WO2022095098A1 - 一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法 - Google Patents

一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法 Download PDF

Info

Publication number
WO2022095098A1
WO2022095098A1 PCT/CN2020/128594 CN2020128594W WO2022095098A1 WO 2022095098 A1 WO2022095098 A1 WO 2022095098A1 CN 2020128594 W CN2020128594 W CN 2020128594W WO 2022095098 A1 WO2022095098 A1 WO 2022095098A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel state
transparent ceramic
waveguide structure
dip coating
gel
Prior art date
Application number
PCT/CN2020/128594
Other languages
English (en)
French (fr)
Inventor
张乐
姚庆
刘明源
陈东顺
邵岑
康健
王忠英
黄国灿
李明
费宾
程欣
周天元
李延彬
陈浩
Original Assignee
新沂市锡沂高新材料产业技术研究院有限公司
徐州凹凸光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新沂市锡沂高新材料产业技术研究院有限公司, 徐州凹凸光电科技有限公司 filed Critical 新沂市锡沂高新材料产业技术研究院有限公司
Publication of WO2022095098A1 publication Critical patent/WO2022095098A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Definitions

  • the invention relates to the technical field of preparation of transparent ceramic optical fibers, in particular to a preparation method of a waveguide structure laser transparent ceramic optical fiber based on the Isobam gel state dip coating technology.
  • fiber lasers generally use rare-earth element-doped glass fibers as the gain medium.
  • the basic principle is that under the action of pump light, the power density increases in the fiber, resulting in the "number inversion" of the laser energy level of the laser working material.
  • a laser oscillation output can be formed in the resonator.
  • Fiber lasers have a wide range of applications, including laser fiber optic communication, laser space telecommunication, industrial shipbuilding, automobile manufacturing, laser engraving, laser cutting, printing rolls, metal and non-metal drilling/cutting/welding, military defense security, Medical equipment and equipment, and can also be used as a pump source for other lasers.
  • the thermal conductivity of quartz glass is low (1.38W/(m K)), which leads to problems such as large thermal gradient, optical distortion, limited output power, and thermal lens effect during long-term operation.
  • Japan's Dr. Akio Ikesue prepared the world's first laser transparent ceramic in 1995, it has been found that the thermal conductivity of ceramic materials is as high as 11W/(m ⁇ K), which has better thermal management ability and can withstand higher power, so Compared with glass optical fibers, the good thermal properties of ceramics are very beneficial to application and promotion.
  • even ceramic fibers with obvious advantages must further improve their thermal management capabilities in structure.
  • the YAG-based multi-layer composite structure transparent ceramics are generally prepared by gel injection molding, the first layer of slurry is completely gelled and cured, and then other layers of slurry are poured, and then dried and degummed. , vacuum sintering, double-sided polishing, etc., such as CN 109053182 A, etc.
  • the purpose of the present invention is to provide a preparation method of a waveguide structure laser transparent ceramic fiber based on the Isobam gel state dip coating technology.
  • a preparation method of a waveguide structure laser transparent ceramic optical fiber based on the Isobam gel state dip coating technology comprising the following steps:
  • Step 1 Weigh the yttrium oxide (Y 2 O 3 ) powder, respectively, according to the stoichiometric ratio of each element in the Nd:YAG transparent ceramic material (Y 1-x Nd x ) 3 A1 5 O 12 , 0.01 ⁇ x ⁇ 0.04.
  • Alumina (Al 2 O 3 ) powder and neodymium oxide (Nd 2 O 3 ) powder are used as raw material powders;
  • Step 2 adding sintering aids, grinding balls, and anhydrous ethanol solvent to the weighed raw material powder to form a premixed liquid, and after stirring, put it into a ball-milling tank for mixing and ball-milling to obtain a mixed slurry;
  • Step 3 After the ball milling, the mixed slurry is dried and screened, and then transferred to a muffle furnace for calcination to obtain raw material powder for gel injection molding;
  • Step 4 Using PIBM gel system, using Isobam104 as a gelling agent to prepare ceramic slurry with a solid content of more than 45 vol.%, and performing vacuum defoaming treatment to obtain a core layer slurry;
  • Step 5 injecting the core layer slurry into the capillary glass tube, and forming a wet optical fiber blank with certain elasticity after natural gelation at room temperature;
  • Step 6 Soak the above-mentioned optical fiber wet blank in a gel state into YAG gel slurry containing Isobam104 gel with a solid content of more than 45 vol.% for a certain period of time to adjust the coating thickness. After the gel state is adhered, it is taken out to dry, and a YAG coating with a controllable thickness is obtained on the surface of the core layer;
  • Step 7 The green body after gel solidification is sequentially subjected to warm isostatic pressing, drying, debinding, vacuum sintering, and polishing to obtain a Nd:YAG laser transparent ceramic fiber with a waveguide structure.
  • the sintering aid is MgO and SiO 2 , the mass ratio of MgO and SiO 2 is 1:0.5-5, and the amount of the sintering aid is 0.5% of the total mass of the raw material powder;
  • the The grinding balls are high-purity alumina grinding balls, and the ball-to-material ratio is 1-3:1; the ball-milling speed is 120r/min-160r/min, and the ball-milling time is 24-36h.
  • the drying temperature is 40-100° C.
  • the drying time is 24-48 h.
  • the calcination temperature is 800-1000°C, and the holding time is 8-24h.
  • the injection adopts a pressure injection method; the inner diameter of the capillary glass tube is 0.5-1 mm.
  • the thickness of the YAG coating is 0.05-0.5 mm.
  • the temperature isostatic pressing process parameters are as follows: 5-20 min at 100-200 MPa at a temperature of 40-80°C.
  • the drying process parameters are: drying at a temperature of 100-120° C. for 4-8 hours.
  • the debinding process parameters are: at room temperature, the temperature is raised to 450°C at a heating rate of 0.5-2°C/min, and then heated to 800°C at a heating rate of 0.5-3°C/min, and Incubate at 800°C for 2-6h.
  • the vacuum sintering process parameters are: firstly, the temperature is raised from room temperature to 200°C at 5-10°C/min and kept for 10-30min, and then the temperature is raised to 1000°C at 10-20°C/min and kept at a temperature of 10-20°C. 10 ⁇ 30min, then heat up to 1650°C at 1 ⁇ 5°C/min and keep for 6 ⁇ 10h, and finally cool down to room temperature at 5 ⁇ 10°C/min, the vacuum degree is kept at 1 ⁇ 10 -2 ⁇ 1 ⁇ during the whole sintering process 10-5Pa .
  • the present invention has the following beneficial effects:
  • a preparation method of a waveguide structure laser transparent ceramic optical fiber based on the Isobam gel state dip coating technology provided by the present invention utilizes the "high solid content, high green strength" molding characteristics of gel injection molding combined with the advantages of coating technology , By accurately controlling the gel point in the gel state, the effective bonding of the core layer and the cladding ceramic material can be achieved, thereby meeting the high heat dissipation requirements of ultra-high power fiber lasers, and realizing the Nd:YAG laser transparent ceramic fiber with a waveguide structure. preparation.
  • a method for preparing a waveguide structure laser transparent ceramic optical fiber based on the Isobam gel state dip coating technology utilizes that the thermal conductivity of the cladding YAG is greater than the core layer Nd:YAG, and the gel state of the Isobam gel system is used.
  • the dip-coating technology under the new technology can realize the effective bonding of the core layer and the cladding ceramic material in the green body gel state, and the interface is clear, the process is simple and efficient, and the batch and industrial production can be realized.
  • the raw material powders used in the following examples are all high-purity powders with a purity of >99.99%, the particle size of the Y 2 O 3 powder is 100-500 nm, and the particle size of the Al 2 O 3 powder is 200-600 nm , the particle size of Nd 2 O 3 powder is 200-400 nm.
  • a preparation method of a waveguide structure laser transparent ceramic fiber based on the Isobam gel state dip coating technology which comprises the following steps:
  • Step 1 According to the stoichiometric ratio of each element in 1% Nd:YAG, respectively weigh 33.799g of high-purity nano-Y 2 O 3 powder, 25.692 g of high-purity nano-Al 2 O 3 powder, and high-purity Nd 2 O 3 powder Body 0.509g, pretreated for impurity removal;
  • Step 2 Use sintering aids SiO 2 0.2g and MgO 0.1g, high-purity Al 2 O 3 grinding balls 180g, absolute ethanol 72ml, put them into a ball mill after fully stirring, and mix the balls for 24h at a speed of 160r/min. Then the mixed slurry is obtained;
  • Step 3 After the ball milling, the mixed slurry is placed in a constant temperature oven at 40 °C for 48 hours, and then passed through a 100-mesh sieve. The sieved powder is calcined in a muffle furnace, heated from room temperature to 1000 °C, and kept for 8 hours. Natural cooling to obtain raw material powder for gel injection molding;
  • Step 4 Using the PIBM gel injection molding system, in 30g of deionized water, add 0.3g of Isobam104, adjust the pH to 11 with tetramethylammonium hydroxide, use 0.24g of ammonium citrate dispersant, and add 60g of raw material powder. Fully ball-milled to prepare a ceramic slurry with a solid content of 45 vol.%, and then defoamed with a vacuum defoamer to obtain a core layer slurry;
  • Step 5 Inject the core layer slurry into a capillary glass tube with an inner diameter of 0.5 mm by pressure injection, and gel naturally at room temperature to form a gel state and a certain elasticity of the optical fiber wet blank;
  • Step 6 After soaking the 1% Nd:YAG gel core layer in 45vol.% YAG ceramic slurry containing Isobam104 gelling agent for 30min, take it out and dry it, and obtain 0.05mm on the surface of the 1% Nd:YAG gel core layer YAG coating;
  • Step 7 Put the obtained green body of the waveguide structure at a temperature of 40 °C and a pressure of 200 MPa for 5 minutes for warm isostatic pressing, and then put it in a 100 °C oven for 8 hours; after drying, perform debinding treatment, starting from room temperature The heating rate was 2°C/min to 450°C, then the heating rate was 3°C/min to 800°C, and the temperature was maintained for 2 hours; finally, vacuum sintering, the room temperature was heated to 200°C at 10°C/min, held for 10 minutes, and then pressed at 10°C again.
  • Step 8 Polishing the vacuum sintered ceramic fiber to obtain a 1% Nd:YAG laser transparent ceramic fiber with a waveguide structure.
  • a preparation method of a waveguide structure laser transparent ceramic fiber based on the Isobam gel state dip coating technology which comprises the following steps:
  • Step 1 According to the stoichiometric ratio of each element in 4% Nd:YAG, respectively weigh 32.503 g of high-purity nano-Y 2 O 3 powder, 25.479 g of high-purity nano-Al 2 O 3 powder, and high-purity Nd 2 O 3 powder Body 2.018g, impurity removal pretreatment;
  • Step 2 using sintering aids SiO 2 of 0.25g and MgO of 0.05g, high-purity Al 2 O 3 grinding balls 180g, absolute ethanol 72ml, fully stirred and put into a ball mill tank, mixed ball milling at a rotational speed of 120r/min After 36 hours of uniformity, the mixed slurry was obtained;
  • Step 3 After the ball milling, the mixed slurry is placed in a constant temperature oven at 100 °C for 24 hours and then passed through a 150-mesh sieve. The sieved powder is calcined in a muffle furnace, heated from room temperature to 800 °C, and kept for 24 hours. Natural cooling to obtain raw material powder for gel injection molding;
  • Step 4 Using the PIBM gel injection molding system, in 23g of deionized water, add 0.3g of Isobam104, adjust the pH to 11 with tetramethylammonium hydroxide, use 0.3g of ammonium citrate dispersant, and add 60g of raw material powder. Fully ball-milled to prepare ceramic slurry with a solid content of 50 vol.%, and then defoamed with a vacuum defoamer to obtain the slurry required for the core layer;
  • Step 5 The slurry is injected into a capillary glass tube with an inner diameter of 1 mm by pressure injection, and it is naturally gelled at room temperature to form a wet optical fiber blank with a gel state and a certain elasticity;
  • Step 6 After soaking the 4% Nd:YAG gel core layer in 48vol.% YAG ceramic slurry containing Isobam104 gelling agent for 120min, take it out and dry it, and obtain 0.5mm on the surface of the 4% Nd:YAG gel core layer. YAG coating;
  • Step 7 Put the obtained green body of the waveguide structure at a temperature of 80 °C and a pressure of 100 MPa for 20 minutes for warm isostatic pressing, and then put it into a 120 °C oven for 4 hours; after drying, perform debinding treatment, starting from room temperature The heating rate was 0.5°C/min to 450°C, then the temperature was increased to 800°C at 0.5°C/min, and the temperature was kept for 6 hours; finally, vacuum sintering, the room temperature was heated to 200°C at 5°C/min, kept for 30 minutes, and then pressed at 20°C again.
  • Step 8 Polishing the vacuum sintered ceramic fiber to obtain a 4% Nd:YAG laser transparent ceramic fiber with a waveguide structure.
  • a preparation method of a waveguide structure laser transparent ceramic fiber based on the Isobam gel state dip coating technology which comprises the following steps:
  • Step 1 According to the stoichiometric ratio of 2% Nd:YAG, respectively weigh 33.364g of high-purity nano-Y 2 O 3 powder, 25.621g of high-purity nano-Al 2 O 3 powder, and 1.015g of high-purity Nd 2 O 3 powder , impurity removal preprocessing;
  • Step 2 Use sintering aids SiO 2 0.2g and MgO 0.1g, high-purity Al 2 O 3 grinding balls 180g, absolute ethanol 72ml, put them into a ball mill after fully stirring, and mix the balls for 30h at a speed of 140r/min. Then the mixed slurry is obtained;
  • Step 3 After the ball milling, the mixed slurry is placed in a constant temperature oven at 60°C for 36h and then passed through a 200-mesh sieve. The sieved powder is calcined in a muffle furnace, heated from room temperature to 900°C, and kept for 12h. Natural cooling to obtain raw material powder for gel injection molding;
  • Step 4 Using the PIBM gel injection molding system, in 25g of deionized water, add 0.3g of Isobam104, adjust the pH to 12 with tetramethylammonium hydroxide, use 0.24g of ammonium citrate dispersant, and add 60g of raw material powder. Fully ball-milled to prepare a ceramic slurry with a solid content of 48 vol.%, and then use a vacuum defoamer to perform defoaming treatment to obtain the slurry required for the core layer;
  • Step 5 The slurry is injected into a capillary glass tube with an inner diameter of 0.8 mm by means of pressure injection, and gels naturally at room temperature to form an optical fiber wet blank with a gel state and a certain elasticity;
  • Step 6 After soaking the 2% Nd:YAG gel core layer in 48vol.% YAG ceramic slurry containing Isobam104 gelling agent for 60min, take it out and dry it, and obtain 0.1mm on the surface of the 2% Nd:YAG gel core layer. YAG coating;
  • Step 7 Put the obtained green body of the waveguide structure at a temperature of 60 °C and a pressure of 150 MPa for 10 minutes for warm isostatic pressing, and then put it in a 110 °C oven for 6 hours; after drying, perform debinding treatment, starting from room temperature The heating rate was 1°C/min to 450°C, then the temperature was increased to 800°C at 1°C/min, and the temperature was kept for 4 hours; finally, vacuum sintering, the room temperature was heated to 200°C at 8°C/min, kept for 20 minutes, and then pressed at 15°C again.
  • Step 8 Polishing the vacuum sintered ceramic fiber to obtain a 2% Nd:YAG laser transparent ceramic fiber with a waveguide structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,利用凝胶成型技术制备Nd:YAG透明陶瓷光纤的芯层,再通过凝胶态的浸涂技术,在芯部凝胶态下(弹性模量和黏性模量相交点处)实现包层YAG透明凝胶浆料的涂覆,达到芯层和包层的有效黏连,并通过时间调节涂覆的厚度,最终通过温等静压和真空烧结实现波导结构激光透明陶瓷光纤的制备。通过在凝胶状态下,准确掌控凝胶点,实现芯层和包层陶瓷材料有效键合,且界面清晰,工艺简单高效,可实现批量化、工业化生产。

Description

一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法 技术领域
本发明涉及透明陶瓷光纤制备技术领域,具体涉及一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法。
背景技术
目前,光纤激光器一般采用掺稀土元素的玻璃光纤作为增益介质,基本原理是在泵浦光作用下光纤内形成了功率密度升高,造成激光工作物质的激光能级“粒子数反转”,在谐振腔内可形成激光振荡输出。光纤激光器其应用范围非常广泛,主要包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻、激光切割、印刷制辊、金属非金属钻孔/切割/焊接、军事国防安全、医疗器械仪器设备,亦可作为其他激光器的泵浦源等。
然而,石英玻璃的热导率较低(1.38W/(m·K)),导致在长时间工作时易出现热梯度变大、光学畸变、输出功率受限以及热透镜效应等问题。自1995年日本Akio Ikesue博士制备世界上首块激光透明陶瓷以来,人们发现陶瓷材料的热导率高达11W/(m·K),具有更好的的热管理能力可以承受更高的功率,因此相对于玻璃光纤,陶瓷热学性能好非常有利于应用推广。然而,为了发展更高功率和更强热鲁棒性的激光增益光纤,尤其是为了满足超高功率激光武器的应用需求,即使是优势明显的陶瓷光纤也必须从结构上进一步提高热管理能力。
因此,在结构优化设计已成为共识的背景下,对陶瓷光纤的结构设计、制备工艺提出了更高要求。虽然,日本Ikesue、美国空军实验室Kim、Fair以及专利CN 104451953 B、CN 111270347 A、CN 110885244 A等都对陶瓷光纤的制备开展了系统研究,但凝胶注模成型波导结构的激光陶瓷光纤未见相关专利报道。同时,在制备方法上,一般凝胶注模制备YAG基多层复合结构透明陶瓷的时候,都是在第一层浆料完全凝胶固化后再浇注其他层浆料,再进行干燥、排胶、真空烧结、双面抛光等处理,如CN 109053182 A等。
发明内容
本发明的目的是提供一种基于Isobam凝胶态浸涂技术的波导结构激光透明 陶瓷光纤的制备方法。
为实现上述目的,本发明采用的技术方案如下:一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,包括以下步骤:
步骤一、按照Nd:YAG透明陶瓷材料(Y 1-xNd x) 3A1 5O 12,0.01≤x≤0.04中各元素的化学计量比分别称量氧化钇(Y 2O 3)粉体、氧化铝(Al 2O 3)粉体、氧化钕(Nd 2O 3)粉体作为原料粉体;
步骤二、向称量好的原料粉体中加入烧结助剂、磨球、无水乙醇溶剂组成预混液,搅拌后放入球磨罐中混合球磨,得到混合浆料;
步骤三、球磨结束后将混合浆料烘干后过筛,再转移至马弗炉中煅烧,得到凝胶注模成型的原料粉;
步骤四、采用PIBM凝胶体系,以Isobam104为凝胶剂配制固含量45vol.%以上的陶瓷浆料,并进行真空除泡处理,得到芯层浆料;
步骤五、将芯层浆料注射到毛细玻璃管中,室温下自然凝胶后形成具有一定弹性的光纤湿坯;
步骤六、将上述光纤湿坯在凝胶状态下浸泡到含有Isobam104凝胶剂的固含量45vol.%以上的YAG凝胶浆料中一定时间调控涂覆厚度,当外层的浆料和芯层凝胶态黏连后取出晾干,在芯层表面得到可控厚度的YAG涂层;
步骤七、凝胶固化后的素坯依次经温等静压、干燥、排胶、真空烧结、抛光处理,得到具有波导结构的Nd:YAG激光透明陶瓷光纤。
优选地,步骤二中,所述烧结助剂为MgO和SiO 2,MgO和SiO 2的质量比为1:0.5~5,烧结助剂的加入量为原料粉体总质量的0.5%;所述磨球为高纯氧化铝磨球,球料比为1~3:1;球磨转速为120r/min~160r/min,球磨时间为24~36h。
优选地,步骤三中,所述烘干温度为40~100℃,烘干时间为24~48h。
优选地,步骤三中,所述煅烧温度为800~1000℃,保温时间为8~24h。
优选地,步骤五中,所述注射采用压力注射方法;所述毛细玻璃管内径是0.5~1mm。
优选地,步骤六中,所述YAG涂层厚度为0.05~0.5mm。
优选地,步骤七中,所述的温等静压工艺参数为:40~80℃温度下,100~ 200MPa下5~20min。
优选地,步骤七中,所述的干燥工艺参数为:100~120℃温度下干燥4~8h。
优选地,步骤七中,所述的排胶工艺参数为:室温下以升温速率为0.5~2℃/分钟升温到450℃,再以升温速率为0.5~3℃/分钟升温到800℃,并在800℃保温2~6h。
优选地,步骤七中,所述的真空烧结工艺参数为:首先按5~10℃/min从室温升温到200℃并保温10~30min,其次按10~20℃/min升温到1000℃并保温10~30min,然后按1~5℃/min升温到1650℃并保温6~10h,最后以5~10℃/min降温到室温,整个烧结过程中真空度保持在1×10 -2~1×10 -5Pa。
与现有技术相比,本发明具有如下有益效果:
1.本发明提供的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,利用了凝胶注模“高固含量、高素坯强度”成型特点结合涂覆技术优势,通过在凝胶状态下,准确掌控凝胶点,实现芯层和包层陶瓷材料有效键合,进而满足超高功率光纤激光器的高散热的要求,实现波导结构Nd:YAG激光透明陶瓷光纤的制备。
2.本发明提供的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤制备方法,利用包层YAG的热导率大于芯层Nd:YAG,并且通过Isobam凝胶体系凝胶态下的浸涂技术,在坯体凝胶状态下实现芯层和包层陶瓷材料有效键合,且界面清晰,工艺简单高效,可实现批量化、工业化生产。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明。
以下实施例中所使用的原料粉体均为高纯粉体,纯度>99.99%,所述的Y 2O 3粉体粒径为100~500nm,Al 2O 3粉体粒径为200~600nm,Nd 2O 3粉体粒径为200~400nm。
实施例1
一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,它包括以下步骤:
步骤一、按照1%Nd:YAG中各元素的化学计量比分别称量高纯纳米Y 2O 3粉体33.799g、高纯纳米Al 2O 3粉体25.692g、高纯Nd 2O 3粉体0.509g,除杂预 处理;
步骤二、使用烧结助剂SiO 2 0.2g和MgO 0.1g、高纯Al 2O 3磨球180g、无水乙醇72ml、充分搅拌后放入球磨罐中,以160r/min的转速混合球磨24h均匀后得到混合浆料;
步骤三、球磨结束后将混合浆料置于40℃恒温烘箱中烘48h后过100目筛,将过筛后的粉体置于马弗炉中煅烧,从室温升温到1000℃,保温8h后自然冷却,得到凝胶注模成型的原料粉;
步骤四、采用PIBM凝胶注模体系,在30g的去离子水中,加入Isobam104 0.3g,用四甲基氢氧化铵调节pH到11,采用柠檬酸铵分散剂0.24g,并加入原料粉60g后充分球磨,制备固含量为45vol.%的陶瓷浆料,再用真空除泡机进行除泡处理后得到芯层浆料;
步骤五、将芯层浆料通过压力注射的方式注入到内径为0.5mm的毛细玻璃管中,室温下自然凝胶,形成具有凝胶态、且有一定弹性的光纤湿坯;
步骤六、将1%Nd:YAG凝胶芯层浸泡在含有Isobam104凝胶剂的45vol.%YAG陶瓷浆料30min后,取出后晾干,在1%Nd:YAG凝胶芯层表面得到0.05mm的YAG涂层;
步骤七、将得到的波导结构的素坯置于温度40℃,200MPa压力下温等5min进行温等静压处理,然后放入100℃烘箱中保温8h;干燥后进行排胶处理,从室温开始以2℃/min升温速度到450℃,再以3℃/min升温速度到800℃,并保温2h;最后真空烧结,室温开始以10℃/min升温到200℃,保温10min,再次按10℃/min升温到1000℃并保温10min,然后按5℃/min升温到1650℃并保温6h,最后以5℃/min降温到室温,整个烧结过程中真空度保持在1×10 -2Pa;
步骤八、将真空烧结后的陶瓷光纤进行抛光处理,得到具有波导结构的1%Nd:YAG激光透明陶瓷光纤。
实施例2
一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,它包括以下步骤:
步骤一、按照4%Nd:YAG中各元素的化学计量比分别称量高纯纳米Y 2O 3 粉体32.503g、高纯纳米Al 2O 3粉体25.479g、高纯Nd 2O 3粉体2.018g,除杂预处理;
步骤二、使用烧结助剂SiO 2为0.25g和MgO为0.05g、高纯Al 2O 3磨球180g、无水乙醇72ml、充分搅拌后放入球磨罐中,以120r/min的转速混合球磨36h均匀后得到混合浆料;
步骤三、球磨结束后将混合浆料置于100℃恒温烘箱中烘24h后过150目筛,将过筛后的粉体置于马弗炉中煅烧,从室温升温到800℃,保温24h后自然冷却,得到凝胶注模成型的原料粉;
步骤四、采用PIBM凝胶注模体系,在23g的去离子水中,加入Isobam104 0.3g,用四甲基氢氧化铵调节pH到11,采用柠檬酸铵分散剂0.3g,并加入原料粉60g后充分球磨,制备固含量为50vol.%的陶瓷浆料,再用真空除泡机进行除泡处理后得到芯层所需的浆料;
步骤五、将此浆料通过压力注射的方式注入到内径为1mm的毛细玻璃管中,室温下自然凝胶,形成具有凝胶态、且有一定弹性的光纤湿坯;
步骤六、将4%Nd:YAG凝胶芯层浸泡在含有Isobam104凝胶剂的48vol.%YAG陶瓷浆料120min后,取出后晾干,在4%Nd:YAG凝胶芯层表面得到0.5mm的YAG涂层;
步骤七、将得到的波导结构的素坯置于温度80℃,100MPa压力下温等20min进行温等静压处理,然后放入120℃烘箱中保温4h;干燥后进行排胶处理,从室温开始以0.5℃/min升温速度到450℃,再以0.5℃/min升温速度到800℃,并保温6h;最后真空烧结,室温开始以5℃/min升温到200℃,保温30min,再次按20℃/min升温到1000℃并保温30min,然后按1℃/min升温到1650℃并保温10h,最后以10℃/min降温到室温,整个烧结过程中真空度保持在1×10 -5Pa;
步骤八、将真空烧结后的陶瓷光纤进行抛光处理,得到具有波导结构的4%Nd:YAG激光透明陶瓷光纤。
实施例3
一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,它包括以下步骤:
步骤一、按照2%Nd:YAG的化学计量比分别称量高纯纳米Y 2O 3粉体33.364g、高纯纳米Al 2O 3粉体25.621g、高纯Nd 2O 3粉体1.015g,除杂预处理;
步骤二、使用烧结助剂SiO 2 0.2g和MgO 0.1g、高纯Al 2O 3磨球180g、无水乙醇72ml、充分搅拌后放入球磨罐中,以140r/min的转速混合球磨30h均匀后得到混合浆料;
步骤三、球磨结束后将混合浆料置于60℃恒温烘箱中烘36h后过200目筛,将过筛后的粉体置于马弗炉中煅烧,从室温升温到900℃,保温12h后自然冷却,得到凝胶注模成型的原料粉;
步骤四、采用PIBM凝胶注模体系,在25g的去离子水中,加入Isobam104 0.3g,用四甲基氢氧化铵调节pH到12,采用柠檬酸铵分散剂0.24g,并加入原料粉60g后充分球磨,制备固含量为48vol.%的陶瓷浆料,再用真空除泡机进行除泡处理后得到芯层所需的浆料;
步骤五、将此浆料通过压力注射的方式注入到内径为0.8mm的毛细玻璃管中,室温下自然凝胶,形成具有凝胶态、且有一定弹性的光纤湿坯;
步骤六、将2%Nd:YAG凝胶芯层浸泡在含有Isobam104凝胶剂的48vol.%YAG陶瓷浆料60min后,取出后晾干,在2%Nd:YAG凝胶芯层表面得到0.1mm的YAG涂层;
步骤七、将得到的波导结构的素坯置于温度60℃,150MPa压力下温等10min进行温等静压处理,然后放入110℃烘箱中保温6h;干燥后进行排胶处理,从室温开始以1℃/min升温速度到450℃,再以1℃/min升温速度到800℃,并保温4h;最后真空烧结,室温开始以8℃/min升温到200℃,保温20min,再次按15℃/min升温到1000℃并保温20min,然后按3℃/min升温到1650℃并保温8h,最后以7℃/min降温到室温,整个烧结过程中真空度保持在1×10 -3Pa;
步骤八、将真空烧结后的陶瓷光纤进行抛光处理,得到具有波导结构的2%Nd:YAG激光透明陶瓷光纤。

Claims (10)

  1. 一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,包括以下步骤:
    步骤一、按照Nd:YAG透明陶瓷材料(Y 1-xNd x) 3A1 5O 12,0.01≤x≤0.04中各元素的化学计量比分别称量氧化钇粉体、氧化铝粉体、氧化钕粉体作为原料粉体;
    步骤二、向称量好的原料粉体中加入烧结助剂、磨球、无水乙醇溶剂组成预混液,搅拌后放入球磨罐中混合球磨,得到混合浆料;
    步骤三、球磨结束后将混合浆料烘干后过筛,再转移至马弗炉中煅烧,得到凝胶注模成型的原料粉;
    步骤四、采用PIBM凝胶体系,以Isobam104为凝胶剂配制固含量45vol.%以上的陶瓷浆料,并进行真空除泡处理,得到芯层浆料;
    步骤五、将芯层浆料注射到毛细玻璃管中,室温下自然凝胶后形成具有一定弹性的光纤湿坯;
    步骤六、将上述光纤湿坯在凝胶状态下浸泡到含有Isobam104凝胶剂的固含量45vol.%以上的YAG凝胶浆料中一定时间调控涂覆厚度,当外层的浆料和芯层凝胶态黏连后取出晾干,在芯层表面得到可控厚度的YAG涂层;
    步骤七、凝胶固化后的素坯依次经温等静压、干燥、排胶、真空烧结、抛光处理,得到具有波导结构的Nd:YAG激光透明陶瓷光纤。
  2. 根据权利要求1所述的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,步骤二中,所述烧结助剂为MgO和SiO 2,MgO和SiO 2的质量比为1:0.5~5,烧结助剂的加入量为原料粉体总质量的0.5%;所述磨球为高纯氧化铝磨球,球料比为1~3:1;球磨转速为120r/min~160r/min,球磨时间为24~36h。
  3. 根据权利要求1所述的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,步骤三中,所述烘干温度为40~100℃,烘干时间为24~48h。
  4. 根据权利要求1所述的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,步骤三中,所述煅烧温度为800~1000℃,保温时间为8~24h。
  5. 根据权利要求1所述的一种基于Isobam凝胶态浸涂技术的波导结构激光 透明陶瓷光纤的制备方法,其特征在于,步骤五中,所述注射采用压力注射方法;所述毛细玻璃管内径是0.5~1mm。
  6. 根据权利要求1所述的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,步骤六中,所述YAG涂层厚度为0.05~0.5mm。
  7. 根据权利要求1所述的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,步骤七中,所述的温等静压工艺参数为:40~80℃温度下,100~200MPa下5~20min。
  8. 根据权利要求1所述的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,步骤七中,所述的干燥工艺参数为:100~120℃温度下干燥4~8h。
  9. 根据权利要求1所述的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,步骤七中,所述的排胶工艺参数为:室温~450℃升温速度为0.5~2℃/min,450~800℃升温速度为0.5~3℃/min,在800℃保温2~6h。
  10. 根据权利要求1所述的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,步骤七中,所述的真空烧结工艺参数为:首先按5~10℃/min从室温升温到200℃并保温10~30min,其次按10~20℃/min升温到1000℃并保温10~30min,然后按1~5℃/min升温到1650℃并保温6~10h,最后以5~10℃/min降温到室温,整个烧结过程中真空度保持在1×10 -2~1×10 -5Pa。
PCT/CN2020/128594 2020-11-09 2020-11-13 一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法 WO2022095098A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011239660.7 2020-11-09
CN202011239660.7A CN112341184B (zh) 2020-11-09 2020-11-09 一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法

Publications (1)

Publication Number Publication Date
WO2022095098A1 true WO2022095098A1 (zh) 2022-05-12

Family

ID=74428625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128594 WO2022095098A1 (zh) 2020-11-09 2020-11-13 一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法

Country Status (2)

Country Link
CN (1) CN112341184B (zh)
WO (1) WO2022095098A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010486A (zh) * 2022-07-14 2022-09-06 中钢集团洛阳耐火材料研究院有限公司 一种高纯氧化锆耐火陶瓷的近净成型制备方法
CN115925409A (zh) * 2023-01-06 2023-04-07 江苏师范大学 一种高光效高显指复合荧光陶瓷光纤及其制备方法
CN116332648A (zh) * 2023-04-11 2023-06-27 江苏师范大学 一种稀土离子掺杂的超长透明陶瓷光纤的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113248256B (zh) * 2021-05-08 2022-08-12 南通大学 一种用于陶瓷光纤挤出成型的强韧性膏料的配制方法
CN113213931B (zh) * 2021-05-08 2022-06-24 南通大学 一种基于Isobam凝胶与熔融纺丝技术的透明陶瓷光纤制备方法
CN113582694A (zh) * 2021-06-29 2021-11-02 南通大学 一种采用Isobam体系凝胶注模成型钇铝石榴石型微波介质陶瓷的方法
CN114524669A (zh) * 2022-02-28 2022-05-24 江苏师范大学 一种棒状同心圆结构石榴石基激光透明陶瓷及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005035154A (ja) * 2003-07-14 2005-02-10 Toshiba Ceramics Co Ltd Yagの鋳込み成型方法
CN1582260A (zh) * 2001-12-19 2005-02-16 皮雷利&C.有限公司 用于制造具有微结构的光纤的方法
EP2233449A1 (de) * 2009-03-27 2010-09-29 Ivoclar Ag Schlicker für die Herstellung von Dentalkeramiken mittels Hot-Melt-Inkjet-Druckverfahren
US20130043606A1 (en) * 2011-08-18 2013-02-21 Government Of The United States, As Represented By The Secretary Of The Air Force Laser Sintering of Ceramic Fibers
CN109053182A (zh) * 2018-08-14 2018-12-21 徐州市江苏师范大学激光科技有限公司 一种采用Isobam凝胶注模制备YAG基多层复合结构透明陶瓷的方法
CN111253154A (zh) * 2020-01-22 2020-06-09 新沂市锡沂高新材料产业技术研究院有限公司 一种凝胶注模制备yag基芯壳结构棒状透明陶瓷的方法
CN111270347A (zh) * 2020-01-22 2020-06-12 新沂市锡沂高新材料产业技术研究院有限公司 一种凝胶注模成型制备透明陶瓷光纤的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687927B1 (en) * 1994-06-10 2000-02-02 CeramOptec GmbH Methods of manufacture of microporous silica coated silica fibers
US7010206B1 (en) * 2004-09-08 2006-03-07 Corning Incorporated Coated optical fiber and optical fiber coating system including a fast-gelling primary coating
CN105819868B (zh) * 2013-05-21 2018-09-28 中国科学院上海硅酸盐研究所 一种自由基体系凝胶注模成型的方法
WO2016153508A1 (en) * 2015-03-25 2016-09-29 Shasta Crystals, Inc. Sol-gel cladding for optical fiber
WO2017019746A1 (en) * 2015-07-28 2017-02-02 The Penn State Research Foundation Method and apparatus for producing crystalline cladding and crystalline core optical fibers
CN107721424B (zh) * 2017-09-30 2020-07-28 江苏师范大学 一种凝胶注模成型制备yag透明陶瓷的方法
CN108516818B (zh) * 2018-05-25 2021-03-26 江苏师范大学 一种基于改进的Isobam凝胶体系制备YAG透明陶瓷的方法
CN110885244B (zh) * 2019-12-04 2020-10-30 南京工业大学 一种钇铝石榴石基透明陶瓷光纤的制备方法
CN111253153A (zh) * 2020-01-22 2020-06-09 新沂市锡沂高新材料产业技术研究院有限公司 一种基于Isobam凝胶体系制备增韧大尺寸超薄YAG透明陶瓷素坯的方法
CN111170726B (zh) * 2020-01-22 2022-08-19 新沂市锡沂高新材料产业技术研究院有限公司 一种基于am凝胶注模成型制备均匀yag透明陶瓷素坯的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1582260A (zh) * 2001-12-19 2005-02-16 皮雷利&C.有限公司 用于制造具有微结构的光纤的方法
JP2005035154A (ja) * 2003-07-14 2005-02-10 Toshiba Ceramics Co Ltd Yagの鋳込み成型方法
EP2233449A1 (de) * 2009-03-27 2010-09-29 Ivoclar Ag Schlicker für die Herstellung von Dentalkeramiken mittels Hot-Melt-Inkjet-Druckverfahren
US20130043606A1 (en) * 2011-08-18 2013-02-21 Government Of The United States, As Represented By The Secretary Of The Air Force Laser Sintering of Ceramic Fibers
CN109053182A (zh) * 2018-08-14 2018-12-21 徐州市江苏师范大学激光科技有限公司 一种采用Isobam凝胶注模制备YAG基多层复合结构透明陶瓷的方法
CN111253154A (zh) * 2020-01-22 2020-06-09 新沂市锡沂高新材料产业技术研究院有限公司 一种凝胶注模制备yag基芯壳结构棒状透明陶瓷的方法
CN111270347A (zh) * 2020-01-22 2020-06-12 新沂市锡沂高新材料产业技术研究院有限公司 一种凝胶注模成型制备透明陶瓷光纤的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010486A (zh) * 2022-07-14 2022-09-06 中钢集团洛阳耐火材料研究院有限公司 一种高纯氧化锆耐火陶瓷的近净成型制备方法
CN115925409A (zh) * 2023-01-06 2023-04-07 江苏师范大学 一种高光效高显指复合荧光陶瓷光纤及其制备方法
CN115925409B (zh) * 2023-01-06 2023-08-11 江苏师范大学 一种高光效高显指复合荧光陶瓷光纤及其制备方法
CN116332648A (zh) * 2023-04-11 2023-06-27 江苏师范大学 一种稀土离子掺杂的超长透明陶瓷光纤的制备方法

Also Published As

Publication number Publication date
CN112341184B (zh) 2021-11-23
CN112341184A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
WO2022095098A1 (zh) 一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法
CN108516818B (zh) 一种基于改进的Isobam凝胶体系制备YAG透明陶瓷的方法
CN102060539B (zh) 利用注浆成型制备钇铝石榴石基透明陶瓷的方法
CN109053182B (zh) 一种采用Isobam凝胶注模制备YAG基多层复合结构透明陶瓷的方法
CN110885244B (zh) 一种钇铝石榴石基透明陶瓷光纤的制备方法
CN101851096A (zh) 高掺杂Yb,Er:YAG透明陶瓷及其制备方法
CN113754435B (zh) 一种Y2O3-MgO红外透明陶瓷的制备方法
CN111825453A (zh) 一种具有包芯结构的透明陶瓷光纤的制备方法
CN112209715B (zh) 一种用于激光器的金属包层的Nd:YAG陶瓷光纤及其制备方法
CN105601277A (zh) 一种氧化钇基透明陶瓷的制备方法
CN111270347A (zh) 一种凝胶注模成型制备透明陶瓷光纤的方法
CN109095916A (zh) 一种sps烧结制备yag透明陶瓷的方法
CN111253154A (zh) 一种凝胶注模制备yag基芯壳结构棒状透明陶瓷的方法
CN113773081A (zh) 一种透明陶瓷及其制备方法
CN110240468A (zh) 荧光陶瓷及其制备方法
CN109336595B (zh) 一种超低温冷烧结MoO3陶瓷的制备方法
CN104451953A (zh) 三价镱离子掺杂镥铝石榴石透明陶瓷光纤的制备方法
CN105364284A (zh) 一种氧化锆或氧化锆基复合材料的低温快速焊接方法
CN105565810A (zh) 稀土离子掺杂的氧化钇激光陶瓷光纤的制备方法
CN112390641B (zh) 一种基于3d凝胶打印技术的yag透明陶瓷光纤制备方法
CN107324805A (zh) 一种多组分石榴石基激光透明陶瓷材料及其制备方法
CN104829221A (zh) 凝胶注模成型制备Re:YAG透明陶瓷的方法
CN113248256B (zh) 一种用于陶瓷光纤挤出成型的强韧性膏料的配制方法
CN102211941A (zh) Er,Yb双掺杂YAG多晶透明陶瓷材料制备方法
CN113754436B (zh) 一种纳米晶激光级倍半氧化物透明陶瓷的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960555

Country of ref document: EP

Kind code of ref document: A1