CN116332648A - 一种稀土离子掺杂的超长透明陶瓷光纤的制备方法 - Google Patents

一种稀土离子掺杂的超长透明陶瓷光纤的制备方法 Download PDF

Info

Publication number
CN116332648A
CN116332648A CN202310381895.7A CN202310381895A CN116332648A CN 116332648 A CN116332648 A CN 116332648A CN 202310381895 A CN202310381895 A CN 202310381895A CN 116332648 A CN116332648 A CN 116332648A
Authority
CN
China
Prior art keywords
optical fiber
ceramic
rare earth
transparent ceramic
earth ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310381895.7A
Other languages
English (en)
Inventor
张乐
刘明源
周天元
郑欣雨
曹一飞
邵岑
康健
周春鸣
陈浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN202310381895.7A priority Critical patent/CN116332648A/zh
Publication of CN116332648A publication Critical patent/CN116332648A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Lasers (AREA)

Abstract

本发明公开了一种稀土离子掺杂的超长透明陶瓷光纤的制备方法,该方法采用环保高效的一体型粘结剂配制成水基溶剂浆料,结合真空离心条件同时达到除泡和提升固含量两种效果,真空度为0.1~10kPa,转速为1000~1500r/min,得到陶瓷泥料坯体,最终采用柱塞式挤出机进行竖直方向挤出成型,柱塞泵在1~10MPa压力下控制聚四氟乙烯挤出杆以0.1~2cm/min速度挤出连续陶瓷光纤坯体,后处理后得到稀土离子掺杂的超长透明陶瓷光纤,该方法工艺简单高效并且具有良好的光学质量,有利于高质量陶瓷光纤的工业化生产。

Description

一种稀土离子掺杂的超长透明陶瓷光纤的制备方法
技术领域
本发明涉及激光透明陶瓷成型技术领域,具体涉及一种稀土离子掺杂的超长透明陶瓷光纤的制备方法。
背景技术
目前,光纤激光器的增益介质主要为稀土元素掺杂的玻璃光纤;在泵浦光作用下光纤内极易形成高功率密度,造成激光能级“粒子数反转”,实现激光振荡。然而,玻璃光纤热导率极低(0.8~1.2W/mK)、机械性能差,导致其服役时出现热透镜效应的光束质量下降、受激拉曼散射及布里渊散射所带来输出功率受限等问题。
在晶体材料中,单晶光纤作为块状晶体与常规光纤的结合体,单晶光纤在外形上秉承了玻璃光纤的高长径比和大比表面积,同时兼具块状晶体优异的物理和化学性质,具有良好的热管理优势,目前,单晶光纤的主要制备方法是激光加热基座法以及微下拉法,然而,单晶光纤的制备温度在熔点以上,具有生产工艺复杂,设备要求高,高能耗高成本等问题,不利于单晶光纤的推广应用与发展。
对于光纤激光器来说,功率的进一步提升主要受光纤材料的物理性能限制。激光陶瓷作为一种新型激光增益介质,兼具激光玻璃与单晶的优点,其激光输出效率目前可以媲美单晶。激光透明陶瓷可以进行高浓度均匀掺杂,其本身的光学均匀性较高,易于在掺杂后能产生高质量的激光。由于激光陶瓷具有比玻璃光纤更为优异的力学性能以及高热导率,因此使用激光陶瓷作为光纤激光器增益介质既有利于提高光纤激光器输出功率,又有利于成本的降低及推广应用。
目前已经报道的透明陶瓷光纤的制备方法大致有以下几种方法:如专利CN111270347A和CN110885244A均采用凝胶注模成型将陶瓷浆料吸入毛细玻璃管中,此方法不仅无法得到连续细长的陶瓷光纤,而且存在难以脱模的瓶颈问题;专利CN 104451953A中公开了一种注浆成型制备镥铝石榴石透明陶瓷光纤的制备方法,将浆料注入石膏模具中制备光纤素坯,此方法制备的陶瓷素坯强度低,极细的光纤素坯更容易出现裂纹等缺陷,同时由于浆料存在表面张力,浆料在注入极小孔径模具时比较困难,甚至可能在素坯中形成空洞;专利CN111825453A采用3D打印直写快速成型制备陶瓷光纤,此制备方法得到的光纤成品光学质量有待提高;文献(Y.S.Xie,L.Wang,D.H Ma,etc.Ceram Int,45(2019)213-219.)通过AlCl3·6H2O和Y(CH3COO)3·4H2O按照Al/Y的比例为3:5合成YAG前驱体溶液,再通过纺丝成形制备出力学性能较好的YAG连续纤维,但这种方法对化学组成计量比具有严苛的要求,且合成过程中易形成杂相。目前也有报道采用挤出成型制备透明陶瓷光纤,众所周知,传统挤出成型过程中需要加入大量有机添加剂以确保挤出效果,这是制备高光学质量透明陶瓷的“致命性问题”,并且大多数是直接配制膏料或者泥料,然后通过真空练泥来排除气孔,这一过程不免会引入杂质且除泡效果不能保证,配置膏料或泥料过程中不能使添加剂与陶瓷粉体充分混匀。
以上这些专利和文献中,所报道最终制得的陶瓷光纤成品各项性能仍有待提升,不能满足于实际的应用需求。
发明内容
针对上述存在的技术不足,本发明的目的是提供一种稀土离子掺杂的超长透明陶瓷光纤的制备方法,该方法采用环保高效的一体型粘结剂配制成水基溶剂浆料,结合真空离心条件同时达到除泡和提升固含量两种效果,最终通过挤出成型的方法来制备稀土离子掺杂的超长透明陶瓷光纤,工艺简单高效并且得到良好的光学质量,有利于高质量陶瓷光纤的工业化生产。
为解决上述技术问题,本发明采用如下技术方案:
本发明的一个目的是提供一种稀土离子掺杂的超长透明陶瓷光纤的制备方法,包括以下步骤:
S1:陶瓷粉体配制:按照透明陶瓷组分的化学计量比分别称量原料粉体,进行煅烧除杂处理;将原料粉体、分散剂、烧结助剂、无水乙醇、Al2O3磨球混合,进行球磨;得到混合浆料;将浆料烘干,过筛后进行煅烧处理,得到陶瓷粉体;
S2:泥料坯体配制:向步骤S1制得的陶瓷粉体中加入纯水、分散剂和Al2O3磨球,滚动球磨;均匀混合后加入一体型粘结剂PAF35,继续滚动球磨;过滤出浆料,进行真空离心旋转并除泡,真空度为0.1~10kPa,转速为1000~1500r/min,得到陶瓷泥料坯体;
S3:挤出成型过程:采用柱塞式挤出机进行竖直方向挤出成型,柱塞泵在1~10MPa压力下控制聚四氟乙烯挤出杆以0.1~2cm/min速度挤出连续陶瓷光纤坯体;
S4:后处理工艺:光纤坯体在常温下干燥,干燥后的坯体置于马弗炉中排胶、真空烧结、在空气气氛下退火、抛光处理,得到连续透明陶瓷光纤成品。
进一步地,步骤S1中,所述的透明陶瓷包括但不限于钇铝石榴石陶瓷、镥铝石榴石陶瓷、氧化钇陶瓷、氧化镥陶瓷,掺杂的稀土元素具体包括但不限于Nd、Ho、Er、Yb、Tm、Pr。
进一步地,步骤S1中,分别加入原料粉体质量总和0.2~0.6wt%的MgO和0.3~0.6wt%的TEOS作为烧结助剂、加入0.3~0.6wt%的PEI作为分散剂。
进一步地,步骤S1中,球料比为2~3:1,球磨时间为8~15h,混合浆料固含量为40~50wt.%。
进一步地,步骤S2中,加入的一体型粘结剂含量为陶瓷粉体质量的1~6wt.%,陶瓷粉体与溶剂质量比为1~2:1;所述分散剂为PEI,加入量为陶瓷粉体质量的1~2wt.%,
进一步地,步骤S2中,球料比为1~2:1,第一次滚动球磨时长为12~26h,转速为80~160r/min;第二次滚动球磨时长为12~24h,转速为100~140r/min。
进一步地,步骤S2中,所述真空离心时间为3~7min,重复2~3次。
进一步地,步骤S4中,排胶机制为室温~600℃,升温速度为0.5~2℃/min,600~800℃升温速度为5~10℃/min,在600℃保温4~6h,在800℃保温2~6h。
进一步地,步骤S4中,退火机制为室温~200℃升温速度为10~20℃/min,200~1450℃升温速度为5~10℃/min,在1450℃保温8~20h,最后以10~20℃/min降到室温。
本发明的有益效果在于:
1.本申请提供的稀土离子掺杂超长透明陶瓷光纤制备方法,加入少量高效环保的一体型粘结剂PAF35,其为一种甲基纤维素醚,包含甲基和羟基,在水溶液中易形成凝胶,同时起粘结、增塑和润滑效果,在低温下能够保证完全分解无残留;
2.本申请提供的一种稀土离子掺杂的超长透明陶瓷光纤的制备方法,通过真空负压环境一方面挥发水分以提升固含量,使浆料逐渐转变为泥料,克服了传统搅拌均匀效果不理想的缺点,同时可以通过改变真空离心条件来调控浆料的固含量,以满足不同孔径挤出陶瓷光纤素坯;另一方面,通过离心消除泥料中的气泡,最终得到均匀且无气泡的高质量陶瓷光纤泥料;
3.本申请提供的一种稀土离子掺杂的超长透明陶瓷光纤的制备方法,制备光纤过程中所使用的添加剂均可在高温下排除干净,因此本发明制备的光纤具有较高的光学质量,通过不同稀土离子掺杂可以满足不同的应用需求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1中通过真空除泡机真空离心后由陶瓷浆料转变成泥料的坯体示意图;
图2为实施例1中制备的直径为0.2mm、长度为3m连续Nd:YAG陶瓷光纤素坯表面SEM形貌图;
图3为实施例1中抛光后的Nd:YAG透明陶瓷光纤成品直线透过率。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本发明公开的一种稀土离子掺杂的超长透明陶瓷光纤的制备方法,用于制备4%掺杂Nd:YAG超长透明陶瓷光纤,具体包括以下步骤:
(1)按照4%Nd:YAG的化学计量比分别称量高纯Y2O3粉体、高纯Al2O3粉体,高纯Nd2O3粉体共125g进行煅烧除杂处理;使用烧结助剂MgO为0.25g和TEOS为0.375g、使用PEI分散剂0.375g、Al2O3磨球250g、无水乙醇150ml充分混合后放入球磨罐中,在行星式球磨机上球磨8h;得到混合浆料;将浆料烘干,通过筛网过筛后用马弗炉进行煅烧处理,得到Nd:YAG陶瓷粉体;
(2)向步骤(1)制得的Nd:YAG陶瓷粉体中加入纯水125g,使用分散剂PEI为1.25g、称取Al2O3磨球125g放入聚乙烯塑料瓶中,在滚动球磨机上球磨12h,转速80r/min;均匀混合后加入一体型粘结剂PAF35为1.25g,继续滚动球磨12h,转速100r/min;过滤出浆料,利用真空除泡机进行真空离心旋转并除泡,真空度为0.1kPa,转速为1000r/min,时间为3min,重复2次,得到Nd:YAG陶瓷泥料坯体(如图1);由图1可以看出,真空除泡机真空离心后由陶瓷浆料转变成泥料的坯体具有一定粘弹性,适用于挤出成型;
(3)采用柱塞式挤出机进行竖直方向挤出成型,柱塞泵在1MPa压力下控制聚四氟乙烯挤出杆以0.1cm/min速度挤出连续Nd:YAG光纤坯体(如图2);由图2可以看出,连续Nd:YAG陶瓷光纤素坯直径为0.2mm、长度为3m,表面SEM形貌图显示光纤素坯表面光滑,无明显缺陷;
(4)光纤坯体在常温下干燥24h,干燥后的坯体置于马弗炉中排胶,排胶机制为:室温~600℃升温速度为0.5℃/min,600~800℃升温速度为5℃/min,在600℃保温4h,在800℃保温2h;采用真空烧结,制度为:室温~200℃升温速度为10℃/min,200~1300℃升温速度为5℃/min,1300~1780℃升温速度为0.5℃/min,在1780℃保温8h,最后以10℃/min降到室温,烧结过程中真空度保持为1×10-6Pa、在空气气氛下退火,退火机制为:室温~200℃升温速度为10℃/min,200~1450℃升温速度为5℃/min,在1450℃保温8h,最后以10℃/min降到室温、抛光处理,得到连续Nd:YAG透明陶瓷光纤成品。由图3可以看出,制备得到的抛光后的Nd:YAG透明陶瓷光纤成品直线透过率,在1064nm处达到82.3%,具有较高的光学质量。
实施例2
本发明公开的一种稀土离子掺杂的超长透明陶瓷光纤的制备方法,用于制备1%掺杂Er:Y2O3超长透明陶瓷光纤,具体包括以下步骤:
(1)按照1% Er:Y2O3的化学计量比分别称量高纯Y2O3粉体,高纯Er2O3粉体共125g进行煅烧除杂处理;使用烧结助剂MgO为0.75g和TEOS为0.5g、使用PEI分散剂0.75g、Al2O3磨球250g、无水乙醇160ml充分混合后放入球磨罐中,在行星式球磨机上球磨15h;得到混合浆料;将浆料烘干,通过筛网过筛后用马弗炉进行煅烧处理,得到Er:Y2O3陶瓷粉体;
(2)向步骤(1)制得的Er:Y2O3陶瓷粉体中加入纯水187.5g、使用分散剂PEI为2.5g、称取Al2O3磨球250g放入聚乙烯塑料瓶中,在滚动球磨机上球磨26h,转速160r/min;均匀混合后加入一体型粘结剂PAF35为3.75g,继续滚动球磨24h,转速140r/min;过滤出浆料,利用真空除泡机进行真空离心旋转并除泡,真空度为10kPa,转速为1500r/min,时间为7min,重复3次,得到Er:Y2O3陶瓷泥料坯体;
(3)采用柱塞式挤出机进行竖直方向挤出成型,柱塞泵在10MPa压力下控制聚四氟乙烯挤出杆以1cm/min速度挤出连续Er:Y2O3光纤坯体;
(4)光纤坯体在常温下干燥48h,干燥后的坯体置于马弗炉中排胶,排胶机制为:室温~600℃升温速度为2℃/min,600~800℃升温速度为10℃/min,在600℃保温6h,在800℃保温6h;采用真空烧结制度为:室温~200℃升温速度为20℃/min,200~1300℃升温速度为10℃/min,1300~1780℃升温速度为10℃/min,在1780℃保温20h,最后以20℃/min降到室温,烧结过程中真空度保持为1×10-4Pa、在空气气氛下退火,退火机制为:室温~200℃升温速度为20℃/min,200~1450℃升温速度为10℃/min,在1450℃保温20h,最后以20℃/min降到室温、抛光处理,得到连续Er:Y2O3透明陶瓷光纤成品。
实施例3
本发明公开的一种稀土离子掺杂的超长透明陶瓷光纤的制备方法,用于制备15%掺杂Yb:LuAG超长透明陶瓷光纤,具体包括以下步骤:
(1)按照15%Yb:LuAG的化学计量比分别称量高纯Lu2O3粉体、高纯Al2O3粉体,高纯Yb2O3粉体共125g进行煅烧除杂处理;使用烧结助剂MgO为0.5g和TEOS为0.75g、使用PEI分散剂0.625g、Al2O3磨球375g、无水乙醇187.5ml充分混合后放入球磨罐中,在行星式球磨机上球磨12h;得到混合浆料;将浆料烘干,通过筛网过筛后用马弗炉进行煅烧处理,得到Yb:LuAG陶瓷粉体;
(2)向步骤(1)制得的Yb:LuAG陶瓷粉体中加入纯水150g、使用分散剂PEI为1.875g、称取Al2O3磨球200g放入聚乙烯塑料瓶中,在滚动球磨机上球磨18h,转速120r/min;均匀混合后加入一体型粘结剂PAF35为7.5g,继续滚动球磨20h,转速120r/min;过滤出浆料,利用真空除泡机进行真空离心旋转并除泡,真空度为5kPa,转速为1200r/min,时间为5min,重复2次,得到Yb:LuAG陶瓷泥料坯体;
(3)采用柱塞式挤出机进行竖直方向挤出成型,柱塞泵在5MPa压力下控制聚四氟乙烯挤出杆以2cm/min速度挤出连续Yb:LuAG光纤坯体;
(4)光纤坯体在常温下干燥36h,干燥后的坯体置于马弗炉中排胶,排胶机制为:室温~600℃升温速度为1℃/min,600~800℃升温速度为8℃/min,在600℃保温5h,在800℃保温4h;采用真空烧结,制度为:室温~200℃升温速度为15℃/min,200~1300℃升温速度为8℃/min,1300~1780℃升温速度为5℃/min,在1780℃保温15h,最后以15℃/min降到室温,烧结过程中真空度保持为1×10-1Pa、在空气气氛下退火,退火机制为:室温~200℃升温速度为15℃/min,200~1450℃升温速度为8℃/min,在1450℃保温15h,最后以15℃/min降到室温、抛光处理,得到连续Yb:LuAG透明陶瓷光纤成品。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现和使用本发明。对这些实施例的多种修改方式对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的范围内,在其他实施例中实现。因此,本发明将不会受限于本文所示的实施例,而是要符合本文公开的原理和新颖特点相一致的最宽范围。

Claims (9)

1.一种稀土离子掺杂的超长透明陶瓷光纤的制备方法,其特征在于,粉体采用一体型粘结剂配制成水基溶剂浆料,结合真空离心条件同时实现除泡和提升固含量,最终通过挤出成型的方法来制备稀土离子掺杂的超长透明陶瓷光纤;具体包括以下步骤:
S1:陶瓷粉体配制:按照透明陶瓷组分的化学计量比分别称量原料粉体,进行煅烧除杂处理;将原料粉体、分散剂、烧结助剂、无水乙醇、Al2O3磨球混合,进行球磨,得到混合水基溶剂浆料;将浆料烘干,过筛后用煅烧处理,得到陶瓷粉体;
S2:泥料坯体配制:向步骤S1制得的陶瓷粉体中加入纯水、分散剂和Al2O3磨球,滚动球磨;均匀混合后加入一体型粘结剂PAF35,继续滚动球磨;过滤出浆料,进行真空离心旋转并除泡,真空度为0.1~10kPa,转速为1000~1500r/min,得到陶瓷泥料坯体;
S3:挤出成型过程:采用柱塞式挤出机进行竖直方向挤出成型,柱塞泵在1~10MPa压力下控制聚四氟乙烯挤出杆以0.1~2cm/min速度挤出连续陶瓷光纤坯体;
S4:后处理工艺:光纤坯体在常温下干燥,干燥后的坯体置于马弗炉中排胶、真空烧结、在空气气氛下退火、抛光处理,得到连续透明陶瓷光纤成品。
2.如权利要求1所述的一种稀土离子掺杂的超长透明陶瓷光纤的制备方法,其特征在于,步骤S1中,所述的透明陶瓷选自钇铝石榴石陶瓷、镥铝石榴石陶瓷、氧化钇陶瓷、氧化镥陶瓷中的一种,掺杂的稀土元素选自Nd、Ho、Er、Yb、Tm、Pr中的一种。
3.如权利要求1所述的一种稀土离子掺杂的超长透明陶瓷光纤的制备方法,其特征在于,步骤S1中,分别加入原料粉体质量总和0.2~0.6wt%的MgO和0.3~0.6wt%的TEOS作为烧结助剂、加入0.3~0.6wt%的PEI作为分散剂。
4.如权利要求1所述的一种稀土离子掺杂的超长透明陶瓷光纤的制备方法,其特征在于,步骤S1中,球料比为2~3:1,球磨时间为8~15h,混合浆料固含量为40~50wt.%。
5.如权利要求1所述的一种稀土离子掺杂的超长透明陶瓷光纤的制备方法,其特征在于,步骤S2中,加入的一体型粘结剂含量为陶瓷粉体质量的1~6wt.%,陶瓷粉体与溶剂质量比为1~2:1;所述分散剂为PEI,加入量为陶瓷粉体质量的1~2wt.%。
6.如权利要求1所述的一种稀土离子掺杂的超长透明陶瓷光纤的制备方法,其特征在于,步骤S2中,球料比为1~2:1,第一次滚动球磨时长为12~26h,转速为80~160r/min;第二次滚动球磨时长为12~24h,转速为100~140r/min。
7.如权利要求1所述的一种稀土离子掺杂的超长透明陶瓷光纤的制备方法,其特征在于,步骤S2中,所述真空离心时间为3~7min,重复2~3次。
8.如权利要求1所述的一种稀土离子掺杂的超长透明陶瓷光纤的制备方法,其特征在于,步骤S4中,所述光纤坯体在常温下干燥24~48h,排胶机制为室温~600℃,升温速度为0.5~2℃/min,600~800℃升温速度为5~10℃/min,在600℃保温4~6h,在800℃保温2~6h。
9.如权利要求1所述的一种稀土离子掺杂的超长透明陶瓷光纤的制备方法,其特征在于,步骤S4中,退火机制为室温~200℃升温速度为10~20℃/min,200~1450℃升温速度为5~10℃/min,在1450℃保温8~20h,最后以10~20℃/min降到室温。
CN202310381895.7A 2023-04-11 2023-04-11 一种稀土离子掺杂的超长透明陶瓷光纤的制备方法 Pending CN116332648A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310381895.7A CN116332648A (zh) 2023-04-11 2023-04-11 一种稀土离子掺杂的超长透明陶瓷光纤的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310381895.7A CN116332648A (zh) 2023-04-11 2023-04-11 一种稀土离子掺杂的超长透明陶瓷光纤的制备方法

Publications (1)

Publication Number Publication Date
CN116332648A true CN116332648A (zh) 2023-06-27

Family

ID=86880471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310381895.7A Pending CN116332648A (zh) 2023-04-11 2023-04-11 一种稀土离子掺杂的超长透明陶瓷光纤的制备方法

Country Status (1)

Country Link
CN (1) CN116332648A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147504A (ja) * 1987-12-04 1989-06-09 Matsushita Electric Ind Co Ltd 赤外用光ファイバの製造方法
US6110441A (en) * 1997-05-12 2000-08-29 Minolta Co., Ltd. Metal oxide fiber, and production method thereof
US20130043606A1 (en) * 2011-08-18 2013-02-21 Government Of The United States, As Represented By The Secretary Of The Air Force Laser Sintering of Ceramic Fibers
CN104451953A (zh) * 2014-11-14 2015-03-25 中国科学院上海光学精密机械研究所 三价镱离子掺杂镥铝石榴石透明陶瓷光纤的制备方法
US20200071231A1 (en) * 2017-04-10 2020-03-05 Shandong University Preparation method for yttrium aluminum garnet continuous fiber
CN112209715A (zh) * 2020-10-26 2021-01-12 南通大学 一种用于激光器的金属包层的Nd:YAG陶瓷光纤及其制备方法
CN113248256A (zh) * 2021-05-08 2021-08-13 南通大学 一种用于陶瓷光纤挤出成型的强韧性膏料的配制方法
WO2022095098A1 (zh) * 2020-11-09 2022-05-12 新沂市锡沂高新材料产业技术研究院有限公司 一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147504A (ja) * 1987-12-04 1989-06-09 Matsushita Electric Ind Co Ltd 赤外用光ファイバの製造方法
US6110441A (en) * 1997-05-12 2000-08-29 Minolta Co., Ltd. Metal oxide fiber, and production method thereof
US20130043606A1 (en) * 2011-08-18 2013-02-21 Government Of The United States, As Represented By The Secretary Of The Air Force Laser Sintering of Ceramic Fibers
CN104451953A (zh) * 2014-11-14 2015-03-25 中国科学院上海光学精密机械研究所 三价镱离子掺杂镥铝石榴石透明陶瓷光纤的制备方法
US20200071231A1 (en) * 2017-04-10 2020-03-05 Shandong University Preparation method for yttrium aluminum garnet continuous fiber
CN112209715A (zh) * 2020-10-26 2021-01-12 南通大学 一种用于激光器的金属包层的Nd:YAG陶瓷光纤及其制备方法
WO2022095098A1 (zh) * 2020-11-09 2022-05-12 新沂市锡沂高新材料产业技术研究院有限公司 一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法
CN113248256A (zh) * 2021-05-08 2021-08-13 南通大学 一种用于陶瓷光纤挤出成型的强韧性膏料的配制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"OPTAPIX PAF 35", 11 May 2016, pages: 1 *
杨博华;沈家明;邢凤雨;陈浩;: "全干式PVC光纤带光缆的设计与工艺控制", 现代传输, no. 06, pages 71 - 73 *

Similar Documents

Publication Publication Date Title
CN108516818B (zh) 一种基于改进的Isobam凝胶体系制备YAG透明陶瓷的方法
CN102060539B (zh) 利用注浆成型制备钇铝石榴石基透明陶瓷的方法
CN104725052B (zh) 一种多层复合结构透明陶瓷的制备方法
CN105218095B (zh) 利用凝胶注模成型反应烧结制备钇铝石榴石透明陶瓷的方法
CN112341184B (zh) 一种基于Isobam凝胶态浸涂技术的波导结构激光透明陶瓷光纤的制备方法
CN102020470B (zh) 高光学质量的氧化钇透明陶瓷的制备方法
CN111825453A (zh) 一种具有包芯结构的透明陶瓷光纤的制备方法
CN101348324A (zh) 用于多晶硅结晶的不透明石英坩埚及其制造方法
CN111270347A (zh) 一种凝胶注模成型制备透明陶瓷光纤的方法
CN110885244B (zh) 一种钇铝石榴石基透明陶瓷光纤的制备方法
CN104451953B (zh) 三价镱离子掺杂镥铝石榴石透明陶瓷光纤的制备方法
CN107619273B (zh) 一种非水基凝胶注模成型制备铽铝石榴石基磁光透明陶瓷的方法
CN101891477B (zh) 一种圆形长棒状re:yag激光透明陶瓷的制备方法
CN105565810A (zh) 稀土离子掺杂的氧化钇激光陶瓷光纤的制备方法
CN112390641B (zh) 一种基于3d凝胶打印技术的yag透明陶瓷光纤制备方法
CN104829221A (zh) 凝胶注模成型制备Re:YAG透明陶瓷的方法
CN116332648A (zh) 一种稀土离子掺杂的超长透明陶瓷光纤的制备方法
CN103482970A (zh) 一种激光透明陶瓷及其制备方法
KR20040002053A (ko) 미세다공질 세라믹스 소재 및 그 제조방법
CN107324805A (zh) 一种多组分石榴石基激光透明陶瓷材料及其制备方法
JP4539850B2 (ja) シリカ成形体の製造方法及び該シリカ成形体を焼結するシリカガラス製品の製造方法
CN113248256B (zh) 一种用于陶瓷光纤挤出成型的强韧性膏料的配制方法
CN113149631B (zh) 一种胶态固化成型制备yag透明陶瓷的方法
CN108585825A (zh) 一种镁铝尖晶石基透波隔热材料及其制备方法
CN108147834A (zh) 介电常数可调控的轻质氮化硅天线罩及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination