CN112341184A - 一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法 - Google Patents

一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法 Download PDF

Info

Publication number
CN112341184A
CN112341184A CN202011239660.7A CN202011239660A CN112341184A CN 112341184 A CN112341184 A CN 112341184A CN 202011239660 A CN202011239660 A CN 202011239660A CN 112341184 A CN112341184 A CN 112341184A
Authority
CN
China
Prior art keywords
optical fiber
waveguide structure
transparent ceramic
gel state
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011239660.7A
Other languages
English (en)
Other versions
CN112341184B (zh
Inventor
张乐
姚庆
刘明源
陈东顺
邵岑
康健
程欣
周天元
李延彬
陈浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd
Original Assignee
Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd filed Critical Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd
Priority to CN202011239660.7A priority Critical patent/CN112341184B/zh
Priority to PCT/CN2020/128594 priority patent/WO2022095098A1/zh
Publication of CN112341184A publication Critical patent/CN112341184A/zh
Application granted granted Critical
Publication of CN112341184B publication Critical patent/CN112341184B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Abstract

本发明公开了一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,利用凝胶成型技术制备Nd:YAG透明陶瓷光纤的芯层,再通过凝胶态的浸涂技术,在芯部凝胶态下(弹性模量和黏性模量相交点处)实现包层YAG透明凝胶浆料的涂覆,达到芯层和包层的有效黏连,并通过时间调节涂覆的厚度,最终通过温等静压和真空烧结实现波导结构激光透明陶瓷光纤的制备。通过在凝胶状态下,准确掌控凝胶点,实现芯层和包层陶瓷材料有效键合,且界面清晰,工艺简单高效,可实现批量化、工业化生产。

Description

一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光 纤的制备方法
技术领域
本发明涉及透明陶瓷光纤制备技术领域,具体涉及一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法。
背景技术
目前,光纤激光器一般采用掺稀土元素的玻璃光纤作为增益介质,基本原理是在泵浦光作用下光纤内形成了功率密度升高,造成激光工作物质的激光能级“粒子数反转”,在谐振腔内可形成激光振荡输出。光纤激光器其应用范围非常广泛,主要包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻、激光切割、印刷制辊、金属非金属钻孔/切割/焊接、军事国防安全、医疗器械仪器设备,亦可作为其他激光器的泵浦源等。
然而,石英玻璃的热导率较低(1.38W/(m·K)),导致在长时间工作时易出现热梯度变大、光学畸变、输出功率受限以及热透镜效应等问题。自1995年日本Akio Ikesue博士制备世界上首块激光透明陶瓷以来,人们发现陶瓷材料的热导率高达11W/(m·K),具有更好的的热管理能力可以承受更高的功率,因此相对于玻璃光纤,陶瓷热学性能好非常有利于应用推广。然而,为了发展更高功率和更强热鲁棒性的激光增益光纤,尤其是为了满足超高功率激光武器的应用需求,即使是优势明显的陶瓷光纤也必须从结构上进一步提高热管理能力。
因此,在结构优化设计已成为共识的背景下,对陶瓷光纤的结构设计、制备工艺提出了更高要求。虽然,日本Ikesue、美国空军实验室Kim、Fair以及专利CN 104451953 B、CN111270347 A、CN 110885244 A等都对陶瓷光纤的制备开展了系统研究,但凝胶注模成型波导结构的激光陶瓷光纤未见相关专利报道。同时,在制备方法上,一般凝胶注模制备YAG基多层复合结构透明陶瓷的时候,都是在第一层浆料完全凝胶固化后再浇注其他层浆料,再进行干燥、排胶、真空烧结、双面抛光等处理,如CN 109053182 A等。
发明内容
本发明的目的是提供一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法。
为实现上述目的,本发明采用的技术方案如下:一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,包括以下步骤:
步骤一、按照Nd:YAG透明陶瓷材料(Y1-xNdx)3A15O12,0.01≤x≤0.04中各元素的化学计量比分别称量氧化钇(Y2O3)粉体、氧化铝(Al2O3)粉体、氧化钕(Nd2O3)粉体作为原料粉体;
步骤二、向称量好的原料粉体中加入烧结助剂、磨球、无水乙醇溶剂组成预混液,搅拌后放入球磨罐中混合球磨,得到混合浆料;
步骤三、球磨结束后将混合浆料烘干后过筛,再转移至马弗炉中煅烧,得到凝胶注模成型的原料粉;
步骤四、采用PIBM凝胶体系,以Isobam104为凝胶剂配制固含量45vol.%以上的陶瓷浆料,并进行真空除泡处理,得到芯层浆料;
步骤五、将芯层浆料注射到毛细玻璃管中,室温下自然凝胶后形成具有一定弹性的光纤湿坯;
步骤六、将上述光纤湿坯在凝胶状态下浸泡到含有Isobam104凝胶剂的固含量45vol.%以上的YAG凝胶浆料中一定时间调控涂覆厚度,当外层的浆料和芯层凝胶态黏连后取出晾干,在芯层表面得到可控厚度的YAG涂层;
步骤七、凝胶固化后的素坯依次经温等静压、干燥、排胶、真空烧结、抛光处理,得到具有波导结构的Nd:YAG激光透明陶瓷光纤。
优选地,步骤二中,所述烧结助剂为MgO和SiO2,MgO和SiO2的质量比为1:0.5~5,烧结助剂的加入量为原料粉体总质量的0.5%;所述磨球为高纯氧化铝磨球,球料比为1~3:1;球磨转速为120r/min~160r/min,球磨时间为24~36h。
优选地,步骤三中,所述烘干温度为40~100℃,烘干时间为24~48h。
优选地,步骤三中,所述煅烧温度为800~1000℃,保温时间为8~24h。
优选地,步骤五中,所述注射采用压力注射方法;所述毛细玻璃管内径是0.5~1mm。
优选地,步骤六中,所述YAG涂层厚度为0.05~0.5mm。
优选地,步骤七中,所述的温等静压工艺参数为:40~80℃温度下,100~200MPa下5~20min。
优选地,步骤七中,所述的干燥工艺参数为:100~120℃温度下干燥4~8h。
优选地,步骤七中,所述的排胶工艺参数为:室温下以升温速率为0.5~2℃/分钟升温到450℃,再以升温速率为0.5~3℃/分钟升温到800℃,并在800℃保温2~6h。
优选地,步骤七中,所述的真空烧结工艺参数为:首先按5~10℃/min从室温升温到200℃并保温10~30min,其次按10~20℃/min升温到1000℃并保温10~30min,然后按1~5℃/min升温到1650℃并保温6~10h,最后以5~10℃/min降温到室温,整个烧结过程中真空度保持在1×10-2~1×10-5Pa。
与现有技术相比,本发明具有如下有益效果:
1.本发明提供的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,利用了凝胶注模“高固含量、高素坯强度”成型特点结合涂覆技术优势,通过在凝胶状态下,准确掌控凝胶点,实现芯层和包层陶瓷材料有效键合,进而满足超高功率光纤激光器的高散热的要求,实现波导结构Nd:YAG激光透明陶瓷光纤的制备。
2.本发明提供的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤制备方法,利用包层YAG的热导率大于芯层Nd:YAG,并且通过Isobam凝胶体系凝胶态下的浸涂技术,在坯体凝胶状态下实现芯层和包层陶瓷材料有效键合,且界面清晰,工艺简单高效,可实现批量化、工业化生产。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明。
以下实施例中所使用的原料粉体均为高纯粉体,纯度>99.99%,所述的Y2O3粉体粒径为100~500nm,Al2O3粉体粒径为200~600nm,Nd2O3粉体粒径为200~400nm。
实施例1
一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,它包括以下步骤:
步骤一、按照1%Nd:YAG中各元素的化学计量比分别称量高纯纳米Y2O3粉体33.799g、高纯纳米Al2O3粉体25.692g、高纯Nd2O3粉体0.509g,除杂预处理;
步骤二、使用烧结助剂SiO2 0.2g和MgO 0.1g、高纯Al2O3磨球180g、无水乙醇72ml、充分搅拌后放入球磨罐中,以160r/min的转速混合球磨24h均匀后得到混合浆料;
步骤三、球磨结束后将混合浆料置于40℃恒温烘箱中烘48h后过100目筛,将过筛后的粉体置于马弗炉中煅烧,从室温升温到1000℃,保温8h后自然冷却,得到凝胶注模成型的原料粉;
步骤四、采用PIBM凝胶注模体系,在30g的去离子水中,加入Isobam1040.3g,用四甲基氢氧化铵调节pH到11,采用柠檬酸铵分散剂0.24g,并加入原料粉60g后充分球磨,制备固含量为45vol.%的陶瓷浆料,再用真空除泡机进行除泡处理后得到芯层浆料;
步骤五、将芯层浆料通过压力注射的方式注入到内径为0.5mm的毛细玻璃管中,室温下自然凝胶,形成具有凝胶态、且有一定弹性的光纤湿坯;
步骤六、将1%Nd:YAG凝胶芯层浸泡在含有Isobam104凝胶剂的45vol.%YAG陶瓷浆料30min后,取出后晾干,在1%Nd:YAG凝胶芯层表面得到0.05mm的YAG涂层;
步骤七、将得到的波导结构的素坯置于温度40℃,200MPa压力下温等5min进行温等静压处理,然后放入100℃烘箱中保温8h;干燥后进行排胶处理,从室温开始以2℃/min升温速度到450℃,再以3℃/min升温速度到800℃,并保温2h;最后真空烧结,室温开始以10℃/min升温到200℃,保温10min,再次按10℃/min升温到1000℃并保温10min,然后按5℃/min升温到1650℃并保温6h,最后以5℃/min降温到室温,整个烧结过程中真空度保持在1×10-2Pa;
步骤八、将真空烧结后的陶瓷光纤进行抛光处理,得到具有波导结构的1%Nd:YAG激光透明陶瓷光纤。
实施例2
一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,它包括以下步骤:
步骤一、按照4%Nd:YAG中各元素的化学计量比分别称量高纯纳米Y2O3粉体32.503g、高纯纳米Al2O3粉体25.479g、高纯Nd2O3粉体2.018g,除杂预处理;
步骤二、使用烧结助剂SiO2为0.25g和MgO为0.05g、高纯Al2O3磨球180g、无水乙醇72ml、充分搅拌后放入球磨罐中,以120r/min的转速混合球磨36h均匀后得到混合浆料;
步骤三、球磨结束后将混合浆料置于100℃恒温烘箱中烘24h后过150目筛,将过筛后的粉体置于马弗炉中煅烧,从室温升温到800℃,保温24h后自然冷却,得到凝胶注模成型的原料粉;
步骤四、采用PIBM凝胶注模体系,在23g的去离子水中,加入Isobam1040.3g,用四甲基氢氧化铵调节pH到11,采用柠檬酸铵分散剂0.3g,并加入原料粉60g后充分球磨,制备固含量为50vol.%的陶瓷浆料,再用真空除泡机进行除泡处理后得到芯层所需的浆料;
步骤五、将此浆料通过压力注射的方式注入到内径为1mm的毛细玻璃管中,室温下自然凝胶,形成具有凝胶态、且有一定弹性的光纤湿坯;
步骤六、将4%Nd:YAG凝胶芯层浸泡在含有Isobam104凝胶剂的48vol.%YAG陶瓷浆料120min后,取出后晾干,在4%Nd:YAG凝胶芯层表面得到0.5mm的YAG涂层;
步骤七、将得到的波导结构的素坯置于温度80℃,100MPa压力下温等20min进行温等静压处理,然后放入120℃烘箱中保温4h;干燥后进行排胶处理,从室温开始以0.5℃/min升温速度到450℃,再以0.5℃/min升温速度到800℃,并保温6h;最后真空烧结,室温开始以5℃/min升温到200℃,保温30min,再次按20℃/min升温到1000℃并保温30min,然后按1℃/min升温到1650℃并保温10h,最后以10℃/min降温到室温,整个烧结过程中真空度保持在1×10-5Pa;
步骤八、将真空烧结后的陶瓷光纤进行抛光处理,得到具有波导结构的4%Nd:YAG激光透明陶瓷光纤。
实施例3
一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,它包括以下步骤:
步骤一、按照2%Nd:YAG的化学计量比分别称量高纯纳米Y2O3粉体33.364g、高纯纳米Al2O3粉体25.621g、高纯Nd2O3粉体1.015g,除杂预处理;
步骤二、使用烧结助剂SiO2 0.2g和MgO 0.1g、高纯Al2O3磨球180g、无水乙醇72ml、充分搅拌后放入球磨罐中,以140r/min的转速混合球磨30h均匀后得到混合浆料;
步骤三、球磨结束后将混合浆料置于60℃恒温烘箱中烘36h后过200目筛,将过筛后的粉体置于马弗炉中煅烧,从室温升温到900℃,保温12h后自然冷却,得到凝胶注模成型的原料粉;
步骤四、采用PIBM凝胶注模体系,在25g的去离子水中,加入Isobam1040.3g,用四甲基氢氧化铵调节pH到12,采用柠檬酸铵分散剂0.24g,并加入原料粉60g后充分球磨,制备固含量为48vol.%的陶瓷浆料,再用真空除泡机进行除泡处理后得到芯层所需的浆料;
步骤五、将此浆料通过压力注射的方式注入到内径为0.8mm的毛细玻璃管中,室温下自然凝胶,形成具有凝胶态、且有一定弹性的光纤湿坯;
步骤六、将2%Nd:YAG凝胶芯层浸泡在含有Isobam104凝胶剂的48vol.%YAG陶瓷浆料60min后,取出后晾干,在2%Nd:YAG凝胶芯层表面得到0.1mm的YAG涂层;
步骤七、将得到的波导结构的素坯置于温度60℃,150MPa压力下温等10min进行温等静压处理,然后放入110℃烘箱中保温6h;干燥后进行排胶处理,从室温开始以1℃/min升温速度到450℃,再以1℃/min升温速度到800℃,并保温4h;最后真空烧结,室温开始以8℃/min升温到200℃,保温20min,再次按15℃/min升温到1000℃并保温20min,然后按3℃/min升温到1650℃并保温8h,最后以7℃/min降温到室温,整个烧结过程中真空度保持在1×10- 3Pa;
步骤八、将真空烧结后的陶瓷光纤进行抛光处理,得到具有波导结构的2%Nd:YAG激光透明陶瓷光纤。

Claims (10)

1.一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,包括以下步骤:
步骤一、按照Nd:YAG透明陶瓷材料(Y1-xNdx)3A15O12,0.01≤x≤0.04中各元素的化学计量比分别称量氧化钇粉体、氧化铝粉体、氧化钕粉体作为原料粉体;
步骤二、向称量好的原料粉体中加入烧结助剂、磨球、无水乙醇溶剂组成预混液,搅拌后放入球磨罐中混合球磨,得到混合浆料;
步骤三、球磨结束后将混合浆料烘干后过筛,再转移至马弗炉中煅烧,得到凝胶注模成型的原料粉;
步骤四、采用PIBM凝胶体系,以Isobam104为凝胶剂配制固含量45vol.%以上的陶瓷浆料,并进行真空除泡处理,得到芯层浆料;
步骤五、将芯层浆料注射到毛细玻璃管中,室温下自然凝胶后形成具有一定弹性的光纤湿坯;
步骤六、将上述光纤湿坯在凝胶状态下浸泡到含有Isobam104凝胶剂的固含量45vol.%以上的YAG凝胶浆料中一定时间调控涂覆厚度,当外层的浆料和芯层凝胶态黏连后取出晾干,在芯层表面得到可控厚度的YAG涂层;
步骤七、凝胶固化后的素坯依次经温等静压、干燥、排胶、真空烧结、抛光处理,得到具有波导结构的Nd:YAG激光透明陶瓷光纤。
2.根据权利要求1所述的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,步骤二中,所述烧结助剂为MgO和SiO2,MgO和SiO2的质量比为1:0.5~5,烧结助剂的加入量为原料粉体总质量的0.5%;所述磨球为高纯氧化铝磨球,球料比为1~3:1;球磨转速为120r/min~160r/min,球磨时间为24~36h。
3.根据权利要求1所述的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,步骤三中,所述烘干温度为40~100℃,烘干时间为24~48h。
4.根据权利要求1所述的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,步骤三中,所述煅烧温度为800~1000℃,保温时间为8~24h。
5.根据权利要求1所述的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,步骤五中,所述注射采用压力注射方法;所述毛细玻璃管内径是0.5~1mm。
6.根据权利要求1所述的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,步骤六中,所述YAG涂层厚度为0.05~0.5mm。
7.根据权利要求1所述的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,步骤七中,所述的温等静压工艺参数为:40~80℃温度下,100~200MPa下5~20min。
8.根据权利要求1所述的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,步骤七中,所述的干燥工艺参数为:100~120℃温度下干燥4~8h。
9.根据权利要求1所述的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,步骤七中,所述的排胶工艺参数为:室温~450℃升温速度为0.5~2℃/min,450~800℃升温速度为0.5~3℃/min,在800℃保温2~6h。
10.根据权利要求1所述的一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法,其特征在于,步骤七中,所述的真空烧结工艺参数为:首先按5~10℃/min从室温升温到200℃并保温10~30min,其次按10~20℃/min升温到1000℃并保温10~30min,然后按1~5℃/min升温到1650℃并保温6~10h,最后以5~10℃/min降温到室温,整个烧结过程中真空度保持在1×10-2~1×10-5Pa。
CN202011239660.7A 2020-11-09 2020-11-09 一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法 Active CN112341184B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011239660.7A CN112341184B (zh) 2020-11-09 2020-11-09 一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法
PCT/CN2020/128594 WO2022095098A1 (zh) 2020-11-09 2020-11-13 一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011239660.7A CN112341184B (zh) 2020-11-09 2020-11-09 一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法

Publications (2)

Publication Number Publication Date
CN112341184A true CN112341184A (zh) 2021-02-09
CN112341184B CN112341184B (zh) 2021-11-23

Family

ID=74428625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011239660.7A Active CN112341184B (zh) 2020-11-09 2020-11-09 一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法

Country Status (2)

Country Link
CN (1) CN112341184B (zh)
WO (1) WO2022095098A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213931A (zh) * 2021-05-08 2021-08-06 南通大学 一种基于Isobam凝胶与熔融纺丝技术的透明陶瓷光纤制备方法
CN113248256A (zh) * 2021-05-08 2021-08-13 南通大学 一种用于陶瓷光纤挤出成型的强韧性膏料的配制方法
CN113582694A (zh) * 2021-06-29 2021-11-02 南通大学 一种采用Isobam体系凝胶注模成型钇铝石榴石型微波介质陶瓷的方法
CN114524669A (zh) * 2022-02-28 2022-05-24 江苏师范大学 一种棒状同心圆结构石榴石基激光透明陶瓷及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010486A (zh) * 2022-07-14 2022-09-06 中钢集团洛阳耐火材料研究院有限公司 一种高纯氧化锆耐火陶瓷的近净成型制备方法
CN115925409B (zh) * 2023-01-06 2023-08-11 江苏师范大学 一种高光效高显指复合荧光陶瓷光纤及其制备方法
CN116332648A (zh) * 2023-04-11 2023-06-27 江苏师范大学 一种稀土离子掺杂的超长透明陶瓷光纤的制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687927A1 (en) * 1994-06-10 1995-12-20 CeramOptec GmbH Microporous silica coated silica fibers and methods of manufacture
JP2005035154A (ja) * 2003-07-14 2005-02-10 Toshiba Ceramics Co Ltd Yagの鋳込み成型方法
CN1582260A (zh) * 2001-12-19 2005-02-16 皮雷利&C.有限公司 用于制造具有微结构的光纤的方法
US7010206B1 (en) * 2004-09-08 2006-03-07 Corning Incorporated Coated optical fiber and optical fiber coating system including a fast-gelling primary coating
EP2233449A1 (de) * 2009-03-27 2010-09-29 Ivoclar Ag Schlicker für die Herstellung von Dentalkeramiken mittels Hot-Melt-Inkjet-Druckverfahren
CN105819868A (zh) * 2013-05-21 2016-08-03 中国科学院上海硅酸盐研究所 一种自由基体系凝胶注模成型的方法
US20180052279A1 (en) * 2015-03-25 2018-02-22 Shasta Crystals, Inc. Sol-Gel Cladding for Optical Fiber
CN107721424A (zh) * 2017-09-30 2018-02-23 江苏师范大学 一种凝胶注模成型制备yag透明陶瓷的方法
US20180203183A1 (en) * 2015-07-28 2018-07-19 The Penn State Research Foundation Method and apparatus for producing crystalline cladding and crystalline core optical fibers
CN108516818A (zh) * 2018-05-25 2018-09-11 江苏师范大学 一种基于改进的Isobam凝胶体系制备YAG透明陶瓷的方法
CN109053182A (zh) * 2018-08-14 2018-12-21 徐州市江苏师范大学激光科技有限公司 一种采用Isobam凝胶注模制备YAG基多层复合结构透明陶瓷的方法
CN110885244A (zh) * 2019-12-04 2020-03-17 南京工业大学 一种钇铝石榴石基透明陶瓷光纤的制备方法
CN111170726A (zh) * 2020-01-22 2020-05-19 新沂市锡沂高新材料产业技术研究院有限公司 一种基于am凝胶注模成型制备均匀yag透明陶瓷素坯的方法
CN111253153A (zh) * 2020-01-22 2020-06-09 新沂市锡沂高新材料产业技术研究院有限公司 一种基于Isobam凝胶体系制备增韧大尺寸超薄YAG透明陶瓷素坯的方法
CN111253154A (zh) * 2020-01-22 2020-06-09 新沂市锡沂高新材料产业技术研究院有限公司 一种凝胶注模制备yag基芯壳结构棒状透明陶瓷的方法
CN111270347A (zh) * 2020-01-22 2020-06-12 新沂市锡沂高新材料产业技术研究院有限公司 一种凝胶注模成型制备透明陶瓷光纤的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679378B2 (en) * 2011-08-18 2014-03-25 The United States Of America As Represented By The Secretary Of The Air Force Laser sintering of ceramic fibers

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687927A1 (en) * 1994-06-10 1995-12-20 CeramOptec GmbH Microporous silica coated silica fibers and methods of manufacture
CN1582260A (zh) * 2001-12-19 2005-02-16 皮雷利&C.有限公司 用于制造具有微结构的光纤的方法
JP2005035154A (ja) * 2003-07-14 2005-02-10 Toshiba Ceramics Co Ltd Yagの鋳込み成型方法
US7010206B1 (en) * 2004-09-08 2006-03-07 Corning Incorporated Coated optical fiber and optical fiber coating system including a fast-gelling primary coating
EP2233449A1 (de) * 2009-03-27 2010-09-29 Ivoclar Ag Schlicker für die Herstellung von Dentalkeramiken mittels Hot-Melt-Inkjet-Druckverfahren
CN105819868A (zh) * 2013-05-21 2016-08-03 中国科学院上海硅酸盐研究所 一种自由基体系凝胶注模成型的方法
US20180052279A1 (en) * 2015-03-25 2018-02-22 Shasta Crystals, Inc. Sol-Gel Cladding for Optical Fiber
US20180203183A1 (en) * 2015-07-28 2018-07-19 The Penn State Research Foundation Method and apparatus for producing crystalline cladding and crystalline core optical fibers
CN107721424A (zh) * 2017-09-30 2018-02-23 江苏师范大学 一种凝胶注模成型制备yag透明陶瓷的方法
CN108516818A (zh) * 2018-05-25 2018-09-11 江苏师范大学 一种基于改进的Isobam凝胶体系制备YAG透明陶瓷的方法
CN109053182A (zh) * 2018-08-14 2018-12-21 徐州市江苏师范大学激光科技有限公司 一种采用Isobam凝胶注模制备YAG基多层复合结构透明陶瓷的方法
CN110885244A (zh) * 2019-12-04 2020-03-17 南京工业大学 一种钇铝石榴石基透明陶瓷光纤的制备方法
CN111170726A (zh) * 2020-01-22 2020-05-19 新沂市锡沂高新材料产业技术研究院有限公司 一种基于am凝胶注模成型制备均匀yag透明陶瓷素坯的方法
CN111253153A (zh) * 2020-01-22 2020-06-09 新沂市锡沂高新材料产业技术研究院有限公司 一种基于Isobam凝胶体系制备增韧大尺寸超薄YAG透明陶瓷素坯的方法
CN111253154A (zh) * 2020-01-22 2020-06-09 新沂市锡沂高新材料产业技术研究院有限公司 一种凝胶注模制备yag基芯壳结构棒状透明陶瓷的方法
CN111270347A (zh) * 2020-01-22 2020-06-12 新沂市锡沂高新材料产业技术研究院有限公司 一种凝胶注模成型制备透明陶瓷光纤的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HYUN JUN KIM等: "Influence of processing variables on the properties of polycrystalline YAG fibers", 《LASER TECHNOLOGY FOR DEFENSE AND SECURITY VIII》 *
LE ZHANG等: "Ammonium citrate assisted surface modification and gel casting of YAG transparent ceramics", 《CERAMICS INTERNATIONAL》 *
QING YAO: "Viscoelastic behaviors and drying kinetics of different aqueous gelcasting systems for large Nd: YAG laser ceramics rods", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
舒夏: "新型Isobam凝胶体系在陶瓷成型中的应用", 《万方学位论文》 *
邓竹明等: "注浆成型Yb:YAG激光陶瓷浆料的流变性能研究", 《硅酸盐通报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213931A (zh) * 2021-05-08 2021-08-06 南通大学 一种基于Isobam凝胶与熔融纺丝技术的透明陶瓷光纤制备方法
CN113248256A (zh) * 2021-05-08 2021-08-13 南通大学 一种用于陶瓷光纤挤出成型的强韧性膏料的配制方法
CN113248256B (zh) * 2021-05-08 2022-08-12 南通大学 一种用于陶瓷光纤挤出成型的强韧性膏料的配制方法
CN113582694A (zh) * 2021-06-29 2021-11-02 南通大学 一种采用Isobam体系凝胶注模成型钇铝石榴石型微波介质陶瓷的方法
CN114524669A (zh) * 2022-02-28 2022-05-24 江苏师范大学 一种棒状同心圆结构石榴石基激光透明陶瓷及其制备方法

Also Published As

Publication number Publication date
CN112341184B (zh) 2021-11-23
WO2022095098A1 (zh) 2022-05-12

Similar Documents

Publication Publication Date Title
CN112341184B (zh) 一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法
CN108516818B (zh) 一种基于改进的Isobam凝胶体系制备YAG透明陶瓷的方法
CN109053182B (zh) 一种采用Isobam凝胶注模制备YAG基多层复合结构透明陶瓷的方法
CN102060539B (zh) 利用注浆成型制备钇铝石榴石基透明陶瓷的方法
CN109761608A (zh) 一种基于直写成型3d打印技术制备棒状复合透明陶瓷的方法
CN113754435B (zh) 一种Y2O3-MgO红外透明陶瓷的制备方法
CN112209715B (zh) 一种用于激光器的金属包层的Nd:YAG陶瓷光纤及其制备方法
CN101851096A (zh) 高掺杂Yb,Er:YAG透明陶瓷及其制备方法
CN111825453A (zh) 一种具有包芯结构的透明陶瓷光纤的制备方法
CN105601277A (zh) 一种氧化钇基透明陶瓷的制备方法
CN111925202B (zh) 一种无烧结助剂的钇铝石榴石粉体、钇铝石榴石陶瓷、其制备方法与应用
CN111253154A (zh) 一种凝胶注模制备yag基芯壳结构棒状透明陶瓷的方法
CN113773081A (zh) 一种透明陶瓷及其制备方法
CN114524669A (zh) 一种棒状同心圆结构石榴石基激光透明陶瓷及其制备方法
CN112811821B (zh) 一种稀土掺杂yag高结晶度透明微晶玻璃及其制备方法
CN112390641B (zh) 一种基于3d凝胶打印技术的yag透明陶瓷光纤制备方法
CN105565810A (zh) 稀土离子掺杂的氧化钇激光陶瓷光纤的制备方法
CN107324805A (zh) 一种多组分石榴石基激光透明陶瓷材料及其制备方法
CN115925409B (zh) 一种高光效高显指复合荧光陶瓷光纤及其制备方法
CN110590353B (zh) 一种提升yag基透明陶瓷掺杂离子固溶度的方法
CN113754436B (zh) 一种纳米晶激光级倍半氧化物透明陶瓷的制备方法
CN102211941A (zh) Er,Yb双掺杂YAG多晶透明陶瓷材料制备方法
CN113213931B (zh) 一种基于Isobam凝胶与熔融纺丝技术的透明陶瓷光纤制备方法
CN107619278B (zh) 钬镱双掺氧化镧镥透明陶瓷及其制备方法
CN115353389B (zh) Ho离子参杂倍半氧化物透明陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant