WO2022121570A1 - 普鲁士蓝类过渡金属氰化物、其制备方法、及其相关的正极极片、二次电池、电池模块、电池包和装置 - Google Patents

普鲁士蓝类过渡金属氰化物、其制备方法、及其相关的正极极片、二次电池、电池模块、电池包和装置 Download PDF

Info

Publication number
WO2022121570A1
WO2022121570A1 PCT/CN2021/128648 CN2021128648W WO2022121570A1 WO 2022121570 A1 WO2022121570 A1 WO 2022121570A1 CN 2021128648 W CN2021128648 W CN 2021128648W WO 2022121570 A1 WO2022121570 A1 WO 2022121570A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
prussian blue
metal cyanide
solution
battery
Prior art date
Application number
PCT/CN2021/128648
Other languages
English (en)
French (fr)
Inventor
田佳瑞
郭永胜
欧阳楚英
张欣欣
黄丽婷
苏硕剑
林文光
张金余
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2022558232A priority Critical patent/JP2023519589A/ja
Priority to EP21902277.9A priority patent/EP4135073A4/en
Priority to KR1020227033415A priority patent/KR20220147643A/ko
Publication of WO2022121570A1 publication Critical patent/WO2022121570A1/zh
Priority to US18/124,021 priority patent/US20230227321A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/11Complex cyanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application belongs to the technical field of energy storage devices, and in particular relates to a Prussian blue-based transition metal cyanide, a preparation method thereof, and related positive electrode plates, secondary batteries, battery modules, battery packs and devices.
  • sodium-ion batteries have similar energy storage principles to lithium-ion batteries, except that the ions that reciprocate toward the positive and negative poles during the charge-discharge cycle change from lithium ions to active ions such as sodium ions. Due to the high abundance of sodium, it has potential broad application prospects, especially in the fields of low-speed electric vehicles and large-scale energy storage.
  • the positive electrode material is the most important component of secondary batteries such as sodium-ion batteries.
  • Alternative cathode materials for the industrialization of sodium-ion batteries mainly include Prussian blue-based transition metal cyanides, layered transition metal oxides, and polyanionic oxides. Compared with other cathode materials, Prussian blue transition metal cyanide has three core industrial advantages of low cost, high specific capacity, and convenient preparation, and has the most industrialization prospects. However, Prussian blue-based transition metal cyanide still suffers from low gram capacity compared to the commonly used cathode materials for lithium-ion batteries, resulting in poor energy density of Na-ion batteries and affecting the commercialization of Na-ion batteries. application.
  • a first aspect of the present application provides a Prussian blue-like transition metal cyanide, which includes secondary particles, and the secondary particles include a plurality of primary particles; wherein, the primary particles have spherical or spherical-like morphology.
  • the Prussian blue-like transition metal cyanide of the present application includes secondary particles formed by agglomeration of a plurality of spherical or quasi-spherical primary particles, which can increase the particle size and powder compaction density, and can also improve the positive electrode pole piece.
  • the compaction density can be improved, and the active ion transport performance and electronic conductivity of the positive electrode sheet can be improved, so that the energy density and rate performance of the secondary battery can be improved.
  • the inner angle of the secondary particles of the Prussian blue-based transition metal cyanide is 150° ⁇ 300°; optionally, 180° ⁇ 270°, or 200° ⁇ 250°.
  • the Prussian blue transition metal cyanide with more obtuse angles on the particle surface is beneficial to increase the mutual contact area between particles and improve the compaction density of the pole piece, thereby improving the energy density and rate performance of the battery.
  • the curvature radius of the primary particles is ⁇ 0.2 ⁇ m; optionally, it is 0.5 ⁇ m to 100 ⁇ m, or 0.8 ⁇ m to 50 ⁇ m. Appropriate radius of curvature is conducive to the improvement of the compaction density of the pole piece, thereby improving the rate performance and energy density of the battery.
  • Appropriate particle size range is conducive to the improvement of the compaction density of the pole piece, thus contributing to the improvement of the energy density and rate performance of the battery.
  • the powder compaction density of the Prussian blue-based transition metal cyanide under a pressure of 600 MPa is 1.7g/cm 3 -2.1g/cm 3 ; optionally, 1.8g/cm 3 -2.1g /cm 3 .
  • Prussian blue transition metal cyanide powder has a high compaction density, which is conducive to the contact between the particles and the conductive agent, and is also conducive to improving the compaction density of the pole piece, thereby improving the energy density and rate performance of the battery.
  • the Prussian blue-based transition metal cyanide includes A x M 1 [M 2 (CN) 6 ] y , wherein A is selected from one or more of alkali metal ions and alkaline earth metal ions; M 1 is selected from one or more of Mn, Ni, Cu, Co, Fe, Zn, Cr; M 2 is selected from one or more of Mn, Ni, Cu, Co, Fe, Zn, Cr; 1.5 ⁇ x ⁇ 2; 0.6 ⁇ y ⁇ 1.
  • the defect degree of the Prussian blue-type transition metal cyanide is smaller, and the gram capacity is higher, which can improve the energy density of the battery.
  • the powder resistivity of the Prussian blue-based transition metal cyanide under a pressure of 12 MPa is 10 k ⁇ cm to 100 k ⁇ cm; optionally, 20 k ⁇ cm to 90 k ⁇ cm.
  • the powder resistivity is in an appropriate range, which can improve the rate performance of the battery.
  • the gram capacity of the Prussian blue-based transition metal cyanide is 140 mAh/g to 170 mAh/g; optionally, it is 150 mAh/g to 165 mAh/g.
  • Prussian blue-type transition metal cyanide has a large gram capacity, which can increase the energy density of the battery.
  • a second aspect of the present application provides a method for preparing a Prussian blue-based transition metal cyanide, comprising the following steps:
  • the concentration of transition metal cyanate radical anions in the second solution is ⁇ 0.1 mol/L, and A is selected from one of alkali metal ions and alkaline earth metal ions or several;
  • the Prussian blue-based transition metal cyanide includes secondary particles, and the secondary particles include a plurality of primary particles, and the The primary particles are spherical or spherical in shape.
  • the concentrations of transition metal cations and transition metal cyanate anions are relatively large, the yield of Prussian blue-type transition metal cyanide can be increased, and the production cost can be reduced.
  • the concentration of transition metal cations in the first solution of S1 is 0.2 mol/L to 4 mol/L; optionally, 0.3 mol/L to 3 mol/L.
  • the concentration of transition metal cyanate anions in the second solution of S2 is 0.2 mol/L to 4 mol/L; optionally, 0.3 mol/L to 3 mol/L.
  • the concentrations of the transition metal cations in the first solution and the transition metal cyanate anions in the second solution are within an appropriate range, so that the crystal concentration is thermodynamically less than the saturated solubility, showing a liquid phase, and the reaction is carried out to maintain a stable concentration to obtain the present application
  • the Prussian blue transition metal cyanide is within an appropriate range, so that the crystal concentration is thermodynamically less than the saturated solubility, showing a liquid phase, and the reaction is carried out to maintain a stable concentration to obtain the present application.
  • the first solution described in S1 or the second solution described in S2 further comprises a source A, wherein the source A is selected from A chloride salt, A nitrate, A sulfate, A source One of A's hydroxide, A's formate, A's acetate, A's oxalate, A's phosphate, A's perchlorate, A's benzoate, A's citrate one or more; optionally, the A source is selected from one or more of A's chloride salt, A's nitrate, and A's sulfate.
  • the source A is selected from A chloride salt, A nitrate, A sulfate, A source One of A's hydroxide, A's formate, A's acetate, A's oxalate, A's phosphate, A's perchlorate, A's benzoate, A's citrate one or more; optionally, the A source is selected from one or more of A
  • a source can promote the migration of A to the framework of the Prussian blue-type transition metal cyanide, which is beneficial to the integrity of the product structure, thereby improving the gram capacity of the Prussian blue-type transition metal cyanide, thereby improving the energy density of the battery.
  • the first solution of S1 or the second solution of S2 contains an antioxidant.
  • Antioxidants can inhibit the oxidation of transition metals in the reaction solution and reduce the probability that the product is doped with oxidized impurities, thereby increasing the gram capacity of Prussian blue-type transition metal cyanide, thereby increasing the energy density of the battery.
  • the flow velocity of the mixing described in S3 is 50 cm/s ⁇ 10 m/s; optionally, it is 1 m/s ⁇ 5 m/s.
  • the Prussian blue-like transition metal cyanide produced by the reaction has good dispersibility, and the particles are not easily aggregated but not over-dispersed, so that the primary particles can form secondary particles in a spherical state. particles, thereby reducing the resistivity of the pole piece and increasing the compaction density of the pole piece, thus improving the energy density and rate performance of the battery.
  • the mixing time in S3 is 1 h to 24 h; optionally, it is 2 h to 12 h. Mixing within this time range can make the Prussian blue transition metal cyanide have a larger particle size, thereby reducing the resistivity of the pole piece, and at the same time improving the compaction density of the pole piece, so it is beneficial to improve the energy density and energy density of the battery. rate performance.
  • the temperature of the other solution in S3 is 60°C to 140°C; optionally, it is 70°C to 110°C. Controlling the solution temperature can increase the content of metal A and transition metal M2 in the chemical formula of the product, making the crystal structure more complete and less defects, thus making the Prussian blue-like transition metal cyanide show higher gram capacity, which can improve the battery's performance. Energy Density.
  • the aging temperature in S4 is 60°C to 140°C; optionally, it is 70°C to 110°C. Aging in this temperature range can further improve the gram capacity of Prussian blue transition metal cyanide and the energy density of the battery. Further, the rate performance of the battery is also improved.
  • the aging time in S4 is 1 h to 24 h; optionally, it is 2 h to 12 h. Aging within this time range can increase the Na content ratio in the chemical formula of the product, thereby increasing the gram capacity of Prussian blue transition metal cyanide and the energy density of the battery.
  • a third aspect of the present application provides a positive electrode sheet, which includes a positive electrode material, and the positive electrode material includes the Prussian blue-based transition metal cyanide according to the first aspect of the present application or the preparation method according to the second aspect of the present application The resulting Prussian blue-like transition metal cyanide.
  • the positive electrode sheet of the present application adopts the positive electrode material of the present application, the sodium-ion battery using the positive electrode sheet can have a higher energy density.
  • a fourth aspect of the present application provides a secondary battery comprising a positive electrode sheet, the positive electrode sheet being the positive electrode sheet according to the third aspect of the present application.
  • the secondary battery is a sodium-ion battery.
  • the secondary battery of the present application uses the positive electrode sheet of the present application, it can have a high energy density.
  • a fifth aspect of the present application provides a battery module including the secondary battery according to the fourth aspect of the present application.
  • a sixth aspect of the present application provides a battery pack, including the secondary battery according to the fourth aspect of the present application, or the battery module according to the fifth aspect of the present application.
  • a seventh aspect of the present application provides an apparatus, including the secondary battery according to the fourth aspect of the present application, the battery module according to the fifth aspect of the present application, or the battery pack according to the sixth aspect of the present application at least one of.
  • the battery module, battery pack and device of the present application include the secondary battery described in the present application, and thus have at least the same or similar technical effects as the secondary battery.
  • FIG. 2 is a scanning electron microscope (SEM) image of the Prussian blue-based transition metal cyanide obtained in Example 1.
  • SEM scanning electron microscope
  • FIG. 3 is (a) Comparative Example 1 and (b) the ion-polished cross-sectional scanning electron microscope (SEM) images of the Prussian blue-based transition metal cyanide obtained in Example 1.
  • SEM scanning electron microscope
  • Figure 4 is a schematic diagram of the interior angle of secondary particles.
  • Example 5 is an X-ray diffraction (XRD) pattern of the Prussian blue-like transition metal cyanide obtained in Example 1, and the result shows that the material is in a typical monoclinic phase (Monoclinic).
  • XRD X-ray diffraction
  • FIG. 6 is a schematic diagram of an embodiment of a secondary battery.
  • FIG. 7 is an exploded view of FIG. 6 .
  • FIG. 8 is a schematic diagram of an embodiment of a battery module.
  • FIG. 9 is a schematic diagram of one embodiment of a battery pack.
  • FIG. 10 is an exploded view of FIG. 9 .
  • FIG. 11 is a schematic diagram of one embodiment of a device in which a secondary battery is used as a power source.
  • any lower limit can be combined with any upper limit to form an unspecified range; and any lower limit can be combined with any other lower limit to form an unspecified range, and likewise any upper limit can be combined with any other upper limit to form an unspecified range.
  • every point or single value between the endpoints of a range is included within the range, even if not expressly recited.
  • each point or single value may serve as its own lower or upper limit in combination with any other point or single value or with other lower or upper limits to form a range not expressly recited.
  • the term "or” is inclusive.
  • the phrase “A or B” means “A, B, or both A and B.” More specifically, the condition “A or B” is satisfied by either of the following: A is true (or present) and B is false (or absent); A is false (or absent) and B is true (or present) ; or both A and B are true (or present).
  • the inventor's research found that due to the small particle size of the existing Prussian blue transition metal cyanide, the low powder compaction density, and the poor electrical conductivity, the energy density of the secondary battery is low, and the secondary battery's energy density is also low. The production difficulty is increased, and the equipment requirements are high.
  • the main reason for this phenomenon is that the morphology of the product obtained in the co-precipitation reaction stage is generally cubic, which makes the gap between the active material particles in the pole piece large and difficult to fill, and the gap between the active material particles and the conductive agent particles is large. The connection between them is not tight. Therefore, how to enhance the contact between particles and reduce the gap is the key to improving the energy density of secondary batteries such as sodium-ion batteries.
  • a Prussian blue-based transition metal cyanide which includes secondary particles, and the secondary particles include a plurality of primary particles; wherein, the The primary particles are spherical or spherical in shape. As shown in Figure 1 and Figure 2.
  • primary particles and secondary particles are the meanings known in the art.
  • Primary particles refer to particles that do not form an agglomerated state.
  • Secondary particles refer to the agglomerated particles formed by the aggregation of two or more primary particles.
  • Primary and secondary particles, as well as particle morphology, can be easily distinguished using SEM images taken with a scanning electron microscope.
  • the inventors have found through research that the particle size of the secondary particles is increased compared to the independently dispersed primary particles, and the primary particles in the secondary particles are in direct bulk contact, so the contact is more intimate.
  • the curved surface provided by the primary particles with spherical or quasi-spherical morphology increases the contact surface between the independently dispersed active material particles and the particles, reduces the porosity under compaction conditions, and improves space utilization, such as shown in Figure 3. Therefore, by using the Prussian blue-based transition metal cyanide of the present application, higher powder compaction density and pole piece compaction density can be obtained, thereby improving the mass energy density and volume energy density of the secondary battery.
  • the close contact between the active material particles can improve the solid-phase transport performance of active ions, and the curved surface provided by the primary particles also enables the active material particles to be in close contact with the conductive agent particles (such as Super P, etc.), improving the conductivity of the pole piece.
  • the secondary battery can obtain higher energy density and at the same time improve the rate performance.
  • the inner angle of the secondary particles of the Prussian blue-based transition metal cyanide is 150° ⁇ 300°, for example, 170° ⁇ 270°, 180° ⁇ 270°, 200° ⁇ 270°, 210° ⁇ 265°, 215° ⁇ 250°, 215° ⁇ 240°, or 200° ⁇ 250°.
  • the inner angle is the angle range of the inner side of the surface of the secondary particle, including the inner angle of the surface of the primary particle that is not adjacent to other primary particles in the secondary particle, and the inner angle of the included angle formed by the adjacent primary particles.
  • An exemplary test method for the internal angle of secondary particles is as follows: Using a ZEISS Gemini SEM 300 Scanning Electron Microscope (SEM) at 10k magnification with selected backscattered electron mode, take 3 pictures at random different locations; in each picture Randomly find 2 secondary particles, both of which are composed of primary particles with a particle size above the Dv50 of Prussian blue transition metal cyanide; determine the maximum internal angle of each secondary particle. Take the average value of the measured values of the maximum inner angle of the 6 secondary particles in the 3 photos, which is the inner angle of the secondary particle.
  • Prussian blue-type transition metal cyanides with more obtuse angles on the surface of the particles have elasticity because their unit cell structure is a framework formed by longer coordination bonds. Moreover, the obtuse angle of the particle surface will be more beneficial to increase the mutual contact area between the particles. Therefore, the use of the Prussian blue transition metal cyanide can improve the compaction density of the pole piece, and the conductive network can be constructed more smoothly, thereby improving the energy density and rate performance of the battery.
  • the radius of curvature of the primary particles is greater than or equal to 0.2 ⁇ m. Within the scale of 100 microns, the larger the curvature radius of the primary particles, the more spherical the morphology is.
  • the primary particle curvature radius of the Prussian blue-based transition metal cyanide may be 0.2 ⁇ m ⁇ 100 ⁇ m, 0.5 ⁇ m ⁇ 100 ⁇ m, 0.8 ⁇ m ⁇ 70 ⁇ m, 0.8 ⁇ m ⁇ 50 ⁇ m, 0.8 ⁇ m ⁇ 20 ⁇ m, 0.8 ⁇ m ⁇ 15 ⁇ m, 0.8 ⁇ m ⁇ 10 ⁇ m, 0.8 ⁇ m ⁇ 8 ⁇ m, 0.8 ⁇ m ⁇ 5 ⁇ m, 1.5 ⁇ m ⁇ 50 ⁇ m, 1.5 ⁇ m ⁇ 18 ⁇ m, 1.5 ⁇ m ⁇ 12 ⁇ m, 1.5 ⁇ m ⁇ 7 ⁇ m, 1 ⁇ m ⁇ 70 ⁇ m, 2 ⁇ m ⁇ 50 ⁇ m, 2 ⁇ m ⁇ 20 ⁇ m, 5 ⁇ m ⁇ 50 ⁇ m, 3 ⁇ m ⁇ 30 ⁇ m, 3 ⁇ m to 20 ⁇ m, 5 ⁇ m to 20 ⁇ m, or 2 ⁇ m to 10 ⁇ m.
  • the radius of curvature is fitted by a circle with a certain diameter, and the fitted circle radius is the radius of curvature of the measured object.
  • An exemplary test method for the primary particle radius of curvature of Prussian blue-like transition metal cyanides is as follows: 3 random different positions are photographed using a ZEISS Gemini SEM 300 Scanning Electron Microscope (SEM) at a magnification of 10k in selected backscattered electron mode; Randomly find 2 secondary particles in each photo, these 2 secondary particles are composed of primary particles with a particle size above the D v50 of Prussian blue-type transition metal cyanide; measure any position of the primary particles in the secondary particles The average value of the curvature radius of the primary particles in the 6 secondary particles in the 3 photos is taken as the primary particle curvature radius.
  • Appropriate radius of curvature is conducive to the close overlap between the Prussian blue particles, which is conducive to the improvement of the compaction density of the pole piece and the smooth transmission of ions and electrons, thereby improving the rate performance and energy density of the battery.
  • the Prussian blue-like transition metal cyanide has a volume average particle size D v 50 > 1 ⁇ m.
  • the D v 50 of the Prussian blue-like transition metal cyanide may be 1 ⁇ m ⁇ 50 ⁇ m, 2 ⁇ m ⁇ 50 ⁇ m, 2 ⁇ m ⁇ 40 ⁇ m, 10 ⁇ m ⁇ 40 ⁇ m, 5 ⁇ m ⁇ 20 ⁇ m, 8 ⁇ m ⁇ 25 ⁇ m, 5 ⁇ m ⁇ 45 ⁇ m, 5 ⁇ m ⁇ 30 ⁇ m, 5 ⁇ m ⁇ 20 ⁇ m, 5 ⁇ m to 15 ⁇ m, 4 ⁇ m to 30 ⁇ m, 8 ⁇ m to 20 ⁇ m, 1 ⁇ m to 10 ⁇ m, or 2 ⁇ m to 10 ⁇ m.
  • Appropriate particle size range is conducive to the improvement of the compaction density of the pole piece, and the ion and electron conduction is also faster, thus contributing to the improvement of the energy density and rate performance of the battery.
  • the powder compacted density of the Prussian blue-based transition metal cyanide under a pressure of 600 MPa is 1.7 g/cm 3 to 2.1 g/cm 3 .
  • the powder compaction density of the Prussian blue-based transition metal cyanide under a pressure of 600 MPa can be 1.8g/cm 3 ⁇ 2.1g/cm 3 , 1.74g/cm 3 ⁇ 2.02g/cm 3 , 1.8g/cm cm 3 to 1.95 g/cm 3 , 1.85 g/cm 3 to 1.9 g/cm 3 , 1.71 g/cm 3 to 1.9 g/cm 3 , or 1.71 g/cm 3 to 1.85 g/cm 3 .
  • Prussian blue-type transition metal cyanide powder has a high compaction density, which is conducive to the contact between the particles and the conductive agent, thereby improving the rate performance of the battery.
  • the powder compaction density of the Prussian blue transition metal cyanide is also beneficial to improve the compaction density of the pole piece, thereby improving the energy density of the battery.
  • the Prussian blue-based transition metal cyanide includes A x M 1 [M 2 (CN) 6 ] y , wherein A is selected from one or more of alkali metal ions and alkaline earth metal ions; M 1 One or more selected from Mn, Ni, Cu, Co, Fe, Zn, Cr; M 2 selected from one or more of Mn, Ni, Cu, Co, Fe, Zn, Cr; 1.5 ⁇ x ⁇ 2; 0.6 ⁇ y ⁇ 1.
  • x represents the content of A
  • y represents the defect degree of Prussian blue-like transition metal cyanide. The greater the content of A, the less the degree of defects, and the higher the gram capacity of the Prussian blue-type transition metal cyanide.
  • A can be selected from one or more of Na, K, Zn, and Li.
  • A is selected from Na.
  • M 1 is selected from one or more of Mn, Ni, Co, and Fe. As an example, M 1 is selected from Mn.
  • M 2 is selected from one or more of Mn, Ni, Co, and Fe.
  • M 2 is selected from Fe.
  • the powder resistivity of the Prussian blue-based transition metal cyanide under a pressure of 12 MPa is 10 k ⁇ cm to 100 k ⁇ cm.
  • the powder resistivity of the Prussian blue-based transition metal cyanide under the pressure of 12MPa is 10k ⁇ cm ⁇ 90k ⁇ cm, 10k ⁇ cm ⁇ 70k ⁇ cm, 20k ⁇ cm ⁇ 90k ⁇ cm, 20k ⁇ cm ⁇ 80k ⁇ cm, 30k ⁇ cm to 80k ⁇ cm, 30k ⁇ cm to 70k ⁇ cm, 20k ⁇ cm to 60k ⁇ cm, or 40k ⁇ cm to 60k ⁇ cm.
  • the powder resistivity is in an appropriate range, indicating that the Prussian blue-like transition metal cyanide particles are closely overlapped and help the pole piece to obtain higher ionic conductivity, which can improve the rate performance of the battery.
  • the Prussian blue-based transition metal cyanide has a gram capacity of 120 mAh/g to 170 mAh/g.
  • the gram capacity of the Prussian blue-based transition metal cyanide is 140mAh/g ⁇ 170mAh/g, 145mAh/g ⁇ 165mAh/g, 150mAh/g ⁇ 165mAh/g, 155mAh/g ⁇ 165mAh/g, or 155mAh/g g ⁇ 160mAh/g.
  • Prussian blue-type transition metal cyanide has a large gram capacity, which can increase the energy density of the battery.
  • the volume average particle size D v 50 of the Prussian blue-based transition metal cyanide is the meaning known in the art, and can be tested by methods known in the art.
  • laser diffraction particle size analysis As an example, it can refer to the standard GB/T 19077.1-2016, and use a laser particle size analyzer (eg Malvern Master Size 3000) to measure.
  • the medium is, for example, water
  • the absorbance is, for example, 1.567.
  • D v 50 is the particle size corresponding to when the cumulative volume distribution percentage of Prussian blue-type transition metal cyanide reaches 50%.
  • the powder compaction density of the Prussian blue-based transition metal cyanide is the meaning known in the art, and can be tested by methods known in the art. For example, referring to the standard GB/T24533-2009, it is determined by an electronic pressure testing machine (such as UTM7305).
  • An exemplary test method is as follows: Weigh 1 g of Prussian blue-based transition metal cyanide sample, add it to a mold with a bottom area of 1.327 cm2, pressurize to 600 MPa, hold the pressure for 30s, then release the pressure, hold for 10s, and then record and calculate the Prussian Powder compaction density of blue transition metal cyanide under 600MPa pressure.
  • H1 The height of the top column exposed outside the sleeve after the sample is compacted
  • H0 The height of the top column exposed outside the sleeve when no sample is placed
  • the chemical composition of the Prussian blue-based transition metal cyanide can be tested by methods known in the art.
  • ICP inductively coupled plasma spectrometer
  • ICP determines the proportion of each element in the material in the sample.
  • the powder resistivity of the Prussian blue-based transition metal cyanide has the meaning known in the art, and can be tested by methods known in the art. For example, you can refer to GB/T 30835-2014 and use the PRCD1100 powder resistivity meter for testing.
  • the gram capacity of the Prussian blue-based transition metal cyanide is the meaning known in the art, and can be tested by methods known in the art. Exemplary test methods are as follows: the prepared Prussian blue-based transition metal cyanide, conductive agent (eg, acetylene black (Denka, Denka Black)), binder (eg, polyvinylidene fluoride (Arkema, HSV 900)) by mass Mix evenly with solvent N-methylpyrrolidone (NMP) in a ratio of 7:2:1 to prepare a slurry; coat the prepared slurry on an aluminum foil current collector, and dry it in an oven for later use.
  • conductive agent eg, acetylene black (Denka, Denka Black)
  • binder eg, polyvinylidene fluoride (Arkema, HSV 900)
  • a 2025 type button cell was assembled in an argon-protected glove box with a sodium metal sheet as the counter electrode, a ceramic separator, and 1 mol/L NaPF 6 propylene carbonate (PC) electrolyte.
  • PC propylene carbonate
  • the ratio of the discharge capacity to the mass of the Prussian blue-like transition metal cyanide is the gram capacity of the prepared Prussian blue-like transition metal cyanide.
  • a second aspect of the present application provides a method for preparing a Prussian blue-type transition metal cyanide, according to which the above-mentioned Prussian blue-type transition metal cyanide can be prepared.
  • the preparation method of Prussian blue transition metal cyanide comprises the following steps:
  • the concentration of transition metal cyanate radical anions in the second solution is ⁇ 0.1 mol/L, and A is selected from one of alkali metal ions and alkaline earth metal ions or several.
  • the Prussian blue-based transition metal cyanide includes secondary particles, and the secondary particles include a plurality of primary particles, and the The primary particles are spherical or spherical in shape.
  • the transition metal cation-providing species may be selected from transition metal chlorides, transition metal nitrates, transition metal sulfates, transition metal hydroxides, transition metal formates, transition metal acetates, transition metal oxalates Salt, transition metal phosphate, transition metal phosphite, transition metal sulfite, transition metal thiosulfate, transition metal perchlorate, transition metal perchlorate, transition metal benzoate, transition metal lemon One or more of the acid salts.
  • the transition metal source is selected from one or more of transition metal chlorides, transition metal nitrates, and transition metal sulfates. wherein the transition metal may be M 1 .
  • the substance providing transition metal cations can be selected from one or more of manganese chloride, manganese sulfate, manganese nitrate, nickel chloride, nickel sulfate, nickel nitrate, cobalt chloride, cobalt sulfate, and cobalt nitrate .
  • the transition metal cation concentration in the first solution ranges from 0.2 mol/L to 4 mol/L.
  • the concentration of transition metal cations in the first solution is 0.25mol/L ⁇ 3.5mol/L, 0.3mol/L ⁇ 3mol/L, 0.2mol/L ⁇ 2mol/L, 0.35mol/L ⁇ 2mol/L , or 0.4mol/L ⁇ 1mol/L.
  • the transition metal in the transition metal cyanate can be M2 .
  • the transition metal cyanate can be selected from one or more of ferricyanate, manganese cyanate, cobalt cyanate, nickel cyanate and cupric cyanate.
  • A can be a metal as described herein.
  • the A salt of transition metal cyanate may be selected from sodium ferricyanide, potassium ferricyanide, sodium ferrocyanide, lithium ferrocyanide, sodium nickel cyanide, zinc cobalt cyanide, potassium cobalt cyanide one or more of them.
  • the concentration of transition metal cyanate anions in the second solution is 0.2 mol/L to 4 mol/L.
  • concentration of transition metal cyanate anion in the second solution is 0.25mol/L ⁇ 3.5mol/L, 0.3mol/L ⁇ 3mol/L, 0.2mol/L ⁇ 2mol/L, 0.35mol/L ⁇ 2mol /L, or 0.4 mol/L to 1 mol/L.
  • the solvents of the first solution and the second solution can be independently selected from water, deuterium oxide, acetonitrile, adiponitrile, methanol, ethanol, ethylene glycol, diethylene glycol, acetone, glycerol, dimethylformamide, N-methane One or more of pyrrolidones.
  • the solvent of the first solution and the second solution can be selected from water, such as deionized water.
  • the concentration of transition metal cation and transition metal cyanate anion is relatively large, the yield of Prussian blue-type transition metal cyanide can be increased, and the production cost can be reduced.
  • the concentrations of the transition metal cations in the first solution and the transition metal cyanate anions in the second solution are within an appropriate range, the concentration of the crystals generated by the reaction can be thermodynamically lower than the saturated solubility, and appear as a liquid phase to maintain a stable concentration.
  • the reaction is carried out to obtain the Prussian blue-based transition metal cyanide described in this application.
  • the first solution or the second solution also optionally includes a source of A.
  • a source is selected from A's chloride, A's nitrate, A's sulfate, A's hydroxide, A's formate, A's acetate, A's oxalate, A's phosphate, A's One or more of perchlorate, benzoate of A, and citrate of A.
  • the A source is selected from one or more of A's chloride salt, A's nitrate, and A's sulfate.
  • the concentration of the A source added to the first solution or the second solution is 0.05mol/L ⁇ 10mol/L; optionally 0.05mol/L ⁇ 5mol/L, 1mol/L ⁇ 5mol/L, 3mol/L ⁇ 8mol/L, 2mol/L ⁇ 6mol/L, 4mol/L ⁇ 9mol/L, or 4mol/L ⁇ 7mol/L.
  • a source can promote the migration of A to the framework of the Prussian blue-type transition metal cyanide, which is beneficial to the integrity of the product structure, thereby improving the gram capacity of the Prussian blue-type transition metal cyanide, thereby improving the energy density of the battery.
  • an antioxidant is included in the first solution or the second solution.
  • the antioxidant may be selected from ascorbic acid, sodium ascorbate, thiosulfuric acid, sodium thiosulfate, citric acid, sodium citrate.
  • Antioxidants can inhibit the oxidation of transition metals in the reaction solution and reduce the probability that the product is doped with oxidized impurities, thereby increasing the gram capacity of Prussian blue-type transition metal cyanide, thereby increasing the energy density of the battery.
  • any device and method can be used to regulate the flow rate and time of adding one of the first solution and the second solution to the other.
  • a syringe, peristaltic pump or autosampler with a diameter of 0.3 mm to 2 mm may be utilized.
  • the solution mixing at a specific flow rate and a specific time condition is carried out.
  • the order of solution mixing will affect the physical properties of the product. For example, adding the first solution to the second solution will reduce the internal angle of the secondary particles obtained by adding the first solution to the second solution. Dv50 will increase, and powder resistivity will also increase.
  • the flow rate of the mixing in S3 is 10 cm/s ⁇ 20 m/s.
  • the flow velocity of the mixing in S3 is 50cm/s ⁇ 20m/s, 10cm/s ⁇ 10m/s, 50cm/s ⁇ 10m/s, 50cm/s ⁇ 5m/s, 1m/s ⁇ 8m/s , 1m/s ⁇ 5m/s, 2m/s ⁇ 5m/s, or 50cm/s ⁇ 2m/s.
  • the transition metal cation or transition metal cyanate anion added to the liquid can form a certain local concentration in the mixed liquid.
  • the concentration of transition metal cations or transition metal cyanate anions added to the liquid exceeds the saturation of Prussian blue-type transition metal cyanide, and the supersaturation is large, it tends to nucleate.
  • the crystal nuclei are quickly dispersed in the mixed solution by using a relatively fast flow rate, which improves the dispersibility of the final particles.
  • the obtained Prussian blue-like transition metal cyanide has suitable particle size distribution and morphology, which is beneficial to improve the compaction density of the pole piece and reduce the resistivity of the pole piece, thus helping to improve the energy density of the battery.
  • the mixing time of S3 ranges from 1 h to 24 h.
  • the mixing time in S3 is 4h-20h, 6h-12h, 2h-12h, 0.5h-10h, 5h-15h, 8h-24h, 10h-48h, or 1h-4h.
  • the grains can further grow in a supersaturated state to obtain a larger grain size, thereby reducing the resistivity of the pole piece to improve the gram capacity of the battery, and improve the compaction density of the pole piece and the battery. energy density.
  • the temperature of the solution of the other in S3 is 60°C to 140°C.
  • the temperature of the other solution in S3 is 60°C to 120°C, 70°C to 110°C, or 80°C to 100°C. Controlling the solution temperature can increase the content of metal A and transition metal M2 in the chemical formula of the product, making the crystal structure more complete and less defects, thus making the Prussian blue-like transition metal cyanide show higher gram capacity, which can improve the battery's performance. Energy Density.
  • the aging temperature of S4 ranges from 60°C to 140°C.
  • the aging temperature in S4 is 60°C to 120°C, 70°C to 110°C, or 80°C to 100°C.
  • the aging time of S4 is 1 h to 24 h.
  • the aging time in S4 is 2h-12h, 5h-15h, 8h-20h, 10h-15h, or 6h-12h.
  • the precipitated product can be reformed, so that more Na elements enter the structure of Prussian blue-like transition metal cyanide, increase the proportion of Na in the product, and then increase the Prussian blue-like transition metal
  • the gram capacity of cyanide and the energy density of the battery can be reformed, so that more Na elements enter the structure of Prussian blue-like transition metal cyanide, increase the proportion of Na in the product, and then increase the Prussian blue-like transition metal The gram capacity of cyanide and the energy density of the battery.
  • the separation, washing and drying of S5 can be performed by means known in the art.
  • the Prussian blue-like transition metal cyanide product was separated from the reaction solution using suction filtration.
  • the washing can be washing the Prussian blue-type transition metal cyanide product with deionized water for 3 to 5 times and absolute ethanol for 1 to 5 times. Drying can be done in a vacuum drying oven at 120°C to 180°C for 12 to 48 hours.
  • the successfully synthesized Prussian blue-like transition metal cyanide is a typical monoclinic phase (Monoclinic), as shown in Figure 5.
  • a third aspect of the present application provides a positive electrode sheet, including a positive electrode material, and the positive electrode material includes any one or several Prussian blue-based transition metal cyanides according to the present application.
  • the positive electrode sheet of the present application adopts the positive electrode material of the present application, the sodium-ion battery using the positive electrode sheet can have a higher energy density. Further, sodium-ion batteries can also have higher rate performance.
  • the positive electrode sheet of the present application includes a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode current collector and including a positive electrode material.
  • the positive electrode current collector has two opposite surfaces in its thickness direction, and the positive electrode film layer may be laminated on either or both of the two opposite surfaces of the positive electrode current collector.
  • the positive electrode current collector may be a metal foil sheet or a composite current collector.
  • aluminum foil can be used.
  • the composite current collector can be formed by forming a metal material (aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, silver, silver alloy, etc.) on a polymer substrate.
  • the positive electrode film layer includes a positive electrode material, and the positive electrode material includes any one or several Prussian blue-based transition metal cyanides of the present application.
  • the cathode material may also include other cathode active materials used in sodium-ion battery cathodes.
  • other positive active materials may include layered metal oxides , such as Na 3 V 2 ( PO 4 ) 3 , NaFePO4, Na 4 Fe 3 (PO 4 ) 2 P 2 O 7 and other polyanionic positive electrode materials.
  • the positive electrode film layer usually contains a positive electrode material and optionally a binder and optionally a conductive agent, and is usually coated with a positive electrode slurry, dried and cold-pressed.
  • the positive electrode slurry is usually formed by dispersing the positive electrode active material and optionally a conductive agent and a binder in a solvent and stirring uniformly.
  • the solvent may be N-methylpyrrolidone (NMP).
  • the binder of the positive electrode film layer can be any known binder used for positive electrodes in the art.
  • the binder for the positive electrode film layer may include one or more of polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and acrylonitrile multipolymer (LA133).
  • the mass ratio of the binder in the positive electrode film layer is 1%-20%; optionally, it is 1%-10%, 2%-5%, 2%-12%, 3%- 8%, 5% to 10%, 5% to 15%, or 10% to 20%, etc.
  • the particle size of Prussian blue transition metal cyanide is increased, which can improve the processing performance of the positive electrode slurry, and can also make the pole piece obtain higher bonding force while reducing the amount of binder, thereby further improving the Energy density of secondary batteries.
  • the conductive agent of the positive electrode film layer can be the conductive agent used for the positive electrode known in the art.
  • the conductive agent for the positive electrode film layer may include one of superconducting carbon, carbon black (eg, Super P, acetylene black, Ketjen black), carbon dots, carbon nanotubes, graphene, and carbon nanofibers or several.
  • the mass proportion of the conductive agent in the positive electrode film layer is 1%-20%; optionally, it is 1%-10%, 2%-5%, 2%-12%, 3%-8% %, 5% to 10%, 5% to 15%, or 10% to 20%, etc.
  • the Prussian blue-based transition metal cyanide particles can be in close contact with the conductive agent, and the pole piece can obtain higher conductivity while reducing the amount of the conductive agent, thereby improving the rate capability and energy density of the secondary battery.
  • the compaction density of the positive film layer is 1.2-1.6 g/cm 3 ; for example, it may be 1.25-1.55 g/cm 3 , 1.3-1.5 g/cm 3 , or 1.35-1.45 g/cm 3 .
  • the compaction density of the positive film layer is high, which can improve the energy density of the battery.
  • the compaction density of the positive electrode film layer is a meaning known in the art, and can be tested by a method known in the art. For example, take a single-side coated and cold-pressed positive pole piece (if it is a double-sided coated pole piece, you can wipe off the positive film layer on one side first), test the thickness of the positive film layer, and then test according to the following method
  • the areal density of the positive electrode film layer, the compaction density of the positive electrode film layer the areal density of the positive electrode film layer/the thickness of the positive electrode film layer.
  • a fourth aspect of the present application provides a secondary battery, comprising a positive electrode piece, wherein the positive electrode piece is any positive electrode piece of the present application.
  • the secondary battery of the present application can be classified into different types of secondary batteries, such as sodium ion batteries, magnesium ion batteries, potassium ion batteries, zinc ion batteries, lithium ion batteries, etc., depending on the active ion (A).
  • secondary batteries such as sodium ion batteries, magnesium ion batteries, potassium ion batteries, zinc ion batteries, lithium ion batteries, etc., depending on the active ion (A).
  • the secondary battery of the present application uses the positive electrode sheet of the present application, it can have a high energy density.
  • the secondary battery of the present application further includes a negative electrode sheet and an electrolyte.
  • active ions are inserted and extracted back and forth between the positive electrode and the negative electrode.
  • the electrolyte plays the role of conducting ions between the positive electrode and the negative electrode.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode film layer disposed on at least one surface of the negative electrode current collector.
  • a metal foil or a composite current collector may be used as the negative electrode current collector.
  • aluminum foil or copper foil can be used.
  • the composite current collector can be formed by forming a metal material (aluminum, aluminum alloy, copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver, and silver alloy, etc.) on a polymer substrate.
  • the negative electrode film layer includes a negative electrode material.
  • a negative electrode material known in the art that can be used in a secondary battery can be used in the secondary battery of the present application.
  • the negative electrode material may include one or more of natural graphite, artificial graphite, soft carbon, hard carbon, silicon-based materials, and tin-based materials.
  • the silicon-based material can be selected from one or more of elemental silicon, silicon oxide, and silicon-carbon composite.
  • the tin-based material can be selected from one or more of elemental tin, tin oxide compounds, and tin alloys.
  • the negative electrode film layer usually includes a negative electrode material and optionally a binder, optionally a conductive agent and other optional auxiliary agents, and is usually formed by coating and drying the negative electrode slurry.
  • the negative electrode slurry coating is usually formed by dispersing the negative electrode active material and optionally a conductive agent and a binder in a solvent and stirring uniformly.
  • the solvent can be N-methylpyrrolidone (NMP) or deionized water.
  • the conductive agent may include one or more of superconducting carbon, carbon black (eg, Super P, acetylene black, Ketjen black), carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
  • carbon black eg, Super P, acetylene black, Ketjen black
  • carbon dots carbon nanotubes, graphene, and carbon nanofibers.
  • the binder may include one or more of styrene-butadiene rubber (SBR), polyvinylidene fluoride, and acrylonitrile multipolymer.
  • SBR styrene-butadiene rubber
  • polyvinylidene fluoride polyvinylidene fluoride
  • acrylonitrile multipolymer acrylonitrile multipolymer
  • auxiliary agents are, for example, thickeners (such as sodium carboxymethyl cellulose CMC-Na), PTC thermistor materials, and the like.
  • the secondary battery of the present application has no specific restrictions on the type of electrolyte, which can be selected according to requirements.
  • the electrolyte may be selected from at least one of solid electrolytes and liquid electrolytes (ie, electrolytes).
  • the electrolyte is an electrolyte.
  • the electrolytic solution includes an electrolyte salt and a solvent.
  • the electrolyte salt may be selected from NaPF 6 , NaClO 4 , NaBF 4 , KPF 6 , KClO 4 , KBF 4 , LiPF 6 , LiClO 4 , LiBF 4 , Zn(PF 6 ) 2 , Zn(ClO 4 ) 2.
  • Zn(BF 4 ) 2 the electrolyte salt can be selected from one or more of NaPF 6 , NaClO 4 , and NaBF 4 .
  • the solvent may be selected from propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl acetate (EA) one or more.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EA ethyl acetate
  • additives are also optionally included in the electrolyte.
  • the additives may include negative electrode film-forming additives, positive electrode film-forming additives, and additives that can improve certain performance of the battery, such as additives to improve battery overcharge performance, additives to improve battery high temperature performance, and additives to improve battery low temperature performance. additives, etc.
  • the secondary battery of the present application further includes a separator.
  • the separator is arranged between the positive pole piece and the negative pole piece, and plays the role of isolation.
  • the type of separator in the present application and any well-known porous-structure separator with good chemical stability and mechanical stability can be selected.
  • the separator can be selected from a single-layer or multi-layer composite film of one or more of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride.
  • the positive electrode sheet, the negative electrode sheet and the separator may be fabricated into an electrode assembly through a winding process or a lamination process.
  • the secondary battery may include an outer package.
  • the outer packaging can be a hard case, such as a hard plastic case, an aluminum case, a steel case, and the like.
  • the outer packaging can also be a soft bag, such as a bag-type soft bag.
  • the material of the soft bag may be plastic, such as one or more of polypropylene (PP), polybutylene terephthalate (PBT), polybutylene succinate (PBS), and the like.
  • the shape of the secondary battery is not particularly limited in the present application, and it may be cylindrical, square or any other shape.
  • FIG. 6 shows a secondary battery 5 of a square structure as an example.
  • the outer package may include a housing 51 and a cover 53 .
  • the housing 51 includes a bottom plate and a side plate connected to the bottom plate, and the bottom plate and the side plate are enclosed to form a accommodating cavity.
  • the housing 51 has an opening that communicates with the accommodating cavity, and a cover plate 53 can cover the opening to close the accommodating cavity.
  • the positive pole piece, the negative pole piece and the separator may be formed through a winding process or a lamination process to form the electrode assembly 52 .
  • the electrode assembly 52 is packaged in the accommodating cavity.
  • the electrolyte is infiltrated in the electrode assembly 52 .
  • the number of electrode assemblies 52 contained in the secondary battery 5 may be one or several, and may be adjusted according to requirements.
  • a fifth aspect of the present application provides a battery module including the secondary battery according to the fourth aspect of the present application.
  • the secondary batteries can be assembled into a battery module, and the number of secondary batteries contained in the battery module can be multiple, and the specific number can be adjusted according to the application and capacity of the battery module.
  • FIG. 8 shows the battery module 4 as an example.
  • the plurality of secondary batteries 5 may be arranged in sequence along the longitudinal direction of the battery module 4 .
  • it can also be arranged in any other manner.
  • the plurality of secondary batteries 5 can be fixed with fasteners.
  • the battery module 4 may further include a housing having an accommodating space in which the plurality of secondary batteries 5 are accommodated.
  • a sixth aspect of the present application provides a battery pack, including the secondary battery according to the fourth aspect of the present application, or the battery module according to the fifth aspect of the present application.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules included in the battery pack can be adjusted according to the application and capacity of the battery pack.
  • the battery pack 1 may include a battery case and a plurality of battery modules 4 disposed in the battery case.
  • the battery box includes an upper box body 2 and a lower box body 3 .
  • the upper box body 2 can cover the lower box body 3 and form a closed space for accommodating the battery module 4 .
  • the plurality of battery modules 4 may be arranged in the battery case in any manner.
  • a seventh aspect of the present application provides an apparatus, including the secondary battery according to the fourth aspect of the present application, the battery module according to the fifth aspect of the present application, or the battery pack according to the sixth aspect of the present application at least one of.
  • the secondary battery can be used as a power source for the device and also as an energy storage unit for the device.
  • the device of the present application adopts the secondary battery provided by the present application, so it has at least the same advantages as the secondary battery.
  • the device may be, but is not limited to, mobile devices (eg, cell phones, laptops, etc.), electric vehicles (eg, pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf balls) vehicles, electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc.
  • mobile devices eg, cell phones, laptops, etc.
  • electric vehicles eg, pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf balls
  • electric trucks, etc. electric trains, ships and satellites, energy storage systems, etc.
  • the device may select a secondary battery, a battery module or a battery pack according to its usage requirements.
  • Figure 11 is an apparatus as an example.
  • the device is a pure electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or the like.
  • a battery pack or a battery module can be employed.
  • the device may be a mobile phone, a tablet computer, a laptop computer, and the like.
  • the device is generally required to be thin and light, and a secondary battery can be used as a power source.
  • the obtained suspension is maintained at 80° C. and aged for 24 hours under the condition of stirring, so that the small crystal grains are dissolved and the large crystal grains are continuously grown.
  • Example 1 Similar to Example 1, the difference is that the antioxidant of the first solution is 1 g of ascorbic acid, and other parameters are shown in Table 1.
  • Example 1 Similar to Example 1, the difference is that the antioxidant of the first solution is 0.5 g ascorbic acid, and other parameters are shown in Table 1.
  • Example 1 Similar to Example 1, the difference is that the antioxidant of the first solution is 1 g of sodium ascorbate, and other parameters are shown in Table 1.
  • Example 1 Similar to Example 1, the difference is that the antioxidant of the first solution is 2 g of ascorbic acid, and other parameters are shown in Table 1.
  • Example 1 Similar to Example 1, the difference is that the antioxidant of the first solution is 0.5 g ascorbic acid, and other parameters are shown in Table 1.
  • the antioxidants of the first solution are 0.1 g of sodium ascorbate and 0.48 g of sodium thiosulfate, and other parameters are shown in Table 1.
  • the antioxidants of the first solution are 0.1 g ascorbic acid and 0.48 g sodium thiosulfate, and other parameters are shown in Table 1.
  • Example 1 Similar to Example 1, the difference is that the antioxidant of the first solution is 0.2 g ascorbic acid, and other parameters are shown in Table 1.
  • the difference is that the antioxidant of the first solution is 0.5 g ascorbic acid; and in S3, after the second solution is heated to 80 °C, the first solution at 25 °C is injected with an injection needle with an inner diameter of 0.6 mm. Inject the second solution; see Table 1 for other parameters.
  • the antioxidant of the first solution is 0.5g ascorbic acid
  • the first solution is heated to 95°C
  • the diameter of the injection needle is 0.4mm
  • other parameters are shown in Table 1.
  • antioxidants of the first solution are 0.3 g of ascorbic acid and 0.48 g of sodium thiosulfate, and other parameters are shown in Table 1.
  • Example 13 Similar to Example 13, the difference is that the antioxidant of the first solution is 1 g of sodium ascorbate, and other parameters are shown in Table 1.
  • Example 13 Similar to Example 13, the difference is that the antioxidant of the first solution is 1 g of ascorbic acid, and other parameters are shown in Table 1.
  • Heated solution temperature (° C.): measured by inserting a thermocouple into the bottom of the solution.
  • the positive electrode material Prussian blue transition metal cyanide
  • the conductive agent acetylene black Denka, Denka Black
  • the binder polyvinylidene fluoride Arkema, HSV 900
  • the positive electrode slurry was coated on both sides of an aluminum foil with a thickness of 12 ⁇ m using a doctor blade to form wet coatings with a thickness of 120 ⁇ m each.
  • the negative electrode material hard carbon, conductive agent acetylene black, binder styrene-butadiene rubber, thickener sodium carboxymethyl cellulose are dispersed in deionized water solvent according to the weight ratio of 95:2:2:1, fully Stir and mix evenly to obtain a negative electrode slurry with a solid content of 15%.
  • the battery was charged with constant current at a rate of 0.1C to a rated voltage of 4.0V, charged with constant voltage for 30 minutes, and then discharged with a constant current to 1.5V at a rate of 0.1C, and recorded the energy released by the constant current discharge. Divided by the overall mass of the battery, it is the energy density of the battery.
  • the battery was charged with constant current at a rate of 0.1C to a rated voltage of 4.0V, charged with constant voltage for 30 minutes, and then discharged with a constant current to 1.5V at a rate of 0.1C, and recorded the capacity C1 released by constant current discharge. .
  • the battery was charged with constant current to the rated voltage of 4.0V at a rate of 0.1C, charged with constant voltage for 30 minutes, and then discharged with constant current to 1.5V at a rate of 1C, and recorded the capacity C2 released by constant current discharge.
  • C2 divided by C1 and multiplied by 100% is the rate capability of the battery.
  • the heating solution temperature means that when one of the first solution and the second solution is added to the other for mixing, the other solution will be heated, and the temperature of this solution is the heating solution temperature.
  • the main particle type refers to the particle type with more than 50% of the particles under the field of view of the electron microscope (ZEISS Gemini SEM 300) 10k magnification.
  • the radius of curvature of the square particle of the comparative example is taken from the angle between two adjacent faces for testing.
  • the Na content in the chemical formula of Prussian blue-type transition metal cyanide is greatly increased, which can improve the gram capacity and particle size of Prussian blue-type transition metal cyanide, and can improve the compaction density of the pole piece, thereby improving the battery.
  • Energy Density When using a larger mixing flow rate, the Na content in the chemical formula of Prussian blue-type transition metal cyanide is greatly increased, which can improve the gram capacity and particle size of Prussian blue-type transition metal cyanide, and can improve the compaction density of the pole piece, thereby improving the battery. Energy Density.
  • the curvature of The radius also increases first and then decreases. From the chemical formula and gram capacity of Comparative Example 4, it can be seen that if the reaction time is too long, the transition metal element will be oxidized, the particles will be seriously disintegrated, and the radius of curvature of the primary particle and the particle size of the material will decrease. Therefore, the appropriate mixing time can effectively control the particle size and morphology of the particles, thereby greatly improving the energy density of the battery.
  • the temperature of the heating solution affects the curvature radius of the primary particles and the particle size of the material.
  • the temperature of the solution is too low, the supersaturation of the Prussian blue-type transition metal cyanide will be greatly increased, which will cause the crystals to rapidly nucleate and form small-sized particles.
  • the temperature of the solution is too low, which can also cause the formation of square particles.
  • the temperature of the solution is high, the secondary particles of the crystal are easily disintegrated, resulting in smaller secondary particles. But higher solution temperature is also beneficial to increase the radius of curvature of the primary particles, and the sphericity is higher.
  • the increase of the solution temperature can also greatly increase the Na content in the Prussian blue-type transition metal cyanide, thereby improving the gram capacity and particle size of the Prussian blue-type transition metal cyanide, and can improve the compaction density of the pole piece, so it can improve the battery. energy density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种普鲁士蓝类过渡金属氰化物、其制备方法、及其相关的正极极片、二次电池、电池包和装置。普鲁士蓝类过渡金属氰化物,包括二次颗粒,所述二次颗粒包括多个一次颗粒;其中,所述一次颗粒为球型或类球型形貌。普鲁士蓝类过渡金属氰化物存在克容量较低的问题,导致钠离子电池的能量密度较差,影响了钠离子电池的商业化应用。二次颗粒可以增大粒子颗粒度和粉体压实密度,还能提高正极极片的压实密度,同时改善正极极片的活性离子传输性能和电子导电性,从而可以提高采用其的二次电池的能量密度和倍率性能。

Description

普鲁士蓝类过渡金属氰化物、其制备方法、及其相关的正极极片、二次电池、电池模块、电池包和装置
相关申请的交叉引用
本申请要求享有于2020年12月08日提交的名称为“普鲁士蓝类过渡金属氰化物、其制备方法、及其相关的正极极片、二次电池、电池模块、电池包和装置”的中国专利申请202011423372.7的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于储能装置技术领域,具体涉及一种普鲁士蓝类过渡金属氰化物、其制备方法、及其相关的正极极片、二次电池、电池模块、电池包和装置。
背景技术
近年来,随着锂离子电池在全球范围内新能源汽车及电化学储能等新兴领域的大规模推广,锂及其他一些贵金属资源如钴、镍等的资源丰度逐渐引起了人们的担忧。这是由于需求的迅猛增长会使得这些资源的储量降低,或是提取或开采成本显著增加。因此,开发新的,具有高资源丰度的电化学储能体系,以实现低储能成本的研究受到越来越多的重视。
以钠离子电池为代表的其它体系二次电池与锂离子电池储能原理类似,不同的是在充放电循环中向正负两极往复移动的离子从锂离子变为了钠离子等活性离子。由于钠元素丰度高,具有潜在的广阔应用前景,特别是在低速电动车、大规模储能领域具有较大的潜在应用价值。
正极材料是钠离子电池等二次电池的最主要构成部分。钠离子电池产业化备选正极材料主要包括普鲁士蓝类过渡金属氰化物、层状过渡金属氧化物、聚阴离子型氧化物等。相比其它正极材料,普鲁士蓝类过渡金属氰化物具有低成本、高比容量、制备方便三大核心产业化优势,最具产业化前景。然而,相对于普遍使用的锂离子电池的正极材料来说,普鲁士蓝类过渡金属氰化物仍然存在克容量较低的问题,导致钠离子电池的能量密度较差,影响了钠离子电池的商业化应用。
发明内容
本申请的第一方面提供一种普鲁士蓝类过渡金属氰化物,其包括二次颗粒,所 述二次颗粒包括多个一次颗粒;其中,所述一次颗粒为球型或类球型形貌。
本申请的普鲁士蓝类过渡金属氰化物包括多个球型或类球型形貌的一次颗粒聚集成的二次颗粒,可以增大粒子颗粒度和粉体压实密度,还能提高正极极片的压实密度,同时改善正极极片的活性离子传输性能和电子导电性,从而可以提高采用其的二次电池的能量密度和倍率性能。
在本申请任意实施方式中,普鲁士蓝类过渡金属氰化物的二次颗粒内角角度为150°~300°;可选地为180°~270°、或200°~250°。颗粒表面钝角较多的普鲁士蓝类过渡金属氰化物,有利于增加颗粒与颗粒的相互接触面积,使得极片的压实密度提高,从而改善电池的能量密度和倍率性能。
在本申请任意实施方式中,普鲁士蓝类过渡金属氰化物的二次颗粒中,一次颗粒曲率半径≥0.2μm;可选地为0.5μm~100μm、或0.8μm~50μm。适当的曲率半径有利于极片压实密度的提高,从而可以改善电池的倍率性能及能量密度。
在本申请任意实施方式中,普鲁士蓝类过渡金属氰化物的体积平均粒径D v50≥1μm;可选地为2μm~50μm、或2μm~10μm。适当的粒径范围利于极片压实密度的提高,因此有助于电池能量密度与倍率性能的提升。
在本申请任意实施方式中,普鲁士蓝类过渡金属氰化物在600MPa压强下的粉体压实密度为1.7g/cm 3~2.1g/cm 3;可选地为1.8g/cm 3~2.1g/cm 3。普鲁士蓝类过渡金属氰化物的粉体压实密度大,有利于颗粒与导电剂的接触,还有利于提高极片压实密度,从而提高电池的能量密度和倍率性能。
在本申请任意实施方式中,普鲁士蓝类过渡金属氰化物包括A xM 1[M 2(CN) 6] y,其中,A选自碱金属离子和碱土金属离子中的一种或几种;M 1选自Mn、Ni、Cu、Co、Fe、Zn、Cr中的一种或几种;M 2选自Mn、Ni、Cu、Co、Fe、Zn、Cr中的一种或几种;1.5≤x≤2;0.6≤y≤1。该普鲁士蓝类过渡金属氰化物的缺陷程度较小,克容量则会越高,越能提高电池的能量密度。
在本申请任意实施方式中,普鲁士蓝类过渡金属氰化物在12MPa压强下的粉体电阻率为10kΩ·cm~100kΩ·cm;可选地为20kΩ·cm~90kΩ·cm。粉体电阻率在适当范围内,可以改善电池的倍率性能。
在本申请任意实施方式中,普鲁士蓝类过渡金属氰化物的克容量为140mAh/g~170mAh/g;可选地为150mAh/g~165mAh/g。普鲁士蓝类过渡金属氰化物的克容量较大,可以使电池的能量密度增大。
本申请的第二方面提供一种普鲁士蓝类过渡金属氰化物的制备方法,其包括以下步骤:
S1,提供包含过渡金属阳离子的第一溶液,所述第一溶液中过渡金属阳离子的浓度≥0.1mol/L;
S2,提供包含过渡金属氰酸根的A盐的第二溶液,所述第二溶液中过渡金属氰酸根阴离子的浓度≥0.1mol/L,A选自碱金属离子和碱土金属离子中的一种或几种;
S3,在搅拌的条件下,以10cm/s~100m/s的流速、在0.5h~48h的时间内,将所述第一溶液和所述第二溶液的其中一种加入到另一种中进行混合,发生共沉淀化学反 应,得到悬浊液;其中,所述其中一种的溶液温度为10℃~40℃,另一种的溶液温度为40℃~180℃;
S4,在搅拌以及40℃~180℃的条件下,对所述悬浊液进行陈化≥0.5h;
S5,经分离、洗涤、干燥,即得所述普鲁士蓝类过渡金属氰化物;其中,所述普鲁士蓝类过渡金属氰化物包括二次颗粒,所述二次颗粒包括多个一次颗粒,所述一次颗粒为球型或类球型形貌。
第一溶液与第二溶液中,过渡金属阳离子与过渡金属氰酸根阴离子的浓度如果较大,则可以提高普鲁士蓝类过渡金属氰化物的产量,降低生产成本。
在本申请任意实施方式中,S1所述第一溶液中过渡金属阳离子的浓度为0.2mol/L~4mol/L;可选地为0.3mol/L~3mol/L。
在本申请任意实施方式中,S2所述第二溶液中过渡金属氰酸根阴离子的浓度为0.2mol/L~4mol/L;可选地为0.3mol/L~3mol/L。
第一溶液过渡金属阳离子与第二溶液过渡金属氰酸根阴离子的浓度在适当范围内,能使晶体浓度在热力学上小于饱和溶解度,呈现为液相,以维持稳定的浓度来进行反应,得到本申请所述的普鲁士蓝类过渡金属氰化物。
在本申请任意实施方式中,S1所述第一溶液或S2所述第二溶液中还包含A源,其中,A源选自A的氯化盐、A的硝酸盐、A的硫酸盐、A的氢氧化物、A的甲酸盐、A的乙酸盐、A的草酸盐、A的磷酸盐、A的高氯酸盐、A的苯甲酸盐、A的柠檬酸盐中的一种或几种;可选地,A源选自A的氯化盐、A的硝酸盐、A的硫酸盐中的一种或几种。
A源的加入能够促进A向普鲁士蓝类过渡金属氰化物的框架中迁移,利于产物结构完整,由此能提高普鲁士蓝类过渡金属氰化物的克容量,从而提高电池的能量密度。
在本申请任意实施方式中,S1所述第一溶液或S2所述第二溶液中包含抗氧化剂。抗氧化剂能够抑制过渡金属在反应溶液中发生氧化,降低产物掺杂氧化杂质的机率,由此能提高普鲁士蓝类过渡金属氰化物的克容量,从而提高电池的能量密度。
在本申请任意实施方式中,S3所述混合的流速为50cm/s~10m/s;可选地为1m/s~5m/s。在此流速范围内进行混合,反应生成的普鲁士蓝类过渡金属氰化物分散性较好,颗粒之间不容易过度聚集但也不会过于分散,可以使一次颗粒在保持球形的状态下形成二次颗粒,从而降低极片的电阻率,并且提高极片的压实密度,因此能提升电池的能量密度和倍率性能。
在本申请任意实施方式中,S3所述混合的时间为1h~24h;可选地为2h~12h。在此时间范围内进行混合,可以使普鲁士蓝类过渡金属氰化物具有较大的粒径,从而降低极片的电阻率,同时提高极片的压实密度,因此有利于提升电池的能量密度和倍率性能。
在本申请任意实施方式中,S3所述另一种的溶液温度为60℃~140℃;可选地为70℃~110℃。控制溶液温度能够提高产物化学式中金属A以及过渡金属M2的含量,使晶体结构更完整,缺陷更少,由此使普鲁士蓝类过渡金属氰化物表现出更高的 克容量,从而能提高电池的能量密度。
在本申请任意实施方式中,S4所述陈化的温度为60℃~140℃;可选地为70℃~110℃。在此温度范围内进行陈化,能进一步提高普鲁士蓝类过渡金属氰化物的克容量及电池的能量密度。进一步地,电池的倍率性能也得到提升。
在本申请任意实施方式中,S4所述陈化的时间为1h~24h;可选地为2h~12h。在此时间范围内进行陈化,可以提高产物化学式中的Na含量比例,进而能提高普鲁士蓝类过渡金属氰化物的克容量及电池的能量密度。
本申请的第三方面提供一种正极极片,其包括正极材料,所述正极材料包括根据本申请第一方面所述的普鲁士蓝类过渡金属氰化物或根据本申请第二方面所述制备方法得到的普鲁士蓝类过渡金属氰化物。
本申请的正极极片由于采用了本申请的正极材料,因而能使采用其的钠离子电池具有较高的能量密度。
本申请的第四方面提供一种二次电池,其包括正极极片,所述正极极片为根据本申请第三方面所述的正极极片。可选地,二次电池为钠离子电池。
本申请的二次电池由于采用了本申请的正极极片,因而能具有较高的能量密度。
本申请的第五方面提供一种电池模块,包括根据本申请第四方面所述的二次电池。
本申请的第六方面提供一种电池包,包括根据本申请第四方面所述的二次电池、或根据本申请第五方面所述的电池模块。
本申请的第七方面提供一种装置,包括根据本申请第四方面所述的二次电池、根据本申请第五方面所述的电池模块、或根据本申请第六方面所述的电池包中的至少一种。
本申请的电池模块、电池包和装置包括本申请所述二次电池,因而至少具有与所述二次电池相同或类似的技术效果。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是对比例1所得普鲁士蓝类过渡金属氰化物的扫描式电子显微镜(SEM)图。
图2是实施例1所得普鲁士蓝类过渡金属氰化物的扫描式电子显微镜(SEM)图。
图3是(a)对比例1及(b)实施例1所得普鲁士蓝类过渡金属氰化物的离子抛光断面扫描式电子显微镜(SEM)图。
图4是二次颗粒的内角角度的示意图。
图5是实施例1所得普鲁士蓝类过渡金属氰化物的X射线衍射(XRD)图,结果显示材料呈典型单斜晶相(Monoclinic)。
图6是二次电池的一实施方式的示意图。
图7是图6的分解图。
图8是电池模块的一实施方式的示意图。
图9是电池包的一实施方式的示意图。
图10是图9的分解图。
图11是二次电池用作电源的装置的一实施方式的示意图。
具体实施方式
为了使本申请的发明目的、技术方案和有益技术效果更加清晰,以下结合具体实施例对本申请进行详细说明。应当理解的是,本说明书中描述的实施例仅仅是为了解释本申请,并非为了限定本申请。
为了简便,本文仅明确地公开了一些数值范围。然而,任意下限可以与任何上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,尽管未明确记载,但是范围端点间的每个点或单个数值都包含在该范围内。因而,每个点或单个数值可以作为自身的下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。
在本文的描述中,需要说明的是,除非另有说明,“以上”、“以下”为包含本数,“一种或几种”中“几种”的含义是两种以上。
在本文的描述中,除非另有说明,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
本申请的上述发明内容并不意欲描述本申请中的每个公开的实施方式或每种实现方式。如下描述更具体地举例说明示例性实施方式。在整篇申请中的多处,通过一系列实施例提供了指导,这些实施例可以以各种组合形式使用。在各个实例中,列举仅作为代表性组,不应解释为穷举。
发明人研究发现,由于现有普鲁士蓝类过渡金属氰化物的颗粒度小、粉体压实密度低、导电性太差等问题,导致二次电池的能量密度较低,还使二次电池的生产难度增加,且对设备要求高。造成这一现象的主要原因是共沉淀反应阶段时得到的产物形貌一般为正立方体,使极片中活性材料颗粒与颗粒之间的缝隙大而难以被填充,活性材料颗粒与导电剂颗粒之间的连接不紧密所致。因此,如何使颗粒与颗粒之间的接触增强,缝隙减小,是提升钠离子电池等二次电池能量密度的关键。
因此,本发明人进一步进行了大量研究,在本申请的第一方面提供一种普鲁士 蓝类过渡金属氰化物,其包括二次颗粒,所述二次颗粒包括多个一次颗粒;其中,所述一次颗粒为球型或类球型形貌。如图1和图2所示。
在本申请中,一次颗粒和二次颗粒为本领域公知的含义。一次颗粒是指没有形成团聚状态的颗粒。二次颗粒是指由两个或两个以上一次颗粒聚集而成的团聚态的颗粒。一次颗粒和二次颗粒,以及颗粒形貌可以使用扫描电子显微镜拍摄SEM图像容易地区分。
发明人经研究发现,相比独立分散的一次颗粒,二次颗粒的颗粒度增大,且二次颗粒中一次颗粒之间为体相直接接触,因此接触更加紧密。球型或类球型形貌的一次颗粒提供的曲面,使各独立分散的活性材料颗粒与颗粒之间的接触面增大,在压实条件下的孔隙率减小,提高空间利用率,如图3所示。因此,采用本申请的普鲁士蓝类过渡金属氰化物,能获得较高的粉体压实密度和极片压实密度,从而能提高二次电池的质量能量密度及体积能量密度。另外,活性材料粒子之间的紧密接触可以提高活性离子固相传输性能,并且一次颗粒提供的曲面还使得活性材料粒子能与导电剂颗粒(如Super P等)紧密接触,提高极片导电性,从而可以使二次电池在获得较高能量密度的同时,改善倍率性能。
在一些实施方式中,普鲁士蓝类过渡金属氰化物的二次颗粒内角角度为150°~300°,例如可以为170°~270°、180°~270°、200°~270°、210°~265°、215°~250°、215°~240°、或200°~250°。
如图4所示,内角角度为二次颗粒表面内侧的角度范围,包括二次颗粒中未与其他一次颗粒相邻的一次颗粒表面内侧角度,以及相邻的一次颗粒形成的夹角内侧角度。二次颗粒内角角度的示例性测试方法如下:利用ZEISS Gemini SEM 300扫描式电子显微镜(SEM),在10k的倍率下选择背散射电子模式,拍摄3个随机不同位置的照片;在每张照片中随机找到2个二次颗粒,此2个二次颗粒均是由粒度在普鲁士蓝类过渡金属氰化物的Dv50以上的一次颗粒构成的;测定每个二次颗粒的最大内角角度。取3张照片中6个二次颗粒最大内角角度的测定值的平均值,即为二次颗粒内角角度。
颗粒表面钝角较多的普鲁士蓝类过渡金属氰化物,由于自身晶胞结构为较长配位键形成的框架,因此颗粒具有弹性。并且,颗粒表面的钝角将更有利于增加颗粒之间的相互接触面积。因此,采用该普鲁士蓝类过渡金属氰化物能使得极片的压实密度提高,导电网络构筑更加通畅,从而可以改善电池的能量密度和倍率性能。
在一些实施方式中,普鲁士蓝类过渡金属氰化物的二次颗粒中,一次颗粒曲率半径≥0.2μm。在100微米尺度以内,一次颗粒的曲率半径越大,其形貌越趋近于球形。可选地,普鲁士蓝类过渡金属氰化物的一次颗粒曲率半径可以为0.2μm~100μm、0.5μm~100μm、0.8μm~70μm、0.8μm~50μm、0.8μm~20μm、0.8μm~15μm、0.8μm~10μm、0.8μm~8μm、0.8μm~5μm、1.5μm~50μm、1.5μm~18μm、1.5μm~12μm、1.5μm~7μm、1μm~70μm、2μm~50μm、2μm~20μm、5μm~50μm、3μm~30μm、3μm~20μm、5μm~20μm、或2μm~10μm。
曲率半径是利用一定直径的圆去拟合,拟合成的圆半径即为测量物的曲率半 径。普鲁士蓝类过渡金属氰化物的一次颗粒曲率半径的示例性测试方法如下:利用ZEISS Gemini SEM 300扫描式电子显微镜(SEM)在10k的倍率下选择背散射电子模式拍摄3个随机不同位置的照片;在每张照片中随机找到2个二次颗粒,此2个二次颗粒是由粒度在普鲁士蓝类过渡金属氰化物的D v50以上的一次颗粒构成的;测定二次颗粒中一次颗粒任意一处的曲率半径;取3张照片中6个二次颗粒中一次颗粒的曲率半径测定值的平均值,即为一次颗粒曲率半径。
适当的曲率半径有利于普鲁士蓝颗粒与颗粒之间的紧密搭接,由此有利于极片压实密度的提高、离子与电子传输通畅,从而可以改善电池的倍率性能及能量密度。
在一些实施方式中,普鲁士蓝类过渡金属氰化物的体积平均粒径D v50≥1μm。可选地,普鲁士蓝类过渡金属氰化物的D v50可以为1μm~50μm、2μm~50μm、2μm~40μm、10μm~40μm、5μm~20μm、8μm~25μm、5μm~45μm、5μm~30μm、5μm~20μm、5μm~15μm、4μm~30μm、8μm~20μm、1μm~10μm、或2μm~10μm。适当的粒径范围利于极片压实密度的提高,且离子和电子传导也较快,因此有助于电池能量密度与倍率性能的提升。
在一些实施方式中,普鲁士蓝类过渡金属氰化物在600MPa压强下的粉体压实密度为1.7g/cm 3~2.1g/cm 3。可选地,普鲁士蓝类过渡金属氰化物在600MPa压强下的粉体压实密度可以为1.8g/cm 3~2.1g/cm 3、1.74g/cm 3~2.02g/cm 3、1.8g/cm 3~1.95g/cm 3、1.85g/cm 3~1.9g/cm 3、1.71g/cm 3~1.9g/cm 3、或1.71g/cm 3~1.85g/cm 3
普鲁士蓝类过渡金属氰化物的粉体压实密度大,有利于颗粒与导电剂的接触,从而提高电池的倍率性能。另外,普鲁士蓝类过渡金属氰化物的粉体压实密度还有利于提高极片的压密密度,由此可提高电池的能量密度。
在一些实施方式中,普鲁士蓝类过渡金属氰化物包括A xM 1[M 2(CN) 6] y,其中,A选自碱金属离子和碱土金属离子中的一种或几种;M 1选自Mn、Ni、Cu、Co、Fe、Zn、Cr中的一种或几种;M 2选自Mn、Ni、Cu、Co、Fe、Zn、Cr中的一种或几种;1.5≤x≤2;0.6≤y≤1。其中,x代表的是A的含量,y代表的是普鲁士蓝类过渡金属氰化物的缺陷程度。A的含量越大,缺陷的程度越少,普鲁士蓝类过渡金属氰化物的克容量则会越高。
在一些实施例中,A可选自Na、K、Zn、Li中的一种或几种。作为一个示例,A选自Na。
在一些实施例中,M 1选自Mn、Ni、Co、Fe中的一种或几种。作为一个示例,M 1选自Mn。
在一些实施例中,M 2选自Mn、Ni、Co、Fe中的一种或几种。作为一个示例,M 2选自Fe。
在一些实施例中,1.7≤x≤2、1.8≤x≤2、或1.9≤x≤2。
在一些实施例中,0.8≤y≤1、0.9≤y≤1、或0.95≤y≤1。
高x、y数值使元素价态低,在充电过程中价态能够升高的元素比例增加,因此普鲁士蓝类过渡金属氰化物的克容量得以提高,从而能提高电池的能量密度。
在一些实施方式中,普鲁士蓝类过渡金属氰化物在12MPa压强下的粉体电阻 率为10kΩ·cm~100kΩ·cm。可选地,普鲁士蓝类过渡金属氰化物在12MPa压强下的粉体电阻率为10kΩ·cm~90kΩ·cm、10kΩ·cm~70kΩ·cm、20kΩ·cm~90kΩ·cm、20kΩ·cm~80kΩ·cm、30kΩ·cm~80kΩ·cm、30kΩ·cm~70kΩ·cm、20kΩ·cm~60kΩ·cm、或40kΩ·cm~60kΩ·cm。粉体电阻率在适当范围内,表明普鲁士蓝类过渡金属氰化物颗粒之间搭接紧密,并且有助于极片获得较高的离子电导率,从而可以改善电池的倍率性能。
在一些实施方式中,普鲁士蓝类过渡金属氰化物的克容量为120mAh/g~170mAh/g。可选地,普鲁士蓝类过渡金属氰化物的克容量为140mAh/g~170mAh/g、145mAh/g~165mAh/g、150mAh/g~165mAh/g、155mAh/g~165mAh/g、或155mAh/g~160mAh/g。普鲁士蓝类过渡金属氰化物的克容量较大,可以使电池的能量密度增大。
在本申请中,普鲁士蓝类过渡金属氰化物的体积平均粒径D v50为本领域公知的含义,可以采用本领域已知的方法测试。例如,激光衍射粒度分析法。作为示例,可以参照标准GB/T 19077.1-2016,使用激光粒度分析仪(例如Malvern Master Size 3000)测定。测试中,介质例如是水,吸光率例如为1.567。其中,D v50为普鲁士蓝类过渡金属氰化物累计体积分布百分数达到50%时所对应的粒径。
在本申请中,普鲁士蓝类过渡金属氰化物的粉体压实密度为本领域公知的含义,可以采用本领域已知的方法测试。例如参照标准GB/T24533-2009,通过电子压力试验机(例如UTM7305型)测定。示例性测试方法如下:称取1g普鲁士蓝类过渡金属氰化物样品,加入底面积为1.327cm2的模具中,加压至600MPa,保压30s,然后卸压,保持10s,然后记录并计算得到普鲁士蓝类过渡金属氰化物在600MPa压强下的粉体压实密度。具体地,可以用游标卡尺测量加压后露出套筒外面的顶柱高度(H1),并计算样品的压实密度=m/(S×(H1-H0)),其中,
m:样品质量;
H1:样品压实后顶柱露在套筒外面的高度;
H0:不放样品时顶柱露在套筒外面的高度;
S:顶柱的横截面积。
在本申请中,普鲁士蓝类过渡金属氰化物的化学组成可以采用本领域已知的方法测试。例如电感耦合等离子体光谱仪ICP(例如Spectroblue型)测定样品中各元素在材料中所占的比例。
在本申请中,普鲁士蓝类过渡金属氰化物的粉体电阻率为本领域公知的含义,可以采用本领域已知的方法测试。例如可以参考GB/T 30835-2014,使用PRCD1100粉体电阻率仪进行测试。
在本申请中,普鲁士蓝类过渡金属氰化物的克容量为本领域公知的含义,可以采用本领域已知的方法测试。示例性测试方法如下:将制备的普鲁士蓝类过渡金属氰化物、导电剂(例如乙炔黑(Denka,Denka Black))、粘结剂(例如聚偏二氟乙烯(Arkema,HSV 900))按质量比7:2:1与溶剂N-甲基吡咯烷酮(NMP)中混合均匀,制成浆料;将制备好的浆料涂覆于铝箔集流体上,于烘箱中干燥后备用。以钠金属片为 对电极,与陶瓷隔离膜、1mol/L NaPF 6的碳酸亚丙酯(PC)电解液,一同在氩气保护的手套箱组装成2025型扣式电池。将所得扣式电池静置12小时后,用蓝电测试仪,在25℃下,以0.1C倍率恒流充电至4V,再恒压充电至电流≤0.05C;静置5分钟,再以0.1C倍率电流恒流放电至2V,记录放电容量。放电容量与普鲁士蓝类过渡金属氰化物质量的比值即为所制备普鲁士蓝类过渡金属氰化物的克容量。
本申请的第二方面提供一种普鲁士蓝类过渡金属氰化物的制备方法,根据该制备方法能制备得到上述的普鲁士蓝类过渡金属氰化物。普鲁士蓝类过渡金属氰化物的制备方法包括以下步骤:
S1,提供包含过渡金属阳离子的第一溶液,所述第一溶液中过渡金属阳离子的浓度≥0.1mol/L。
S2,提供包含过渡金属氰酸根的A盐的第二溶液,所述第二溶液中过渡金属氰酸根阴离子的浓度≥0.1mol/L,A选自碱金属离子和碱土金属离子中的一种或几种。
S3,在搅拌的条件下,以10cm/s~100m/s的流速、在0.5h~48h的时间内,将所述第一溶液和所述第二溶液的其中一种加入到另一种中进行混合,发生共沉淀化学反应,得到悬浊液;其中,所述其中一种的溶液温度为10℃~40℃,另一种的溶液温度为40℃~180℃。
S4,在搅拌以及40℃~180℃的条件下,对所述悬浊液进行陈化≥0.5h;
S5,经分离、洗涤、干燥,即得所述普鲁士蓝类过渡金属氰化物;其中,所述普鲁士蓝类过渡金属氰化物包括二次颗粒,所述二次颗粒包括多个一次颗粒,所述一次颗粒为球型或类球型形貌。
在S1,提供过渡金属阳离子的物质可选自过渡金属氯化盐、过渡金属硝酸盐、过渡金属硫酸盐、过渡金属氢氧化物、过渡金属甲酸盐、过渡金属乙酸盐、过渡金属草酸盐、过渡金属磷酸盐、过渡金属亚磷酸盐、过渡金属亚硫酸盐、过渡金属硫代硫酸盐、过渡金属高氯酸盐、过渡金属高氯酸盐、过渡金属苯甲酸盐、过渡金属柠檬酸盐中的一种或几种。可选地,过渡金属源选自过渡金属氯化盐、过渡金属硝酸盐、过渡金属硫酸盐中的一种或几种。其中过渡金属可以是M 1。作为具体的示例,提供过渡金属阳离子的物质可选自氯化锰、硫酸锰、硝酸锰、氯化镍、硫酸镍、硝酸镍、氯化钴、硫酸钴、硝酸钴中的一种或几种。
在一些实施方式中,第一溶液的中过渡金属阳离子浓度为0.2mol/L~4mol/L。可选地,第一溶液中过渡金属阳离子的浓度为0.25mol/L~3.5mol/L、0.3mol/L~3mol/L、0.2mol/L~2mol/L、0.35mol/L~2mol/L、或0.4mol/L~1mol/L。
在S2,过渡金属氰酸根中的过渡金属可以是M 2。例如,过渡金属氰酸根可选自铁氰酸根、锰氰酸根、钴氰酸根、镍氰酸根、铜氰酸根中的一种或几种。A可以是本文中所描述的金属。作为示例,过渡金属氰酸根的A盐可以选自铁氰化钠、铁氰化钾、亚铁氰化钠、亚铁氰化锂、镍氰化钠、钴氰化锌、钴氰化钾中的一种或几种。
在一些实施方式中,第二溶液中过渡金属氰酸根阴离子的浓度为0.2mol/L~4mol/L。可选地,第二溶液中过渡金属氰酸根阴离子的浓度为0.25mol/L~3.5mol/L、0.3mol/L~3mol/L、0.2mol/L~2mol/L、0.35mol/L~2mol/L、或 0.4mol/L~1mol/L。
第一溶液与第二溶液的溶剂可以独立地选自水、重水、乙腈、己二腈、甲醇、乙醇、乙二醇、二乙二醇、丙酮、甘油、二甲基甲酰胺、N-甲基吡咯烷酮中的一种或几种。例如,第一溶液与第二溶液的溶剂可以选自水,如去离子水。
过渡金属阳离子与过渡金属氰酸根阴离子的浓度如果较大,则可以提高普鲁士蓝类过渡金属氰化物的产量,降低生产成本。尤其是,当第一溶液过渡金属阳离子与第二溶液过渡金属氰酸根阴离子的浓度适当范围内,能使反应生成的晶体浓度在热力学上小于饱和溶解度,呈现为液相,以维持稳定的浓度来进行反应,得到本申请所述的普鲁士蓝类过渡金属氰化物。
在一些实施方式中,第一溶液或第二溶液中还可选地包含A源。A源选自A的氯化盐、A的硝酸盐、A的硫酸盐、A的氢氧化物、A的甲酸盐、A的乙酸盐、A的草酸盐、A的磷酸盐、A的高氯酸盐、A的苯甲酸盐、A的柠檬酸盐中的一种或几种。可选地,A源选自A的氯化盐、A的硝酸盐、A的硫酸盐中的一种或几种。
在一些实施方式中,第一溶液或第二溶液中加入A源的浓度为0.05mol/L~10mol/L;可选地为0.05mol/L~5mol/L,1mol/L~5mol/L,3mol/L~8mol/L,2mol/L~6mol/L,4mol/L~9mol/L,或4mol/L~7mol/L。
A源的加入能够促进A向普鲁士蓝类过渡金属氰化物的框架中迁移,利于产物结构完整,由此能提高普鲁士蓝类过渡金属氰化物的克容量,从而提高电池的能量密度。
在一些实施方式中,第一溶液或第二溶液中包含抗氧化剂。作为示例,抗氧化剂可选自抗坏血酸、抗坏血酸钠、硫代硫酸、硫代硫酸钠、柠檬酸、柠檬酸钠。抗氧化剂能抑制过渡金属在反应溶液中发生氧化,降低产物掺杂氧化杂质的机率,由此能提高普鲁士蓝类过渡金属氰化物的克容量,从而提高电池的能量密度。
在S3,可以采用任意的设备和方法来调控将第一溶液和第二溶液中的一种加入另一种的流速和时间。作为示例,可以利用直径为0.3mm~2mm的注射器、蠕动泵或自动进样器。通过计算混合时间、流速与进样管直径之间的关系,进行在特定流速和特定时间条件下的溶液混合。
溶液混合顺序将会影响产物物性,例如将第一溶液加入到第二溶液相对于将第二溶液加入到第一溶液,所得二次颗粒的内角角度会降低,但一次颗粒的曲率半径及材料的Dv50则会增大,而粉体电阻率也会有所提升。
在一些实施方式中,S3所述混合的流速为10cm/s~20m/s。可选地,S3所述混合的流速为50cm/s~20m/s、10cm/s~10m/s、50cm/s~10m/s、50cm/s~5m/s、1m/s~8m/s、1m/s~5m/s、2m/s~5m/s、或50cm/s~2m/s。在适当流速范围内,加入液体中的过渡金属阳离子或过渡金属氰酸根阴离子能够在混合液中形成一定的局部浓度。在混合界面处,由于加入液体与被加入液体的过渡金属阳离子或过渡金属氰酸根阴离子浓度超过普鲁士蓝类过渡金属氰化物的饱和度,且过饱和度较大,因此倾向于成核。成核发生的瞬间,利用较快的流速将晶核在混合液中快速分散,提高了最终颗粒的分散性,颗粒之间不容易过度聚集但也不会过于分散,可以使一次颗粒在保持球形的状态下形成 二次颗粒。由此,所得普鲁士蓝类过渡金属氰化物具有合适的粒度分布和形貌,有利于提高极片的压实密度,并且降低极片电阻率,因此有助于改善电池的能量密度。
在一些实施方式中,S3所述混合的时间为1h~24h。可选地,S3所述混合的时间为4h~20h、6h~12h、2h~12h、0.5h~10h、5h~15h、8h~24h、10h~48h、或1h~4h。在适当混合时间范围内,晶粒能够在过饱和状态下进一步生长,得到较大的粒径,从而降低极片的电阻率,以改善电池的克容量,並提高极片的压实密度以及电池的能量密度。
在一些实施方式中,S3所述另一种的溶液温度为60℃~140℃。可选地,S3所述另一种的溶液温度为60℃~120℃、70℃~110℃、或80℃~100℃。控制溶液温度能够提高产物化学式中金属A以及过渡金属M2的含量,使晶体结构更完整,缺陷更少,由此使普鲁士蓝类过渡金属氰化物表现出更高的克容量,从而能提高电池的能量密度。
在一些实施方式中,S4所述陈化的温度为60℃~140℃。可选地,S4所述陈化的温度为60℃~120℃、70℃~110℃、或80℃~100℃。
在一些实施方式中,S4所述陈化的时间为1h~24h。可选地,S4所述陈化的时间为2h~12h,5h~15h,8h~20h,10h~15h,或6h~12h。
在适当陈化温度和时间范围内,沉淀产物可以进行重整,使更多的Na元素进入到普鲁士蓝类过渡金属氰化物的结构内,提高产物中Na的比例,进而提高普鲁士蓝类过渡金属氰化物的克容量及电池的能量密度。
S5的分离、洗涤、干燥可以采用本领域公知的手段。作为示例,利用抽滤法将普鲁士蓝类过渡金属氰化物产物从反应溶液中分离。洗涤可以是将普鲁士蓝类过渡金属氰化物产物用去离子水洗涤3~5遍、无水乙醇洗涤1~5遍。干燥可以是在120℃~180℃的真空干燥箱中烘干12~48小时。
成功合成的普鲁士蓝类过渡金属氰化物为典型单斜晶相(Monoclinic),如图5所示。
本申请的第三方面提供一种正极极片,包括正极材料,所述正极材料包括根据本申请任意一种或几种普鲁士蓝类过渡金属氰化物。
本申请的正极极片由于采用了本申请的正极材料,因而能使采用其的钠离子电池具有较高的能量密度。进一步地,钠离子电池还可以兼具较高的倍率性能。
本申请的正极极片包括正极集流体以及设置在正极集流体至少一个表面上且包括正极材料的正极膜层。作为一个示例的正极极片中,正极集流体具有在自身厚度方向相对的两个表面,正极膜层可以是层合设置于正极集流体的两个相对表面中的任意一者或两者上。
本申请的正极极片中,所述正极集流体可以采用金属箔片或复合集流体。例如,可以使用铝箔。复合集流体可以通过将金属材料(铝、铝合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子基材上而形成。
本申请的正极极片中,正极膜层包括正极材料,正极材料包括本申请任意一种或几种普鲁士蓝类过渡金属氰化物。
在一些实施方式中,正极材料还可以包括用于钠离子电池正极的其它正极活性材料。其它正极活性材料的示例可包括例如Na 0.9Fe 0.5Mn 0.5O 2、NaMnO 2、NaFeO 2、NaCoO 2、NaFe 0.33Mn 0.33Ni 0.33O 2等的层状金属氧化物,例如Na 3V 2(PO 4) 3、NaFePO4、Na 4Fe 3(PO 4) 2P 2O 7等聚阴离子型正极材料。
本申请的二次电池中,所述正极膜层通常包含正极材料以及可选地粘结剂和可选地导电剂,通常是由正极浆料涂布,并经干燥、冷压而成的。正极浆料通常是将正极活性材料以及可选地导电剂和粘结剂等分散于溶剂中并搅拌均匀而形成的。溶剂可以是N-甲基吡咯烷酮(NMP)。
正极膜层的粘结剂可采用本领域已知的用于正极的粘结剂。作为示例,用于正极膜层的粘结剂可以包括聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、丙烯腈多元共聚物(LA133)中的一种或几种。
在一些实施方式中,粘结剂在正极膜层中的质量占比为1%~20%;可选地为1%~10%,2%~5%,2%~12%,3%~8%,5%~10%,5%~15%,或10%~20%等。本申请中,普鲁士蓝类过渡金属氰化物的颗粒度增大,能改善正极浆料的加工性能,还可以使极片获得较高的粘结力的同时减少粘结剂用量,从而可进一步提高二次电池的能量密度。
正极膜层的导电剂可采用本领域已知的用于正极的导电剂。作为示例,用于正极膜层的导电剂可以包括超导碳、炭黑(例如Super P、乙炔黑、科琴黑)、碳点、碳纳米管、石墨烯及碳纳米纤维中的一种或几种。
在一些实施方式中,导电剂在正极膜层中的质量占比为1%~20%;可选地为1%~10%,2%~5%,2%~12%,3%~8%,5%~10%,5%~15%,或10%~20%等。本申请中,普鲁士蓝类过渡金属氰化物颗粒能与导电剂紧密接触,还可以使极片获得较高的导电性的同时减少导电剂用量,从而可以提高二次电池的倍率性能和能量密度。
在一些实施方式中,正极膜层的压实密度为1.2~1.6g/cm 3;例如可以为1.25~1.55g/cm 3、1.3~1.5g/cm 3、或1.35~1.45g/cm 3。正极膜层的压实密度较大,能提高电池的能量密度。
正极膜层的压实密度为本领域公知的含义,可采用本领域已知的方法测试。例如取单面涂布且经冷压后的正极极片(若是双面涂布的极片,可先擦拭掉其中一面的正极膜层),测试正极膜层的厚度,再按照下述方法测试正极膜层的面密度,正极膜层的压实密度=正极膜层的面密度/正极膜层的厚度。
正极膜层的面密度为本领域公知的含义,可采用本领域已知的方法测试。例如取单面涂布且经冷压后的正极极片(若是双面涂布的极片,可先擦拭掉其中一面的正极膜层),冲切成面积为S1的小圆片,称其重量,记录为M1。然后将上述称重后的正极极片的正极膜层擦拭掉,称量正极集流体的重量,记录为M0,正极膜层面密度=(正极极片的重量M1-正极集流体的重量M0)/S1。
本申请的第四方面提供一种二次电池,包括正极极片,所述正极极片为本申请任意的正极极片。
本申请的二次电池可以根据活性离子(A)的不同而区分为不同种类的二次 电池,例如钠离子电池、镁离子电池、钾离子电池、锌离子电池、锂离子电池等。
本申请的二次电池由于采用了本申请的正极极片,因而能具有较高的能量密度。
本申请的二次电池还包括负极极片和电解质。在电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。电解质在正极极片和负极极片之间起到传导离子的作用。
本申请的二次电池中,负极极片包括负极集流体以及设置在所述负极集流体至少一个表面上的负极膜层。
本申请的二次电池中,负极集流体可以采用金属箔片或复合集流体。例如,可以使用铝箔或铜箔。复合集流体可以通过将金属材料(铝、铝合金、铜、铜合金、镍、镍合金、钛、钛合金、银及银合金等)形成在高分子基材上而形成。
负极膜层包括负极材料。本申请的二次电池中可以采用本领域已知的可用于二次电池的负极材料。作为示例,负极材料可包括天然石墨、人造石墨、软炭、硬炭、硅基材料、锡基材料中的一种或几种。硅基材料可选自单质硅、硅氧化物、硅碳复合物中的一种或几种。锡基材料可选自单质锡、锡氧化合物、锡合金中的一种或几种。
本申请的二次电池中,负极膜层通常包含负极材料以及可选地粘结剂、可选地导电剂和其他可选助剂,通常是由负极浆料涂布干燥而成的。负极浆料涂通常是将负极活性材料以及可选地导电剂和粘结剂等分散于溶剂中并搅拌均匀而形成的。溶剂可以是N-甲基吡咯烷酮(NMP)或去离子水。
作为示例,导电剂可包括超导碳、炭黑(例如Super P、乙炔黑、科琴黑)、碳点、碳纳米管、石墨烯及碳纳米纤维中一种或几种。
作为示例,粘结剂可包括丁苯橡胶(SBR)、聚偏二氟乙烯、丙烯腈多元共聚物中的一种或几种。
其他可选助剂例如是增稠剂(如羧甲基纤维素钠CMC-Na)、PTC热敏电阻材料等。
本申请的二次电池对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以选自固态电解质及液态电解质(即电解液)中的至少一种。
在一些实施方式中,电解质采用电解液。电解液包括电解质盐和溶剂。
在一些实施方式中,电解质盐可选自NaPF 6、NaClO 4、NaBF 4、KPF 6、KClO 4、KBF 4、LiPF 6、LiClO 4、LiBF 4、Zn(PF 6) 2、Zn(ClO 4) 2、Zn(BF 4) 2中的一种或几种。例如,电解质盐可选自NaPF 6、NaClO 4、NaBF 4中的一种或几种。
在一些实施方式中,溶剂可选自碳酸亚丙酯(PC)、碳酸亚乙酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、乙酸乙酯(EA)中的一种或几种。
在一些实施方式中,电解液中还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂,也可以包括正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温性能的添加剂、改善电池低温性能的添加剂等。
在一些实施方式中,本申请的二次电池中还包括隔离膜。隔离膜设置在正极极片和负极极片之间,起到隔离的作用。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。作为示例,隔离膜可以选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的一种或几种的单层或多层复合薄膜。
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。
在一些实施方式中,二次电池可包括外包装。外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,如聚丙烯(PP)、聚对苯二甲酸丁二醇酯(PBT)、聚丁二酸丁二醇酯(PBS)等中的一种或几种。
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。如图6示出了作为一个示例的方形结构的二次电池5。
在一些实施方式中,参照图7,外包装可包括壳体51和盖板53。其中,壳体51包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件52。电极组件52封装于所述容纳腔。电解液浸润于电极组件52中。二次电池5所含电极组件52的数量可以为一个或几个,可根据需求来调节。
本申请的第五方面提供一种电池模块,包括根据本申请第四方面所述的二次电池。在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为多个,具体数量可根据电池模块的应用和容量来调节。
图8是作为一个示例的电池模块4。参照图8,在电池模块4中,多个二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可以通过紧固件将该多个二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个二次电池5容纳于该容纳空间。
本申请的第六方面提供一种电池包,包括根据本申请第四方面所述的二次电池、或根据本申请第五方面所述的电池模块。在一些实施方式中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以根据电池包的应用和容量进行调节。
图9和图10是作为一个示例的电池包1。参照图9和图10,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
本申请的第七方面提供一种装置,包括根据本申请第四方面所述的二次电池、根据本申请第五方面所述的电池模块、或根据本申请第六方面所述的电池包中的至少一种。所述二次电池可以用作装置的电源,也可以用作所述装置的能量存储单 元。本申请的装置采用了本申请所提供的二次电池,因此至少具有与所述二次电池相同的优势。
所述装置可以但不限于是移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等。
所述装置可以根据其使用需求来选择二次电池、电池模块或电池包。
图11是作为一个示例的装置。该装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该装置对二次电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。
实施例
为了使本申请的发明目的、技术方案和有益技术效果更加清晰,以下结合实施例进一步详细描述本申请。但是,应当理解的是,本申请的实施例仅仅是为了解释本申请,并非为了限制本申请,且本申请的实施例并不局限于说明书中给出的实施例。实施例中未注明具体实验条件或操作条件的按常规条件制作,或按材料供应商推荐的条件制作。
实施例1
S1,在25℃的条件下,将6.292g氯化锰、35g氯化钠、2.48g硫代硫酸钠(抗氧化剂)分散于100mL去离子水中,得到第一溶液。
S2,在25℃的条件下,将19.203g亚铁氰化钠分散于100mL去离子水中,得到第二溶液。
S3,将第一溶液加热至80℃后,利用内直径0.6mm的注射针以2m/s的流速、在10h内将25℃的第二溶液注入第一溶液,使其发生共沉淀化学反应,同时以800rpm/min的速度进行磁力搅拌。注射针的针头插入到液面以下保证混合效果。
S4,所得悬浊液维持在80℃且保持搅拌的条件下陈化24小时,使小晶粒溶解,大晶粒不断生长。
S5,经过抽滤、水洗、乙醇洗,烘干,即得白色类球形普鲁士蓝类过渡金属氰化物材料Na 2Mn[Fe(CN) 6]。
实施例2、11
与实施例1类似,不同的是,第一溶液的抗氧化剂为1g抗坏血酸,其余参数详见表1。
实施例3
与实施例1类似,不同的是,第一溶液的抗氧化剂为0.5g抗坏血酸,其余参数详见表1。
实施例4
与实施例1类似,不同的是,第一溶液的抗氧化剂为1g抗坏血酸钠,其余参数详见表1。
实施例5
与实施例1类似,不同的是,第一溶液的抗氧化剂为2g抗坏血酸,其余参数详见表1。
实施例6
与实施例1类似,不同的是,第一溶液的抗氧化剂为0.5g抗坏血酸,其余参数详见表1。
实施例7
与实施例1类似,不同的是,第一溶液的抗氧化剂为0.1g抗坏血酸钠与0.48g硫代硫酸钠,其余参数详见表1。
实施例8
与实施例1类似,不同的是,第一溶液的抗氧化剂为0.1g抗坏血酸与0.48g硫代硫酸钠,其余参数详见表1。
实施例9~10
与实施例1类似,不同的是,第一溶液的抗氧化剂为0.2g抗坏血酸,其余参数详见表1。
实施例12
与实施例1类似,不同的是,第一溶液的抗氧化剂为0.5g抗坏血酸;以及在S3,将第二溶液加热至80℃后,利用内直径0.6mm的注射针将25℃的第一溶液注入第二溶液;其余参数详见表1。
实施例13
与实施例1类似,不同的是,第一溶液的抗氧化剂为0.5g抗坏血酸,将第一溶液加热至95℃,注射针的直径为0.4mm,其余参数详见表1。
实施例14
与实施例13类似,不同的是,第一溶液的抗氧化剂为0.3g抗坏血酸与0.48g硫代硫酸钠,其余参数详见表1。
实施例15
与实施例13类似,不同的是,第一溶液的抗氧化剂为1g抗坏血酸钠,其余参数详见表1。
实施例16~17
与实施例13类似,不同的是,第一溶液的抗氧化剂为1g抗坏血酸,其余参数详见表1。
实施例18~21、对比例1~6、8
与实施例1类似,不同的参数详见表1。
对比例7
与实施例13类似,不同的参数详见表1。
测试部分
(1)混合流速(m/s):利用高速摄像机(CCD)测定流体在注射器出口位置的喷出速度。
(2)混合时间(h):注射器开始喷入液体直至喷入结束所需的时间。
(3)加热的溶液温度(℃):利用热电偶插入溶液底部进行测定。
(4)陈化时间(h):以注射器结束液体喷入时刻开始计时。
(5)能量密度(Wh/kg):
S1,将各个实施例或对比例中的正极材料(普鲁士蓝过渡金属氰化物)、导电剂乙炔黑(Denka,Denka Black)、粘结剂聚偏二氟乙烯(Arkema,HSV 900)按重量比90:5:5分散在N-甲基吡咯烷酮溶剂中,充分搅拌混合均匀,得到固体含量为30%的正极浆料。使用刮刀将该正极浆料涂敷在厚度12μm的铝箔两侧,形成厚度各为120μm的湿涂层。转移入烘箱中,在150℃的温度下烘干60分钟,使用冷压机以60吨的压力进行冷压,得到铝箔两侧的正极膜层厚度各为130μm、压实密度各为1.3g/cm 3的正极极片。
S2,将负极材料硬碳、导电剂乙炔黑、粘结剂丁苯橡胶、增稠剂羧甲基纤维素钠按照重量比95:2:2:1的比例分散在去离子水溶剂中,充分搅拌混合均匀,得到固体含量为15%的负极浆料,使用刮刀将该负极浆料涂敷在厚度12μm的铝箔两侧,形成厚度各为120μm的湿涂层。转移入烘箱中,在150℃的温度下烘干60分钟,使用冷压机以50吨的压力进行冷压,得到铝箔两侧的负极膜层厚度各为60μm、压实密度各为0.95g/cm 3的负极极片。
S3,将正极极片、隔离膜、负极极片按顺序卷好,形成尺寸为16cm×10cm×2.8cm的卷绕层叠结构的裸电芯。将裸电芯置于钢壳外包装中,向钢壳内注入150克电解液,封装后可得到二次电池。所述电解液是组成为1mol/L NaPF 6的碳酸亚丙酯(PC)溶液。
在25℃下,以0.1C的倍率对电池进行恒流充电至额定电压4.0V,恒压充电30分钟,接着在0.1C的倍率下恒流放电至1.5V,记录恒流放电释放的能量,除以电池整体的质量,即为电池的能量密度。
(6)倍率性能(%):
在25℃下,以0.1C的倍率对电池进行恒流充电至额定电压4.0V,恒压充电30分钟,接着在0.1C的倍率下恒流放电至1.5V,记录恒流放电释放的容量C1。
在25℃下,以0.1C的倍率对电池进行恒流充电至额定电压4.0V,恒压充电30分钟,接着在1C的倍率下恒流放电至1.5V,记录恒流放电释放的容量C2。
C2除以C1再乘以100%,即为电池的倍率性能。
表1:普鲁士蓝类过渡金属氰化物的制备工艺
Figure PCTCN2021128648-appb-000001
表1中,加热溶液温度是指,将第一溶液和第二溶液的其中一种加入到另一种中进行混合时,另一种溶液会被加热,此溶液的温度为加热溶液温度。
表2:普鲁士蓝类过渡金属氰化物的产品特征
Figure PCTCN2021128648-appb-000002
表2中,主要颗粒类型是指,在电子显微镜(ZEISS Gemini SEM 300)10k倍率的视域下,50%以上颗粒的颗粒类型。对比例的方形颗粒曲率半径是取自相邻两 个面的夹角处进行测试。
表3:正极材料为普鲁士蓝类过渡金属氰化物的电池性能
Figure PCTCN2021128648-appb-000003
由实施例1~5与对比例1~2的比较可知,混合流速会影响二次颗粒的内角角度、一次颗粒的曲率半径及材料粒径。除了进样时溶液是直接混合的方式之外,二次颗粒的内角角度、一次颗粒的曲率半径及材料粒径皆大致呈现随着混合流速增加而增加的现象。溶液直接混合的方式,因为混合时的颗粒状态不一致,会导致一次颗粒的曲率半径及材料粒径过小。使用较大的混合流速时,普鲁士蓝类过渡金属氰化物化学式中Na含量大幅增加,能够提高普鲁士蓝类过渡金属氰化物的克容量及粒径,并且能提高极片压实密度,从而提高电池能量密度。
由实施例1、6~8与对比例3~4的比较可知,混合时间会影响产物化学组成、二次颗粒的内角角度、一次颗粒曲率半径及材料粒径。从对比例3可知,混合时间过短将导致一次颗粒大量团聚,得到大粒径的二次颗粒。并且,混合时间过短也会导致一次颗粒曲率半径过小,得到方形的颗粒。在混合时间为0.5h~48h的区间内,颗粒会先产生团聚,然后渐渐的出现解体,因此粒径呈现先增大后减小的现象,在混合时间为0.5h~48h的区间内,曲率半径也会出现先增大后减小的情况。从对比例4的化学式及克容量可知,反应时间过长将导致过渡金属元素出现氧化的现象,颗粒产生严重的解体,一次颗粒曲率半径及材料粒径减小。因此,适当的混合时间能够有效控制颗粒的粒径以及形貌,从而大幅提高电池能量密度。
由实施例1、9~10与对比例5的比较可知,过渡金属阳离子及过渡金属氰酸根阴离子的浓度对二次颗粒的内角角度及一次颗粒的曲率半径有较大影响。过渡金属阳离子或过渡金属氰酸根阴离子的浓度过低时,二次颗粒的内角角度及一次颗粒曲率 半径会较小,得到方形的一次颗粒。若过渡金属阳离子与过渡金属氰酸根阴离子的浓度皆大于等于0.1mol/L,但过渡金属阳离子与过渡金属氰酸根阴离子的浓度差增大时,二次颗粒的内角角度会增大,而材料粒径则会减小。因此,合适的过渡金属阳离子及过渡金属氰酸根阴离子浓度能够提高电池能量密度。
由实施例1、11与对比例6的比较可知,加热溶液的温度会影响一次颗粒曲率半径及材料粒径。溶液的温度过低时,普鲁士蓝类过渡金属氰化物的过饱和度会大幅提高,使得晶体快速成核,形成小粒径颗粒。溶液的温度过低也会造成方形颗粒的产生。溶液的温度较高时,容易导致晶体的二次颗粒解体,得到较小的二次颗粒。但较高的溶液温度也有利于增加一次颗粒的曲率半径,球形度较高。溶液温度提高还能使普鲁士蓝类过渡金属氰化物中的Na含量大幅增加,从而提高普鲁士蓝类过渡金属氰化物的克容量及粒径,并且能提高极片的压实密度,因此能改善电池的能量密度。
由实施例1、12的比较可知,加入顺序会影响一次颗粒曲率半径及材料粒径。采用将第一溶液加入第二溶液中的方式会得到较大的二次颗粒,但一次颗粒曲率半径相对于整个颗粒粒径的比例将有所降低,得到的普鲁士蓝类过渡金属氰化物的克容量会更高,因此有利于使电池具有较高的能量密度。
由实施例1、18~21、对比例8的比较可知,陈化时间会影响普鲁士蓝类过渡金属氰化物的结构完整度。适当的陈化时间可以提高普鲁士蓝类过渡金属氰化物的结构完整度,使得Na含量上升以及Fe(CN) 6 4-缺陷减少。并且由于活性Na离子增加,能降低普鲁士蓝类过渡金属氰化物的粉体电阻率,从而改善电池的倍率性能以及循环性能。
还需补充说明的是,根据上述说明书的揭示和指导,本申请所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本申请并不局限于上面揭示和描述的具体实方式,对本申请的一些修改和变更也落入本申请的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本申请构成任何限制。

Claims (22)

  1. 一种普鲁士蓝类过渡金属氰化物,包括二次颗粒,所述二次颗粒包括多个一次颗粒,其中,所述一次颗粒为球型或类球型形貌。
  2. 根据权利要求1所述的普鲁士蓝类过渡金属氰化物,其中,所述二次颗粒的内角角度为150°~300°。
  3. 根据权利要求1所述的普鲁士蓝类过渡金属氰化物,其中,所述一次颗粒的曲率半径≥0.2μm。
  4. 根据权利要求1所述的普鲁士蓝类过渡金属氰化物,其中,所述普鲁士蓝类过渡金属氰化物的体积平均粒径D v50≥1μm。
  5. 根据权利要求1所述的普鲁士蓝类过渡金属氰化物,其中,所述普鲁士蓝类过渡金属氰化物在600MPa压强下的粉体压实密度为1.7g/cm 3~2.1g/cm 3
  6. 根据权利要求1所述的普鲁士蓝类过渡金属氰化物,其中,所述普鲁士蓝类过渡金属氰化物包括A xM 1[M 2(CN) 6] y,其中,
    A选自碱金属离子和碱土金属离子中的一种或几种;
    M 1选自Mn、Ni、Cu、Co、Fe、Zn、Cr中的一种或几种;
    M 2选自Mn、Ni、Cu、Co、Fe、Zn、Cr中的一种或几种;
    1.5≤x≤2;
    0.6≤y≤1。
  7. 根据权利要求1所述的普鲁士蓝类过渡金属氰化物,其中,所述普鲁士蓝类过渡金属氰化物在12MPa压强下的粉体电阻率为10kΩ·cm~100kΩ·cm。
  8. 根据权利要求1所述的普鲁士蓝类过渡金属氰化物,其中,所述普鲁士蓝类过渡金属氰化物的克容量为140mAh/g~170mAh/g。
  9. 一种普鲁士蓝类过渡金属氰化物的制备方法,包括以下步骤:
    S1,提供包含过渡金属阳离子的第一溶液,所述第一溶液中过渡金属阳离子的浓度≥0.1mol/L;
    S2,提供包含过渡金属氰酸根的A盐的第二溶液,所述第二溶液中过渡金属氰酸根阴离子的浓度≥0.1mol/L,A选自碱金属离子和碱土金属离子中的一种或几种;
    S3,在搅拌的条件下,以10cm/s~100m/s的流速、在0.5h~48h的时间内,将所述第一溶液和所述第二溶液的其中一种加入到另一种中进行混合,发生共沉淀化学反应,得到悬浊液;其中,所述其中一种的溶液温度为10℃~40℃,所述另一种的溶液温度为40℃~180℃;
    S4,在搅拌以及40℃~180℃的条件下,对所述悬浊液进行陈化≥0.5h;
    S5,经分离、洗涤、干燥,即得所述普鲁士蓝类过渡金属氰化物,所述普鲁士蓝类过渡金属氰化物包括二次颗粒,所述二次颗粒包括多个一次颗粒,所述一次颗粒为球型或类球型形貌。
  10. 根据权利要求9所述的制备方法,其中,在步骤S1,所述第一溶液中过渡金属 阳离子的浓度为0.2mol/L~4mol/L。
  11. 根据权利要求9所述的制备方法,其中,在步骤S2,所述第二溶液中过渡金属氰酸根阴离子的浓度0.2mol/L~4mol/L。
  12. 根据权利要求9所述的制备方法,其中,步骤S1中的所述第一溶液或步骤S2中的所述第二溶液中还包含A源,其中,
    A源选自A的氯化盐、A的硝酸盐、A的硫酸盐、A的氢氧化物、A的甲酸盐、A的乙酸盐、A的草酸盐、A的磷酸盐、A的高氯酸盐、A的苯甲酸盐、A的柠檬酸盐中的一种或几种。
  13. 根据权利要求9所述的制备方法,其中,步骤S1中的所述第一溶液或步骤S2中的所述第二溶液中包含抗氧化剂。
  14. 根据权利要求9所述的制备方法,其中,在步骤S3,所述混合的流速为50cm/s~10m/s。
  15. 根据权利要求9所述的制备方法,其中,在步骤S3,所述混合的时间为1h~24h。
  16. 根据权利要求9所述的制备方法,其中,在步骤S3,所述另一种的溶液温度为60℃~140℃。
  17. 根据权利要求9所述的制备方法,其中,在步骤S4,所述陈化的温度为60℃~140℃;和/或,
    在步骤S4,所述陈化的时间为1h~24h。
  18. 一种正极极片,包括正极材料,所述正极材料包括根据权利要求1-8中任一项所述的普鲁士蓝类过渡金属氰化物或根据权利要求9-17中任一项所述制备方法得到的普鲁士蓝类过渡金属氰化物。
  19. 一种二次电池,包括根据权利要求18所述的正极极片。
  20. 一种电池模块,包括根据权利要求19所述的二次电池。
  21. 一种电池包,包括根据权利要求19所述的二次电池、或根据权利要求20所述的电池模块。
  22. 一种装置,包括根据权利要求19所述的二次电池、根据权利要求20所述的电池模块、或根据权利要求21所述的电池包中的至少一种。
PCT/CN2021/128648 2020-12-08 2021-11-04 普鲁士蓝类过渡金属氰化物、其制备方法、及其相关的正极极片、二次电池、电池模块、电池包和装置 WO2022121570A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022558232A JP2023519589A (ja) 2020-12-08 2021-11-04 プルシアンブルー系遷移金属シアン化物、その製造方法、及び関連する正極板、二次電池、電池モジュール、電池パック並びに装置
EP21902277.9A EP4135073A4 (en) 2020-12-08 2021-11-04 PRUSSIAN BLUE TRANSITION METAL CYANIDE, PREPARATION METHOD THEREFOR, AND POSITIVE ELECTRODE POLE PIECE, SECONDARY BATTERY, BATTERY MODULE, BATTERY PACK AND APPARATUS RELATED TO PRUSSIAN BLUE TRANSITION METAL CYANIDE
KR1020227033415A KR20220147643A (ko) 2020-12-08 2021-11-04 프러시안 블루계 전이 금속 시안화물, 그 제조 방법, 및 관련 양극판, 이차 전지, 배터리 모듈, 배터리 팩 및 장치
US18/124,021 US20230227321A1 (en) 2020-12-08 2023-03-21 Prussian blue-like transition metal cyanide, preparation method therefor, and related positive electrode plate, secondary battery, battery module, battery pack and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011423372.7A CN112259730B (zh) 2020-12-08 2020-12-08 普鲁士蓝类过渡金属氰化物及其制备方法与应用
CN202011423372.7 2020-12-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/124,021 Continuation US20230227321A1 (en) 2020-12-08 2023-03-21 Prussian blue-like transition metal cyanide, preparation method therefor, and related positive electrode plate, secondary battery, battery module, battery pack and device

Publications (1)

Publication Number Publication Date
WO2022121570A1 true WO2022121570A1 (zh) 2022-06-16

Family

ID=74224912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128648 WO2022121570A1 (zh) 2020-12-08 2021-11-04 普鲁士蓝类过渡金属氰化物、其制备方法、及其相关的正极极片、二次电池、电池模块、电池包和装置

Country Status (6)

Country Link
US (1) US20230227321A1 (zh)
EP (1) EP4135073A4 (zh)
JP (1) JP2023519589A (zh)
KR (1) KR20220147643A (zh)
CN (1) CN112259730B (zh)
WO (1) WO2022121570A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114873612A (zh) * 2022-06-22 2022-08-09 东北大学秦皇岛分校 水系铵离子电池用类毛球状柏林绿电极材料的制备方法
CN115367771A (zh) * 2022-07-07 2022-11-22 华南理工大学 一种高稳定性的微米级立方体普鲁士蓝及其类似物及其制备方法与应用
CN115367772A (zh) * 2022-09-15 2022-11-22 中国石油大学(华东) 一种普鲁士蓝类正极材料的制备方法
CN115745030A (zh) * 2023-01-09 2023-03-07 浙江帕瓦新能源股份有限公司 钾离子电池正极材料及其前驱体、以及制备方法
CN116826038A (zh) * 2023-07-04 2023-09-29 太仓中科赛诺新能源科技有限公司 一种普鲁士蓝类化合物、其制备方法及使用
WO2024066192A1 (zh) * 2022-09-29 2024-04-04 广东邦普循环科技有限公司 低缺陷普鲁士蓝类正极材料的制备方法及其应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112259730B (zh) * 2020-12-08 2021-05-04 江苏时代新能源科技有限公司 普鲁士蓝类过渡金属氰化物及其制备方法与应用
EP4106055A4 (en) 2021-04-29 2023-09-13 Contemporary Amperex Technology Co., Limited PRUSIAN BLUE ANALOG WITH CORE-SHELL STRUCTURE, METHOD FOR ITS PRODUCTION AND SODIUM ION SECONDARY BATTERY THEREFROM
CN113292105A (zh) * 2021-05-20 2021-08-24 中国科学技术大学 一种碳氮包覆的Fe0.4Co0.6S2@NC中空纳米盒子的制备方法及其应用
CN113506689B (zh) * 2021-06-03 2022-08-02 中北大学 一种MOFs衍生的NiO电极材料的制备方法
CN113839032A (zh) * 2021-09-15 2021-12-24 杭州思拓瑞吉科技有限公司 一种低成本普鲁士白材料、及其制备方法和应用
CN114497472B (zh) * 2021-12-08 2023-08-18 电子科技大学长三角研究院(湖州) 一种具有多层结构的普鲁士蓝类正极材料及其制备方法和应用
CN114455609B (zh) * 2022-02-16 2023-04-07 温州大学碳中和技术创新研究院 循环稳定的低成本钠离子电池正极材料制备方法及应用
CN115072741B (zh) * 2022-07-08 2023-11-17 金驰能源材料有限公司 普鲁士蓝正极材料及其连续式制备方法以及钠离子电池
CN116002717A (zh) * 2022-12-30 2023-04-25 中伟新材料股份有限公司 一种普鲁士蓝类正极材料及其制备方法和钠离子电池
CN116314711A (zh) * 2023-04-06 2023-06-23 贲安能源科技(上海)有限公司 一种高密度高电导率普鲁士复合材料的制备工艺
CN116588953B (zh) * 2023-04-25 2024-03-22 武汉理工大学 一种普鲁士蓝类似物钠离子电池正极材料的制备方法
CN116404117B (zh) * 2023-06-07 2023-08-11 四川富临新能源科技有限公司 提高钠离子正极材料容量的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106469828A (zh) * 2016-12-12 2017-03-01 华中科技大学 一种石墨/普鲁士蓝复合材料制备方法及其应用
CN109698345A (zh) * 2017-10-23 2019-04-30 宁德时代新能源科技股份有限公司 普鲁士蓝类正极材料及其制备方法及电化学储能装置
CN109841832A (zh) * 2017-11-29 2019-06-04 宁德时代新能源科技股份有限公司 正极片及电化学电池
CN109920979A (zh) * 2017-12-12 2019-06-21 宁德时代新能源科技股份有限公司 正极片及电化学电池
CN110078096A (zh) * 2019-05-14 2019-08-02 上海汉行科技有限公司 一种普鲁士蓝材料及其制备方法
KR20200063642A (ko) * 2018-11-28 2020-06-05 순천향대학교 산학협력단 양극활물질로 프러시안 블루분말을 사용한 이차전지 및 이차전지의 제조방법
CN112259730A (zh) * 2020-12-08 2021-01-22 江苏时代新能源科技有限公司 普鲁士蓝类过渡金属氰化物、其制备方法、及其相关的正极极片、二次电池、电池包和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107240676B (zh) * 2016-03-28 2019-11-12 北京大学深圳研究生院 一种表面修饰的正极材料及其制备方法和应用
CN107039622A (zh) * 2017-02-22 2017-08-11 东莞市佳乾新材料科技有限公司 一种基于石墨/普鲁士蓝正极材料的钠离子电池的制备方法
CN107364875A (zh) * 2017-06-22 2017-11-21 全球能源互联网研究院 一种制备普鲁士蓝正极材料的方法及钠离子电池
CN107364874A (zh) * 2017-06-22 2017-11-21 全球能源互联网研究院 一种普鲁士蓝正极材料制备方法及钠离子电池
CN109761246B (zh) * 2018-12-07 2021-12-07 上海汉行科技有限公司 用于钠离子电池的掺杂改性普鲁士蓝基材料及制备方法
CN110451525B (zh) * 2019-08-07 2021-05-11 清华大学 一种快速制备单斜晶结构普鲁士蓝类似物的方法
CN110412098B (zh) * 2019-08-23 2022-02-01 衡阳师范学院 一种花球状Mn-Fe普鲁士蓝类似物材料及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106469828A (zh) * 2016-12-12 2017-03-01 华中科技大学 一种石墨/普鲁士蓝复合材料制备方法及其应用
CN109698345A (zh) * 2017-10-23 2019-04-30 宁德时代新能源科技股份有限公司 普鲁士蓝类正极材料及其制备方法及电化学储能装置
CN109841832A (zh) * 2017-11-29 2019-06-04 宁德时代新能源科技股份有限公司 正极片及电化学电池
CN109920979A (zh) * 2017-12-12 2019-06-21 宁德时代新能源科技股份有限公司 正极片及电化学电池
KR20200063642A (ko) * 2018-11-28 2020-06-05 순천향대학교 산학협력단 양극활물질로 프러시안 블루분말을 사용한 이차전지 및 이차전지의 제조방법
CN110078096A (zh) * 2019-05-14 2019-08-02 上海汉行科技有限公司 一种普鲁士蓝材料及其制备方法
CN112259730A (zh) * 2020-12-08 2021-01-22 江苏时代新能源科技有限公司 普鲁士蓝类过渡金属氰化物、其制备方法、及其相关的正极极片、二次电池、电池包和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4135073A4 *
XIAO TANG ET AL.: "Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries", NANO RESEARCH, vol. 11, no. 8, 25 January 2018 (2018-01-25), XP036558379, ISSN: 1998-0124, DOI: 10.1007/s12274-018-1979-y *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114873612A (zh) * 2022-06-22 2022-08-09 东北大学秦皇岛分校 水系铵离子电池用类毛球状柏林绿电极材料的制备方法
CN114873612B (zh) * 2022-06-22 2023-07-14 东北大学秦皇岛分校 水系铵离子电池用类毛球状柏林绿电极材料的制备方法
CN115367771A (zh) * 2022-07-07 2022-11-22 华南理工大学 一种高稳定性的微米级立方体普鲁士蓝及其类似物及其制备方法与应用
CN115367772A (zh) * 2022-09-15 2022-11-22 中国石油大学(华东) 一种普鲁士蓝类正极材料的制备方法
CN115367772B (zh) * 2022-09-15 2023-06-23 中国石油大学(华东) 一种普鲁士蓝类正极材料的制备方法
WO2024066192A1 (zh) * 2022-09-29 2024-04-04 广东邦普循环科技有限公司 低缺陷普鲁士蓝类正极材料的制备方法及其应用
CN115745030A (zh) * 2023-01-09 2023-03-07 浙江帕瓦新能源股份有限公司 钾离子电池正极材料及其前驱体、以及制备方法
CN116826038A (zh) * 2023-07-04 2023-09-29 太仓中科赛诺新能源科技有限公司 一种普鲁士蓝类化合物、其制备方法及使用

Also Published As

Publication number Publication date
EP4135073A4 (en) 2023-12-27
KR20220147643A (ko) 2022-11-03
JP2023519589A (ja) 2023-05-11
EP4135073A1 (en) 2023-02-15
CN112259730B (zh) 2021-05-04
CN112259730A (zh) 2021-01-22
US20230227321A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
WO2022121570A1 (zh) 普鲁士蓝类过渡金属氰化物、其制备方法、及其相关的正极极片、二次电池、电池模块、电池包和装置
WO2020143533A1 (zh) 正极活性材料及其制备方法、钠离子电池及包含钠离子电池的装置
WO2021088168A1 (zh) 补锂材料及包括其的正极
WO2021057428A1 (zh) 二次电池及含有该二次电池的电池模块、电池包、装置
WO2020143532A1 (zh) 正极活性材料及其制备方法、钠离子电池及包含钠离子电池的装置
WO2020143531A1 (zh) 正极活性材料及其制备方法、钠离子电池和包含钠离子电池的装置
WO2020220662A1 (zh) 正极活性材料、正极极片、锂离子二次电池和装置
WO2021249400A1 (zh) 一种正极活性材料及包含其的电化学装置
WO2022267552A1 (zh) 钠金属电池、电化学装置
WO2022267503A1 (zh) 电化学装置、电子装置
WO2021163987A1 (zh) 正极材料和包含所述正极材料的电化学装置
Liu et al. 120 Years of nickel-based cathodes for alkaline batteries
WO2022120833A1 (zh) 一种电化学装置和电子装置
WO2022198660A1 (zh) 一种正极补锂材料、包含该材料的正极极片和电化学装置
WO2023070268A1 (zh) 一种电化学装置及包含该电化学装置的用电装置
WO2022134540A1 (zh) 正极材料、电化学装置和电子装置
WO2023160307A1 (zh) 正极补锂添加剂及其制备方法和应用
WO2023133811A1 (zh) 一种单晶低钴三元材料及其制备方法、二次电池、电池包、用电装置
CN115458707A (zh) 二次电池及用电设备
Fu et al. Synthesis and electrochemical properties of Mg-doped LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode materials for Li-ion battery
WO2022198651A1 (zh) 一种正极极片、包含该正极极片的电化学装置和电子装置
WO2023221890A1 (zh) 一种高安全性的三元正极材料及其制备方法
WO2021146943A1 (zh) 正极材料和包含其的电化学装置及电子装置
WO2023205993A1 (zh) 尖晶石镍锰酸锂材料及其制备方法
WO2023123049A1 (zh) 层状氧化物正极活性材料、以及包含其的正极极片、钠离子电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022558232

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20227033415

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021902277

Country of ref document: EP

Effective date: 20221111

NENP Non-entry into the national phase

Ref country code: DE