CN104451953A - 三价镱离子掺杂镥铝石榴石透明陶瓷光纤的制备方法 - Google Patents

三价镱离子掺杂镥铝石榴石透明陶瓷光纤的制备方法 Download PDF

Info

Publication number
CN104451953A
CN104451953A CN201410648089.2A CN201410648089A CN104451953A CN 104451953 A CN104451953 A CN 104451953A CN 201410648089 A CN201410648089 A CN 201410648089A CN 104451953 A CN104451953 A CN 104451953A
Authority
CN
China
Prior art keywords
gypsum
aluminum garnet
water
optical fiber
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410648089.2A
Other languages
English (en)
Other versions
CN104451953B (zh
Inventor
范金太
张龙
姜本学
毛小建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN201410648089.2A priority Critical patent/CN104451953B/zh
Publication of CN104451953A publication Critical patent/CN104451953A/zh
Application granted granted Critical
Publication of CN104451953B publication Critical patent/CN104451953B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lasers (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种三价镱离子掺杂镥铝石榴石透明陶瓷光纤的制备方法。该方法包含以下步骤:1)将共沉淀制备的镱掺杂的钇铝石榴石粉体、烧结助剂、表面活性剂和三重蒸馏水球磨混合,制备水基浆料;2)制备石膏微孔模具,3)将所述的水基浆料注入到所述的石膏微孔模具中,脱模并干燥得到陶瓷纤维素坯;4)将所述的纤维素坯煅烧处理;5)将煅烧过的纤维进行真空烧结;6)最后退火,获得Yb3+掺杂的透明镥铝石榴石透明陶瓷光纤。本发明制备的透明陶瓷光纤具有较低的光学损耗,可用于~1微米近红外激光输出和~1微米近红外光学信号放大。该方法采用注浆成型工艺,相对现有技术,步骤简单,成本较低。采用粉体烧结工艺,工作温度较低,能耗较小。

Description

三价镱离子掺杂镥铝石榴石透明陶瓷光纤的制备方法
技术领域
本发明涉及透明陶瓷光纤,特别是一种三价镱离子掺杂镥铝石榴石(Yb3+:LuAG)透明陶瓷光纤的制备方法。
背景技术
光纤增益介质是固体激光器朝更小尺寸、更轻重量、更高效率和更可靠的方向发展的完美解决方案。目前较成熟的光纤增益基质为石英光纤,目前其输出功率已超过3kW。然而,在面向更高功率的应用上,由于石英热导率较低,石英光纤无法胜任。掺杂钇铝石榴石是一种优秀的激光增益基质材料,相对于石英玻璃1.37W/mK的热导率,其热导率高达~11W/mK,单根掺杂光纤钇铝石榴石可以产生和承受更高的功率而不会因热问题而产生光束质量畸变或者增益材料损坏。Parthasarathy计算得出,相对石英光纤,掺杂钇铝石榴石具有更高的受激布里渊散射增益阈值。
钇铝石榴石单晶光纤可以通过激光加热基座生长法(Laser Heated PedestalGrowth)、微下拉法(Micro-Pulling-Down)、内结晶法(Internal Crystallization Method)和导模法(Edge-defined Film-fed Growth)。前两种方法已成功用于钇铝石榴石激光材料。但是以上单晶光纤均基于熔融法,、生产工艺和设备复杂,能源消耗大,成本高等问题,限制了YAG纤维的发展和应用。
相对于单晶光纤,多晶陶瓷光纤的晶化与烧结温度较低,结合现代纺丝工艺,可以得到<100微米的纤维。溶胶凝胶法是目前制备钇铝石榴石多晶陶瓷纤维的有效方法。但是这种方法需要使用金属醇盐或金属有机盐做前驱体,价格昂贵;而使用无机盐做前驱体却需要加入大量有机聚合物作为纺丝助剂,得到的陶瓷纤维均匀性和致密性较差。
美国空军实验室采用钇铝石榴石纳米,结合陶瓷挤出成型工艺,在真空烧结和热等静压后获得透明陶瓷光纤。但是该工艺同样需要有机粘结剂等有机添加剂,造成素坯固含量较低,陶瓷中残留大量气孔。
镥铝石榴石与钇铝石榴石具有相同的晶体结构,且相对于钇铝石榴石,在稀土离子掺杂后,热导率的降低程度低,具有更高的热导率,更适合大功率激光器。
发明内容
本发明的目的在于提供一种三价镱离子掺杂镥铝石榴石(Yb3+:LuAG)透明陶瓷光纤的制备方法。该方法制备的透明陶瓷光纤具有较低的光学损耗,可用于~1微米近红外激光输出和~1微米近红外光学信号放大。该方法采用注浆成型工艺,相对现有技术,步骤简单,成本较低。采用粉体烧结工艺,工作温度较低,能耗较小。
本发明的技术解决方案如下:
一种三价镱离子掺杂镥铝石榴石(Yb3+:LuAG)透明陶瓷光纤的制备方法,该方法包括下列步骤:
①水基浆料的制备:
按0.1mol%~10mol%(摩尔百分比)镱离子掺杂的镥铝石榴石粉体、烧结助剂、表面活性剂和三重蒸馏水的质量比为10:0.05:0.1~0.15:4~7分别称取或量取以上原料或试剂,然后球磨混合;其中烧结助剂为正硅酸四乙酯,表面活性剂为聚丙烯酸铵;球磨时间为3小时,球磨转速200转每分钟。
②石膏微孔模具制作:
以质量比2.75:1分别称取β半水石膏和水。将称取的β半水石膏缓慢加入水中,带石膏完全浸湿,缓慢搅拌,使石膏与水均匀混合并排除气泡。静置2分钟后,将获得的石膏浆料缓慢倒入模子中,在石膏未完全固化前,将石膏板分成四份,并在其四面结合处放入直径为500微米~5毫米、长度为10厘米的玻璃光纤并加压,将石膏待固化后,抽出光纤,获得石膏微孔模具。
③注浆成型:
将步骤①获得的球磨后的浆料缓慢注入步骤②中的石膏模具中,静置24小时后,脱模;
④素坯煅烧:
将步骤②成型并干燥后的纤维素坯然后放入马弗炉中在800℃煅烧3小时。
⑤真空预烧:将上述煅烧后的纤维素坯置于真空钨丝炉中进行烧结。以5℃/分钟升温至1000℃后以2℃/分钟升温至1750~1850℃,保温5小时,然后以10℃/分钟降温至600℃后随炉冷却。
⑥将烧结后的透明陶瓷光纤进行退火,退火温度为1450℃,退火时间为1小时,获得Yb3+掺杂的透明镥铝石榴石激光陶瓷。
本发明技术效果:
本发明制备的透明陶瓷光纤具有较低的光学损耗,可用于~1微米近红外激光输出和~1微米近红外光学信号放大。
本发明该方法采用注浆成型工艺,相对现有技术,步骤简单,成本较低。采用粉体烧结工艺,工作温度较低,能耗较小。
具体实施方式
为了对Yb3+:LuAG透明陶瓷光纤的制备方法进一步说明,本实施例根据本发明技术方案实施,给出实验方式和流程。
实施例1
(1)分别称取10g的0.1mol%Yb掺杂的钇铝石榴石纳米粉体、0.1g的聚丙烯酸铵和4g的三重蒸馏水;量取31.7μL的正硅酸四乙酯;然后在聚氨酯球磨罐中球磨3小时,球磨转速为200rpm,球磨介质为高纯氧化铝球;
(2)按照权利要求书1中的步骤②制作内径为500微米、长为10厘米的石膏微孔模具
(3)将步骤(1)得到的水基浆料缓慢注入上述石膏模具中,静置24小时后脱模,将成型后的素坯置于50℃烘箱中烘干12小时;
(4)将上述注浆成型并干燥后的素坯然后放入马弗炉中,在800℃煅烧3小时;
(5)将上述煅烧后的素坯置于真空钨丝炉中,以5℃/分钟升温至1000℃后以2℃/分钟升温至1750℃,保温5小时,然后以10℃/分钟降温至600℃后随炉冷却;
(6)将烧结后的透明陶瓷光纤进行退火,退火温度为1450℃,退火时间为1小时,获得Yb3+掺杂的透明钇铝石榴石陶瓷光纤。
实施例2
(1)分别称取10g的5mol%(摩尔百分比)Yb掺杂的钇铝石榴石纳米粉体、0.15g的聚丙烯酸铵和4g的三重蒸馏水;量取31.7μL的正硅酸四乙酯;然后在聚氨酯球磨罐中球磨3小时,球磨转速为200rpm,球磨介质为高纯氧化铝球;
(2)按照权利要求书1中的步骤②制作内径为500微米、长为10厘米的石膏微孔模具
(3)将步骤(1)得到的水基浆料缓慢注入上述石膏模具中,静置24小时后脱模,将成型后的素坯置于50℃烘箱中烘干12小时;
(4)将上述注浆成型并干燥后的素坯然后放入马弗炉中,在800℃煅烧3小时;
(5)将上述煅烧后的素坯置于真空钨丝炉中,以5℃/分钟升温至1000℃后以2℃/分钟升温至1850℃,保温5小时,然后以10℃/分钟降温至600℃后随炉冷却;
(6)将烧结后的透明陶瓷光纤进行退火,退火温度为1450℃,退火时间为1小时,获得Yb3+掺杂的透明钇铝石榴石激光陶瓷纤维。
实施例3
(1)分别称取10g的10mol%(摩尔百分比)Yb掺杂的钇铝石榴石纳米粉体、0.1g的聚丙烯酸铵和7g的三重蒸馏水;量取31.7μL的正硅酸四乙酯;然后在聚氨酯球磨罐中球磨3小时,球磨转速为200rpm,球磨介质为高纯氧化铝球;
(2)按照权利要求书1中的步骤②制作内径为5毫米、长为10厘米的石膏微孔模具;
(3)将步骤(1)得到的水基浆料缓慢注入上述石膏模具中,静置24小时后脱模,将成型后的素坯置于50℃烘箱中烘干12小时;
(4)将上述注浆成型并干燥后的素坯然后放入马弗炉中,在800℃煅烧3小时。
(5)将上述煅烧后的素坯置于真空钨丝炉中,以5℃/分钟升温至1000℃后以2℃/分钟升温至1850℃,保温5小时,然后以10℃/分钟降温至600℃后随炉冷却;
(6)将烧结后的透明陶瓷光纤进行退火,退火温度为1450℃,退火时间为1小时,获得Yb3+掺杂的透明钇铝石榴石激光陶瓷纤维。
表1给出了本发明透明陶瓷光纤的不同制备参数以及其光学损耗。
表1本发明透明陶瓷光纤的不同制备参数以及其光学损耗

Claims (1)

1.一种三价镱离子掺杂镥铝石榴石(Yb3+:LuAG)透明陶瓷光纤的制备方法,特征在于该方法包括以下步骤:
①水基浆料的制备:
按0.1mol%~10mol%镱离子掺杂的镥铝石榴石粉体、烧结助剂、表面活性剂和三重蒸馏水的质量比为10:0.05:0.1~0.15:4~7分别称取或量取以上原料或试剂,然后球磨混合;其中烧结助剂为正硅酸四乙酯,表面活性剂为聚丙烯酸铵;球磨时间为3小时,球磨转速200转每分钟,获得水基浆料;
②石膏微孔模具制作:
以质量比2.75:1分别称取β半水石膏和水。将称取的β半水石膏缓慢加入水中,带石膏完全浸湿,缓慢搅拌,使石膏与水均匀混合并排除气泡。静置2分钟后,将获得的石膏浆料缓慢倒入模子中,在石膏未完全固化前,将石膏板分成四份,并在其四面结合处放入直径为500微米~5毫米、长度为10厘米的玻璃光纤并加压,将石膏待固化后,抽出光纤,获得石膏微孔模具;
③注浆成型:
将所述的水基浆料缓慢注入所述的石膏模具中,静置24小时后,脱模并干燥后得到纤维素坯;
④纤维素坯煅烧:
将所述的纤维素坯放入马弗炉中在800℃煅烧3小时;
⑤真空预烧:将上述煅烧后的纤维素坯置于真空钨丝炉中进行烧结,以5℃/分钟升温至1000℃后以2℃/分钟升温至1750~1850℃,保温5小时,然后以10℃/分钟降温至600℃后随炉冷却;
⑥将烧结后的透明陶瓷光纤进行退火,退火温度为1450℃,退火时间为1小时,获得Yb3+掺杂的镥铝石榴石透明陶瓷光纤。
CN201410648089.2A 2014-11-14 2014-11-14 三价镱离子掺杂镥铝石榴石透明陶瓷光纤的制备方法 Active CN104451953B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410648089.2A CN104451953B (zh) 2014-11-14 2014-11-14 三价镱离子掺杂镥铝石榴石透明陶瓷光纤的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410648089.2A CN104451953B (zh) 2014-11-14 2014-11-14 三价镱离子掺杂镥铝石榴石透明陶瓷光纤的制备方法

Publications (2)

Publication Number Publication Date
CN104451953A true CN104451953A (zh) 2015-03-25
CN104451953B CN104451953B (zh) 2016-05-11

Family

ID=52898675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410648089.2A Active CN104451953B (zh) 2014-11-14 2014-11-14 三价镱离子掺杂镥铝石榴石透明陶瓷光纤的制备方法

Country Status (1)

Country Link
CN (1) CN104451953B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105565810A (zh) * 2015-12-27 2016-05-11 西南技术物理研究所 稀土离子掺杂的氧化钇激光陶瓷光纤的制备方法
CN107614459A (zh) * 2015-08-27 2018-01-19 神岛化学工业株式会社 透光性稀土类铝石榴石陶瓷
CN112209715A (zh) * 2020-10-26 2021-01-12 南通大学 一种用于激光器的金属包层的Nd:YAG陶瓷光纤及其制备方法
CN113248256A (zh) * 2021-05-08 2021-08-13 南通大学 一种用于陶瓷光纤挤出成型的强韧性膏料的配制方法
CN116332648A (zh) * 2023-04-11 2023-06-27 江苏师范大学 一种稀土离子掺杂的超长透明陶瓷光纤的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055841A (ja) * 2001-08-10 2003-02-26 Sumitomo Chem Co Ltd 酸化チタン繊維およびそれを用いてなる光触媒体
CN1837142A (zh) * 2006-04-07 2006-09-27 中国科学院上海硅酸盐研究所 一种镥铝石榴石基透明陶瓷及其制备方法
CN1915901A (zh) * 2005-06-03 2007-02-21 中国科学院上海硅酸盐研究所 双掺杂的钇铝石榴石透明陶瓷材料及制备方法
CN2915993Y (zh) * 2006-06-09 2007-06-27 济南大学 一种脱硫石膏空心墙板
CN101284394A (zh) * 2008-02-13 2008-10-15 崔学会 一种加压注坯、加压干燥式石膏模具及其制备方法
US20120128873A1 (en) * 2008-12-18 2012-05-24 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Hot-Pressed Transparent Ceramics and Ceramic Lasers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055841A (ja) * 2001-08-10 2003-02-26 Sumitomo Chem Co Ltd 酸化チタン繊維およびそれを用いてなる光触媒体
CN1915901A (zh) * 2005-06-03 2007-02-21 中国科学院上海硅酸盐研究所 双掺杂的钇铝石榴石透明陶瓷材料及制备方法
CN1837142A (zh) * 2006-04-07 2006-09-27 中国科学院上海硅酸盐研究所 一种镥铝石榴石基透明陶瓷及其制备方法
CN2915993Y (zh) * 2006-06-09 2007-06-27 济南大学 一种脱硫石膏空心墙板
CN101284394A (zh) * 2008-02-13 2008-10-15 崔学会 一种加压注坯、加压干燥式石膏模具及其制备方法
US20120128873A1 (en) * 2008-12-18 2012-05-24 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Hot-Pressed Transparent Ceramics and Ceramic Lasers

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107614459A (zh) * 2015-08-27 2018-01-19 神岛化学工业株式会社 透光性稀土类铝石榴石陶瓷
CN107614459B (zh) * 2015-08-27 2020-09-29 神岛化学工业株式会社 透光性稀土类铝石榴石陶瓷
CN105565810A (zh) * 2015-12-27 2016-05-11 西南技术物理研究所 稀土离子掺杂的氧化钇激光陶瓷光纤的制备方法
CN112209715A (zh) * 2020-10-26 2021-01-12 南通大学 一种用于激光器的金属包层的Nd:YAG陶瓷光纤及其制备方法
CN113248256A (zh) * 2021-05-08 2021-08-13 南通大学 一种用于陶瓷光纤挤出成型的强韧性膏料的配制方法
CN113248256B (zh) * 2021-05-08 2022-08-12 南通大学 一种用于陶瓷光纤挤出成型的强韧性膏料的配制方法
CN116332648A (zh) * 2023-04-11 2023-06-27 江苏师范大学 一种稀土离子掺杂的超长透明陶瓷光纤的制备方法

Also Published As

Publication number Publication date
CN104451953B (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
CN102060539B (zh) 利用注浆成型制备钇铝石榴石基透明陶瓷的方法
CN104451953B (zh) 三价镱离子掺杂镥铝石榴石透明陶瓷光纤的制备方法
CN102020470B (zh) 高光学质量的氧化钇透明陶瓷的制备方法
CN105218095B (zh) 利用凝胶注模成型反应烧结制备钇铝石榴石透明陶瓷的方法
CN104557013B (zh) 一种四价铬掺杂钇铝石榴石透明陶瓷的制备方法
CN107721424B (zh) 一种凝胶注模成型制备yag透明陶瓷的方法
CN102126857B (zh) 透明氟化钙陶瓷的制备方法
CN110885244B (zh) 一种钇铝石榴石基透明陶瓷光纤的制备方法
CN103102156A (zh) 凝胶注模成型制备Re:YAG透明陶瓷
CN101985398A (zh) 一种透明多晶Re:YAG陶瓷的制备方法
CN105601277A (zh) 一种氧化钇基透明陶瓷的制备方法
CN101905481B (zh) 用于陶瓷坯体制备的多孔陶瓷负压注浆成型装置及方法
CN103820859A (zh) 掺杂钇铝石榴石陶瓷转变为单晶的制备方法
CN103319093B (zh) 掺镱氟磷酸锶微晶掺镱氟磷酸盐玻璃复合材料及制备方法
CN103482970B (zh) 一种激光透明陶瓷及其制备方法
CN103880435A (zh) 一种高质量氮化铝陶瓷基片的微波快速烧结方法
CN107619273B (zh) 一种非水基凝胶注模成型制备铽铝石榴石基磁光透明陶瓷的方法
CN105565810A (zh) 稀土离子掺杂的氧化钇激光陶瓷光纤的制备方法
CN104446430A (zh) 复合激光陶瓷及其制备方法
CN104829221A (zh) 凝胶注模成型制备Re:YAG透明陶瓷的方法
CN110759733B (zh) 一种Y0.5Dy0.5Ta0.5Nb0.5O4钽系陶瓷材料及其制备方法
CN102211941A (zh) Er,Yb双掺杂YAG多晶透明陶瓷材料制备方法
CN104628376B (zh) 一种制备透明陶瓷激光棒的离心成型方法
CN104150904A (zh) 用于中红外激光的Er3+单掺氧化镧钇透明陶瓷的制备方法
CN113213931B (zh) 一种基于Isobam凝胶与熔融纺丝技术的透明陶瓷光纤制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant