WO2022102527A1 - 信号生成装置、電子楽器、電子鍵盤装置、電子機器、信号生成方法およびプログラム - Google Patents

信号生成装置、電子楽器、電子鍵盤装置、電子機器、信号生成方法およびプログラム Download PDF

Info

Publication number
WO2022102527A1
WO2022102527A1 PCT/JP2021/040722 JP2021040722W WO2022102527A1 WO 2022102527 A1 WO2022102527 A1 WO 2022102527A1 JP 2021040722 W JP2021040722 W JP 2021040722W WO 2022102527 A1 WO2022102527 A1 WO 2022102527A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
duration
pitch
operator
signal
Prior art date
Application number
PCT/JP2021/040722
Other languages
English (en)
French (fr)
Inventor
明伸 渋谷
Original Assignee
ヤマハ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ株式会社 filed Critical ヤマハ株式会社
Priority to JP2022561871A priority Critical patent/JPWO2022102527A1/ja
Priority to CN202180074115.3A priority patent/CN116438596A/zh
Priority to DE112021005965.3T priority patent/DE112021005965T5/de
Publication of WO2022102527A1 publication Critical patent/WO2022102527A1/ja
Priority to US18/310,600 priority patent/US20230267901A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/02Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos
    • G10H1/04Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation
    • G10H1/053Means for controlling the tone frequencies, e.g. attack or decay; Means for producing special musical effects, e.g. vibratos or glissandos by additional modulation during execution only
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/155Musical effects
    • G10H2210/195Modulation effects, i.e. smooth non-discontinuous variations over a time interval, e.g. within a note, melody or musical transition, of any sound parameter, e.g. amplitude, pitch, spectral response, playback speed
    • G10H2210/221Glissando, i.e. pitch smoothly sliding from one note to another, e.g. gliss, glide, slide, bend, smear, sweep
    • G10H2210/225Portamento, i.e. smooth continuously variable pitch-bend, without emphasis of each chromatic pitch during the pitch change, which only stops at the end of the pitch shift, as obtained, e.g. by a MIDI pitch wheel or trombone
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/325Musical pitch modification
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2220/00Input/output interfacing specifically adapted for electrophonic musical tools or instruments
    • G10H2220/155User input interfaces for electrophonic musical instruments
    • G10H2220/221Keyboards, i.e. configuration of several keys or key-like input devices relative to one another
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2220/00Input/output interfacing specifically adapted for electrophonic musical tools or instruments
    • G10H2220/155User input interfaces for electrophonic musical instruments
    • G10H2220/265Key design details; Special characteristics of individual keys of a keyboard; Key-like musical input devices, e.g. finger sensors, pedals, potentiometers, selectors

Definitions

  • This disclosure relates to a technique for generating a sound signal.
  • the pronunciation of electronic keyboard instruments can be controlled in various ways.
  • One of the pronunciation controls is portamento processing.
  • When normal pronunciation processing is executed when two different keys are operated in succession, the pronunciation of the pitch corresponding to each key is executed in order.
  • the portamento process when executed, the pitch is controlled to change smoothly between the respective pronunciations. Techniques for changing various modes when the pitch is smoothly changed have also been developed (for example, Patent Document 1).
  • the presence or absence of portamento processing can be switched by operating the operation buttons or the like provided on the electronic keyboard instrument.
  • controlling by an operation button or the like further makes the performance difficult.
  • One of the purposes of this disclosure is to control portamento processing depending on the playing method.
  • a signal generator including a generator and a sound control unit.
  • the generation unit generates a sound signal corresponding to an operation on a plurality of controls.
  • the plurality of controls includes a first manipulator and a second manipulator.
  • the sounding control unit controls the sounding form of the sound signal generated in response to the second operation on the second operator following the first operation, based on the duration of the first operation on the first operator. ..
  • the portamento process can be controlled by the playing method.
  • FIG. 1 is a diagram illustrating an appearance of an electronic keyboard device according to an embodiment.
  • the electronic keyboard device 1 is a synthesizer including a keyboard unit 80 including a plurality of keys rotatably supported by the housing 95.
  • the key is an example of an operator that accepts input of a performance operation by a user.
  • the electronic keyboard device 1 generates a sound signal in response to a key operation by a user or control by a sequencer. This sound signal may be given a preset acoustic effect.
  • the process of imparting an acoustic effect includes a portamento process.
  • the portamento processing in this example switches to control in a different sounding form when a predetermined playing method (key press operation) is detected while controlling in the sounding form by general portamento.
  • a predetermined playing method key press operation
  • a trill is assumed as a predetermined playing method.
  • the pronunciation form is controlled so that the pitch transition in portamento takes place in a short time.
  • the electronic keyboard device 1 for realizing such control of the sounding form will be described.
  • FIG. 2 is a diagram illustrating a configuration of an electronic keyboard device according to an embodiment.
  • the electronic keyboard device 1 includes a control unit 10, a storage unit 18, an operation unit 20, a sound source unit 30, a display unit 50, a speaker 60, a signal output unit 65, a keyboard unit 80, a key press detection unit 88, and an interface 90.
  • the storage unit 18 is a storage device such as a non-volatile memory, and includes an area for storing a control program executed by the control unit 10.
  • the control program may be provided by an external device. When the control program is executed by the control unit 10, various functions are realized in the electronic keyboard device 1.
  • the operation unit 20 includes operation devices such as knobs, sliders, touch sensors, and buttons, and receives instructions from the user to the electronic keyboard device 1.
  • the operation unit 20 outputs an operation signal CS according to the received instruction of the user to the control unit 10.
  • the display unit 50 includes a display device such as a liquid crystal display, and displays various screens under the control of the control unit 10.
  • a touch panel may be configured by combining the display unit 50 with a touch sensor.
  • the speaker 60 amplifies and outputs the sound signal supplied from the sound source unit 30, thereby generating a sound corresponding to the sound signal.
  • the signal output unit 65 includes a terminal for outputting a sound signal supplied from the sound source unit 30 to an external device.
  • the key press detection unit 88 includes a sensor that outputs a pressed key and a detection signal KV according to the amount of the key pressed to the control unit 10.
  • the interface 90 includes a terminal for connecting an external device such as a controller to the electronic keyboard device 1.
  • the interface 90 may include terminals for transmitting and receiving MIDI data.
  • the control unit 10 is an example of a computer including an arithmetic processing circuit such as a CPU and a storage device such as RAM and ROM.
  • the control unit 10 executes a control program stored in the storage unit 18 by using the CPU, and realizes various functions in the electronic keyboard device 1 according to the instructions described in the control program.
  • the control unit 10 generates, for example, a sound source control signal Ct based on the detection signal KV and a setting signal St based on the operation signal CS.
  • the sound source control signal Ct includes information for controlling the generation of each sound such as note number, note on, and note off, and is used to generate a sound signal in the sound source unit 30.
  • the setting signal St is used to set the values of various parameters such as an acoustic effect for generating a sound signal in the sound source unit 30.
  • the setting signal St is information for setting the operation mode of sound processing to either a mode for executing portamento processing described later or a mode for executing normal processing, and information for setting parameters used in portamento processing. including.
  • the mode for executing the portamento process may be referred to as a portamento performance mode.
  • a mode for executing normal processing may be referred to as a normal performance mode.
  • the normal performance mode is an operation mode in which pronunciation is performed in a pronunciation form that does not use portamento processing. That is, in the normal performance mode, a sound signal having a pitch corresponding to the key is generated each time the key is operated, but a portamento-processed sound signal in which the pitch gradually changes between each sound is adopted. Not done.
  • the normal performance mode can be said to be an operation mode in which control of the pronunciation form by portamento processing is stopped.
  • the parameters used in the portamento processing are the switching threshold Tth and the speed at which the pitch in the portamento is changed (low speed Ls, high speed Hs).
  • the switching threshold Tth is a parameter used when detecting a trill as a playing method.
  • the low speed Ls is a parameter corresponding to the speed at which the pitch is changed in the portamento processing.
  • the high speed Hs is a parameter corresponding to the speed at which the pitch is changed in the portamento processing when the trill is detected.
  • the low speed Ls is smaller than the high speed Hs. The usage of this parameter will be described later.
  • the sound source unit 30 includes a DSP (Digital Signal Processor) 300, a waveform storage unit 310, and a program storage unit 350, and is an example of a signal generation device for generating a sound signal.
  • the waveform storage unit 310 stores waveform data for generating a sound signal.
  • the program storage unit 350 stores a program executed in the DSP 300. This program may be provided by an external device.
  • the DSP 300 generates a sound signal based on the sound source control signal Ct and the setting signal St supplied from the control unit 10.
  • the DSP 300 may supply the generated sound signal to the signal output unit 65 and further supply it to the speaker 60.
  • the DSP 300 executes the program stored in the program storage unit 350, and realizes various functions in the sound source unit 30 according to the instructions described in the program. All or some of the functions of the sound source unit 30 may be realized by executing a program in the control unit 10.
  • the function that the DSP 300 realizes in the sound source unit 30 will be described.
  • the DSP 300 realizes the signal generation unit (generation unit) 301 and the sound generation control unit 305 in the sound source unit 30.
  • the signal generation unit 301 reads out waveform data from the waveform storage unit 310 based on the sound source control signal Ct, and generates a sound signal based on the waveform data and various parameters set based on the setting signal St.
  • the pronunciation control unit 305 controls the method of generating a sound signal in the signal generation unit 301. In this example, when the normal performance mode and the portamento performance mode are switched based on the set signal St, the sound generation control unit 305 controls the signal generation unit 301 to generate a sound signal in a sound generation form corresponding to each mode. do.
  • FIG. 3 is a flowchart showing a sound signal generation method by portamento processing in one embodiment.
  • the count value Tc for measuring the key pressing time is set to 0 (step S100).
  • the sound source unit 30 waits until the key press is detected (step S200; No).
  • the sound source unit 30 detects the key press (step S200; Yes)
  • 1 is added to the count value Tc (step S210), and the sound source unit 30 executes the sound generation process according to the key press (step S220). Specifically, a sound signal having a pitch corresponding to the pressed key is generated.
  • the sound source unit 30 continues the processing of steps S210 and S220 while neither the release key nor another key press is detected with respect to the pressed key (step S300; No, step S400; No). That is, the sound source unit 30 adds 1 to the count value Tc (step S210) and generates a sound signal so as to continue sounding (step S220).
  • step S300 When the sound source unit 30 detects the key release (step S300; Yes), the sound source unit 30 ends the sound generation process (step S350), returns to step S100, and continues the process.
  • step S400 If another key press is detected before the key is released (step S400; Yes), the sound source unit 30 executes the pitch transition process (step S500).
  • FIG. 4 is a flowchart illustrating the pitch transition process in one embodiment.
  • the sound source unit 30 determines whether or not Tc is smaller than the switching threshold value Tth (step S510). Since the count value Tc increases while the key is being pressed, it corresponds to the time during which the key is being pressed. Therefore, in the following description, the count value Tc may be referred to as the duration Tc.
  • the sound source unit 30 sets the pitch change speed Ps to the low speed Ls and measures the time during which the new key press is continued. Therefore, the duration Tc is set to 0 (step S521).
  • the duration Tc is set to 0 for measurement (step S523).
  • the sound source unit 30 executes the processes of steps S530 to 550 described below while neither the release key nor another key press is detected with respect to the pressed key (step S600; No, step S700; No). do.
  • step S600; No, step S700; No the sound source unit 30 detects another key press before the key release (step S700; Yes)
  • step S700; Yes the sound source unit 30 returns to step S510 and continues the process.
  • step S600; Yes the sound source unit 30 ends the sounding process (FIG. 3, step S350), returns to step S100 shown in FIG. 3, and continues the process.
  • the sound source unit 30 adds 1 to the count value Tc (step S530), and executes a process of adjusting the frequency of the sound signal toward the target pitch at a speed corresponding to the pitch change speed Ps (step S540).
  • the target pitch is the pitch corresponding to the key detected in step S400.
  • the sound source unit 30 continues the processing of steps S530 and S540 until the sound signal reaches the target pitch (step S550; No). That is, the sound source unit 30 adds 1 to the count value Tc (step S530), and executes a process of adjusting the frequency of the sound signal toward the target pitch at a speed corresponding to the pitch change speed Ps (step S540). ).
  • the sound source unit 30 ends the pitch transition process, returns to step S210 shown in FIG. 3, and continues the process.
  • the pitch change speed Ps is set to either low speed Ls or high speed Hs depending on the duration Tc.
  • the pitch change speed Ps is set to the low speed Ls
  • the sound source unit 30 When the pitch change speed Ps is set to the low speed Ls, the sound source unit 30 generates a sound signal so that the pitch gradually changes, as in the sounding form by general portamento processing.
  • the pitch change speed Ps is set to the high speed Hs, the sound source unit makes a sound so as to rapidly change the pitch, as in a pronunciation form in which portamento processing is not substantially executed. Generate a signal.
  • An example of the pitch change due to the control of such a pronunciation form will be described with reference to FIGS. 5 and 6.
  • FIG. 5 is a diagram showing an example of a pitch change in one embodiment.
  • K1 and K9 correspond to the C4 key
  • K2, K4, K6 and K8 correspond to the G4 key
  • K3 and K5 correspond to the F4 key
  • K7 corresponds to the E4 key. do.
  • the range from the key pressing (Kon) timing to the key release (Koff) timing is shown by a band-shaped image.
  • a sound signal is generated at the pitch of C4. Since the key operation K2 is generated before the key operation K1 is completed, the period from the key pressing timing of the key operation K1 to the key pressing timing of the key operation K2 is counted as the duration Tc. Since the duration Tc is equal to or higher than the switching threshold value Tth, the low speed Ls is set for the pitch change speed Ps.
  • the pitch Pt begins to change from C4 to G4 at a low speed Ls from the key pressing timing of the key operation K2. Also in the relationship between the key operation K2 and the key operation K3, the low speed Ls is set in the pitch change speed Ps as in the relationship between the key operation K1 and the key operation K2. Therefore, the pitch Pt begins to change from G4 to F4 at a low speed Ls from the key pressing timing of the key operation K3.
  • the duration Tc related to the key operation K3, that is, the duration Tc from the key pressing timing of the key operation K3 to the key pressing timing of the key operation K4 is less than the switching threshold Tth, so that the pitch change speed Ps has a high speed Hs.
  • the pitch Pt begins to change from F4 to G4 at a high speed Hs from the key pressing timing of the key operation K4.
  • the high speed Hs may be set as a value larger than the low speed Ls, but in this example, the high speed Hs is set as a much larger value than the low speed Ls. Therefore, the pitch Pt changes to G4 almost at the same time as the key operation K4 is pressed. In other words, the transition time until the pitch Pt changes from F4 to G4 is almost zero.
  • FIG. 5 the portion of the pitch Pt that changes at high speed Hs is shown by a broken line. The same applies to the pitch Ptb shown in FIG.
  • the migration time may be 0 or may be the minimum controllable time.
  • the transition time of 0 may be the time corresponding to the control when the control of the sounding form in the portamento performance mode is stopped. Specifically, it shows that the same sounding timing is reproduced when the transition time becomes 0 in the portamento performance mode and when the performance is performed in the normal performance mode.
  • the duration Tc for the key operations K4 to K7 is less than the switching threshold Tth. Therefore, the pitch Pt is switched in the order of G4, F4, G4, E4 at high speed Hs corresponding to the key pressing timings of the key operations K4, K5, K6, and K7. Since the duration Tc related to the key operation K7 is equal to or higher than the switching threshold value Tth, the pitch Pt starts to change from E4 to G4 at a low speed Ls from the key pressing timing of the key operation K8.
  • the key press timing of the key operation K9 is later than the key release timing of the key operation K8. Therefore, the sounding ends at the key release timing of the key operation K8, and a new sound signal is generated at the pitch of C4 at the key press timing of the key operation K9.
  • FIG. 6 is a diagram showing an example of a pitch change in one embodiment.
  • K11 and K21 correspond to the key of C4
  • K12 and K22 correspond to the key of C5
  • K13 and K23 correspond to the key of A4.
  • the change in pitch is large. Therefore, the target pitch is not reached within the duration Tc of the subsequent key operations K12 and K22.
  • the pitch Pta starts to change from C4 to C5 at low speed Ls from the key pressing timing of the key operation K12. Since the key operation K13 occurs before the key operation K12 ends, the period from the key pressing timing of the key operation K12 to the key pressing timing of the key operation K13 is counted as the duration Tc. Since the duration Tc for the key operation K12 is equal to or greater than the switching threshold value Tth, the low speed Ls is set for the pitch change speed Ps. Even before reaching C5 (the pitch between C4 and C5), the pitch Pta begins to change to A4 at a low speed Ls from the key pressing timing of the key operation K13.
  • the pitch Ptb starts to change from C4 to C5 at low speed Ls from the key pressing timing of the key operation K22. Since the key operation K23 is generated before the key operation K22 is completed, the period from the key pressing timing of the key operation K22 to the key pressing timing of the key operation K23 is counted as the duration Tc. Since the duration Tc for the key operation K22 is less than the switching threshold value Tth, the high speed Hs is set for the pitch change speed Ps. Even before reaching C5 (the pitch between C4 and C5), the pitch Ptb begins to change to A4 at high speed Hs from the key pressing timing of the key operation K13. As described above, since the pitch Ptb is set as a very large value as compared with the low speed Ls, the pitch Ptb changes to A4 almost at the same time as the key press of the key operation K23.
  • the key operations K3 to K7 input after the key operations K1 and K2 are performances in which the next key is pressed with a short key press.
  • Such a playing technique corresponds to a trill.
  • the pitch Pt gradually changes like a normal portament processing, the pitch Pt changes for a long time, so that the target pitch cannot be reached or the target pitch can be reached. Even so, the time maintained at that pitch is short.
  • the fact that the target pitch cannot be reached corresponds to, for example, the change in pitch during the period of key operations K12 and K22 in FIG. Even if the target pitch can be reached, the time maintained at that pitch is short, for example, corresponding to the pitch change during the period of the key operation K2 in FIG. Therefore, the portamento process cannot reproduce the image of the original pronunciation by a performance method such as trill.
  • the performer can increase the pitch change speed Ps only by playing with a trill in the portamento performance mode. Therefore, the pitch change speed Ps can be made different by changing the playing method without performing a separate operation (for example, operating the operation unit 20) during the performance.
  • the mode of change in pitch is determined based on the speed at which the pitch changes (pitch change speed Ps), but the time during which the pitch changes (target pitch is reached). It may be determined based on the time until, hereinafter referred to as the pitch change time). Instead of setting the pitch change speed Ps to a value of either low speed Ls or high speed Hs, the pitch change time may be set to either a long time or a short time.
  • the sound source unit 30 controls the transition time in the pitch change by making the value of the pitch change speed Ps different.
  • the sound source unit 30 controls the transition time in the pitch change by making the value of the pitch change time different. In the case of controlling the transition time by the pitch change speed Ps, the larger the amount of change in pitch, the longer the transition time. On the other hand, if the amount of change in pitch is the same, it can be said that the transition time is controlled by the value set in the pitch change speed Ps.
  • the sound source unit 30 may control the transition time of the pitch change by the pitch change speed or the pitch change time.
  • the pitch transition process may be executed without ending the sounding.
  • the duration Tc may be calculated in the same manner as in the above-described embodiment, or may be calculated so as to correspond to the time from the key press to the key release.
  • the pitch change speed Ps may be set to either low speed Ls or high speed Hs by the duration Tc, but may be set by a predetermined arithmetic expression obtained from the duration Tc. For example, the longer the duration Tc, the slower the speed, that is, the longer the transition time.
  • Another condition may be added in addition to the case where the duration Tc is less than the switching threshold Tth.
  • Another condition may be, for example, that the keys corresponding to the two pitches are operated alternately.
  • the key corresponding to the first pitch is operated, the key corresponding to the second pitch is operated, and then the key corresponding to the first pitch is operated again, the first It is determined that the key corresponding to the first pitch and the key corresponding to the second pitch are operated alternately. In this example, it corresponds to the case where the operation is alternately performed once. After that, when the key corresponding to the first pitch is further operated, it is assumed that the key is alternately operated twice.
  • the sound source unit 30 may determine that the additional condition is satisfied when the number of times of the alternate operation reaches a predetermined number of times.
  • the sound source unit 30 is not limited to the case where it is applied to a device having a key as an operator such as the electronic keyboard device 1, and may be applied to various electronic musical instruments using an operator other than the key. ..
  • the sound source unit 30 can be applied to, for example, an electronic wind instrument, an electronic stringed instrument, or the like.
  • the operator may be an image displayed on the touch panel.
  • a configuration for executing processing by the sound source unit 30 is realized by executing a program by a CPU (processor). May be good.
  • the electronic device may display an image imitating an operator such as a key on the touch panel as a performance operation target.
  • a signal generation device including a generation unit and a sound generation control unit.
  • the generation unit generates a sound signal corresponding to an operation on a plurality of controls.
  • the plurality of controls includes a first manipulator and a second manipulator.
  • the sounding control unit controls the sounding form of the sound signal generated in response to the second operation on the second operator following the first operation, based on the duration of the first operation on the first operator. ..
  • it can be configured as follows.
  • the pronunciation control unit may control the pronunciation form so as to control the transition time in which the pitch of the sound signal corresponding to the first operation changes to the pitch of the sound signal corresponding to the second operation. ..
  • the pronunciation control unit may control the transition time to a time corresponding to the case where the control of the pronunciation form is stopped when the duration is shorter than the predetermined time.
  • the sound control unit sets the transition time. It may be controlled at the corresponding time when the control of the pronunciation form is stopped.
  • the sound control unit When the duration is the second duration, the sound control unit has a large difference between the pitch of the sound signal corresponding to the first operation and the pitch of the sound signal corresponding to the second operation.
  • the pronunciation form may be controlled so that the transition time becomes longer.
  • the sound control unit keeps the speed at which the pitch of the sound signal corresponding to the first operation changes to the pitch of the sound signal corresponding to the second operation constant, so that the sound corresponding to the first operation is produced.
  • the pronunciation form may be controlled so that the transition time becomes longer as the difference between the pitch of the signal and the pitch of the sound signal corresponding to the second operation becomes larger.
  • the sound control unit is based on the difference between the pitch of the sound signal corresponding to the first operation and the pitch of the sound signal corresponding to the second operation. Instead, the sounding form may be controlled so that the transition time is constant.
  • the duration may correspond to the time from the first operation to the second operation.
  • the duration may correspond to the time from the start to the end of the first operation.
  • an electronic musical instrument including the signal generator and a plurality of operators including the first operator and the second operator is provided.
  • an electronic keyboard device including the signal generation device and a plurality of keys including the first operator and the second operator is provided.
  • the signal generator is controlled to display a plurality of images including a first image corresponding to the first operator and a second image corresponding to the second operator.
  • Electronic devices including a touch panel are provided.
  • a signal generation device including a storage unit for storing a program and a processor for executing the program, and the processor executes the program.
  • the first sound signal corresponding to the first operation to the first operator is generated, and the sounding form is based on the duration of the first operation, and corresponds to the second operation to the second operator following the first operation.
  • a signal generator is provided that generates a second sound signal.
  • a signal generation method is provided, which comprises generating a second sound signal according to a second operation to.
  • Generating the second sound signal may include controlling the sounding form so as to control the transition time from the pitch of the first sound signal to the pitch of the second sound signal.
  • the generation of the second sound signal is such that the transition time is longer when the duration is the second duration longer than the first duration than when the duration is the first duration. May include controlling to.
  • Generating the second sound signal may include controlling the transition time to a time corresponding to the case where the control of the sounding form is stopped when the duration is shorter than the predetermined time.
  • the second sound signal is generated when the duration is shorter than a predetermined time and the number of times the first operator and the second operator are alternately operated reaches a predetermined number of times. It may include controlling the transition time to a time corresponding to the case where the control of the sounding form is stopped.
  • a program for causing the computer to generate a second sound signal corresponding to the second operation to is provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Electrophonic Musical Instruments (AREA)

Abstract

一実施形態による信号生成装置は、生成部および発音制御部を備える。生成部は、複数の操作子への操作に応じた音信号を生成する。複数の操作子は、第1操作子および第2操作子を含む。発音制御部は、第1操作子への第1操作の継続時間に基づいて、第1操作に続く第2操作子への第2操作に応じて生成される音信号の発音形態を制御する。

Description

信号生成装置、電子楽器、電子鍵盤装置、電子機器、信号生成方法およびプログラム
 本開示は、音信号を生成する技術に関する。
 電子鍵盤楽器における発音は、様々に制御することができる。発音制御の一つは、ポルタメント処理である。通常の発音処理が実行される場合には、異なる2つの鍵が連続して操作されたときには、それぞれの鍵に対応する音高の発音が順に実行される。一方、ポルタメント処理が実行される場合には、それぞれの発音の間において、音高がなめらかに変化するように制御される。音高をなめらかに変化させるときの態様を様々に変化させる技術も開発されている(例えば、特許文献1)。
特開平1-214899号公報
 一般的には、電子鍵盤楽器に備えられた操作ボタン等を操作することによって、ポルタメント処理の有無を切り替えることができる。しかしながら、演奏中にそのような操作をすることは困難である。特に、ポルタメント処理を用いた演奏の一部分(1フレーズの途中の部分など)においてポルタメント処理を停止させたい場合に、操作ボタン等により制御することは、さらに演奏を困難にする。
 本開示の目的の一つは、演奏方法によってポルタメント処理を制御することにある。
 一実施形態によれば、生成部および発音制御部を備える信号生成装置が提供される。生成部は、複数の操作子への操作に応じた音信号を生成する。複数の操作子は、第1操作子および第2操作子を含む。発音制御部は、第1操作子への第1操作の継続時間に基づいて、前記第1操作に続く第2操作子への第2操作に応じて生成される音信号の発音形態を制御する。
 一実施形態によれば、演奏方法によってポルタメント処理を制御することができる。
一実施形態における電子鍵盤装置の外観を示す図である。 一実施形態における電子鍵盤装置の構成を示す図である。 一実施形態におけるポルタメント処理による音信号生成方法を示すフローチャートである。 一実施形態における音高移行処理を説明するフローチャートである。 一実施形態における音高変化の一例を示す図である。 一実施形態における音高変化の一例を示す図である。
 以下、本開示の一実施形態における電子鍵盤装置について、図面を参照しながら詳細に説明する。以下に示す実施形態は本開示の実施形態の一例であって、本発明はこれらの実施形態に限定して解釈されるものではない。本実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号(数字の後にA、Bなど付しただけの符号)を付し、その繰り返しの説明は省略する場合がある。図面の寸法比率は説明の都合上実際の比率とは異なったり、構成の一部が図面から省略されたりする場合がある。
[1.電子鍵盤装置の構成]
 図1は、一実施形態における電子鍵盤装置の外観を説明する図である。電子鍵盤装置1は、筐体95に回転可能に支持された複数の鍵を含む鍵盤部80を備えるシンセサイザである。鍵は、ユーザによる演奏操作の入力を受け付ける操作子の一例である。電子鍵盤装置1は、ユーザによる鍵の操作またはシーケンサによる制御に応じて、音信号を生成する。この音信号は、予め設定された音響効果が付与されてもよい。音響効果を付与する処理は、ポルタメント処理を含む。
 この例におけるポルタメント処理は、一般的なポルタメントによる発音形態での制御をしているときに、所定の演奏手法(押鍵操作)が検出されたときに異なる発音形態での制御に切り替える。この例では、所定の演奏手法として、例えば、トリルが想定される。トリルが検出されたときにはポルタメントにおける音高の移行を短い時間で行うように、発音形態が制御される。このような発音形態の制御を実現するための電子鍵盤装置1について説明する。
 図2は、一実施形態における電子鍵盤装置の構成を説明する図である。電子鍵盤装置1は、制御部10、記憶部18、操作部20、音源部30、表示部50、スピーカ60、信号出力部65、鍵盤部80、押鍵検出部88およびインターフェース90を備える。
 記憶部18は、不揮発性メモリなどの記憶装置であって、制御部10によって実行される制御プログラムを記憶する領域を含む。制御プログラムは、外部装置から提供されてもよい。制御プログラムが制御部10によって実行されると、電子鍵盤装置1において様々な機能が実現される。
 操作部20は、ノブ、スライダ、タッチセンサおよびボタンなどの操作デバイスを含み、ユーザから電子鍵盤装置1への指示を受け付ける。操作部20は、受け付けられたユーザの指示に応じた操作信号CSを制御部10に出力する。
 表示部50は、液晶ディスプレイなどの表示装置を含み、制御部10による制御によって様々な画面を表示する。表示部50にタッチセンサが組み合わされることによって、タッチパネルが構成されてもよい。
 スピーカ60は、音源部30から供給される音信号を増幅して出力することによって、音信号に応じた音を発生する。
 信号出力部65は、音源部30から供給される音信号を、外部装置へ出力するための端子を含む。
 押鍵検出部88は、押下された鍵、およびその鍵の押下量に応じた検出信号KVを制御部10に出力するセンサを含む。
 インターフェース90は、この例では、コントローラなどの外部装置を電子鍵盤装置1に接続するための端子を含む。インターフェース90には、MIDIデータの送受信をするための端子などが含まれていてもよい。
 制御部10は、CPUなどの演算処理回路、およびRAM、ROMなどの記憶装置を含むコンピュータの一例である。制御部10は、CPUを用いて、記憶部18に記憶された制御プログラムを実行し、制御プログラムに記述された命令にしたがって様々な機能を電子鍵盤装置1において実現する。制御部10は、例えば、検出信号KVに基づいて音源制御信号Ctを生成し、操作信号CSに基づいて設定信号Stを生成する。
 音源制御信号Ctは、ノートナンバ、ノートオン、ノートオフなど各音の発生を制御するための情報を含み、音源部30において音信号を生成するために用いられる。設定信号Stは、音源部30において音信号を生成するための音響効果など各種のパラメータの値を設定するために用いられる。設定信号Stは、発音処理の動作モードを後述するポルタメント処理を実行するモードと通常の処理を実行するモードのいずれかに設定するための情報、およびポルタメント処理において用いられるパラメータを設定するための情報を含む。以下、ポルタメント処理を実行するモードを、ポルタメント演奏モードという場合がある。以下、通常の処理を実行するモードを、通常演奏モードという場合がある。
 この例では、通常演奏モードは、ポルタメント処理を用いない発音形態で発音する動作モードである。すなわち、通常演奏モードでは、鍵が操作される毎にその鍵に対応する音高の音信号が生成されるが、それぞれの発音の間において音高が徐々に変化するポルタメント処理の発音形態は採用されない。言い換えると、通常演奏モードは、ポルタメント処理による発音形態の制御が停止されている動作モードともいえる。
 ポルタメント処理において用いられるパラメータは、この例では、切替閾値Tthおよびポルタメントにおける音高を変化させるときの速度(低速度Ls、高速度Hs)である。切替閾値Tthは、演奏手法としてトリルを検出するときに用いられるパラメータである。低速度Lsは、ポルタメント処理における音高を変化させる速度に対応するパラメータである。高速度Hsは、トリルが検出されたときのポルタメント処理における音高を変化させる速度に対応するパラメータである。低速度Lsは高速度Hsよりも小さい。このパラメータの使用方法については、後述する。
 音源部30は、DSP(Digital Signal Processor)300、波形記憶部310およびプログラム記憶部350を含み、音信号を生成するための信号生成装置の一例である。波形記憶部310は、音信号を生成するための波形データを記憶する。プログラム記憶部350は、DSP300において実行されるプログラムを記憶する。このプログラムは、外部装置から提供されてもよい。
 DSP300は、制御部10から供給される音源制御信号Ctおよび設定信号Stに基づいて音信号を生成する。DSP300は、生成した音信号を信号出力部65に供給し、さらにスピーカ60に供給してもよい。DSP300は、プログラム記憶部350に記憶されたプログラムを実行して、プログラムに記述された命令にしたがって様々な機能を音源部30において実現する。音源部30における全部の機能または一部の機能は、制御部10においてプログラムが実行されることによって実現されてもよい。
[2.DSPの機能]
 DSP300が音源部30において実現する機能について説明する。DSP300は、プログラムを実行すると、音源部30において、信号生成部(生成部)301および発音制御部305を実現する。信号生成部301は、音源制御信号Ctに基づいて波形記憶部310から波形データを読み出し、この波形データと設定信号Stに基づいて設定された各種のパラメータとに基づいて音信号を生成する。発音制御部305は、信号生成部301における音信号の生成方法を制御する。この例では、設定信号Stに基づいて通常演奏モードとポルタメント演奏モードとが切り替えられると、発音制御部305は、各モードに応じた発音形態で音信号を生成するように信号生成部301を制御する。
[3.ポルタメント処理のフロー]
 続いて、設定信号Stに基づいて、動作モードがポルタメント演奏モードに設定された場合において、音源部30で実行される処理のフローを説明する。以下に説明するフローは、ポルタメント演奏モードが解除されるまで継続する。
 図3は、一実施形態におけるポルタメント処理による音信号生成方法を示すフローチャートである。音源部30は、ポルタメント演奏モードに設定されると、押鍵時間を計測するためのカウント値Tcを0に設定する(ステップS100)。音源部30は、押鍵を検出するまで待機する(ステップS200;No)。音源部30は、押鍵を検出すると(ステップS200;Yes)、カウント値Tcに1を加算し(ステップS210)、押鍵に応じた発音処理を実行する(ステップS220)。具体的には、押下された鍵に対応する音高の音信号を生成する。音源部30は、押下された鍵に関して、離鍵および別の押鍵のいずれも検出しない間(ステップS300;No,ステップS400;No)において、ステップS210、S220の処理を続ける。すなわち、音源部30は、カウント値Tcに1ずつ加算し(ステップS210)、発音を続けるように音信号を生成する(ステップS220)。
 音源部30は、離鍵を検出した場合(ステップS300;Yes)、発音処理を終了し(ステップS350)、ステップS100に戻って処理を続ける。音源部30は、離鍵の前に別の押鍵を検出した場合(ステップS400;Yes)、音高移行処理(ステップS500)を実行する。
 図4は、一実施形態における音高移行処理を説明するフローチャートである。音源部30は、音高移行処理を開始すると、Tcが切替閾値Tthよりも小さいか否かを判定する(ステップS510)。カウント値Tcは、押鍵が続いている間に増加していくため、押鍵状態が継続されている時間に対応する。したがって、以下の説明において、カウント値Tcを継続時間Tcという場合がある。
 音源部30は、継続時間Tcが切替閾値Tth以上である場合(ステップS510;No)、音高変化速度Psに低速度Lsを設定するとともに、新たな押鍵が継続されている時間を計測するために継続時間Tcを0に設定する(ステップS521)。一方、音源部30は、継続時間Tcが切替閾値Tth未満である場合(ステップS510;Yes)、音高変化速度Psに高速度Hsを設定するとともに、新たな押鍵が継続されている時間を計測するために継続時間Tcを0に設定する(ステップS523)。
 音源部30は、押下された鍵に関して、離鍵および別の押鍵のいずれも検出しない間(ステップS600;No,ステップS700;No)において、以下に説明するステップS530からステップ550の処理を実行する。音源部30は、離鍵の前に別の押鍵を検出した場合(ステップS700;Yes)、ステップS510に戻って処理を続ける。音源部30は、離鍵を検出した場合(ステップS600;Yes)、発音処理を終了し(図3、ステップS350)、図3に示すステップS100に戻って処理を続ける。
 音源部30は、カウント値Tcに1を加算し(ステップS530)、音高変化速度Psに応じた速度で目標音高に向けて音信号の周波数を調整する処理を実行する(ステップS540)。目標音高は、ステップS400において検出された鍵に対応する音高である。
 音源部30は、音信号が目標音高に到達するまで(ステップS550;No)は、ステップS530、S540の処理を続ける。すなわち、音源部30は、カウント値Tcに1ずつ加算し(ステップS530)、音高変化速度Psに応じた速度で目標音高に向けて音信号の周波数を調整する処理を実行する(ステップS540)。音源部30は、音信号が目標音高に到達している場合(ステップS550;Yes)には、音高移行処理を終了し、図3に示すステップS210に戻って処理を続ける。
 このようにして、最初の押鍵の後かつ離鍵の前に別の押鍵が検出されると、音高変化速度Psに応じた速度で目標音高に向けて音信号の音高が移行する。上述したように音高変化速度Psは、継続時間Tcにより、低速度Lsまたは高速度Hsのいずれかに設定されている。音高変化速度Psが低速度Lsに設定されている場合には、音源部30は、一般的なポルタメント処理による発音形態のように、音高が徐々に変化するように音信号を生成する。一方、音高変化速度Psが高速度Hsに設定されている場合には、音源部は、実質的にポルタメント処理が実行されていない発音形態のように、音高を急激に変化させるように音信号を生成する。このような発音形態の制御による音高変化の一例について図5および図6を用いて説明する。
 図5は、一実施形態における音高変化の一例を示す図である。押鍵に対応する鍵操作K1~K9が入力されると、上述したポルタメント処理にしたがって音信号の音高Ptが変化する。図5の例では、K1、K9はC4の鍵に対応し、K2、K4、K6、K8はG4の鍵に対応し、K3、K5はF4の鍵に対応し、K7はE4の鍵に対応する。それぞれの鍵操作において、押鍵(Kon)タイミングから離鍵(Koff)タイミングまでの範囲を帯状のイメージで示している。
 鍵操作K1の発生により、C4の音高で音信号が生成される。鍵操作K1が終了する前に鍵操作K2が発生することにより、鍵操作K1の押鍵タイミングから鍵操作K2の押鍵タイミングまでが継続時間Tcとしてカウントされる。継続時間Tcが切替閾値Tth以上であるため、音高変化速度Psに低速度Lsが設定される。音高Ptは、鍵操作K2の押鍵タイミングから、低速度LsでC4からG4に変化し始める。鍵操作K2と鍵操作K3との関係においても、鍵操作K1と鍵操作K2との関係と同様に、音高変化速度Psに低速度Lsが設定される。したがって、音高Ptは、鍵操作K3の押鍵タイミングから、低速度LsでG4からF4に変化し始める。
 鍵操作K3に関する継続時間Tcは、すなわち、鍵操作K3の押鍵タイミングから鍵操作K4の押鍵タイミングまでの継続時間Tcは、切替閾値Tth未満であるため、音高変化速度Psに高速度Hsが設定される。音高Ptは、鍵操作K4の押鍵タイミングから、高速度HsでF4からG4に変化し始める。上述したように、高速度Hsは、低速度Lsよりも大きい値として設定さればよいが、この例では、高速度Hsは、低速度Lsに比べて非常に大きな値として設定される。そのため、音高Ptは、鍵操作K4の押鍵とほぼ同時にG4に変化する。言い換えると、音高PtがF4からG4に変わるまでの移行時間は、ほぼ0である。図5において音高Ptのうち、高速度Hsで変化する部分は、破線で示している。図6に示す音高Ptbにおいても同じである。
 移行時間は、0であってもよいし、制御可能な最小時間であってもよい。移行時間が0であることは、ポルタメント演奏モードにおける発音形態の制御が停止されている場合の制御に対応する時間であってもよい。具体的には、ポルタメント演奏モードにおいて移行時間が0になった場合と、通常演奏モードで演奏した場合とで、同じ発音タイミングが再現されることを示す。
 鍵操作K4~K7に関する継続時間Tcは、いずれも切替閾値Tth未満である。したがって、音高Ptは、鍵操作K4、K5、K6、K7の押鍵タイミングに対応して、高速度HsでG4、F4、G4、E4の順に切り替わる。鍵操作K7に関する継続時間Tcは、切替閾値Tth以上であるため、音高Ptは、鍵操作K8の押鍵タイミングから、低速度LsでE4からG4に変化し始める。鍵操作K9の押鍵タイミングは、鍵操作K8の離鍵タイミングより後である。そのため、鍵操作K8の離鍵タイミングにおいて発音が終了し、鍵操作K9の押鍵タイミングで、新たにC4の音高で音信号が生成される。
 図6は、一実施形態における音高変化の一例を示す図である。図6の例では、K11、K21はC4の鍵に対応し、K12、K22はC5の鍵に対応し、K13、K23はA4の鍵に対応する。鍵操作K11とK12との関係および鍵操作K21とK22との関係によれば、音高の変化が大きい。そのため、後の鍵操作K12、K22の継続時間Tc内には目標の音高に到達しない。
 鍵操作K11の後に鍵操作K12が発生すると、鍵操作K12の押鍵タイミングから、音高Ptaは、低速度LsでC4からC5に変化し始める。鍵操作K12が終了する前に鍵操作K13が発生することにより、鍵操作K12の押鍵タイミングから鍵操作K13の押鍵タイミングまでが継続時間Tcとしてカウントされる。鍵操作K12に関する継続時間Tcが切替閾値Tth以上であるため、音高変化速度Psに低速度Lsが設定される。音高Ptaは、C5に到達する前(C4とC5との間の音高)であっても鍵操作K13の押鍵タイミングから、低速度LsでA4に変化し始める。
 鍵操作K21の後に鍵操作K22が発生すると、鍵操作K22の押鍵タイミングから、音高Ptbは、低速度LsでC4からC5に変化し始める。鍵操作K22が終了する前に鍵操作K23が発生することにより、鍵操作K22の押鍵タイミングから鍵操作K23の押鍵タイミングまでが継続時間Tcとしてカウントされる。鍵操作K22に関する継続時間Tcが切替閾値Tth未満であるため、音高変化速度Psに高速度Hsが設定される。音高Ptbは、C5に到達する前(C4とC5との間の音高)であっても鍵操作K13の押鍵タイミングから、高速度HsでA4に変化し始める。上述したように、低速度Lsに比べて非常に大きな値として設定されるから、音高Ptbは、鍵操作K23の押鍵とほぼ同時にA4に変化する。
 鍵操作K1、K2の後に入力される鍵操作K3~K7は、短い押鍵で次の押鍵を行う演奏である。このような演奏手法はトリルに相当する。このとき、音高Ptが通常のポルタメント処理のように徐々に変化する場合には、音高Ptが変化する時間が長いため、目標の音高に到達できないか、目標の音高に到達できたとしても、その音高で維持される時間が短い。目標の音高に到達できないのは、例えば、図6における鍵操作K12、K22の期間の音高変化に対応する。目標の音高に到達できたとしても、その音高で維持される時間が短いのは、例えば、図5における鍵操作K2の期間の音高変化に対応する。したがって、ポルタメント処理は、トリルのような演奏手法では、本来の発音のイメージを再現できない。
 上記のように音高Ptが制御されることによって、トリルの演奏手法が採用されている間は、音高Ptの変化に要する時間がほとんど無くなるため、本来の発音のイメージを再現することができる。さらに、演奏者は、ポルタメント演奏モードにおいてトリルで演奏するだけで音高変化速度Psを大きくすることができる。したがって、演奏中に別途の操作(例えば、操作部20への操作)をしなくても、演奏方法を変えることで音高変化速度Psを異ならせることができる。
<変形例>
 以上、本開示の一実施形態について説明したが、本開示の一実施形態は、以下のように様々な形態に変形することもできる。上述した実施形態および以下に説明する変形例は、それぞれ互いに組み合わせて適用することもできる。
 (1)ポルタメント演奏モードにおいて、音高の変化態様は、音高が変化する速度(音高変化速度Ps)に基づいて決められていたが、音高が変化する時間(目標音高に到達するまでの時間、以下、音高変化時間という)に基づいて決められてもよい。音高変化速度Psが低速度Lsか高速度Hsのいずれかの値に設定されている代わりに、音高変化時間が長時間か短時間のいずれかの値に設定されればよい。
 音高変化速度および音高変化時間のいずれにおいても、設定される値を変更することによって、第1の音高から第2の音高へ変化するときの移行時間を制御することができる。上記の一実施形態によれば、音源部30は、音高変化速度Psの値を異ならせることで、音高変化における移行時間を制御する。変形例(1)によれば、音源部30は、音高変化時間の値を異ならせることで、音高変化における移行時間を制御する。音高変化速度Psによる移行時間の制御の場合には、音高の変化量が大きいほど移行時間も長くなる。一方、音高の変化量が同じであれば、音高変化速度Psに設定される値によって移行時間が制御されているといえる。
 すなわち、音高変化速度Psが低速度Lsに設定されれば移行時間が長くなり、音高変化速度Psが高速度Hsに設定されれば移行時間が短くなる。音高変化時間が長時間に設定されれば移行時間が長くなり、音高変化時間が短時間に設定されれば移行時間が短くなる。このように、音源部30は、音高変化の移行時間を、音高変化速度または音高変化時間によって制御すればよい。
 (2)ポルタメント演奏モードにおいて音高が変化するときの態様は、一定速度での変化ではなくてもよく、予め設定された態様で変化すればよい。
 (3)図3に示すポルタメント演奏モードの処理において、音源部30は、別の押鍵を検出する前に離鍵を検出しても、離鍵を検出した後の所定の時間内に別の押鍵が検出された場合には、発音を終了させずに音高移行処理を実行するようにしてもよい。この場合には、継続時間Tcは、上述した実施形態と同じように算出されてもよいし、押鍵から離鍵までの時間に対応するように算出されてもよい。
 (4)音高変化速度Psは、継続時間Tcによって低速度Lsまたは高速度Hsのいずれかに設定される代わりに、継続時間Tcから得られる所定の演算式によって速度が設定されてもよい。例えば、継続時間Tcが長くなるほど速度が遅くなる、すなわち移行時間が長くなるようにしてもよい。
 (5)ポルタメント演奏モードにおいて音高変化速度Psを高速度Hsに設定する条件として、継続時間Tcが切替閾値Tth未満である場合に加えて別の条件が加わってもよい。別の条件は、例えば、2つの音高に対応する鍵が交互に操作されたことであってもよい。例えば、音源部30は、第1音高に対応する鍵が操作され、第2音高に対応する鍵が操作され、その後に再び第1音高に対応する鍵が操作された場合に、第1音高に対応する鍵と第2音高に対応する鍵とが交互に操作されたと判断する。この例では、交互に1回操作された場合に対応する。その後、さらに第1音高に対応する鍵が操作された場合に、交互に2回操作されたものとする。音源部30は、交互に操作された回数が所定回数に達した場合に、追加の条件が満たされたと判断してもよい。
 (6)音源部30は、電子鍵盤装置1のように鍵を操作子として備えた装置に適用される場合に限らず、鍵以外の操作子を用いた様々な電子楽器に適用されてもよい。音源部30は、例えば、電子管楽器、電子弦楽器等に適用することができる。操作子は、タッチパネルに表示された画像であってもよい。この場合、例えば、スマートフォンなどのタッチパネルを備えた端末等の電子機器において、CPU(プロセッサ)がプログラムを実行することにより、音源部30での処理を実行するための構成が実現されるようにしてもよい。さらに、この電子機器は、タッチパネルにおいて鍵などの操作子を模した画像を演奏操作の対象として表示してもよい。
 以上が変形例に関する説明である。
 以上のとおり、一実施形態によれば、生成部および発音制御部を備える信号生成装置が提供される。生成部は、複数の操作子への操作に応じた音信号を生成する。複数の操作子は、第1操作子および第2操作子を含む。発音制御部は、第1操作子への第1操作の継続時間に基づいて、前記第1操作に続く第2操作子への第2操作に応じて生成される音信号の発音形態を制御する。さらに以下のように構成することもできる。
 前記発音制御部は、前記第1操作に応じた音信号の音高から前記第2操作に応じた音信号の音高へ変化する移行時間を制御するように前記発音形態を制御してもよい。
 前記発音制御部は、前記継続時間が第1継続時間である場合よりも、前記第1継続時間より長い第2継続時間である場合の方が、前記移行時間が長くなるように制御してもよい。
 前記発音制御部は、前記継続時間が所定時間より短い場合に、前記移行時間を前記発音形態の制御が停止されている場合に対応する時間に制御してもよい。
 前記発音制御部は、前記継続時間が所定時間より短く、かつ、前記第1操作子と前記第2操作子とが交互に操作された回数が所定回数に達した場合に、前記移行時間を前記発音形態の制御が停止されている場合に対応する時間に制御してもよい。
 前記発音制御部は、前記継続時間が前記第2継続時間である場合に、前記第1操作に応じた音信号の音高と前記第2操作に応じた音信号の音高との差が大きくなるほど前記移行時間が長くなるように、前記発音形態を制御してもよい。
 前記発音制御部は、前記第1操作に応じた音信号の音高から前記第2操作に応じた音信号の音高へ変化する速度を一定にすることで、前記第1操作に応じた音信号の音高と前記第2操作に応じた音信号の音高との差が大きくなるほど前記移行時間が長くなるように、前記発音形態を制御してもよい。
 前記発音制御部は、前記継続時間が前記第2継続時間である場合に、前記第1操作に応じた音信号の音高と前記第2操作に応じた音信号の音高との差によらず、前記移行時間が一定となるように前記発音形態を制御してもよい。
 前記第1操作が終了する前に前記第2操作が開始された場合には、前記継続時間は、前記第1操作から前記第2操作までの時間に対応してもよい。
 前記第1操作が終了した後に、所定時間内に前記第2操作が開始された場合には、前記継続時間は、前記第1操作の開始から終了までの時間に対応してもよい。
 一実施形態によれば、前記信号生成装置と、前記第1操作子および前記第2操作子を含む複数の操作子と、を含む電子楽器が提供される。
 一実施形態によれば、前記信号生成装置と、前記第1操作子および前記第2操作子を含む複数の鍵と、を含む電子鍵盤装置が提供される。
 一実施形態によれば、前記信号生成装置と、前記第1操作子に対応する第1画像と前記第2操作子に対応する第2画像とを含む複数の画像を表示するように制御されるタッチパネルと、を含む電子機器が提供される。
 一実施形態によれば、プログラムを記憶する記憶部と、前記プログラムを実行するプロセッサと、を含む信号生成装置であり、前記プロセッサは、前記プログラムを実行すると、
 第1操作子への第1操作に応じた第1音信号を生成し、前記第1操作の継続時間に基づく発音形態で、前記第1操作に続く第2操作子への第2操作に応じた第2音信号を生成する、信号生成装置が提供される。
 一実施形態によれば、第1操作子への第1操作に応じた第1音信号を生成し、前記第1操作の継続時間に基づく発音形態で、前記第1操作に続く第2操作子への第2操作に応じた第2音信号を生成すること、を含む、信号生成方法が提供される。
 前記第2音信号を生成することは、前記第1音信号の音高から前記第2音信号の音高へ変化する移行時間を制御するように前記発音形態を制御することを含んでもよい。
 前記第2音信号を生成することは、前記継続時間が第1継続時間である場合よりも、前記第1継続時間より長い第2継続時間である場合の方が、前記移行時間が長くなるように制御することを含んでもよい。
 前記第2音信号を生成することは、前記継続時間が所定時間より短い場合に、前記移行時間を前記発音形態の制御が停止されている場合に対応する時間に制御することを含んでもよい。
 前記第2音信号を生成することは、前記継続時間が所定時間より短く、かつ、前記第1操作子と前記第2操作子とが交互に操作された回数が所定回数に達した場合に、前記移行時間を前記発音形態の制御が停止されている場合に対応する時間に制御することを含んでもよい。
 一実施形態によれば、第1操作子への第1操作に応じた第1音信号を生成し、前記第1操作の継続時間に基づく発音形態で、前記第1操作に続く第2操作子への第2操作に応じた第2音信号を生成すること、をコンピュータに実行させるためのプログラムが提供される。
1…電子鍵盤装置、10…制御部、18…記憶部、20…操作部、30…音源部、50…表示部、60…スピーカ、65…信号出力部、80…鍵盤部、88…押鍵検出部、90…インターフェース、95…筐体、300…DSP、301…信号生成部、305…発音制御部、310…波形記憶部、350…プログラム記憶部
 

Claims (20)

  1.  第1操作子および第2操作子を含む複数の操作子への操作に応じた音信号を生成する生成部と、
     第1操作子への第1操作の継続時間に基づいて、前記第1操作に続く第2操作子への第2操作に応じて生成される音信号の発音形態を制御する発音制御部と、
     を含む信号生成装置。
  2.  前記発音制御部は、前記第1操作に応じた音信号の音高から前記第2操作に応じた音信号の音高へ変化する移行時間を制御するように前記発音形態を制御する、請求項1に記載の信号生成装置。
  3.  前記発音制御部は、前記継続時間が第1継続時間である場合よりも、前記第1継続時間より長い第2継続時間である場合の方が、前記移行時間が長くなるように制御する、請求項2に記載の信号生成装置。
  4.  前記発音制御部は、前記継続時間が所定時間より短い場合に、前記移行時間を前記発音形態の制御が停止されている場合に対応する時間に制御する、請求項2または請求項3に記載の信号生成装置。
  5.  前記発音制御部は、前記継続時間が所定時間より短く、かつ、前記第1操作子と前記第2操作子とが交互に操作された回数が所定回数に達した場合に、前記移行時間を前記発音形態の制御が停止されている場合に対応する時間に制御する、請求項2または請求項3に記載の信号生成装置。
  6.  前記発音制御部は、前記継続時間が前記第2継続時間である場合に、前記第1操作に応じた音信号の音高と前記第2操作に応じた音信号の音高との差が大きくなるほど前記移行時間が長くなるように、前記発音形態を制御する、請求項3に記載の信号生成装置。
  7.  前記発音制御部は、前記第1操作に応じた音信号の音高から前記第2操作に応じた音信号の音高へ変化する速度を一定にすることで、前記第1操作に応じた音信号の音高と前記第2操作に応じた音信号の音高との差が大きくなるほど前記移行時間が長くなるように、前記発音形態を制御する、請求項6に記載の信号生成装置。
  8.  前記発音制御部は、前記継続時間が前記第2継続時間である場合に、前記第1操作に応じた音信号の音高と前記第2操作に応じた音信号の音高との差によらず、前記移行時間が一定となるように前記発音形態を制御する、請求項3に記載の信号生成装置。
  9.  前記第1操作が終了する前に前記第2操作が開始された場合には、前記継続時間は、前記第1操作から前記第2操作までの時間に対応する、請求項1から請求項8のいずれかに記載の信号生成装置。
  10.  前記第1操作が終了した後に、所定時間内に前記第2操作が開始された場合には、前記継続時間は、前記第1操作の開始から終了までの時間に対応する、請求項1から請求項9のいずれかに記載の信号生成装置。
  11.  請求項1から請求項10のいずれかに記載の信号生成装置と、
     前記第1操作子および前記第2操作子を含む複数の操作子と、
     を含む電子楽器。
  12.  請求項1から請求項10のいずれかに記載の信号生成装置と、
     前記第1操作子および前記第2操作子を含む複数の鍵と、
     を含む電子鍵盤装置。
  13.  請求項1から請求項10のいずれかに記載の信号生成装置と、
     前記第1操作子に対応する第1画像と前記第2操作子に対応する第2画像とを含む複数の画像を表示するように制御されるタッチパネルと、
     を含む電子機器。
  14.  プログラムを記憶する記憶部と、
     前記プログラムを実行するプロセッサと、
     を含む信号生成装置であり、
     前記プロセッサは、前記プログラムを実行すると、
     第1操作子への第1操作に応じた第1音信号を生成し、
     前記第1操作の継続時間に基づく発音形態で、前記第1操作に続く第2操作子への第2操作に応じた第2音信号を生成する、
     信号生成装置。
  15.  第1操作子への第1操作に応じた第1音信号を生成し、
     前記第1操作の継続時間に基づく発音形態で、前記第1操作に続く第2操作子への第2操作に応じた第2音信号を生成すること、
     を含む、信号生成方法。
  16.  前記第2音信号を生成することは、前記第1音信号の音高から前記第2音信号の音高へ変化する移行時間を制御するように前記発音形態を制御することを含む、請求項15に記載の信号生成方法。
  17.  前記第2音信号を生成することは、前記継続時間が第1継続時間である場合よりも、前記第1継続時間より長い第2継続時間である場合の方が、前記移行時間が長くなるように制御することを含む、請求項16に記載の信号生成方法。
  18.  前記第2音信号を生成することは、前記継続時間が所定時間より短い場合に、前記移行時間を前記発音形態の制御が停止されている場合に対応する時間に制御することを含む、請求項16または請求項17に記載の信号生成方法。
  19.  前記第2音信号を生成することは、前記継続時間が所定時間より短く、かつ、前記第1操作子と前記第2操作子とが交互に操作された回数が所定回数に達した場合に、前記移行時間を前記発音形態の制御が停止されている場合に対応する時間に制御することを含む、請求項16または請求項17に記載の信号生成方法。
  20.  請求項15から請求項19のいずれかに記載の信号生成方法をコンピュータに実行させるためのプログラム。
     
PCT/JP2021/040722 2020-11-12 2021-11-05 信号生成装置、電子楽器、電子鍵盤装置、電子機器、信号生成方法およびプログラム WO2022102527A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022561871A JPWO2022102527A1 (ja) 2020-11-12 2021-11-05
CN202180074115.3A CN116438596A (zh) 2020-11-12 2021-11-05 信号生成装置、电子乐器、电子键盘装置、电子设备、信号生成方法及程序
DE112021005965.3T DE112021005965T5 (de) 2020-11-12 2021-11-05 Vorrichtung zur signalerzeugung, elektronisches musikinstrument, elektronische tastenvorrichtung, elektronisches gerät, verfahren zur signalerzeugung, und programm
US18/310,600 US20230267901A1 (en) 2020-11-12 2023-05-02 Signal generation device, electronic musical instrument, electronic keyboard device, electronic apparatus, and signal generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-188794 2020-11-12
JP2020188794 2020-11-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/310,600 Continuation US20230267901A1 (en) 2020-11-12 2023-05-02 Signal generation device, electronic musical instrument, electronic keyboard device, electronic apparatus, and signal generation method

Publications (1)

Publication Number Publication Date
WO2022102527A1 true WO2022102527A1 (ja) 2022-05-19

Family

ID=81602174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040722 WO2022102527A1 (ja) 2020-11-12 2021-11-05 信号生成装置、電子楽器、電子鍵盤装置、電子機器、信号生成方法およびプログラム

Country Status (5)

Country Link
US (1) US20230267901A1 (ja)
JP (1) JPWO2022102527A1 (ja)
CN (1) CN116438596A (ja)
DE (1) DE112021005965T5 (ja)
WO (1) WO2022102527A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214899A (ja) * 1988-02-23 1989-08-29 Casio Comput Co Ltd 効果付与装置
JPH02187794A (ja) * 1989-01-13 1990-07-23 Yamaha Corp 楽音発生装置
JPH05346786A (ja) * 1992-06-16 1993-12-27 Roland Corp 楽音生成装置
JP2000020060A (ja) * 1998-07-02 2000-01-21 Kawai Musical Instr Mfg Co Ltd 電子楽器
JP2001242866A (ja) * 2000-02-28 2001-09-07 Roland Corp 電子楽器
JP2009042387A (ja) * 2007-08-07 2009-02-26 Roland Corp 電子楽器
JP2016177036A (ja) * 2015-03-19 2016-10-06 カシオ計算機株式会社 エンベロープレート決定装置、エンベロープレート決定方法、プログラム、エンベロープ生成装置、楽音発生装置、および電子楽器
JP2019200428A (ja) * 2019-07-29 2019-11-21 カシオ計算機株式会社 楽音発生装置、楽音発生方法、プログラムおよび電子楽器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214899A (ja) * 1988-02-23 1989-08-29 Casio Comput Co Ltd 効果付与装置
JPH02187794A (ja) * 1989-01-13 1990-07-23 Yamaha Corp 楽音発生装置
JPH05346786A (ja) * 1992-06-16 1993-12-27 Roland Corp 楽音生成装置
JP2000020060A (ja) * 1998-07-02 2000-01-21 Kawai Musical Instr Mfg Co Ltd 電子楽器
JP2001242866A (ja) * 2000-02-28 2001-09-07 Roland Corp 電子楽器
JP2009042387A (ja) * 2007-08-07 2009-02-26 Roland Corp 電子楽器
JP2016177036A (ja) * 2015-03-19 2016-10-06 カシオ計算機株式会社 エンベロープレート決定装置、エンベロープレート決定方法、プログラム、エンベロープ生成装置、楽音発生装置、および電子楽器
JP2019200428A (ja) * 2019-07-29 2019-11-21 カシオ計算機株式会社 楽音発生装置、楽音発生方法、プログラムおよび電子楽器

Also Published As

Publication number Publication date
DE112021005965T5 (de) 2023-09-14
US20230267901A1 (en) 2023-08-24
JPWO2022102527A1 (ja) 2022-05-19
CN116438596A (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
JP2812055B2 (ja) 電子楽器
WO2022102527A1 (ja) 信号生成装置、電子楽器、電子鍵盤装置、電子機器、信号生成方法およびプログラム
JP7346807B2 (ja) 電子鍵盤楽器、方法およびプログラム
US6750390B2 (en) Automatic performing apparatus and electronic instrument
US20230386441A1 (en) Electronic musical instrument, key scanning method and non-transitory computer readable medium
US5434348A (en) Electronic keyboard instrument
JP5011033B2 (ja) 電子楽器
JP2006039262A (ja) 効果付与装置及び方法
JP4748617B2 (ja) 電子楽器
JP5560574B2 (ja) 電子楽器および自動演奏プログラム
JP5419171B2 (ja) 電子楽器
JP3430719B2 (ja) 楽音合成装置のパラメータ設定装置及び方法
JP2007279490A (ja) 電子楽器
JP6700891B2 (ja) ペダル操作子の制御装置
JP2004361528A (ja) 楽音信号発生装置及びレガート処理プログラム
JP2679443B2 (ja) 電子楽器のタッチレスポンス装置
JP2016045254A (ja) サウンドプレビュー装置及びプログラム
JPH0926787A (ja) 音色制御装置
JP2001215973A (ja) 楽音制御パラメータ生成方法、楽音制御パラメータ生成装置および記録媒体
JP3042183B2 (ja) 電子楽器
JP4585023B2 (ja) 電子楽器
JP3797356B2 (ja) 電子楽器
JP2009223255A (ja) 演奏制御装置及び演奏制御処理のプログラム
JP2006201348A (ja) 電子楽器
JP2008304813A (ja) 効果装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561871

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112021005965

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891773

Country of ref document: EP

Kind code of ref document: A1