 확인할 수 있다. 비교예 3 및 4와 같이 내이행성 및 내스트레스성이 열위할 경우, 수지 조성물과 혼합된 가소제가 쉽게 용출되어 인체에 유해할 수 있다는 치명적 단점이 있다.
비교예 5 및 6은 본 발명 실시예 가소제 조성물의 성분인 테레프탈레이트계 조성물과 시트레이트계 조성물 중 어느 하나만을 사용한 것인데, 테레프탈레이트계 조성물만을 사용한 비교예 5의 경우, 가소화 효율, 신율 및 이행손실 측면에서 실시예 대비 열위한 결과를 나타내었으며, 시트레이트계 조성물만을 사용한 비교예 6의 경우에는 실시예 대비 인장강도가 크게 열위하여 가소화된 제품이 쉽게 파손될 수 있다는 단점을 나타내었다. 특히 테레프탈레이트계 조성물과 시트레이트계 조성물이 9:1의 중량비로 혼합된 실시예 4-4와 테레프탈레이트계 조성물만을 사용한 비교예 5를 비교하여 보면, 비교예 5에서 인장강도의 큰 저하가 나타나고, 이행손실 역시 크게 증가함을 확인할 수 있는데, 이로부터 가소제 조성물 내 소량이라도 시트레이트계 조성물이 포함되게 되면, 기계적 물성과 내이행성에서의 개선이 발생함을 확인할 수 있다.
상기 결과로부터, 테레프탈레이트계 조성물과 시트레이트계 조성물을 조합하여 사용하되, 테레프탈레이트계 조성물과 시트레이트계 조성물의 알킬 라디칼로 헥실 알코올의 이성질체 혼합물로부터 유래된 것을 적용하고, 테레프탈레이트계 조성물의 알킬 라디칼로 헥실기 및 2-에틸헥실기를 적용할 경우, 친환경적이면서도 기존 가소제 제품 대비 동등 이상의 성능을 구현하여, 기존 가소제 제품을 성공적으로 대체할 수 있음을 확인하였다.
실험예 2: 탄화특성 평가
상기 실시예 1-5와 비교예 1 내지 6의 가소제 조성물을 사용하여 실험예 1과 동일한 조건으로 두께 0.25mm인 시편을 40cm X 40cm의 크기로 제작하였다. 제조된 시편에 대해 Mathis Oven에서 230℃, 5mm/10sec의 속도로 탄화 테스트를 진행하였으며, 그 결과를 도 1로 나타내었다.
도 1을 통해 확인할 수 있는 바와 같이, 본 발명의 실시예 1-5에 따른 가소제 조성물은 기존 가소제 제품과 유사하게 준수한 탄화특성을 나타낸 반면, 시트레이트만을 단독 사용한 비교예 6의 가소제 조성물은 극히 열위한 탄화특성을 나타내었다. 이는 시트레이트 화합물 자체의 떨어지는 열안정성으로 인해 고온 노출 시의 변색 현상이 발생한 것으로, 본 발명의 가소제 조성물은 시트레이트계 조성물 자체의 위와 같은 단점을 테레프탈레이트와의 혼용으로 극복하였음을 확인할 수 있다.

Claims (15)

  1. 테레프탈레이트계 조성물 및 시트레이트계 조성물을 포함하고,
    상기 테레프탈레이트계 조성물은 다이헥실 테레프탈레이트, 헥실(2-에틸헥실) 테레프탈레이트 및 다이(2-에틸헥실) 테레프탈레이트를 포함하며,
    상기 시트레이트계 조성물은 트리헥실 시트레이트를 포함하고,
    상기 테레프탈레이트의 헥실기 및 시트레이트의 헥실기는 헥실 알코올의 이성질체 혼합물로부터 유래되며,
    상기 헥실 알코올의 이성질체 혼합물은 1-헥산올, 1-메틸펜탄올, 2-메틸펜탄올, 3-메틸펜탄올, 4-메틸펜탄올, 1,1-디메틸부탄올, 1,2-디메틸부탄올, 1,3-디메틸부탄올, 2,2-디메틸부탄올, 2,3-디메틸부탄올, 3,3-디메틸부탄올, 1-에틸부탄올, 2-에틸부탄올, 3-에틸부탄올 및 사이클로펜틸 메탄올로 이루어진 군에서 선택된 2 이상을 포함하는 것인 가소제 조성물.
  2. 제1항에 있어서,
    상기 테레프탈레이트계 조성물은, 다이헥실 테레프탈레이트 0.5 내지 50.0 중량%; 헥실(2-에틸헥실) 테레프탈레이트 3.0 내지 70.0 중량%; 및 다이(2-에틸헥실) 테레프탈레이트 0.5 내지 95.0 중량%;를 포함하는 것인 가소제 조성물.
  3. 제1항에 있어서,
    상기 시트레이트계 조성물은 하기 화학식 1의 시트레이트가 1 이상 포함되는 것인 가소제 조성물:
    [화학식 1]
    Figure PCTKR2022001612-appb-I000003
    상기 화학식 1에서, R1 내지 R3는 각각 독립적으로, n-헥실기, 분지형 헥실기 또는 사이클로펜틸 메틸기이고, R4는 수소이다.
  4. 제1항에 있어서,
    상기 테레프탈레이트계 조성물과 상기 시트레이트계 조성물을 95:5 내지 5:95의 중량비로 포함하는 것인 가소제 조성물.
  5. 제1항에 있어서,
    상기 테레프탈레이트계 조성물과 상기 시트레이트계 조성물을 95:5 내지 50:50의 중량비로 포함하는 것인 가소제 조성물.
  6. 제1항에 있어서,
    상기 헥실 알코올의 이성질체 혼합물은 2-메틸펜탄올 및 3-메틸펜탄올을 포함하는 것인 가소제 조성물.
  7. 제1항에 있어서,
    상기 헥실 알코올의 이성질체 혼합물은, 이성질체 혼합물 100 중량부에 대하여, 분지형 알코올이 40 중량부 이상으로 포함되는 것인 가소제 조성물.
  8. 제1항에 있어서,
    상기 헥실 알코올의 이성질체 혼합물은, 이성질체 혼합물 100 중량부에 대하여, 분지형 알코올이 50 내지 95 중량부로 포함되는 것인 가소제 조성물.
  9. 제6항에 있어서,
    상기 헥실 알코올의 이성질체 혼합물은 1-헥산올을 더 포함하는 것인 가소제 조성물.
  10. 제9항에 있어서,
    상기 헥실 알코올의 이성질체 혼합물은, 이성질체 혼합물 100 중량부에 대하여, 1-헥산올이 40 중량부 이하로 포함되는 것인 가소제 조성물.
  11. 제6항 또는 제9항에 있어서,
    상기 헥실 알코올의 이성질체 혼합물은 4-메틸펜탄올을 더 포함하는 것인 가소제 조성물.
  12. 제6항 또는 제9항에 있어서,
    상기 헥실 알코올의 이성질체 혼합물은 사이클로펜틸 메탄올을 더 포함하는 것인 가소제 조성물.
  13. 제12항에 있어서,
    상기 헥실 알코올의 이성질체 혼합물은, 이성질체 혼합물 100 중량부에 대하여, 사이클로펜틸 메탄올이 20 중량부 이하로 포함되는 것인 가소제 조성물.
  14. 수지 100 중량부; 및 제1항의 가소제 조성물 5 내지 150 중량부;를 포함하는 수지 조성물.
  15. 제14항에 있어서,
    상기 수지는 스트레이트 염화비닐 중합체, 페이스트 염화비닐 중합체, 에틸렌 비닐 아세테이트 공중합체, 에틸렌 중합체, 프로필렌 중합체, 폴리케톤, 폴리스티렌, 폴리우레탄, 폴리젖산, 천연고무 및 합성고무로 이루어진 군에서 선택된 1 종 이상인 것인 수지 조성물.
PCT/KR2022/001612 2021-01-29 2022-01-28 가소제 조성물 및 이를 포함하는 수지 조성물 WO2022164266A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280006712.7A CN116323780A (zh) 2021-01-29 2022-01-28 增塑剂组合物及包含其的树脂组合物
JP2023520354A JP7515957B2 (ja) 2021-01-29 2022-01-28 可塑剤組成物およびこれを含む樹脂組成物
US18/029,435 US20230365780A1 (en) 2021-01-29 2022-01-28 Plasticizer composition and resin composition comprising the same
EP22746292.6A EP4286466A4 (en) 2021-01-29 2022-01-28 PLASTICIZER COMPOSITION AND RESIN COMPOSITION
MX2023004286A MX2023004286A (es) 2021-01-29 2022-01-28 Composicion plastificante y composicion de resina que comprende la misma.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210013021 2021-01-29
KR10-2021-0013021 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022164266A1 true WO2022164266A1 (ko) 2022-08-04

Family

ID=82653670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001612 WO2022164266A1 (ko) 2021-01-29 2022-01-28 가소제 조성물 및 이를 포함하는 수지 조성물

Country Status (8)

Country Link
US (1) US20230365780A1 (ko)
EP (1) EP4286466A4 (ko)
JP (1) JP7515957B2 (ko)
KR (1) KR102692500B1 (ko)
CN (1) CN116323780A (ko)
MX (1) MX2023004286A (ko)
TW (1) TW202241839A (ko)
WO (1) WO2022164266A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070075341A (ko) * 2006-01-12 2007-07-18 옥세노 올레핀케미 게엠베하 디알킬 테레프탈레이트 및 그의 용도
KR20090115125A (ko) * 2007-01-30 2009-11-04 이스트만 케미칼 캄파니 테레프탈산 다이에스터의 생산
KR20160124151A (ko) * 2014-02-20 2016-10-26 바스프 에스이 디(2-에틸헥실) 테레프탈레이트를 포함하는 가소제 조성물
KR20200031588A (ko) * 2015-02-12 2020-03-24 주식회사 엘지화학 가소제 조성물, 수지 조성물 및 이들의 제조 방법
KR20200060091A (ko) * 2018-11-22 2020-05-29 애경유화주식회사 가소제 조성물 및 이를 이용한 수지 조성물
KR20210013021A (ko) 2019-07-22 2021-02-03 닛토덴코 가부시키가이샤 설비 이상 처치 타이밍 결정 시스템, 설비 이상 처치 타이밍 결정 방법 및 컴퓨터 프로그램

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3170543B2 (ja) 1994-02-28 2001-05-28 日立建機株式会社 油圧ショベル
US8372912B2 (en) * 2005-08-12 2013-02-12 Eastman Chemical Company Polyvinyl chloride compositions
DE102007001540A1 (de) * 2006-02-02 2007-08-09 Basf Ag C10/C6-Estergemische auf Basis 2-Propylheptanol
KR101845338B1 (ko) 2015-02-04 2018-04-04 한화케미칼 주식회사 친환경 가소제 조성물, 및 이를 포함하는 염화비닐 수지 조성물
EP3059223B1 (de) 2015-02-18 2023-06-28 Evonik Operations GmbH Herstellung von Estergemischen
US11499030B2 (en) * 2017-02-10 2022-11-15 Lg Chem, Ltd. Plasticizer composition and resin composition including the same
ES2967491T3 (es) * 2017-10-13 2024-04-30 Lg Chemical Ltd Composición plastificante y composición de resina que incluye la misma
KR102434827B1 (ko) 2019-05-02 2022-08-22 주식회사 엘지화학 사이클로헥산 트리에스터계 가소제 조성물 및 이를 포함하는 수지 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070075341A (ko) * 2006-01-12 2007-07-18 옥세노 올레핀케미 게엠베하 디알킬 테레프탈레이트 및 그의 용도
KR20090115125A (ko) * 2007-01-30 2009-11-04 이스트만 케미칼 캄파니 테레프탈산 다이에스터의 생산
KR20160124151A (ko) * 2014-02-20 2016-10-26 바스프 에스이 디(2-에틸헥실) 테레프탈레이트를 포함하는 가소제 조성물
KR20200031588A (ko) * 2015-02-12 2020-03-24 주식회사 엘지화학 가소제 조성물, 수지 조성물 및 이들의 제조 방법
KR20200060091A (ko) * 2018-11-22 2020-05-29 애경유화주식회사 가소제 조성물 및 이를 이용한 수지 조성물
KR20210013021A (ko) 2019-07-22 2021-02-03 닛토덴코 가부시키가이샤 설비 이상 처치 타이밍 결정 시스템, 설비 이상 처치 타이밍 결정 방법 및 컴퓨터 프로그램

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4286466A4

Also Published As

Publication number Publication date
EP4286466A4 (en) 2024-07-10
KR20220110124A (ko) 2022-08-05
MX2023004286A (es) 2023-05-02
US20230365780A1 (en) 2023-11-16
KR102692500B1 (ko) 2024-08-07
JP2023544394A (ja) 2023-10-23
EP4286466A1 (en) 2023-12-06
CN116323780A (zh) 2023-06-23
JP7515957B2 (ja) 2024-07-16
TW202241839A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2014181922A1 (ko) 에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2018048170A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020222536A1 (ko) 사이클로헥산 트리에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018147690A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2015119355A1 (ko) 가소제, 수지 조성물 및 이들의 제조 방법
WO2020222500A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2021020878A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018216985A1 (ko) 시트레이트계 가소제 및 이를 포함하는 수지 조성물
WO2018008913A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2014058122A1 (ko) 가소제, 가소제 조성물, 내열수지 조성물 및 이들의 제조 방법
WO2019088736A2 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017222232A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2020251266A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017074057A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2016182376A1 (ko) 에스테르계 화합물, 이를 포함하는 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2016153235A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2021145643A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2023075470A1 (ko) 프로판 트리카복실레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018110922A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017091040A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2023075472A1 (ko) 프로판 트리카복실레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017183877A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020222494A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2022270911A1 (ko) 트라이에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2022270910A1 (ko) 트라이에스터계 가소제 조성물 및 이를 포함하는 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22746292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023520354

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317027079

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023008141

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023008141

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230427

WWE Wipo information: entry into national phase

Ref document number: 2022746292

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022746292

Country of ref document: EP

Effective date: 20230829