WO2022131220A1 - ポリエステル樹脂 - Google Patents

ポリエステル樹脂 Download PDF

Info

Publication number
WO2022131220A1
WO2022131220A1 PCT/JP2021/045858 JP2021045858W WO2022131220A1 WO 2022131220 A1 WO2022131220 A1 WO 2022131220A1 JP 2021045858 W JP2021045858 W JP 2021045858W WO 2022131220 A1 WO2022131220 A1 WO 2022131220A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
group
acid
formula
iii
Prior art date
Application number
PCT/JP2021/045858
Other languages
English (en)
French (fr)
Inventor
広朗 福島
耕輔 魚谷
洋祐 畑中
浩尚 佐々木
惠一朗 戸川
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022506782A priority Critical patent/JPWO2022131220A1/ja
Publication of WO2022131220A1 publication Critical patent/WO2022131220A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids

Definitions

  • the present invention relates to a polyester resin that provides a molded product having excellent moldability, transparency, mechanical properties, and heat resistance. Specifically, the present invention has improved formability in extrusion molding, deformed extrusion molding, direct blow molding, inflation molding, injection blow molding, and calendar processing molding, which require high melt tension, as well as transparency and heat resistance. Regarding polyester resin that realizes improvement of mechanical properties and heat resistance.
  • polyester resin is influential in terms of physical properties, environmental suitability, adhesive properties, price, etc. It is being considered as a material.
  • polyester resins for example, crystalline polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN) are heat-resistant parts by injection molding, films and sheets by extrusion molding, and the like. It is used in various melt-molded products such as blow-molded beverage bottles and melt-spun fibers.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • the polyester resin molded product is also required to have heat resistance and the like. Furthermore, in the process of producing the polyester resin, cyclic oligomers (including tetramers) are generated, and the cyclic oligomers contaminate the mold during processing, resulting in a decrease in continuous moldability. ..
  • the present invention has been made against the background of the above-mentioned problems of the prior art, and an object of the present invention is to provide a molded product having excellent gelation suppression, moldability, surface smoothness, transparency, mechanical properties, and heat resistance. It is to provide the polyester resin to bring. Further, a non-essential solution of the present invention includes providing a polyester resin having a low cyclic oligomer content and providing a molded product having excellent continuous moldability.
  • the subject of the present invention is extrusion molding, profile extrusion molding, direct blow molding, which are excellent in gelation suppression, surface smoothness, transparency, mechanical properties, heat resistance, and require high melt tension. It is an object of the present invention to provide a polyester resin that provides a molded product having excellent moldability in inflation molding, injection blow molding, and calendar processing molding.
  • the present invention has the following configuration.
  • the polyester contains a dicarboxylic acid component and an alcohol component as constituent components, and the content of the compound represented by the formula (III) is 0.0002 to 5.9% by weight in 100% by weight of the alcohol component.
  • Polyester resin In the formula, m and n represent 1 to 1000, l represents 0 to 1000, R 1 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms, and R 2 , R 3 and R 4 represent, respectively. , A hydrogen atom or an alkyl group having 1 to 10 carbon atoms.) [2] The polyester resin according to [1], wherein the compound represented by the formula (III) has a weight average molecular weight of 330 or more and 500,000 or less.
  • melt viscosity is 26000 dPa ⁇ s or more at a temperature of 270 ° C. and a shear rate of 30 s -1 , and 6500 dPa ⁇ s or less at a temperature of 270 ° C. and a shear rate of 2000 s -1 .
  • a molded polyester resin product having excellent gelation suppression, moldability, surface smoothness, transparency, mechanical properties, and heat resistance can be obtained.
  • the moldability is excellent in extrusion molding, irregular shape extrusion molding, direct blow molding, inflation molding, injection blow molding, and calendar processing molding, which require higher melt tension than in the past.
  • the non-essential effect of the present invention includes that a molded product of a polyester resin having a low content of cyclic oligomer and excellent continuous moldability can be obtained.
  • polyester resin of the present invention contains a dicarboxylic acid component and an alcohol component (preferably a polyol component) as constituent components of the polyester, and the content of the compound represented by the formula (III) is 0. It is characterized by having a weight of 0002 to 5.9% by weight.
  • n and n represent 1 to 1000, l represents 0 to 1000, R 1 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms, and R 2 , R 3 and R 4 represent, respectively. , A hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the polyester resin of the present invention is characterized in that it contains a polymer of a predetermined dicarboxylic acid component and an alcohol component, and the content of the compound represented by the formula (III) as the alcohol component is a predetermined amount.
  • the compound represented by the formula (III) is a branching agent for a polyester resin, and is used as an alcohol component together with a commonly used diol component (hereinafter, simply referred to as a diol component).
  • the compound represented by the formula (III) may be present as a compound in the resin composition as long as it is bonded to the polyester resin chain at an appropriate step, but the compound of the formula (III) is a carboxylic acid of the polyester resin.
  • the compound represented by the formula (III) has an average of 2 or more (preferably 3 or more) functional groups (hydroxyl groups) capable of reacting with the carboxyl group of the dicarboxylic acid component per molecule in the molecule, and is a polyester resin.
  • a branch structure can be partially introduced throughout.
  • the branching agents disclosed in Patent Documents 1 to 3 have an epoxy group and have high reactivity with the dicarboxylic acid component, and therefore have priority over the diol component usually used for polyester resins.
  • the reaction product can then react with the diol component to form a polyester resin having a hydroxyl group in the side chain, but during the formation of the polyester resin, the epoxy groups contained in the branching agent and further the epoxy groups A gelled product can be formed by reacting with the carboxyl group or hydroxyl group of the polyester resin.
  • the polyester resin of the present invention is formed by reacting a compound represented by the formula (III), which is a branching agent having no epoxy group, with a dicarboxylic acid component.
  • the polyester resin of the present invention is different from the polyester resins of Patent Documents 1 to 3 in that the resin structure is different from that of the polyester resins of Patent Documents 1 to 3. Since it does not react with the hydroxyl group, gelation can be suppressed. Further, since the polyester resin of the present invention uses the compound represented by the formula (III), it decreases as the melt tension increases during melt extrusion, and the melt viscosity becomes high shear. Since it decreases below, melt fracture does not occur during molding, and it is excellent in moldability, surface smoothness, transparency, mechanical properties, and heat resistance. Further, since the polyester resin has a low content of cyclic oligomers, the mold is less likely to be contaminated during processing, and continuous moldability can be improved.
  • the compound represented by the formula (III) is as follows.
  • n and n represent 1 to 1000, l represents 0 to 1000, R 1 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms, and R 2 , R 3 and R 4 represent, respectively. , A hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 1 represents an aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • Examples of the aromatic hydrocarbon group having 6 to 20 carbon atoms represented by R 1 include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a 2-ethylphenyl group and a 3-ethylphenyl group.
  • the number of carbon atoms of the aromatic hydrocarbon group is preferably 6 to 18, more preferably 6 to 15, and even more preferably 6 to 12.
  • the aromatic hydrocarbon group is particularly preferably a phenyl group, an o-tolyl group, an m-tolyl group, or a p-tolyl group, and most preferably a phenyl group.
  • R 2 , R 3 , and R 4 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • Alkyl groups having 1 to 10 carbon atoms represented by R 2 , R 3 , and R 4 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and a nonyl group.
  • Linear alkyl group such as decyl group; Propyl group, isobutyl group, sec-butyl group, tert-butyl group, 2-ethylbutyl group, 3,3-dimethylbutyl group, 1,1,3,3-tetramethylbutyl group, 1-methylbutyl group, 1-ethyl Propyl group, 3-methylbutyl group, neopentyl group, 1,1-dimethylpropyl group, 2-methylpentyl group, 3-ethylpentyl group, 1,3-dimethylbutyl group, 2-propylpentyl group, 1-ethyl-1 , 2-dimethylpropyl group, 1-methylpentyl group, 4-methylpentyl group, 4-methylhexyl group, 5-methylhexyl group, 2-ethylhexyl group, 1-methylhexyl group, 1-ethylpentyl group, 1- Propylbutyl group, 3-ethyl
  • the number of carbon atoms of the alkyl group is preferably 1 to 8, more preferably 1 to 6, and even more preferably 1 to 4.
  • the alkyl group is particularly preferably a methyl group, an ethyl group, a propyl group or a butyl group, and most preferably a methyl group.
  • R 2 and R 3 are preferably alkyl groups having 1 to 10 carbon atoms, and R 4 is preferably a hydrogen atom.
  • the l, m, and n are the ratios of the following copolymer components (L), (M), and (N) contained in one molecule, and the average number of each component contained in one molecule is a decimal point.
  • the following is the value (ratio) expressed as an integer by rounding off one digit.
  • the ratio and average number of each component contained in one molecule are obtained from 1 H-NMR analysis and 13 C-NMR analysis.
  • n and n used to represent the ratio as integers may be the same or different, respectively, 1 to 1000, preferably 2 to 800, more preferably 5 to 600, still more preferably 10 to 400. show.
  • l is 0 to 1000, preferably 1 to 700, more preferably 2 to 400, and even more preferably 5 to 100.
  • the copolymer component (L), (M) and (N) are randomly copolymerized
  • the copolymer component (L), ( A block copolymer in which at least one component of M) and (N) is a block may be used, but a random copolymer is preferable.
  • the polyester resin of the present invention may be one kind or two or more kinds of polyester resins as long as the above m, n and l are satisfied.
  • the compound represented by the formula (III) is a 2-gallon free radical sequence with reference to, for example, Patent Documents 1 to 3, US Patent Application No. 09/354350 and US Patent Application No. 09/614402. It is possible to prepare in the formula polymerization reactor system, but the one in which the epoxy radical is further modified is used.
  • the content of the compound represented by the formula (III) is 0.0002 to 5.9% by weight, preferably 0.0005 to 5.0% by weight, based on 100% by weight of the alcohol component which is a constituent of the polyester resin. %, More preferably 0.001 to 4.5% by weight, even more preferably 4.0% by weight or less, and particularly preferably 3.5% by weight or less. If the content of the compound represented by the formula (III) is less than 0.0002% by weight, drawdown occurs during molding, and the molding tends to be unstable, or even if molding is possible, the molded product tends to have uneven thickness. be.
  • the compound represented by the formula (III) may have a predetermined weight average molecular weight, and the weight average molecular weight of the compound represented by the formula (III) is preferably 330 or more and 500,000 or less, more preferably. It is 500 or more, more preferably 700 or more, still more preferably 1000 or more, more preferably 300,000 or less, still more preferably 100,000 or less, still more preferably 50,000 or less. If the weight average molecular weight of the compound represented by the formula (III) is less than 330, the unreacted compound may bleed out to the surface of the molded product, and the surface of the molded product may be contaminated.
  • the weight average molecular weight of the compound represented by the formula (III) exceeds 500,000, the compatibility between the compound and the polyester becomes poor and voids are generated and whitening occurs when the molded product made of the polyester resin is bent. There is a risk.
  • the weight average molecular weight can be determined, for example, by GPC based on standard polystyrene conversion. Specifically, the weight average molecular weight is 0.2 ⁇ m after weighing 4 mg of a sample of the compound represented by the formula (III) and dissolving it in 4 ml of a mixed solvent of chloroform and isofluoroisopropanol (60/40% by volume). It can be obtained by filtering with the membrane filter of the above, subjecting the obtained sample solution to GPC, and converting it into standard polystyrene.
  • the dicarboxylic acid component and diol component used in the present invention are as follows.
  • dicarboxylic acid component examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decandicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, 1, 3-Cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornandicarboxylic acid, dimer acid, etc.
  • Dicarboxylic acids or their ester-forming derivatives eg, these alkyl esters with 1 to 20 carbon atoms
  • orthophthalic acid isophthalic acid, terephthalic acid, 5- (alkali metal) sulfoisophthalic acid, diphenic acid, 1, 3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 4,4 Aromatic dicarboxylic acids exemplified by'-biphenylsulfonic dicarboxylic acid, 4,4'-biphenyletherdicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p'-dicarboxylic acid, pamoic acid, anthracendicarboxylic acid and the like.
  • isophthalic acid terephthalic acid and naphthalenedicarboxylic acid are preferable, and terephthalic acid is particularly preferable in terms of the physical properties of the obtained polyester resin and the like.
  • a trivalent or tetravalent carboxylic acid may be used in a small amount.
  • the carboxylic acid include ethane acid, tricarboxylic acid, propantricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3', 4'-biphenyltetracarboxylic acid, and esters thereof.
  • Examples thereof include formable derivatives (for example, these alkyl esters having 1 or more and 20 or less carbon atoms).
  • a diol component is used together with the compound represented by the formula (III).
  • the diol component (excluding the compound represented by the formula (III)) is preferably 99.9998 to 94.1% by weight, more preferably 99.9995 to 95% by weight, based on 100% by weight of the alcohol component. It is more preferably 99.999 to 95.5% by weight, particularly preferably 96% by weight or more, and most preferably 96.5% by weight or more.
  • the diol component is preferably ethylene glycol. Ethylene glycol is preferably contained in an amount of 85 mol% or more, more preferably 85 to 99 mol%, based on 100 mol% of the diol component.
  • a trihydric alcohol, a hydroxycarboxylic acid, a cyclic ester or the like may be used as the diol component.
  • Examples of the alcohol include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, hexanetriol and the like.
  • hydroxycarboxylic acid examples include lactic acid, citric acid, malic acid, tartrate acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid, 4-hydroxycyclohexanecarboxylic acid, or Examples thereof include these ester-forming derivatives (for example, these alkyl esters having 1 or more and 20 or less carbon atoms).
  • cyclic ester examples include ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -methyl- ⁇ -propiolactone, ⁇ -valerolactone, glycolide, lactide and the like.
  • the polyester resin of the present invention preferably contains terephthalic acid in an amount of 85 to 100 mol% in 100 mol% of a dicarboxylic acid component, and ethylene glycol as an alcohol component (more accurately, a diol component).
  • Ethylene glycol is preferably contained in an amount of 85 to 99 mol% in 100 mol% of the diol component.
  • Terephthalic acid is contained in 100 mol% of the dicarboxylic acid component, more preferably 90 to 100 mol%, further preferably 95 to 100 mol%, and ethylene glycol is more preferably 90 to 99 mol% in 100 mol% of the diol component. , More preferably 95-99 mol%.
  • the polyester resin of the present invention is preferably a copolymerized polyethylene terephthalate resin.
  • the polyester resin of the present invention is a crystalline polyester resin, has a branched structure, can improve processability such as moldability by the "melt strength enhancing effect" of increasing molecular weight, and can adjust melt viscosity and melt tension. , Bending whitening resistance of the molded product and bleeding out of the unreacted product to the surface layer of the molded product can be suppressed. If the content of terephthalic acid and ethylene glycol is out of the above range, it becomes an amorphous polyester resin, and it becomes impossible to increase the viscosity by solid phase polymerization, and there is a possibility that a molded product having high mechanical properties cannot be obtained.
  • This cyclic oligomer is preferably a tetramer, and is a tetramer formed by reacting terephthalic acid with ethylene glycol (hereinafter also referred to as CT4), that is, terephthalic acid, ethylene glycol, terephthalic acid, ethylene glycol, terephthalic acid.
  • CT4 ethylene glycol
  • Ethylene glycol, terephthalic acid, and ethylene glycol are more preferably cyclically bonded in this order.
  • the content of the cyclic oligomer tetramer in the polyester resin is preferably less than 2680 ppm, more preferably 2650 ppm or less, still more preferably 2600 ppm or less, preferably more than 0 ppm, more preferably 1 ppm or more, still more preferably 10 ppm or more. Even more preferably, it is 100 ppm or more.
  • the free CT4 is less than 2680 ppm, bleeding out of the molded product to the surface layer can be suppressed, the transparency of the molded product or film can be improved, the high quality of the molded product or film can be maintained, and the wall thickness can be maintained. Sufficient transparency can be maintained even for various molded products and films.
  • the polyester contains a dicarboxylic acid component and an alcohol component as constituents, and the content of the compound represented by the formula (III) is 0.0002 to 5.9% by weight in 100% by weight of the alcohol component.
  • the structure of the formula (III) becomes a steric hindrance during ring formation of CT4, and the free CT4 becomes less than 2680 ppm.
  • the polyester resin of the present invention may have a predetermined intrinsic viscosity IV.
  • the intrinsic viscosity IV is preferably 0.40 to 2.10 dl / g, more preferably 0.50 to 1.90 dl / g, and further preferably 0.60 to 1.70 dl / g.
  • the intrinsic viscosity can be measured at 30 ° C. by dissolving a polyester resin in a parachlorophenol / tetrachloroethane (3/1 weight ratio) mixed solvent and using an Ostwald viscometer.
  • the acid value (AV) of the polyester resin used in the present invention is preferably 100 eq / 10 6 g (ton) or less, more preferably 60 eq / 10 6 g or less, still more preferably 50 eq / 10 6 g or less.
  • the lower the lower limit is, the more preferable it is, and the closer to 0 eq / 10 6 g is preferable.
  • the acid value exceeds 100 eq / 10 6 g, gel is generated, and the surface property and haze tend to be deteriorated.
  • the acid value can be determined by dissolving a polyester resin sample in an alcohol and / or ether solution and titrating with an alcoholic sodium hydroxide solution or an alcoholic potassium hydroxide solution using a phenolphthalein reagent as an indicator. ..
  • the specific method for measuring the acid value is as shown in the examples.
  • the polyester resin of the present invention may have a predetermined melting point, and the melting point of the polyester resin is preferably 200 to 300 ° C, more preferably 220 to 280 ° C, still more preferably 240 to 260 ° C, still more preferably. Is above 250 ° C.
  • the melting point can be measured up to 300 ° C. at a heating rate of 20 ° C./min using a differential scanning calorimeter (DSC), and the maximum peak temperature of the heat of fusion can be determined as the crystal melting point.
  • DSC differential scanning calorimeter
  • the polyester resin of the present invention is preferably produced via a polymerization catalyst containing at least an aluminum compound and a phosphorus compound, and is derived from such a polymerization catalyst and may have an aluminum content of 3 to 1000 ppm and a phosphorus content of 5 to 10000 ppm. preferable.
  • a polymerization catalyst one or more selected from a titanium compound and a germanium compound may be used, or a combination of a phosphorus compound and a germanium compound may be used.
  • the aluminum compound is preferably at least one selected from aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, and aluminum hydroxide, and is preferably at least one selected from aluminum acetate and basic aluminum acetate. It is more preferable to have it, and it is further preferable to use aluminum acetate.
  • the amount of aluminum is preferably 3 to 1000 ppm, more preferably 5 to 800 ppm, still more preferably 8 to 500 ppm as an aluminum atom with respect to the total mass of the polyester resin. If the amount of aluminum is small, the polymerization activity may decrease, and if the amount of aluminum is large, a large amount of foreign matter derived from aluminum may be generated.
  • the phosphorus compound used as a polymerization catalyst together with the aluminum compound will be described.
  • the phosphorus compound is preferably at least one selected from a phosphonic acid-based compound and a phosphinic acid-based compound, and more preferably a phosphonic acid-based compound.
  • the phosphorus compound preferably has a phenol structure in the same molecule, more preferably at least one selected from a phosphonic acid-based compound and a phosphinic acid-based compound having a phenol structure in the same molecule, and is in the same molecule. It is more preferable that it is a phosphonic acid-based compound having a phenol structure.
  • Phosphorus compounds having a phenol structure in the same molecule include p-hydroxyphenylphosphonic acid, dimethyl p-hydroxyphenylphosphonate, diethyl p-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, and bis (p-hydroxyphenyl).
  • Phosphoric acid bis (p-hydroxyphenyl) methyl phosphinate, bis (p-hydroxyphenyl) phenylphosphinate, p-hydroxyphenylphenylphosphinic acid, methyl p-hydroxyphenylphenylphosphite, p-hydroxyphenylphenylphosphinic acid
  • examples thereof include phenyl, p-hydroxyphenylphosphinic acid, methyl p-hydroxyphenylphosphinate, phenyl p-hydroxyphenylphosphinate, diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate and the like.
  • the phosphorus compound is particularly preferably 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl.
  • a phosphorus compound for example, Irgamod (registered trademark) 295 (manufactured by BASF) or the like can be used.
  • the amount of phosphorus is preferably 5 to 10000 ppm, more preferably 8 to 8000 ppm, still more preferably 10 to 6000 ppm as a phosphorus atom with respect to the total mass of the polyester resin. If the amount of phosphorus is small, the polymerization activity may decrease and a large amount of foreign matter derived from aluminum may be generated, and if the amount of phosphorus is large, the catalyst cost may increase.
  • Titanium compounds include tetrabutyl titanium, tetrabenzyl titanium, tetra-n-propyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, tetraisobutyl titanate, tetra-tert-butyl titanate, tetracyclohexyl titanate, tetraphenyl titanate, tetra.
  • Reaction products consisting of titanium orthoesters or condensed orthoesters, hydroxycarboxylic acids and phosphorus compounds are preferred.
  • the amount of titanium is preferably 1 to 300 ppm, more preferably 2 to 200 ppm, still more preferably 3 to 100 ppm as a titanium atom with respect to the total mass of the polyester resin.
  • Examples of the germanium compound include germanium dioxide and germanium acetate. Of these, germanium dioxide is preferable.
  • the amount of germanium is preferably 1 to 500 ppm, more preferably 2 to 400 ppm, still more preferably 3 to 300 ppm as a germanium atom with respect to the total mass of the polyester resin.
  • the amount of the atom may be calculated by, for example, fluorescent X-ray analysis.
  • phosphoric acid and phosphoric acid esters such as trimethylphosphate, triethylphosphate, phenylphosphate and triphenylphosphate, phosphite and trimethylphosphite, triethylphosphite and triphenylphos
  • phosphite such as phyto, tris (2,4-di-tert-butylphenyl) phosphite, tetrakis (2,4-di-tert-butylphenyl) 4,4'-biphenylenediphosphite, etc. You may.
  • the polyester resin of the present invention preferably has a predetermined melt tension and melt viscosity at the time of melting.
  • the polyester resin of the present invention has a property that the melt tension decreases as the temperature rises above 250 ° C.
  • the melt tension is preferably 14 mN or more at a temperature of 270 ° C., a take-up speed of 100 m / min, and a shear rate of 243s -1 . It is 17 mN or more, more preferably 19 mN or more, and the upper limit of the melt tension is, for example, 170 mN or less or 120 mN or less.
  • the capillary reometer has a predetermined condition (capillary length 10 mm, capillary diameter 1 mm, temperature 270 ° C., shear rate 243s -1 , maximum take-up speed 200 m / min, take-up start speed 10 m / min, or take-up speed 100 m. It can be obtained by using at / min (constant), pick-up time 90 seconds).
  • the polyester resin of the present invention has a property that the shear rate at the time of melting is 2000s -1 , and the higher the temperature is 250 ° C. or higher, the lower the melt viscosity.
  • the melt viscosity is 26000 dPa ⁇ s or more at a temperature of 270 ° C. and a shear rate of 30 s -1 , and at a temperature of 270 ° C. and a shear rate of 2000 s -1 . , 6500 dPa ⁇ s or less is preferable.
  • the polyester resin of the present invention exhibits thixotropic properties under high temperature at the time of melting, can suppress the generation of melt fractures, and brings about good moldability.
  • the melt viscosity is preferably 26000 dPa ⁇ s or more at a temperature of 270 ° C. and a shear rate of 30 s -1 , more preferably 28,000 dPa ⁇ s or more, further preferably 30,000 dPa ⁇ s or more, and the upper limit of the melt viscosity is, for example, 50,000 dPa ⁇ s. It is s or less or 45,000 dPa ⁇ s or less.
  • the melt viscosity is preferably 6500 dPa ⁇ s or less, more preferably 6300 dPa ⁇ s or less, still more preferably 6200 dPa ⁇ s or less at a temperature of 270 ° C. and a shear rate of 2000 s- 1 , and the lower limit of the melt viscosity is, for example. It is 5500 dPa ⁇ s or more.
  • the melt viscosity can be measured, for example, based on JIS K7199.
  • the melt viscosity can be determined, for example, by using a capillary reometer under predetermined conditions (capillary length 10 mm, capillary diameter 1 mm, temperature 270 ° C., shear rate 30s -1 or 2000s -1 ).
  • the polyester resin of the present invention may have a predetermined heat-resistant oxidative decomposition parameter (TOD), and the heat-resistant oxidative decomposition parameter (TOD) of the polyester resin may be 0.390 or less.
  • TOD can be calculated by the method described in the item of the following embodiment.
  • the TOD is more preferably 0.385 or less, further preferably 0.380 or less, particularly preferably 0.375 or less, and most preferably 0.370 or less.
  • the lower limit of the TOD is, for example, 0.010 or more, 0.015 or more, or 0.020 or more. If the TOD exceeds 0.390, the moldability at the time of drawdown may decrease.
  • the polyester resin of the present invention may contain organic, inorganic, and organic metal toners, and additives such as fluorescent whitening agents. By containing one or more of these additives, it is possible to suppress coloring such as yellowing of the polyester resin to an even more excellent level. It also contains any other polymer, antistatic agent, antifoaming agent, dyeing improver, dye, pigment, matting agent, optical brightener, stabilizer, antioxidant and other additives. May be good.
  • an aromatic amine-based or phenol-based antioxidant can be used, and as the stabilizer, a phosphorus-based stabilizer such as phosphoric acid or a phosphoric acid ester-based stabilizer, a sulfur-based stabilizer, or an amine-based stabilizer can be used. Can be used.
  • the polyester resin is directly introduced into the molding step in the molten state after the melt polycondensation step is completed as described above, or in the chip state after the treatment such as solid phase polymerization is further completed. It can also be a molded product. Further, a predetermined amount of additives such as a crystallization property improving agent, an aldehyde reducing agent, a coloring improving agent, a stabilizer and the like are added to an arbitrary reactor or transport pipe in the manufacturing process of the melt polycondensation polymer. It can be melt-polycondensed so as to have the above-mentioned properties, and then it can be directly introduced into a molding step to form a molded product, either as it is or after the treatment such as solid phase polymerization is completed.
  • additives such as a crystallization property improving agent, an aldehyde reducing agent, a coloring improving agent, a stabilizer and the like are added to an arbitrary reactor or transport pipe in the manufacturing process of the melt polycondensation polymer. It
  • the polyester resin molded product produced from the polyester resin of the present invention may have a center plane average (SRa) having a predetermined three-dimensional roughness.
  • the SRa of the polyester resin molded product is preferably less than 0.15 ⁇ m, more preferably 0.14 ⁇ m or less, still more preferably 0.13 ⁇ m or less, still more preferably 0.12 ⁇ m or less, and preferably 0.01 ⁇ m or more. Or it is 0.02 ⁇ m or more.
  • the central surface average (SRa) of the three-dimensional roughness can be obtained by using, for example, a surface roughness measuring instrument (fine shape measuring instrument, surf coder ET4000A manufactured by Kosaka Laboratory).
  • the polyester resin of the present invention can be produced by a conventionally known method.
  • a direct esterification method in which terephthalic acid, ethylene glycol and, if necessary, other copolymerization components are directly reacted to distill off water for esterification, and then polycondensation is performed under reduced pressure.
  • a transesterification method in which dimethyl terephthalate is reacted with ethylene glycol and, if necessary, other copolymerization components to distill off methyl alcohol and transesterify, and then transesterify under reduced pressure. Esterification.
  • solid phase polymerization may be carried out in order to increase the ultimate viscosity.
  • the melt-polymerized polyester may be heat-crystallized after absorbing moisture, or steam may be directly blown onto the polyester chip to heat-crystallize.
  • the compound represented by the formula (III) may be dispersed and added at the time of addition.
  • the polycondensation reaction may be carried out by a batch type reaction device or a continuous type reaction device.
  • the esterification reaction or the transesterification reaction may be carried out in one step or may be carried out in multiple steps.
  • the polycondensation reaction may be carried out in one step or may be carried out in multiple steps.
  • the solid phase polymerization reaction can be carried out by a batch type device or a continuous type device.
  • the polycondensation and the solid phase polymerization may be carried out continuously or may be carried out separately.
  • an example of a preferable continuous manufacturing method will be described by taking PET as an example of the polyester resin.
  • esterification reaction water or alcohol produced by the reaction is rectified in a rectification column under the condition that ethylene glycol is refluxed using a multi-stage device in which 1 to 3 esterification reactors are connected in series. Perform while removing it from the system.
  • the temperature of the esterification reaction in the first stage is preferably 240 to 270 ° C, more preferably 245 to 265 ° C, and the pressure is preferably 0.2 to 3 kg / cm 2 G, more preferably 0.5 to 2 kg / cm. It is 2G .
  • the temperature of the esterification reaction in the final stage is usually 250 to 290 ° C, preferably 255 to 275 ° C, and the pressure is usually 0 to 1.5 kg / cm 2 G, preferably 0 to 1.3 kg / cm 2 G. be.
  • the reaction conditions for the esterification reaction in the intermediate stages are the conditions between the reaction conditions in the first stage and the reaction conditions in the final stage. It is preferable that the increase in the reaction rate of these esterification reactions is smoothly distributed at each stage. Ultimately, the esterification reaction rate preferably reaches 90% or more, more preferably 93% or more.
  • the above esterification reaction can be carried out without a catalyst due to the catalytic action of terephthalic acid as an acid, but it may be carried out in the coexistence of a polycondensation catalyst.
  • tertiary amines such as triethylamine, tri-n-butylamine and benzyldimethylamine
  • quaternary ammonium hydroxide such as tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide and trimethylbenzylammonium hydroxide and lithium carbonate.
  • Sodium carbonate, potassium carbonate, sodium acetate and other basic compounds are added in small amounts and polycondensed to make the proportion of dioxyethylene terephthalate component units in the main chain of polyethylene terephthalate relatively low ( It is preferable because it can be retained at 5 mol% or less with respect to the total diol component.
  • a low polymer preferably 1.1 to 3.0 mol, more preferably 1.2 to 2.5 mol of ethylene glycol with respect to 1 mol of dimethyl terephthalate.
  • a solution containing ethylene glycol is prepared and continuously supplied to the transesterification reaction step.
  • the metanol produced by the reaction is removed from the system by a rectification column under the condition that ethylene glycol is distilled back using a device in which one or two transesterification reactors are connected in series. Perform while removing.
  • the temperature of the transesterification reaction in the first stage is preferably 180 to 250 ° C, more preferably 200 to 240 ° C.
  • the temperature of the transesterification reaction in the final stage is usually 230 to 270 ° C., preferably 240 to 265 ° C., and as the transesterification catalyst, fatty acid salts such as Zn, Cd, Mg, Mn, Co, Ca and Ba, and carbonates. , Pb, Zn, Sb, Ge oxides and the like may be used.
  • the obtained low-order condensate is then supplied to a multi-step liquid phase polycondensation step.
  • the polycondensation reaction conditions are such that the reaction temperature of the polycondensation in the first stage is preferably 250 to 290 ° C, more preferably 260 to 280 ° C, and the pressure is preferably 500 to 20 Torr, more preferably 200 to 30 Torr.
  • the temperature of the polycondensation reaction in the final stage is preferably 265 to 300 ° C., more preferably 275 to 295 ° C., and the pressure is preferably 10 to 0.1 Torr, more preferably 5 to 0.5 Torr.
  • the reaction conditions for the polycondensation reaction in the intermediate stage are the conditions between the reaction conditions in the first stage and the reaction conditions in the final stage. It is preferable that the degree of increase in the ultimate viscosity reached in each of these polycondensation reaction steps is smooth.
  • the polycondensed polyester resin thus obtained is then solid-phase polymerized.
  • the polyester resin is solid-phase polymerized by a conventionally known method.
  • the polyester resin to be subjected to solid phase polymerization is preliminarily heated under an inert gas or reduced pressure, or in a steam or steam-containing inert gas atmosphere, for example, at a temperature of 100 to 190 ° C. for 1 to 5 hours. It will be crystallized.
  • solid phase polymerization is carried out at a temperature of 190 to 230 ° C. for 1 to 50 hours under an atmosphere of an inert gas or under reduced pressure.
  • the catalyst used in the present invention has catalytic activity not only in the polycondensation reaction but also in the esterification reaction and the transesterification reaction.
  • a catalyst can also be used in the transesterification reaction between an alkyl ester of a dicarboxylic acid such as dimethyl terephthalate and a glycol such as ethylene glycol.
  • the catalyst used in the present invention has catalytic activity not only in melt polymerization but also in solid phase polymerization and solution polymerization, and a polyester resin can be produced by any method.
  • the polymerization catalyst used in the present invention can be added to the reaction system at any stage of the polymerization reaction.
  • it can be added to the reaction system before the start of the esterification reaction or the transesterification reaction, at any stage during the reaction, immediately before the start of the polycondensation reaction, or at any stage during the polycondensation reaction.
  • aluminum or an aluminum compound is preferably added immediately before the start of the polycondensation reaction.
  • the method for adding the polymerization catalyst other than the phosphorus compound used in the present invention may be powdery or neat, or may be a slurry or solution of a solvent such as ethylene glycol. Well, it is not particularly limited. Further, aluminum or an aluminum compound or a phosphorus compound may be added as a premixed mixture of other components, or these may be added separately. Further, aluminum or an aluminum compound or a phosphorus compound and other components may be added to the polymerization system at the same addition time, or each component may be added at different addition times. Further, the entire amount of the catalyst may be added at one time, or may be added in a plurality of times.
  • the polyester resin of the present invention is preferably subjected to blow molding (preferably direct blow molding) after polycondensation and solid phase polymerization.
  • a bottomed precursor generally called a preform
  • the preform may be blow-stretched in a mold, and further heat-set.
  • a method such as compression molding or injection molding is used.
  • a preform can be obtained by heating and melting at 260 to 350 ° C. and injecting it into a preform mold.
  • the preform is a thick test tubular shape with a gate at the bottom and a cap screw engraved on the spout.
  • the spout portion of the obtained preform may be crystallized.
  • crystallizing it is possible to prevent the spout portion from being deformed even when the contents at a high temperature are filled.
  • Crystallization of the spout portion is preferably carried out by heating to 130 to 200 ° C, more preferably 140 to 190 ° C.
  • an infrared heater, hot air, induction heating, immersion in an oil bath, or the like can be used, and it is preferable to use an infrared heater from the viewpoint of productivity.
  • the heat crystallization of the spout portion may be performed after blow molding.
  • the preform is heated, and this preform is stretched in the bottle length direction (vertical direction) and blow molded in the circumferential direction to obtain a bottle. It is usually stretched by a rod-shaped stretching rod in the length direction, and a pressurized gas such as air or nitrogen is used in the circumferential direction.
  • the pressurized gas is preferably 1 to 10 MPa.
  • a method of blowing a pressurized gas while inserting a stretching rod and stretching in the length direction and the circumferential direction at the same time is preferable, but the stretching in the length direction and then stretching in the circumferential direction may be preferable.
  • Infrared heaters, hot air, induction heating, etc. are used for heating.
  • the heating temperature is usually 80 to 130 ° C, preferably 90 to 120 ° C.
  • the lower limit of the draw ratio in the bottle length direction is preferably 1.5 times, more preferably 2 times. If it is less than the above, uneven stretching may occur.
  • the upper limit of the draw ratio in the bottle length direction is preferably 6 times, more preferably 5 times, still more preferably 4 times. If it exceeds the above, tearing or the like is likely to occur.
  • the lower limit of the draw ratio in the bottle circumferential direction is preferably 2 times, more preferably 2.5 times. If it is less than the above, uneven stretching may occur.
  • the upper limit of the draw ratio in the circumferential direction of the bottle is preferably 6 times, more preferably 5 times, and further preferably 4 times. If it exceeds the above, tearing or the like is likely to occur.
  • the lower limit of the mold temperature for blow molding is preferably 80 ° C, more preferably 120 ° C, still more preferably 130 ° C, and most preferably 130 ° C. It is 140 ° C. If it is less than the above, the heat setting may not be sufficiently promoted by the heat setting performed later, and the heat resistance may be insufficient, or the heat setting time may be required to be long and the productivity may be lowered.
  • the upper limit of the mold temperature is preferably 350 ° C., more preferably 340 ° C., still more preferably 330 ° C., particularly preferably 320 ° C., and the lower limit of the mold temperature is preferably 280 ° C. It is more preferably 290 ° C, still more preferably 300 ° C. Since the polyester resin of the present invention has a property that the melting tension decreases as the temperature rises at the time of melting, when the mold temperature is raised, the melting tension decreases at the time of contact between the mold and the polyester resin and melts. While the occurrence of fracture is reduced, the melting tension becomes high after discharging from the mold, and the occurrence of drawdown is reduced.
  • the blow-molded bottle will continue to be heat-set in the mold.
  • the lower limit of the heat setting time is preferably 0.5 seconds, more preferably 1 second, and even more preferably 1.5 seconds. If it is less than the above, sufficient crystal promotion may not be performed and the heat resistance may be insufficient.
  • the upper limit of the heat set time is preferably 15 seconds, more preferably 10 seconds, and even more preferably 5 seconds. A long heat setting time is not only inferior in productivity, but in the case of a rotary blow molding machine, it is necessary to prepare a large number of dies, and a large device may be inferior in economy. After the heat set in the mold, additional heat set may be performed by further heating with infrared rays, hot air, induction heating or the like.
  • the blow molding device may be equipped with one mold, but in the case of mass production, it is provided with a plurality of molds, and these molds are used to set the heated preform in the mold, and to stretch the mold. It is preferable to use a method in which the place where the bottle is discharged, the place where the heat is set, and the place where the bottle is discharged are sequentially moved.
  • a hot parison method in which blow molding is performed without completely cooling the preform is also possible.
  • the content of the bottle to be molded is preferably 200 ml to 6 L, more preferably 300 ml to 2 L.
  • the shape of the bottle body can be any shape such as a circle, a quadrangle (including a shape with cut corners), and a hexagon.
  • the polyester resin of the present invention is subjected to blow molding (preferably direct blow molding) and is suitably used for containers (for example, bottles) for cosmetics, detergents, beverages and the like.
  • polyester resin composition is determined by 1 H-NMR analysis and 13 C-NMR analysis using a RUKER AVANCE NEO600 Fourier conversion nuclear magnetic resonance apparatus in a deuterated chloroform solvent. did.
  • the effective filtration diameter was 37.5 mm. After the filtration was completed, the cells were subsequently washed with 300 ml of chloroform and then dried under reduced pressure at 30 ° C. for 24 hours. The filtration surface of the membrane filter was observed with an optical microscope to determine the presence or absence of an undissolved substance (gel).
  • melt tension was measured under the following equipment and conditions when molding the polyester resin.
  • Capillary Leometer Toyo Seiki Seisakusho
  • Capillary length 10 mm
  • Capillary diameter 1 mm
  • Temperature 270 ° C Shear velocity: 30s -1 or 2000s -1
  • a sample piece is prepared by heating the polyester resin to a melting point of + 20 ° C. in a circular stainless steel ring with a thickness of 5 mm and an inner diameter of 50 mm to prepare a sample piece, and fluorescent X-rays.
  • the amount of elements was determined by analysis and expressed in ppm.
  • a calibration curve obtained in advance from a sample in which the amount of each element was known was used.
  • Deformity extrusion molding evaluation of formability (drawdown), mechanical properties, surface smoothness, transparency
  • Set the polyester resin to a cylinder temperature of 270 ° C, attach a die lip to a single shaft extruder (L / D 30, full flight screw, screw diameter 50 mm), and then determine the final dimensions of the deformed extrusion product at the tip of the cooling water tank.
  • L / D 30, full flight screw, screw diameter 50 mm
  • the following criteria are used for the drawdown during molding and the mechanical properties, surface smoothness, and transparency of the molded product. Evaluated according to. The results are shown in Table 2.
  • SRa central surface average
  • Synthesis Examples 1 to 6 Preparation of compound (branching agent) represented by formula (III)
  • the compound represented by the formula (III) is a 2-gallon free radical continuous polymerization reaction with reference to Patent Documents 1 to 3, US Patent Application No. 09/354350 and US Patent Application No. 09/614402. Prepared in the vessel.
  • the composition of the compound represented by the formula (III) obtained in Synthesis Examples 1 to 6 is shown in Table 1 below.
  • the weight average molecular weight of the compound represented by the formula (III) was calculated by GPC in terms of standard polystyrene.
  • l, m, and n of the compound represented by the formula (III) were determined by 1 H-NMR and 13 C-NMR analysis. That is, l, m, and n are expressed as integers by rounding off one digit after the decimal point as the average number.
  • the sample of the compound represented by the formula (III) is deuterated chloroform / trifluoroacetic acid mixed solvent (volume ratio is 85/15) in 1 H-NMR and deuterated chloroform in 13 C-NMR.
  • the number of integrations is 50 to 200 times ( 1 H-NMR) using a Fourier-converted nuclear magnetic resonance apparatus (AVANCE NEO600 manufactured by BRUKER). It was measured at room temperature under the condition of 10000 times ( 13 C-NMR). The ratio of each component and the ratio of the components located at the ends were calculated from 1 H-NMR and 13 C-NMR spectra, and l, m, and n were obtained.
  • the compound represented by the formula (III) used in the synthesis example has the following methacrylic monomer constituent unit (hereinafter, abbreviated as DEMA-DE constituent unit) (* indicates another monomer constituent unit (for example, styrene constituent unit). Units, methyl methacrylate constituent units) and bonds).
  • DEMA-DE constituent unit methacrylic monomer constituent unit
  • the compound containing the DEMA-DE constituent unit can be synthesized by subjecting glycidyl methacrylate to a ring-opening reaction with water and adding a diol (ethylene glycol) to synthesize it, or by adding a diol to glycidyl methacrylate to synthesize it. It can be obtained by such means.
  • the compound represented by the formula (III) may be obtained by opening a ring and adding a diol (ethylene glycol) for synthesis.
  • STY styrene constituent unit
  • MMA methyl methacrylate constituent unit
  • DEMA-DE constituent unit methacrylic monomer constituent unit of the above chemical formula
  • Example 1 Add 2593 g of terephthalic acid (manufactured by Mitsui Chemicals), 1937 g of ethylene glycol (manufactured by Nippon Catalyst), and 4 g of triethylamine (manufactured by Nakaraitesk) into a 10-liter pressure vessel equipped with a stirrer, thermometer, and outflow cooler, and add 0.35 MPa. Esterification was carried out under pressure at 240 ° C. for 1.5 to 3.0 hours. The compound represented by the formula (III) obtained in Synthesis Example 1 was continuously added while controlling the flow velocity so as to be 0.2% by weight with respect to 100% by weight of the alcohol component of the obtained polyester resin. , The reaction proceeded step by step.
  • the polyester pellets obtained by melt polymerization were dried under reduced pressure (13.3 Pa or less, 80 ° C., 12 hours) and then subsequently crystallized (13.3 Pa or less, 130 ° C., 3 hours, further 13.3 Pa or less, 160 ° C. for 3 hours).
  • the polyester pellets after allowing to cool are subjected to solid phase polymerization in a solid phase polymerization reactor while keeping the inside of the system at 13.3 Pa or less and 200 ° C. to 220 ° C., and the intrinsic viscosity IV is 1.18 dl / g and TOD is 0.015 polyester pellets were obtained.
  • Example 2 In Example 1, the addition amount of the compound represented by the formula (III) obtained in Synthesis Example 1 was changed to 0.001% by weight, polymerization was carried out under the same conditions as in Example 1, and the intrinsic viscosity IV was 1. Polyester pellets with .17 dl / g and TOD of 0.015 were obtained.
  • Example 3 In Example 1, the addition amount of the compound represented by the formula (III) obtained in Synthesis Example 1 was changed to 3.0% by weight, polymerization was carried out under the same conditions as in Example 1, and the intrinsic viscosity IV was 1. Polyester pellets with an .20 dl / g and a TOD of 0.010 were obtained.
  • Example 4 In Example 1, the compound represented by the formula (III) obtained in Synthesis Example 1 was used as the compound represented by the formula (III) obtained in Synthesis Example 2, and the addition amount thereof was 0.2% by weight. The polymerization was carried out under the same conditions as in Example 1 to obtain polyester pellets having an intrinsic viscosity IV of 1.20 dl / g and a TOD of 0.015.
  • Example 5 In Example 1, the compound represented by the formula (III) obtained in Synthesis Example 1 was used as the compound represented by the formula (III) obtained in Synthesis Example 3, and the addition amount thereof was 0.2% by weight. The polymerization was carried out under the same conditions as in Example 1 to obtain polyester pellets having an intrinsic viscosity IV of 1.15 dl / g and a TOD of 0.015.
  • Example 6 In Example 1, the compound represented by the formula (III) obtained in Synthesis Example 1 was used as the compound represented by the formula (III) obtained in Synthesis Example 4, and the addition amount thereof was 0.2% by weight. The polymerization was carried out under the same conditions as in Example 1 to obtain polyester pellets having an intrinsic viscosity IV of 1.14 dl / g and a TOD of 0.015.
  • Example 7 In Example 1, the compound represented by the formula (III) obtained in Synthesis Example 1 was used as the compound represented by the formula (III) obtained in Synthesis Example 5, and the addition amount thereof was 0.2% by weight. The polymerization was carried out under the same conditions as in Example 1 to obtain polyester pellets having an intrinsic viscosity IV of 1.09 dl / g and a TOD of 0.015.
  • Example 8 In Example 1, the compound represented by the formula (III) obtained in Synthesis Example 1 was used as the compound represented by the formula (III) obtained in Synthesis Example 6, and the addition amount thereof was 0.2% by weight. The polymerization was carried out under the same conditions as in Example 1 to obtain polyester pellets having an intrinsic viscosity IV of 1.08 dl / g and a TOD of 0.015.
  • Example 9 Add 2593 g of terephthalic acid (manufactured by Mitsui Chemicals), 1937 g of ethylene glycol (manufactured by Nippon Catalyst), and 4 g of triethylamine (manufactured by Nakaraitesk) into a 10-liter pressure vessel equipped with a stirrer, thermometer, and outflow cooler, and add 0.35 MPa. Esterification was carried out under pressure at 240 ° C. for 1.5 to 3.0 hours. The compound represented by the formula (III) obtained in Synthesis Example 1 was continuously added while controlling the flow velocity so as to be 0.2% by weight with respect to 100% by weight of the alcohol component of the obtained polyester resin. , The reaction proceeded step by step.
  • Germanium dioxide was added as a polycondensation catalyst to 100 ppm of germanium atom (Ge) and triethylphosphate was added to 50 ppm of phosphorus atom (P) with respect to the mass of the polyester resin, and then Solvent Blue 45 (manufactured by Clariant). Was added so as to be 1 ppm with respect to the polyester resin, and the mixture was stirred at 260 ° C. for 5 minutes at normal pressure under a nitrogen atmosphere. Then, the pressure of the reaction system was gradually lowered to 13.3 Pa (0.1 Torr) while raising the temperature to 280 ° C. over 60 minutes, and the polycondensation reaction was further carried out at 280 ° C. and 13.3 Pa.
  • 13.3 Pa 0.1 Torr
  • the polyester pellets obtained by melt polymerization were dried under reduced pressure (13.3 Pa or less, 80 ° C., 12 hours) and then subsequently crystallized (13.3 Pa or less, 130 ° C., 3 hours, further 13.3 Pa or less, 160 ° C. for 3 hours).
  • the polyester pellets after allowing to cool are subjected to solid phase polymerization in a solid phase polymerization reactor while keeping the inside of the system at 13.3 Pa or less and 200 ° C. to 220 ° C., and the intrinsic viscosity IV is 1.15 dl / g and TOD is 0.330 polyester pellets were obtained.
  • Comparative Example 1 Polymerization was carried out under the same conditions as in Example 9 without adding the compound represented by the formula (III) to obtain polyester pellets having an intrinsic viscosity IV of 1.19 dl / g and a TOD of 0.400.
  • Comparative Example 2 The addition amount of the compound represented by the formula (III) obtained in Synthesis Example 1 was changed to 0.0001% by weight, and the polymerization was carried out under the same conditions as in Example 9, and the intrinsic viscosity IV was 1.22 dl / g. Polyester pellets with a TOD of 0.400 were obtained.
  • Comparative Example 3 The addition amount of the compound represented by the formula (III) obtained in Synthesis Example 1 was changed to 6.0% by weight, and the polymerization was carried out under the same conditions as in Example 9, and the intrinsic viscosity IV was 0.71 dl / g. Polyester pellets with a TOD of 0.380 were obtained.
  • melt viscosity was 26000 dPa ⁇ s or more at a temperature of 270 ° C. and a shear rate of 30 s -1 , and 6500 dPa ⁇ s or less at a temperature of 270 ° C. and a shear rate of 2000 s -1 . could not.
  • the polyester resin of the present invention has improved moldability in extrusion molding, deformed extrusion molding, direct blow molding, inflation molding, injection blow molding, calendar processing molding, which requires high melt tension, and mechanically maintaining transparency. It is expected that the physical properties can be improved and that it will greatly contribute to the industrial world.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本発明は、ゲル化抑制、成形性、表面平滑性、透明性、機械的特性、耐熱性に優れたポリエステル樹脂等を提供することを目的とする。 本発明は、ポリエステルの構成成分としてジカルボン酸成分とアルコール成分を含み、式(III)で表される化合物の含有率がアルコール成分100重量%中0.0002~5.9重量%であることを特徴とするポリエステル樹脂に関する。 (式中、m及びnはそれぞれ、1~1000、lは0~1000を示し、R1は、炭素数6~20の芳香族炭化水素基を示し、R2、R3、R4はそれぞれ、水素原子又は炭素数1~10のアルキル基を示す。)

Description

ポリエステル樹脂
 本発明は、成形性、透明性、機械的特性、耐熱性に優れた成形品をもたらすポリエステル樹脂に関する。詳しくは、本発明は、高い溶融張力を必要とされる押出し成形、異形押出し成形、ダイレクトブロー成形、インフレーション成形、インジェクションブロー成形、カレンダー加工成形における成形性の改良に加え、透明性、耐熱性、機械的特性、耐熱性の改良を実現するポリエステル樹脂に関する。
 近年、例えば環境影響の問題により塩化ビニル系樹脂を他の素材に置き換える傾向があり、数ある代替素材の内、ポリエステル樹脂は、物理的特性、環境適性、接着特性、価格等の面から有力な素材として検討されている。
 なかでも、ポリエステル樹脂のうち、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等の結晶性ポリエステル樹脂は、射出成形による耐熱部品、押出し成形によるフィルム、シート、ブロー成形による飲料用ボトル、溶融紡糸による繊維等の様々な溶融成形製品に使用されている。
 しかしながら、これら結晶性ポリエステル樹脂を用いた成形品の透明性や柔軟性を向上させる為には、加工時の冷却条件の制御や延伸加工処理等の様々な技術が必要となる。
 また、高い溶融張力が必要とされる異形押出し成形、ダイレクトブロー成形、インフレーション成形に対してはドローダウン現象が顕著となり、予備成形品乃至成形品が垂れ下がり、成形品の厚みのムラやバリが大きくなる為、良品率、連続生産安定性が低下する問題があった。
 一方、かかるドローダウン現象という問題点を解決すべく樹脂骨格内に分岐構造(分岐剤)を導入することで、高い溶融張力が必要とされるダイレクトブロー成形の成形性を改善させる発明が開示されている(例えば、特許文献1~3)。
特許第5931061号公報 特許第5941843号公報 特開2016-56384号公報
 しかしながら、特許文献1~3の技術では、分岐構造(分岐剤)同士の反応性が高くカルボン酸化合物と混合してポリエステル樹脂の構成成分と反応させたとしてもゲル化物が発生し、ポリエステル樹脂の構成成分との溶解性が低下し、得られるポリエステル樹脂成形品は、良好な表面平滑性をもたらすことができないという問題があった。
 加えて、特許文献1~3において、ドローダウン現象は改良されるものの、高すぎる溶融張力のため、成形時にダイスから樹脂が吐出される際にメルトフラクチャーの発生により成形品の表面平滑性が低減し、成形品の透明性が低下する問題もあった。この他、ポリエステル樹脂の成形品は、耐熱性等も求められる。
 更には、ポリエステル樹脂の製造過程では、環状オリゴマー(4量体を含む)が発生し、この環状オリゴマーが加工時に金型を汚染することにより、連続成形性が低下することも問題となっていた。
 本発明は、かかる従来技術の課題を背景になされたものであり、本発明の目的は、ゲル化抑制、成形性、表面平滑性、透明性、機械的特性、耐熱性に優れた成形品をもたらすポリエステル樹脂を提供することである。また、本発明の必須ではない解決課題には、環状オリゴマー含有量が少なく、連続成形性に優れた成形品をもたらすポリエステル樹脂を提供することが含まれる。
 より詳細には、本発明の課題は、ゲル化抑制、表面平滑性、透明性、機械的特性、耐熱性に優れ、高い溶融張力を必要とされる押出し成形、異形押出し成形、ダイレクトブロー成形、インフレーション成形、インジェクションブロー成形、カレンダー加工成形における成形性に優れた成形品をもたらすポリエステル樹脂を提供することにある。
 本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。すなわち、本発明は、以下の構成を有する。
[1]ポリエステルの構成成分としてジカルボン酸成分とアルコール成分を含み、式(III)で表される化合物の含有率がアルコール成分100重量%中0.0002~5.9重量%であることを特徴とするポリエステル樹脂。
Figure JPOXMLDOC01-appb-C000002

(式中、m及びnはそれぞれ、1~1000、lは0~1000を示し、R1は、炭素数6~20の芳香族炭化水素基を示し、R2、R3、R4はそれぞれ、水素原子又は炭素数1~10のアルキル基を示す。)
[2]式(III)で表される化合物の重量平均分子量が330以上50万以下である[1]に記載のポリエステル樹脂。
[3]テレフタル酸をジカルボン酸成分100モル%中85~100モル%含み、エチレングリコールをアルコール成分として含む[1]又は[2]に記載のポリエステル樹脂。
[4]ポリエステル樹脂中の環状オリゴマー4量体の含有量が2680ppm未満である[1]~[3]のいずれかに記載のポリエステル樹脂。
[5]溶融張力が、温度270℃、引取速度100m/min、剪断速度243s-1で、14mN以上である[1]~[4]のいずれかに記載のポリエステル樹脂。
[6]溶融粘度が、温度270℃、剪断速度30s-1で、26000dPa・s以上、温度270℃、剪断速度2000s-1で、6500dPa・s以下である[1]~[5]のいずれかに記載のポリエステル樹脂。
 本発明によれば、ゲル化抑制、成形性、表面平滑性、透明性、機械的特性、耐熱性に優れたポリエステル樹脂の成形品が得られる。
 特に、成形性は、従来に比べて、高い溶融張力を必要とされる押出し成形、異形押出し成形、ダイレクトブロー成形、インフレーション成形、インジェクションブロー成形、カレンダー加工成形で優れる。
 また、本発明の必須ではない効果には、環状オリゴマー含有量が少なく、連続成形性に優れたポリエステル樹脂の成形品を得ることができることが含まれる。
1.ポリエステル樹脂
 本発明のポリエステル樹脂は、ポリエステルの構成成分としてジカルボン酸成分とアルコール成分(好ましくはポリオール成分)を含み、式(III)で表される化合物の含有率がアルコール成分100重量%中0.0002~5.9重量%であることを特徴とする。
Figure JPOXMLDOC01-appb-C000003

(式中、m及びnはそれぞれ、1~1000、lは0~1000を示し、R1は、炭素数6~20の芳香族炭化水素基を示し、R2、R3、R4はそれぞれ、水素原子又は炭素数1~10のアルキル基を示す。)
 本発明のポリエステル樹脂は、所定のジカルボン酸成分とアルコール成分との重合体を含み、アルコール成分として式(III)で表される化合物の含有率が所定量であるところに特徴がある。
 本発明において、式(III)で表される化合物は、ポリエステル樹脂に対する分岐剤であり、通常使用されるジオール成分(以下、単にジオール成分と称する)と共にアルコール成分として用いられる。適当な段階でポリエステル樹脂鎖中に結合する限り、式(III)で表される化合物は樹脂組成物中に化合物として存在していてもよいが、式(III)の化合物がポリエステル樹脂のカルボン酸成分と結合した状態で存在している事が好ましい。
 式(III)で表される化合物は、ジカルボン酸成分が有するカルボキシル基と反応し得る官能基(水酸基)を分子内1分子あたり平均で2個以上(好ましくは3個以上)有し、ポリエステル樹脂全体に分岐構造を部分的に導入することができる。
 一方、特許文献1~3に開示される分岐剤は、エポキシ基を有しており、ジカルボン酸成分との反応性が高いことから、ポリエステル樹脂に通常使用されるジオール成分よりもジカルボン酸と優先的に反応し、その反応物は次いでジオール成分と反応して側鎖に水酸基を有するポリエステル樹脂が形成され得るが、ポリエステル樹脂形成中に分岐剤に含まれるエポキシ基同士、さらには該エポキシ基とポリエステル樹脂のカルボキシル基や水酸基とが反応してゲル化物が形成され得る。
 本発明のポリエステル樹脂は、エポキシ基を有さない分岐剤である式(III)で表される化合物とジカルボン酸成分とが反応して形成される。
 この様に、本発明のポリエステル樹脂は、樹脂構造の点で特許文献1~3のポリエステル樹脂とは相異なっており、分岐剤のエポキシ基同士、さらには該エポキシ基とポリエステル樹脂のカルボキシル基や水酸基とが反応することがない為、ゲル化を抑制できる。
 また、本発明のポリエステル樹脂は、式(III)で表される化合物を使用していることから、溶融押出時において、溶融張力が高温になる程低下することから、また、溶融粘度が高剪断下で低下することから、成形時にメルトフラクチャーが発生せず、成形性、表面平滑性、透明性、機械的特性、耐熱性にも優れることになる。
 さらに、ポリエステル樹脂では環状オリゴマー含有量が少ないことから、加工時に金型が汚染されにくくなって、連続成形性が改善できる。
 式(III)で表される化合物は、以下の通りである。
Figure JPOXMLDOC01-appb-C000004
(式中、m及びnはそれぞれ、1~1000、lは0~1000を示し、R1は、炭素数6~20の芳香族炭化水素基を示し、R2、R3、R4はそれぞれ、水素原子又は炭素数1~10のアルキル基を示す。)
 R1は、炭素数6~20の芳香族炭化水素基を示す。
 R1で表される炭素数6~20の芳香族炭化水素基としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、2-エチルフェニル基、3-エチルフェニル基、4-エチルフェニル基、2,3-ジメチルフェニル基、2,4-ジメチルフェニル基、2,5-ジメチルフェニル基、2,6-ジメチルフェニル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、4-ビニルフェニル基、o-イソプロピルフェニル基、m-イソプロピルフェニル基、p-イソプロピルフェニル基、o-tert-ブチルフェニル基、m-tert-ブチルフェニル基、p-tert-ブチルフェニル基、3,5-ジ(tert-ブチル)フェニル基、3,5-ジ(tert-ブチル)-4-メチルフェニル基、4-ブチルフェニル基、4-ペンチルフェニル基、2,6-ビス(1-メチルエチル)フェニル基、2,4,6-トリス(1-メチルエチル)フェニル基、4-シクロヘキシルフェニル基、2,4,6-トリメチルフェニル基、4-オクチルフェニル基、4-(1,1,3,3-テトラメチルブチル)フェニル基、1-ナフチル基、2-ナフチル基、5,6,7,8-テトラヒドロ-1-ナフチル基、5,6,7,8-テトラヒドロ-2-ナフチル基、フルオレニル基等が挙げられる。
 芳香族炭化水素基の炭素数は、好ましくは6~18、より好ましくは6~15、さらに好ましくは6~12である。
 なかでも、芳香族炭化水素基はフェニル基、o-トリル基、m-トリル基、p-トリル基であることが特に好ましく、最も好ましくはフェニル基である。
 R2、R3、R4は、水素原子又は炭素数1~10のアルキル基を示す。
 R2、R3、R4で表される炭素数1~10のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の直鎖状アルキル基;
 イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、2-エチルブチル基、3,3-ジメチルブチル基、1,1,3,3-テトラメチルブチル基、1-メチルブチル基、1-エチルプロピル基、3-メチルブチル基、ネオペンチル基、1,1-ジメチルプロピル基、2-メチルペンチル基、3-エチルペンチル基、1,3-ジメチルブチル基、2-プロピルペンチル基、1-エチル-1,2-ジメチルプロピル基、1-メチルペンチル基、4-メチルペンチル基、4-メチルヘキシル基、5-メチルヘキシル基、2-エチルヘキシル基、1-メチルヘキシル基、1-エチルペンチル基、1-プロピルブチル基、3-エチルヘプチル基、2,2-ジメチルヘプチル基、1-メチルヘプチル基、1-エチルヘキシル基、1-プロピルペンチル基、1-メチルオクチル基、1-エチルヘプチル基、1-プロピルヘキシル基、1-ブチルペンチル基、1-メチルノニル基、1-エチルオクチル基、1-プロピルヘプチル基及び1-ブチルヘキシル基等の分枝鎖状アルキル基;
 シクロプロピル基、1-メチルシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、1-メチルシクロヘキシル基、2-メチルシクロヘキシル基、3-メチルシクロヘキシル基、4-メチルシクロヘキシル基、1,2-ジメチルシクロヘキシル基、1,3-ジメチルシクロヘキシル基、1,4-ジメチルシクロヘキシル基、2,3-ジメチルシクロヘキシル基、2,4-ジメチルシクロヘキシル基、2,5-ジメチルシクロヘキシル基、2,6-ジメチルシクロヘキシル基、3,4-ジメチルシクロヘキシル基、3,5-ジメチルシクロヘキシル基、2,2-ジメチルシクロヘキシル基、3,3-ジメチルシクロヘキシル基、4,4-ジメチルシクロヘキシル基、シクロオクチル基、2,4,6-トリメチルシクロヘキシル基、2,2,6,6-テトラメチルシクロヘキシル基、3,3,5,5-テトラメチルシクロヘキシル基等のシクロアルキル基等が挙げられる。
 アルキル基の炭素数は、好ましくは1~8、より好ましくは1~6、さらに好ましくは1~4である。
 なかでも、アルキル基は、メチル基、エチル基、プロピル基、ブチル基であることが特に好ましく、最も好ましくはメチル基である。
 R2及びR3は、炭素数1~10のアルキル基であることが好ましく、R4は水素原子であることが好ましい。
 前記l、m、nは、1分子中に含まれる下記共重合体成分(L)、(M)、(N)の比であり、かつ1分子中に含まれる各成分の平均個数を、小数点以下一桁を四捨五入して整数で表した値(比)である。1分子中に含まれる各成分の比、及び平均個数は、1H-NMR分析及び13C-NMR分析から求めたものである。
Figure JPOXMLDOC01-appb-C000005
 整数で比を表すのに使用するm及びnの値はそれぞれ、同一でもよく異なっていてもよく、1~1000、好ましくは2~800、より好ましくは5~600、さらに好ましくは10~400を示す。
 lは、0~1000、好ましくは1~700、より好ましくは2~400、さらに好ましくは5~100である。
 式(III)で表される化合物は、共重合体成分(L)、(M)、(N)がランダムに共重合したランダム共重合体であっても、共重合体成分(L)、(M)、(N)のうち少なくとも一つの成分がブロックとなるブロック共重合体であっても良いが、ランダム共重合体であることが好ましい。
 本発明のポリエステル樹脂は、上記m、n、lを満たす限り、1種又は2種以上のポリエステル樹脂であってもよい。
 式(III)で表される化合物は、例えば、特許文献1~3、米国特許出願第09/354350号及び米国特許出願第09/614402号等の記載を参照して、2ガロンのフリーラジカル連続式重合反応器系内で調製することが可能であるが、さらにエポキシ基が変性されたものを使用する。
 式(III)で表される化合物の含有率は、ポリエステル樹脂の構成成分であるアルコール成分100重量%中、0.0002~5.9重量%であり、好ましくは0.0005~5.0重量%、さらに好ましくは0.001~4.5重量%、さらにより好ましくは4.0重量%以下、特に好ましくは3.5重量%以下である。
 式(III)で表される化合物の含有率が0.0002重量%未満では、成形時にドローダウンを起こし、成形が安定しないか、成形できたとしても偏肉を起こした成形品となる傾向にある。他方、式(III)で表される化合物の含有率が5.9重量%を超えると、ゲル化が発生し、成形時にメルトフラクチャーが発生し、表面平滑性が不良となり、失透した成形品となる。また、ゲルを含んだ品質が低い成形品となる傾向がある。
 式(III)で表される化合物は、所定の重量平均分子量を有していてもよく、式(III)で表される化合物の重量平均分子量は、好ましくは330以上50万以下、より好ましくは500以上、さらに好ましくは700以上、さらにより好ましくは1000以上、より好ましくは30万以下、さらに好ましくは10万以下、さらにより好ましくは5万以下である。
 式(III)で表される化合物の重量平均分子量が330未満であると未反応の化合物が成形品の表面にブリードアウトし、成形品の表面が汚染される虞がある。一方、式(III)で表される化合物の重量平均分子量が50万を超えると、ポリエステル樹脂からなる成形品の折り曲げ時に、当該化合物とポリエステル間の相溶性が悪くなりボイドが発生し、白化する虞がある。
 当該重量平均分子量は、例えば標準ポリスチレン換算に基づいたGPCにより求めることができる。
 具体的に、当該重量平均分子量は、式(III)で表される化合物の試料4mgを秤量し、4mlのクロロホルムとイソフルオロイソプロパノールの混合溶媒(60/40体積%)に溶解後、0.2μmのメンブレンフィルターでろ過し、得られた試料溶液をGPCに供し、標準ポリスチレンに換算することにより求めることができる。
 本発明で使用されるジカルボン酸成分とジオール成分は以下の通りである。
 ジカルボン酸成分としては、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、1,3-シクロブタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2,5-ノルボルナンジカルボン酸、ダイマー酸等に例示される飽和脂肪族ジカルボン酸又はこれらのエステル形成性誘導体(例えば、これらの炭素原子数1以上20以下のアルキルエステル)、フマル酸、マレイン酸、イタコン酸等に例示される不飽和脂肪族ジカルボン酸又はこれらのエステル形成性誘導体(例えば、これらの炭素原子数1以上20以下のアルキルエステル)、オルソフタル酸、イソフタル酸、テレフタル酸、5-(アルカリ金属)スルホイソフタル酸、ジフェニン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4'-ビフェニルジカルボン酸、4,4'-ビフェニルスルホンジカルボン酸、4,4'-ビフェニルエーテルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p'-ジカルボン酸、パモイン酸、アントラセンジカルボン酸等に例示される芳香族ジカルボン酸又はこれらのエステル形成性誘導体(例えば、これらの炭素原子数1以上20以下のアルキルエステル、好ましくはテレフタル酸ジメチル)が挙げられる。
 これらのジカルボン酸成分のうち、イソフタル酸、テレフタル酸およびナフタレンジカルボン酸が好ましく、テレフタル酸が、得られるポリエステル樹脂の物性等の点で特に好ましい。
 上記ジカルボン酸に加えて3~4価のカルボン酸を少量で使用してもよい。
 当該カルボン酸としては、エタン酸、トリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3,4,3’,4’-ビフェニルテトラカルボン酸、これらのエステル形成性誘導体(例えば、これらの炭素原子数1以上20以下のアルキルエステル)等が挙げられる。
 アルコール成分として、式(III)で表される化合物とともに、ジオール成分が用いられる。アルコール成分100重量%中、ジオール成分(式(III)で表される化合物を含まない)は、99.9998~94.1重量%であることが好ましく、より好ましくは99.9995~95重量%、さらに好ましくは99.999~95.5重量%、特に好ましくは96重量%以上、最も好ましくは96.5重量%以上である。
 ジオール成分は、エチレングリコールであることが好ましい。エチレングリコールは、ジオール成分100モル%中85モル%以上含むことが好ましく、85~99モル%含むことがより好ましい。
 エチレングリコール以外で使用してもよいジオールとしては、1,2-プロピレングリコール、1,3-プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオー ル、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、1,10-デカメチレングリコール、1,12-ドデカンジオール、イソソルビド、ポリエチレングリコール(エチレン構成単位4以上のもの)、ポリトリメチレングリコール、ポリテトラメチレングリコール、フルオレンジオール等に例示される脂肪族グリコール、ヒドロキノン、4,4'-ジヒドロキシビスフェノール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-ビス(β-ヒドロキシエトキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)エーテル、ビス(p-ヒドロキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)メタン、1,2-ビス(p-ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールC、2,5-ナフタレンジオール、これらのグリコールにエチレンオキシドが付加したグリコールやビスフェノールA、F、S、Cに水添加した物等に例示される芳香族グリコールが挙げられる。
 上記ジオール成分に加え、3~4価のアルコール、ヒドロキシカルボン酸、環状エステル等をジオール成分として使用してもよい。
 当該アルコールとしては、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロール、ヘキサントリオール等が挙げられる。
 当該ヒドロキシカルボン酸としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3-ヒドロキシ酪酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸、4-ヒドロキシシクロヘキサンカルボン酸、又はこれらのエステル形成性誘導体(例えば、これらの炭素原子数1以上20以下のアルキルエステル)等が挙げられる。
 環状エステルとしては、ε-カプロラクトン、β-プロピオラクトン、β-メチル-β-プロピオラクトン、δ-バレロラクトン、グリコリド、ラクチド等が挙げられる。
 本発明のポリエステル樹脂は、テレフタル酸をジカルボン酸成分100モル%中85~100モル%含み、エチレングリコールをアルコール成分(より正確にはジオール成分)として含むことが好ましい。エチレングリコールは、ジオール成分100モル%中85~99モル%含むことが好ましい。
 テレフタル酸は、ジカルボン酸成分100モル%中、より好ましくは90~100モル%、さらに好ましくは95~100モル%含み、エチレングリコールは、ジオール成分100モル%中、より好ましくは90~99モル%、さらに好ましくは95~99モル%含む。
 本発明のポリエステル樹脂は、共重合ポリエチレンテレフタレート樹脂であることが好ましい。
 本発明のポリエステル樹脂は、結晶性ポリエステル樹脂であり、かつ分岐構造を有し、分子量増加の「溶融強度増強効果」により成形性等の加工性を改善できると共に、溶融粘度及び溶融張力を調節でき、成形品の耐折り曲げ白化性及び未反応物の成形品の表層へのブリードアウトを抑制できる。
 上記テレフタル酸とエチレングリコールの含有率が上記範囲を外れると非晶性のポリエステル樹脂となり固相重合による高粘度化ができなくなり、高い機械的物性を持つ成形品を得ることができない虞がある。
 更に、本発明のポリエステル樹脂では、環状オリゴマー含有量が低減されていることが好ましい。この環状オリゴマーは、4量体であることが好ましく、テレフタル酸とエチレングリコールが反応してなる4量体(以降CT4ともいう)、即ち、テレフタル酸、エチレングリコール、テレフタル酸、エチレングリコール、テレフタル酸、エチレングリコール、テレフタル酸、エチレングリコールの順に環状に結合した環状4量体であることがより好ましい。
 ポリエステル樹脂中の環状オリゴマー4量体の含有量は、好ましくは2680ppm未満、より好ましくは2650ppm以下、さらに好ましくは2600ppm以下であり、好ましくは0ppm超、より好ましくは1ppm以上、さらに好ましくは10ppm以上、さらにより好ましくは100ppm以上である。
 遊離のCT4が2680ppm未満であることで成形品の表層へのブリードアウトを抑制でき成形品やフィルムの透明性を向上させ、成形品やフィルムの高品質に保つことができ、更には、肉厚な成形品やフィルムにしても十分な透明性を維持できる。また、CT4が2680ppm以上になると、連続フィルム成膜、繊維押し出し時に押出成形機のダイスの樹脂出口近辺や射出成形機の金型などの汚れが非常に酷くなる傾向にある。更に成形品の表層へのブリードアウトした遊離のCT4がフィルムや成形品や繊維の表面に付着して商品価値が低下する傾向にある。
 これらのメカニズムは不明であるが、ポリエステルの構成成分としてジカルボン酸成分とアルコール成分を含み、式(III)で表される化合物の含有率がアルコール成分100重量%中0.0002~5.9重量%であることで、式(III)の構造がCT4の環形成時の立体障害になり、遊離のCT4が2680ppm未満になると考えられる。
 本発明のポリエステル樹脂は、所定の固有粘度IVを有していてもよい。
 当該固有粘度IVは、好ましくは0.40~2.10dl/g、より好ましくは0.50~1.90dl/g、さらに好ましくは0.60~1.70dl/gである。
 当該固有粘度は、パラクロロフェノール/テトラクロロエタン(3/1:重量比)混合溶媒にポリエステル樹脂を溶解し、オストワルド粘度計を用いて30℃で測定することが可能である。
 本発明に用いられるポリエステル樹脂の酸価(AV)は、好ましくは100eq/106g(ton)以下、より好ましくは60eq/106g以下、さらに好ましくは50eq/106g以下である。一方下限は低ければ低いほど好ましく、0eq/106gに近いものほど好ましい。酸価が100eq/106gを超えると、ゲルが発生し、表面性やヘイズが低下する傾向にある。
 当該酸価は、ポリエステル樹脂の試料をアルコール及び又はエーテル溶液に溶解し、フェノールフタレイン試薬を指示薬として用いアルコール性水酸化ナトリウム溶液又はアルコール性水酸化カリウム溶液で滴定することにより、求めることができる。具体的な酸価の測定方法は、実施例に示す通りである。
 本発明のポリエステル樹脂は、所定の融点を有していてもよく、ポリエステル樹脂の融点は、好ましくは200~300℃、より好ましくは220~280℃、さらに好ましくは240~260℃、さらにより好ましくは250℃以上である。
 当該融点は、示差走査熱量分析計(DSC)を用い、300℃まで昇温速度20℃/分にて測定し、融解熱の最大ピーク温度を結晶融点として求めることができる。
 本発明のポリエステル樹脂は、アルミニウム化合物及びリン化合物を少なくとも含む重合触媒を介して製造されることが好ましく、係る重合触媒に由来して、アルミニウム量3~1000ppm、リン量5~10000ppmを有することが好ましい。
 他の重合触媒として、チタン化合物及びゲルマニウム化合物から選ばれる1種以上を使用してもよく、リン化合物及びゲルマニウム化合物の組み合わせを使用してもよい。
 アルミニウム化合物は、酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、及び水酸化塩化アルミニウムから選ばれる少なくとも1種であることが好ましく、酢酸アルミニウム及び塩基性酢酸アルミニウムから選ばれる少なくとも1種であることがより好ましく、酢酸アルミニウムであることがさらに好ましい。
 アルミニウム量は、ポリエステル樹脂の全質量に対し、アルミニウム原子として、好ましくは3~1000ppm、より好ましくは5~800ppm、さらに好ましくは8~500ppmである。アルミニウム量が少ないと重合活性が低下する虞があり、アルミニウム量が多いとアルミニウム由来の異物が多く発生する虞がある。
 アルミニウム化合物と共に重合触媒として用いるリン化合物について説明する。リン化合物は、ホスホン酸系化合物及びホスフィン酸系化合物から選ばれる少なくとも1種であることが好ましく、ホスホン酸系化合物であることがより好ましい。
 リン化合物は、同一分子内にフェノール構造を有することが好ましく、同一分子内にフェノール構造を有するホスホン酸系化合物及びホスフィン酸系化合物から選ばれる少なくとも1種であることがより好ましく、同一分子内にフェノール構造を有するホスホン酸系化合物であることがさらに好ましい。
 同一分子内にフェノール構造を有するリン化合物としては、p-ヒドロキシフェニルホスホン酸、p-ヒドロキシフェニルホスホン酸ジメチル、p-ヒドロキシフェニルホスホン酸ジエチル、p-ヒドロキシフェニルホスホン酸ジフェニル、ビス(p-ヒドロキシフェニル)ホスフィン酸、ビス(p-ヒドロキシフェニル)ホスフィン酸メチル、ビス(p-ヒドロキシフェニル)ホスフィン酸フェニル、p-ヒドロキシフェニルフェニルホスフィン酸、p-ヒドロキシフェニルフェニルホスフィン酸メチル、p-ヒドロキシフェニルフェニルホスフィン酸フェニル、p-ヒドロキシフェニルホスフィン酸、p-ヒドロキシフェニルホスフィン酸メチル、p-ヒドロキシフェニルホスフィン酸フェニル、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジエチル等が挙げられる。
 中でも、リン化合物は、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジエチルであることが特に好ましい。かかるリン化合物は、例えばIrgamod(登録商標)295(BASF製)等を使用することができる。
 リン量は、ポリエステル樹脂の全質量に対し、リン原子として、好ましくは5~10000ppm、より好ましくは8~8000ppm、さらに好ましくは10~6000ppmである。リン量が少ないと、重合活性が低下し、アルミニウムに由来する異物が多く発生する虞があり、リン量が多いと、触媒コストが増大する虞がある。
 チタン化合物は、テトラブチルチタン、テトラベンジルチタン、テトラ-n-プロピルチタネート、テトライソプロピルチタネート、テトラ-n-ブチルチタネート、テトライソブチルチタネート、テトラ-tert-ブチルチタネート、テトラシクロヘキシルチタネート、テトラフェニルチタネート、テトラベンジルチタネート、蓚酸チタン酸リチウム、蓚酸チタン酸カリウム、蓚酸チタン酸アンモニウム、酸化チタン、チタンとケイ素やジルコニウムやアルカリ金属やアルカリ土類金属などとの複合酸化物、チタンのオルトエステルまたは縮合オルトエステル、チタンのオルトエステルまたは縮合オルトエステルとヒドロキシカルボン酸からなる反応生成物、チタンのオルトエステルまたは縮合オルトエステルとヒドロキシカルボン酸とリン化合物からなる反応生成物、チタンのオルトエステルまたは縮合オルトエステルと少なくとも2個のヒドロキシル基を有する多価アルコール、2-ヒドロキシカルボン酸および塩基からなる反応生成物などが挙げられ、このうち、テトラブチルチタン、チタンとケイ素の複合酸化物、チタンとマグネシウムの複合酸化物、チタンのオルトエステルまたは縮合オルトエステルとヒドロキシカルボン酸とリン化合物からなる反応生成物が好ましい。
 チタン量は、ポリエステル樹脂の全質量に対し、チタン原子として、好ましくは1~300ppm、より好ましくは2~200ppm、さらに好ましくは3~100ppmである。
 ゲルマニウム化合物は、二酸化ゲルマニウム、酢酸ゲルマニウム等が挙げられる。中でも、二酸化ゲルマニウムが好ましい。
 ゲルマニウム量は、ポリエステル樹脂の全質量に対し、ゲルマニウム原子として、好ましくは1~500ppm、より好ましくは2~400ppm、さらに好ましくは3~300ppmである。
 上記原子の量は、例えば蛍光X線分析により算出してもよい。
 また、ゲルマニウム化合物と共に用いるリン化合物として、リン酸ならびにトリメチルリン酸、トリエチルリン酸、フェニルリン酸、トリフェニルリン酸等のリン酸エステル、亜リン酸ならびにトリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)4,4’-ビフェニレンジホスファイト等の亜リン酸エステル等を使用してもよい。
 本発明のポリエステル樹脂は、溶融時に所定の溶融張力及び溶融粘度を有することが好ましい。
 本発明のポリエステル樹脂は、温度が250℃以上で高くなる程、溶融張力が低下する性質を有する。
 本発明において、高密度ポリエチレン等と同等以上の性能を呈する観点から、溶融張力は、温度270℃、引取速度100m/min、剪断速度243s-1で、14mN以上であることが好ましく、より好ましくは17mN以上、さらに好ましくは19mN以上であり、溶融張力の上限は、例えば170mN以下又は120mN以下である。
 当該溶融張力は、例えばキャピラリーレオメーターを所定条件下(キャピラリー長10mm、キャピラリー径1mm、温度270℃、剪断速度243s-1、引取最大速度200m/min、引取開始速度10m/min、又は引取速度100m/min(一定)、引取時間90秒)で使用することにより、求めることができる。
 本発明のポリエステル樹脂は、溶融時の剪断速度2000s-1で、温度が250℃以上で高くなる程、溶融粘度が低下する性質を有する。
 本発明において、溶融押出時のメルトフラクチャーの発生を抑制する等の観点から、溶融粘度は、温度270℃、剪断速度30s-1で、26000dPa・s以上、温度270℃、剪断速度2000s-1で、6500dPa・s以下であることが好ましい。本発明のポリエステル樹脂は、溶融時の高温下でチキソトロピー性を示すものであり、メルトフラクチャーの発生を抑えることができ、良好な成形性をもたらす。
 溶融粘度は、温度270℃、剪断速度30s-1で、26000dPa・s以上であることが好ましく、より好ましくは28000dPa・s以上、さらに好ましくは30000dPa・s以上、溶融粘度の上限は、例えば50000dPa・s以下又は45000dPa・s以下である。
 溶融粘度は、温度270℃、剪断速度2000s-1で、6500dPa・s以下であることが好ましく、より好ましくは6300dPa・s以下、さらに好ましくは6200dPa・s以下であり、溶融粘度の下限は、例えば5500dPa・s以上である。
 溶融粘度は、例えばJIS K7199に基づいて測定することができる。
 溶融粘度は、例えばキャピラリーレオメーターを所定条件(キャピラリー長10mm、キャピラリー径1mm、温度270℃、剪断速度30s-1又は2000s-1)で使用して求めることができる。
 本発明のポリエステル樹脂は、耐熱性の観点から、所定の耐熱酸化分解パラメーター(TOD)を有していてもよく、ポリエステル樹脂の耐熱酸化分解パラメーター(TOD)は、0.390以下であることが好ましい。TODは、下記実施例の項目に記載の方法により算出できる。TODは、0.385以下がより好ましく、0.380以下がさらに好ましく、0.375以下が特に好ましく、0.370以下が最も好ましい。当該TODの下限は、例えば0.010以上、0.015以上又は0.020以上である。当該TODが0.390超であると、ドローダウン時の成形性が低下する虞がある。
 本発明のポリエステル樹脂には、有機系、無機系、及び有機金属系のトナー、ならびに蛍光増白剤等の添加剤を含んでいてもよい。これら添加剤を一種もしくは二種以上含有することによって、ポリエステル樹脂の黄み等の着色をさらに優れたレベルにまで抑えることができる。また他の任意の重合体や制電剤、消泡剤、染色性改良剤、染料、顔料、艶消剤、蛍光増白剤、安定剤、酸化防止剤、その他の添加剤が含有されていてもよい。酸化防止剤としては、芳香族アミン系、フェノール系等の酸化防止剤が使用可能であり、安定剤としては、リン酸やリン酸エステル系等のリン系、硫黄系、アミン系等の安定剤が使用可能である。
 また、ポリエステル樹脂は、前記のようにして溶融重縮合工程を終了したあと溶融状態のままで、あるいは、さらに固相重合などの処理を終了したあと、チップ状態で、直接成形工程に導入して成形体とすることもできる。また、溶融重縮合ポリマ一の製造工程の任意の反応器や輸送配管に所定量の添加物、例えば、結晶化特性改良剤、アルデヒド低減剤、着色改良剤、安定剤等を添加し、目的とする特性を持つように溶融重縮合したあと、そのままか、あるいは、さらに固相重合などの処理を終了したあと、直接成形工程に導入して成形体とすることもできる。
 本発明のポリエステル樹脂から作製されるポリエステル樹脂成形品は、所定の三次元粗さの中心面平均(SRa)を有していてもよい。ポリエステル樹脂成形品のSRaは、好ましくは0.15μm未満であり、より好ましくは0.14μm以下、さらに好ましくは0.13μm以下、さらにより好ましくは0.12μm以下であり、好ましくは0.01μm以上又は0.02μm以上である。
 係る三次元粗さの中心面平均(SRa)は、例えば表面粗さ測定器(微細形状測定器、小坂研究所製 サーフコーダET4000A)を使用して求めることができる。
2.ポリエステル樹脂の製造方法
 本発明のポリエステル樹脂は、従来公知の方法で製造することができる。例えば、PETを製造する場合は、テレフタル酸とエチレングリコ-ル及び必要により他の共重合成分を直接反応させて水を留去しエステル化した後、減圧下に重縮合を行う直接エステル化法、または、テレフタル酸ジメチルとエチレングリコ-ル及び必要により他の共重合成分を反応させてメチルアルコ-ルを留去しエステル交換させた後、減圧下に重縮合を行うエステル交換法により製造される。さらに必要に応じて極限粘度を増大させる為に固相重合を行ってもよい。固相重合前の結晶化促進のため、溶融重合ポリエステルを吸湿させたあと加熱結晶化させたり、また水蒸気を直接ポリエステルチップに吹きつけて加熱結晶化させたりしてもよい。
 式(III)で表される化合物の添加方法に関しては重合時に添加することが好ましい。
 式(III)で表される化合物は添加時に分散して添加してもよい。
 前記重縮合反応は、回分式反応装置で行っても良いし、また連続式反応装置で行っても良い。これらいずれの方式においても、エステル化反応、あるいはエステル交換反応は1段階で行っても良いし、また多段階に分けて行っても良い。重縮合反応は1段階で行っても良いし、また多段階に分けて行っても良い。固相重合反応は、重縮合反応と同様、回分式装置や連続式装置で行うことが出来る。重縮合と固相重合は連続で行っても良いし、分割して行ってもよい。
 以下、ポリエステル樹脂としてPETを例にして連続式の好ましい製造方法の一例について説明する。
 エステル化反応は、1~3個のエステル化反応器を直列に連結した多段式装置を用いてエチレングリコ-ルが還流する条件下で、反応によって生成した水またはアルコ-ルを精留塔で系外に除去しながら実施する。第1段目のエステル化反応の温度は好ましくは240~270℃、より好ましくは245~265℃、圧力は好ましくは0.2~3kg/cm2G、より好ましくは0.5~2kg/cm2Gである。最終段目のエステル化反応の温度は通常250~290℃、好ましくは255~275℃であり、圧力は通常0~1.5kg/cm2G、好ましくは0~1.3kg/cm2Gである。3段階以上で実施する場合には、中間段階のエステル化反応の反応条件は、上記第1段目の反応条件と最終段目の反応条件の間の条件である。これらのエステル化反応の反応率の上昇は、それぞれの段階で滑らかに分配されることが好ましい。最終的にはエステル化反応率は好ましくは90%以上、より好ましくは93%以上に達することが望ましい。これらのエステル化反応により分子量500~5000程度の低次縮合物が得られる。
 上記エステル化反応は原料としてテレフタル酸を用いる場合は、テレフタル酸の酸としての触媒作用により無触媒でも反応させることができるが、重縮合触媒の共存下に実施してもよい。
 また、トリエチルアミン、トリ-n-ブチルアミン、ベンジルジメチルアミン等の第3級アミン、水酸化テトラエチルアンモニウム、水酸化テトラ-n-ブチルアンモニウム、水酸化トリメチルベンジルアンモニウム等の水酸化第4級アンモニウム及び炭酸リチウム、炭酸ナトリウム、炭酸カリウム、酢酸ナトリウム等の塩基性化合物を少量添加して重縮合すると、ポリエチレンテレフタレ-トの主鎖中のジオキシエチレンテレフタレ-ト成分単位の割合を比較的低水準(全ジオール成分に対して5モル%以下)に保持できるので好ましい。
 次に、エステル交換反応によって低重合体を製造する場合は、テレフタル酸ジメチル1モルに対して好ましくは1.1~3.0モル、より好ましくは1.2~2.5モルのエチレングリコ-ルが含まれた溶液を調製し、これをエステル交換反応工程に連続的に供給する。
 エステル交換反応は、1~2個のエステル交換反応器を直列に連結した装置を用いてエチレングリコ-ルが還留する条件下で、反応によって生成したメタノ-ルを精留塔で系外に除去しながら実施する。第1段目のエステル交換反応の温度は好ましくは180~250℃、より好ましくは200~240℃である。最終段目のエステル交換反応の温度は通常230~270℃、好ましくは240~265℃であり、エステル交換触媒として、Zn、Cd、Mg、Mn、Co、Ca、Ba等の脂肪酸塩、炭酸塩やPb、Zn、Sb、Geの酸化物等を用いてもよい。これらのエステル交換反応により分子量約200~500程度の低次縮合物が得られる。
 次いで得られた低次縮合物は多段階の液相縮重合工程に供給される。重縮合反応条件は、第1段階目の重縮合の反応温度は好ましくは250~290℃、より好ましくは260~280℃であり、圧力は好ましくは500~20Torr、より好ましくは200~30Torrで、最終段階の重縮合反応の温度は好ましくは265~300℃、より好ましくは275~295℃であり、圧力は好ましくは10~0.1Torr、より好ましくは5~0.5Torrである。3段階以上で実施する場合には、中間段階の重縮合反応の反応条件は、上記第1段目の反応条件と最終段目の反応条件の間の条件である。これらの重縮合反応工程の各々において到達される極限粘度の上昇の度合は滑らかであることが好ましい。
 このようにして得られた重縮合されたポリエステル樹脂は次に固相重合される。前記のポリエステル樹脂を従来公知の方法によって固相重合する。まず固相重合に供される前記のポリエステル樹脂は、不活性ガス下又は減圧下、或いは水蒸気又は水蒸気含有不活性ガス雰囲気下において、例えば100~190℃の温度で1~5時間加熱して予備結晶化される。次いで不活性ガス雰囲気下又は減圧下に190~230℃の温度で1~50時間の固相重合を行う。
 本発明で使用される触媒は、重縮合反応のみならずエステル化反応及びエステル交換反応でも触媒活性を有する。例えば、テレフタル酸ジメチル等のジカルボン酸のアルキルエステルとエチレングリコール等のグリコールとのエステル交換反応の際に触媒を用いることもできる。また、本発明で使用される触媒は、溶融重合のみならず固相重合や溶液重合においても触媒活性を有しており、いずれの方法によってもポリエステル樹脂を製造することが可能である。
 本発明で使用する重合触媒は、重合反応の任意の段階で反応系に添加することができる。例えばエステル化反応、エステル交換反応の開始前、反応途中の任意の段階、重縮合反応の開始直前、又は重縮合反応途中の任意の段階で反応系に添加できる。特に、アルミニウム又はアルミニウム化合物は重縮合反応の開始直前に添加することが好ましい。
 本発明で使用されるリン化合物以外の重合触媒の添加方法は、粉末状ないしはニート状での添加であってもよいし、エチレングリコール等の溶媒のスラリー状もしくは溶液状での添加であってもよく、特に限定されない。また、アルミニウム又はアルミニウム化合物あるいはリン化合物と他の成分とを予め混合した混合物として添加してもよいし、これらを別々に添加してもよい。また、アルミニウム又はアルミニウム化合物あるいはリン化合物と他の成分を同じ添加時期に重合系に添加してもよく、それぞれの成分を別々の添加時期に添加してもよい。また、触媒の全量を一度に添加しても、複数回に分けて添加してもよい。
 本発明のポリエステル樹脂は、重縮合、固相重合した後、ブロー成形(好ましくはダイレクトブロー成形)に供されることが好ましい。耐熱性ボトルのブロー成形では一般にはプリフォームと呼ばれる有底の前駆体を作製し、このプリフォームを金型内でブロー延伸し、さらにヒートセットされてもよい。プリフォームの製造は、圧縮成形、射出成形等の方法が用いられる。射出成形を例にすると、260~350℃に加熱溶融し、プリフォームの金型内に射出することでプリフォームを得ることができる。通常、プリフォームは肉厚の試験管状の形状で底部にゲート部を持ち、口栓部にはキャップ用のスクリューが刻まれている。
 耐熱性ボトルでは得られたプリフォームの口栓部を結晶化させてもよい。結晶化させることで高温の内容物を充填する場合であっても、口栓部が変形することを防ぐことができる。口栓部の結晶化は好ましくは130~200℃、より好ましくは140~190℃に加熱して行う。加熱方法としては、赤外線ヒーター、熱風、誘導加熱、オイルバスへの浸漬など用いることができ、赤外線ヒーターを用いることが生産性の面などから好ましい。なお、口栓部の加熱結晶化はブロー成形後でもよい。
 プリフォームを加熱し、このプリフォームをボトル長さ方向(縦方向)に延伸すると共に周方向にブロー成形してボトルを得る。長さ方向には通常棒状の延伸ロッドで延伸され、周方向には空気、窒素等の加圧ガスを用いる。加圧ガスは1~10MPaが好ましい。延伸ロッドを挿入しながら加圧ガスを吹き込み、長さ方向と周方向の同時に延伸する方法が好ましいが、長さ方向に延伸した後、周方向に延伸してもよい。加熱は赤外線ヒーター、熱風、誘導加熱等が用いられる。加熱温度は通常80~130℃であり、好ましくは90~120℃である。
 ボトル長さ方向の延伸倍率の下限は好ましくは1.5倍であり、より好ましくは2倍である。上記未満であると延伸むらとなることがある。ボトル長さ方向の延伸倍率の上限は好ましくは6倍であり、より好ましくは5倍であり、さらに好ましくは4倍である。上記を超えると破れ等が起こりやすくなる。
 ボトル周方向の延伸倍率の下限は好ましくは2倍であり、より好ましくは2.5倍である。上記未満であると延伸むらとなることがある。ボトル周方向の延伸倍率の上限は好ましくは6倍であり、より好ましくは5倍であり、さらに好ましくは4倍である。上記を超えると破れ等が起こりやすくなる。
 ブロー成形の後引き続き同一金型内でヒートセットする場合、ブロー成形の金型温度の下限は好ましくは80℃であり、より好ましくは120℃であり、さらに好ましくは130℃であり、最も好ましくは140℃である。上記未満であると後に行われるヒートセットで充分な結晶促進が行われず耐熱性が不足したり、ヒートセット時間を長く取る必要があり生産性低下となったりすることがある。
 金型温度の上限は、好ましくは350℃であり、より好ましくは340℃であり、さらに好ましくは330℃、特に好ましくは320℃であり、金型温度の下限は、好ましくは280℃であり、より好ましくは290℃であり、さらに好ましくは300℃である。
 本発明のポリエステル樹脂は、溶融時に高温になる程、溶融張力が低下する性質を有することから、金型温度を高くする場合、溶融張力は、金型とポリエステル樹脂との接触時に低下してメルトフラクチャーの発生が低減される一方で、金型から吐出した後は、溶融張力が高くなってドローダウンの発生が低減されることになる。
 ブロー成形されたボトルは引き続き金型内でヒートセットされる。ヒートセット時間の下限は好ましくは0.5秒であり、より好ましくは1秒であり、さらに好ましくは1.5秒である。上記未満であると充分な結晶促進が行われず耐熱性が不十分となることがある。ヒートセット時間の上限は好ましくは15秒であり、より好ましくは10秒であり、さらに好ましくは5秒である。長時間のヒートセット時間は生産性が劣るだけでなく、ロータリー式のブロー成形機の場合は金型を多く揃える必要があり、装置が大型になると経済性に劣ることがある。なお、金型内でのヒートセットの後、さらに赤外線、熱風、誘導加熱等で加熱して追加ヒートセットを行ってもよい。
 また、ブロー成形を5~50℃の金型内で行い、引き続き加熱金型内でヒートセットする方法も可能である。この場合、ヒートセット金型の温度は上記の場合の金型温度と同様である。
 ブロー成形の装置は一つの金型を備えたものであってもよいが、量産する場合は、複数の金型を備え、これら金型が、加熱したプリフォームを金型にセットする場所、延伸する場所、ヒートセットする場所、ボトルを排出する場所を順次移動していく方式のものが好ましい。
 なお、上記では冷却されたプリフォームを再加熱するコールドパリソン法を説明したが、プリフォームを完全に冷却しないでブロー成形を行うホットパリソン法も可能である。
 成形するボトルの内容量は、200ml~6Lであることが好ましく、300ml~2Lであることがより好ましい。ボトル胴部の形状は円形、四角形(角部をカットした形状を含む)、六角形等の任意の形状が可能である。
 本発明のポリエステル樹脂は、ブロー成形(好ましくはダイレクトブロー成形)に供され、化粧品、洗剤、飲料等の容器(例えばボトル)に好適に使用される。
 本願は、2020年12月15日に出願された日本国特許出願第2020-207929号に基づく優先権の利益を主張するものである。2020年12月15日に出願された日本国特許出願第2020-207929号の明細書の全内容が、本願に参考のため援用される。
 以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。
ポリエステル樹脂の固有粘度IVの測定
 パラクロロフェノール/テトラクロロエタン(3/1:重量比)混合溶媒にポリエステル樹脂を溶解し、オストワルド粘度計を用いて30℃で測定した。
ポリエステル樹脂の組成の測定
 ポリエステル樹脂の組成は、重クロロホルム溶媒中でRUKER製AVANCE NEO600フーリエ変換核磁気共鳴装置を用いて、1H-NMR分析及び13C-NMR分析を行い、その積分比より決定した。
ポリエステル樹脂の融点の測定
 ポリエステル樹脂5mgをアルミニウム製サンプルパンに入れて密封し、ティー・エイ・インスツルメント・ジャパン(株)製示差走査熱量分析計(DSC)DSC-Q100を用いて、300℃まで、昇温速度20℃/分にて測定し、融解熱の最大ピーク温度を結晶融点として求めた。
ゲルの測定
 溶融重縮合したポリエステルペレット30gおよびパラクロロフェノール/テトラクロロエタン(3/1:重量比)混合溶液300mlを攪拌機付き丸底フラスコに投入し、該ペレットを混合溶液に100~105℃、2時間で攪拌・溶解した。該溶液を室温になるまで放冷し、直径47mm/孔径1.0μmのポリテトラフルオロエチレン製のメンブレンフィルター(Advantec社製PTFEメンブレンフィルター、品名:T100A047A)を用い、全量を0.15MPaの加圧下で異物を濾別した。有効濾過直径は37.5mmとした。濾過終了後、引き続き300mlのクロロホルムを用い洗浄し、次いで、30℃で一昼夜減圧乾燥した。該メンブレンフィルターの濾過面を光学顕微鏡で観察し、未溶解物(ゲル)の有無を判断した。
溶融張力の測定
 ポリエステル樹脂の成形時に以下の装置及び条件で溶融張力を測定した。
キャピラリーレオメーター(東洋精機製作所)
温度:270℃
キャピラリー長:10mm
キャピラリー径:1mm
せん断速度:243s-1
引取最大速度:200m/min
引取開始速度:10m/min
或いは引取速度:100m/min(一定)
引取時間:90sec
溶融粘度の測定
 ポリエステル樹脂の成形時に以下の装置及び条件で溶融張力を測定した。
キャピラリーレオメーター(東洋精機製作所)
キャピラリー長:10mm
キャピラリー径:1mm
温度:270℃
せん断速度:30s-1又は2000s-1
酸価(末端カルボキシル基濃度(単位:eq/ton、酸価として表す))の測定
 ベンジルアルコール25mlにポリエステル樹脂を0.5g溶解し、0.01モル/l水酸化ナトリウムのベンジルアルコール溶液を使用して滴定した。使用した指示薬は、フェノールフタレイン0.10gをエタノール50mlおよび水50mlの混合液に溶解した溶液であった。
ポリエステル樹脂中のアルミニウム原子、リン原子、ゲルマニウム原子の量の測定
 厚みが5mm、内径50mmのステンレス製円形リング中でポリエステル樹脂を融点+20℃に加熱して溶融させサンプルピースを作製し、蛍光X線分析により、元素量を求め、ppmで表示した。なお量の決定の際には予め各元素量既知のサンプルから求めた検量線を使用した。
異形押出し成形(成形性(ドローダウン)、機械的特性、表面平滑性、透明性の評価)
 ポリエステル樹脂をシリンダー温度270℃に設定し、単軸押出し機(L/D=30、フルフライトスクリュー、スクリュー径50mm)にダイリップを取り付け、次に冷却水槽の先端に異形押出し製品の最終寸法を決定するサイジング金型を取り付け、水槽を経由して、引取機を装備した異形押出し成形設備により成形し、その成形時のドローダウンと成形品の機械的特性、表面平滑性、透明性を以下の基準に従って評価した。結果を表2に示す。
成形性(ドローダウン)の評価
 ドローダウンを以下の基準で評価した。
◎:成形時にポリエステル樹脂のたれが全く生じずに、形状保持している
○:成形時にポリエステル樹脂のわずかなたれが生じる
△:成形時にポリエステル樹脂のたれが生じて安定して量産できない
×:成形時にポリエステル樹脂のたれによりダイリップからサイジング金型へ樹脂を通すことができない
成形品の機械的特性(強度)の評価
 ポリエステル樹脂成形品を180°折曲げて以下の基準で評価した。
○:ひび割れなし
×:ひび割れ有り
表面平滑性の評価
 ポリエステル樹脂成形品の外側表面凹凸状態をkosaka Laboratory製サーフコーダーEt4000Aを用いて測定し、三次元粗さの中心面平均(SRa)により以下の基準で比較した。
◎:SRaが0.1μm未満
○:SRaが0.1μm以上0.15μm未満
×:SRaが0.15μm以上
透明性の評価
 ポリエステル樹脂成形品を3cm四方角に切り取り、日本電色工業製ヘイズメーターNDH-5000を用いて測定し、以下の基準で評価した。
◎:HAZEが5%未満
○:HAZEが5%以上10%未満
×:HAZEが10%以上
耐熱性(熱酸化安定性パラメータ(TOD))の評価
 ポリエステル樹脂のレジンチップ([IV]i)を冷凍粉砕して20メッシュ以下の粉末にした。この粉末を130℃で12時間真空乾燥し、粉末300mgを内径約8mm、長さ約140mmのガラス試験管に入れ70℃で12時間真空乾燥した。次いで、シリカゲルを入れた乾燥管を試験管上部につけて乾燥した空気下で、230℃の硝酸塩バスに浸漬して15分間加熱した後の[IV]f1を測定した。TODは、下記のように求めた。ただし、[IV]iおよび[IV]f1はそれぞれ加熱試験前と加熱試験後のIV(dL/g)を指す。冷凍粉砕は、フリーザーミル(米国スペックス社製、6750型)を用いて行った。専用セルに約2gのレジンチップと専用のインパクターを入れた後、セルを装置にセットし液体窒素を装置に充填して約10分間保持し、次いでRATE10(インパクターが1秒間に約20回前後する)で5分間粉砕を行った。
TOD=0.245{[IV]f1 -1.47-[IV]i -1.47
 ポリエステル樹脂のTODは、値が小さい方が、耐熱性が高いことを表す。
CT4含有量の評価
 ポリエステル樹脂50mgをヘキサフルオロイソプロパノール/クロロホルム混合液(容量比=1/9)1mlに溶解し、さらにクロロホルム4mlを加えて希釈した。これにメタノール10mlを加えてポリエステル樹脂を沈殿させた後、遠心分離した。遠心分離後の上清を濃縮乾固し、ジメチルホルムアミド0.4mlで再溶解して、高速液体クロマトグラフによりCT4含有量を測定した。
装置:Waters ACQUITY UPLC
カラム:Waters BEH-C18 2.1×150mm(Waters製)
連続成形時の透明性の評価
 乾燥したポリエステル樹脂をシート用ダイス付き押出機に投入して280℃で2日間、約0.5mm厚みのシートを連続成形した。次の基準によりダイス出口の汚れ付着状況及びシート表面の状態を肉眼で評価した。  
(評価基準)  
◎:ダイス出口汚れ物付着がほとんどなく、シート表面状態良好
○:ダイス出口汚れ物付着が僅かにあるが、シート表面状態良好
△:ダイス出口汚れ物付着が少しあり、シート表面に付着異物少しあり
×:ダイス出口汚れ物付着が非常に酷く、シート表面に付着物多数あり
合成例1~6(式(III)で表される化合物(分岐剤)の調製)
 式(III)で表される化合物は、特許文献1~3、米国特許出願第09/354350号及び米国特許出願第09/614402号の記載を参照して、2ガロンのフリーラジカル連続式重合反応器系内で調製した。合成例1~6で得られた式(III)で表される化合物の組成を下記の表1に示す。
 なお、式(III)で表される化合物の重量平均分子量は、標準ポリスチレン換算のGPCにより算出した。具体的には、式(III)で表される化合物の試料4mgを秤量し、4mlのクロロホルムとイソフルオロイソプロパノールの混合溶媒(60/40体積%)に溶解後、0.2μmのメンブレンフィルターでろ過し、得られた試料溶液をGPCで測定し、標準ポリスチレンに換算して重量平均分子量を求めた。
 また、式(III)で表される化合物のl、m、nは、1H-NMR、及び13C-NMR分析により求めた。
 すなわち、l、m、nは、平均個数として小数点以下一桁を四捨五入して整数で表した。具体的には、式(III)で表される化合物の試料を1H-NMRでは重水素化クロロホルム/トリフルオロ酢酸混合溶媒(体積比は85/15)、13C-NMRでは重水素化クロロホルムまたは重水素化クロロホルム/ヘキサフルオロイソプロパノール混合溶媒(体積比は1/1)に溶解後、フーリエ変換核磁気共鳴装置(BRUKER製AVANCE NEO600)で、積算回数50~200回(1H-NMR)、10000回(13C-NMR)の条件、室温で測定した。1H-NMRと13C-NMRスペクトルにより、各成分の比率、末端に位置する成分の割合を算出し、l、m、nを求めた。
 また、合成例で用いた式(III)で表される化合物は、以下のメタクリルモノマー構成単位(以下、DEMA-DE構成単位と略す)を有する(*は、他のモノマー構成単位(例えばスチレン構成単位、メタクリル酸メチル構成単位)との結合手を表す)。例えば、このDEMA-DE構成単位を含む化合物は、メタクリル酸グリシジルを水で開環反応させ、ジオール(エチレングリコール)を付加して合成する方法やメタクリル酸グリシジルにジオールを付加反応させて合成する方法等により得ることができる。スチレンとメタクリル酸グリシジル(必要により更にメタクリル酸メチルと)の共重合体を、特許文献1~3、米国特許出願第09/354350号及び米国特許出願第09/614402号により合成した後に、水で開環させ、ジオール(エチレングリコール)を付加して合成する方法等で、式(III)で表される化合物を得てもよい。
<DEMA-DE構成単位>
Figure JPOXMLDOC01-appb-C000006
 下記において使用した略号は、STY=スチレン構成単位、MMA=メタクリル酸メチル構成単位、DEMA-DE構成単位(上記化学式のメタクリルモノマー構成単位)である。
Figure JPOXMLDOC01-appb-T000007
実施例1
 攪拌機、温度計、流出用冷却器を装備した10リットルの圧力容器にテレフタル酸(三井化学製)2593g、エチレングリコール(日本触媒製)1937g、トリエチルアミン(ナカライテスク製)4gを仕込み、0.35MPa加圧下、240℃で1.5~3.0時間エステル化を実施した。得られるポリエステル樹脂のアルコール成分100重量%に対して、合成例1で得られた式(III)で表される化合物を0.2重量%となるよう、流速を制御しつつ連続的に添加し、段階的に反応を進行させた。
 ポリエステル樹脂の質量に対して、重縮合触媒として酢酸アルミニウムをアルミニウム原子(Al)30ppmとなるよう、Irgamod295(BASF製)をリン原子(P)72ppmとなるように加え、次いで、ソルベントブルー45(クラリアント製)をポリエステル樹脂に対して1ppmとなるように添加し、窒素雰囲気下、常圧にて260℃で5分間攪拌した。その後、60分間かけて280℃まで昇温しつつ反応系の圧力を徐々に下げて13.3Pa(0.1Torr)とし、さらに280℃、13.3Paで重縮合反応を実施した。窒素で常圧に戻し、微加圧下のレジンを冷水にストランド状に吐出して急冷し、その後20秒間冷水中で保持した後、カッティングして長さ約3mm、直径約2mmのシリンダー形状のポリエステルペレットを得た。
 溶融重合で得られたポリエステルペレットを、減圧乾燥(13.3Pa以下、80℃、12時間)した後、引き続き結晶化処理(13.3Pa以下、130℃、3時間、さらに、13.3Pa以下、160℃、3時間)を行った。放冷後のこのポリエステルペレットを固相重合反応器内で、系内を13.3Pa以下、200℃~220℃に保ちながら固相重合を行い、固有粘度IVが1.18dl/g、TODが0.015のポリエステルペレットを得た。
実施例2
 実施例1において、合成例1で得られた式(III)で表される化合物の添加量を0.001重量%に変更し、実施例1と同条件で重合を行い、固有粘度IVが1.17dl/g、TODが0.015のポリエステルペレットを得た。
実施例3
 実施例1において、合成例1で得られた式(III)で表される化合物の添加量を3.0重量%に変更し、実施例1と同条件で重合を行い、固有粘度IVが1.20dl/g、TODが0.010のポリエステルペレットを得た。
実施例4
 実施例1において、合成例1で得られた式(III)で表される化合物を合成例2で得られた式(III)で表される化合物とし、その添加量を0.2重量%に変更し、実施例1と同条件で重合を行い、固有粘度IVが1.20dl/g、TODが0.015のポリエステルペレットを得た。
実施例5
 実施例1において、合成例1で得られた式(III)で表される化合物を合成例3で得られた式(III)で表される化合物とし、その添加量を0.2重量%に変更し、実施例1と同条件で重合を行い、固有粘度IVが1.15dl/g、TODが0.015のポリエステルペレットを得た。
実施例6
 実施例1において、合成例1で得られた式(III)で表される化合物を合成例4で得られた式(III)で表される化合物とし、その添加量を0.2重量%に変更し、実施例1と同条件で重合を行い、固有粘度IVが1.14dl/g、TODが0.015のポリエステルペレットを得た。
実施例7
 実施例1において、合成例1で得られた式(III)で表される化合物を合成例5で得られた式(III)で表される化合物とし、その添加量を0.2重量%に変更し、実施例1と同条件で重合を行い、固有粘度IVが1.09dl/g、TODが0.015のポリエステルペレットを得た。
実施例8
 実施例1において、合成例1で得られた式(III)で表される化合物を合成例6で得られた式(III)で表される化合物とし、その添加量を0.2重量%に変更し、実施例1と同条件で重合を行い、固有粘度IVが1.08dl/g、TODが0.015のポリエステルペレットを得た。
実施例9
 攪拌機、温度計、流出用冷却器を装備した10リットルの圧力容器にテレフタル酸(三井化学製)2593g、エチレングリコール(日本触媒製)1937g、トリエチルアミン(ナカライテスク製)4gを仕込み、0.35MPa加圧下、240℃で1.5~3.0時間エステル化を実施した。得られるポリエステル樹脂のアルコール成分100重量%に対して、合成例1で得られた式(III)で表される化合物を0.2重量%となるよう、流速を制御しつつ連続的に添加し、段階的に反応を進行させた。
 ポリエステル樹脂の質量に対して、重縮合触媒として二酸化ゲルマニウムをゲルマニウム原子(Ge)100ppmとなるよう、トリエチルリン酸をリン原子(P)50ppmとなるように加え、次いで、ソルベントブルー45(クラリアント製)をポリエステル樹脂に対して1ppmとなるように添加し、窒素雰囲気下、常圧にて260℃で5分間攪拌した。その後、60分間かけて280℃まで昇温しつつ反応系の圧力を徐々に下げて13.3Pa(0.1Torr)として、さらに280℃、13.3Paで重縮合反応を実施した。窒素で常圧に戻し、微加圧下のレジンを冷水にストランド状に吐出して急冷し、その後20秒間冷水中で保持した後、カッティングして長さ約3mm、直径約2mmのシリンダー形状のポリエステルペレットを得た。
 溶融重合で得られたポリエステルペレットを、減圧乾燥(13.3Pa以下、80℃、12時間)した後、引き続き結晶化処理(13.3Pa以下、130℃、3時間、さらに、13.3Pa以下、160℃、3時間)を行った。放冷後のこのポリエステルペレットを固相重合反応器内で、系内を13.3Pa以下、200℃~220℃に保ちながら固相重合を行い、固有粘度IVが1.15dl/g、TODが0.330のポリエステルペレットを得た。
比較例1
 式(III)で表される化合物を添加せずに、実施例9と同条件で重合を行い、固有粘度IVが1.19dl/g、TODが0.400のポリエステルペレットを得た。
比較例2
 合成例1で得られた式(III)で表される化合物の添加量を0.0001重量%に変更し、実施例9と同条件で重合を行い、固有粘度IVが1.22dl/g、TODが0.400のポリエステルペレットを得た。
比較例3
 合成例1で得られた式(III)で表される化合物の添加量を6.0重量%に変更し、実施例9と同条件で重合を行い、固有粘度IVが0.71dl/g、TODが0.380のポリエステルペレットを得た。
Figure JPOXMLDOC01-appb-T000008
 なお、実施例1~9において、溶融粘度は、温度270℃、剪断速度30s-1で、26000dPa・s以上、温度270℃、剪断速度2000s-1で、6500dPa・s以下であり、ゲルは確認できなかった。
 本発明のポリエステル樹脂は、高い溶融張力を必要とされる押出し成形、異形押出し成形、ダイレクトブロー成形、インフレーション成形、インジェクションブロー成形、カレンダー加工成形における成形性の改良、および透明性を維持した機械的物性の改良を実現でき、産業界に大きく寄与することが期待される。

Claims (6)

  1.  ポリエステルの構成成分としてジカルボン酸成分とアルコール成分を含み、式(III)で表される化合物の含有率がアルコール成分100重量%中0.0002~5.9重量%であることを特徴とするポリエステル樹脂。
    Figure JPOXMLDOC01-appb-C000001

    (式中、m及びnはそれぞれ、1~1000、lは0~1000を示し、R1は、炭素数6~20の芳香族炭化水素基を示し、R2、R3、R4はそれぞれ、水素原子又は炭素数1~10のアルキル基を示す。)
  2.  式(III)で表される化合物の重量平均分子量が330以上50万以下である請求項1に記載のポリエステル樹脂。
  3.  テレフタル酸をジカルボン酸成分100モル%中85~100モル%含み、エチレングリコールをアルコール成分として含む請求項1又は2に記載のポリエステル樹脂。
  4.  ポリエステル樹脂中の環状オリゴマー4量体の含有量が2680ppm未満である請求項1~3のいずれかに記載のポリエステル樹脂。
  5.  溶融張力が、温度270℃、引取速度100m/min、剪断速度243s-1で14mN以上である請求項1~4のいずれかに記載のポリエステル樹脂。
  6.  溶融粘度が、温度270℃、剪断速度30s-1で、26000dPa・s以上、温度270℃、剪断速度2000s-1で、6500dPa・s以下である請求項1~5のいずれかに記載のポリエステル樹脂。
PCT/JP2021/045858 2020-12-15 2021-12-13 ポリエステル樹脂 WO2022131220A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022506782A JPWO2022131220A1 (ja) 2020-12-15 2021-12-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-207929 2020-12-15
JP2020207929 2020-12-15

Publications (1)

Publication Number Publication Date
WO2022131220A1 true WO2022131220A1 (ja) 2022-06-23

Family

ID=82059465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045858 WO2022131220A1 (ja) 2020-12-15 2021-12-13 ポリエステル樹脂

Country Status (3)

Country Link
JP (1) JPWO2022131220A1 (ja)
TW (1) TW202235479A (ja)
WO (1) WO2022131220A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023048255A1 (ja) * 2021-09-27 2023-03-30 東洋紡株式会社 ポリエステル樹脂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505419A (ja) * 1992-04-03 1995-06-15 ビーエーエスエフ アクチェンゲゼルシャフト オレフィン系不飽和モノマーからなるヒドロキシル基含有プレポリマーをベースとするポリエステルおよび電子写真トナー用の結合剤としてのその使用
JPH07173269A (ja) * 1993-11-04 1995-07-11 Kuraray Co Ltd ポリエステル系樹脂組成物の製造方法
JP2016109900A (ja) * 2014-12-08 2016-06-20 花王株式会社 静電荷像現像トナー用結着樹脂組成物
JP5941843B2 (ja) * 2009-07-21 2016-06-29 バスフ コーポレーションBasf Corporation 反応器内鎖延長による縮合重合体生成のための方法、及びその生成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505419A (ja) * 1992-04-03 1995-06-15 ビーエーエスエフ アクチェンゲゼルシャフト オレフィン系不飽和モノマーからなるヒドロキシル基含有プレポリマーをベースとするポリエステルおよび電子写真トナー用の結合剤としてのその使用
JPH07173269A (ja) * 1993-11-04 1995-07-11 Kuraray Co Ltd ポリエステル系樹脂組成物の製造方法
JP5941843B2 (ja) * 2009-07-21 2016-06-29 バスフ コーポレーションBasf Corporation 反応器内鎖延長による縮合重合体生成のための方法、及びその生成物
JP2016109900A (ja) * 2014-12-08 2016-06-20 花王株式会社 静電荷像現像トナー用結着樹脂組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023048255A1 (ja) * 2021-09-27 2023-03-30 東洋紡株式会社 ポリエステル樹脂

Also Published As

Publication number Publication date
TW202235479A (zh) 2022-09-16
JPWO2022131220A1 (ja) 2022-06-23

Similar Documents

Publication Publication Date Title
JP4529485B2 (ja) ポリエステル重合触媒、その製造方法、及びそれを用いたポリエステルの製造方法
WO2022131219A1 (ja) ポリエステル樹脂
JP2019513847A (ja) ポリエステル樹脂
KR102299987B1 (ko) 공중합 폴리에스테르 수지, 성형품 및 열수축성 필름
JP2020524738A (ja) ポリエステル容器およびその製造方法
TWI529195B (zh) 聚酯樹脂
JP5598162B2 (ja) 共重合ポリエステル製成形体
JP3765197B2 (ja) ポリエステルの製造方法
WO2022131220A1 (ja) ポリエステル樹脂
JP4784213B2 (ja) ポリエステルの製造方法
WO2022131218A1 (ja) ポリエステル樹脂
JP2011068880A (ja) 共重合ポリエステル製成形体
JP2011088972A (ja) ポリエステル樹脂組成物及びそれからなる成形体
WO2023048255A1 (ja) ポリエステル樹脂
WO2023032920A1 (ja) ポリエステル樹脂
KR20240070541A (ko) 폴리에스테르 수지
JP5251789B2 (ja) 共重合ポリエステル
JP5092574B2 (ja) 共重合ポリエステル樹脂の製造方法
JP4979902B2 (ja) 改質ポリエステルおよびその製造方法
JP2006083401A (ja) ポリエステル及びその製造法
JP2011042778A (ja) ポリエステル樹脂組成物及びその製造方法
WO2023063218A1 (ja) 共重合ポリエステル樹脂、成形品、熱収縮性フィルム、及び繊維
JP2011063751A (ja) ポリエステル樹脂組成物及びそれからなる成形体
JP2024038206A (ja) ポリエステル樹脂及びポリエステル樹脂の製造方法
JPH05170882A (ja) 共重合ポリエステルならびにそれより成る中空容器および延伸フィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022506782

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/10/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21906582

Country of ref document: EP

Kind code of ref document: A1