WO2022102138A1 - 連続圧延システム - Google Patents

連続圧延システム Download PDF

Info

Publication number
WO2022102138A1
WO2022102138A1 PCT/JP2020/042655 JP2020042655W WO2022102138A1 WO 2022102138 A1 WO2022102138 A1 WO 2022102138A1 JP 2020042655 W JP2020042655 W JP 2020042655W WO 2022102138 A1 WO2022102138 A1 WO 2022102138A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
value
plate thickness
stand
gap
Prior art date
Application number
PCT/JP2020/042655
Other languages
English (en)
French (fr)
Inventor
和寿 北郷
光彦 佐野
隆弘 小野田
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2020/042655 priority Critical patent/WO2022102138A1/ja
Priority to JP2021573225A priority patent/JP7151915B1/ja
Priority to KR1020227017057A priority patent/KR20220085047A/ko
Priority to US17/757,362 priority patent/US20230011915A1/en
Priority to CN202080079761.4A priority patent/CN114829031B/zh
Publication of WO2022102138A1 publication Critical patent/WO2022102138A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/18Automatic gauge control
    • B21B37/20Automatic gauge control in tandem mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/24Automatic variation of thickness according to a predetermined programme
    • B21B37/26Automatic variation of thickness according to a predetermined programme for obtaining one strip having successive lengths of different constant thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2271/00Mill stand parameters
    • B21B2271/02Roll gap, screw-down position, draft position

Definitions

  • the present invention relates to rolling load distribution control of a continuous rolling system.
  • FIG. 2 is a diagram showing a part of a hot rolling line for processing metal.
  • the rolling line 20 shown in FIG. 2 includes a tandem rolling mill 2.
  • the tandem rolling mill 2 is a tandem type continuous rolling mill called a strip mill in which several rolling stands are arranged in series in close proximity to each other and one rolling mill 2b is continuously rolled in one direction.
  • the tandem rolling mill 2 has an N (N is a natural number of 3 or more) rolling stands 2a.
  • the N rolling stands 2a are the first stand F 1 , the second stand F 2 , the third stand F 3 , ..., The i -stand Fi, in order from the upstream side (entry side) of the tandem rolling mill 2. ⁇ ⁇ It is called the Nth stand NF.
  • the "rolling stand” is also simply referred to as a "stand”.
  • the plate thickness gauge 2c is provided on the outlet side of the final stand (Nth stand) and measures the plate thickness of the material to be rolled 2b.
  • the plate thickness gauge may be installed between the stands.
  • FIG. 3A is a view of the rolling stand 2a viewed from the roll axis direction.
  • FIG. 3B is a view of the rolling stand 2a as viewed from the traveling direction of the material 2b to be rolled.
  • the rolling stand 2a includes a pair of upper and lower work rolls 3a. By changing the roll gap of the upper and lower work rolls 3a, the thickness of the protruding side of the rolling stand 2a can be controlled. In the following description, "exit side plate thickness” is also simply referred to as "plate thickness”.
  • the plate speed on the stand exit side can be changed by changing the rotation speed of the vertical work roll 3a.
  • the pair of upper and lower backup rolls 3b support the upper and lower work rolls 3a from above and below.
  • the hydraulic cylinder 3c is installed in the chock portion of the backup roll 3b.
  • the hydraulic cylinder 3c adjusts the roll gap by moving up and down.
  • roll gap is also simply referred to as "gap”.
  • the load cell 3d is installed on a support column that supports the chock portion of the lower backup roll 3b.
  • the load cell 3d detects a rolling force.
  • the rolling load can also be estimated from a pressure gauge that measures the pressure of the hydraulic cylinder 3c.
  • the load cell 3d may be installed at the cylinder position of the upper backup roll 3b.
  • the encoder 3e is installed at the chock end of the work roll 3a and detects the roll rotation speed of the work roll 3a.
  • the roll peripheral speed is calculated based on the roll rotation speed.
  • the rolling force is at least the temperature of the material to be rolled, the thickness of the entry side of the stand, the thickness of the outside plate of the stand, the rolling speed, as well as the tension between the stands, the diameter of the roll, and the roll and the material to be rolled. It is known that it changes depending on the frictional state, the chemical composition of the material to be rolled, the state of the crystal grains of the material to be rolled, the past rolling history, and the like (Equation (1)). In an actual rolling line, the change in rolling load is complicated, and it is not possible to grasp the accurate rolling load only by calculation. In order to grasp the rolling load, the actual rolling load value is measured using a sensor such as a load cell 3d.
  • stable rolling can be established by controlling the actual rolling load ratio between all the stands of the tandem rolling mill 2 so as to match the target rolling load ratio.
  • ⁇ P Rolling load change amount [kN]
  • ⁇ S Gap change amount [mm]
  • FIG. 4 is a graph showing changes in the actual rolling load value and the actual gap value due to the temperature change on the entry side of the rolling line.
  • the graph of FIG. 4 shows changes in the actual rolling load value 4b and the actual gap value 4c of the most upstream stand when the temperature on the inlet side of the mill 4a drops.
  • the material to be rolled hardens as the temperature decreases, so that the actual rolling load value 4b becomes large.
  • the actual rolling load value 4b becomes large, if the actual gap value 4c does not change, the outer plate thickness 4d becomes large as shown in the equation (2). Therefore, control is performed to reduce the roll gap in order to keep the protruding side plate thickness 4d constant. As a result, the actual gap value 4c becomes smaller and the actual output side plate thickness 4d is kept constant, but the actual rolling load value 4b further increases.
  • FIG. 5 is a graph showing changes in the rolling load of each stand due to temperature changes on the entry side of the rolling line.
  • FIG. 5A shows the actual rolling load value 5a of each stand at the start of rolling and the rolling load distribution ratio target value 5b. At the start of rolling, the actual rolling load distribution ratio 5c calculated from the actual rolling load 5a of each stand coincides with the target rolling load distribution ratio 5b.
  • the rolling load distribution ratio does not change significantly.
  • the temperature on the upstream side changes, the temperature on the exit side of the final stand is kept constant by adjusting the spray between the stands or changing the rolling speed.
  • the rolling load of the upstream stand changes significantly, while the rolling load of the downstream stand does not change so much. Therefore, the actual rolling load distribution ratio 5c is the target value of the rolling load distribution ratio. It deviates from 5b.
  • the amount of thermal expansion is an amount in which the roll is thermally expanded and the roll diameter is increased as a result of the increase in the roll temperature due to heat conduction between the roll and the material to be rolled during rolling.
  • the amount of wear is the amount at which the roll diameter is reduced due to the wear of the roll due to contact with the material to be rolled.
  • the amount of thermal expansion can be controlled to some extent by the cooling equipment, but the amount of wear will increase as long as rolling is continued.
  • FIG. 6 is a diagram showing changes in the roll diameter in consideration of the amount of thermal expansion and the amount of wear.
  • the diameter of the work roll 3a is 500 mm or more, whereas the change due to the amount of thermal expansion and the amount of wear is about several hundred ⁇ m. Therefore, the change in the roll diameter cannot be visually recognized. However, since the plate thickness control requires an accuracy of several ⁇ m, changes in the roll diameter due to the amount of thermal expansion and the amount of wear cannot be ignored.
  • 6a shown in FIG. 6A represents a change in roll diameter in the width direction due to the amount of thermal expansion.
  • 6b shown in FIG. 6B represents a change in roll diameter in the width direction due to the amount of wear.
  • the roll diameter distribution changes in a complicated manner as shown in 6c shown in FIG. 6 (C).
  • the actual gap value calculated from the amount of operation of the hydraulic cylinder 3c does not include the change in the roll diameter due to the above-mentioned wear amount and thermal expansion amount. Therefore, there is a discrepancy between the actual gap value and the true gap value, which is the actual roll gap.
  • the rolling load Pi ( ⁇ h i + hi ) also changes due to the change in the plate thickness due to the error ⁇ Stw i between the true value of the gap and the actual value of the gap. Therefore, as shown in the equation (6), the error ⁇ Stw i between the true value of the gap and the actual value of the gap is not simply the plate thickness change ⁇ h i .
  • FIG. 7 is a graph showing changes in the actual gap value and the actual rolling load value when the amount of wear increases.
  • the amount of wear is assumed to be larger than the amount of thermal expansion.
  • the roll gap is controlled so that the plate thickness actual recalculation value 7a matches the plate thickness target value on the output side of the stand.
  • the plate thickness actual recalculation value 7a is calculated as follows.
  • hg i Plate thickness actual recalculation value [mm]
  • ⁇ Stw i Error between the true value of the gap and the actual value of the gap [mm]
  • hof i Difference between the actual plate thickness value and the actual plate thickness recalculation value excluding ⁇ Stw i [mm]
  • Patent Document 1 Japanese Patent Laid-Open No. 2018-134673
  • the gap between adjacent stands is corrected so as to maintain the preset rolling load distribution even during rolling.
  • the rolling load of the post-stage stand is corrected so as to correct the changed rolling load distribution by compensating for the difference between the plate thickness measurement value and the plate thickness target value generated after the plate is passed.
  • the rolling load distribution between two specific stands is modified, it is not always possible to modify the rolling load distribution between all the stands.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2009-113109
  • rolling is performed with the rolling load distribution after manual intervention as a target value. Load distribution control is performed.
  • the above two patent documents do not have a means for compensating for the gap error between the actual plate thickness value and the actual recalculated plate thickness value.
  • the rolling load distribution may change due to the gap error.
  • the plate shape on the protruding side of the stand may change due to the change in the plate thickness on the protruding side of each stand, which may cause shape defects and rolling.
  • the output of the load distribution control may saturate.
  • the rolling load distribution control in the above two patent documents is an asynchronous control.
  • the stand exit side plate thickness at the changed portion on the material to be rolled changes.
  • the position of the changed part is not tracked. Therefore, when the changed portion reaches the stand on the downstream side, the rolling load fluctuates due to the influence of the plate thickness change. Synchronous control that controls the roll gap when the changed part reaches each stand is desirable.
  • the present invention has been made to solve the above-mentioned problems, and stable rolling can be achieved by controlling the actual rolling load ratio between all stands to match the target rolling load ratio during continuous rolling. It is an object of the present invention to provide a continuous rolling system that can be established.
  • the continuous rolling system according to the present invention is configured as follows.
  • the continuous rolling system changes the product specifications during continuous rolling of one material to be rolled.
  • the continuous rolling system includes a tandem rolling mill, a plate thickness gauge, and a rolling load distribution control device.
  • the tandem rolling mill has a plurality of rolling stands.
  • the tandem rolling mill continuously rolls the material to be rolled in one direction from the upstream side to the downstream side of the plurality of rolling stands.
  • Each of the plurality of rolling stands controls the roll gap according to the roll gap operation value.
  • the plate thickness gauge is provided on the outlet side of the tandem rolling mill and measures the plate thickness of the material to be rolled.
  • the rolling load distribution control device includes a setting calculation unit, a performance collection unit, and a mass flow thickness correction unit in order to match the actual rolling load ratio between the plurality of rolling stands with the target rolling load ratio.
  • a target plate thickness correction value calculation unit, a tracking unit, and a gap operation unit are provided.
  • the setting calculation unit determines a plate thickness target value of each of the plurality of rolling stands and a rolling load distribution ratio target value of each of the plurality of rolling stands representing the target rolling load ratio between the plurality of rolling stands. do.
  • the actual result collecting unit includes the actual rolling load value of each of the plurality of rolling stands, the actual roll gap value of each of the plurality of stands calculated based on the roll gap operation value of each of the plurality of rolling stands, and the said.
  • the actual roll rotation speed values of each of the plurality of rolling stands and the plate thickness measurement values measured by the plate thickness gauge are collected.
  • the actual roll gap value does not include changes in the roll diameter due to the amount of wear and the amount of thermal expansion of the roll.
  • the mass flow thickness correction unit calculates the actual plate thickness value of each of the plurality of rolling stands based on the measured value of the plate thickness and the actual value of the roll rotation speed of each of the plurality of rolling stands.
  • the mass flow thickness correction unit calculates the actual plate thickness recalculation value of each of the plurality of rolling stands based on the actual rolling load value of each of the plurality of rolling stands and the actual roll gap value of each of the plurality of rolling stands. calculate.
  • the mass flow thickness correction unit determines the gap error of each of the plurality of rolling stands based on the difference between the actual plate thickness value of each of the plurality of rolling stands and the recalculated value of the actual plate thickness of each of the plurality of rolling stands. calculate.
  • the mass flow thickness correction unit calculates a gap correction value for each of the plurality of rolling stands so as not to change the gap error of each of the plurality of rolling stands.
  • the gap correction value includes a correction reference gap error, which is the gap error when the tip of the material to be rolled reaches the i-stand (1 ⁇ i ⁇ N), and a portion other than the tip of the material to be rolled. It is a correction value that makes the difference between the non-tip gap error, which is the gap error when reaching the i-stand, zero.
  • the target plate thickness correction value calculation unit represents the actual rolling load ratio between the plurality of rolling stands based on the actual rolling load value of each of the plurality of rolling stands, and the rolling load distribution of each of the plurality of rolling stands. Calculate the actual value of the ratio.
  • the target plate thickness correction value calculation unit is based on the difference between the rolling load distribution ratio target value of each of the plurality of rolling stands and the actual rolling load distribution ratio of each of the plurality of rolling stands. Calculate each target plate thickness correction value.
  • the tracking unit tracks a tracking point determined on the material to be rolled.
  • the gap operation unit sets the plate thickness target value of the target rolling stand, which is the rolling stand reached by the tracking point, to the target plate of the target rolling stand.
  • the roll gap operation value for making the difference between the value corrected by the thickness correction value and the value obtained by correcting the plate thickness actual recalculation value of the target rolling stand by the gap correction value of the target rolling stand to zero. Is output to the target rolling stand.
  • the continuous rolling system includes a gap operating end intervention unit capable of changing the roll gap operating value based on an intervention signal by the operator.
  • the rolling load distribution control device is based on the actual rolling load value of each of the plurality of rolling stands collected after the modified roll gap operation value is applied to the tandem rolling mill. The actual value of each rolling load distribution ratio is calculated.
  • the rolling load distribution control device updates the rolling load distribution ratio target value of each of the plurality of rolling stands with the actual rolling load distribution ratio value of each of the plurality of rolling stands.
  • the rolling load distribution control device performs the inter-running plate thickness change for changing the plate thickness target value of the tandem rolling mill without stopping the rolling by the tandem rolling mill.
  • the calculation of the gap correction value and the target plate thickness correction value is interrupted.
  • the rolling load distribution control device stores the correction reference gap error before executing the inter-run plate thickness change.
  • the rolling load distribution control device resets the rolling load distribution ratio target value for changing the running plate thickness.
  • the rolling load distribution control device executes the inter-run plate thickness change based on the difference between the gap error after the inter-run plate thickness change is executed and the gap error before the inter-run plate thickness change is executed.
  • the correction reference gap error after executing the inter-running plate thickness change is calculated by adding to the correction reference gap error before the calculation.
  • the rolling load distribution control device resumes the calculation of the gap correction value and the target plate thickness correction value after calculating the correction reference gap error after executing the running plate thickness change.
  • the rolling load distribution control device stores a table that defines the relationship between the type and size of the material to be rolled and the control gain.
  • the rolling load distribution control device acquires the control gain corresponding to the type and size of the material to be rolled from the table.
  • the gap correction value is calculated by multiplying the control gain.
  • the target plate thickness correction value is calculated by multiplying the control gain.
  • the rolling stand comprises an actuator that controls the shape of the material to be rolled.
  • the rolling load distribution control device has the actuator in the direction of decreasing the output when the output of the actuator reaches the upper limit value, and in the direction of increasing the output when the output of the actuator reaches the lower limit value.
  • the target value of the rolling load distribution ratio of the rolling stand having the above is changed.
  • the rolling load distribution control device gradually reduces the gap error generated during the plate thickness change due to the running plate thickness change with the passage of time.
  • the continuous rolling system by applying the gap correction value and the target plate thickness correction value in order from the upstream stand, the actual rolling load ratio between all stands matches the target rolling load ratio during continuous rolling. Can be controlled to cause. Therefore, the rolling load distribution during continuous rolling is kept constant, and stable rolling can be established. Further, by keeping the rolling load distribution ratio constant, it is possible to suppress the concentration of the rolling load on a specific stand and prevent the rolling load or the motor torque from exceeding the limit value. In addition, by keeping the rolling load distribution ratio constant, it is possible to suppress the concentration of the rolling load on a specific stand, and it is possible to suppress the shape defect (flatness defect) of the material to be rolled. Further, by keeping the rolling load distribution ratio constant, it is possible to suppress an uneven increase in the amount of wear of a specific stand.
  • FIG. It is a figure for demonstrating the system structure of the continuous rolling system which concerns on Embodiment 1.
  • FIG. It is a figure which shows a part of the hot rolling line which processes a metal. It is a figure for demonstrating the structure of a rolling stand. It is a graph which shows the change of the rolling load actual value and the gap actual value by the temperature change of the rolling line entry side. It is a graph which shows the rolling load change of each stand by the temperature change on the side of a rolling line entry. It is a figure which shows the change of the roll diameter in consideration of the amount of thermal expansion and the amount of wear. It is a graph which shows the change of the actual gap value and the actual rolling load value when the amount of wear increases.
  • the "rolling stand” is also simply referred to as a “stand” in the present specification.
  • a “roll gap” is also simply referred to as a “gap.”
  • Outside plate thickness is also simply described as “plate thickness”. Therefore, the "plate thickness target value”, “plate thickness actual value”, and “plate thickness actual recalculation value” relate to the plate thickness on the stand side.
  • FIG. 1 is a diagram for explaining a system configuration of a continuous rolling system according to a first embodiment of the present invention.
  • the continuous rolling system that changes the product specifications during continuous rolling of one material to be rolled includes a rolling load distribution control device 10 and a rolling line 20.
  • the rolling line 20 is a hot rolling line.
  • the rolling line 20 includes a tandem rolling mill 2 having a plurality of rolling stands. Each of the plurality of rolling stands controls the roll gap according to the roll gap operation value. Since the specific configuration example of the rolling line 20 is the same as that in FIGS. 2 and 3 described above, the description thereof will be omitted.
  • the rolling load distribution control device 10 has an operation command input unit 1b, a setting calculation unit 1c, a gap operation unit 1d, and a performance collection unit 1e in order to match the actual rolling load ratio between a plurality of rolling stands with the target rolling load ratio. It includes a target plate thickness operation unit 1f, a rolling load distribution correction unit 1g, a target plate thickness correction value calculation unit 1h, a mass flow thickness correction unit 1i, and a tracking unit 1j.
  • the operation command input unit 1b issues an operation command including base material information (plate thickness, plate width, type, etc.) of the material to be rolled 2b and target information (plate thickness, plate width, temperature, etc.) of the material to be rolled 2b. Output to the setting calculation unit 1c.
  • the setting calculation unit 1c determines at least the plate thickness target value of each stand, the gap setting value of each stand, and the roll peripheral speed setting value of each stand based on the base material information and the target information. Further, the setting calculation unit 1c calculates two parameters (inside plate thickness influence coefficient Qi and rolling load distribution ratio target value ⁇ i AIM ) to be described later, and outputs them to the rolling load distribution correction unit 1g. Further, the setting calculation unit 1c determines whether or not the rolling load distribution control by the rolling load distribution correction unit 1g is used or not.
  • the actual result collecting unit 1e collects the actual rolling load value of each stand, the actual gap value of each stand, the actual roll rotation speed value of each stand, and the plate thickness measurement value on the exit side of the final stand (Nth stand). Continuously collect from rolling line 20.
  • the actual rolling load value is a calculated value calculated from the measured value measured by the load cell 3d or the measured value measured by the pressure gauge measuring the pressure of the hydraulic cylinder 3c.
  • the actual gap value is the size of the roll gap calculated from the amount of operation of the hydraulic cylinder 3c, which is an actuator that controls the roll gap.
  • the amount of operation of the hydraulic cylinder 3c is based on the roll gap operation value. Therefore, the actual gap value does not include the change in roll diameter due to the above-mentioned wear amount and thermal expansion amount. Therefore, there is a discrepancy between the actual gap value and the true value of the gap, which is the actual size of the roll gap in consideration of the change in the roll diameter due to the amount of wear and the amount of thermal expansion of the roll.
  • the actual roll rotation speed value is the rotation speed of the work roll measured by the encoder 3e.
  • the actual roll peripheral speed value is calculated from the actual roll rotation speed value.
  • the plate thickness measurement value is a measurement value measured by a plate thickness meter 2c provided on the outlet side of the tandem rolling mill 2.
  • the target plate thickness operation unit 1f is set by the setting calculation unit 1c so that when there is a difference between the plate thickness measurement value and the plate thickness target value of the final stand during rolling, the difference is set to zero. Change the plate thickness target value of each stand other than the stand. Further, the target plate thickness operation unit 1f has a rolling load when the tracking point determined on the material to be rolled 2b reaches the i-stand (1 ⁇ i ⁇ N) while the rolling load distribution control described later is being executed. The target plate thickness correction value of the i-stand is input from the distribution correction unit 1g. Then, the target plate thickness operation unit 1f corrects the plate thickness target value of the i-stand with the target plate thickness correction value of the i-stand. The corrected plate thickness target value is output to the gap operation unit 1d.
  • the rolling load distribution correction unit 1g includes a target plate thickness correction value calculation unit 1h, a mass flow thickness correction unit 1i, and a tracking unit 1j for executing rolling load distribution control.
  • the rolling load distribution correction unit 1g sets the gap correction value of the i-stand to the gap operation unit 1d when the tracking point determined on the material to be rolled 2b reaches the i-stand while the rolling load distribution control is being executed.
  • the target plate thickness correction value of the i-stand is output to the target plate thickness operation unit 1f.
  • the target plate thickness correction value calculation unit 1h inputs the rolling load distribution ratio target value of each stand set by the setting calculation unit 1c and the rolling load actual value of each stand collected by the actual result collection unit 1e.
  • the target plate thickness correction value calculation unit 1h calculates the actual rolling load distribution ratio of each stand, which represents the actual rolling load ratio between the stands, based on the actual rolling load value of each stand.
  • the target plate thickness correction value calculation unit 1h calculates the target plate thickness correction value of each stand based on the difference between the rolling load distribution ratio target value of each stand and the actual rolling load distribution ratio of each stand.
  • the mass flow thickness correction unit 1i calculates the actual plate thickness value of each stand based on the measured plate thickness value and the actual roll rotation speed value of each stand.
  • the mass flow thickness correction unit 1i calculates the plate thickness actual recalculation value of each stand based on the rolling load actual value of each stand and the gap actual value of each stand.
  • the mass flow thickness correction unit 1i calculates the gap error of each stand based on the difference between the actual plate thickness value of each stand and the actual plate thickness recalculation value of each stand.
  • the mass flow thickness correction unit 1i calculates the gap correction value of each stand so as not to change the gap error of each stand.
  • the gap correction value is the tip gap error (correction reference gap error) when the tip of the material 2b to be rolled reaches the i-stand (1 ⁇ i ⁇ N) and the portion other than the tip of the material 2b to be rolled. Is a correction value that makes the difference between the non-tip gap error when reaching the i-stand and zero.
  • the tracking unit 1j tracks a tracking point determined on the material to be rolled 2b based on the actual roll rotation speed value.
  • the gap operation unit 1d Before the start of rolling, the gap operation unit 1d outputs an actuator control signal (roll gap operation value, roll rotation speed value) to the rolling line 20 so as to match the roll gap and roll peripheral speed of each stand with these set values. ..
  • the actuator that controls the roll gap is the hydraulic cylinder 3c.
  • the actuator that controls the roll peripheral speed is a work roll drive device.
  • the gap operation unit 1d sets the roll gap operation value for making the difference between the plate thickness target value of each stand and the plate thickness actual recalculation value of each stand zero during rolling on the rolling line 20 (hydraulic cylinder). Output to 3c).
  • the gap operation unit 1d inputs the gap correction value of the i-stand from the rolling load distribution correction unit 1g when the tracking point reaches the i-th stand (target rolling stand) while the rolling load distribution control is being executed. do. At the same time, the gap operation unit 1d inputs the plate thickness target value of the i-stand corrected by the target plate thickness operation unit 1f. Then, the gap operation unit 1d is a value obtained by correcting the plate thickness target value of the i-stand corrected by the target plate thickness operation unit 1f and the plate thickness actual recalculation value of the i-stand with the gap correction value of the i-stand. And, the roll gap operation value for making the difference between and zero is output to the i-stand. The hydraulic cylinder 3c of the i-stand changes the roll gap based on the roll gap operation value.
  • FIG. 8 is a diagram showing the control timing of the continuous rolling system. The control timing and the details of the control will be described with reference to FIGS. 1 and 8.
  • Control timing 8a Setting calculation
  • the setting calculation unit 1c inputs the base material information of the material to be rolled and the target information of the material to be rolled described above from the operation command input unit 1b.
  • the setting calculation unit 1c determines at least the gap setting value of each stand and the roll peripheral speed setting value of each stand based on the base material information of the material to be rolled and the target information of the material to be rolled.
  • the gap operation unit 1d outputs an actuator control signal (roll gap operation value, roll rotation speed value) to the rolling line 20 so as to match the roll gap and roll peripheral speed of each stand with these set values.
  • the setting calculation unit 1c calculates two parameters required by the rolling load distribution correction unit 1g.
  • the two parameters are the input side plate thickness influence coefficient Q i and the rolling load distribution ratio target value ⁇ i AIM .
  • the entry-side plate thickness influence coefficient Qi is a value indicating the amount of change in the rolling load with respect to the change in plate thickness, and is expressed by Eq. (9).
  • Rolling load distribution ratio target value ⁇ i AIM represents the target ratio of rolling load of each stand.
  • the rolling load distribution ratio target value ⁇ i AIM is determined by using the rolling load predicted by the setting calculation unit 1c when determining the roll gap, for example, as in the equation (10).
  • the input side plate thickness influence coefficient Qi and the rolling load distribution ratio target value ⁇ i AIM is the calculation of the target plate thickness correction value ⁇ h BAL ( i ) by the rolling load distribution correction unit 1g (target plate thickness correction value calculation unit 1h) described later. Used for.
  • the material to be rolled 2b is conveyed from the upstream side of the rolling line 20 and rolling is started.
  • the actual result collection unit 1e continues to collect measured data such as the actual rolling load value of each stand, the actual roll rotation speed value of each stand, and the plate thickness measurement value on the side of the final stand from the start of rolling to the end of rolling.
  • the target plate thickness operation unit 1f sets each stand (1st stand to N-) so that the difference is zero. Change the plate thickness target value of 1 stand). The changed plate thickness target value is output to the gap operation unit 1d.
  • the gap operation unit 1d sets the roll gap operation value for making the difference between the plate thickness target value of each stand and the plate thickness actual recalculation value of each stand zero during rolling on the rolling line 20 (hydraulic cylinder 3c). Output to.
  • the hydraulic cylinder 3c changes the roll gap based on the roll gap operation value.
  • Control timing 8b: Calculation of correction reference gap error 8b is the timing at which the tip of the material to be rolled 2b passes through the plate from the most upstream stand to the final stand in order, and further reaches the plate thickness gauge 2c.
  • the mass flow thickness correction unit 1i calculates the correction reference gap error of each stand.
  • the correction reference gap error is a gap error (tip gap error) when the tip of the material to be rolled 2b reaches the i-stand (1 ⁇ i ⁇ N).
  • the mass flow thickness correction unit 1i is based on the difference between the actual plate thickness value when the tip of the material 2b to be rolled passes through the i-stand and the actual plate thickness recalculation value of the i-stand.
  • the correction reference gap error SOFS (i) for each stand is calculated.
  • the plate thickness actual recalculation value h GM (i) is calculated by the equation (11).
  • S i act Actual gap value of the i-stand [mm]
  • P i act Actual rolling load value of the i-stand [kN]
  • ⁇ i Offset value of the i-th stand (for example, gap learning value) [mm]
  • the actual plate thickness hMF (i) is a value measured by the plate thickness gauge.
  • the plate thickness actual value hMF (i) is the roll peripheral speed actual value and the plate thickness measurement value on the final stand outlet side as shown in equation (12). And, it is calculated from the advanced rate.
  • VACT (i): Actual value of roll peripheral speed of the i-stand [mm]
  • MES (N): Plate thickness measurement value [mm] on the exit side of the Nth stand (final stand)
  • ACAL (i): Advanced rate of the i-stand [-]
  • the plate thickness measurement value is a measurement value of the plate thickness meter 2c installed on the exit side of the final stand.
  • the advanced rate fs ACAL (i) is the ratio of the roll peripheral speed to the roll exit side rolled material speed, and is at least changed by the reduction rate indicated by the ratio of the plate thickness change amount of the stand to the input side plate thickness.
  • the actual plate thickness value changes, the advanced rate changes, and if the advanced rate changes, the actual plate thickness value changes. Therefore, the actual plate thickness value can be obtained by performing a convergence calculation.
  • the actual plate thickness recalculation value can be calculated from Eq. (11).
  • the actual plate thickness value can be obtained by the convergence calculation of the equations (12) and (13). Therefore, the correction reference gap error SOFS (i) can be calculated as in Eq. (14).
  • h GM_md (i): Actual recalculation value of plate thickness at the tip of the material to be rolled in the i-stand [mm]
  • S i act_hd Actual value of the gap at the tip of the material to be rolled in the i-stand [mm]
  • P i act_hd Actual rolling load value at the tip of the material to be rolled in the i-stand [mm]
  • ⁇ i Offset value of the i-th stand (for example, gap learning value) [mm]
  • h MF_md (i): Actual value of plate thickness at the tip of the material to be rolled in the i-stand [mm]
  • V ACT_hd (i): Roll peripheral speed of the tip of the material to be rolled in the i-stand (collected at the timing of 8b) [m / s]
  • h MES_hd (N): Measured value of plate thickness at the tip of the material to be rolled on the exit side of the Nth stand (final stand) [mm] fs
  • ACAL_md (i): Advanced rate of the i-stand [-]
  • the rolling load distribution correction unit 1g executes rolling load distribution control, for example, after the tip of the material to be rolled 2b reaches the plate thickness gauge 2c and then passes through LS [m]. In the rolling load distribution control, the gap correction value and the target plate thickness correction value are calculated.
  • the mass flow thickness correction unit 1i calculates the gap correction value of each stand based on the difference between the actual plate thickness value of each stand and the actual plate thickness recalculation value of each stand.
  • the mass flow thickness correction unit 1i has a plate thickness actual recalculation value h GM (i) calculated using the equation (11) and a plate thickness actual value h MF (i) calculated using the equation (12).
  • the gap error S ER (i) is calculated based on (Equation (18)).
  • the gap error SEER (i) is a non-tip gap error when a portion other than the tip of the material to be rolled 2b reaches the i-stand.
  • the mass flow thickness correction unit 1i compares the gap error SEER (i) with the above-mentioned correction reference gap error SOFS (i) by using the equation (20) to determine the gap error from the tip. Find the amount of change.
  • the mass flow thickness correction unit 1i calculates a gap correction value for making the amount of change in the gap error zero.
  • the mass flow thickness correction unit 1i applies an adjustment gain as shown in the equation (21), performs a limit check at the maximum and minimum values of the output as shown in the equation (22), and finally performs a gap correction value ⁇ S COMP ( i) Determine.
  • ⁇ S COMP_Prev Previous output value of the i-th stand (initial value is 0)
  • G SCOMP Corrected output gain of the i-th stand [-]
  • ⁇ S COMP_UL Gap correction upper limit value [mm] of the i-th stand
  • ⁇ S COMP_LL Gap correction lower limit value [mm] of the i-th stand
  • SERR i): Gap error of the i-th stand [mm]
  • ⁇ S COMP Gap correction value of the i-th stand [mm]
  • the corrected plate thickness actual recalculation value h GM (i) shown in the equation (23) is the gap correction value ⁇ S COMP (i) output from the plate thickness actual recalculation value h GM (i) represented by the equation (11). ) Is subtracted.
  • the target plate thickness correction value calculation unit 1h uses the current rolling load distribution ratio Pi act and the rolling load distribution ratio target value ⁇ i AIM in order to bring the actual rolling load distribution ratio closer to the rolling load distribution ratio target value ⁇ i AIM .
  • the target plate thickness correction value ⁇ h BAL (i) is calculated by comparing with.
  • the target plate thickness correction value ⁇ h BAL (i) is calculated using the following equation.
  • the coefficient A is common to all stands.
  • Q i and ⁇ i AIM are calculated in advance by the setting calculation unit 1c using the equations (9) and (10).
  • ⁇ h i BAL 0 in the equation (24) is calculated in order from the subsequent stand, assuming that it is zero in the final stand NF as shown in the equation (26).
  • the target plate thickness correction value calculation unit 1h applies an adjustment gain as shown in the equation (27), performs a limit check as shown in the equation (28), and determines the final target plate thickness correction value ⁇ h BAL (i). decide.
  • the mass flow thickness correction unit 1i calculates the gap correction value of each stand
  • the target plate thickness correction value calculation unit 1h calculates the target plate thickness correction value of each stand. calculate.
  • the control timing 8d is the control timing at which the gap correction value and the target plate thickness correction value of the most upstream stand are output during the rolling load distribution control.
  • the gap correction value and the target plate thickness correction value of the most upstream stand are output.
  • the tracking unit 1j determines a tracking point on the material to be rolled 2b located on the most upstream stand. The tracking unit 1j tracks the tracking point based on the actual roll rotation speed value.
  • the rolling load distribution correction unit 1g outputs the gap correction value and the target plate thickness correction value of the downstream stand.
  • the target plate thickness operation unit 1f corrects the plate thickness target value of the i-stand with the target plate thickness correction value of the i-stand.
  • the corrected plate thickness target value is output to the gap operation unit 1d.
  • the gap operation unit 1d is a value obtained by correcting the plate thickness target value of the i-stand corrected by the target plate thickness operation unit 1f and the plate thickness actual recalculation value of the i-stand with the gap correction value of the i-stand ((().
  • the roll gap operation value for making the difference between Eq. 23) and) is output to the i-stand.
  • the hydraulic cylinder 3c of the i-stand changes the roll gap based on the roll gap operation value.
  • FIG. 9 is a diagram for explaining the output timing of the correction value according to the position of the tracking point.
  • the gap correction value ⁇ S COMP (1) of the first stand F 1 (most upstream stand) and the target plate thickness correction value ⁇ h BAL (1) are output (9a).
  • the portion of the material to be rolled 2b located on the first stand F1 is set as the tracking point A (9b).
  • the gap correction value ⁇ S COMP (2) and the target plate thickness correction value ⁇ h BAL (2) of the second stand F 2 are output.
  • the gap correction value ⁇ S COMP (i) and the target plate thickness correction value ⁇ h BAL (i) of the i-stand are output (9c).
  • the tracking unit 1j tracks until the tracking point A reaches the plate thickness gauge 2c on the exit side of the Nth stand (final stand).
  • the processing order of 9a and 9b may be reversed.
  • the control timing 8e in FIG. 8 is the control timing after the elapse of t_slope for a certain period of time after the tracking point reaches the plate thickness meter 2c.
  • the gap correction value and the target plate thickness correction value are determined again, the correction value of the most upstream stand to be operated is changed, and at the same time, a tracking point is created, and the correction values are sequentially obtained from the upstream stand. To change. After that, the control is continued until the control end timing comes.
  • Control timing 8f Control end 8f in FIG. 8 is a control timing for ending the rolling load distribution control.
  • rolling tends to be unstable, so the gap correction value and the target plate thickness correction value are not changed.
  • the rolling load distribution correction unit 1g does not calculate the correction value and does not generate a tracking point. After that, control is not performed until rolling is completed.
  • the timing of changing the gap correction value by the mass flow thickness correction unit 1i and the timing of changing the target plate thickness correction value by the target plate thickness correction value calculation unit 1h are set to the same timing, but this timing can also be shifted. .. For example, if the gap correction value is changed several seconds after the target plate thickness correction value is changed, the timing of changing the gap and the plate thickness can be shifted.
  • the tracking point is tracked and the gap correction value and the target plate thickness correction value are applied in order from the upstream stand.
  • a gap correction value is applied to suppress changes in the gap error.
  • Apply the target plate thickness correction value to correct the plate thickness target value on the stand side so that the actual rolling load distribution ratio value approaches the rolling load distribution ratio target value.
  • stable rolling can be established by matching the actual rolling load ratio between all stands with the target rolling load ratio during continuous rolling.
  • FIG. 10 is a diagram showing a control result over the entire length of the material to be rolled 2b at the upstream stand.
  • the example shown in FIG. 10 is a case where the gap error, which is the difference between the actual plate thickness value and the actual plate thickness recalculation value, becomes large (10a) during rolling, and then the mill inlet temperature rises (10 g).
  • the solid lines (4b, 4c, 7a, 7b) in FIG. 10 show the control results when the rolling load distribution control is not applied.
  • the alternate long and short dash line (10b, 10c, 10d, 10e, 10f, 10h) shows the control result when the rolling load distribution control is applied.
  • the gap error becomes large (10a)
  • the gap error which is the difference between the actual plate thickness value 7b and the actual plate thickness recalculation value 7a
  • the gap error becomes large (10a)
  • the rolling load distribution control is not applied, the actual rolling load value 4b rapidly decreases and the gap The actual value 4c increases.
  • the mass flow thickness correction unit 1i calculates the gap correction value 10b for reducing the amount of change in the gap error based on the equation (22). That is, by increasing the gap correction value 10b in the negative direction, the gap operation unit 1d controls the rolling stand so as to reduce the roll gap.
  • the rolling load distribution control it is possible to suppress an increase in the actual gap value 10c and prevent the actual rolling load value 10d from rapidly decreasing.
  • the actual plate thickness recalculation value 10e based on the equation (23) is suppressed from decreasing as compared with the actual plate thickness recalculation value 7a to which the rolling load distribution control is not applied.
  • the actual plate thickness value 10f to which the rolling load distribution control is applied is suppressed from increasing as compared with the actual plate thickness value 7b to which the rolling load distribution control is not applied.
  • the amount of change in the gap error is small.
  • the rolling load distribution control when the rolling load distribution control is applied, the actual rolling load values of all the stands are compared, and the plate thickness target value is set for the stands whose actual rolling load distribution ratio is smaller than the target rolling load distribution ratio.
  • the target plate thickness correction value 10h to be reduced is output.
  • the gap operation unit 1d controls the rolling stand so as to reduce the roll gap.
  • FIG. 11 is a diagram showing an example of actual rolling load values at the start of rolling and before the end of rolling.
  • FIG. 11A is a graph showing the actual rolling load value 5a of each stand at the start of rolling and the rolling load distribution ratio target value 5b.
  • the actual rolling load distribution ratio calculated from the actual rolling load value 5a of each stand coincides with the target rolling load distribution ratio 5b.
  • FIG. 11B is a graph showing the actual rolling load value of each stand before the end of rolling when the rolling load distribution control is not applied.
  • the actual rolling load distribution ratio is not controlled to be kept at the rolling load distribution ratio target value 5b.
  • the actual rolling load value of the side stand has decreased significantly.
  • the rolling load of the downstream stand may not change or may increase due to the influence of the gap error.
  • FIG. 11C is a graph showing the actual rolling load value of each stand before the end of rolling when the rolling load distribution control is applied.
  • the plate thickness target value of the upstream stand can be reduced to suppress the decrease of the rolling load actual value 11b of the upstream stand.
  • the actual rolling load distribution ratio value can be maintained at the rolling load distribution ratio target value.
  • FIG. 12 is a diagram for explaining the system configuration of the continuous rolling system according to the second embodiment of the present invention.
  • the rolling load distribution control device 10 according to the second embodiment includes a gap operation end intervention unit 12a in addition to the configuration shown in FIG. 1 described above.
  • the gap operation end intervention unit 12a changes the roll gap operation value based on the intervention signal by the operator. That is, according to the gap operation end intervention unit 12a, the operator can directly operate the roll gap.
  • the change of the gap correction value and the target plate thickness correction value by the above-mentioned rolling load distribution control is temporarily stopped. A few seconds after the end of the intervention, the rolling load distribution target value is newly determined, and the change of the correction value by the rolling load distribution control is resumed.
  • FIG. 13 is a diagram for explaining rolling load distribution control after gap intervention.
  • the rolling load distribution control device 10 stops the rolling load distribution control, does not change the correction value for t_gi seconds after the gap intervention, and does not generate a tracking point.
  • the rolling load distribution control device 10 calculates the actual rolling load distribution ratio value from the actual rolling load value after the gap intervention immediately before the rolling load distribution control is started after t_gi seconds have elapsed. Further, the rolling load distribution control device 10 sets the actual rolling load distribution ratio as a new target value for the rolling load distribution ratio. After that, the calculation of the correction value by the rolling load distribution control is restarted (13b).
  • FIG. 14 is a diagram for explaining a correction example of the rolling load distribution ratio target value at the time of gap intervention.
  • the roll gap of the most upstream stand is increased to reduce the actual rolling load value. Since the gap intervention is performed when the plate shape between the stands or the condition of the stands is not good, the new rolling load distribution ratio target value after the gap intervention is the actual rolling load value changed by the gap intervention as shown in 14a. It is decided based on. The rolling load distribution control is executed so as to maintain this new rolling load distribution ratio target value.
  • the correction value is not changed for a certain period of time after the gap intervention, a new rolling load distribution ratio target value is determined after the state stabilizes, and the rolling load distribution control is restarted. According to this, the rolling load distribution is kept constant, and stable rolling can be established.
  • Embodiment 3 The continuous rolling system is capable of performing a Flying Gauge Change (FGC) during rolling.
  • FGC Flying Gauge Change
  • the target value of the product plate thickness which is the plate thickness target value on the exit side of the final stand
  • the plate thickness target value of each stand is changed according to the plate thickness target value on the exit side of the final stand.
  • the roll gap of each stand is changed in order from the upstream stand so as to achieve the plate thickness target value of each stand.
  • FIG. 15 is a diagram showing the control timing of the continuous rolling system when changing the running plate thickness.
  • the setting calculation unit 1c is based on the actual rolling load distribution ratio (or actual plate thickness) of each stand before changing the running plate thickness. Determine the plate thickness target value of each stand after the running plate thickness change so that the plate thickness change can be executed stably. Further, the setting calculation unit 1c predicts the rolling load after changing the running plate thickness, and resets a new rolling load distribution ratio target value.
  • P i Pre_nxt Predicted rolling load after changing the plate thickness of the i-stand [kN]
  • ⁇ i AIM Rolling load distribution ratio target value of the i-stand [-]
  • the rolling load distribution control device 10 stores the correction reference gap error before executing the change in the running plate thickness. Since the roll gap is suddenly moved while the inter-running plate thickness is changed, the rolling load distribution control is not executed before and after this. That is, the calculation of the gap correction value and the target plate thickness correction value is interrupted before the running plate thickness change is executed. For example, the correction value is not changed before LE [m] for changing the roll gap of the most upstream stand. Further, the roll gap of each stand is changed, and the correction value is not changed from the position of the changed material 2b to be rolled after passing through the plate thickness gauge 2c to the time after passing through LS [m] (15b).
  • the new rolling load distribution ratio target value according to equation (31) is updated before restarting the rolling load distribution control (15c).
  • the difference between the actual plate thickness value and the actual plate thickness recalculation value may change sharply. If the roll gap is significantly changed as a result of a sudden change in the correction value based on this difference, rolling may become unstable.
  • the rolling load distribution control device 10 calculates the correction reference gap error after changing the running plate thickness. Specifically, as shown in Eq. (35), the rolling load distribution control device 10 sets the difference between the gap error after the change in the inter-run plate thickness and the gap error before the change in the inter-run plate thickness as the inter-run plate thickness.
  • the correction reference gap error after the change in the running plate thickness is calculated by adding it to the correction reference gap error before the change. This updates the correction reference gap error. After the correction reference gap error is updated, the rolling load distribution control is restarted, and the calculation of the gap correction value and the target plate thickness correction value is restarted.
  • Softs_PREV (i): Offset value of the i-stand before changing the inter-running plate thickness [mm] h GM_FGC (i): Actual recalculated value of the plate thickness of the i-stand after changing the inter-running plate thickness [mm] (calculated at the timing of 15d using the formula (11)) h MF_FGC (i): Actual value of the plate thickness of the i-stand after changing the inter-running plate thickness [mm] (calculated at the timing of 15d using the formula (12))
  • SERR_PREV (i): Gap error [mm] of the i-th stand before changing the inter-running plate thickness (calculated at the timing of 15e using equation (19))
  • the actual rolling load distribution ratio value is newly added. It is possible to match the target rolling load distribution ratio.
  • Embodiment 4 The rolling load distribution control device according to the fourth embodiment changes the control gain used for calculating the correction value in the rolling load distribution control according to the type and size of the material 2b to be rolled.
  • the setting calculation unit 1c inputs the type / size information of the material to be rolled 2b from the operation command input unit 1b.
  • the setting calculation unit 1c determines the use / non-use of the rolling load distribution control based on the type / size information.
  • the setting calculation unit 1c stores in advance a table that defines the relationship between the type and size of the material to be rolled 2b and the control gain.
  • FIG. 16 is a diagram showing a setting example of the table.
  • the setting calculation unit 1c acquires the parameter value corresponding to the type / size information 16a from the table.
  • the setting calculation unit 1c transmits this parameter value as a control gain to the rolling load distribution correction unit 1g.
  • the rolling load distribution correction unit 1g uses this control gain in the calculation of the gap correction value and the target plate thickness correction value (Equations (21) and (27)).
  • the optimum control gain according to the type and size information of the material to be rolled 2b can be applied to the calculation of the gap correction value and the target plate thickness correction value.
  • each stand is equipped with a shape control device (actuator) that controls the plate shape.
  • actuator controls the plate shape.
  • the bending device can control the plate shape by correcting the bending of the roll by applying pressure to the end of the work roll.
  • the work roll shift device can control the plate shape by shifting the work roll having the initial curve and changing the widthwise distribution of the roll gap.
  • the plate shape can also be controlled by changing the rolling load of the stand to change the deflection of the roll. Therefore, in the present embodiment, when the output of the shape control device reaches the limit, the plate shape is corrected by changing the rolling load distribution ratio of the stand to change the rolling load.
  • the rolling load distribution ratio of the i-stand where the outputs of the bending device and the work roll shift device have reached the limit value is corrected.
  • the bending force is increased, pressure is applied in the direction of opening the roll end, so that the amount of change in the plate thickness at the roll end becomes small.
  • the rolling load is reduced, so that the amount of change in the plate thickness at the plate end is reduced. Therefore, when the roll bending force reaches the maximum mechanical or operational value during rolling, the rolling load distribution ratio of the stand is reduced to determine a new rolling load distribution ratio target value.
  • the rolling load distribution control device 10 decreases the output when the output of the shape control device reaches the upper limit value, and increases the output when the output of the shape control device reaches the lower limit value.
  • the target value of the rolling load distribution ratio of the stand having the shape control device is changed in the direction of making the roll. According to such control, even if the output of the shape control device reaches the limit value, the plate shape can be improved by changing the rolling load distribution ratio target value.
  • Embodiment 6 the gap error generated during the FGC is integrated and stored in order to avoid a sudden change.
  • the gap error S OFS (i) is gradually transferring to the gap correction value ⁇ S COMP (i)
  • the gap error generated during the plate thickness change due to the inter-run plate thickness change can be gradually reduced over time.
  • the rolling load distribution control device 10 uses the above equation including the transfer gain ⁇ (i) to reduce the gap error SOFS (i) generated in the FGC, and the reduced amount is used as the gap correction value ⁇ S COMP ( Transfer to i). As a result, the difference (gap error) between the actual plate thickness value and the actual plate thickness recalculation value can be reduced.
  • FIG. 17 is a conceptual diagram showing a hardware configuration example of a processing circuit included in the rolling load distribution control device 10 of each of the above-described embodiments.
  • the processing circuit comprises at least one processor 91 and at least one memory 92.
  • the processing circuit comprises at least one dedicated hardware 93.
  • each function is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. At least one of the software and firmware is stored in memory 92.
  • the processor 91 realizes each function by reading and executing the program stored in the memory 92.
  • the processing circuit When the processing circuit includes dedicated hardware 93, the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, or a combination thereof. Each function is realized by a processing circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

連続圧延システムは、連続圧延中において全スタンド間の実績圧延荷重比率を目標圧延荷重比率に一致させる。連続圧延システムは、連続圧延される被圧延材上に定めた追跡点をトラッキングする。また、連続圧延システムは、追跡点が第iスタンドに到達する時に、第iスタンドの板厚目標値を第iスタンドの目標板厚補正値で補正した値と、第iスタンドの板厚実績再計算値を第iスタンドのギャップ補正値で補正した値と、の差をゼロにするためのロールギャップ操作値を第iスタンドへ出力する。ここで、ギャップ補正値は、被圧延材の先端が第iスタンドに到達したときの先端ギャップ誤差と、被圧延材の先端以外の部分が第iスタンドに到達したときの非先端ギャップ誤差と、の差をゼロにする補正値である。

Description

連続圧延システム
 本発明は、連続圧延システムの圧延荷重配分制御に関する。
 図2は、金属を加工する熱間圧延ラインの一部を表す図である。図2に示す圧延ライン20は、タンデム圧延機2を備える。タンデム圧延機2は、圧延スタンドを数台近接して直列に配列し、1本の被圧延材2bを一方向に連続して圧延するストリップミルと呼ばれるタンデム形式の連続圧延機である。
 タンデム圧延機2は、N(Nは3以上の自然数)基の圧延スタンド2aを有する。N基の圧延スタンド2aは、タンデム圧延機2の上流側(入側)から順に第1スタンドF、第2スタンドF、第3スタンドF、・・・、第iスタンドF、・・・第NスタンドFと称される。以下の説明において、「圧延スタンド」は単に「スタンド」とも記載される。
 板厚計2cは、最終スタンド(第Nスタンド)の出側に設けられ、被圧延材2bの板厚を計測する。板厚計は、スタンド間に設置される場合もある。
 図3の(A)は、圧延スタンド2aをロール軸方向から見た図である。図3の(B)は、圧延スタンド2aを被圧延材2bの進行方向から見た図である。圧延スタンド2aは一対の上下ワークロール3aを備える。上下ワークロール3aのロールギャップを変更することで、圧延スタンド2aの出側板厚を制御することができる。以下の説明において、「出側板厚」は単に「板厚」とも記載される。
 また、スタンド出側の板速度は、上下ワークロール3aの回転速度を変更することで変更される。一対の上下バックアップロール3bは上下ワークロール3aを上下から支える。油圧シリンダー3cは、バックアップロール3bのチョック部に据え付けられている。油圧シリンダー3cは、上下に動作することによりロールギャップを調整する。以下の説明において、「ロールギャップ」は単に「ギャップ」とも記載される。
 ロードセル3dは、下側のバックアップロール3bのチョック部を支えている支柱に設置されている。ロードセル3dは、圧延荷重(rolling force)を検出する。なお、圧延荷重は、油圧シリンダー3cの圧力を計測する圧力計から概算することもできる。なお、ロードセル3dは、上側のバックアップロール3bのシリンダー位置に据え付けている場合もある。
 エンコーダー3eは、ワークロール3aのチョック端に据え付けられ、ワークロール3aのロール回転速度を検出する。ロール周速度はロール回転速度に基づいて計算される。
日本特開2018-134673号公報 日本特開2009-113109号公報
 圧延荷重(rolling force)は、少なくとも、被圧延材の温度、スタンドの入側板厚、スタンドの出側板厚、圧延速度に加えて、スタンド間の張力、ロールの直径、ロールと被圧延材との摩擦状態、被圧延材の化学成分、被圧延材の結晶粒の状態、過去の圧延履歴などにより変化することが知られている((1)式)。なお、実際の圧延ラインでは、圧延荷重の変化は複雑であり、計算のみでは正確な圧延荷重を把握することができない。圧延荷重を把握するため、ロードセル3dなどのセンサを用いて圧延荷重実績値が計測される。
Figure JPOXMLDOC01-appb-M000001
ここで、
P:圧延荷重
T:温度
H:入側板厚(entry side strip thickness)
h:出側板厚(delivery side strip thickness)
V:圧延速度
 発明者の知見によれば、タンデム圧延機2の全スタンド間の実績圧延荷重比率を目標圧延荷重比率に一致させるように制御することで、安定した圧延を確立することができる。
 しかしながら、連続で圧延を継続している状況では、主に、以下の要因で、圧延荷重配分が変化する。
(要因1)スタンド入側における被圧延材の温度変化
(要因2)ロールに入熱する熱によって発生するロールの熱膨張、およびロールと被圧延材との接触によるロールの摩耗による、ロール径の変化
(圧延荷重配分が変化する要因1:スタンド入側の被圧延材の温度変化)
 スタンド入側における被圧延材の温度が変化した場合、被圧延材の変形に要する圧延荷重が変化する。スタンドの出側板厚の計算値は、ロールギャップと圧延荷重に基づく(2)式を用いて計算される。
Figure JPOXMLDOC01-appb-M000002
ここで、
:第iスタンドの出側板厚[mm]
:第iスタンドのロールギャップ[mm]
:第iスタンドの圧延荷重[kN]
:第iスタンドのミル剛性係数[kN/mm]
 したがって、出側板厚hを一定に保とうとすると、(4)式に示すように、圧延荷重が増加した量だけロールギャップを小さくする(閉じる)必要がある。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
ここで、
ΔP:圧延荷重変化量[kN]
ΔS:ギャップ変更量[mm]
 結果として、被圧延材の温度が低下した場合、圧延荷重は増加し、ロールギャップを小さくすることで板厚を一定に保つことができるが、圧延荷重はさらに大きくなる。
 図4は、圧延ライン入側の温度変化による圧延荷重実績値およびギャップ実績値の変化を示すグラフである。図4のグラフは、ミル入側温度4aが低下した場合の最上流スタンドの圧延荷重実績値4bおよびギャップ実績値4cの変化を示している。ミル入側温度4aが低下した場合、被圧延材は温度低下にともない硬化するので、圧延荷重実績値4bは大きくなる。圧延荷重実績値4bが大きくなった場合、ギャップ実績値4cが変わらなければ、(2)式に示すように出側板厚4dが大きくなってしまう。そのため、出側板厚4dを一定に保つためにロールギャップを小さくする制御がなされる。
 その結果、ギャップ実績値4cは小さくなり、出側板厚4dは一定に保たれるが、圧延荷重実績値4bはさらに増加する。
 図5は、圧延ライン入側の温度変化による各スタンドの圧延荷重変化を示すグラフである。図5の(A)は、圧延開始時の各スタンドの圧延荷重実績値5aと、圧延荷重配分比目標値5bとを示している。圧延開始時は各スタンドの圧延荷重実績値5aから算出される圧延荷重配分比実績値5cは、圧延荷重配分比目標値5bと一致している。
 圧延中に最終スタンド(第NスタンドF)まで均一に温度が減少すれば、圧延荷重配分比は大きくは変わらない。しかし、一般に上流側の温度が変化した場合、スタンド間のスプレーを調整、もしくは圧延速度を変更することで、最終スタンドの出側温度は一定に保たれる。
 そのため、図5の(B)のように、上流側スタンドの圧延荷重が大きく変化する一方、下流側スタンドの圧延荷重はあまり変化しないので、圧延荷重配分比実績値5cは圧延荷重配分比目標値5bから外れてしまう。
(圧延荷重配分が変化する要因2:ロールの熱膨張量と摩耗量)
 次に、ワークロールの熱膨張量と摩耗量による圧延荷重配分の変化について説明する。熱膨張量は、圧延中にロールと被圧延材との熱伝導によってロール温度が増加した結果、ロールが熱膨張してロール径が増加した量である。摩耗量は、被圧延材との接触によるロールの摩耗により、ロール径が減少した量である。熱膨張量は冷却設備によって、ある程度制御することができるが、摩耗量は圧延を継続する限り増加していく。
 図6は、熱膨張量と摩耗量を考慮したロール径の変化を示す図である。ワークロール3aの直径は、500mm以上あるのに対して、熱膨張量や摩耗量による変化は数百μm程度である。そのため、目視ではロール径の変化は分からない。しかしながら、板厚制御は数μmの精度を要するので、熱膨張量や摩耗量によるロール径の変化は無視できない。
 図6の(A)に示す6aは、熱膨張量による幅方向のロール径変化を表している。図6の(B)に示す6bは、摩耗量による幅方向のロール径変化を表している。これら2つの変化が合わさった結果、図6の(C)に示す6cのように、ロール径分布は複雑に変化する。
 油圧シリンダー3cを操作した量から計算されるギャップ実績値は、上述した摩耗量および熱膨張量によるロール径の変化を含まない。そのため、ギャップ実績値と実際のロールギャップであるギャップ真値とにずれが生じる。ギャップ真値とギャップ実績値との誤差ΔStwにより板厚が変化することで、圧延荷重P(Δh+h)も変化する。そのため、(6)式に示すように、ギャップ真値とギャップ実績値との誤差ΔStwが、単純に板厚変化Δh分とならない。
Figure JPOXMLDOC01-appb-M000006
 図7は、摩耗量が増加した場合のギャップ実績値および圧延荷重実績値の変化を示すグラフである。図7に示す例では、摩耗量は熱膨張量よりも大きいものとする。通常、板厚計が出側にないスタンドでは、板厚実績再計算値7aがスタンド出側の板厚目標値と一致するようにロールギャップは制御される。板厚実績再計算値7aは、以下のように計算される。
Figure JPOXMLDOC01-appb-M000007
ここで、
hg:板厚実績再計算値[mm]
act:ギャップ実績値[mm]
act:圧延荷重実績値[kN]
 この時、摩耗量と熱膨張量が変化し、ギャップ真値とギャップ実績値との誤差が大きくなった場合、(8)式に示すように、板厚実績値7bが大きくなる。
Figure JPOXMLDOC01-appb-M000008
ここで、
hg:板厚実績再計算値[mm]
ΔStw:ギャップ真値とギャップ実績値との誤差[mm]
hof:ΔStwを除く、板厚実績値と板厚実績再計算値との差[mm]
 板厚実績値7bが大きくなると、圧下する量が減少するので、圧延荷重実績値4bは減少するが、板厚実績再計算値7aを一定に制御しようとするので、ギャップ実績値4cは大きくなっていく。その結果、圧延荷重実績値4bはさらに減少する。ここで熱膨張量と摩耗量によるギャップ誤差ΔStwは、直接計測することができない。上記(7)式に摩耗量と熱膨張量の予測を加えることで、板厚実績値と板厚実績再計算値との差を小さくすることができる。しかし、摩耗量と熱膨張量は、ロールの材質、使用する水、油、圧延する鋼種の表面状態などにより変化してしまうことから、予測のみで完全に一致させることは難しい。
 特に、近年では1つのスラブから1本のコイルを製造するだけではなく、1つの長いスラブから複数本のコイルを製造することも可能となった。このような圧延では、数時間に亘り圧延し続けるため、ロールの摩耗量も大きくなる。その結果、上述したロール摩耗量の予測誤差から生じる圧延荷重変動が起こりやすくなっている。
 上述のように圧延荷重は、温度変化や摩耗量増大などの避けられない影響を受け、また、目標板厚を満たすために、複雑に変化する。圧延荷重配分制御に関して2つの特許文献がある。
 特許文献1(日本特開2018-134673号公報)によれば、圧延中であっても予め設定された圧延荷重配分を維持するように、隣接するスタンドのギャップは修正される。特に、通板後に発生する板厚計測値と板厚目標値との差を補償することにより変化した圧延荷重配分を修正するように、後段スタンドの圧延荷重は修正される。しかしながら、特定の2スタンド間の圧延荷重配分を修正しても、全スタンド間の圧延荷重配分を修正できるとは限らない。
 特許文献2(日本特開2009-113109号公報)によれば、オペレータによる手動介入によって圧延中の各スタンドに対する圧延荷重配分が修正された場合に、手動介入後の圧延荷重配分を目標値として圧延荷重配分制御は実行される。
 しかし、上記2つの特許文献は、板厚実績値と板厚実績再計算値とのギャップ誤差を補償する手段を有していない。連続で圧延する場合は、ギャップ誤差により圧延荷重配分が変化するおそれがある。ギャップ誤差を補償せずに、圧延荷重実績値のみを使用した圧延荷重配分制御では、各スタンドの出側板厚の変化によりスタンド出側の板形状が変化し、形状不良を引き起こす可能性、および圧延荷重配分制御の出力が飽和する可能性がある。
 また、上記2つの特許文献における圧延荷重配分制御は、非同期制御である。例えば、上流側スタンドでロールギャップを変化させた場合に、被圧延材上の当該変更箇所のスタンド出側板厚は変化する。しかし、非同期制御では、当該変更箇所の位置はトラッキングされない。そのため、当該変更箇所が下流側のスタンドに到達した時、板厚変化分の影響を受けて圧延荷重が変動してしまう。当該変更箇所が各スタンド到達した時にロールギャップを制御する同期制御が望ましい。
 本発明は、上述のような課題を解決するためになされたもので、連続圧延中において全スタンド間の実績圧延荷重比率を目標圧延荷重比率に一致させるように制御することで、安定した圧延を確立できる連続圧延システムを提供することを目的とする。
 上記目的の達成のため、本発明に係る連続圧延システムは以下のように構成される。
 本発明に係る連続圧延システムは、一本の被圧延材を連続圧延している途中で製品仕様を変更する。連続圧延システムは、タンデム圧延機と、板厚計と、圧延荷重配分制御装置とを備える。タンデム圧延機は、複数の圧延スタンドを有する。タンデム圧延機は、前記被圧延材を前記複数の圧延スタンドの上流側から下流側へ一方向に連続して圧延する。前記複数の圧延スタンドそれぞれはロールギャップ操作値に応じてロールギャップを制御する。板厚計は、前記タンデム圧延機の出側に設けられ、前記被圧延材の板厚を計測する。
 第1の態様では、圧延荷重配分制御装置は、前記複数の圧延スタンド間の実績圧延荷重比率を目標圧延荷重比率に一致させるために、設定計算部と、実績収集部と、マスフロー厚補正部と、目標板厚補正値計算部と、トラッキング部と、ギャップ操作部とを備える。
 前記設定計算部は、前記複数の圧延スタンドそれぞれの板厚目標値と、前記複数の圧延スタンド間の前記目標圧延荷重比率を表す前記複数の圧延スタンドそれぞれの圧延荷重配分比目標値と、を決定する。
 前記実績収集部は、前記複数の圧延スタンドそれぞれの圧延荷重実績値と、前記複数の圧延スタンドそれぞれの前記ロールギャップ操作値に基づいて計算された前記複数のスタンドそれぞれのロールギャップ実績値と、前記複数の圧延スタンドそれぞれのロール回転速度実績値と、前記板厚計により計測された板厚計測値と、を収集する。前記ロールギャップ実績値は、ロールの摩耗量および熱膨張量によるロール径の変化を含まない。
 前記マスフロー厚補正部は、前記板厚計測値と前記複数の圧延スタンドそれぞれの前記ロール回転速度実績値とに基づいて前記複数の圧延スタンドそれぞれの板厚実績値を計算する。前記マスフロー厚補正部は、前記複数の圧延スタンドそれぞれの前記圧延荷重実績値と前記複数の圧延スタンドそれぞれの前記ロールギャップ実績値とに基づいて前記複数の圧延スタンドそれぞれの板厚実績再計算値を計算する。前記マスフロー厚補正部は、前記複数の圧延スタンドそれぞれの前記板厚実績値と前記複数の圧延スタンドそれぞれの前記板厚実績再計算値との差に基づいて前記複数の圧延スタンドそれぞれのギャップ誤差を計算する。前記マスフロー厚補正部は、前記複数の圧延スタンドそれぞれの前記ギャップ誤差を変化させないための前記複数の圧延スタンドそれぞれのギャップ補正値を計算する。
 前記ギャップ補正値は、前記被圧延材の先端が第iスタンド(1≦i≦N)に到達したときの前記ギャップ誤差である補正基準ギャップ誤差と、前記被圧延材の先端以外の部分が第iスタンドに到達したときの前記ギャップ誤差である非先端ギャップ誤差と、の差をゼロにする補正値である。
 前記目標板厚補正値計算部は、前記複数の圧延スタンドそれぞれの前記圧延荷重実績値に基づいて、前記複数の圧延スタンド間の前記実績圧延荷重比率を表す前記複数の圧延スタンドそれぞれの圧延荷重配分比実績値を計算する。前記目標板厚補正値計算部は、前記複数の圧延スタンドそれぞれの前記圧延荷重配分比目標値と前記複数の圧延スタンドそれぞれの前記圧延荷重配分比実績値との差に基づいて、前記複数のスタンドそれぞれの目標板厚補正値を計算する。
 前記トラッキング部は、前記被圧延材上に定めた追跡点をトラッキングする。
 前記ギャップ操作部は、前記追跡点が前記複数の圧延スタンドそれぞれに到達する時に、前記追跡点が到達する前記圧延スタンドである対象圧延スタンドの前記板厚目標値を前記対象圧延スタンドの前記目標板厚補正値で補正した値と、前記対象圧延スタンドの前記板厚実績再計算値を前記対象圧延スタンドの前記ギャップ補正値で補正した値と、の差をゼロにするための前記ロールギャップ操作値を前記対象圧延スタンドへ出力する。
 第2の態様では、連続圧延システムは、オペレータによる介入信号に基づいて前記ロールギャップ操作値を変更可能なギャップ操作端介入部を備える。
 前記圧延荷重配分制御装置は、前記変更されたロールギャップ操作値が前記タンデム圧延機に適用された後に収集された前記複数の圧延スタンドそれぞれの前記圧延荷重実績値に基づいて、前記複数の圧延スタンドそれぞれの前記圧延荷重配分比実績値を計算する。前記圧延荷重配分制御装置は、前記複数の圧延スタンドそれぞれの前記圧延荷重配分比目標値を前記複数の圧延スタンドそれぞれの当該圧延荷重配分比実績値で更新する。
 第3の態様では、前記圧延荷重配分制御装置は、前記タンデム圧延機による圧延を停止することなく前記タンデム圧延機の前記板厚目標値を変更する走間板厚変更を実行する前に、前記ギャップ補正値および前記目標板厚補正値の計算を中断する。前記圧延荷重配分制御装置は、前記走間板厚変更を実行する前の前記補正基準ギャップ誤差を記憶する。前記圧延荷重配分制御装置は、前記走間板厚変更のための前記圧延荷重配分比目標値を再設定する。前記圧延荷重配分制御装置は、前記走間板厚変更を実行した後の前記ギャップ誤差と前記走間板厚変更を実行する前の前記ギャップ誤差との差を、前記走間板厚変更を実行する前の前記補正基準ギャップ誤差に加算して、前記走間板厚変更を実行した後の前記補正基準ギャップ誤差を計算する。前記圧延荷重配分制御装置は、前記走間板厚変更を実行した後の前記補正基準ギャップ誤差を計算した後に、前記ギャップ補正値および前記目標板厚補正値の計算を再開する。
 第4の態様では、前記圧延荷重配分制御装置は、前記被圧延材の種類およびサイズと制御ゲインとの関係を定めたテーブルを記憶する。前記圧延荷重配分制御装置は、前記テーブルから前記被圧延材の種類およびサイズに対応する前記制御ゲインを取得する。前記ギャップ補正値は、前記制御ゲインを乗じて計算される。前記目標板厚補正値は、前記制御ゲインを乗じて計算される。
 第5の態様では、前記圧延スタンドは、前記被圧延材の形状を制御するアクチュエータを備える。
 前記圧延荷重配分制御装置は、前記アクチュエータの出力が上限値に達した場合は前記出力を減少させる方向に、前記アクチュエータの出力の下限値に達した場合は前記出力を増加させる方向に、前記アクチュエータを有する前記圧延スタンドの前記圧延荷重配分比目標値を変更する。
 第6の態様では、前記圧延荷重配分制御装置は、前記走間板厚変更による板厚変更中に生じた前記ギャップ誤差を、時間経過に伴って段階的に小さくする。
 本発明に係る連続圧延システムによれば、上流側スタンドから順にギャップ補正値および目標板厚補正値を適用することで、連続圧延中において全スタンド間の実績圧延荷重比率を目標圧延荷重比率に一致させるように制御できる。そのため、連続圧延中の圧延荷重配分が一定に保たれ、安定した圧延を確立できる。
 また、圧延荷重配分比が一定に保たれることで、特定のスタンドに圧延荷重が集中することが抑制され、圧延荷重もしくはモータトルクが限界値を超えてしまうことを抑制できる。
 加えて、圧延荷重配分比が一定に保たれることで、特定のスタンドに圧延荷重が集中することが抑制され、被圧延材の形状不良(平坦度不良)を抑制できる。
 さらに、圧延荷重配分比が一定に保たれることで、特定のスタンドの摩耗量が偏増加することを抑制できる。
実施の形態1に係る連続圧延システムのシステム構成を説明するための図である。 金属を加工する熱間圧延ラインの一部を表す図である。 圧延スタンドの構成について説明するための図である。 圧延ライン入側の温度変化による圧延荷重実績値およびギャップ実績値の変化を示すグラフである。 圧延ライン入側の温度変化による各スタンドの圧延荷重変化を示すグラフである。 熱膨張量と摩耗量を考慮したロール径の変化を示す図である。 摩耗量が増加した場合のギャップ実績値および圧延荷重実績値の変化を示すグラフである。 実施の形態1に係る連続圧延システムの制御タイミングを示す図である。 追跡点の位置に応じた補正値の出力タイミングについて説明するための図である。 上流側スタンドにおける被圧延材の全長にわたる制御結果を示す図である。 圧延開始時と圧延終了前の圧延荷重実績値の例を示す図である。 実施の形態2に係る連続圧延システムのシステム構成を説明するための図である。 実施の形態2におけるギャップ介入後の圧延荷重配分制御について説明するための図である。 実施の形態2におけるギャップ介入時の圧延荷重配分比目標値の修正例を説明するための図である。 実施の形態3に係る連続圧延システムの制御タイミングを示す図である。 実施の形態4に係るテーブルの設定例を示す図である。 各実施の形態における圧延荷重配分制御装置10が有する処理回路のハードウェア構成例を示す概念図である。
 以下、図面を参照して本発明の実施の形態について詳細に説明する。但し、以下に示す実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数にこの発明が限定されるものではない。また、以下に示す実施の形態において説明する構造等は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
 上述したように、本明細書において「圧延スタンド」は単に「スタンド」とも記載される。「ロールギャップ」は単に「ギャップ」とも記載される。「出側板厚」は単に「板厚」とも記載される。そのため、「板厚目標値」、「板厚実績値」、「板厚実績再計算値」はスタンド出側の板厚に関する。
実施の形態1.
(システム構成)
 本発明の実施の形態1について説明する。図1は、本発明の実施の形態1に係る連続圧延システムのシステム構成を説明するための図である。一本の被圧延材を連続圧延している途中で製品仕様を変更する連続圧延システムは、圧延荷重配分制御装置10と圧延ライン20とを備える。圧延ライン20は熱間圧延ラインである。図2に示すように、圧延ライン20は、複数の圧延スタンドを有するタンデム圧延機2を備える。複数の圧延スタンドそれぞれはロールギャップ操作値に応じてロールギャップを制御する。具体的な圧延ライン20の構成例は、上述した図2、図3と同じであるため説明は省略する。
 圧延荷重配分制御装置10は、複数の圧延スタンド間の実績圧延荷重比率を目標圧延荷重比率に一致させるために、操業指令入力部1b、設定計算部1c、ギャップ操作部1d、実績収集部1e、目標板厚操作部1f、圧延荷重配分修正部1g、目標板厚補正値計算部1h、マスフロー厚補正部1i、トラッキング部1jを備える。
 操業指令入力部1bは、被圧延材2bの母材情報(入側板厚、入側板幅、種類など)および被圧延材2bの目標情報(板厚、板幅、温度など)を含む操業指令を設定計算部1cへ出力する。
 設定計算部1cは、母材情報および目標情報に基づいて、少なくとも、各スタンドの板厚目標値と、各スタンドのギャップ設定値と、各スタンドのロール周速度設定値を決定する。
 また、設定計算部1cは、後述する2つのパラメータ(入側板厚影響係数Qと圧延荷重配分比目標値γ AIM)を計算し、圧延荷重配分修正部1gへ出力する。
 また、設定計算部1cは、圧延荷重配分修正部1gによる圧延荷重配分制御の使用不使用を決定する。
 実績収集部1eは、各スタンドの圧延荷重実績値と、各スタンドのギャップ実績値と、各スタンドのロール回転速度実績値と、最終スタンド(第Nスタンド)出側の板厚計測値と、を圧延ライン20から継続的に収集する。
 ここで、圧延荷重実績値は、ロードセル3dにより計測された計測値、または、油圧シリンダー3cの圧力を計測する圧力計により計測された計測値から計算された計算値である。
 ギャップ実績値は、ロールギャップを制御するアクチュエータである油圧シリンダー3cを操作した量から計算されるロールギャップの大きさである。油圧シリンダー3cを操作した量は、ロールギャップ操作値に基づく。そのため、ギャップ実績値は、上述した摩耗量及び熱膨張量によるロール径の変化を含まない。よって、ギャップ実績値と、ロールの摩耗量および熱膨張量によるロール径の変化を考慮した実際のロールギャップの大きさであるギャップ真値とには、ずれがある。
 ロール回転速度実績値は、エンコーダー3eにより計測されたワークロールの回転速度である。ロール周速度実績値は、ロール回転速度実績値から計算される。
 板厚計測値は、タンデム圧延機2の出側に設けられた板厚計2cにより計測された計測値である。
 目標板厚操作部1fは、圧延中に板厚計測値と最終スタンドの板厚目標値とに差がある場合に、その差をゼロにするように、設定計算部1cにより設定された、最終スタンド以外の各スタンドの板厚目標値を変更する。
 また、目標板厚操作部1fは、後述する圧延荷重配分制御を実行中において、被圧延材2b上に定めた追跡点が第iスタンド(1≦i≦N)に到達するときに、圧延荷重配分修正部1gから第iスタンドの目標板厚補正値を入力する。そして、目標板厚操作部1fは、第iスタンドの板厚目標値を第iスタンドの目標板厚補正値で補正する。補正された板厚目標値は、ギャップ操作部1dへ出力される。
 圧延荷重配分修正部1gは、圧延荷重配分制御を実行するための目標板厚補正値計算部1hとマスフロー厚補正部1iとトラッキング部1jとを備える。
 圧延荷重配分修正部1gは、圧延荷重配分制御を実行中において、被圧延材2b上に定めた追跡点が第iスタンドに到達するときに、第iスタンドのギャップ補正値をギャップ操作部1dへ、第iスタンドの目標板厚補正値を目標板厚操作部1fへ出力する。
 目標板厚補正値計算部1hは、設定計算部1cにより設定された各スタンドの圧延荷重配分比目標値と、実績収集部1eにより収集された各スタンドの圧延荷重実績値を、を入力する。
 目標板厚補正値計算部1hは、各スタンドの圧延荷重実績値に基づいて、各スタンド間の実績圧延荷重比率を表す各スタンドの圧延荷重配分比実績値を計算する。
 目標板厚補正値計算部1hは、各スタンドの圧延荷重配分比目標値と各スタンドの圧延荷重配分比実績値との差に基づいて各スタンドの目標板厚補正値を計算する。
 マスフロー厚補正部1iは、板厚計測値と各スタンドのロール回転速度実績値とに基づいて、各スタンドの板厚実績値を計算する。
 マスフロー厚補正部1iは、各スタンドの圧延荷重実績値と各スタンドのギャップ実績値とに基づいて、各スタンドの板厚実績再計算値を計算する。
 マスフロー厚補正部1iは、各スタンドの板厚実績値と各スタンドの板厚実績再計算値との差に基づいて、各スタンドのギャップ誤差を計算する。
 マスフロー厚補正部1iは、各スタンドのギャップ誤差を変化させないための各スタンドのギャップ補正値を計算する。ここで、ギャップ補正値は、被圧延材2bの先端が第iスタンド(1≦i≦N)に到達したときの先端ギャップ誤差(補正基準ギャップ誤差)と、被圧延材2bの先端以外の部分が第iスタンドに到達したときの非先端ギャップ誤差と、の差をゼロにする補正値である。
 トラッキング部1jは、ロール回転速度実績値に基づいて、被圧延材2b上に定めた追跡点をトラッキングする。
 ギャップ操作部1dは、圧延開始前に、各スタンドのロールギャップとロール周速度をこれらの設定値に合わせるようにアクチュエータ制御信号(ロールギャップ操作値、ロール回転速度値)を圧延ライン20へ出力する。ロールギャップを制御するアクチュエータは油圧シリンダー3cである。ロール周速度を制御するアクチュエータは、ワークロールの駆動装置である。
 また、ギャップ操作部1dは、圧延中に、各スタンドの板厚目標値と、各スタンドの板厚実績再計算値との差をゼロにするためのロールギャップ操作値を圧延ライン20(油圧シリンダー3c)へ出力する。
 また、ギャップ操作部1dは、圧延荷重配分制御を実行中において、追跡点が第iスタンド(対象圧延スタンド)に到達するときに、圧延荷重配分修正部1gから第iスタンドのギャップ補正値を入力する。同時に、ギャップ操作部1dは、目標板厚操作部1fにより補正された第iスタンドの板厚目標値を入力する。
 そして、ギャップ操作部1dは、目標板厚操作部1fにより補正された第iスタンドの板厚目標値と、第iスタンドの板厚実績再計算値を第iスタンドのギャップ補正値で補正した値と、の差をゼロにするためのロールギャップ操作値を第iスタンドへ出力する。第iスタンドの油圧シリンダー3cは、ロールギャップ操作値に基づいてロールギャップを変更する。
 次に、図8~図11を参照して、連続圧延システムの動作について説明する。図8は、連続圧延システムの制御タイミングを示す図である。図1と図8に基づいて、制御タイミングとその制御の詳細を説明する。
(制御タイミング8a:設定計算)
 8aは、最上流スタンド(第1スタンド)に被圧延材が到達する前のタイミングである。制御タイミング8aにおいて、設定計算が実行される。
 設定計算部1cは、操業指令入力部1bから、上述した被圧延材の母材情報および被圧延材の目標情報を入力する。設定計算部1cは、被圧延材の母材情報および被圧延材の目標情報に基づいて、少なくとも各スタンドのギャップ設定値と、各スタンドのロール周速度設定値を決定する。
 ギャップ操作部1dは、各スタンドのロールギャップとロール周速度をこれらの設定値に合わせるようにアクチュエータ制御信号(ロールギャップ操作値、ロール回転速度値)を圧延ライン20へ出力する。
 また、設定計算部1cは、圧延荷重配分修正部1gが必要とする2つのパラメータを計算する。2つのパラメータは、入側板厚影響係数Qと圧延荷重配分比目標値γ AIMである。
 入側板厚影響係数Qは、板厚の変化に対する圧延荷重の変化量を示す値であり、(9)式で表される。
Figure JPOXMLDOC01-appb-M000009
ここで、
:第iスタンドの入側板厚影響係数
 圧延荷重配分比目標値γ AIMは、各スタンドの圧延荷重の目標比率を表す。圧延荷重配分比目標値γ AIMは、例えば、(10)式のように、設定計算部1cがロールギャップを決定する際に予測した圧延荷重を用いて決定される。
Figure JPOXMLDOC01-appb-M000010
ここで、
Pre:第iスタンドの圧延荷重予測値[kN]
γ AIM:第iスタンドの圧延荷重配分比目標値[-]
 入側板厚影響係数Qと圧延荷重配分比目標値γ AIMは、後述する圧延荷重配分修正部1g(目標板厚補正値計算部1h)による目標板厚補正値ΔhBAL(i)の計算に使用される。
 制御タイミング8aの後、圧延ライン20の上流側から被圧延材2bが搬送され、圧延が開始される。
 実績収集部1eは、圧延開始から圧延終了まで、各スタンドの圧延荷重実績値、各スタンドのロール回転速度実績値、最終スタンド出側の板厚計測値などの計測されたデータを収集し続ける。
 目標板厚操作部1fは、圧延中に、板厚計測値と最終スタンドの板厚目標値とに差がある場合は、その差をゼロにするように各スタンド(第1スタンド~第N-1スタンド)の板厚目標値を変更する。変更された板厚目標値は、ギャップ操作部1dへ出力される。
 ギャップ操作部1dは、圧延中に、各スタンドの板厚目標値と、各スタンドの板厚実績再計算値との差をゼロにするためのロールギャップ操作値を圧延ライン20(油圧シリンダー3c)へ出力する。油圧シリンダー3cは、ロールギャップ操作値に基づいてロールギャップを変更する。
(制御タイミング8b:補正基準ギャップ誤差の計算)
 8bは、被圧延材2bの先端が最上流スタンドから順に最終スタンドまで通板し、さらに板厚計2cまで到達したタイミングである。
 制御タイミング8bにおいて、マスフロー厚補正部1iは、各スタンドの補正基準ギャップ誤差を計算する。補正基準ギャップ誤差は、被圧延材2bの先端が第iスタンド(1≦i≦N)に到達したときのギャップ誤差(先端ギャップ誤差)である。
 具体的には、マスフロー厚補正部1iは、被圧延材2bの先端が第iスタンドを通過したときの板厚実績値と、第iスタンドの板厚実績再計算値との差に基づいて、各スタンドの補正基準ギャップ誤差SOFS(i)を計算する。
 板厚実績再計算値hGM(i)は(11)式のように計算される。
Figure JPOXMLDOC01-appb-M000011
ここで、
act:第iスタンドのギャップ実績値[mm]
act:第iスタンドの圧延荷重実績値[kN]
α:第iスタンドのオフセット値(例えばギャップ学習値)[mm]
 また、スタンド出側に板厚計が設置されている場合、板厚実績値hMF(i)は、板厚計による計測値である。スタンド出側に板厚計が設置されていない場合、板厚実績値hMF(i)は、(12)式に示すように、ロール周速度実績値と、最終スタンド出側の板厚計測値と、先進率とから計算される。
Figure JPOXMLDOC01-appb-M000012
ここで、
ACT(i):第iスタンドのロール周速度実績値[mm]
MES(N):第Nスタンド(最終スタンド)出側の板厚計測値[mm]
fsACAL(i):第iスタンドの先進率[-]
 ここで、ロール周速度実績値は、全スタンド同じ時間に収集されたものである。板厚計測値は、最終スタンド出側に設置された板厚計2cの計測値である。先進率fsACAL(i)は、ロール周速度とロール出側圧延材速度との比で、少なくとも、スタンドの板厚変化量と入側板厚との比で示される圧下率によって変化する。
Figure JPOXMLDOC01-appb-M000013
 板厚実績値が変化すれば、先進率が変化し、また、先進率が変化すると、板厚実績値が変化するので、収束計算を行うことで上記板厚実績値を求めることができる。
 以上説明したように、板厚実績再計算値は(11)式から計算できる。板厚実績値は(12)式と(13)式との収束計算によって求めることができる。そのため、補正基準ギャップ誤差SOFS(i)は、(14)式のように計算できる。
Figure JPOXMLDOC01-appb-M000014
(14)式のhGM_hd(i)は、(15)式で表される。
Figure JPOXMLDOC01-appb-M000015
ここで、
GM_hd(i):第iスタンドにおける被圧延材先端の板厚実績再計算値[mm]
act_hd:第iスタンドにおける被圧延材先端のギャップ実績値[mm]
act_hd:第iスタンドにおける被圧延材先端の圧延荷重実績値[mm]
α:第iスタンドのオフセット値(例えばギャップ学習値)[mm]
(14)式のhMF_hd(i)は、(16)式で表される。
Figure JPOXMLDOC01-appb-M000016
(16)式のfsACAL_hd(i)は、(17)式で表される。
Figure JPOXMLDOC01-appb-M000017
ここで、
MF_hd(i):第iスタンドにおける被圧延材先端の板厚実績値[mm]
ACT_hd(i):第iスタンドにおける被圧延材先端のロール周速度(8bのタイミングで収集される)[m/s]
MES_hd(N):第Nスタンド(最終スタンド)出側における被圧延材先端の板厚計測値[mm]
fsACAL_hd(i):第iスタンドの先進率[-]
(制御タイミング8c:ギャップ補正値および目標板厚補正値の計算)
 近年薄いサイズのコイルが製造されるようになった。薄いサイズの圧延では、急激なギャップの変化によって、急激な荷重変化および速度バランスの変化を生じた際、形状の乱れやスタンド間張力の低下により圧延が不安定となり、板が破断するなどの重篤なトラブルが発生しやすい。そのため、圧延材の通板直後およびサイズ変更直後などに、急激にギャップを変化させるのは好ましくない。
 このような理由から、板厚計測開始直後は、先端非定常部の圧延であるため、圧延荷重配分制御は行わない。圧延荷重配分修正部1gは、例えば、被圧延材2bの先端が板厚計2cに到達してから、LS[m]通過後に、圧延荷重配分制御を実行する。圧延荷重配分制御において、ギャップ補正値および目標板厚補正値が計算される。
 8cは、補正値の計算を開始する制御タイミングである。マスフロー厚補正部1iによるギャップ補正値の計算タイミングと、目標板厚補正値計算部1hによる目標板厚補正値の計算タイミングは、同時であってもどちらが先でも問題はない。ここでは、同時に計算している例を説明する。
 まず、ギャップ補正値の計算について説明する。マスフロー厚補正部1iは、各スタンドの板厚実績値と各スタンドの板厚実績再計算値との差に基づいて、各スタンドのギャップ補正値を計算する。
 まず、マスフロー厚補正部1iは、(11)式を用いて計算した板厚実績再計算値hGM(i)と、(12)式を用いて計算した板厚実績値hMF(i)とに基づいて、ギャップ誤差SEER(i)を計算する((18)式)。ギャップ誤差SEER(i)は、被圧延材2bの先端以外の部分が第iスタンドに到達したときの非先端ギャップ誤差である。
 さらに、マスフロー厚補正部1iは、(20)式を用いて、このギャップ誤差SEER(i)と、上述した補正基準ギャップ誤差SOFS(i)と比較することで、先端からのギャップ誤差の変化量を求める。マスフロー厚補正部1iは、ギャップ誤差の変化量をゼロにするためのギャップ補正値を計算する。マスフロー厚補正部1iは、(21)式に示すように調整ゲインをかけ、(22)式に示すように出力の最大値および最小値でリミットチェックを行ない、最終的なギャップ補正値ΔSCOMP(i)を決定する。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
ここで、
ΔSCOMP_Prev(i):第iスタンドの前回出力値(初期値は0)
β(i):第iスタンドの更新ゲイン[-]
SCOMP(i):第iスタンドの補正出力ゲイン[-]
ΔSCOMP_UL(i):第iスタンドのギャップ補正上限値[mm]
ΔSCOMP_LL(i):第iスタンドのギャップ補正下限値[mm]
ERR(i):第iスタンドのギャップ誤差[mm]
ΔSCOMP(i):第iスタンドのギャップ補正値[mm]
 式(23)に示す補正後の板厚実績再計算値hGM(i)は、(11)式で示す板厚実績再計算値hGM(i)から出力した上記ギャップ補正値ΔSCOMP(i)を差し引いた値である。
Figure JPOXMLDOC01-appb-M000023
 次に、目標板厚補正値の計算について説明する。目標板厚補正値計算部1hは、圧延荷重配分比実績値を圧延荷重配分比目標値γ AIMに近づけるために、現状の圧延荷重実績値P actと圧延荷重配分比目標値γ AIMとを比較して目標板厚補正値ΔhBAL(i)を算出する。例えば、目標板厚補正値ΔhBAL(i)は、以下の式を用いて計算される。
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
 係数Aは全スタンド共通である。Qおよびγ AIMは、設定計算部1cにより(9)式および(10)式を用いて予め算出される。ここで、(24)式のΔh BAL0は、(26)式に示すように最終スタンドFではゼロとして、後段スタンドから順に計算される。
Figure JPOXMLDOC01-appb-M000026
 目標板厚補正値計算部1hは、(27)式に示すように調整ゲインをかけ、(28)式に示すようにリミットチェックを行い、最終的な目標板厚補正値ΔhBAL(i)を決定する。
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
ここで、
ΔhBAL_Prev(i):第iスタンドの前回値(初期値=0)[mm]
ΔhBAL(i):第iスタンドの目標板厚補正値[mm]
β(i):第iスタンドの更新ゲイン(調整値、例えば0.3)(0≦β≦1.0)
BAL(i):第iスタンドの補正出力ゲイン(調整値、例えば0.5)(0≦GBAL(i)≦1.0)
 上記のように、圧延荷重配分制御を実行中において、マスフロー厚補正部1iは、各スタンドのギャップ補正値を計算し、目標板厚補正値計算部1hは、各スタンドの目標板厚補正値を計算する。
(制御タイミング8d:トラッキング機能を利用した、出側板厚目標値の補正と板厚実績再計算値の補正)
 次に、トラッキング部1jを用いて、上流側スタンドから順に、目標板厚補正値計算部1hが計算した上記目標板厚補正値は目標板厚操作部1fに、マスフロー厚補正部1iが計算した上記ギャップ補正値はギャップ操作部1dに、出力される。
 8dは、圧延荷重配分制御を実施中に、最上流スタンドのギャップ補正値および目標板厚補正値が出力される制御タイミングである。制御タイミング8dにおいて、最上流スタンドのギャップ補正値および目標板厚補正値が出力される。同時に、トラッキング部1jは、最上流スタンドに位置する被圧延材2b上に追跡点を定める。トラッキング部1jは、ロール回転速度実績値に基づいて追跡点をトラッキングする。圧延荷重配分修正部1gは、追跡点が下流側スタンドに到達したとき、当該下流側スタンドのギャップ補正値および目標板厚補正値を出力する。
 目標板厚操作部1fは、第iスタンドの板厚目標値を第iスタンドの目標板厚補正値で補正する。補正された板厚目標値は、ギャップ操作部1dへ出力される。
 ギャップ操作部1dは、目標板厚操作部1fにより補正された第iスタンドの板厚目標値と、第iスタンドの板厚実績再計算値を第iスタンドのギャップ補正値で補正した値((23)式)と、の差をゼロにするためのロールギャップ操作値を第iスタンドへ出力する。第iスタンドの油圧シリンダー3cは、ロールギャップ操作値に基づいてロールギャップを変更する。
 図9は、追跡点の位置に応じた補正値の出力タイミングについて説明するための図である。まず、第1スタンドF(最上流スタンド)のギャップ補正値ΔSCOMP(1)および目標板厚補正値ΔhBAL(1)が出力される(9a)。このとき、第1スタンドFに位置する被圧延材2bの部分を追跡点Aとする(9b)。追跡点Aが、第2スタンドFに到達したときに、第2スタンドFのギャップ補正値ΔSCOMP(2)および目標板厚補正値ΔhBAL(2)が出力される。以降、追跡点Aが下流側の第iスタンドに到達したとき、第iスタンドのギャップ補正値ΔSCOMP(i)および目標板厚補正値ΔhBAL(i)が出力される(9c)。トラッキング部1jは、追跡点Aが第Nスタンド(最終スタンド)出側の板厚計2cに到達するまでトラッキングする。なお、9aと9bの処理順序は逆でもよい。
(制御タイミング8e:制御のくりかえし)
 上述した圧延荷重配分制御によるギャップ補正値および目標板厚補正値の計算に応じてロールギャップが操作されると、圧延荷重実績値やスタンド間の張力検出値などに揺らぎが発生する。これらの揺らぎは制御の外乱になるため、圧延荷重配分修正部1gは、揺らぎがある程度収まるまでは補正値の再計算をせずに、一定時間経過後に補正値を再計算する。
 図8の8eは、追跡点が板厚計2cに到達してから一定時間t_slope経過後の制御タイミングである。例えば、制御タイミング8eにおいて、再び、ギャップ補正値および目標板厚補正値は決定され、操作対象の最上流スタンドの補正値を変更するのと同時に追跡点を作成し、上流側スタンドから順に補正値を変更する。以降、制御終了タイミングがくるまで制御を継続する。
(制御タイミング8f:制御終了)
 図8の8fは、圧延荷重配分制御を終了する制御タイミングである。被圧延材2bの尾端では、圧延が不安定になりやすいので、ギャップ補正値および目標板厚補正値を変更しない。例えば、尾端が操作対象の最上流スタンドを抜けるLE[m]前に位置するとき、圧延荷重配分修正部1gは、補正値の計算をせず、追跡点を生成しない。以降、圧延が終了するまで制御しない。
 本実施形態では、マスフロー厚補正部1iによるギャップ補正値の変更タイミングと、目標板厚補正値計算部1hによる目標板厚補正値の変更タイミングを同じタイミングとしたが、このタイミングをずらすこともできる。例えば、目標板厚補正値を変更してから数秒後に、ギャップ補正値を変更するようにすれば、ギャップと板厚変更のタイミングをずらすことができる。
(作用・効果)
 以上説明したように、圧延荷重配分制御装置10によれば、追跡点をトラッキングして上流側スタンドから順にギャップ補正値および目標板厚補正値を適用する。ギャップ補正値を適用してギャップ誤差の変化を抑制する。目標板厚補正値を適用して圧延荷重配分比実績値を圧延荷重配分比目標値に近づけるようにスタンド出側の板厚目標値を補正する。
これにより、連続圧延中において全スタンド間の実績圧延荷重比率を目標圧延荷重比率に一致させて、安定した圧延を確立できる。
 図10および図11を参照して、本実施形態における圧延荷重配分制御を適用した制御結果の一例について説明する。
 図10は上流側スタンドにおける被圧延材2bの全長にわたる制御結果を示す図である。図10に示す例は、圧延中に板厚実績値と板厚実績再計算値との差であるギャップ誤差が大きくなり(10a)、その後ミル入側温度が上昇した(10g)ケースである。図10の実線(4b,4c,7a,7b)は、圧延荷重配分制御を適用しなかった場合の制御結果を示す。一点鎖線(10b,10c,10d,10e,10f,10h)は、圧延荷重配分制御を適用した場合の制御結果を示す。
 まず、ギャップ誤差が大きくなった場合(10a)について説明する。
 板厚実績値7bと板厚実績再計算値7aとの差であるギャップ誤差が大きくなった場合(10a)、圧延荷重配分制御を適用しないと、圧延荷重実績値4bが急速に減少し、ギャップ実績値4cは増加する。
 一方、圧延荷重配分制御を適用すると、マスフロー厚補正部1iが(22)式に基づき、ギャップ誤差の変化量を小さくするためのギャップ補正値10bを計算する。すわなち、ギャップ補正値10bをマイナス方向に増加させることで、ギャップ操作部1dはロールギャップを小さくするように圧延スタンドを制御する。圧延荷重配分制御を適用した結果、ギャップ実績値10cが大きくなるのを抑制でき、圧延荷重実績値10dが急速に減少するのを防止できる。このとき、(23)式に基づく板厚実績再計算値10eは、圧延荷重配分制御を適用しない板厚実績再計算値7aと比べて減少が抑えられている。また、圧延荷重配分制御を適用した板厚実績値10fは、圧延荷重配分制御を適用しない板厚実績値7bと比べて増加が抑えられている。その結果、ギャップ誤差の変化量が小さくなっている。
 次に、ミル入側温度が上昇した場合(10g)について説明する。
 ミル入側温度4aが増加した場合(10g)、被圧延材2bの圧延に要する圧延荷重が小さくなる。そのため、圧延荷重配分制御を適用しない場合、圧延荷重実績値4bが小さくなる。仕上温度制御により最終スタンド出側温度が一定に保たれため、後段スタンドの圧延荷重の減少量は上流側スタンドほど大きくない。そのため、圧延荷重配分比は変化してしまう。
 一方、圧延荷重配分制御を適用した場合、全スタンドの圧延荷重実績値を比較し、圧延荷重配分比実績値が圧延荷重配分比目標値よりも小さくなっているスタンドについては、板厚目標値を小さくする目標板厚補正値10hが出力される。その結果、ギャップ操作部1dはロールギャップを小さくするように圧延スタンドを制御する。圧延荷重配分制御を適用した結果、ギャップ実績値10cが増加するのを防止でき、圧延荷重実績値10dが、減少するのを防止できる。
 図11は、圧延開始時と圧延終了前の圧延荷重実績値の例を示す図である。
 図11の(A)は、圧延開始時の各スタンドの圧延荷重実績値5aと、圧延荷重配分比目標値5bとを表したグラフである。圧延開始時は各スタンドの圧延荷重実績値5aから算出される圧延荷重配分比実績値は、圧延荷重配分比目標値5bと一致している。
 図11の(B)は圧延荷重配分制御を適用しなかった場合における圧延終了前の各スタンドの圧延荷重実績値を表したグラフである。圧延荷重配分制御を適用しない場合、圧延荷重配分比実績値を圧延荷重配分比目標値5bに保つように制御されないため、上流側スタンドの圧延荷重実績値11aは、ミル入側温度上昇に伴う上流側スタンドの圧延荷重実績値の減少が著しい。また、下流側スタンドの圧延荷重は、変化しないか、ギャップ誤差の影響を受けてかえって上昇することもある。
 図11の(C)は圧延荷重配分制御を適用した場合における圧延終了前の各スタンドの圧延荷重実績値を表したグラフである。圧延荷重配分制御を適用した場合、上流側スタンドの板厚目標値を小さくして、上流側スタンドの圧延荷重実績値11bの減少を抑えることができる。各スタンドの板厚目標値を補正することで、圧延荷重配分比実績値を圧延荷重配分比目標値に保つことができる。
実施の形態2.
 図12は、本発明の実施の形態2に係る連続圧延システムのシステム構成を説明するための図である。実施の形態2に係る圧延荷重配分制御装置10は、上述した図1に示す構成に加え、ギャップ操作端介入部12aを備える。ギャップ操作端介入部12aは、オペレータによる介入信号に基づいてロールギャップ操作値を変更する。すなわち、ギャップ操作端介入部12aによれば、オペレータはロールギャップを直接操作できる。
 ギャップ操作端介入部12aによるロールギャップ操作値の変更があった場合、一旦、上述した圧延荷重配分制御によるギャップ補正値および目標板厚補正値の変更は中止される。介入終了後から数秒後に、圧延荷重配分目標値は新たに決め直され、圧延荷重配分制御による補正値の変更は再開される。
 図13は、ギャップ介入後の圧延荷重配分制御について説明するための図である。オペレータによりロールギャップ操作値が変更されるギャップ介入(13a)があった場合、ギャップ変化によりスタンド間の張力が変化し、荷重実績値に揺らぎが発生する。そのため、圧延荷重配分制御装置10は、圧延荷重配分制御を中止し、ギャップ介入後t_gi秒間は補正値を変更せず、追跡点も生成しない。
 圧延荷重配分制御装置10は、t_gi秒経過して圧延荷重配分制御を開始する直前に、ギャップ介入後の圧延荷重実績値から、圧延荷重配分比実績値を計算する。さらに、圧延荷重配分制御装置10は、この圧延荷重配分比実績値を新たな圧延荷重配分比目標値とする。その後、圧延荷重配分制御による補正値の計算は再開される(13b)。
Figure JPOXMLDOC01-appb-M000030
ここで、
Act:制御再開前の第iスタンドの圧延荷重実績値[kN]
γ AIM:第iスタンドの圧延荷重配分比目標値[-]
 図14は、ギャップ介入時の圧延荷重配分比目標値の修正例を説明するための図である。この例では最上流スタンドのロールギャップを大きくして、圧延荷重実績値を減少させている。ギャップ介入は、スタンド間の板形状やスタンドの調子が悪いときに行われるので、ギャップ介入後の新たな圧延荷重配分比目標値は、14aに示すように、ギャップ介入により変化した圧延荷重実績値に基づき決定される。この新たな圧延荷重配分比目標値を保つように圧延荷重配分制御は実行される。
 以上説明したように、ギャップ介入後一定時間、補正値は変更されず、状態が安定した後に新たな圧延荷重配分比目標値が決定され、圧延荷重配分制御が再開される。これによれば、圧延荷重配分が一定に保たれ、安定した圧延を確立できる。
実施の形態3.
 連続圧延システムは、圧延中に走間板厚変更(Flying Gauge Change:FGC)を実行可能である。走間板厚変更が実行されると、タンデム圧延機2による圧延を停止することなく、最終スタンド出側の板厚目標値である製品板厚の目標値が変更される。最終スタンド出側の板厚目標値に応じて、各スタンドの板厚目標値は変更される。各スタンドの板厚目標値を達成するように上流側スタンドから順番に各スタンドのロールギャップは変更される。
 図15は、走間板厚変更を実行する場合の連続圧延システムの制御タイミングを示す図である。走間板厚変更によるギャップ変更を行う前(15a)に、設定計算部1cは、走間板厚変更前の各スタンドの圧延荷重配分比実績値(または板厚実績値)に基づき、走間板厚変更が安定して実行されるように、走間板厚変更後の各スタンドの板厚目標値を決める。また、設定計算部1cは、走間板厚変更後の圧延荷重を予測し、新たな圧延荷重配分比目標値を再設定する。
Figure JPOXMLDOC01-appb-M000031
ここで、
Pre_nxt:第iスタンドの板厚変更後の圧延荷重予測値[kN]
γ AIM:第iスタンドの圧延荷重配分比目標値[-]
 また、入側板厚影響係数Qiは更新される。
Figure JPOXMLDOC01-appb-M000032
ここで、
nxt(i):走間板厚変更後の第iスタンドの入側温度[deg C]
nxt(i):走間板厚変更後の第iスタンドの出側板厚[mm]
nxt(i):走間板厚変更後の第iスタンドのロール周速度[m/s]
 圧延荷重配分制御装置10は、走間板厚変更を実行する前の補正基準ギャップ誤差を記憶する。走間板厚変更中はロールギャップが急激に動かされるので、この前後では、圧延荷重配分制御は実行されない。すなわち、走間板厚変更を実行する前に、ギャップ補正値および目標板厚補正値の計算は中断される。例えば、最上流スタンドのロールギャップを変更するLE[m]前から補正値は変更されない。さらに、各スタンドのロールギャップが変更され、その変更された被圧延材2bの位置が板厚計2cを通過してからLS[m]通過後まで補正値は変更されない(15b)。
 (31)式による新たな圧延荷重配分比目標値は、圧延荷重配分制御を再開する前に更新される(15c)。
 また、走間板厚変更後は、圧延状況が変化しているため、板厚実績値と板厚実績再計算値との差が急激に変化することがある。この差に基づき、急激に補正値が変化した結果、ロールギャップを大きく変えてしまうと、圧延が不安定になるおそれがある。
 この急激な変化を避けるために、圧延荷重配分制御装置10は、走間板厚変更後の補正基準ギャップ誤差を計算する。具体的には、(35)式に示すように、圧延荷重配分制御装置10は、走間板厚変更後のギャップ誤差と走間板厚変更前のギャップ誤差との差を、走間板厚変更前の補正基準ギャップ誤差に加算して、走間板厚変更後の補正基準ギャップ誤差を計算する。これにより補正基準ギャップ誤差は更新される。補正基準ギャップ誤差が更新された後に、圧延荷重配分制御が再開され、ギャップ補正値および目標板厚補正値の計算が再開される。
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000035
ここで、
ofs_PREV(i):走間板厚変更前の第iスタンドのオフセット値[mm]
GM_FGC(i):走間板厚変更後の第iスタンドの板厚実績再計算値[mm]((11)式を用いて、15dのタイミングで計算)
MF_FGC(i):走間板厚変更後の第iスタンドの板厚実績値[mm]((12)式を用いて、15dのタイミングで計算)
ERR_PREV(i):走間板厚変更前の第iスタンドのギャップ誤差[mm]((19)式を用いて、15eのタイミングで計算)
 以上説明したように、本実施形態の制御によれば、走間板厚変更によって板厚が変更され、新たな圧延荷重配分比目標値が与えられた場合に、圧延荷重配分比実績値を新たな目標圧延荷重配分比に一致させることができる。
 上記例では1回の走間板厚変更について説明した。しかし、圧延中に何度も走間板厚変更が実行される場合であっても、上記例と同様に制御可能である。
実施の形態4.
 実施の形態4に係る圧延荷重配分制御装置は、被圧延材2bの種類およびサイズに応じて、圧延荷重配分制御における補正値の計算に用いる制御ゲインを変更する。
 設定計算部1cは、操業指令入力部1bから被圧延材2bの種類・サイズ情報を入力する。設定計算部1cは、種類・サイズ情報に基づいて、圧延荷重配分制御の使用・不使用を決定する。
 設定計算部1cは、被圧延材2bの種類およびサイズと制御ゲインとの関係を定めたテーブルを予め記憶している。図16は、テーブルの設定例を示す図である。圧延荷重配分制御を使用する場合、設定計算部1cは、テーブルから種類・サイズ情報16aに対応するパラメータ値を取得する。設定計算部1cは、このパラメータ値を制御ゲインとして圧延荷重配分修正部1gへ送信する。
 圧延荷重配分修正部1gは、ギャップ補正値および目標板厚補正値の計算において、この制御ゲインを用いる((21)式、(27)式)。
 本実施形態によれば、ギャップ補正値および目標板厚補正値の計算に、被圧延材2bの種類・サイズ情報に応じた最適の制御ゲインを適用できる。
実施の形態5.
 圧延中にスタンド出側の板形状を安定させるため、各スタンドは、板形状を制御する形状制御装置(アクチュエータ)が備えている。例えば、ベンディング装置は、ワークロール端に圧力をかけることでロールの撓みを補正することで、板形状を制御できる。また、ワークロールシフト装置は、初期カーブがつけられたワークロールをシフトさせてロールギャップの幅方向分布を変更することで、板形状を制御できる。
 ところで、板形状の制御は、スタンドの圧延荷重を変更させてロールの撓みを変化させることによっても可能である。そこで、本実施形態では、形状制御装置の出力がリミットに達した場合に、そのスタンドの圧延荷重配分比を変更して圧延荷重を変化させることで、板形状を補正することとした。
 例えば、ベンディング装置およびワークロールシフト装置の出力が限界値に達した第iスタンドの圧延荷重配分比が修正される。ベンディング力を大きくすると、ロール端部を開く方向に圧力がかかるので、ロール端部の板厚変化量は小さくなる。一方、圧延荷重を小さくすれば、ロールの撓みが小さくなるので、板端部の板厚変化量は小さくなる。そこで、圧延中にロールベンディング力が機構上または操業上の最大値に達した場合、そのスタンドの圧延荷重配分比を小さくして、新たな圧延荷重配分比目標値を決定する。
Figure JPOXMLDOC01-appb-M000036
ここで、
Δγ:圧延荷重配分比変更量[-]
 このように、圧延荷重配分制御装置10は、形状制御装置の出力が上限値に達した場合は前記出力を減少させる方向に、形状制御装置の出力の下限値に達した場合は前記出力を増加させる方向に、形状制御装置を有するスタンドの圧延荷重配分比目標値を変更する。このような制御によれば、形状制御装置の出力が限界値に達したとしても、圧延荷重配分比目標値を変化させることで、板形状を改善することができる。
実施の形態6.
 実施の形態3において、急激な変化を避けるために、FGC中に生じたギャップ誤差を積算・記憶した。ギャップ誤差SOFS(i)を徐々にギャップ補正値ΔSCOMP(i)に振り替えることで、走間板厚変更による板厚変更中に生じたギャップ誤差を時間経過に伴って段階的に小さくできる。
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000040
ここで、
α(i):振替ゲイン(調整値、例えば0.1)(0≦β≦1.0)
 圧延荷重配分制御装置10は、振替ゲインα(i)を含む上記の式を使用して、FGC中に生じたギャップ誤差SOFS(i)を小さくし、小さくした分をギャップ補正値ΔSCOMP(i)に振り替える。これにより、板厚実績値と板厚実績再計算値との差(ギャップ誤差)を小さくできる。
(ハードウェア構成例)
 図17は、上述した各実施の形態の圧延荷重配分制御装置10が有する処理回路のハードウェア構成例を示す概念図である。上述した各機能は処理回路により実現される。一態様として、処理回路は、少なくとも1つのプロセッサ91と少なくとも1つのメモリ92とを備える。他の態様として、処理回路は、少なくとも1つの専用のハードウェア93を備える。
 処理回路がプロセッサ91とメモリ92とを備える場合、各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、メモリ92に格納される。プロセッサ91は、メモリ92に記憶されたプログラムを読み出して実行することにより、各機能を実現する。
 処理回路が専用のハードウェア93を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、又はこれらを組み合わせたものである。各機能は処理回路で実現される。
 以上、本発明の実施の形態について説明したが、本発明は、上記の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。各実施の形態の構成は、組み合わせることもできる。
1b      操業指令入力部
1c      設定計算部
1d      ギャップ操作部
1e      実績収集部
1f      目標板厚操作部
1g      圧延荷重配分修正部
1h      目標板厚補正値計算部
1i      マスフロー厚補正部
1j      トラッキング部
2      タンデム圧延機
2a      圧延スタンド
2b      被圧延材
2c      板厚計
3a      ワークロール
3b      バックアップロール
3c      油圧シリンダー
3d      ロードセル
3e      エンコーダー
4a      ミル入側温度
4b      圧延荷重実績値
4c      ギャップ実績値
4d      出側板厚
5a      圧延荷重実績値
5b      圧延荷重配分比目標値
5c      圧延荷重配分比実績値
7a      板厚実績再計算値
7b      板厚実績値
10      圧延荷重配分制御装置
10b      ギャップ補正値
10c      ギャップ実績値
10d      圧延荷重実績値
10e      板厚実績再計算値
10f      板厚実績値
10h      目標板厚補正値
11a、11b    圧延荷重実績値
12a      ギャップ操作端介入部
16a      種類・サイズ情報
20      圧延ライン
91      プロセッサ
92      メモリ
93      ハードウェア

Claims (7)

  1.  一本の被圧延材を連続圧延している途中で製品仕様を変更する連続圧延システムであって、
     複数の圧延スタンドを有し、前記複数の圧延スタンドそれぞれはロールギャップ操作値に応じてロールギャップを制御する、タンデム圧延機と、
     前記タンデム圧延機の出側に設けられ、前記被圧延材の板厚を計測する板厚計と、
     前記複数の圧延スタンド間の実績圧延荷重比率を目標圧延荷重比率に一致させる圧延荷重配分制御装置と、を備え、
     前記圧延荷重配分制御装置は、
      前記複数の圧延スタンドそれぞれの板厚目標値と、前記複数の圧延スタンド間の前記目標圧延荷重比率を表す前記複数の圧延スタンドそれぞれの圧延荷重配分比目標値と、を決定する設定計算部と、
      前記複数の圧延スタンドそれぞれの圧延荷重実績値と、前記複数の圧延スタンドそれぞれの前記ロールギャップ操作値に基づいて計算された前記複数のスタンドそれぞれのロールギャップ実績値と、前記複数の圧延スタンドそれぞれのロール回転速度実績値と、前記板厚計により計測された板厚計測値と、を収集する実績収集部と、
      前記板厚計測値と前記複数の圧延スタンドそれぞれの前記ロール回転速度実績値とに基づいて前記複数の圧延スタンドそれぞれの板厚実績値を計算し、前記複数の圧延スタンドそれぞれの前記圧延荷重実績値と前記複数の圧延スタンドそれぞれの前記ロールギャップ実績値とに基づいて前記複数の圧延スタンドそれぞれの板厚実績再計算値を計算し、前記複数の圧延スタンドそれぞれの前記板厚実績値と前記複数の圧延スタンドそれぞれの前記板厚実績再計算値との差に基づいて前記複数の圧延スタンドそれぞれのギャップ誤差を計算し、前記複数の圧延スタンドそれぞれの前記ギャップ誤差を変化させないための前記複数の圧延スタンドそれぞれのギャップ補正値を計算する、マスフロー厚補正部と、
      前記複数の圧延スタンドそれぞれの前記圧延荷重実績値に基づいて前記複数の圧延スタンド間の前記実績圧延荷重比率を表す前記複数の圧延スタンドそれぞれの圧延荷重配分比実績値を計算し、前記複数の圧延スタンドそれぞれの前記圧延荷重配分比目標値と前記複数の圧延スタンドそれぞれの前記圧延荷重配分比実績値との差に基づいて前記複数のスタンドそれぞれの目標板厚補正値を計算する、目標板厚補正値計算部と、
      前記被圧延材上に定めた追跡点をトラッキングするトラッキング部と、
      前記追跡点が前記複数の圧延スタンドそれぞれに到達する時に、前記追跡点が到達する前記圧延スタンドである対象圧延スタンドの前記板厚目標値を前記対象圧延スタンドの前記目標板厚補正値で補正した値と、前記対象圧延スタンドの前記板厚実績再計算値を前記対象圧延スタンドの前記ギャップ補正値で補正した値と、の差をゼロにするための前記ロールギャップ操作値を前記対象圧延スタンドへ出力するギャップ操作部と、
     を備えることを特徴とする連続圧延システム。
  2.  前記ギャップ補正値は、前記被圧延材の先端が前記圧延スタンドに到達したときの前記ギャップ誤差である補正基準ギャップ誤差と、前記被圧延材の先端以外の部分が前記圧延スタンドに到達したときの前記ギャップ誤差である非先端ギャップ誤差と、の差をゼロにする補正値であること、
     を特徴とする請求項1に記載の連続圧延システム。
  3.  オペレータによる介入信号に基づいて前記ロールギャップ操作値を変更可能なギャップ操作端介入部を備え、
     前記圧延荷重配分制御装置は、
      前記変更されたロールギャップ操作値が前記タンデム圧延機に適用された後に収集された前記複数の圧延スタンドそれぞれの前記圧延荷重実績値に基づいて、前記複数の圧延スタンドそれぞれの前記圧延荷重配分比実績値を計算し、
      前記複数の圧延スタンドそれぞれの前記圧延荷重配分比目標値を前記複数の圧延スタンドそれぞれの当該圧延荷重配分比実績値で更新すること、
     を特徴とする請求項1又は2に記載の連続圧延システム。
  4.  前記圧延荷重配分制御装置は、
      前記タンデム圧延機による圧延を停止することなく前記タンデム圧延機の前記板厚目標値を変更する走間板厚変更を実行する前に、前記ギャップ補正値および前記目標板厚補正値の計算を中断し、
      前記走間板厚変更を実行する前の前記補正基準ギャップ誤差を記憶し、
      前記走間板厚変更のための前記圧延荷重配分比目標値を再設定し、
      前記走間板厚変更を実行した後の前記ギャップ誤差と前記走間板厚変更を実行する前の前記ギャップ誤差との差を、前記走間板厚変更を実行する前の前記補正基準ギャップ誤差に加算して、前記走間板厚変更を実行した後の前記補正基準ギャップ誤差を計算し、
      前記走間板厚変更を実行した後の前記補正基準ギャップ誤差を計算した後に、前記ギャップ補正値および前記目標板厚補正値の計算を再開すること、
     を特徴とする請求項2に記載の連続圧延システム。
  5.  前記圧延荷重配分制御装置は、
      前記被圧延材の種類およびサイズと制御ゲインとの関係を定めたテーブルを記憶し、
      前記テーブルから前記被圧延材の種類およびサイズに対応する前記制御ゲインを取得し、
     前記ギャップ補正値は、前記制御ゲインを乗じて計算され、
     前記目標板厚補正値は、前記制御ゲインを乗じて計算されること、
     を特徴とする請求項1乃至4のいずれか1項に記載の連続圧延システム。
  6.  前記圧延スタンドは、前記被圧延材の形状を制御するアクチュエータを備え、
     前記圧延荷重配分制御装置は、
      前記アクチュエータの出力が上限値に達した場合は前記出力を減少させる方向に、前記アクチュエータの出力の下限値に達した場合は前記出力を増加させる方向に、前記アクチュエータを有する前記圧延スタンドの前記圧延荷重配分比目標値を変更すること、
     を特徴とする請求項1乃至5のいずれか1項に記載の連続圧延システム。
  7.  前記圧延荷重配分制御装置は、
      前記走間板厚変更による板厚変更中に生じた前記ギャップ誤差を、時間経過に伴って段階的に小さくすること、
     を特徴とする請求項4に記載の連続圧延システム。
PCT/JP2020/042655 2020-11-16 2020-11-16 連続圧延システム WO2022102138A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2020/042655 WO2022102138A1 (ja) 2020-11-16 2020-11-16 連続圧延システム
JP2021573225A JP7151915B1 (ja) 2020-11-16 2020-11-16 連続圧延システム
KR1020227017057A KR20220085047A (ko) 2020-11-16 2020-11-16 연속 압연 시스템
US17/757,362 US20230011915A1 (en) 2020-11-16 2020-11-16 Continuous rolling system
CN202080079761.4A CN114829031B (zh) 2020-11-16 2020-11-16 连轧系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/042655 WO2022102138A1 (ja) 2020-11-16 2020-11-16 連続圧延システム

Publications (1)

Publication Number Publication Date
WO2022102138A1 true WO2022102138A1 (ja) 2022-05-19

Family

ID=81602152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042655 WO2022102138A1 (ja) 2020-11-16 2020-11-16 連続圧延システム

Country Status (5)

Country Link
US (1) US20230011915A1 (ja)
JP (1) JP7151915B1 (ja)
KR (1) KR20220085047A (ja)
CN (1) CN114829031B (ja)
WO (1) WO2022102138A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177223A (ja) * 1992-01-06 1993-07-20 Nippon Steel Corp タンデム圧延機の走間スケジュール調整方法
JP2001321813A (ja) * 2000-05-17 2001-11-20 Nkk Corp タンデム圧延機の負荷配分変更方法
JP2002205106A (ja) * 2001-01-05 2002-07-23 Nkk Corp タンデム圧延機の圧延負荷配分変更方法
JP2002224725A (ja) * 2001-01-29 2002-08-13 Nkk Corp タンデム圧延機の圧延負荷配分変更方法
JP2002331303A (ja) * 2001-05-10 2002-11-19 Nkk Corp タンデム圧延機の制御方法
JP2005088054A (ja) * 2003-09-18 2005-04-07 Toshiba Mitsubishi-Electric Industrial System Corp 連続圧延機の負荷配分制御装置
JP2009113109A (ja) * 2007-11-09 2009-05-28 Toshiba Mitsubishi-Electric Industrial System Corp 連続圧延機の負荷配分制御装置
JP2018134673A (ja) * 2017-02-23 2018-08-30 株式会社日立製作所 タンデム圧延ミル制御装置およびタンデム圧延ミル制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3270723B2 (ja) * 1996-12-02 2002-04-02 株式会社日立製作所 タンデム圧延機の通板制御方法および圧延制御システム
CN102858475B (zh) * 2010-04-21 2015-11-25 东芝三菱电机产业系统株式会社 板厚控制装置、板厚控制方法、板厚控制程序
JP6315818B2 (ja) * 2014-10-07 2018-04-25 株式会社日立製作所 タンデム圧延ミルの制御装置および制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177223A (ja) * 1992-01-06 1993-07-20 Nippon Steel Corp タンデム圧延機の走間スケジュール調整方法
JP2001321813A (ja) * 2000-05-17 2001-11-20 Nkk Corp タンデム圧延機の負荷配分変更方法
JP2002205106A (ja) * 2001-01-05 2002-07-23 Nkk Corp タンデム圧延機の圧延負荷配分変更方法
JP2002224725A (ja) * 2001-01-29 2002-08-13 Nkk Corp タンデム圧延機の圧延負荷配分変更方法
JP2002331303A (ja) * 2001-05-10 2002-11-19 Nkk Corp タンデム圧延機の制御方法
JP2005088054A (ja) * 2003-09-18 2005-04-07 Toshiba Mitsubishi-Electric Industrial System Corp 連続圧延機の負荷配分制御装置
JP2009113109A (ja) * 2007-11-09 2009-05-28 Toshiba Mitsubishi-Electric Industrial System Corp 連続圧延機の負荷配分制御装置
JP2018134673A (ja) * 2017-02-23 2018-08-30 株式会社日立製作所 タンデム圧延ミル制御装置およびタンデム圧延ミル制御方法

Also Published As

Publication number Publication date
KR20220085047A (ko) 2022-06-21
CN114829031B (zh) 2023-11-14
JPWO2022102138A1 (ja) 2022-05-19
CN114829031A (zh) 2022-07-29
US20230011915A1 (en) 2023-01-12
JP7151915B1 (ja) 2022-10-12

Similar Documents

Publication Publication Date Title
JPS6121729B2 (ja)
WO2022102138A1 (ja) 連続圧延システム
KR0148612B1 (ko) 쌍교차 압연기의 가역압연 제어방법
JP2803573B2 (ja) テーパー鋼板の製造方法
JP3521081B2 (ja) 熱間仕上げ圧延機における板幅制御方法
JP2002336906A (ja) 圧延機の制御方法および装置
JP2002172406A (ja) 圧延機の板厚補正方法
KR100660215B1 (ko) 연속 압연기의 압연롤 속도 제어 장치
JP3767832B2 (ja) 熱間圧延における板厚制御方法
JP5631233B2 (ja) 圧延機の板厚制御方法
US20240075509A1 (en) Reducing tensile force-induced changes in thickness during rolling
JPS6124082B2 (ja)
JP4091739B2 (ja) 板幅制御方法
JP3508672B2 (ja) 連続圧延法
JP7323799B2 (ja) 熱間圧延鋼板の製造方法及び圧延機
JP2022096790A (ja) 熱間圧延鋼帯の蛇行制御方法、蛇行制御装置及び熱間圧延設備
JP3935116B2 (ja) 圧延機の板厚制御装置
JP2950182B2 (ja) テーパー鋼板の製造方法
JP5700404B2 (ja) 板厚制御方法及び板厚制御装置
JPH0924404A (ja) 熱間連続圧延における板幅制御方法
JP3466523B2 (ja) 板厚制御方法
JP2002346616A (ja) 板厚制御方法
JP6520864B2 (ja) 圧延機の板厚制御方法および装置
JPS6347522B2 (ja)
JPH09248611A (ja) 連続式タンデム圧延機における板材の板厚制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021573225

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227017057

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961661

Country of ref document: EP

Kind code of ref document: A1