WO2022145233A1 - 蒸着紙用原紙および蒸着紙 - Google Patents

蒸着紙用原紙および蒸着紙 Download PDF

Info

Publication number
WO2022145233A1
WO2022145233A1 PCT/JP2021/046272 JP2021046272W WO2022145233A1 WO 2022145233 A1 WO2022145233 A1 WO 2022145233A1 JP 2021046272 W JP2021046272 W JP 2021046272W WO 2022145233 A1 WO2022145233 A1 WO 2022145233A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper
layer
vapor
resin
base paper
Prior art date
Application number
PCT/JP2021/046272
Other languages
English (en)
French (fr)
Inventor
泰友 野一色
裕太 社本
三代子 田中
美咲 若林
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021041669A external-priority patent/JP6958757B1/ja
Priority claimed from JP2021041661A external-priority patent/JP6958756B1/ja
Priority claimed from JP2021041672A external-priority patent/JP6958758B1/ja
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to EP21915094.3A priority Critical patent/EP4269689A1/en
Priority to CN202180086975.9A priority patent/CN116685739A/zh
Publication of WO2022145233A1 publication Critical patent/WO2022145233A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/80Paper comprising more than one coating
    • D21H19/82Paper comprising more than one coating superposed
    • D21H19/826Paper comprising more than one coating superposed two superposed coatings, the first applied being pigmented and the second applied being non-pigmented
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/02Metal coatings
    • D21H19/08Metal coatings applied as vapour, e.g. in vacuum
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/24Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H19/28Polyesters
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • D21H19/40Coatings with pigments characterised by the pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/10Packing paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a base paper for vapor-deposited paper and a vapor-deposited paper using the same.
  • packaging materials that have a water vapor barrier property that barriers water vapor and a gas barrier property that barriers gases other than water vapor, in particular, an oxygen barrier property that barriers oxygen, have been used for foods, medical products, electronic parts, etc. It is used in packaging to prevent deterioration of the quality of the contents.
  • the thin-film vapor deposition paper is made by providing a thin-film deposition layer made of metal or the like on a paper base material, and by taking advantage of its glossiness, it is a label paper with excellent design such as liquor and refreshing drinking water, and a wrapping paper for confectionery. It is widely used for such purposes.
  • Patent Document 1 in an aluminum-deposited paper in which an aluminum-deposited layer is provided on a base paper, the back surface of the aluminum-deposited layer is treated so that the natural polarization potential value of the surface of the vapor-deposited layer is within a specific range.
  • the paper is disclosed.
  • Patent Document 2 a sealing coating layer with a polyolefin-based aqueous dispersion liquid, a vapor-deposited thin film layer of an inorganic oxide, and a heat-sealing resin layer are provided on one side of a thin paper having a basis weight of a specific value or less.
  • the sequentially formed sealing sheets for PTP packaging are disclosed.
  • an object of the present invention is to provide a base paper for thin-film deposition paper which can provide a thin-film deposition paper having excellent barrier properties.
  • the present invention relates to the following ⁇ 1> to ⁇ 11>.
  • a base paper for vapor-deposited paper having a clay coat layer and a resin layer on at least one surface of a paper base material in this order, and the surface of the resin layer is a wet tension measured in accordance with JIS K 6768: 1999. Is 50 mN / m or more, and the print surf surface roughness measured in accordance with JIS P 8151: 2004 is 2.5 ⁇ m or less.
  • a contact time of 120 seconds, measured in accordance with JIS P 8140: 1998 on the surface having a resin layer, is 0 g / m 2 or more and 10 g / m 2 or less, and JIS.
  • the surface intrinsic electrical resistance of the surface of the resin layer measured in accordance with JIS C 2139: 2008, is 0.1 ⁇ 10 14 ⁇ or more and 10 ⁇ 10 14 ⁇ or less, ⁇ 1> or ⁇ 2>.
  • ⁇ 4> The base paper for thin-film deposition paper according to any one of ⁇ 1> to ⁇ 3>, wherein the degree of biodegradation measured in accordance with JIS K 6955: 2017 is 85% or more.
  • ⁇ 5> The base paper for vapor-deposited paper according to any one of ⁇ 1> to ⁇ 4>, wherein 90% by mass or more of the components excluding inorganic substances of the base paper for thin-film deposition is a biodegradable material.
  • the resin layer contains a water-suspendable polymer, and the water-suspendable polymer is at least one selected from the group consisting of polyester-based resins and polyurethane-based resins, ⁇ 1> to ⁇ 5.
  • the base paper for vapor deposition paper according to any one of. ⁇ 7> contains an inorganic pigment and a binder, and the inorganic pigment has an aspect ratio of 50 or less and an average particle diameter of 5 ⁇ m or less, any one of ⁇ 1> to ⁇ 6>.
  • Base paper for vapor-deposited paper described in. ⁇ 8> The base paper for thin-film deposition paper according to ⁇ 7>, wherein the inorganic pigment is kaolin.
  • the binder contained in the clay coat layer is one or more selected from the group consisting of styrene-butadiene resin, styrene- (meth) acrylic resin, olefin-unsaturated carboxylic acid copolymer, and polylactic acid.
  • the base paper for vapor deposition paper (also referred to as base paper for vapor deposition) of the present embodiment has a clay coat layer and a resin layer on at least one surface of a paper base material in this order, and the surface of the resin layer is JIS K 6768: 1999.
  • the wetting tension measured in accordance with JIS P 8151: 2004 is 50 mN / m or more, and the print surf surface roughness measured in accordance with JIS P 8151: 2004 is 2.5 ⁇ m or less.
  • the thin-film vapor-deposited paper produced by using the base paper for thin-film vapor-deposited paper of the present embodiment has excellent barrier properties (oxygen barrier property, water vapor barrier property). The mechanism that exerts this effect is unknown, but it is presumed as follows.
  • the thin-film vapor-deposited paper produced by using the base paper for thin-film vapor-deposited paper of the present embodiment can exhibit excellent barrier properties. It should be noted that the above mechanism is speculative, and the mechanism for achieving the effect of the present invention is not limited thereto.
  • the numerical range represented by "X to Y” means a numerical range including X as a lower limit value and Y as an upper limit value. If the numerical ranges are described step by step, the upper and lower limits of each numerical range can be arbitrarily combined. Further, “(meth) acrylic” is a general term including both acrylic and methacrylic acid.
  • the base paper for vapor-deposited paper of the present embodiment may have a clay coat layer and a resin layer on one side of a paper base material in this order, or may have a clay coat layer and a resin layer on both sides in this order. However, from the viewpoint of production efficiency, it is preferable to have a clay coat layer and a resin layer on one side in this order.
  • the pulp constituting the paper base material in the present embodiment preferably contains plant-derived pulp as a main component, and more preferably wood pulp as a main component.
  • wood pulp include hardwood pulp and softwood pulp.
  • non-wood pulp include cotton pulp, hemp pulp, kenaf pulp, bamboo pulp and the like.
  • Materials other than pulp fibers such as synthetic fibers such as rayon fibers and nylon fibers may also be blended as auxiliary paper materials as long as the effects of the present invention are not impaired.
  • the ratio of hardwood pulp to the pulp constituting the paper base material is preferably 65% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, still more preferably 95% by mass or more. , 100% by mass.
  • the ratio of pulp hardwood pulp constituting the paper base material is within the above range, the recyclability is excellent.
  • the paper base material used for the base paper for vapor-deposited paper of the present embodiment include bleached kraft paper, unbleached kraft paper, high-quality paper, paperboard, liner paper, coated paper, single-gloss paper, and glassin paper.
  • Examples include graphan paper. Among these, bleached kraft paper, unbleached kraft paper, woodfree paper, and single glossy paper are preferable.
  • the degree of size of the paper substrate is not particularly limited, but from the viewpoint of improving the barrier property, it is preferable that the degree of sizing human size according to JIS P 8122: 2004 is 1 second or more.
  • the upper limit is not particularly limited, but is preferably 100 seconds or less, more preferably 30 seconds or less.
  • the degree of size of the paper substrate can be controlled by the type and content of the internal sizing agent, the type of pulp, the smoothing treatment, and the like.
  • the internal sizing agent examples include rosin-based, alkylketene dimer-based, alkenyl succinic anhydride-based, styrene-unsaturated carboxylic acid-based, higher fatty acid-based, petroleum resin-based, and the like.
  • the content of the internal sizing agent is not particularly limited, but is preferably 0 parts by mass or more and preferably 3 parts by mass or less with respect to 100 parts by mass of the pulp of the paper base material.
  • the internal additive include a filler, a paper strength enhancer, a yield improver, a pH adjuster, a drainage improver, a water resistant agent, a softener, an antistatic agent, an antifoaming agent, a slime control agent, a dye, and a pigment. And so on.
  • Examples of the filler include titanium dioxide, kaolin, talc, calcium carbonate (heavy calcium carbonate, light calcium carbonate), calcium sulfite, gypsum, calcined kaolin, white carbon, amorphous silica, delaminated kaolin, diatomaceous soil, and carbonic acid.
  • Examples thereof include magnesium, aluminum hydroxide, calcium hydroxide, magnesium hydroxide and zinc hydroxide.
  • the paper substrate is obtained by making a papermaking material containing a pulp slurry as a main component.
  • the pulp slurry is obtained from wood or non-wood raw material chips through steps such as cooking, washing and bleaching.
  • the method in the cooking step, the washing step, the bleaching step and the like is not particularly limited.
  • the pulp slurry obtained through these steps is further beaten in the presence of water.
  • a known wet paper machine can be appropriately selected and used.
  • the paper machine include a long net type paper machine, a gap former type paper machine, a circular net type paper machine, and a short net type paper machine.
  • the paper layer formed by the paper machine is conveyed by, for example, felt and dried by a dryer.
  • a multi-stage cylinder dryer may be used as a pre-dryer before drying the dryer.
  • the paper base material obtained as described above may be surface-treated with a calendar to make the paper thickness and gloss profile uniform.
  • a calendar processing machine a known calendar processing machine can be appropriately selected and used.
  • the basis weight of the paper substrate is not particularly limited, but is preferably 20 g / m 2 or more, more preferably 30 g / m 2 or more, further preferably 40 g / m 2 or more, and. It is preferably 500 g / m 2 or less, more preferably 400 g / m 2 or less, further preferably 200 g / m 2 or less, and even more preferably 100 g / m 2 or less.
  • the basis weight of the paper substrate is measured in accordance with JIS P 8124: 2011.
  • the thickness of the paper substrate is not particularly limited, but is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 20 ⁇ m or more, and preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 75 ⁇ m or less. Is. The thickness of the paper substrate is measured according to JIS P 8118: 2014.
  • the paper substrate preferably has a density of 0.5 g / cm 3 or more, more preferably 0.6 g / cm 3 or more, and 1.2 g / cm 3 or less. It is preferably 1.0 g / cm 3 or less, and more preferably 1.0 g / cm 3.
  • the density of the paper base material is calculated from the basis weight and thickness of the paper base material measured by the above method.
  • the paper substrate preferably has a Wangken-type smoothness of at least the surface on which the vapor-film deposition layer is provided, preferably 5 seconds or longer, and more preferably 10 seconds or longer.
  • the upper limit is not particularly limited, but is preferably 1000 seconds or less, for example.
  • the Oken-type smoothness of the paper substrate is measured in accordance with JIS P 8155: 2010.
  • the base paper for thin-film deposition paper of the present embodiment has a clay coat layer between the paper base material and a resin layer described later. As a result, the paper base material can be sealed and smoothed, and as a result, a flatter resin layer can be formed. ..
  • the clay coat layer preferably contains an inorganic pigment and a binder, and more preferably composed mainly of an inorganic pigment and a binder.
  • the clay coat layer is mainly composed of an inorganic pigment and a binder
  • the total content of the inorganic pigment and the binder in the clay coat layer is, for example, 50% by mass or more, preferably 60% by mass or more. It means that it is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
  • the upper limit is not particularly limited, but is 100% by mass or less.
  • the clay coat layer may further contain any component.
  • the inorganic pigment contained in the clay coat layer is not particularly limited, and examples thereof include kaolin, talc, and mica, and kaolin is preferable.
  • the content of the inorganic pigment in the clay coat layer is preferably 50% by mass or more, more preferably 60% by mass or more, further preferably 70% by mass or more, and 98% by mass or less. It is preferably 90% by mass or less, more preferably 85% by mass or less.
  • the aspect ratio of the inorganic pigment is preferably 50 or less from the viewpoint of forming a uniform and smooth resin layer and from the viewpoint of finely scattering the inorganic pigment in the clay coat layer and improving the dissociation property of the base paper for vapor-deposited paper at the time of recovery. ..
  • the lower limit is not particularly limited, but is preferably 1 or more.
  • the aspect ratio can be measured by observation with an electron microscope or X-ray diffraction measurement.
  • the average particle size of the inorganic pigment is preferably 5 ⁇ m or less, preferably 3 ⁇ m or less, from the viewpoint of forming a uniform and smooth resin layer and finely scattered in the clay coat layer to improve the dissociation property of the base paper for vapor-deposited paper at the time of recovery.
  • the following is more preferable, and 1 ⁇ m or less is further preferable.
  • the lower limit is not particularly limited, but is preferably 0.05 ⁇ m or more.
  • the average particle size means the median size (d50) measured by the laser diffraction / scattering type particle size distribution measurement.
  • the binder contained in the clay coat layer is not particularly limited, but is limited to styrene-butadiene resin; (meth) acrylic (co) polymer; styrene- (meth) acrylic resin; ethylene-acrylic acid copolymer, ethylene.
  • -Olefin-unsaturated carboxylic acid-based copolymers such as methacrylic acid copolymers; polylactic acid and the like, including styrene-butadiene-based resins, styrene- (meth) acrylic-based resins, and olefin-unsaturated carboxylic acid-based copolymers.
  • polylactic acid preferably one or more selected from the group consisting of styrene- (meth) acrylic resin, ethylene- (meth) acrylic acid copolymer, and polylactic acid. Is more preferable.
  • the (meth) acrylic (co) polymer is a (co) polymer of one or more monomers selected from (meth) acrylic acid and (meth) acrylic acid ester.
  • the (meth) acrylic acid ester is not particularly limited, but is preferably an alkyl ester having 1 to 12 carbon atoms of the (meth) acrylic acid.
  • the styrene- (meth) acrylic resin is a copolymer of styrene and at least one monomer selected from (meth) acrylic acid and (meth) acrylic acid ester.
  • the content of the binder in the clay coat layer is preferably 2% by mass or more, more preferably 10% by mass or more, further preferably 15% by mass or more, and 50% by mass or less. It is preferably 40% by mass or less, more preferably 30% by mass or less.
  • the amount of the clay coat layer applied is not particularly limited, but the solid content is preferably 5 g / m 2 or more, more preferably 7 g / m 2 or more, and 30 g / m 2 or less. It is preferably 20 g / m 2 or less, and more preferably 20 g / m 2.
  • the method for forming the clay coat layer is not particularly limited, but a method of forming a dispersion liquid containing an inorganic pigment and a resin binder by applying it on a paper substrate and drying it is preferable.
  • the dispersion liquid containing the inorganic pigment and the resin binder those using an aqueous medium such as an aqueous dispersion liquid as a solvent are preferable.
  • the clay coat layer is preferably formed by using an aqueous medium.
  • aqueous medium means a medium containing 50% by mass or more of water.
  • the coating method include a bar coat method, a blade coat method, a squeeze coat method, an air knife coat method, a roll coat method, a gravure coat method, a transfer coat method, and the like. You may use a machine.
  • the base paper for thin-film deposition paper of the present embodiment has a resin layer arranged on the clay coat layer.
  • the resin layer By providing the resin layer, the adhesion between the vapor-filmed layer of the vapor-filmed paper and the paper substrate is improved, and the barrier property is improved. Further, since the resin layer has an oxygen barrier property and a water vapor barrier property, it also has a function of improving the barrier property when it is made into a vapor-deposited paper.
  • the resin layer preferably contains a resin having a glass transition temperature of 50 ° C. or higher.
  • a resin having a glass transition temperature of 50 ° C. or higher By forming the resin layer using a resin having a glass transition temperature of 50 ° C. or higher, the smoothness of the surface of the resin layer can be maintained even when exposed to high-temperature steam during vapor deposition, and a vapor-deposited layer with few defects can be formed on the resin layer. Can be formed. As a result, it is considered that the obtained vapor-film-deposited paper can exhibit excellent barrier properties.
  • the upper limit of the glass transition temperature of the resin is not particularly limited, but is, for example, 200 ° C. or lower. As will be described later, when the resin contained in the resin layer is a polyester resin or a polyurethane resin, the glass transition temperature is preferable.
  • the glass transition temperature of the resin contained in the resin layer can be confirmed by the method described in Examples. That is, a part of the resin layer of the base paper for vapor deposition is carved out, the glass transition temperature is measured according to JIS K7121: 1987, and if the glass transition temperature is 50 ° C. or higher, the resin layer has a glass transition temperature of 50. It can be said that it contains a resin having a temperature of °C or higher.
  • the glass transition temperature measured in accordance with JIS K7121: 1987 is preferably 50 ° C. or higher, and the upper limit is not particularly limited, but is, for example, 200 ° C. or lower.
  • the resin layer preferably contains a water-suspendable polymer, that is, is preferably formed by a coating liquid containing a water-suspendable polymer, and more preferably mainly contains a water-suspendable polymer.
  • the resin layer mainly contains a water-suspendable polymer means that the content of the water-suspendable polymer in the resin layer is, for example, 50% by mass or more, preferably 60% by mass or more, more preferably. It means that it is 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and particularly preferably 95% by mass or more. The upper limit is not particularly limited, but is 100% by mass or less.
  • the resin layer may further contain any component in addition to the water-suspendable polymer.
  • water suspension means that the solubility in water at 25 ° C. is 10 g / L or less.
  • the water-suspendable polymer contained in the resin layer is not particularly limited, but is an alkyd resin; (meth) acrylic (co) polymer, styrene- (meth) acrylic resin; ethylene-acrylic acid copolymer, Olefin-unsaturated carboxylic acid-based copolymers such as ethylene-methacrylic acid copolymer; vinyl alcohol-based resins such as polyvinyl alcohol and ethylene vinyl alcohol copolymers (ethylene-modified polyvinyl alcohol); cellulose-based resins; polyurethane-based resins; Examples include polyester resins.
  • one or more selected from vinyl alcohol-based resin, polyurethane-based resin and polyester-based resin is preferable, and from the viewpoint of further improving the degree of biodegradability and recyclability, the polyester-based resin and the polyurethane-based resin are used. It is more preferably one or more selected from the group, further preferably a polylactic acid resin and a polyurethane-based resin, and particularly preferably a polyurethane-based resin from the viewpoint of further improving the gas barrier property.
  • the polyester-based resin contained in the resin layer is not particularly limited, and for example, it is more preferable that the polyester-based resin can be prepared into one or more selected from the group consisting of polyester-based resin dispersions and emulsions, and polyester-based resin dispersions. It is more preferable that it can be prepared into an emulsion or an emulsion, and even more preferably it can be prepared into a polyester resin dispersion.
  • the polyester-based resin as described above include polylactic acid.
  • the polyester resin contained in the resin layer preferably contains polylactic acid. Since polylactic acid has biodegradability and has a high affinity for water due to polyester, the recyclability of paper when used for a resin layer is high.
  • polyester resin a commercially available product may be used, and examples thereof include “Elitel KT series (trade name)” manufactured by Unitika Ltd. and “Randy PL series (trade name)” manufactured by Miyoshi Oil & Fat Co., Ltd. Specifically, Elitel KT-8803 and Randy PL-3000 are exemplified.
  • the polyurethane-based resin contained in the resin layer is not particularly limited, and for example, it is more preferable that the polyurethane-based resin can be prepared into one or more selected from the group consisting of polyurethane-based resin dispersions and emulsions, and polyurethane-based resin dispersions. It is more preferable that it can be prepared into an emulsion or an emulsion, and even more preferably it can be prepared into a polyurethane resin dispersion.
  • the polyurethane resin contained in the resin layer preferably contains at least one selected from the group consisting of a structural unit derived from metaxylylene diisocyanate and a structural unit derived from hydrogenated metaxylylene diisocyanate.
  • the polyurethane resin contains at least one of the constituent units derived from metaxylylene diisocyanate and the constituent units derived from hydrogenated metaxylylene diisocyanate, the constituent units derived from metaxylylene diisocyanate and the constituent units derived from polyisocyanate with respect to the total amount of the constituent units derived from polyisocyanate.
  • the total content of the constituent units derived from the hydrogenated metaxylylene diisocyanate is preferably 50 mol% or more.
  • the polyurethane resin contained in the resin layer preferably has an oxygen permeability of 100 mL / ( m2 ⁇ day ⁇ atm) or less at 23 ° C. and 50% RH when molded into a sheet having a thickness of 25 ⁇ m, preferably 50 mL. It is more preferably less than / (m 2 ⁇ day ⁇ atm), more preferably 25 mL / (m 2 ⁇ day ⁇ atm) or less, and more preferably 10 mL / (m 2 ⁇ day ⁇ atm) or less. Even more preferable.
  • the oxygen permeability is measured using an oxygen permeability measuring device (OX-TRAN2 / 22 manufactured by MOCON) under the conditions of 23 ° C. and 50% RH.
  • the polyurethane resin a synthetic product may be used, and examples thereof include the polyurethane resin described in International Publication No. 2015/016869.
  • the polyurethane resin a commercially available product may be used. For example, “Takelac W-based (trade name)”, “Takelac WPB-based (trade name)”, and “Takelac WS-based (trade name)” manufactured by Mitsui Chemicals, Inc. may be used. ) ”, And specifically, Takelac WPB-341 is exemplified. Examples of other commercially available products include “HPU W-003" (hydroxyl value 235 mgKOH / g) manufactured by Dainichiseika Kogyo Co., Ltd.
  • the resin layer is preferably formed by blending a silane coupling agent in addition to the above-mentioned water-suspendable polymer.
  • the silane coupling agent is a compound having at least one alkoxysilyl group and at least one reactive functional group other than the alkoxysilyl group in the molecule.
  • the alkoxysilyl group may be any of a monoalkoxysilyl group, a dialkoxysilyl group and a trialkoxysilyl group, but a trialkoxysilyl group is preferable from the viewpoint of reactivity.
  • Examples of the reactive functional group other than the alkoxysilyl group include a vinyl group, an epoxy group, a styryl group, a (meth) acryloyloxy group, an amino group, an isocyanato group, a ureido group, and an acid anhydride group.
  • an amino group, an epoxy group, and an acid anhydride group are preferable, and an amino group is more preferable.
  • epoxy group-containing silane coupling agent examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 2- (3,4-epoxycyclohexyl).
  • Ethyltrimethoxysilane and the like are exemplified.
  • amino group-containing silane coupling agent examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, and N-2- (aminoethyl).
  • 3-Aminopropyltrimethoxysilane 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine
  • 3-Aminopropyltriethoxysilane is preferred.
  • Examples of the acid anhydride group-containing silane coupling agent include 3-trimethoxysilylpropyl succinic acid anhydride and the like.
  • silane coupling agent a commercially available product may be used, for example, KBM-303, KBM-402, KBM-403, KBE-402, KBE-403, KBM-602, KBM manufactured by Shin-Etsu Chemical Co., Ltd. -603, KBM-903, KBE-903, KBE-9103P, KBM-573, X-12-967C and the like are exemplified.
  • the blending amount of the silane coupling agent is preferably 0.03 part by mass or more, more preferably 0.1 part by mass or more, still more preferably 0.2 part by mass or more with respect to 100 parts by mass of the water-suspendable polymer. It is particularly preferably 0.3 parts by mass or more, and preferably 10 parts by mass or less, more preferably 8 parts by mass or less, still more preferably 6 parts by mass or less, and particularly preferably 5 parts by mass or less.
  • the coating amount of the resin layer is not particularly limited, but the solid content is more preferably 0.1 g / m 2 or more, more preferably 1 g / m 2 or more, and 10 g / m 2 or less. It is preferably 5 g / m 2 or less, and more preferably 5 g / m 2.
  • the method for forming the resin layer is not particularly limited, but it is preferable to apply an aqueous solution of a water-suspending polymer or an aqueous medium such as an aqueous dispersion and dry to form the resin layer. That is, the resin layer is preferably formed by using an aqueous medium.
  • the coating method include a bar coat method, a blade coat method, a squeeze coat method, an air knife coat method, a roll coat method, a gravure coat method, a transfer coat method, and the like. You may use a machine.
  • the wetting tension of the resin layer surface measured in accordance with JIS K 6768: 1999 is 50 mN / m or more, preferably 55 mN / m or more.
  • the upper limit of the wetting tension on the surface of the resin layer is not particularly limited, but is, for example, 70 mN / m or less.
  • the wetting tension can be adjusted within the above range by adjusting the components used for the resin layer (for example, selecting the type of water-suspendable polymer used for the resin layer).
  • the wetting tension on the surface of the resin layer is a measured value at 23 ° C.
  • the base paper for thin-film deposition of the present embodiment has a print surf surface roughness of the resin layer surface measured in accordance with JIS P 8151: 2004 of 2.5 ⁇ m or less, preferably 1.5 ⁇ m or less, more preferably 1.5 ⁇ m or less. Is 1.2 ⁇ m or less, more preferably 1.0 ⁇ m or less.
  • the lower limit of the print surf surface roughness of the resin layer surface is not particularly limited, but is, for example, 0.1 ⁇ m or more, 0.3 ⁇ m or more, or 0.5 ⁇ m or more.
  • the print / surf surface roughness is adjusted within the above range by calendar processing of a paper substrate, a coating method of a clay coat layer and a resin layer (for example, a blade coating method, etc.), an adjustment of the coating amount of the resin layer, and the like. be able to.
  • the base paper for vapor-deposited paper of the present embodiment preferably has a Cobb water absorption rate at a temperature of 23 ° C. and a contact time of 120 seconds, which is measured in accordance with JIS P 8140: 1998 on the surface having a coating layer (resin layer). Is 0 g / m 2 or more, and is preferably 10 g / m 2 or less, more preferably 5 g / m 2 or less.
  • the Cobb water absorption of the base paper for thin-film deposition within the above range, it is possible to suppress the decrease in vacuum due to the influence of moisture during vapor deposition, and in addition, it is possible to form a film with few defects that does not allow water to pass through, resulting in a high degree of vacuum. It is preferable because a thin-film deposition layer can be formed and a thin-film deposition layer with few defects can be obtained. As a result, it is considered that the obtained vapor-film-deposited paper can exhibit excellent barrier properties.
  • the water absorption of the Cobb can be adjusted within the above range by adjusting the coating amount of the coating layer (for example, the resin layer) and selecting the components of the coating layer (for example, the resin of the resin layer).
  • the contact angle of the coated layer (resin layer) surface with water after 60 seconds is preferably 65 ° or less, and more. It is preferably 60 ° or less.
  • the lower limit of the contact angle of the surface of the coating layer with water after 60 seconds is not particularly limited, but is, for example, 10 ° or more, 30 ° or more, or 50 ° or more.
  • the contact angle can be adjusted within the above range by adjusting the coating amount of the coating layer (for example, the resin layer) or selecting the component of the coating layer (for example, the resin of the resin layer).
  • the contact angle on the surface of the coating layer is a measured value at 23 ° C.
  • the base paper for vapor-deposited paper of the present embodiment has a surface-specific electrical resistance of the surface of the coating layer (resin layer) measured in accordance with JIS C 2139: 2008, preferably 0.1 ⁇ 10 14 ⁇ or more, more preferably. Is 1 ⁇ 10 14 ⁇ or more, and preferably 10 ⁇ 10 14 ⁇ or less, and more preferably 5 ⁇ 10 14 ⁇ or less.
  • the surface-specific electrical resistance can be adjusted within the above range by adjusting the coating amount of the coating layer (for example, the resin layer) and selecting the components of the coating layer (for example, the resin of the resin layer).
  • the base paper for thin-film vapor deposition of the present embodiment has a biodegradation degree of preferably 85% or more, more preferably 90% or more (upper limit value: 100%) measured in accordance with JIS K 6955: 2017.
  • the thin-film deposition paper obtained by using the base paper for thin-film deposition paper satisfying the above-mentioned degree of biodegradation has excellent recyclability.
  • the degree of biodegradation is preferably within the above range within 2 years, more preferably within the above range within 1 year, and even more preferably within the above range within 6 months.
  • the degree of biodegradation of the base paper for vapor deposition paper can be adjusted within the above range by adjusting the blending amount of the biodegradable material (for example, biodegradable resin) in the base paper.
  • the biodegradable material for example, biodegradable resin
  • 90% by mass or more of the components of the base paper for vapor-film deposition excluding inorganic substances are preferably biodegradable materials, and 95% by mass or more are more preferably biodegradable materials (upper limit value). : 100% by mass). Since the degree of biodegradation of the base paper for vapor-filming paper of the present embodiment is at least a specific value, it is preferable because it is possible to realize a vapor-deposited paper having excellent recyclability and high oxygen barrier property and water vapor barrier property.
  • the thickness of the base paper for thin-film deposition paper of the present embodiment is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, preferably 100 ⁇ m or less, and more preferably 80 ⁇ m or less.
  • the method for producing the base paper for vapor-deposited paper of the present embodiment is not limited, and for example, as a method for producing the base paper for vapor-deposited paper having a clay coat layer and a resin layer on at least one surface of a paper base material in this order. It is preferably formed by applying and drying a coating liquid for a clay coat layer containing an inorganic pigment and a binder, and then applying and drying a coating liquid for a resin layer containing a water-suspendable polymer.
  • Thin-film deposition paper Another embodiment of the present invention is a thin-film deposition paper having a thin-film deposition layer, an overcoat layer, and, if necessary, a heat-sealing layer in this order on the resin layer of the base paper for vapor-film deposition paper. That is, according to the present invention, there is also provided a method for using the base paper for vapor-deposited paper in the production of the vapor-deposited paper and a method for producing the base paper for the vapor-deposited paper using the base paper for the vapor-deposited paper.
  • the thin-film deposition layer is at least one of a layer made of metal and a layer made of ceramic. That is, the thin-film deposition layer may be any of a metal layer, a ceramic layer, and a laminate of a metal layer and a ceramic layer.
  • the metal layer may be on the resin layer side of the base paper for vapor-deposited paper
  • the ceramic layer may be on the resin layer side of the base paper for vapor-deposited paper. It may be, and is not particularly limited.
  • the thin-film deposition layer may be a layer made of metal, a layer made of ceramic, or a laminate thereof, but a layer made of metal is preferable.
  • a layer made of metal specific examples of the metal include aluminum and titanium. These may be used alone or in combination of two or more. Among these, aluminum is preferable.
  • specific examples of the ceramic include silicon oxide, titanium oxide, aluminum oxide and the like. These may be used alone or in combination of two or more. Among these, silicon oxide and aluminum oxide are preferable.
  • the vapor-deposited layer is more preferably any of a layer made of aluminum, a layer made of silicon oxide, a layer made of titanium oxide, a layer made of aluminum oxide, and a laminate thereof, and the layer made of aluminum and oxidation.
  • a layer made of silicon, a layer made of aluminum oxide, and a laminate thereof is more preferable, and a layer made of aluminum is particularly preferable.
  • the thickness of the thin-film deposition layer is preferably 1 nm or more, more preferably 2 nm or more, further preferably 3 nm or more, preferably 1000 nm or less, and more preferably 500 nm or less. It is preferably 100 nm or less, and more preferably 100 nm or less. From the viewpoint of barrier properties, the thickness of the thin-film deposition layer is preferably 10 nm or more, more preferably 25 nm or more, and more preferably 80 nm or less, more preferably 70 nm. ..
  • the thickness of the thin-film deposition layer is preferably 4 nm or more, more preferably 5 nm or more, and more preferably 100 nm or less, preferably 70 nm, from the viewpoint of adhesion to other layers and cost. It is more preferably less than or equal to, and particularly preferably 60 nm or less.
  • the thin-film vapor deposition paper of the present embodiment preferably has an overcoat layer containing a polyurethane resin on the thin-film deposition layer.
  • the thin-film vapor-deposited paper of the present embodiment has a certain barrier property by having a thin-film film layer, but by having an overcoat layer containing a polyurethane resin on the thin-film film layer, the oxygen barrier property can be further improved. Further, the vapor-filmed layer is not easily damaged by processing such as bending, and even if it is damaged, the oxygen barrier property can be ensured by the overcoat layer, and excellent oxygen barrier property can be maintained.
  • polyurethane-based resin as the binder contained in the overcoat layer examples include those exemplified as the polyurethane-based resin of the resin layer, and for example, one or more selected from the group consisting of polyurethane-based resin dispersions and emulsions can be prepared. It is more preferable that it can be prepared into a polyurethane-based resin dispersion or an emulsion, and it is even more preferable that it can be prepared into a polyurethane-based resin dispersion.
  • the polyurethane resin contained in the overcoat layer preferably contains at least one selected from the group consisting of a structural unit derived from metaxylylene diisocyanate and a structural unit derived from hydrogenated metaxylylene diisocyanate.
  • the polyurethane resin contains at least one of the constituent units derived from metaxylylene diisocyanate and the constituent units derived from hydrogenated metaxylylene diisocyanate, the constituent units derived from metaxylylene diisocyanate and the constituent units derived from polyisocyanate with respect to the total amount of the constituent units derived from polyisocyanate.
  • the total content of the constituent units derived from the hydrogenated metaxylylene diisocyanate is preferably 50 mol% or more.
  • the polyurethane resin contained in the overcoat layer may have a hydroxy group, and its hydroxyl value is preferably 50 mgKOH / g or more, more preferably 100 mgKOH / g or more, and further preferably 150 mgKOH / g or more.
  • the upper limit is not particularly limited, but is preferably 1000 mgKOH / g or less, more preferably 800 mgKOH / g or less, and further preferably 600 mgKOH / g or less.
  • the oxygen barrier property is excellent, which is preferable.
  • the polyurethane resin contained in the overcoat layer preferably has an oxygen permeability of 100 mL / (m 2 ⁇ day ⁇ atm) or less at 23 ° C. and 50% RH when molded into a 25 ⁇ m thick sheet, preferably 50 mL. It is more preferably less than / (m 2 ⁇ day ⁇ atm), more preferably 25 mL / (m 2 ⁇ day ⁇ atm) or less, and more preferably 10 mL / (m 2 ⁇ day ⁇ atm) or less. Even more preferable.
  • the polyurethane-based resin as the binder contained in the overcoat layer may be the same type as the polyurethane-based resin contained in the resin layer of the base paper for vapor-film deposition paper described above, or may be of a different type, but is the same. It is preferable that the type is. Further, as the resin layer of the base paper for thin-film deposition paper, a synthetic product or a commercially available product listed as usable may be used.
  • the content of the polyurethane resin in the overcoat layer is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, still more preferably 99% by mass or more. Is.
  • the upper limit is not particularly limited, but is 100% by mass or less.
  • the overcoat layer may contain other resins and additives as long as the effects of the present invention are not impaired.
  • the additive include surfactants, pigments, antioxidants, antistatic agents, dyes, plasticizers, lubricants, mold release agents and the like.
  • the coating amount of the overcoat layer is preferably 0.1 g / m 2 or more, more preferably 0.2 g / m 2 or more, and 0.3 g / m 2 or more in terms of solid content. It is particularly preferable, and it is preferably 10 g / m 2 or less, more preferably 7 g / m 2 or less, and particularly preferably 4 g / m 2 or less.
  • the thickness of the overcoat layer is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, particularly preferably 0.3 ⁇ m or more, and preferably 10 ⁇ m or less. It is more preferably 7 ⁇ m or less, and particularly preferably 4 ⁇ m or less.
  • the thickness of the overcoat layer is 0.1 ⁇ m or more and 10 ⁇ m or less, the protection against the vapor-filmed layer is improved, the paper is excellent in dissociation during recycling, and the recyclability is also excellent.
  • the method for forming the overcoat layer is not particularly limited, but it is preferably formed by applying an aqueous medium such as an aqueous solution of a polyurethane resin or an aqueous dispersion and drying it.
  • the overcoat layer may be the outermost layer. Even if the overcoat layer is the outermost layer, it does not impair the design of the vapor-filmed layer having a glossy feeling.
  • an overcoat layer may be provided on one side or both sides thereof. Among these, it is preferable to have an overcoat layer on one side. Having an overcoat layer on one side is excellent in production efficiency.
  • a method for depositing metal or ceramic a method of vacuum-depositing metal or ceramic directly on the surface of the resin layer of the base paper for vapor deposition paper is preferable.
  • the overcoat layer directly on the thin-film deposition layer from the viewpoint of efficiently protecting the vapor-film deposition layer and enhancing the barrier property.
  • a method for forming the overcoat layer it is preferable to apply a liquid for the overcoat layer and dry the overcoat layer.
  • an overcoat layer having a relatively thin film of 10 ⁇ m or less can be formed.
  • excellent dissociation property can be imparted, and a thin-film film having excellent recyclability can be obtained.
  • Examples of the coating liquid for the overcoat layer used here include a solution using an organic solvent that dissolves the polyurethane resin, a dispersion liquid that uses an organic solvent that disperses the polyurethane resin, and a dispersion liquid that uses an aqueous medium. Therefore, a dispersion liquid using an aqueous medium is preferable from the viewpoint of coatability and environmental load.
  • Examples of the method for applying the coating liquid for the overcoat layer include a bar coat method, a blade coat method, a squeeze coat method, an air knife coat method, a roll coat method, a gravure coat method, a transfer coat method, and the like. Or a coating machine such as a slit die coater may be used.
  • the coated vapor-deposited paper coated with the coating liquid for the overcoat layer can be dried to remove the organic solvent or the aqueous medium, and a thin-film vapor-deposited paper having the overcoat layer on the vapor-deposited layer can be obtained.
  • a heat seal layer containing a thermoplastic resin may be formed on the overcoat layer.
  • the method for forming the heat seal layer include a method of applying a thermoplastic resin solution or a thermoplastic resin dispersion and drying the layer, and a method of extrusion laminating. Among these, it is preferable to apply a thermoplastic resin solution or a thermoplastic resin dispersion and dry the obtained product.
  • thermoplastic resin solution or thermoplastic resin dispersion used here is a solution using an organic solvent that dissolves the thermoplastic resin, a dispersion liquid that uses an organic solvent that disperses the thermoplastic resin, or a dispersion liquid that uses an aqueous medium. From the viewpoint of coatability and environmental load, a dispersion liquid using an aqueous medium is preferable.
  • the thermoplastic resin suitable for the dispersion liquid using an aqueous medium may be either a natural resin or a synthetic resin, and for example, a starch derivative, casein, shrak, polyvinyl alcohol and its derivatives, acrylic resin, ionomer resin, and malein.
  • the acrylic resin includes an acrylic resin obtained by copolymerizing (meth) acrylic acid with its alkyl ester or styrene as a monomer component, a styrene-maleic acid resin, and a styrene-acrylic acid-maleic acid.
  • acrylic resins include resins, water-soluble polyurethane resins, and water-soluble polyester resins.
  • the ionomer-based resin for example, ethylene-acrylic acid copolymer ionomer and ethylene-methacrylic acid ionomer are preferable.
  • the ionomer is a polymer neutralized with cations, and examples of the cations include ammonium ions (NH 4+ ) and organic ammonium ions in addition to metal ions.
  • the metal ion include alkali metal ions such as lithium ion (Li + ), sodium ion (Na + ) and potassium ion (K + ), and alkaline earth metals such as magnesium ion (Mg 2+ ) and calcium ion (Ca 2+ ).
  • transition metal ions such as ions, zinc ions (Zn 2+ ), and copper ions (Cu 2+ ).
  • sodium ion is preferable as the metal ion from the viewpoint of availability and the like.
  • select from starch derivatives, casein, shrak, polyvinyl alcohol and its derivatives, ionomer resins, acrylic resins, and maleic acids resins from the viewpoint of the stability of the coating liquid and the solvent resistance of the heat seal layer select from starch derivatives, casein, shrak, polyvinyl alcohol and its derivatives, ionomer resins, acrylic resins, and maleic acids resins from the viewpoint of the stability of the coating liquid and the solvent resistance of the heat seal layer.
  • At least one selected from a starch derivative, polyvinyl alcohol, polyvinyl alcohol derivative, ionomer resin, acrylic resin, and maleic acid resin is more preferable, and starch derivative, polyvinyl alcohol, polyvinyl alcohol derivative, and the like.
  • thermoplastic resin solution or the thermoplastic resin dispersion examples include a bar coating method, a blade coating method, a squeeze coating method, an air knife coating method, a roll coating method, a gravure coating method, and a transfer coating method.
  • a coating machine such as a fountain coater or a slit die coater may be used.
  • thermoplastic resin solution or a thermoplastic resin dispersion liquid After applying a thermoplastic resin solution or a thermoplastic resin dispersion liquid on the overcoat layer, it is dried to remove the organic solvent or the aqueous medium to obtain a vapor-deposited paper having a heat seal layer on the overcoat layer. Can be done.
  • the thickness of the heat seal layer is not particularly limited, but is preferably 1 ⁇ m or more and less than 15 ⁇ m. If it is 1 ⁇ m or more, sufficient heat sealability can be ensured. Further, if it is less than 15 ⁇ m, dissociability can be imparted, and a vapor-deposited paper having excellent recyclability can be obtained.
  • the thickness of the vapor-filmed paper of the present embodiment is preferably 20 ⁇ m or more, more preferably 50 ⁇ m or more, preferably 200 ⁇ m or less, and more preferably 150 ⁇ m or less.
  • the thickness of the thin-film vapor deposition paper is measured in accordance with JIS P 8118: 2014.
  • the oxygen permeability of the vapor-deposited paper of the present embodiment at 23 ° C. and 50% RH is preferably 1.0 mL / (m 2 ⁇ day ⁇ atm) or less, and 0.5 mL / (m 2 ⁇ day ⁇ atm). The following is more preferable (lower limit: 0 mL / ( m2 ⁇ day ⁇ atm)).
  • the oxygen permeability of the vapor-deposited paper is measured by the method described in Examples.
  • the water vapor transmission rate of the vapor-filmed paper of the present embodiment at 40 ° C. and 90% RH is preferably 1.0 g / (m 2 ⁇ day) or less, and is 0.7 g / (m 2 ⁇ day) or less. Is more preferable (lower limit: 0 g / (m 2 ⁇ day)).
  • the water vapor transmission rate of the vapor-deposited paper is measured by the method described in the examples.
  • the heat-sealed layers are heat-sealed at 160 ° C., 0.2 MPa, and 1 second, and the maximum load when the test piece has a width of 15 mm and a T-shaped peeling at a tensile speed of 300 mm / min.
  • the heat seal peeling strength is preferably 2N / 15 mm or more. If it is within the above range, it is excellent in suitability as a barrier package.
  • the lower limit of the heat seal peeling strength is not particularly limited, but is, for example, 20 N / 15 mm or less.
  • the pulp recovery rate after re-dissolution of the vapor-filmed paper of the present embodiment is preferably 75% or more, more preferably 80% or more, further preferably 82% or more, and even more preferably 85% or more. Is even more preferable.
  • the pulp recovery rate after re-dissolution of the vapor-deposited paper is measured by the method described in Examples.
  • the vaporized paper of the present embodiment can be suitably used as a packaging material for foods such as coffee, confectionery, milk, pharmaceuticals, medical products, electronic parts, etc. by taking advantage of the above-mentioned excellent barrier properties, and is highly recyclable. Is also excellent.
  • the present invention further discloses the following ⁇ 1> to ⁇ 49>.
  • a base paper for vapor-deposited paper having a clay coat layer and a resin layer on at least one surface of a paper base material in this order, and the surface of the resin layer is a wet tension measured in accordance with JIS K 6768: 1999. Is 50 mN / m or more, and the print surf surface roughness measured in accordance with JIS P 8151: 2004 is 2.5 ⁇ m or less.
  • ⁇ 3> The base paper for vapor-deposited paper according to ⁇ 1> or ⁇ 2>, wherein the resin layer contains a water-suspendable polymer.
  • ⁇ 4> The vapor deposition according to any one of ⁇ 1> to ⁇ 3>, wherein the water-suspendable polymer contained in the resin layer is at least one selected from the group consisting of polyester-based resin and polyurethane-based resin.
  • Base paper for paper. ⁇ 5> The polyurethane resin has an oxygen permeability of 100 mL / (m 2 ⁇ day ⁇ atm) or less at 23 ° C. and 50% RH when molded into a sheet having a thickness of 25 ⁇ m, according to ⁇ 4>.
  • the polyurethane-based resin contains at least one selected from the group consisting of a structural unit derived from metaxylylene diisocyanate and a structural unit derived from hydrogenated metaxylylene diisocyanate, according to ⁇ 4> or ⁇ 5>.
  • the polyurethane resin has a total content of 50 mol% or more of the constituent units derived from metaxylylene diisocyanate and the constituent units derived from hydrogenated metaxylylene diisocyanate with respect to the total amount of the constituent units derived from polyisocyanate.
  • the base paper for vapor-deposited paper according to any one of ⁇ 4> to ⁇ 6>.
  • the clay coat layer contains an inorganic pigment and a binder, and the inorganic pigment has an aspect ratio of 50 or less and an average particle diameter of 5 ⁇ m or less, according to any one of ⁇ 1> to ⁇ 7>.
  • Base paper for vapor-deposited paper ⁇ 9>
  • the binder contained in the clay coat layer is one or more selected from the group consisting of styrene-butadiene resin, styrene- (meth) acrylic resin, olefin-unsaturated carboxylic acid copolymer, and polylactic acid.
  • a polyurethane-based resin containing an overcoat layer is provided on the thin-film vapor-deposited layer, and the polyurethane-based resin contained in the overcoat layer is a structural unit derived from metaxylylene diisocyanate and a configuration derived from hydrogenated metaxylylene diisocyanate.
  • the vapor-deposited paper according to ⁇ 12> which contains at least one selected from the group consisting of units.
  • a heat-sealing layer containing a thermoplastic resin is provided on the overcoat layer, and the heat-sealing layers are heat-sealed at 160 ° C., 0.2 MPa, and 1 second, and the test piece has a width of 15 mm.
  • the vapor-deposited paper according to ⁇ 13> wherein the maximum load heat seal peeling strength when T-shaped peeling is performed at a tensile speed of 300 mm / min is 2N / 15 mm or more.
  • Oxygen permeability at 23 ° C. and 50% RH is 1.0 mL / (m 2 ⁇ day ⁇ atm) or less, and water vapor permeability at 40 ° C. and 90% RH is 1.0 g / (m 2 ).
  • the Cobb water absorption at 120 seconds is 0 g / m 2 or more and 10 g / m 2 or less, and the contact angle of the coating layer surface with water after 60 seconds, which is measured in accordance with JIS R 3257: 1999, is Base paper for vapor deposition paper with a temperature of 65 ° or less.
  • the surface-specific electrical resistance of the surface of the coating layer which is measured in accordance with JIS C 2139: 2008, is 0.1 ⁇ 10 14 ⁇ or more and 10 ⁇ 10 14 ⁇ or less, according to ⁇ 16>.
  • Base paper for vapor deposition paper ⁇ 18> The base paper for thin-film deposition paper according to ⁇ 16> or ⁇ 17>, wherein the coating layer has a clay coat layer and a resin layer in this order from the paper substrate side.
  • the polyurethane resin has an oxygen permeability of 100 mL / (m 2 ⁇ day ⁇ atm) or less at 23 ° C. and 50% RH when molded into a sheet having a thickness of 25 ⁇ m, according to ⁇ 20>.
  • the polyurethane-based resin contains at least one selected from the group consisting of a structural unit derived from metaxylylene diisocyanate and a structural unit derived from hydrogenated metaxylylene diisocyanate.
  • the described base paper for vapor-deposited paper ⁇ 23> The base paper for vapor-deposited paper according to any one of ⁇ 20> to ⁇ 22>, wherein the polyurethane resin has a hydroxy group and has a hydroxyl value of 50 mgKOH / g or more.
  • the polyurethane resin has a total content of the constituent units derived from metaxylylene diisocyanate and the constituent units derived from hydrogenated metaxylylene diisocyanate of 50 mol% or more with respect to the total amount of the constituent units derived from polyisocyanate.
  • the base paper for vapor-deposited paper according to any one of ⁇ 20> to ⁇ 23>.
  • the clay coat layer contains an inorganic pigment and a binder, and the inorganic pigment has an aspect ratio of 50 or less and an average particle diameter of 5 ⁇ m or less, according to any one of ⁇ 18> to ⁇ 24>.
  • Base paper for vapor-deposited paper is
  • the binder contained in the clay coat layer is one or more selected from the group consisting of styrene-butadiene resin, styrene- (meth) acrylic resin, olefin-unsaturated carboxylic acid copolymer, and polylactic acid.
  • ⁇ 28> The base paper for vapor-deposited paper according to any one of ⁇ 18> to ⁇ 27>, wherein the clay coat layer and the resin layer are formed by using an aqueous medium.
  • the vapor-filmed layer has an overcoat layer containing a polyurethane resin, and the polyurethane resin contained in the overcoat layer is a structural unit derived from metaxylylene diisocyanate and a configuration derived from hydrogenated metaxylylene diisocyanate.
  • the vapor-deposited paper according to ⁇ 29> which contains at least one selected from the group consisting of units.
  • ⁇ 31> The vapor-filmed paper according to ⁇ 30>, wherein the polyurethane resin contained in the overcoat layer has a hydroxy group and has a hydroxyl value of 50 mgKOH / g or more.
  • a heat-sealing layer containing a thermoplastic resin is provided on the overcoat layer, and the heat-sealing layers are heat-sealed at 160 ° C., 0.2 MPa, and 1 second, and the test piece has a width of 15 mm.
  • the oxygen permeability at 23 ° C. and 50% RH is 1.0 mL / (m 2 ⁇ day ⁇ atm) or less, and the water vapor permeability at 40 ° C. and 90% RH is 1.0 g / (m 2 ).
  • ⁇ 34> For thin-film deposition paper, which has a coating layer on at least one surface of the paper substrate and has a biodegradability of 85% or more as measured in accordance with JIS K 6955: 2017. Base paper.
  • ⁇ 35> The base paper for thin-film deposition paper according to ⁇ 34>, wherein 90% by mass or more of the components excluding the inorganic substances of the base paper for thin-film deposition paper are biodegradable materials.
  • ⁇ 36> The base paper for vapor-deposited paper according to ⁇ 34> or ⁇ 35>, wherein the coating layer has a resin layer, and the resin layer contains a water-suspendable polymer.
  • the polyurethane resin has an oxygen permeability of 100 mL / (m 2 ⁇ day ⁇ atm) or less at 23 ° C. and 50% RH when molded into a sheet having a thickness of 25 ⁇ m, according to ⁇ 37>.
  • Base paper for vapor-deposited paper is
  • ⁇ 40> The vapor deposition according to ⁇ 37> or ⁇ 39>, wherein the polyurethane resin contains at least one selected from the group consisting of a structural unit derived from metaxylylene diisocyanate and hydrogenated metaxylylene diisocyanate.
  • Base paper for paper. ⁇ 41> The polyurethane resin has a total content of 50 mol% or more of the constituent units derived from metaxylylene diisocyanate and the constituent units derived from hydrogenated metaxylylene diisocyanate with respect to the total amount of the constituent units derived from polyisocyanate.
  • the coating layer has a clay coat layer, the clay coat layer contains an inorganic pigment and a binder, and the inorganic pigment has an aspect ratio of 50 or less and an average particle size of 5 ⁇ m or less.
  • ⁇ 43> The base paper for thin-film deposition paper according to ⁇ 42>, wherein the inorganic pigment is kaolin.
  • One or more of the binders contained in the clay coat layer selected from the group consisting of styrene-butadiene resin, styrene- (meth) acrylic resin, olefin-unsaturated carboxylic acid copolymer, and polylactic acid.
  • the vapor-filmed layer has an overcoat layer containing a polyurethane resin, and the polyurethane resin contained in the overcoat layer is a structural unit derived from metaxylylene diisocyanate and a configuration derived from hydrogenated metaxylylene diisocyanate.
  • the vapor-deposited paper according to ⁇ 46> which contains at least one selected from the group consisting of units.
  • ⁇ 48> The vapor-filmed paper according to ⁇ 46> or ⁇ 47>, wherein the pulp recovery rate after re-dissolution is 80% or more.
  • ⁇ 49> The oxygen permeability at 23 ° C.
  • Example 1-1 80 parts by mass of kaolin (Contour Xtreme manufactured by Imeris, aspect ratio 33, average particle diameter d50: 0.26 ⁇ m) and 20 parts by mass (solid content) of styrene- (meth) acrylic resin (JONCRYL HSL-9012 manufactured by BASF). And were mixed to prepare a coating liquid for a clay coat layer.
  • the above clay is applied to the glossy surface of single-gloss paper (broad-leaved wood ratio 100%, nice human size 9 seconds, basis weight 50 g / m 2 , thickness 60 ⁇ m, density 0.83 g / cm 3 , Oken type smoothness 430 seconds).
  • the coating liquid for the coat layer was coated with Mayer bar and dried at 120 ° C. for 1 minute to form a clay coat layer (12 g / m 2 , thickness 4.6 ⁇ m).
  • a clay coat layer (12 g / m 2 , thickness 4.6 ⁇ m).
  • Takelac WPB-341 Glass transition temperature 130 ° C., solid content concentration 30%) 0.15 parts by mass of 3-aminopropyltriethoxysilane (KBE-903, manufactured by Shinetsu Chemical Industry Co., Ltd.) is mixed with 100 parts by mass.
  • the prepared coating liquid for the resin layer is coated with Mayer bar and dried at 120 ° C. for 1 minute to form a resin layer (2 g / m 2 , thickness 2 ⁇ m), and a base paper for vapor deposition paper (thickness 67 ⁇ m) is formed. Obtained.
  • Example 1-2 A base paper for thin-film deposition was obtained in the same manner as in Example 1-1 except that the coating amount of the resin layer was 1 g / m 2 (thickness 1 ⁇ m).
  • Example 1-3 3-Aminopropyltriethoxysilane (Shinetsu Chemical Co., Ltd.) in 100 parts by mass of an aqueous dispersion of a polyester resin binder (Elitel KT-8803 manufactured by Unitica Co., Ltd .: glass transition temperature 65 ° C., solid content concentration 30%, saturated copolymerized polyester resin) Examples except that a resin layer (2 g / m 2 , thickness 2 ⁇ m) was formed by using a coating liquid for a resin layer prepared by mixing 0.15 parts by mass of KBE-903, manufactured by Kogyo Co., Ltd. A base paper for vapor deposition paper was obtained in the same manner as in 1-1.
  • a polyester resin binder Elitel KT-8803 manufactured by Unitica Co., Ltd .: glass transition temperature 65 ° C., solid content concentration 30%, saturated copolymerized polyester resin
  • Example 1-1 Ethylene-acrylic acid copolymer (Zyxen AC manufactured by Sumitomo Seika Co., Ltd., glass transition temperature 80 ° C or less, solid content concentration 29% by mass) 3-aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Industry Co., Ltd.) in 100 parts by mass KBE-903) Same as Example 1-1 except that a resin layer (2 g / m 2 , thickness 2 ⁇ m) was formed by using a coating liquid for a resin layer prepared by mixing 0.145 parts by mass. Then, a base paper for vapor deposition paper was obtained.
  • Example 1-4 A base paper for vapor-deposited paper was obtained in the same manner as in Example 1-3 except that the rough surface of the single-gloss paper was coated.
  • Example 2-1 80 parts by mass of kaolin (Contour Xtreme manufactured by Imeris, aspect ratio 33, average particle diameter d50: 0.26 ⁇ m) and 20 parts by mass (solid content) of styrene- (meth) acrylic resin (JONCRYL HSL-9012 manufactured by BASF). And were mixed to prepare a coating liquid for a clay coat layer.
  • the clay coat layer on the glossy surface of single-gloss paper hardwood ratio 100%, basis weight 50 g / m 2 , thickness 60 ⁇ m, density 0.83 g / cm 3 , Oken type smoothness 430 seconds, size degree 9 seconds
  • the coating liquid for use was coated with Mayer bar and dried at 120 ° C.
  • a clay coat layer (12 g / m 2 , thickness 4.6 ⁇ m).
  • an aqueous dispersion of a polyurethane resin binder having a thickness of 25 ⁇ m and an oxygen permeability (23 ° C., 50% RH) of 2.0 mL / ( m2 ⁇ day ⁇ atm) (Mitsui Chemicals).
  • the prepared coating liquid for a resin layer was coated with Mayer bar and dried at 120 ° C. for 1 minute to form a resin layer (2 g / m 2 , thickness 2 ⁇ m) to obtain a base paper for vapor deposition paper (thickness 67 ⁇ m). ..
  • Example 2-2 A base paper for vapor-deposited paper was obtained in the same manner as in Example 2-1 except that the coating amount of the resin layer was 1 g / m 2 (thickness 1 ⁇ m).
  • Example 2-3 0.20 parts by mass of aminopropyltriethoxysilane (KBE-903, manufactured by Shin-Etsu Chemical Co., Ltd.) is mixed with 100 parts by mass of a polylactic acid emulsion (Randy PL-3000 manufactured by Miyoshi Oil & Fat Co., Ltd., solid content concentration 40%).
  • a base paper for vapor-deposited paper was obtained in the same manner as in Example 2-1 except that the prepared resin layer coating liquid was used to form a resin layer (2 g / m 2 , thickness 2 ⁇ m).
  • Example 2-4 An aqueous dispersion of a polyurethane resin binder having a hydroxy group having a thickness of 25 ⁇ m and an oxygen permeability (23 ° C., 50% RH) of 1.6 mL / (m 2 ⁇ day ⁇ atm) (HPU manufactured by Dainichi Seika Kogyo Co., Ltd.).
  • a base paper for vapor-deposited paper was obtained in the same manner as in Example 2-1 except that a resin layer (2 g / m 2 , thickness 2 ⁇ m) was formed by using a coating liquid for a resin layer prepared by mixing the above.
  • the resin layer (2 g / m 2 , thickness 2 ⁇ m
  • a base paper for vapor deposition paper was obtained.
  • Example 3-1 80 parts by mass of kaolin (Contour Xtreme manufactured by Imeris, aspect ratio 33, average particle diameter d50: 0.26 ⁇ m) and 20 parts by mass (solid content) of polylactic acid emulsion (Randy PL-3000 manufactured by Miyoshi Oil & Fat Co., Ltd.). The mixture was mixed to prepare a coating liquid for a clay coat layer. The above clay is applied to the glossy surface of single-gloss paper (broad-leaved wood ratio 100%, nice human size 9 seconds, basis weight 50 g / m 2 , thickness 60 ⁇ m, density 0.83 g / cm 3 , Oken type smoothness 430 seconds).
  • the coating liquid for the coat layer was coated with Mayer bar and dried at 120 ° C. for 1 minute to form a clay coat layer (12 g / m 2 , thickness 4.6 ⁇ m).
  • a polylactic acid emulsion (Randy PL-3000 manufactured by Miyoshi Oil & Fat Co., Ltd.) was coated on the clay coat layer with Mayer bar and dried at 120 ° C. for 1 minute to obtain a resin layer (2 g / m 2 , thickness). 2 ⁇ m) was formed, and a base paper for vapor-deposited paper (67 ⁇ m) was obtained.
  • Example 3-2> A styrene- (meth) acrylic resin (Joncryl HSL-9012, manufactured by BASF) was used instead of the polylactic acid emulsion of the clay coat layer, and the oxygen permeability (23) having a thickness of 25 ⁇ m was used instead of the polylactic acid emulsion of the resin layer.
  • Aqueous dispersion of polyurethane resin binder (° C, 50% RH) of 2.0 mL / (m 2 ⁇ day ⁇ atm) (Mitsui Chemicals Co., Ltd., Takelac WPB-341, glass transition temperature 130 ° C, solid content concentration) 30%) Resin layer (1) using a resin layer coating solution prepared by mixing 0.15 parts by mass of 3-aminopropyltriethoxysilane (KBE-903, manufactured by Shin-Etsu Chemical Industry Co., Ltd.) with 100 parts by mass.
  • a base paper for vapor-deposited paper was obtained in the same manner as in Example 3-1 except that .5 g / m 2 ) was formed.
  • Example 3-3 In Example 3-1 except that the resin layer coating liquid of Example 3-2 was used as the resin layer coating liquid and the coating amount of the resin layer was changed to 4 g / m 2 . In the same manner as in No. 1, a base paper for vapor-deposited paper was obtained.
  • a base paper for vapor deposition paper was obtained in the same manner as in Example 3-1 except that the resin of the layer was changed to an acrylic resin (Aluminac W manufactured by Dainichi Seika Kogyo Co., Ltd.) at 4 g / m 2 .
  • the print surf surface roughness of the resin layer surface was measured according to JIS P 8151: 2004 using a print surf surface roughness tester manufactured by Lorentzen & Wettre.
  • Biodegradable material ratio The biodegradable material ratio was calculated by the following formula 1.
  • the mass of the paper base material means the mass excluding the inorganic component (filler, etc.).
  • the inorganic content is the ratio of the mass of ash obtained by burning paper to the mass of the paper base material.
  • 90% or more it is equivalent to that 90% by mass or more of the components excluding the inorganic substances of the base paper for vapor deposition paper are biodegradable materials. Whether it is a biodegradable material or not is determined by performing component analysis to determine whether it is a biodegradable material.
  • Glass-transition temperature A part of the resin layer of the base paper for vapor deposition was carved out, and the glass transition temperature was measured according to JIS K 7121: 1987. The glass transition temperature is shown in Table 1-1 as the glass transition temperature of the resin contained in the resin layer.
  • an overcoat layer (0.5 g / m 2 , thickness: 0.5 ⁇ m).
  • an aqueous dispersion of an ethylene / acrylic acid copolymer ammonium salt (effective content 29.2% by mass, Zyxen AC, acrylic acid copolymerization ratio 20 mol%, melting point: 95 ° C., Sumitomo Seika (Manufactured by Co., Ltd.) was diluted with water so that the effective content was 20% by mass, coated with Mayer bar, and then dried at 120 ° C. for 1 minute to form a heat seal layer (5 ⁇ m) to obtain a vapor-deposited paper. ..
  • a CPP film having a thickness of 20 ⁇ m (GP-32 manufactured by Hokuetsu Kasei Co., Ltd.) was bonded to form a laminated sheet.
  • the oxygen permeability of the laminated sheet was measured at a temperature of 23 ° C. and a relative humidity of 50% in accordance with JIS K 7126-2: 2006. The lower the oxygen permeability value, the better the oxygen barrier property.
  • Heat seal peeling strength A set of thin-film vaporized papers were stacked so that the heat-sealing layers faced each other, and heat-sealed using a heat-sealing tester (TP-701-B manufactured by Tester Sangyo) at 160 ° C., 0.2 MPa, and 1 second. Subsequently, the heat-sealed test piece was cut to a width of 15 mm, and T-shaped peeled off at a tensile speed of 300 mm / min using a tensile tester (RTC-1250A manufactured by A & D Co., Ltd.), and the maximum recorded. The load was defined as the heat seal peeling strength.
  • the vapor-filmed paper evaluated by the above method was evaluated for its suitability as a barrier wrapping based on the following criteria.
  • the evaluation criteria are as follows.
  • the thin-film vapor-deposited paper produced by using the thin-film film base paper of the examples has lower oxygen permeability and water vapor permeability than the thin-film vapor-deposited paper manufactured by using the thin-film vapor-deposited paper base paper of the comparative example, and has excellent barrier properties. Had had.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)
  • Paper (AREA)

Abstract

本発明は、バリア性に優れた蒸着紙を提供可能な蒸着紙用原紙を提供することを目的とする。 本発明の蒸着紙用原紙は、紙基材の少なくとも一方の面にクレーコート層および樹脂層をこの順に有する蒸着紙用原紙であって、前記樹脂層表面は、JIS K 6768:1999に準拠して測定される濡れ張力が50mN/m以上であり、かつ、JIS P 8151:2004に準拠して測定されるプリント・サーフ表面粗さが2.5μm以下である。

Description

蒸着紙用原紙および蒸着紙
 本発明は、蒸着紙用原紙およびこれを用いた蒸着紙に関する。
 従来、紙基材に、水蒸気をバリアする水蒸気バリア性や、水蒸気以外のガスをバリアするガスバリア性、特に、酸素をバリアする酸素バリア性を付与した包装材料が、食品、医療品、電子部品等の包装において、内容物の品質低下を防止するために、用いられている。
 蒸着紙は、紙基材上に、金属などからなる蒸着層を設けてなるものであり、その光沢感を活かし、酒、清涼飲料水などの意匠性に優れたラベル用紙、菓子類の包装用紙等に広く用いられている。
 例えば、特許文献1には、基紙上にアルミニウム蒸着層を設けてなるアルミニウム蒸着紙において、蒸着層の表面の自然分極電位値が特定の範囲となるように裏面を処理した基紙を用いるアルミニウム蒸着紙が開示されている。また、例えば、特許文献2には、坪量が特定値以下の薄葉紙の片面に、ポリオレフィン系水性ディスパーション液による目止めコーティング層と、無機酸化物の蒸着薄膜層と、ヒートシール樹脂層とを順次に形成したPTP包装用密封シートが開示されている。
特開平4-65599号公報 特開平7-223686号公報
 特許文献1、2のように、蒸着層を形成して紙基材の酸素や水蒸気に対するバリア性などを向上させる試みはなされているものの、特許文献1に記載されたアルミニウム蒸着紙や特許文献2に記載されたPTP包装用密封シートは、ガスバリア性に乏しいという課題があった。
 食品の包装材料として使用される蒸着紙は、食品の風味保護の観点から、さらなるバリア性(酸素バリア性、水蒸気バリア性)の向上が求められている。そこで、本発明は、バリア性に優れた蒸着紙を提供可能な蒸着紙用原紙を提供することを目的とする。
 本発明は、以下の<1>~<11>に関する。
 <1> 紙基材の少なくとも一方の面にクレーコート層および樹脂層をこの順に有する蒸着紙用原紙であって、前記樹脂層表面は、JIS K 6768:1999に準拠して測定される濡れ張力が50mN/m以上であり、かつ、JIS P 8151:2004に準拠して測定されるプリント・サーフ表面粗さが2.5μm以下である、蒸着紙用原紙。
 <2> 樹脂層を有する面のJIS P 8140:1998に準拠して測定される、温度23℃、接触時間120秒でのコッブ吸水度が0g/m以上10g/m以下であり、JIS R 3257:1999に準拠して測定される、前記樹脂層表面の水に対する60秒後の接触角が65°以下である、<1>に記載の蒸着紙用原紙。
 <3> JIS C 2139:2008に準拠して測定される、前記樹脂層表面の表面固有電気抵抗が0.1×1014Ω以上10×1014Ω以下である、<1>または<2>に記載の蒸着紙用原紙。
 <4> JIS K 6955:2017に準拠して測定される生分解度が85%以上である、<1>~<3>のいずれか1つに記載の蒸着紙用原紙。
 <5> 前記蒸着紙用原紙の無機物を除く成分のうち、90質量%以上が生分解性材料である、<1>~<4>のいずれか1つに記載の蒸着紙用原紙。
 <6> 前記樹脂層が水懸濁性高分子を含み、前記水懸濁性高分子が、ポリエステル系樹脂およびポリウレタン系樹脂からなる群より選ばれる1種以上である、<1>~<5>のいずれか1つに記載の蒸着紙用原紙。
 <7> 前記クレーコート層が、無機顔料およびバインダーを含み、前記無機顔料は、アスペクト比が50以下であり、平均粒子径が5μm以下である、<1>~<6>のいずれか1つに記載の蒸着紙用原紙。
 <8> 前記無機顔料がカオリンである、<7>に記載の蒸着紙用原紙。
 <9> 前記クレーコート層に含まれるバインダーが、スチレン-ブタジエン系樹脂、スチレン-(メタ)アクリル系樹脂、オレフィン-不飽和カルボン酸系共重合、ポリ乳酸からなる群より選ばれる1種以上である、<7>または<8>に記載の蒸着紙用原紙。
 <10> 前記クレーコート層および樹脂層は、水性媒体を用いて形成されてなる、<1>~<9>のいずれか1つに記載の蒸着紙用原紙。
 <11> <1>~<10>のいずれかに記載の蒸着紙用原紙の前記樹脂層上に、蒸着層、オーバーコート層、および必要に応じてヒートシール層をこの順に有する、蒸着紙。
 本実施形態の蒸着紙用原紙(蒸着用原紙とも称する)は、紙基材の少なくとも一方の面にクレーコート層および樹脂層をこの順に有し、前記樹脂層表面は、JIS K 6768:1999に準拠して測定される濡れ張力が50mN/m以上であり、かつ、JIS P 8151:2004に準拠して測定されるプリント・サーフ表面粗さが2.5μm以下である。本実施形態の蒸着紙用原紙を用いて製造した蒸着紙は、優れたバリア性(酸素バリア性、水蒸気バリア性)を有する。当該効果を奏するメカニズムは不明であるが、以下のように推測される。
 樹脂層表面の濡れ張力を50mN/m以上とすることで、樹脂層表面の極性が高くなり、樹脂層と当該層上に形成される蒸着層との密着性が向上する。また、樹脂層表面のプリント・サーフ表面粗さを2.5μm以下とすることで、樹脂層上に欠陥の少ない蒸着層を形成できる。これらの理由により、本実施形態の蒸着紙用原紙を用いて製造した蒸着紙は、優れたバリア性を発揮することができる。なお、上記メカニズムは推測によるものであり、本発明の効果を奏するメカニズムはこれに制限されるものではない。
 以下、本実施形態の蒸着紙用原紙および蒸着紙の構成および物性について、さらに詳細に説明する。本明細書中、「X~Y」で表される数値範囲は、Xを下限値、Yを上限値として含む数値範囲を意味する。数値範囲が段階的に記載されている場合、各数値範囲の上限および下限は任意に組合せることができる。また、「(メタ)アクリル」は、アクリルおよびメタクリルの両方を含む総称である。
 本実施形態の蒸着紙用原紙は、紙基材の片面に、クレーコート層および樹脂層をこの順に有していてもよく、両面にクレーコート層および樹脂層をこの順に有していてもよいが、生産効率の観点からは、片面にクレーコート層および樹脂層をこの順に有することが好ましい。
 <紙基材>
 本実施形態における紙基材を構成するパルプは、植物由来のパルプを主成分とすることが好ましく、木材パルプを主成分とすることがより好ましい。木材パルプとしては、例えば、広葉樹パルプ、針葉樹パルプ等が挙げられる。非木材パルプとしては、綿パルプ、麻パルプ、ケナフパルプ、竹パルプなどが挙げられる。レーヨン繊維やナイロン繊維等の合成繊維等のパルプ繊維外の材料も、本発明の効果を損なわない限り、副紙材として配合してもよい。
 紙基材を構成するパルプに占める広葉樹パルプの割合は、好ましくは65質量%以上であり、より好ましくは80質量%以上、さらに好ましくは90質量%以上、よりさらに好ましくは95質量%以上であり、100質量%であってもよい。紙基材を構成するパルプ広葉樹パルプの割合が上記範囲であると、リサイクル性に優れる。
 本実施形態の蒸着紙用原紙に用いられる紙基材としては、具体的には、晒クラフト紙、未晒クラフト紙、上質紙、板紙、ライナー紙、塗工紙、片艶紙、グラシン紙、グラファン紙などが挙げられる。これらの中でも、晒クラフト紙、未晒クラフト紙、上質紙、片艶紙が好ましい。
 (サイズ度)
 紙基材のサイズ度は、特に限定されないが、バリア性を向上させる観点から、JIS P 8122:2004に準ずるステキヒトサイズ度を1秒以上とすることが好ましい。上限は特に制限されないが、好ましくは100秒以下、より好ましくは30秒以下である。紙基材のサイズ度は、内添サイズ剤の種類や含有量、パルプの種類、平滑化処理等によって制御することができる。
 内添サイズ剤としては、ロジン系、アルキルケテンダイマー系、アルケニル無水コハク酸系、スチレン-不飽和カルボン酸系、高級脂肪酸系、石油樹脂系等が挙げられる。内添サイズ剤の含有量は、特に限定されないが、紙基材のパルプ100質量部に対して、0質量部以上が好ましく、3質量部以下が好ましい。
 紙基材には、内添サイズ剤以外に、公知のその他の内添剤を添加してもよい。内添剤としては、例えば、填料、紙力増強剤、歩留り向上剤、pH調整剤、濾水性向上剤、耐水化剤、柔軟剤、帯電防止剤、消泡剤、スライムコントロール剤、染料、顔料などが挙げられる。
 填料としては、例えば、二酸化チタン、カオリン、タルク、炭酸カルシウム(重質炭酸カルシウム、軽質炭酸カルシウム)、亜硫酸カルシウム、石膏、焼成カオリン、ホワイトカーボン、非晶質シリカ、デラミネーテッドカオリン、珪藻土、炭酸マグネシウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、水酸化亜鉛などが挙げられる。
 紙基材は、パルプスラリーを主成分とする抄紙原料を抄紙することにより得られる。
 前記パルプスラリーは、木材または非木材の原料チップから、蒸解、洗浄、漂白等の工程を経て得られる。蒸解工程、洗浄工程、漂白工程等における方法については特に限定はない。これらの工程を経て得られたパルプスラリーは、さらに、水の存在下で叩解される。
 紙基材の抄紙においては、公知の湿式抄紙機を適宜選択して使用することができる。抄紙機としては、長網式抄紙機、ギャップフォーマー型抄紙機、円網式抄紙機、短網式抄紙機などが挙げられる。抄紙機によって形成された紙層は、例えば、フェルトにて搬送し、ドライヤーで乾燥させることが好ましい。ドライヤー乾燥前にプレドライヤーとして、多段式シリンダードライヤーを使用してもよい。
 また、上記のようにして得られた紙基材に、カレンダーによる表面処理を施して紙厚や光沢のプロファイルの均一化を図ってもよい。カレンダー処理としては公知のカレンダー処理機を適宜選択して使用することができる。
 (坪量)
 紙基材の坪量は、特に限定されないが、20g/m以上であることが好ましく、30g/m以上であることがより好ましく、40g/m以上であることがさらに好ましく、そして、500g/m以下であることが好ましく、400g/m以下であることがより好ましく、200g/m以下であることがさらに好ましく、100g/m以下であることがさらにより好ましい。なお、紙基材の坪量は、JIS P 8124:2011に準拠して測定される。
 (厚さ)
 紙基材の厚さは、特に限定されないが、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは20μm以上であり、そして、好ましくは150μm以下、より好ましくは100μm以下、さらに好ましくは75μm以下である。なお、紙基材の厚さは、JIS P 8118:2014に準拠して測定される。
 (密度)
 紙基材は、成形加工性の観点から、密度が0.5g/cm以上であることが好ましく、0.6g/cm以上であることがより好ましく、そして、1.2g/cm以下であることが好ましく、1.0g/cm以下であることがより好ましい。なお、紙基材の密度は、上述した方法により測定される紙基材の坪量および厚さから算出される。
 (王研式平滑度)
 紙基材は、均一な蒸着層を得る観点から、少なくとも蒸着層を設ける側の面の王研式平滑度が、5秒以上であることが好ましく、10秒以上であることがより好ましい。上限は、特に限定されないが、例えば、1000秒以下であることが好ましい。なお、紙基材の王研式平滑度は、JIS P 8155:2010に準拠して測定される。
 <クレーコート層>
 本実施形態の蒸着紙用原紙は、クレーコート層を、前記紙基材と後述する樹脂層との間に有する。これにより、紙基材を目止めし、平滑化させることができ、より平坦な樹脂層が形成される結果、後述する蒸着紙とした場合に均一な蒸着層を形成でき、バリア性が向上する。
 前記クレーコート層は、無機顔料およびバインダーを含むことが好ましく、主に無機顔料およびバインダーから構成されることがより好ましい。なお、「クレーコート層が主に無機顔料およびバインダーから構成される」とは、クレーコート層中の無機顔料およびバインダーの合計含有量が、例えば50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらにより好ましくは90質量%以上、特に好ましくは95質量%以上であることを意味する。上限は、特に限定されないが、100質量%以下である。なお、クレーコート層は、無機顔料およびバインダー以外に、任意の成分をさらに含んでいてもよい。
 (無機顔料)
 クレーコート層に含まれる無機顔料としては、特に限定されないが、カオリン、タルク、マイカなどが挙げられ、カオリンであることが好ましい。クレーコート層中の無機顔料の含有量は、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましく、そして、98質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることがさらに好ましい。
 ≪アスペクト比≫
 無機顔料のアスペクト比は、均一かつ平滑な樹脂層を形成する観点、およびクレーコート層中に細かく散在させ、回収時に蒸着紙用原紙の離解性を向上させる観点から、50以下であることが好ましい。下限は、特に限定されないが、1以上が好ましい。アスペクト比は、電子顕微鏡による観察やX線回折測定によって測定できる。
 ≪平均粒子径≫
 無機顔料の平均粒子径は、均一かつ平滑な樹脂層を形成する観点、およびクレーコート層中に細かく散在させ、回収時に蒸着紙用原紙の離解性を向上させる観点から、5μm以下が好ましく、3μm以下がより好ましく、1μm以下がさらに好ましい。下限は、特に限定されないが、0.05μm以上が好ましい。平均粒子径は、レーザ回折散乱式粒度分布測定によって測定されるメジアン径(d50)を意味する。
 (バインダー)
 クレーコート層に含まれるバインダーとしては、特に限定されないが、スチレン-ブタジエン系樹脂;(メタ)アクリル系(共)重合体;スチレン-(メタ)アクリル系樹脂;エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体等のオレフィン-不飽和カルボン酸系共重合体;ポリ乳酸などが挙げられ、スチレン-ブタジエン系樹脂、スチレン-(メタ)アクリル系樹脂、オレフィン-不飽和カルボン酸系共重合、ポリ乳酸からなる群より選ばれる1種以上であること好ましく、スチレン-(メタ)アクリル系樹脂、エチレン-(メタ)アクリル酸共重合体、ポリ乳酸からなる群より選ばれる1種以上であることがより好ましい。
 なお、(メタ)アクリル系(共)重合体は、(メタ)アクリル酸および(メタ)アクリル酸エステルから選択される1つ以上の単量体の(共)重合体である。(メタ)アクリル酸エステルとしては、特に限定されないが、(メタ)アクリル酸の炭素数1~12のアルキルエステルであることが好ましい。
 また、スチレン-(メタ)アクリル系樹脂とは、スチレンと、(メタ)アクリル酸および(メタ)アクリル酸エステルから選ばれる少なくとも1つの単量体との共重合体である。
 クレーコート層中のバインダーの含有量は、2質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることがさらに好ましく、そして、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましい。
 クレーコート層の塗工量は、特に限定されないが、固形分で、5g/m以上であることが好ましく、7g/m以上であることがより好ましく、そして、30g/m以下であることが好ましく、20g/m以下であることがより好ましい。
 クレーコート層の形成方法は、特に限定されないが、無機顔料および樹脂バインダーを含む分散液を紙基材上に塗工し、乾燥することで形成する方法が好ましい。無機顔料および樹脂バインダーを含む分散液としては、水性分散液等の水性媒体を溶媒とするものが好ましい。すなわち、クレーコート層は、水性媒体を用いて形成されてなることが好ましい。本明細書中、「水性媒体」とは、水を50質量%以上含む媒体を意味する。塗工方法としては、バーコート法、ブレードコート法、スクイズコート法、エアーナイフコート法、ロールコート法、グラビアコート法、トランスファーコート法等が挙げられ、ファウンテンコーターやスリットダイコーターのような塗工機を用いてもよい。
 <樹脂層>
 本実施形態の蒸着紙用原紙は、クレーコート層上に配置される樹脂層を有する。樹脂層を設けることで、蒸着紙の蒸着層と紙基材との密着性が向上し、バリア性が向上する。また、樹脂層が酸素バリア性や水蒸気バリア性を有することで、蒸着紙とした場合のバリア性を向上する機能をも有する。
 樹脂層は、ガラス転移温度が50℃以上である樹脂を含むことが好ましい。ガラス転移温度が50℃以上である樹脂を用いて樹脂層を形成することで、蒸着時に高温蒸気に晒されても樹脂層表面の平滑性を維持でき、樹脂層上に欠陥の少ない蒸着層を形成できる。これにより、得られた蒸着紙は、優れたバリア性を発揮することができると考えられる。樹脂のガラス転移温度の上限は、特に限定されないが、例えば200℃以下であり、後述するように、樹脂層に含まれる樹脂がポリエステル系樹脂およびポリウレタン系樹脂である場合、ガラス転移温度は、好ましくは150℃以下、より好ましくは140℃以下、さらに好ましくは135℃以下である。樹脂層に含まれる樹脂のガラス転移温度は、実施例に記載の方法によって確認することができる。すなわち、蒸着用原紙の樹脂層の一部を削り出し、JIS K 7121:1987に準拠してガラス転移温度を測定し、ガラス転移温度が50℃以上であれば、樹脂層はガラス転移温度が50℃以上である樹脂を含むと言える。言い換えれば、樹脂層は、JIS K 7121:1987に準拠して測定されるガラス転移温度が、好ましくは50℃以上であり、上限は、特に限定されないが、例えば200℃以下である。
 樹脂層は、水懸濁性高分子を含む、すなわち、水懸濁性高分子を含む塗工液により形成されることが好ましく、主として水懸濁性高分子を含むことがより好ましい。なお、「樹脂層が主として水懸濁性高分子を含む」とは、樹脂層中の水懸濁性高分子の含有量が、例えば50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらにより好ましくは90質量%以上、特に好ましくは95質量%以上であることを意味する。上限は、特に限定されないが、100質量%以下である。なお、樹脂層は、水懸濁性高分子以外に、任意の成分をさらに含んでいてもよい。本明細書中、「水懸濁性」とは、25℃の水に対する溶解度が10g/L以下であることを意味する。
 (水懸濁性高分子)
 樹脂層に含まれる水懸濁性高分子としては、特に限定されないが、アルキッド樹脂;(メタ)アクリル系(共)重合体、スチレン-(メタ)アクリル系樹脂;エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体等のオレフィン-不飽和カルボン酸系共重合体;ポリビニルアルコール、エチレンビニルアルコール共重合体(エチレン変性ポリビニルアルコール)等のビニルアルコール系樹脂;セルロース系樹脂;ポリウレタン系樹脂;ポリエステル系樹脂などが挙げられる。これらの中でも、ビニルアルコール系樹脂、ポリウレタン系樹脂およびポリエステル系樹脂から選ばれる1種以上であることが好ましく、生分解度およびリサイクル性のさらなる向上の観点から、ポリエステル系樹脂およびポリウレタン系樹脂からなる群より選ばれる1種以上であることがより好ましく、ポリ乳酸樹脂およびポリウレタン系樹脂であることがさらに好ましく、ガスバリア性のさらなる向上の観点から、ポリウレタン系樹脂であることが特に好ましい。
 ≪ポリエステル系樹脂≫
 樹脂層に含まれるポリエステル系樹脂としては、特に限定されず、例えば、ポリエステル系樹脂ディスパーションおよびエマルションからなる群より選ばれる1種以上に調製可能なものであることがより好ましく、ポリエステル系樹脂ディスパーションまたはエマルションに調製可能なものであることがさらに好ましく、ポリエステル系樹脂ディスパーションに調製可能なものであることがさらにより好ましい。
 上記のようなポリエステル系樹脂としては、例えば、ポリ乳酸が例示される。
 樹脂層に含まれるポリエステル系樹脂は、ポリ乳酸を含むことが好ましい。ポリ乳酸は生分解性を有し、またポリエステルのために水への親和性も高いため、樹脂層に使用した際の紙のリサイクル性が高くなる。
 ポリエステル系樹脂としては、市販品を使用してもよく、例えば、ユニチカ株式会社製の「エリーテルKTシリーズ(商品名)」、ミヨシ油脂株式会社製の「ランディPLシリーズ(商品名)」等が挙げられ、具体的には、エリーテルKT-8803およびランディPL-3000が例示される。
 ≪ポリウレタン系樹脂≫
 樹脂層に含まれるポリウレタン系樹脂としては、特に限定されず、例えば、ポリウレタン系樹脂ディスパーションおよびエマルションからなる群より選ばれる1種以上に調製可能なものであることがより好ましく、ポリウレタン系樹脂ディスパーションまたはエマルションに調製可能なものであることがさらに好ましく、ポリウレタン系樹脂ディスパーションに調製可能なものであることがさらにより好ましい。
 樹脂層に含まれるポリウレタン系樹脂は、メタキシリレンジイソシアネート由来の構成単位および水添メタキシリレンジイソシアネート由来の構成単位からなる群より選択される少なくとも1種を含有することが好ましい。ポリウレタン系樹脂がメタキシリレンジイソシアネート由来の構成単位および水添メタキシリレンジイソシアネート由来の構成単位の少なくとも一方を含有する場合において、ポリイソシアネート由来の構成単位全量に対する、メタキシリレンジイソシアネート由来の構成単位および水添メタキシリレンジイソシアネート由来の構成単位の合計含有量が、50モル%以上であることが好ましい。このようなポリウレタン系樹脂は、水素結合およびキシリレン基同士のスタッキング効果によって高い凝集力を発現するため、優れたガスバリア性を有する。上記含有量は、H-NMRなどの公知の分析手法を用いて同定することができる。
 -酸素透過度-
 前記樹脂層に含まれるポリウレタン系樹脂は、25μm厚のシートに成形した際の23℃、50%RHにおける酸素透過度が、100mL/(m・day・atm)以下であることが好ましく、50mL/(m・day・atm)以下であることがより好ましく、25mL/(m・day・atm)以下であることがさらに好ましく、10mL/(m・day・atm)以下であることがよりさらに好ましい。なお、本明細書において、酸素透過度は、酸素透過率測定装置(MOCON社製、OX-TRAN2/22)を使用し、23℃、50%RHの条件にて測定される。
 ポリウレタン系樹脂としては、合成品を使用してもよく、例えば、国際公開第2015/016069号に記載のポリウレタン系樹脂等が挙げられる。ポリウレタン系樹脂としては、市販品を使用してもよく、例えば、三井化学株式会社製の「タケラックW系(商品名)」、「タケラックWPB系(商品名)」、「タケラックWS系(商品名)」等が挙げられ、具体的には、タケラックWPB-341が例示される。その他の市販品としては、大日精化工業株式会社の「HPU W-003」(水酸基価235mgKOH/g)等が挙げられる。
 (シランカップリング剤)
 樹脂層の耐屈曲性向上の観点から、樹脂層は、上記の水懸濁性高分子に加えて、シランカップリング剤を配合してなるものであることが好ましい。
 シランカップリング剤は、分子内に、少なくとも1つのアルコキシシリル基と、少なくとも1つの、前記アルコキシシリル基以外の反応性の官能基とを有する化合物である。アルコキシシリル基としては、モノアルコキシシリル基、ジアルコキシシリル基、トリアルコキシシリル基のいずれでもよいが、反応性の観点から、トリアルコキシシリル基が好ましい。
 アルコキシシリル基以外の反応性の官能基としては、ビニル基、エポキシ基、スチリル基、(メタ)アクリロイルオキシ基、アミノ基、イソシアナト基、ウレイド基、酸無水物基が例示される。これらの中でも、アミノ基、エポキシ基、および酸無水物基が好ましく、アミノ基がより好ましい。
 エポキシ基含有シランカップリング剤としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等が例示される。
 アミノ基含有シランカップリング剤としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等が例示され、これらの中でも、3-アミノプロピルトリエトキシシランが好ましい。
 酸無水物基含有シランカップリング剤としては、3-トリメトキシシリルプロピルコハク酸無水物等が例示される。
 シランカップリング剤としては、市販品を使用してもよく、例えば、信越化学工業株式会社製のKBM-303、KBM-402、KBM-403、KBE-402、KBE-403、KBM-602、KBM-603、KBM-903、KBE-903、KBE-9103P、KBM-573、X-12-967Cなどが例示される。
 シランカップリング剤の配合量は、水懸濁性高分子100質量部に対して、好ましくは0.03質量部以上、より好ましくは0.1質量部以上、さらに好ましくは0.2質量部以上、特に好ましくは0.3質量部以上であり、そして、好ましくは10質量部以下、より好ましくは8質量部以下、さらに好ましくは6質量部以下、特に好ましくは5質量部以下である。
 樹脂層の塗工量は、特に限定されないが、固形分で、0.1g/m以上であることがより好ましく、1g/m以上であることがより好ましく、そして、10g/m以下であることが好ましく、5g/m以下であることがより好ましい。樹脂層の形成方法は、特に限定されないが、水懸濁性高分子の水溶液、または水性分散液等の水性媒体を塗工し、乾燥して形成することが好ましい。すなわち、樹脂層は、水性媒体を用いて形成されてなることが好ましい。塗工方法としては、バーコート法、ブレードコート法、スクイズコート法、エアーナイフコート法、ロールコート法、グラビアコート法、トランスファーコート法等が挙げられ、ファウンテンコーターやスリットダイコーターのような塗工機を用いてもよい。
 <蒸着紙用原紙の物性>
 (濡れ張力)
 本実施形態の蒸着紙用原紙は、JIS K 6768:1999に準拠して測定される樹脂層表面の濡れ張力が、50mN/m以上であり、好ましくは55mN/m以上である。樹脂層表面の濡れ張力を上記範囲内とすることで、樹脂層表面の極性が高くなり、樹脂層と当該層上に形成される蒸着層との密着性が向上する。これにより、得られた蒸着紙は、優れたバリア性を発揮することができると考えられる。樹脂層表面の濡れ張力の上限は、特に限定されないが、例えば70mN/m以下である。例えば濡れ張力は、樹脂層に使用する成分の調整(例えば、樹脂層に使用する水懸濁性高分子の種類の選定)などにより、上記範囲内に調整することができる。樹脂層表面の濡れ張力は、23℃での測定値である。
 (プリント・サーフ表面粗さ)
 本実施形態の蒸着紙用原紙は、JIS P 8151:2004に準拠して測定される樹脂層表面のプリント・サーフ表面粗さが、2.5μm以下であり、好ましくは1.5μm以下、さらに好ましくは1.2μm以下、よりさらに好ましくは1.0μm以下である。樹脂層表面のプリント・サーフ表面粗さを上記範囲内とすることで、樹脂層上に欠陥の少ない蒸着層を形成できる。これにより、得られた蒸着紙は、優れたバリア性を発揮することができると考えられる。樹脂層表面のプリント・サーフ表面粗さの下限は、特に限定されないが、例えば、0.1μm以上、0.3μm以上または0.5μm以上である。例えばプリント・サーフ表面粗さは、紙基材のカレンダー処理、クレーコート層および樹脂層の塗工方法(例えばブレードコート法など)、樹脂層の塗工量調整などによって、上記範囲内に調整することができる。
 (コッブ吸水度)
 本実施形態の蒸着紙用原紙は、塗工層(樹脂層)を有する面のJIS P 8140:1998に準拠して測定される、温度23℃、接触時間120秒でのコッブ吸水度が、好ましくは0g/m以上であり、そして、好ましくは10g/m以下、より好ましくは5g/m以下である。蒸着紙用原紙のコッブ吸水度を上記範囲内とすることで、蒸着時に水分の影響による真空度の低下を抑制でき、加えて、水を通さない欠陥の少ない膜を形成できるため、高い真空度で蒸着層を形成でき、欠陥の少ない蒸着層を得ることができるので好ましい。これにより、得られた蒸着紙は、優れたバリア性を発揮することができると考えられる。コッブ吸水度は、塗工層(例えば樹脂層)の塗工量の調整や、塗工層の成分(例えば、樹脂層の樹脂)の選定などにより、上記範囲内に調整することができる。
 (接触角)
 本実施形態の蒸着紙用原紙は、JIS R 3257:1999に準拠して測定される塗工層(樹脂層)表面の水に対する60秒後の接触角が、好ましくは65°以下であり、より好ましくは60°以下である。蒸着紙用原紙の塗工層表面の接触角を上記範囲内とすることで、塗工層表面の極性が高くなり、塗工層と当該層上に形成される蒸着層との密着性が向上するので好ましい。これにより、得られた蒸着紙は、優れたバリア性を発揮することができると考えられる。塗工層表面の水に対する60秒後の接触角の下限は、特に限定されないが、例えば、10°以上、30°以上または50°以上である。接触角は、塗工層(例えば樹脂層)の塗工量の調整や、塗工層の成分(例えば、樹脂層の樹脂)の選定などにより、上記範囲内に調整することができる。塗工層表面の接触角は、23℃での測定値である。
 (表面固有電気抵抗)
 本実施形態の蒸着紙用原紙は、JIS C 2139:2008に準拠して測定される塗工層(樹脂層)表面の表面固有電気抵抗が、好ましくは0.1×1014Ω以上、より好ましくは1×1014Ω以上であり、そして、好ましくは10×1014Ω以下であり、より好ましくは5×1014Ω以下である。蒸着紙用原紙の塗工層表面の表面固有電気抵抗を上記範囲内とすることで、塗工層表面の樹脂膜の連続性が向上し、樹脂層上に形成される蒸着層製膜性が向上する。これにより、得られた蒸着紙は、優れたバリア性を発揮することができると考えられる。表面固有電気抵抗は、塗工層(例えば樹脂層)の塗工量の調整や、塗工層の成分(例えば、樹脂層の樹脂)の選定などにより、上記範囲内に調整することができる。
 (生分解度)
 本実施形態の蒸着紙用原紙は、JIS K 6955:2017に準拠して測定される生分解度が、好ましくは85%以上、より好ましくは90%以上である(上限値:100%)。上記の生分解度を満たす蒸着紙用原紙を用いて得られた蒸着紙は、優れたリサイクル性を有する。生分解度は、2年以内に上記範囲内となることが好ましく、1年以内に上記範囲内となることがより好ましく、6ヶ月以内に上記範囲内となることがさらに好ましい。蒸着紙用原紙の生分解度は、原紙に占める生分解性材料(例えば、生分解性樹脂)の配合量を調整することで、上記範囲内に調整することができる。具体的には、蒸着紙用原紙の無機物を除く成分のうち、90質量%以上が生分解性材料であることが好ましく、95質量%以上が生分解性材料であることがより好ましい(上限値:100質量%)。
 本実施形態の蒸着紙用原紙の生分解度が特定値以上であることより、リサイクル性に優れ、かつ高い酸素バリア性および水蒸気バリア性を有する蒸着紙を実現できるので好ましい。
 (厚さ)
 本実施形態の蒸着紙用原紙の厚さは、10μm以上であることが好ましく、30μm以上であることがより好ましく、そして、100μm以下であることが好ましく、80μm以下であることがより好ましい。
 本実施形態の蒸着紙用原紙を製造する方法に制限はないが、例えば、紙基材の少なくとも一面上に、クレーコート層および樹脂層をこの順で有する蒸着紙用原紙の製造方法としては、無機顔料およびバインダーを含むクレーコート層用塗工液を塗工および乾燥した後、水懸濁性高分子を含む樹脂層用塗工液を塗工および乾燥することで形成することが好ましい。
 [蒸着紙]
 本発明の別の実施形態は、上記蒸着紙用原紙の樹脂層上に、蒸着層、オーバーコート層、および必要に応じてヒートシール層をこの順に有する蒸着紙である。すなわち、本発明によれば、蒸着紙の製造における上記蒸着紙用原紙の使用、および上記蒸着紙用原紙を用いた蒸着紙の製造方法についても提供される。
 <蒸着層>
 蒸着層は、金属からなる層およびセラミックからなる層の少なくともいずれかである。すなわち、蒸着層は、金属からなる層、セラミックからなる層、および金属層とセラミック層の積層体のいずれであってもよい。なお、蒸着層が金属層とセラミック層との積層体である場合、金属層が、蒸着紙用原紙の樹脂層側であってもよく、セラミック層が、蒸着紙用原紙の樹脂層側であってもよく、特に限定されない。
 蒸着層は、金属からなる層、セラミックからなる層、これらの積層体のいずれであってもよいが、金属からなる層が好ましい。蒸着層が金属からなる層である場合、金属の具体例としては、アルミニウム、チタンなどが挙げられる。これらは、1種単独で用いてもよく、2種以上を組合せて用いてもよい。これらの中でも、アルミニウムが好ましい。蒸着層がセラミックからなる層である場合、セラミックの具体例としては、酸化ケイ素、酸化チタン、酸化アルミニウムなどが挙げられる。これらは、1種単独で用いてもよく、2種以上を組合せて用いてもよい。これらの中でも、酸化ケイ素、酸化アルミニウムが好ましい。
 すなわち、蒸着層は、アルミニウムからなる層、酸化ケイ素からなる層、酸化チタンからなる層、酸化アルミニウムからなる層、および、これらの積層体のいずれであることがより好ましく、アルミニウムからなる層、酸化ケイ素からなる層、酸化アルミニウムからなる層、および、これらの積層体のいずれであることがさらに好ましく、アルミニウムからなる層であることが特に好ましい。
 (厚さ)
 蒸着層の厚さは、1nm以上であることが好ましく、2nm以上であることがより好ましく、3nm以上であることがさらに好ましく、そして、1000nm以下であることが好ましく、500nm以下であることがより好ましく、100nm以下であることがさらに好ましい。また、蒸着層の厚さは、バリア性の観点からは、10nm以上であることが好ましく、25nm以上であることがより好ましく、そして、80nm以下であることが好ましく、70nmであることがより好ましい。さらに、蒸着層の厚さは、他層との密着性やコストの観点からは、4nm以上であることが好ましく、5nm以上であることがさらに好ましく、そして、100nm以下であることが好ましく、70nm以下であることがより好ましく、60nm以下であることが特に好ましい。
 <オーバーコート層>
 本実施形態の蒸着紙は、蒸着層上に、ポリウレタン系樹脂を含むオーバーコート層を有することが好ましい。本実施形態の蒸着紙は、蒸着層を有することで一定のバリア性を有するが、蒸着層上にポリウレタン系樹脂を含むオーバーコート層を有することで、酸素バリア性がさらに向上しうる。また、折り曲げ等の加工により蒸着層が損傷しにくく、例え損傷しても、オーバーコート層によって酸素バリア性を担保でき、優れた酸素バリア性を維持しうる。
 オーバーコート層に含有させるバインダーとしてのポリウレタン系樹脂としては、樹脂層のポリウレタン系樹脂として例示したものが挙げられ、例えば、ポリウレタン系樹脂ディスパーションおよびエマルションからなる群より選ばれる1種以上に調製可能なものであることがより好ましく、ポリウレタン系樹脂ディスパーションまたはエマルションに調製可能なものであることがさらに好ましく、ポリウレタン系樹脂ディスパーションに調製可能なものであることがさらにより好ましい。
 オーバーコート層に含まれるポリウレタン系樹脂は、メタキシリレンジイソシアネート由来の構成単位および水添メタキシリレンジイソシアネート由来の構成単位からなる群より選択される少なくとも1種を含有することが好ましい。ポリウレタン系樹脂がメタキシリレンジイソシアネート由来の構成単位および水添メタキシリレンジイソシアネート由来の構成単位の少なくとも一方を含有する場合において、ポリイソシアネート由来の構成単位全量に対する、メタキシリレンジイソシアネート由来の構成単位および水添メタキシリレンジイソシアネート由来の構成単位の合計含有量が、50モル%以上であることが好ましい。このようなポリウレタン系樹脂は、水素結合およびキシリレン基同士のスタッキング効果によって高い凝集力を発現するため、優れたガスバリア性を有する。
 オーバーコート層に含まれるポリウレタン系樹脂は、ヒドロキシ基を有していてもよく、その水酸基価は、好ましくは50mgKOH/g以上、より好ましくは100mgKOH/g以上、さらに好ましくは150mgKOH/g以上であり、そして、上限は特に限定されないが、好ましくは1000mgKOH/g以下、より好ましくは800mgKOH/g以下、さらに好ましくは600mgKOH/g以下である。ポリウレタン系樹脂の水酸基価が上記範囲内であると、酸素バリア性に優れるので好ましい。
 (酸素透過度)
 オーバーコート層に含まれるポリウレタン系樹脂は、25μm厚のシートに成形した際の23℃、50%RHにおける酸素透過度が、100mL/(m・day・atm)以下であることが好ましく、50mL/(m・day・atm)以下であることがより好ましく、25mL/(m・day・atm)以下であることがさらに好ましく、10mL/(m・day・atm)以下であることがよりさらに好ましい。
 オーバーコート層に含有させるバインダーとしてのポリウレタン系樹脂は、前述した蒸着紙用原紙の樹脂層に含有させるポリウレタン系樹脂と同一の種類であってもよいし、異なる種類であってもよいが、同一の種類であることが好ましい。また、蒸着紙用原紙の樹脂層として、使用可能なものとして挙げた合成品や市販品を使用してもよい。
 オーバーコート層中のポリウレタン系樹脂の含有量は、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、さらにより好ましくは99質量%以上である。上限は、特に限定されないが、100質量%以下である。
 オーバーコート層は、本発明の効果を損なわない範囲で、他の樹脂や添加剤を含んでいてもよい。添加剤としては、界面活性剤、顔料、酸化防止剤、帯電防止剤、染料、可塑剤、潤滑剤、離型剤などが挙げられる。前記ポリウレタン系樹脂を水性分散液として用いる場合には、ポリウレタン系樹脂を水性媒体に分散させ、均一なオーバーコート層の膜を得るために、分散剤を用いることが好ましい。
 前記オーバーコート層の塗工量は、固形分で、0.1g/m以上であることが好ましく、0.2g/m以上であることがより好ましく、0.3g/m以上であることが特に好ましく、そして、10g/m以下であることが好ましく、7g/m以下であることがより好ましく、4g/m以下であることが特に好ましい。
 オーバーコート層の厚さは、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましく、0.3μm以上であることが特に好ましく、そして、10μm以下であることが好ましく、7μm以下であることがより好ましく、4μm以下であることが特に好ましい。オーバーコート層の厚さが0.1μm以上10μm以下であると、蒸着層に対する保護性を向上しつつ、リサイクル時の紙の離解性に優れ、リサイクル性にも優れる。
 前記オーバーコート層の形成方法は、特に制限されないが、ポリウレタン系樹脂の水溶液、または水性分散液等の水性媒体を塗工し、乾燥して形成することが好ましい。
 本実施形態の蒸着紙において、前記オーバーコート層は最外層であってもよい。オーバーコート層が最外層であっても、光沢感を有する蒸着層の意匠性を阻害しない。また、両面に蒸着層を有する場合、その片面または両面に、オーバーコート層を有していてもよい。これらの中でも、片面にオーバーコート層を有することが好ましい。片面にオーバーコート層を有することで、生産効率に優れる。
 [蒸着紙の製造方法]
 本実施形態の蒸着紙を製造する方法に制限はないが、紙基材の少なくとも一面上に、クレーコート層、樹脂層をこの順で有する蒸着紙用原紙の樹脂層が設けられている面に、金属およびセラミックの少なくともいずれかを蒸着して蒸着層を形成する工程と、蒸着層上に、オーバーコート層用塗工液を塗工し、乾燥して、オーバーコート層を形成する工程とを含むことが好ましい。
 金属またはセラミックを蒸着する方法としては、蒸着紙用原紙の樹脂層の表面に直接金属またはセラミックを真空蒸着する方法が好ましい。
 オーバーコート層は、蒸着層上に直接形成することが、蒸着層を効率的に保護し、バリア性を高める観点から好ましい。オーバーコート層を形成する方法としては、オーバーコート層用液を塗工し、乾燥して得ることが好ましい。オーバーコート層用塗工液を塗工して、オーバーコート層を形成する方法を用いることによって、10μm以下の比較的薄い膜のオーバーコート層を形成することができる。このような比較的薄いオーバーコート層を形成することによって、優れた離解性を付与することができ、リサイクル性に優れる蒸着紙を得ることができる。
 ここで用いられるオーバーコート層用塗工液は、ポリウレタン系樹脂を溶解する有機溶媒を用いた溶液、ポリウレタン系樹脂を分散する有機溶媒を用いた分散液、水性媒体を用いた分散液等が挙げられ、塗工性や環境負荷の点から、水性媒体を用いた分散液が好ましい。
 オーバーコート層用塗工液を塗工する方法としては、バーコート法、ブレードコート法、スクイズコート法、エアーナイフコート法、ロールコート法、グラビアコート法、トランスファーコート法等が挙げられ、ファウンテンコーターやスリットダイコーターのような塗工機を用いてもよい。
 オーバーコート層用塗工液が塗工された塗工蒸着紙は、乾燥して有機溶媒または水性媒体を除去し、蒸着層上にオーバーコート層を有する蒸着紙を得ることができる。
 <ヒートシール層>
 さらに、オーバーコート層上に、熱可塑性樹脂を含むヒートシール層を形成してもよい。ヒートシール層を形成する方法としては、熱可塑性樹脂溶液または熱可塑性樹脂分散液を塗工し、乾燥する方法、押出ラミネートする方法などが挙げられる。これらの中でも、熱可塑性樹脂溶液または熱可塑性樹脂分散液を塗工し、乾燥して得ることが好ましい。
 ここで用いられる熱可塑性樹脂溶液または熱可塑性樹脂分散液は、熱可塑性樹脂を溶解する有機溶媒を用いた溶液、熱可塑性樹脂を分散する有機溶媒を用いた分散液、水性媒体を用いた分散液等が挙げられ、塗工性や環境負荷の点から、水性媒体を用いた分散液が好ましい。
 水性媒体を用いた分散液に好適な熱可塑性樹脂としては、天然樹脂、合成樹脂のいずれでもよく、例えば、澱粉誘導体、カゼイン、シュラック、ポリビニルアルコールおよびその誘導体、アクリル系樹脂、アイオノマー系樹脂、マレイン酸系樹脂、ウレタン系樹脂、ポリエステル系樹脂、スチレン-ブタジエン系樹脂、塩化ビニル系樹脂、ポリオレフィン系樹脂が挙げられる。
 より具体的には、アクリル系樹脂としては、(メタ)アクリル酸と、そのアルキルエステルまたはスチレン等とをモノマー成分として共重合したアクリル系樹脂、スチレン-マレイン酸樹脂、スチレン-アクリル酸-マレイン酸樹脂、水溶性ポリウレタン樹脂、水溶性ポリエステル樹脂などが例示される。
 アイオノマー系樹脂としては、例えば、エチレン-アクリル酸共重合体アイオノマー、エチレン-メタクリル酸アイオノマーが好ましい。ここで、アイオノマーとは、高分子を陽イオンで中和したものであり、陽イオンとしては、金属イオンの他、アンモニウムイオン(NH )、有機アンモニウムイオンが例示される。金属イオンとしては、リチウムイオン(Li)、ナトリウムイオン(Na)、カリウムイオン(K)等のアルカリ金属イオン、マグネシウムイオン(Mg2+)、カルシウムイオン(Ca2+)等のアルカリ土類金属イオン、亜鉛イオン(Zn2+)、銅イオン(Cu2+)等の遷移金属イオン等が例示される。これらの中でも、入手容易性等の観点から、金属イオンとしては、ナトリウムイオンが好ましい。
 これらの中でも、塗工液の安定性、ヒートシール層の耐溶媒性の観点から、澱粉誘導体、カゼイン、シュラック、ポリビニルアルコールおよびその誘導体、アイオノマー系樹脂、アクリル系樹脂、およびマレイン酸系樹脂から選択される少なくとも1つが好ましく、澱粉誘導体、ポリビニルアルコール、ポリビニルアルコール誘導体、アイオノマー系樹脂、アクリル系樹脂、およびマレイン酸系樹脂から選択される少なくとも1つがより好ましく、澱粉誘導体、ポリビニルアルコール、ポリビニルアルコール誘導体、アイオノマー系樹脂、およびアクリル系樹脂から選択される少なくとも1つがさらに好ましく、ポリビニルアルコール、ポリビニルアルコール誘導体、およびアイオノマー系樹脂から選択される少なくとも1つがよりさらに好ましい。
 熱可塑性樹脂溶液あるいは熱可塑性樹脂分散液を塗工する方法としては、バーコート法、ブレードコート法、スクイズコート法、エアーナイフコート法、ロールコート法、グラビアコート法、トランスファーコート法等が挙げられ、ファウンテンコーターやスリットダイコーターのような塗工機を用いてもよい。
 オーバーコート層上に熱可塑性樹脂溶液あるいは熱可塑性樹脂分散液を塗工した後、乾燥して有機溶媒または水性媒体を除去することにより、オーバーコート層上にヒートシール層を有する蒸着紙を得ることができる。
 ヒートシール層の厚さは、特に限定されないが、1μm以上15μm未満が好ましい。1μm以上であれば、十分なヒートシール性を確保できる。また、15μm未満であれば、離解性を付与でき、リサイクル性に優れる蒸着紙を得ることができる。
 <蒸着紙の物性>
 (厚さ)
 本実施形態の蒸着紙の厚さは、20μm以上であることが好ましく、50μm以上であることがより好ましく、そして、200μm以下であることが好ましく、150μm以下であることがより好ましい。なお、蒸着紙の厚さは、JIS P 8118:2014に準拠して測定される。
 (酸素透過度)
 本実施形態の蒸着紙の23℃、50%RHにおける酸素透過度は、1.0mL/(m・day・atm)以下であることが好ましく、0.5mL/(m・day・atm)以下であることがより好ましい(下限:0mL/(m・day・atm))。なお、蒸着紙の酸素透過度は、実施例に記載された方法により測定される。
 (水蒸気透過度)
 本実施形態の蒸着紙の40℃、90%RHにおける水蒸気透過度は、1.0g/(m・day)以下であることが好ましく、0.7g/(m・day)以下であることがより好ましい(下限:0g/(m・day))。なお、蒸着紙の水蒸気透過度は、実施例に記載された方法により測定される。
 (ヒートシール剥離強度)
 本実施形態の蒸着紙は、ヒートシール層同士を160℃、0.2MPa、1秒の条件でヒートシールし、試験片が15mm幅で、引張速度300mm/minでT字剥離したときの最大荷重ヒートシール剥離強度が2N/15mm以上であることが好ましい。上記範囲内であれば、バリア包装としての適性に優れる。ヒートシール剥離強度の下限は、特に限定されないが、例えば20N/15mm以下である。
 (再離解後のパルプ回収率)
 本実施形態の蒸着紙の再離解後のパルプ回収率は、75%以上であることが好ましく、80%以上であることがより好ましく、82%以上であることがさらに好ましく、85%以上であることがよりさらに好ましい。なお、蒸着紙の再離解後のパルプ回収率は、実施例に記載された方法により測定される。
 本実施形態の蒸着紙は、上記の優れたバリア性を活かして、コーヒー、菓子、牛乳等の食品、医薬品、医療品、電子部品等の包装用材料として好適に用いることができ、リサイクル性にも優れる。
 本発明は、さらに以下の<1>~<49>を開示する。
 <1> 紙基材の少なくとも一方の面にクレーコート層および樹脂層をこの順に有する蒸着紙用原紙であって、前記樹脂層表面は、JIS K 6768:1999に準拠して測定される濡れ張力が50mN/m以上であり、かつ、JIS P 8151:2004に準拠して測定されるプリント・サーフ表面粗さが2.5μm以下である、蒸着紙用原紙。
 <2> 前記樹脂層はガラス転移温度が50℃以上である樹脂を含む、<1>に記載の蒸着紙用原紙。
 <3> 前記樹脂層が水懸濁性高分子を含む、<1>または<2>に記載の蒸着紙用原紙。
 <4> 前記樹脂層に含まれる水懸濁性高分子が、ポリエステル系樹脂およびポリウレタン系樹脂からなる群より選ばれる1種以上である、<1>~<3>のいずれかに記載の蒸着紙用原紙。
 <5> 前記ポリウレタン系樹脂は、25μm厚のシートに成形した際の23℃、50%RHにおける酸素透過度が、100mL/(m・day・atm)以下である、<4>に記載の蒸着紙用原紙。
 <6> 前記ポリウレタン系樹脂は、メタキシリレンジイソシアネート由来の構成単位および水添メタキシリレンジイソシアネート由来の構成単位からなる群より選択される少なくとも1種を含有する、<4>または<5>に記載の蒸着紙用原紙。
 <7> 前記ポリウレタン系樹脂は、ポリイソシアネート由来の構成単位全量に対する、メタキシリレンジイソシアネート由来の構成単位および水添メタキシリレンジイソシアネート由来の構成単位の合計含有量が、50モル%以上である、<4>~<6>のいずれかに記載の蒸着紙用原紙。
 <8> 前記クレーコート層が、無機顔料およびバインダーを含み、前記無機顔料は、アスペクト比が50以下であり、平均粒子径が5μm以下である、<1>~<7>のいずれかに記載の蒸着紙用原紙。
 <9> 前記無機顔料がカオリンである、<8>に記載の蒸着紙用原紙。
 <10> 前記クレーコート層に含まれるバインダーが、スチレン-ブタジエン系樹脂、スチレン-(メタ)アクリル系樹脂、オレフィン-不飽和カルボン酸系共重合、ポリ乳酸からなる群より選ばれる1種以上である、<8>または<9>に記載の蒸着紙用原紙。
 <11> 前記クレーコート層および樹脂層は、水性媒体を用いて形成されてなる、<1>~<10>のいずれかに記載の蒸着紙用原紙。
 <12> <1>~<11>のいずれかに記載の蒸着紙用原紙の前記樹脂層上に蒸着層を有する、蒸着紙。
 <13> 前記蒸着層上にポリウレタン系樹脂を含むオーバーコート層を有し、前記オーバーコート層に含まれるポリウレタン系樹脂が、メタキシリレンジイソシアネート由来の構成単位および水添メタキシリレンジイソシアネート由来の構成単位からなる群より選択される少なくとも1種を含有する、<12>に記載の蒸着紙。
 <14> 前記オーバーコート層上に熱可塑性樹脂を含むヒートシール層を有し、前記ヒートシール層同士を160℃、0.2MPa、1秒の条件でヒートシールし、試験片が15mm幅で、引張速度300mm/minでT字剥離したときの最大荷重ヒートシール剥離強度が2N/15mm以上である、<13>に記載の蒸着紙。
 <15> 23℃、50%RHにおける酸素透過度が1.0mL/(m・day・atm)以下であり、かつ、40℃、90%RHにおける水蒸気透過度が1.0g/(m・day)以下である、<12>~<14>のいずれかに記載の蒸着紙。
 <16> 紙基材の少なくとも一方の面に塗工層を有する蒸着紙用原紙であって、塗工層を有する面のJIS P 8140:1998に準拠して測定される、温度23℃、接触時間120秒でのコッブ吸水度が0g/m以上10g/m以下であり、JIS R 3257:1999に準拠して測定される、前記塗工層表面の水に対する60秒後の接触角が65°以下である、蒸着紙用原紙。
 <17> JIS C 2139:2008に準拠して測定される、前記塗工層表面の表面固有電気抵抗が0.1×1014Ω以上10×1014Ω以下である、<16>に記載の蒸着紙用原紙。
 <18> 前記塗工層は、紙基材側から、クレーコート層および樹脂層をこの順で有する、<16>または<17>に記載の蒸着紙用原紙。
 <19> 前記樹脂層が水懸濁性高分子を含む、<18>に記載の蒸着紙用原紙。
 <20> 前記樹脂層に含まれる水懸濁性高分子が、ポリエステル系樹脂およびポリウレタン系樹脂からなる群より選ばれる1種以上である、<19>に記載の蒸着紙用原紙。
 <21> 前記ポリウレタン系樹脂は、25μm厚のシートに成形した際の23℃、50%RHにおける酸素透過度が、100mL/(m・day・atm)以下である、<20>に記載の蒸着紙用原紙。
 <22> 前記ポリウレタン系樹脂は、メタキシリレンジイソシアネート由来の構成単位および水添メタキシリレンジイソシアネート由来の構成単位からなる群より選択される少なくとも1種を含有する、<20>または<21>に記載の蒸着紙用原紙。
 <23> 前記ポリウレタン系樹脂が、ヒドロキシ基を有し、かつ水酸基価が50mgKOH/g以上である、<20>~<22>のいずれかに記載の蒸着紙用原紙。
 <24> 前記ポリウレタン系樹脂は、ポリイソシアネート由来の構成単位全量に対する、メタキシリレンジイソシアネート由来の構成単位および水添メタキシリレンジイソシアネート由来の構成単位の合計含有量が、50モル%以上である、<20>~<23>のいずれかに記載の蒸着紙用原紙。
 <25> 前記クレーコート層が、無機顔料およびバインダーを含み、前記無機顔料は、アスペクト比が50以下であり、平均粒子径が5μm以下である、<18>~<24>のいずれかに記載の蒸着紙用原紙。
 <26> 前記無機顔料がカオリンである、<25>に記載の蒸着紙用原紙。
 <27> 前記クレーコート層に含まれるバインダーが、スチレン-ブタジエン系樹脂、スチレン-(メタ)アクリル系樹脂、オレフィン-不飽和カルボン酸系共重合、ポリ乳酸からなる群より選ばれる1種以上である、<25>または<26>に記載の蒸着紙用原紙。
 <28> 前記クレーコート層および樹脂層は、水性媒体を用いて形成されてなる、<18>~<27>のいずれかに記載の蒸着紙用原紙。
 <29> <16>~<28>のいずれかに記載の蒸着紙用原紙の前記塗工層上に蒸着層を有する、蒸着紙。
 <30> 前記蒸着層上にポリウレタン系樹脂を含むオーバーコート層を有し、前記オーバーコート層に含まれるポリウレタン系樹脂が、メタキシリレンジイソシアネート由来の構成単位および水添メタキシリレンジイソシアネート由来の構成単位からなる群より選択される少なくとも1種を含有する、<29>に記載の蒸着紙。
 <31> 前記オーバーコート層に含まれるポリウレタン系樹脂が、ヒドロキシ基を有し、かつ水酸基価が50mgKOH/g以上である、<30>に記載の蒸着紙。
 <32> 前記オーバーコート層上に熱可塑性樹脂を含むヒートシール層を有し、前記ヒートシール層同士を160℃、0.2MPa、1秒の条件でヒートシールし、試験片が15mm幅で、引張速度300mm/minでT字剥離したときの最大荷重ヒートシール剥離強度が2N/15mm以上である、<30>または<31>に記載の蒸着紙。
 <33> 23℃、50%RHにおける酸素透過度が1.0mL/(m・day・atm)以下であり、かつ、40℃、90%RHにおける水蒸気透過度が1.0g/(m・day)以下である、<29>~<32>のいずれかに記載の蒸着紙。
 <34> 紙基材の少なくとも一方の面に塗工層を有する蒸着紙用原紙であって、JIS K 6955:2017に準拠して測定される生分解度が85%以上である、蒸着紙用原紙。
 <35> 前記蒸着紙用原紙の無機物を除く成分のうち、90質量%以上が生分解性材料である、<34>に記載の蒸着紙用原紙。
 <36> 前記塗工層は樹脂層を有し、前記樹脂層が水懸濁性高分子を含む、<34>または<35>に記載の蒸着紙用原紙。
 <37> 前記樹脂層に含まれる水懸濁性高分子が、ポリエステル系樹脂およびポリウレタン系樹脂からなる群より選ばれる1種以上である、<36>に記載の蒸着紙用原紙。
 <38> 前記ポリエステル系樹脂がポリ乳酸を含む、<37>に記載の蒸着紙用原紙。
 <39> 前記ポリウレタン系樹脂は、25μm厚のシートに成形した際の23℃、50%RHにおける酸素透過度が、100mL/(m・day・atm)以下である、<37>に記載の蒸着紙用原紙。
 <40> 前記ポリウレタン系樹脂は、メタキシリレンジイソシアネート由来の構成単位および水添メタキシリレンジイソシアネート由来からなる群より選択される少なくとも1種を含有する、<37>または<39>に記載の蒸着紙用原紙。
 <41> 前記ポリウレタン系樹脂は、ポリイソシアネート由来の構成単位全量に対する、メタキシリレンジイソシアネート由来の構成単位および水添メタキシリレンジイソシアネート由来の構成単位の合計含有量が、50モル%以上である、<37>、<39>、または<40>に記載の蒸着紙用原紙。
 <42> 前記塗工層はクレーコート層を有し、前記クレーコート層が、無機顔料およびバインダーを含み、前記無機顔料は、アスペクト比が50以下であり、平均粒子径が5μm以下である、<34>~<41>のいずれかに記載の蒸着紙用原紙。
 <43> 前記無機顔料がカオリンである、<42>に記載の蒸着紙用原紙。
 <44> 前記クレーコート層に含まれるバインダーが、スチレン-ブタジエン系樹脂、スチレン-(メタ)アクリル系樹脂、オレフィン-不飽和カルボン酸系共重合体、ポリ乳酸からなる群より選ばれる1種以上である、<42>または<43>に記載の蒸着紙用原紙。
 <45> 前記クレーコート層および前記樹脂層は、水性媒体を用いて形成されてなる、<42>~<44>のいずれかに記載の蒸着紙用原紙。
 <46> <34>~<45>のいずれかに記載の蒸着紙用原紙の前記塗工層上に蒸着層を有する、蒸着紙。
 <47> 前記蒸着層上にポリウレタン系樹脂を含むオーバーコート層を有し、前記オーバーコート層に含まれるポリウレタン系樹脂が、メタキシリレンジイソシアネート由来の構成単位および水添メタキシリレンジイソシアネート由来の構成単位からなる群より選択される少なくとも1種を含有する、<46>に記載の蒸着紙。
 <48> 再離解後のパルプ回収率が80%以上である、<46>または<47>に記載の蒸着紙。
 <49> 23℃、50%RHにおける酸素透過度が1.0mL/(m・day・atm)以下であり、かつ、40℃、90%RHにおける水蒸気透過度が1.0g/(m・day)以下である、<46>~<48>のいずれかに記載の蒸着紙。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。また、特にことわりがない限り、「%」および「部」は、それぞれ、「質量%」および「質量部」を表す。また、実施例および比較例の操作は、特にことわりがない限り、室温(20~25℃)、常湿(40~50%RH)の条件で行った。
 <実施例1-1>
 カオリン(イメリス社製Contour Xtreme、アスペクト比33、平均粒子径d50:0.26μm)80質量部と、スチレン-(メタ)アクリル系樹脂(BASF社製JONCRYL HSL-9012)20質量部(固形分)と、を混合し、クレーコート層用塗布液を調製した。片艶紙(広葉樹材比率100%、ステキヒトサイズ度9秒、坪量50g/m、厚さ60μm、密度0.83g/cm、王研式平滑度430秒)の艶面に上記クレーコート層用塗布液をメイヤーバー塗工し、120℃で1分乾燥して、クレーコート層(12g/m、厚さ4.6μm)を形成した。次に、上記クレーコート層上に、25μm厚の酸素透過度(23℃、50%RH)が2.0mL/(m・day・atm)であるポリウレタン系樹脂バインダーの水性分散液(三井化学製タケラックWPB-341:ガラス転移温度130℃、固形分濃度30%)100質量部に3-アミノプロピルトリエトキシシラン(信越化学工業株式会社製、KBE-903)0.15質量部を混合して調製した樹脂層用塗工液をメイヤーバー塗工し、120℃で1分乾燥して、樹脂層(2g/m、厚さ2μm)を形成し、蒸着紙用原紙(厚さ67μm)を得た。
 <実施例1-2>
 樹脂層の塗工量を1g/m(厚さ1μm)としたこと以外は実施例1-1と同様にして、蒸着紙用原紙を得た。
 <実施例1-3>
 ポリエステル系樹脂バインダーの水性分散液(ユニチカ株式会社製エリーテルKT-8803:ガラス転移温度65℃、固形分濃度30%、飽和共重合ポリエステル樹脂)100質量部に3-アミノプロピルトリエトキシシラン(信越化学工業株式会社製、KBE-903)0.15質量部を混合して調製した樹脂層用塗工液を用いて樹脂層(2g/m、厚さ2μm)を形成したこと以外は、実施例1-1と同様にして、蒸着紙用原紙を得た。
 <比較例1-1>
 エチレン-アクリル酸共重合体(住友精化株式会社製ザイクセンAC、ガラス転移温度80℃以下、固形分濃度29質量%)100質量部に3-アミノプロピルトリエトキシシラン(信越化学工業株式会社製、KBE-903)0.145質量部を混合して調製した樹脂層用塗工液を用いて樹脂層(2g/m、厚さ2μm)を形成したこと以外は、実施例1-1と同様にして、蒸着紙用原紙を得た。
 <比較例1-2>
 スチレン-(メタ)アクリル系樹脂(BASF社製JONCRYL HSL-9012、ガラス転移温度5℃以下、固形分濃度40質量%)100質量部に3-アミノプロピルトリエトキシシラン(信越化学工業株式会社製、KBE-903)0.20質量部を混合して調製した樹脂層用塗工液を用いて樹脂層(2g/m、厚さ2μm)を形成したこと以外は、実施例1-1と同様にして、蒸着紙用原紙を得た。
 <比較例1-3>
 樹脂層を形成しなかったこと以外は実施例1-1と同様にして、蒸着用原紙を得た。
 <比較例1-4>
 片艶紙のザラ面に塗工したこと以外は、実施例1-3と同様にして、蒸着紙用原紙を得た。
 <実施例2-1>
 カオリン(イメリス社製Contour Xtreme、アスペクト比33、平均粒子径d50:0.26μm)80質量部と、スチレン-(メタ)アクリル系樹脂(BASF社製JONCRYL HSL-9012)20質量部(固形分)と、を混合し、クレーコート層用塗布液を調製した。片艶紙(広葉樹材比率100%、坪量50g/m、厚さ60μm、密度0.83g/cm、王研式平滑度430秒、サイズ度9秒)の艶面に上記クレーコート層用塗布液をメイヤーバー塗工し、120℃で1分乾燥して、クレーコート層(12g/m、厚み4.6μm)を形成した。次に、上記クレーコート層上に、25μm厚の酸素透過度(23℃、50%RH)が2.0mL/(m・day・atm)であるポリウレタン系樹脂バインダーの水性分散液(三井化学製タケラックWPB-341:ガラス転移温度130℃、固形分濃度30%)100質量部に3-アミノプロピルトリエトキシシラン(信越化学工業株式会社製、KBE-903)0.15質量部を混合して調製した樹脂層用塗工液をメイヤーバー塗工し、120℃で1分乾燥して、樹脂層(2g/m、厚み2μm)を形成し、蒸着紙用原紙(厚み67μm)を得た。
 <実施例2-2>
 樹脂層の塗工量を1g/m(厚み1μm)としたこと以外は実施例2-1と同様にして、蒸着紙用原紙を得た。
 <実施例2-3>
 ポリ乳酸エマルション(ミヨシ油脂株式会社製ランディ PL-3000、固形分濃度40%)100質量部にアミノプロピルトリエトキシシラン(信越化学工業株式会社製、KBE-903)0.20質量部を混合して調製した樹脂層用塗工液を用いて樹脂層(2g/m、厚み2μm)を形成したこと以外は実施例2-1と同様にして、蒸着紙用原紙を得た。
 <実施例2-4>
 25μm厚の酸素透過度(23℃、50%RH)が1.6mL/(m・day・atm)であるヒドロキシ基を有するポリウレタン樹脂バインダーの水性分散液(大日精化工業株式会社製、HPU W-003、水酸基価235mgKOH/g、ガラス転移温度70℃、固形分濃度30%)100質量部に3-アミノプロピルトリエトキシシラン(信越化学工業株式会社製、KBE-903)0.15質量部を混合して調製した樹脂層用塗工液を用いて樹脂層(2g/m、厚み2μm)を形成したこと以外は実施例2-1と同様にして、蒸着紙用原紙を得た。
 <比較例2-1>
 エチレン-アクリル酸共重合体バインダーの水性分散液(住友精化株式会社製ザイクセンAC、固形分濃度29%)100質量部に3-アミノプロピルトリエトキシシラン(信越化学工業株式会社製、KBE-903)0.145質量部を混合して調製した樹脂層用塗工液を用いて樹脂層(2g/m、厚み2μm)を形成したこと以外は、実施例2-1と同様にして、蒸着紙用原紙を得た。
 <比較例2-2>
 スチレン-(メタ)アクリル系樹脂の水性分散液(BASFジャパン株式会社製JONCRYL HSL-9012、固形分濃度40%)100質量部に3-アミノプロピルトリエトキシシラン(信越化学工業株式会社製、KBE-903)0.20質量部を混合して調製した樹脂層用塗工液を用いて樹脂層(2g/m、厚み2μm)を形成したこと以外は、実施例2-1と同様にして、蒸着紙用原紙を得た。
 <比較例2-3>
 ポリビニルアルコールバインダー(株式会社クラレ製エクセバールAQ-4104)を水に溶解させた10質量%水溶液100質量部にアミノプロピルトリエトキシシラン(信越化学工業株式会社製、KBE-903)0.05質量部を混合して調製した樹脂層用塗工液を用いて樹脂層(2g/m、厚み2μm)を形成したこと以外は、実施例2-1と同様にして、蒸着紙用原紙を得た。
 <比較例2-4>
 樹脂層を形成しなかったこと以外は、実施例2-1と同様にして、蒸着紙用原紙を得た。
 <実施例3-1>
 カオリン(イメリス社製Contour Xtreme、アスペクト比33、平均粒子径d50:0.26μm)80質量部と、ポリ乳酸エマルション(ミヨシ油脂株式会社製ランディ PL-3000)20質量部(固形分)と、を混合し、クレーコート層用塗布液を調製した。片艶紙(広葉樹材比率100%、ステキヒトサイズ度9秒、坪量50g/m、厚さ60μm、密度0.83g/cm、王研式平滑度430秒)の艶面に上記クレーコート層用塗布液をメイヤーバー塗工し、120℃で1分乾燥して、クレーコート層(12g/m、厚さ4.6μm)を形成した。次に、上記クレーコート層上に、ポリ乳酸エマルション(ミヨシ油脂株式会社製ランディ PL-3000)をメイヤーバー塗工し、120℃で1分乾燥して、樹脂層(2g/m、厚さ2μm)を形成し、蒸着紙用原紙(67μm)を得た。
 <実施例3-2>
 クレーコート層のポリ乳酸エマルションの代わりに、スチレン-(メタ)アクリル系樹脂(Joncryl HSL-9012、BASF社製)を用い、樹脂層のポリ乳酸エマルションの代わりに、25μm厚の酸素透過度(23℃、50%RH)が2.0mL/(m・day・atm)であるポリウレタン系樹脂バインダーの水性分散液(三井化学株式会社製、タケラックWPB-341、ガラス転移温度130℃、固形分濃度30%)100質量部に3-アミノプロピルトリエトキシシラン(信越化学工業株式会社製、KBE-903)0.15質量部を混合して調製した樹脂層用塗工液を用いて樹脂層(1.5g/m)を形成したこと以外は、実施例3-1と同様にして、蒸着紙用原紙を得た。
 <実施例3-3>
 実施例3-1において、樹脂層塗工液として実施例3-2の樹脂層塗工液を使用し、樹脂層の塗工量を4g/mに変更したこと以外は、実施例3-1と同様にして、蒸着紙用原紙を得た。
 <比較例3-1>
 クレーコート層のカオリンを85部に変更し、樹脂をスチレン・ブタジエン共重合体ラテックス(A-6160、旭化成株式会社製)15質量部に変更し、塗布量を20g/mに変更し、樹脂層の樹脂をアクリル系樹脂(大日精化工業株式会社製、アルミックW)4g/mに変更したこと以外は実施例3-1と同様にして蒸着紙用原紙を得た。
 <蒸着紙用原紙の評価>
 実施例および比較例で得られた蒸着紙用原紙について、以下の評価を行った。
 [濡れ張力]
 JIS K 6768:1999に準拠して、濡れ試薬(関東化学株式会社製ぬれ張力試験用混合液)を用いて、測定温度23℃にて、樹脂層表面の濡れ張力を測定した。
 [プリント・サーフ表面粗さ]
 Lorentzen&Wettre社製プリント・サーフ表面粗さ試験機を用いて、JIS P 8151:2004に準拠して、樹脂層表面のプリント・サーフ表面粗さを測定した。
 [コッブ吸水度]
 JIS P 8140:1998に準拠して試験を行った。接触させる水(蒸留水を使用)の水温は23℃、接触時間は120秒とし、蒸着紙用原紙の樹脂層表面に水を接触させた。
 [耐水性]
 蒸着紙用原紙の樹脂層表面に60℃の蒸留水を滴下して1分保持した後、水滴をふき取り、樹脂層表面の状態を手で触って調べた。以下の評価基準で評価を行った。
 A:べたつき、溶解なし
 B:べたつき、溶解あり
 [接触角]
 株式会社マツボー製動的接触角測定装置DAT1100を用い、蒸着紙用原紙の樹脂層表面に蒸留水4μLを滴下した。水滴が樹脂層表面に接触してから60秒後の接触角を、JIS R 3257:1999に準拠して、測定温度23℃にて測定した。
 [表面固有電気抵抗]
 JIS C 2139:2008に準拠して、樹脂層表面の表面固有電気抵抗を測定した。
 [生分解性材料比率]
 下記式1により、生分解性材料比率を算出した。下記式1において、紙基材質量は、無機分(填料など)を除いた質量を意味する。無機分は紙を燃焼して得られる灰分質量が紙基材質量に占める割合とする。当該数値が90%以上である場合、蒸着紙用原紙の無機物を除く成分のうち、90質量%以上が生分解性材料であることに等しい。なお、生分解材料であるかは、成分分析を実施し、生分解材料であるかを判別する。
式1:((紙基材質量+クレーコート層中の全樹脂質量+樹脂層中の全樹脂質量)-クレーコート層中の非生分解性樹脂質量-樹脂層中の非生分解性樹脂質量)/(紙基材質量+クレーコート中の全樹脂質量+樹脂層中の全樹脂質量)×100
 [生分解度]
 実施例および比較例で得られた蒸着紙用原紙について、JIS K 6955:2017に準拠して生分解試験を2年行い、生分解度を測定した。なお、より短期間で生分解度が85%以上となる場合には、生分解度をより短期間で評価してもよい。
 [ガラス転移温度]
 蒸着用原紙の樹脂層の一部を削り出し、JIS K 7121:1987に準拠して、ガラス転移温度を測定した。当該ガラス転移温度を、樹脂層に含まれる樹脂のガラス転移温度として、表1-1に記載した。
 <蒸着紙の作製>
 実施例1-1~1-3、2-1~2-4および比較例1-1~1-4、2-1~2-5で得られた蒸着紙用原紙の樹脂層上に、アルミニウム蒸着層(厚さ50nm)を形成した。上記アルミニウム蒸着層上に、25μm厚シートの酸素透過度(23℃、50%RH)が2.0mL/(m・day・atm)であるポリウレタン系樹脂バインダーの水性分散液(三井化学株式会社製、タケラックWPB-341)をメイヤーバー塗工し、120℃で1分乾燥して、オーバーコート層(0.5g/m、厚さ:0.5μm)を形成した。さらにオーバーコート層の上にエチレン・アクリル酸共重合体アンモニウム塩の水性分散液(有効分29.2質量%、ザイクセンAC、アクリル酸の共重合比率20モル%、融点:95℃、住友精化株式会社製)を有効分が20質量%となるように水で希釈し、メイヤーバー塗工した後に120℃で1分間乾燥して、ヒートシール層(5μm)を形成し、蒸着紙を得た。なお、樹脂層およびオーバーコート層に使用したポリウレタン系樹脂について、H-NMR測定を行ったところ、ポリイソシアネート由来の構成単位全量に対するメタキシリレンジイソシアネート由来の構成単位の含有量は、50モル%以上であった。
 <蒸着紙の作製>
 実施例3-1~3-3および比較例3-1で得られた蒸着紙用原紙の樹脂層上に、アルミニウム蒸着層(厚さ50nm)を形成した。上記アルミニウム蒸着層上に、25μm厚シートの酸素透過度(23℃、50%RH)が2.0mL/(m・day・atm)であるポリウレタン系樹脂バインダーの水性分散液(三井化学株式会社製、タケラックWPB-341)をメイヤーバー塗工し、120℃で1分乾燥して、オーバーコート層(0.5g/m、厚さ:0.5μm)を形成し、蒸着紙を得た。なお、樹脂層およびオーバーコート層に使用したポリウレタン系樹脂について、H-NMR測定を行ったところ、ポリイソシアネート由来の構成単位全量に対するメタキシリレンジイソシアネート由来の構成単位の含有量は、50モル%以上であった。
 <蒸着紙の評価>
 [酸素透過度]
 酸素透過率測定装置(MOCON社製、OX-TRAN2/22)を使用し、温度23℃、相対湿度50%の条件にて、蒸着紙の酸素透過度を測定した。具体的には、蒸着紙のオーバーコート層が設けられている側の面に、イソシアネート系接着剤(DIC株式会社製、ディックドライLX-500を10部に対してディックドライKW-75を1部混合)を5g/m2塗布した後、厚さ20μmのCPPフィルム(北越化成株式会社製、GP-32)を貼合して積層シートを形成した。積層シートについて、JISK 7126-2:2006に準拠して、温度23℃、相対湿度50%における酸素透過度を測定した。酸素透過度の値は低いほど酸素バリア性に優れる。
 [水蒸気透過度]
 JIS Z 0208:1976(カップ法)B法(温度40℃±0.5℃、相対湿度
90%±2%)に準拠して、蒸着紙のオーバーコート層が内側(低湿度側)に来るように配置して、水蒸気透過性を測定した。水蒸気透過度の値は低いほど水蒸気バリア性に優れる。
 [ヒートシール剥離強度]
 1組の蒸着紙を、ヒートシール層が向き合うように重ね、ヒートシールテスター(テスター産業製、TP-701-B)を用いて、160℃、0.2MPa、1秒の条件でヒートシールした。続いて、ヒートシールされた試験片を15mm幅にカットし、引張試験機(エー・アンド・デイ社製RTC-1250A)を用いて、引張速度300mm/minでT字剥離し、記録された最大荷重をヒートシール剥離強度とした。
 [バリア包装適性]
 上記方法で評価した蒸着紙について、下記の判断基準にて、バリア包装としての適性を評価した。評価基準は、以下の通りである。
 A:上記酸素透過度が1mL/(m・day・atm)以下、かつ上記水蒸気透過度が1g/(m・day)以下、かつ上記ヒートシール剥離強度が2N/15mm以上
 B:上記酸素透過度が1mL/(m・day・atm)以上、上記水蒸気透過度が1g/(m・day)以上または上記ヒートシール剥離強度が2N/15mm未満
 [リサイクル性(再離解後のパルプ回収率)]
 得られた蒸着紙をJIS P 8220-1:2012に準拠して離解した。このとき、離解開始から10分後に分散液を、6カットスクリーンを設置した振動フラットスクリーンで処理し、6カットスクリーン(目開き0.15mm)上の試料を回収して乾燥させることで残渣の質量比率(%)を算出し、100%から残渣の質量比率(%)を差し引いた値を再離解後のパルプ回収率(%)とし、リサイクル性の指標とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例の蒸着紙用原紙を用いて製造した蒸着紙は、比較例の蒸着紙用原紙を用いて製造した蒸着紙に比べて、酸素透過度、水蒸気透過度がともに低く、優れたバリア性を有していた。

Claims (11)

  1.  紙基材の少なくとも一方の面にクレーコート層および樹脂層をこの順に有する蒸着紙用原紙であって、
     前記樹脂層表面は、JIS K 6768:1999に準拠して測定される濡れ張力が50mN/m以上であり、かつ、JIS P 8151:2004に準拠して測定されるプリント・サーフ表面粗さが2.5μm以下である、蒸着紙用原紙。
  2.  樹脂層を有する面のJIS P 8140:1998に準拠して測定される、温度23℃、接触時間120秒でのコッブ吸水度が0g/m以上10g/m以下であり、
     JIS R 3257:1999に準拠して測定される、前記樹脂層表面の水に対する60秒後の接触角が65°以下である、請求項1に記載の蒸着紙用原紙。
  3.  JIS C 2139:2008に準拠して測定される、前記樹脂層表面の表面固有電気抵抗が0.1×1014Ω以上10×1014Ω以下である、請求項1または2に記載の蒸着紙用原紙。
  4.  JIS K 6955:2017に準拠して測定される生分解度が85%以上である、請求項1~3のいずれか1項に記載の蒸着紙用原紙。
  5.  前記蒸着紙用原紙の無機物を除く成分のうち、90質量%以上が生分解性材料である、請求項1~4のいずれか1項に記載の蒸着紙用原紙。
  6.  前記樹脂層が水懸濁性高分子を含み、前記水懸濁性高分子が、ポリエステル系樹脂およびポリウレタン系樹脂からなる群より選ばれる1種以上である、請求項1~5のいずれか1項に記載の蒸着紙用原紙。
  7.  前記クレーコート層が、無機顔料およびバインダーを含み、前記無機顔料は、アスペクト比が50以下であり、平均粒子径が5μm以下である、請求項1~6のいずれか1項に記載の蒸着紙用原紙。
  8.  前記無機顔料がカオリンである、請求項7に記載の蒸着紙用原紙。
  9.  前記クレーコート層に含まれるバインダーが、スチレン-ブタジエン系樹脂、スチレン-(メタ)アクリル系樹脂、オレフィン-不飽和カルボン酸系共重合、ポリ乳酸からなる群より選ばれる1種以上である、請求項7または8に記載の蒸着紙用原紙。
  10.  前記クレーコート層および樹脂層は、水性媒体を用いて形成されてなる、請求項1~9のいずれか1項に記載の蒸着紙用原紙。
  11.  請求項1~10のいずれか1項に記載の蒸着紙用原紙の前記樹脂層上に、蒸着層、オーバーコート層、および必要に応じてヒートシール層をこの順に有する、蒸着紙。 

     
PCT/JP2021/046272 2020-12-28 2021-12-15 蒸着紙用原紙および蒸着紙 WO2022145233A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21915094.3A EP4269689A1 (en) 2020-12-28 2021-12-15 Base paper for metallized paper and metallized paper
CN202180086975.9A CN116685739A (zh) 2020-12-28 2021-12-15 蒸镀纸用原纸和蒸镀纸

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2020218098 2020-12-28
JP2020218100 2020-12-28
JP2020-218099 2020-12-28
JP2020218099 2020-12-28
JP2020-218100 2020-12-28
JP2020-218098 2020-12-28
JP2021-041661 2021-03-15
JP2021-041672 2021-03-15
JP2021041669A JP6958757B1 (ja) 2020-12-28 2021-03-15 蒸着紙用原紙および蒸着紙
JP2021-041669 2021-03-15
JP2021041661A JP6958756B1 (ja) 2020-12-28 2021-03-15 蒸着紙用原紙および蒸着紙
JP2021041672A JP6958758B1 (ja) 2020-12-28 2021-03-15 蒸着紙用原紙および蒸着紙

Publications (1)

Publication Number Publication Date
WO2022145233A1 true WO2022145233A1 (ja) 2022-07-07

Family

ID=82259266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046272 WO2022145233A1 (ja) 2020-12-28 2021-12-15 蒸着紙用原紙および蒸着紙

Country Status (3)

Country Link
EP (1) EP4269689A1 (ja)
CN (1) CN116685739A (ja)
WO (1) WO2022145233A1 (ja)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124693A (ja) * 1984-11-19 1986-06-12 本州製紙株式会社 金属蒸着紙
JPH02234996A (ja) * 1989-03-06 1990-09-18 Kanzaki Paper Mfg Co Ltd 金属蒸着紙の製造方法
JPH07295475A (ja) * 1994-04-22 1995-11-10 Honshu Paper Co Ltd ラベル用蒸着紙
JP2003291296A (ja) * 2002-04-04 2003-10-14 Ishida Co Ltd 積層材料
JP2004204366A (ja) * 2002-12-24 2004-07-22 Toppan Printing Co Ltd 防湿紙およびそれを用いた包装紙、包装袋または紙製容器。
JP2011063899A (ja) * 2009-09-16 2011-03-31 Daio Paper Corp 塗工紙
JP2013079470A (ja) * 2011-10-04 2013-05-02 Techno World:Kk ガスバリヤー性紙製材料
WO2015016069A1 (ja) 2013-07-30 2015-02-05 三井化学株式会社 ポリウレタンディスパージョンおよびポリウレタン積層体
JP2016074900A (ja) * 2014-10-07 2016-05-12 株式会社プライムポリマー 無機物蒸着用フィルム、無機物蒸着フィルムおよびその用途
WO2017170462A1 (ja) * 2016-03-28 2017-10-05 日本製紙株式会社 紙製バリア材料
JP2017226186A (ja) * 2016-06-24 2017-12-28 Dic株式会社 積層体、及び積層体を用いた包装材
WO2019069963A1 (ja) * 2017-10-04 2019-04-11 日本製紙株式会社 バリア素材
JP2019167683A (ja) * 2018-03-22 2019-10-03 日本製紙株式会社 建築材料用紙製バリア材料
JP2019171863A (ja) * 2018-03-26 2019-10-10 大日本印刷株式会社 無溶剤接着剤を用いた低溶剤臭ガスバリア積層体、及び該積層体からなる低溶剤臭ガスバリア包装材料と包装袋
WO2019239334A1 (en) * 2018-06-12 2019-12-19 Stora Enso Oyj Re-pulpable packaging material
JP2020521654A (ja) * 2017-05-31 2020-07-27 テトラ ラバル ホールディングス アンド ファイナンス エス エイ ラミネートされた包装材料、それから製造される包装容器、及びラミネート材料を製造するための方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124693A (ja) * 1984-11-19 1986-06-12 本州製紙株式会社 金属蒸着紙
JPH02234996A (ja) * 1989-03-06 1990-09-18 Kanzaki Paper Mfg Co Ltd 金属蒸着紙の製造方法
JPH07295475A (ja) * 1994-04-22 1995-11-10 Honshu Paper Co Ltd ラベル用蒸着紙
JP2003291296A (ja) * 2002-04-04 2003-10-14 Ishida Co Ltd 積層材料
JP2004204366A (ja) * 2002-12-24 2004-07-22 Toppan Printing Co Ltd 防湿紙およびそれを用いた包装紙、包装袋または紙製容器。
JP2011063899A (ja) * 2009-09-16 2011-03-31 Daio Paper Corp 塗工紙
JP2013079470A (ja) * 2011-10-04 2013-05-02 Techno World:Kk ガスバリヤー性紙製材料
WO2015016069A1 (ja) 2013-07-30 2015-02-05 三井化学株式会社 ポリウレタンディスパージョンおよびポリウレタン積層体
JP2016074900A (ja) * 2014-10-07 2016-05-12 株式会社プライムポリマー 無機物蒸着用フィルム、無機物蒸着フィルムおよびその用途
WO2017170462A1 (ja) * 2016-03-28 2017-10-05 日本製紙株式会社 紙製バリア材料
JP2017226186A (ja) * 2016-06-24 2017-12-28 Dic株式会社 積層体、及び積層体を用いた包装材
JP2020521654A (ja) * 2017-05-31 2020-07-27 テトラ ラバル ホールディングス アンド ファイナンス エス エイ ラミネートされた包装材料、それから製造される包装容器、及びラミネート材料を製造するための方法
WO2019069963A1 (ja) * 2017-10-04 2019-04-11 日本製紙株式会社 バリア素材
JP2019167683A (ja) * 2018-03-22 2019-10-03 日本製紙株式会社 建築材料用紙製バリア材料
JP2019171863A (ja) * 2018-03-26 2019-10-10 大日本印刷株式会社 無溶剤接着剤を用いた低溶剤臭ガスバリア積層体、及び該積層体からなる低溶剤臭ガスバリア包装材料と包装袋
WO2019239334A1 (en) * 2018-06-12 2019-12-19 Stora Enso Oyj Re-pulpable packaging material

Also Published As

Publication number Publication date
EP4269689A1 (en) 2023-11-01
CN116685739A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
JP6958757B1 (ja) 蒸着紙用原紙および蒸着紙
JP5625655B2 (ja) 塗工白板紙
JP2022169497A (ja) 紙積層体およびその製造方法
JP6958756B1 (ja) 蒸着紙用原紙および蒸着紙
JP5625845B2 (ja) 塗工白板紙
JP5459200B2 (ja) 塗工白板紙
WO2022145233A1 (ja) 蒸着紙用原紙および蒸着紙
JP6958758B1 (ja) 蒸着紙用原紙および蒸着紙
JP6149589B2 (ja) 容器用原紙及びその容器用原紙の製造方法
JP7409548B1 (ja) 蒸着紙用原紙、蒸着紙、および包装袋
JP2023027649A (ja) バリア性積層体
JP6507539B2 (ja) 塗工白板紙
JP6958755B1 (ja) 蒸着紙用原紙および蒸着紙
JP6503666B2 (ja) 塗工白板紙
JP2022109889A (ja) 蒸着紙
JP4344930B2 (ja) 印刷用塗被紙
JP2022158269A (ja) ガスバリア性積層体及びガスバリア性シール紙
WO2022154032A1 (ja) 蒸着紙およびその製造方法
JP7215613B2 (ja) 耐水性紙、食品容器
JP7298648B2 (ja) 耐水性紙
JP5128460B2 (ja) 塗工白板紙
WO2023248981A1 (ja) 耐水性紙および包装容器
JP2022084283A (ja) 紙積層体およびその製造方法
JPH02293499A (ja) ライナー塗工用組成物及び塗工ライナー
JP2013104149A (ja) ラミネーター加工用オフセット印刷塗工紙

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915094

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180086975.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021915094

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021915094

Country of ref document: EP

Effective date: 20230728