WO2022080037A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2022080037A1
WO2022080037A1 PCT/JP2021/032672 JP2021032672W WO2022080037A1 WO 2022080037 A1 WO2022080037 A1 WO 2022080037A1 JP 2021032672 W JP2021032672 W JP 2021032672W WO 2022080037 A1 WO2022080037 A1 WO 2022080037A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
less
rubber
mass
preferable
Prior art date
Application number
PCT/JP2021/032672
Other languages
English (en)
French (fr)
Inventor
健二 ▲濱▼村
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to EP21879779.3A priority Critical patent/EP4108720A4/en
Priority to JP2022557260A priority patent/JPWO2022080037A1/ja
Priority to CN202180031186.5A priority patent/CN115515803B/zh
Priority to US18/030,850 priority patent/US20230373247A1/en
Publication of WO2022080037A1 publication Critical patent/WO2022080037A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0041Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers
    • B60C11/005Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers with cap and base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0041Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers
    • B60C11/005Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers with cap and base layers
    • B60C11/0075Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers with cap and base layers with different base rubber layers in the axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/033Tread patterns characterised by special properties of the tread pattern by the void or net-to-gross ratios of the patterns
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0025Modulus or tan delta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0033Thickness of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0355Circumferential grooves characterised by depth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • B60C2011/1254Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern with closed sipe, i.e. not extending to a groove
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • This disclosure relates to tires.
  • Patent Document 1 describes a predetermined tire having a reduced rubber volume for weight reduction.
  • the purpose of this disclosure is to provide a tire with improved wet grip performance.
  • the wet grip performance was improved by setting the tire weight with respect to the maximum load capacity of the tire, the tan ⁇ and the complex elastic modulus of the rubber composition constituting the tread, and the tan ⁇ with respect to the tire weight within a predetermined range. It was found that tires were obtained.
  • the present disclosure is a tire provided with a tread portion, and the ratio (G / WL) of the tire weight G (kg) to the maximum load capacity WL ( kg) of the tire is 0.0131 or less.
  • the tread has at least one rubber layer composed of a rubber composition containing a rubber component and a reinforcing filler, and the tan ⁇ (30 ° C. tan ⁇ ) of the rubber composition at 30 ° C. is more than 0.15.
  • tires with improved wet grip performance are provided.
  • the tire according to the embodiment of the present disclosure is a tire provided with a tread, and the ratio (G / WL) of the tire weight G (kg) to the maximum load capacity WL ( kg) of the tire is 0.0131 .
  • the tread has at least one rubber layer composed of a rubber composition containing a rubber component and a reinforcing filler, and the tan ⁇ of the rubber composition at 30 ° C. is more than 0.15.
  • the ratio of the 30 ° C. tan ⁇ to the G is 0.016 or more, preferably 0.017 or more, more preferably 0.018 or more, still more preferably 0.019 or more, and 0. 020 or more is particularly preferable.
  • the upper limit of 30 ° C. tan ⁇ / G is not particularly limited from the viewpoint of the effect of the present disclosure, but is preferably 0.080 or less, more preferably 0.070 or less, still more preferably 0.060 or less, and 0. 050 or less is particularly preferable.
  • the maximum load capacity WL (kg) is the load capacity when the maximum air pressure (kPa) corresponding to the tire having the load index (LI) is filled under the usage conditions defined by the JATTA standard. The value (kg) is shown.
  • the tire cross-sectional width is Wt (mm)
  • the tire cross-sectional height is Ht (mm)
  • the tire outer diameter is Dt when the tire is filled with 250 kPa of air.
  • Wt is the maximum width between the outer surfaces of the sidewalls excluding patterns or characters on the side surface of the tire.
  • Ht is the distance from the bottom surface of the bead portion to the outermost surface of the tread, and is 1 ⁇ 2 of the difference between the outer diameter of the tire and the nominal diameter of the rim.
  • V ⁇ (Dt / 2) 2- (Dt / 2-Ht) 2 ⁇ ⁇ ⁇ ⁇ Wt ⁇ ⁇ ⁇ (1)
  • WL 0.000011 ⁇ V + 100 ⁇ ⁇ ⁇ (2)
  • the reinforcing filler contains silica, and the ratio of the carbon black content to the silica content in the reinforcing filler is preferably 0.21 or less.
  • the rubber composition preferably contains 4.0 parts by mass or more of a resin component with respect to 100 parts by mass of the rubber component.
  • the specific gravity of the rubber composition is preferably 1.270 or less.
  • the tread portion has a land portion partitioned by two or more circumferential grooves continuously extending in the circumferential direction of the tire, and includes an extension line of the land portion and an extension line of the deepest portion of the groove bottom of the circumferential groove.
  • the rubber layer made of the rubber composition is arranged in at least a part of the region of the distance H inward in the radial direction from the outermost surface of the land portion.
  • H / E * 30 is preferably 1.33 or less, more preferably 1.30 or less, further preferably 1.27 or less, further preferably 1.25 or less, still more preferably 1.22 or less, 1 .20 or less is particularly preferable. Since the tires of the present disclosure are light in weight and have a small complex elastic modulus, there is a concern that the steering stability performance may be deteriorated. Therefore, the steering stability performance can be improved by making the depth of the circumferential groove shallow according to the complex elastic modulus.
  • the lower limit of H / E * 30 is not particularly limited from the viewpoint of the effect of the present disclosure, but is preferably 0.70 or more, more preferably 0.75 or more, further preferably 0.80 or more, and 0. 85 or more is particularly preferable.
  • the tread portion has a pair of shoulder land portions and a center land portion located between the pair of shoulder land portions, which are partitioned by the circumferential groove, and is the sum of the center land portions with respect to the total area of the land portions.
  • the area ratio is preferably 0.35 to 0.80.
  • the tread portion has two or more circumferential grooves, widthwise grooves, and sipes that continuously extend in the tire circumferential direction, and the ratio of the total groove area to the ground contact area of the tread portion is 0.15 to. It is preferably 0.35.
  • the ratio of the total area of the circumferential groove to the ground contact area of the tread portion is preferably 0.09 to 0.16, and the ratio of the total area of the widthwise groove and the sipes to the ground contact area of the tread portion is 0. It is preferably .08 to 0.14.
  • La / Lb is preferably 0.10 to 0.20.
  • the tread portion has sipes whose ends are not opened in the circumferential groove.
  • the tread portion includes a first rubber layer constituting the tread surface and a second rubber layer adjacent to the inside in the radial direction of the first layer, and the first rubber layer and the second rubber layer. It is preferable that at least one of them is composed of the rubber composition, and it is more preferable that the first rubber layer is composed of the rubber composition.
  • the deepest portion of the groove bottom of the circumferential groove is formed so as to be located inside the tire radial direction with respect to the outermost side of the second rubber layer.
  • the ratio (t2 / t1) of the thickness t2 of the rubber of the second layer to the thickness t1 of the first rubber layer is preferably 5/95 to 60/40.
  • tire weight is expressed in G (kg).
  • G is the weight of the tire alone, not including the weight of the rim.
  • G is a value including these weights.
  • the tire weight G can be changed by a conventional method, that is, it can be increased by increasing the specific weight of the tire or by increasing the thickness of each member of the tire, and vice versa. You can also.
  • the ratio (G / WL) of the tire weight G (kg) to the maximum load capacity WL (kg) is 0.0131 or less, 0.0130 , from the viewpoint of the effect of the present disclosure.
  • the following is more preferable, 0.0129 or less is further preferable, 0.0128 or less is further preferable, and 0.0127 or less is particularly preferable.
  • the lower limit of G / W L is not particularly limited from the viewpoint of the effect of the present disclosure, but is, for example, 0.0080 or more, 0.0090 or more, 0.0100 or more, 0.0110 or more, 0.0115. As mentioned above, it can be 0.0120 or more and 0.0121 or more.
  • the maximum load capacity WL (kg) is preferably 300 or more, more preferably 400 or more, further preferably 450 or more, and particularly preferably 500 or more, from the viewpoint of better exerting the effects of the present disclosure. Further, the maximum load capacity WL (kg) is, for example, 1300 or less, 1200 or less, 1100 or less, 1000 or less, 900 or less, 800 or less, 700 or less, 650 or less from the viewpoint of better exerting the effect of the present disclosure. Can be. The maximum load capacity WL can be increased by increasing the virtual volume V of the space occupied by the tire, and vice versa.
  • a “regular rim” is a rim defined for each tire in the standard system including the standard on which the tire is based. For example, “Measuring Rim”. In the case of a tire of a size not specified in the above standard system, the narrowest rim can be assembled to the tire and has the smallest diameter that does not cause air leakage between the rim and the tire. Shall point to.
  • Regular internal pressure is the air pressure defined for each tire in the standard system including the standard on which the tire is based.
  • maximum air pressure for TRA, the table “TIRE LOAD LIMITS AT” The maximum value described in "VARIOUS COLD INFLATION PRESSURES", and in the case of ETRTO, it is "INFLATION PRESSURE".
  • the normal internal pressure is 250 kPa.
  • the "normal state” is a state in which the tire is rim-assembled on the regular rim, the regular internal pressure is filled, and there is no load. In the case of a tire having a size not specified in the above standard system, it means that the tire is rim-assembled on the minimum rim, 250 kPa is filled, and there is no load.
  • FIG. 1 is an enlarged cross-sectional view schematically showing a part of the tread of a tire.
  • the vertical direction is the tire radial direction
  • the left-right direction is the tire width direction
  • the direction perpendicular to the paper surface is the tire circumferential direction.
  • the dimensions and the like of each part of the tire are values measured in the normal state.
  • the groove depth H of the circumferential groove 1 is obtained by the distance between the extension line 4 of the land portion 2 and the extension line 5 of the deepest portion of the groove bottom of the circumferential groove 1.
  • the groove depth H is, for example, when there are a plurality of circumferential grooves 1, the extension line 4 of the land portion 2 and the circumferential groove 1 having the deepest groove depth among the plurality of circumferential grooves 1 (FIG. 1).
  • the distance from the extension line 5 of the deepest portion of the groove bottom of the circumferential groove 1) on the left side can be set.
  • a rubber layer composed of the above-mentioned predetermined rubber composition is arranged in at least a part of a region of a distance H inward in the radial direction of the tire from the outermost surface (tread surface 3) of the land portion 2.
  • two or more rubber layers are present in a region of a distance H from the outermost surface of the land portion 2 to the inside in the tire radial direction, and at least one rubber layer among the two or more rubber layers is present.
  • the rubber layer is composed of two or more layers, at least one of the two or more rubber layers may be composed of the above-mentioned predetermined rubber composition.
  • the tread portion of the tire of the present disclosure includes a first rubber layer 6 and a second rubber layer 7 (hereinafter, may be simply referred to as "first layer 6" and "second layer 7").
  • the outer surface of the first layer 6 constitutes the tread surface 3, and the second layer 7 is adjacent to the inside of the first layer 6 in the radial direction.
  • the first layer 6 typically corresponds to a cap tread.
  • the second layer 7 typically corresponds to a base tread or under tread. Further, as long as the object of the present disclosure is achieved, one or more rubber layers may be further provided between the second layer 7 and the belt layer.
  • it is preferable that at least one of the first layer 6 and the second layer 7 is composed of a predetermined rubber composition, and the first layer 6 is composed of a predetermined rubber composition. Is more preferable.
  • One of the circumferential grooves 1 shown on the left side of FIG. 1 is formed so that the deepest portion of the groove bottom of the circumferential groove 1 is located inside the tire radial direction with respect to the outermost side of the second layer 7. ..
  • the second layer 7 has a recess recessed inward in the radial direction of the tire with respect to the outermost layer, and a part of the first layer 6 is formed in the recess of the second layer 7 with a predetermined thickness.
  • the circumferential groove 1 is formed so as to go beyond the outer surface of the second layer 7 and enter the inside of the recess of the second layer 7.
  • the circumferential groove 1 may be formed at a groove depth that does not reach the outer surface of the second layer 7, like the circumferential groove 1 shown on the right side of FIG. 1.
  • the double-headed arrow t1 is the thickness of the first layer 6, and the double-headed arrow t2 is the thickness of the second layer 7.
  • the midpoint of the land portion 2 in the tire width direction is indicated by the symbol P.
  • the straight line represented by the symbol N is a straight line (normal line) that passes through the point P and is perpendicular to the tangent plane at this point P.
  • the thicknesses t1 and t2 are measured along a normal line N drawn from a point P on the tread surface at a position where no groove is present in the cross section of FIG.
  • the thickness t1 of the first layer 6 is not particularly limited, but is preferably 1.0 mm or more, more preferably 2.0 mm or more, still more preferably 3.0 mm or more.
  • the thickness t1 of the first layer 6 is preferably 10.0 mm or less, more preferably 9.0 mm or less, and even more preferably 8.0 mm or less.
  • the thickness t2 of the second layer 7 is not particularly limited, but is preferably 0.5 mm or more, more preferably 1.0 mm or more, still more preferably 1.5 mm or more.
  • the thickness t2 of the second layer 7 is preferably 8.0 mm or less, more preferably 6.0 mm or less, and even more preferably 4.0 mm or less.
  • the ratio of t1 to t2, t2 / t1, is preferably 5/95 or more, more preferably 8/92 or more, still more preferably 10/90 or more, from the viewpoint of suppressing tire blowout and maintaining wet grip performance.
  • 12/88 or more is more preferable, 15/85 or more is further preferable, 20/80 or more is further preferable, and 25/75 or more is particularly preferable.
  • 60/40 or less is preferable, 55/45 or less is more preferable, 50/50 or less is further preferable, and 40/60 or less is particularly preferable.
  • FIG. 2 shows a schematic view of the ground plane when the tread is pressed against a flat surface.
  • the tread 10 constituting the tire according to the present disclosure extends continuously in the tire circumferential direction C (in the example of FIG. 1, linearly extends along the tire circumferential direction). And has a lateral groove 21 extending in the width direction and sipes 22 and 23.
  • the tread portion 10 has a plurality of circumferential grooves 1 continuously extending in the circumferential direction C.
  • three circumferential grooves 1 are provided, but the number of circumferential grooves is not particularly limited, and may be, for example, two to five.
  • the circumferential groove 1 extends linearly along the circumferential direction, but the present invention is not limited to such an embodiment, and for example, the circumferential groove 1 is wavy, sinusoidal, or zigzag along the circumferential direction. It may extend like a shape.
  • the tread portion 10 has a land portion 2 partitioned by a plurality of circumferential grooves 1 in the tire width direction W.
  • the shoulder land portion 11 is a pair of land portions formed between the circumferential groove 1 and the tread end Te.
  • the center land portion 12 is a land portion formed between a pair of shoulder land portions 11. In FIG. 1, two center land portions 12 are provided, but the number of center land portions is not particularly limited, and may be, for example, one to five.
  • the land portion 2 is provided with a lateral groove and / or a sipe that crosses the land portion 2. Further, it is more preferable that the land portion 2 has a sipe whose both ends or one end do not open in the circumferential groove 1.
  • the shoulder land portion 11 is provided with a plurality of shoulder lateral grooves 21 whose ends are open to the circumferential groove 1 and a plurality of shoulder sipes 22 whose ends are not open to the circumferential groove 1.
  • the center land portion 12 is provided with a plurality of shoulder sipes 23 whose ends are not opened in the circumferential groove 1, but the present invention is not limited to such a mode.
  • the "groove” including the circumferential groove and the lateral groove means a dent having a width larger than at least 2.0 mm.
  • “sipe” refers to a narrow notch having a width of 2.0 mm or less, preferably 0.5 to 2.0 mm.
  • the length of the tire in the circumferential direction C is La
  • the total length of the edge components in the width direction W of the width direction groove 21 is Lb1
  • the total length of the edge components in the width direction W of the sipes 22 and 23 is Lb2.
  • La / Lb is preferably 0.10 or more, preferably 0.11 or more, further preferably 0.12 or more, and particularly preferably 0.13 or more.
  • La / Lb is preferably 0.20 or less, preferably 0.19 or less, further preferably 0.18 or less, and particularly preferably 0.17 or less.
  • the “length of the edge component in the width direction W" of the width direction groove 21 and the sipes 22 and 23 is the projection length (width direction component and the circumferential direction) of the width direction groove 21 and the sipes 22 and 23 in the width direction W. Of the components, the component in the width direction).
  • the ratio of the total area of the center land portion 12 to the total area of the land portion 2 is preferably 0.35 or more, more preferably 0.40 or more, and even more preferably 0.45 or more.
  • the ratio of the total area of the center land area 12 to the total area of the land portion 2 is preferably 0.80 or less, more preferably 0.70 or less, still more preferably 0.60 or less, from the viewpoint of the effect of the present disclosure. , 0.55 or less is particularly preferable.
  • the ratio of the total groove area to the ground contact area of the tread portion 10 is preferably 0.15 or more, more preferably 0.17 or more, still more preferably 0.20 or more.
  • the ratio of the total groove area to the ground contact area of the tread portion 10 is preferably 0.35 or less, more preferably 0.32 or less, and even more preferably 0.30 or less.
  • the ratio of the total area of the circumferential groove 1 to the ground contact area of the tread portion 10 is preferably 0.09 or more, more preferably 0.10 or more, still more preferably 0.11 or more.
  • the ratio of the total area of the circumferential groove 1 to the ground contact area of the tread portion 10 is preferably 0.16 or less, more preferably 0.15 or less, still more preferably 0.14 or less.
  • the ratio of the total area of the widthwise groove 21 and the sipes 22 and 23 to the ground contact area of the tread portion 10 is preferably 0.08 or more, more preferably 0.09 or more, still more preferably 0.10 or more.
  • the ratio of the total area of the widthwise groove 21 and the sipes 22 and 23 to the ground contact area of the tread portion 10 is preferably 0.14 or less, more preferably 0.13 or less, still more preferably 0.12 or less.
  • the land rigidity of the tread can be increased, and the present disclosure relates to this. Due to the synergistic effect of the rubber suppleness of the tread rubber composition, it is possible to improve the riding comfort at low temperatures while exhibiting high steering stability at high speeds. If the ratio of the total groove area to the ground contact area, the total area of the circumferential groove, and the total area of the width direction groove and the sipe is less than the above range, the ratio of the land part becomes too large, and the drainage property and the grip property are deteriorated. Tends to decline.
  • the "ground contact area of the tread portion” means the ground contact area of the tread portion in a state where all the grooves of the tread portion 2 are filled. Further, the ground contact area of the tread portion, the total area of the circumferential groove, the total area of the width direction groove, and the total area of the sipe are rim-assembled on the regular rim, and in the no-load state when the regular internal pressure is applied, the above-mentioned It is a value measured when the tread is pressed against a flat surface by loading the maximum load capacity of.
  • the rubber composition constituting the at least one rubber layer has a tan ⁇ (30 ° C. tan ⁇ ) of more than 0.15 at 30 ° C. under the conditions of an initial strain of 5%, a dynamic strain of 1%, and a frequency of 10 Hz. 0.16 or more is preferable, and 0.17 or more is more preferable.
  • the upper limit of 30 ° C. tan ⁇ of the rubber composition is not particularly limited from the viewpoint of the effect of the present disclosure, but is preferably 0.50 or less, more preferably 0.40 or less, from the viewpoint of fuel efficiency performance.
  • 0.35 or less is more preferable, and 0.30 or less is particularly preferable.
  • 30 ° C. tan ⁇ is produced by cutting out a rubber test piece after vulcanization from each rubber layer of the tread portion of the tire so that the tire circumferential direction is the long side. , Can be measured using a dynamic viscoelasticity measuring device.
  • the rubber composition constituting the at least one rubber layer has a complex elastic modulus (E * 30 ) of less than 8.0 MPa at 30 ° C. under the conditions of an initial strain of 5%, a dynamic strain of 1%, and a frequency of 10 Hz. Yes, 7.8 MPa or less is preferable, and 7.6 MPa or less is more preferable.
  • E * 30 of the rubber composition constituting the rubber layer preferably the first layer 6
  • the lower limit of E * 30 of the rubber composition is not particularly limited from the viewpoint of the effect of the present disclosure, but is preferably 4.0 MPa or more, more preferably 4.5 MPa or more, still more preferably 5.0 MPa or more.
  • E * 30 is produced by cutting out a vulcanized rubber test piece from each rubber layer of the tread portion of the tire so that the tire circumferential direction is the long side. , Can be measured using a dynamic viscoelasticity measuring device.
  • the specific gravity of the rubber composition constituting the at least one rubber layer is preferably 1.270 or less, more preferably 1.260 or less, still more preferably 1.250 or less, from the viewpoint of steering stability performance. 240 or less is more preferable, and 1.230 or less is particularly preferable.
  • the lower limit of the specific gravity is not particularly limited from the viewpoint of the effect of the present disclosure, but is preferably 1.160 or more, more preferably 1.165 or more, still more preferably 1.170 or more.
  • the specific gravity can be increased, for example, by increasing the silica content, and conversely, it can be decreased by decreasing the silica content.
  • the specific gravity of the rubber composition is the specific gravity of the rubber composition after vulcanization, and is measured based on JIS K 2249-4: 2011.
  • the wet grip performance can be more effectively improved by the cooperation of the above-mentioned tire structure, particularly the shape of the tread, and the above-mentioned physical characteristics of the rubber composition.
  • the rubber composition according to the present disclosure preferably contains at least one selected from the group consisting of isoprene-based rubber, styrene-butadiene rubber (SBR) and butadiene rubber (BR) as a rubber component.
  • the rubber component may be a rubber component containing SBR and BR, or may be a rubber component containing isoprene-based rubber, SBR, and BR. Further, the rubber component may be a rubber component consisting only of SBR and BR, or may be a rubber component consisting only of isoprene-based rubber, SBR, and BR.
  • isoprene rubber examples include natural rubber (NR), isoprene rubber (IR), modified NR, modified NR, modified IR and the like.
  • NR natural rubber
  • IR isoprene rubber
  • modified NR for example, SIR20, RSS # 3, TSR20 and the like, which are common in the tire industry, can be used.
  • the IR is not particularly limited, and for example, an IR 2200 or the like, which is common in the tire industry, can be used.
  • modified NR deproteinized natural rubber (DPNR), high-purity natural rubber, etc. are used, and as the modified NR, epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), grafted natural rubber, etc. are used as modified IR. Examples include epoxidized isoprene rubber, hydrogenated isoprene rubber, grafted isoprene rubber and the like. These isoprene-based rubbers may be used alone or in combination of two or more.
  • the content in 100% by mass of the rubber component is preferably 20% by mass or more, more preferably 25% by mass or more, still more preferably 30% by mass or more, from the viewpoint of processability and durability. , 35% by mass or more is particularly preferable.
  • the upper limit of the content in the isoprene-based rubber component is not particularly limited, but is preferably 85% by mass or less, more preferably 80% by mass or less, from the viewpoint of obtaining good riding comfort performance due to the damping property at the tread portion. It is preferably 75% by mass or less, more preferably 70% by mass or less, and particularly preferably 70% by mass or less.
  • SBR solution polymerization SBR
  • E-SBR emulsion polymerization SBR
  • modified SBR modified SBR
  • modified SBR include modified SBRs (condensates, those having a branched structure, etc.) coupled with SBRs having modified terminals and / or backbones, tin, silicon compounds, and the like. Further, hydrogenated additives of these SBRs (hydrogenated SBR) and the like can also be used. Of these, S-SBR is preferable, and modified S-SBR is more preferable.
  • modified SBR examples include modified SBRs into which functional groups usually used in this field have been introduced.
  • the functional group include an amino group (preferably an amino group in which the hydrogen atom of the amino group is replaced with an alkyl group having 1 to 6 carbon atoms), an amide group, a silyl group and an alkoxysilyl group (preferably the number of carbon atoms).
  • alkoxysilyl group isocyanate group, imino group, imidazole group, urea group, ether group, carbonyl group, oxycarbonyl group, mercapto group, sulfide group, disulfide group, sulfonyl group, sulfinyl group, thiocarbonyl group, Examples thereof include ammonium group, imide group, hydrazo group, azo group, diazo group, carboxyl group, nitrile group, pyridyl group, alkoxy group (preferably alkoxy group having 1 to 6 carbon atoms), hydroxyl group, oxy group, epoxy group and the like. .. In addition, these functional groups may have a substituent.
  • substituent examples include functional groups such as an amino group, an amide group, an alkoxysilyl group, a carboxyl group and a hydroxyl group.
  • modified SBR examples include hydrogenated ones, epoxidized ones, tin-modified ones and the like.
  • an oil-extended SBR can be used, or a non-oil-extended SBR can be used.
  • the oil spread amount of the SBR that is, the content of the oil spread oil contained in the SBR is preferably 10 to 50 parts by mass with respect to 100 parts by mass of the rubber solid content of the SBR.
  • the SBR listed above may be used alone or in combination of two or more.
  • SBR listed above for example, those commercially available from Sumitomo Chemical Co., Ltd., JSR Corporation, Asahi Kasei Co., Ltd., Zeon Corporation, ZS Elastomer Co., Ltd., etc. may be used. can.
  • the styrene content of SBR is preferably 15% by mass or more, more preferably 20% by mass or more, still more preferably 25% by mass or more, from the viewpoint of ensuring damping in the tread portion and wet grip performance. Further, from the viewpoint of temperature dependence of grip performance and wear resistance performance, 60% by mass or less is preferable, 50% by mass or less is more preferable, and 45% by mass or less is further preferable. In the present specification, the styrene content of SBR is calculated by 1 H-NMR measurement.
  • the vinyl content of SBR is preferably 10 mol% or more, more preferably 13 mol% or more, still more preferably 16 mol% or more, from the viewpoint of ensuring reactivity with silica, rubber strength and wear resistance.
  • the vinyl content of SBR is preferably 70 mol% or less, more preferably 65 mol% or less, and more preferably 60 mol% or less from the viewpoints of preventing an increase in temperature dependence, wet grip performance, breaking elongation, and wear resistance. More preferred.
  • the vinyl content (1,2-bonded butadiene unit amount) of SBR is measured by infrared absorption spectroscopy.
  • the weight average molecular weight (Mw) of SBR is preferably 150,000 or more, more preferably 200,000 or more, and even more preferably 250,000 or more from the viewpoint of wear resistance performance. Further, the Mw is preferably 2.5 million or less, more preferably 2 million or less, still more preferably 1.5 million or less, from the viewpoint of cross-linking uniformity and the like.
  • the Mw of SBR is gel permeation chromatography (GPC) (for example, GPC-8000 series manufactured by Tosoh Corporation, detector: differential refractometer, column: TSKGEL SUPERMALTIPORE HZ-M manufactured by Tosoh Corporation). It can be obtained by standard polystyrene conversion based on the measured value according to.
  • GPC gel permeation chromatography
  • the content in 100% by mass of the rubber component is preferably 10% by mass or more, more preferably 15% by mass or more, and 20% by mass from the viewpoint of ensuring damping at the tread portion and wet grip performance. % Or more is more preferable, and 25% by mass or more is particularly preferable. Further, from the viewpoint of improving durability performance by suppressing heat generation of the tread portion, 85% by mass or less is preferable, 80% by mass or less is more preferable, 75% by mass or less is further preferable, and 70% by mass or less is particularly preferable.
  • the BR is not particularly limited, and is synthesized by using, for example, BR (low cis BR) having a cis content of less than 50 mol%, BR (high cis BR) having a cis content of 90 mol% or more, and a rare earth element-based catalyst.
  • Rare earth-based butadiene rubber rare earth-based BR
  • BR containing syndiotactic polybutadiene crystals SPB-containing BR
  • modified BR Hisys-modified BR, Locis-modified BR, etc., which are common in the tire industry can be used.
  • the modified BR include BRs modified with a functional group or the like similar to those described in the above SBR. These BRs may be used alone or in combination of two or more.
  • HISIS BR for example, those commercially available from Nippon Zeon Corporation, Ube Kosan Co., Ltd., JSR Corporation, etc. can be used. By containing HISIS BR, low temperature characteristics and wear resistance can be improved.
  • the cis content is preferably 95 mol% or more, more preferably 96 mol% or more, still more preferably 97 mol% or more, and particularly preferably 98 mol% or more.
  • the cis content (cis-1,4-bonded butadiene unit amount) is a value calculated by infrared absorption spectrum analysis.
  • the rare earth element BR is synthesized by using a rare earth element catalyst, and has a vinyl content of preferably 1.8 mol% or less, more preferably 1.0 mol% or less, still more preferably 0.8% mol or less.
  • the cis content is preferably 95 mol% or more, more preferably 96 mol% or more, still more preferably 97 mol% or more, and particularly preferably 98 mol% or more.
  • the rare earth BR for example, one commercially available from LANXESS Co., Ltd. or the like can be used.
  • the SPB-containing BR includes 1,2-syndiotactic polybutadiene crystals that are not simply dispersed in BR, but are dispersed after being chemically bonded to BR.
  • an SPB-containing BR one commercially available from Ube Kosan Co., Ltd. or the like can be used.
  • modified BR a modified butadiene rubber (modified BR) having a terminal and / or a main chain modified by a functional group containing at least one element selected from the group consisting of silicon, nitrogen and oxygen is preferably used.
  • modified BRs are obtained by polymerizing 1,3-butadiene with a lithium initiator and then adding a tin compound, and further, the end of the modified BR molecule is bonded by a tin-carbon bond.
  • Te-modified BR Tetra-butadiene
  • the modified BR may be either non-hydrogenated or hydrogenated.
  • the glass transition temperature (Tg) of BR is preferably ⁇ 14 ° C. or lower, more preferably ⁇ 17 ° C. or lower, still more preferably ⁇ 20 ° C. or lower, from the viewpoint of preventing low temperature brittleness.
  • the lower limit of the Tg is not particularly limited, but from the viewpoint of wear resistance, ⁇ 150 ° C. or higher is preferable, ⁇ 120 ° C. or higher is more preferable, and ⁇ 110 ° C. or higher is further preferable.
  • the glass transition temperature of BR is a value measured by differential scanning calorimetry (DSC) under the condition of a heating rate of 10 ° C./min according to JIS K7121.
  • the weight average molecular weight (Mw) of BR is preferably 300,000 or more, more preferably 350,000 or more, still more preferably 400,000 or more, from the viewpoint of wear resistance performance. Further, from the viewpoint of cross-linking uniformity and the like, 2 million or less is preferable, 1.5 million or less is more preferable, and 1 million or less is further preferable.
  • the BR Mw is gel permeation chromatography (GPC) (for example, GPC-8000 series manufactured by Tosoh Corporation, detector: differential refractometer, column: TSKGEL SUPERMALTIPORE HZ-M manufactured by Tosoh Corporation). It can be obtained by standard polystyrene conversion based on the measured value according to.
  • the content in 100% by mass of the rubber component is preferably 1% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, from the viewpoint of wear resistance performance. Further, from the viewpoint of wet grip performance, 40% by mass or less is preferable, 35% by mass or less is more preferable, 30% by mass or less is further preferable, and 25% by mass or less is particularly preferable.
  • a rubber component other than the above-mentioned isoprene-based rubber, SBR, and BR may be contained.
  • a crosslinkable rubber component generally used in the tire industry can be used, for example, styrene isoprene rubber (SIR), styrene isoprene butadiene rubber (SIBR), chloroprene rubber (CR), acrylonitrile.
  • Isoprene-based rubber such as butadiene rubber (NBR), diene-based rubber other than SBR and BR; butyl rubber (IIR), halogenated butyl rubber, ethylene propylene rubber, polynorbornene rubber, silicone rubber, polyethylene chloride rubber, fluororubber (FKM) , Acrylic rubber (ACM), hydrin rubber and other rubber components other than diene rubber.
  • NBR butadiene rubber
  • IIR butyl rubber
  • FKM fluororubber
  • ACM Acrylic rubber
  • hydrin rubber other rubber components other than diene rubber.
  • the rubber component according to the present disclosure preferably contains 80% by mass or more of diene-based rubber, more preferably 90% by mass or more, further preferably 95% by mass or more, particularly preferably 98% by mass or more, and only from the diene-based rubber. It may be used as a rubber component.
  • the rubber composition according to the present disclosure preferably contains silica as a reinforcing filler, and more preferably contains carbon black and silica. Further, the reinforcing filler may be a reinforcing filler composed of only carbon black and silica.
  • silica is not particularly limited, and for example, silica prepared by a dry method (anhydrous silica), silica prepared by a wet method (hydrous silica), and the like, which are common in the tire industry, can be used. Of these, hydrous silica prepared by a wet method is preferable because it has a large number of silanol groups. These silicas may be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 140 m 2 / g or more, more preferably 150 m 2 / g or more, and 160 m 2 / g or more from the viewpoint of ensuring the reinforcing property and the damping property at the tread portion. Is more preferable, and 170 m 2 / g or more is particularly preferable. Further, from the viewpoint of heat generation and processability, 350 m 2 / g or less is preferable, 300 m 2 / g or less is more preferable, and 250 m 2 / g or less is further preferable.
  • the N 2 SA of silica in the present specification is a value measured by the BET method according to ASTM D3037-93.
  • the average primary particle size of silica is preferably 20 nm or less, more preferably 18 nm or less.
  • the lower limit of the average primary particle diameter is not particularly limited, but is preferably 1 nm or more, more preferably 3 nm or more, still more preferably 5 nm or more.
  • the average primary particle size of silica can be determined by observing with a transmission type or scanning electron microscope, measuring 400 or more primary particles of silica observed in the visual field, and averaging them.
  • the content of the rubber component with respect to 100 parts by mass is preferably 30 parts by mass or more, more preferably 35 parts by mass or more, and 40 parts by mass from the viewpoint of ensuring damping in the tread part and wet grip performance.
  • the above is more preferable, and 45 parts by mass or more is particularly preferable.
  • 110 parts by mass or less is preferable, 100 parts by mass or less is more preferable, 95 parts by mass or less is further preferable, and 90 parts by mass or less is particularly preferable.
  • the carbon black is not particularly limited, and GPF, FEF, HAF, ISAF, SAF, etc., which are common in the tire industry can be used, and specifically, N110, N115, N120, N125, N134, N135, N219, N220. , N231, N234, N293, N299, N326, N330, N339, N343, N347, N351, N356, N358, N375, N535, N550, N582, N630, N642, N650, N660, N683, N754, N762, N765.
  • N774, N787, N907, N908, N990, N991 and the like can be preferably used, and in-house synthesized products and the like can also be preferably used.
  • These carbon blacks may be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 50 m 2 / g or more, more preferably 80 m 2 / g or more, still more preferably 100 m 2 / g or more, from the viewpoint of weather resistance and reinforcing property. Further, from the viewpoint of dispersibility, low fuel consumption performance, fracture characteristics and durability performance, 250 m 2 / g or less is preferable, and 220 m 2 / g or less is more preferable.
  • the N 2 SA of carbon black in the present specification conforms to the A method of JIS K 6217-2 "Basic characteristics of carbon black for rubber-Part 2: Method of determining specific surface area-Nitrogen adsorption method-Single point method". It is a value measured by.
  • the content of the rubber component with respect to 100 parts by mass is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and further preferably 5 parts by mass or more from the viewpoint of weather resistance and reinforcing property. From the viewpoint of fuel efficiency, 40 parts by mass or less is preferable, 30 parts by mass or less is more preferable, 20 parts by mass or less is further preferable, and 18 parts by mass or less is particularly preferable.
  • reinforcing fillers As the reinforcing filler other than silica and carbon black, aluminum hydroxide, calcium carbonate, alumina, clay, talc and the like which have been generally used in the tire industry can be blended.
  • the ratio of the carbon black content to the silica content is preferably 0.40 or less, more preferably 0.30 or less, further preferably 0.21 or less, further preferably 0.17 or less, and 0.13 or less. More preferably, 0.10 or less is particularly preferable.
  • the E * 30 of the rubber composition can be further reduced while maintaining the rigidity in the high strain region, so that the wet grip performance can be achieved. Can be further improved.
  • the lower limit of the ratio of the carbon black content to the silica content is not particularly limited, and can be, for example, 0.01 or more, 0.02 or more, 0.05 or more, and reinforcement not containing carbon black. It may be used as a filler.
  • the total content of the reinforcing filler with respect to 100 parts by mass of the rubber component is preferably 30 parts by mass or more, more preferably 40 parts by mass or more, and 45 parts by mass or more from the viewpoint of ensuring the reinforcing property and the damping property in the tread part. Is more preferable, and 50 parts by mass or more is particularly preferable. From the viewpoint of the effect of the present disclosure, 120 parts by mass or less is preferable, 110 parts by mass or less is more preferable, 100 parts by mass or less is further preferable, and 95 parts by mass or less is particularly preferable.
  • silane coupling agent Silica is preferably used in combination with a silane coupling agent.
  • the silane coupling agent is not particularly limited, and in the tire industry, any silane coupling agent conventionally used in combination with silica can be used.
  • the following mercapto-based silane coupling agent bis ( 3-Otanoylthio-1-propyltriethoxysilane, 3-hexanoylthio-1-propyltri sulfide-based silane coupling agents such as 3-triethoxysilylpropyl) disulfide and bis (3-triethoxysilylpropyl) tetrasulfide.
  • Thioester-based silane coupling agents such as ethoxysilane and 3-octanoylthio-1-propyltrimethoxysilane; vinyl-based silane coupling agents such as vinyltriethoxysilane and vinyltrimethoxysilane; 3-aminopropyltriethoxysilane, 3- Amino-based silane coupling agents such as aminopropyltrimethoxysilane and 3- (2-aminoethyl) aminopropyltriethoxysilane; glycidoxy such as ⁇ -glycidoxypropyltriethoxysilane and ⁇ -glycidoxypropyltrimethoxysilane Nitro-based silane coupling agent; Nitro-based silane coupling agent such as 3-nitropropyltrimethoxysilane and 3-nitropropyltriethoxysilane; Chloro-based silane such as 3-chloropropyltrimethoxysilane and 3-chloropropyltri
  • the mercapto-based silane coupling agent contains a compound represented by the following formula (3) and / or a binding unit A represented by the following formula (4) and a binding unit B represented by the following formula (5). It is preferably a compound.
  • R 101 , R 102 , and R 103 are each independently an alkyl having 1 to 12 carbon atoms, an alkoxy having 1 to 12 carbon atoms, or -O- (R 111 -O) z -R 112 .
  • R 111s independently represent divalent hydrocarbon groups having 1 to 30 carbon atoms;
  • R 112 is an alkyl having 1 to 30 carbon atoms, an alkenyl having 2 to 30 carbon atoms, and a carbon number of carbon atoms.
  • z represents an integer of 1 to 30);
  • R 104 represents an alkylene having 1 to 6 carbon atoms.
  • R 201 is an alkyl having 1 to 30 carbon atoms which may be substituted with a hydrogen atom, a halogen atom, a hydroxyl or a carboxyl.
  • R 202 represents an alkylene having 1 to 30 carbon atoms, an alkenylene having 2 to 30 carbon atoms, or an alkynylene having 2 to 30 carbon atoms;
  • a ring structure may be formed by R 201 and R 202.
  • Examples of the compound represented by the formula (3) include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, and the following formula ( Examples thereof include a compound represented by 6) (Si363 manufactured by Ebonic Degusa), and a compound represented by the following formula (6) can be preferably used. These may be used alone or in combination of two or more.
  • Examples of the compound containing the binding unit A represented by the formula (4) and the binding unit B represented by the formula (5) include those commercially available by Momentive and the like. These may be used alone or in combination of two or more.
  • the content with respect to 100 parts by mass of silica is preferably 1.0 part by mass or more, more preferably 3.0 parts by mass or more, and 5.0 parts by mass from the viewpoint of enhancing the dispersibility of silica. More than a portion is more preferable. Further, from the viewpoint of preventing deterioration of wear resistance performance, 30 parts by mass or less is preferable, 20 parts by mass or less is more preferable, and 15 parts by mass or less is further preferable.
  • the rubber composition according to the present disclosure preferably contains a resin component.
  • the resin component is not particularly limited, and examples thereof include petroleum resins, terpene-based resins, rosin-based resins, and phenol-based resins commonly used in the tire industry, and these resin components may be used alone. Two or more types may be used in combination.
  • Examples of petroleum resins include C5 petroleum resins, aromatic petroleum resins, and C5C9 petroleum resins. These petroleum resins may be used alone or in combination of two or more.
  • C5 based petroleum resin refers to a resin obtained by polymerizing a C5 fraction.
  • the C5 fraction include petroleum fractions having 4 to 5 carbon atoms such as cyclopentadiene, pentene, pentadiene, and isoprene.
  • a dicyclopentadiene resin DCPD resin
  • DCPD resin dicyclopentadiene resin
  • the "aromatic petroleum resin” refers to a resin obtained by polymerizing a C9 fraction, and may be hydrogenated or modified.
  • the C9 fraction include petroleum fractions having 8 to 10 carbon atoms such as vinyltoluene, alkylstyrene, indene, and methyl indene.
  • the aromatic petroleum resin for example, a kumaron inden resin, a kumaron resin, an inden resin, and an aromatic vinyl resin are preferably used.
  • aromatic vinyl resin ⁇ -methylstyrene or a homopolymer of styrene or a copolymer of ⁇ -methylstyrene and styrene is used because it is economical, easy to process, and has excellent heat generation.
  • a polymer of ⁇ -methylstyrene and styrene is more preferable.
  • aromatic vinyl-based resin for example, those commercially available from Clayton, Eastman Chemical, etc. can be used.
  • C5C9-based petroleum resin refers to a resin obtained by copolymerizing the C5 fraction and the C9 fraction, and may be hydrogenated or modified.
  • Examples of the C5 fraction and the C9 fraction include the above-mentioned petroleum fraction.
  • the C5C9-based petroleum resin for example, those commercially available from Tosoh Corporation, LUHUA, etc. can be used.
  • the terpene-based resin is a polyterpene resin consisting of at least one selected from terpene compounds such as ⁇ -pinene, ⁇ -pinene, limonene, and dipentene; an aromatic-modified terpene resin made from the terpene compound and an aromatic compound; Examples thereof include terpene phenol resins made from terpene compounds and terpene compounds; and terpene resins obtained by subjecting these terpene resins to hydrogenation treatment (hydrogenated terpene resins).
  • Examples of the aromatic compound used as a raw material for the aromatic-modified terpene resin include styrene, ⁇ -methylstyrene, vinyltoluene, and divinyltoluene.
  • Examples of the phenolic compound which is a raw material of the terpene phenol resin include phenol, bisphenol A, cresol, xylenol and the like.
  • the rosin-based resin is not particularly limited, and examples thereof include natural resin rosin, and rosin-modified resin obtained by modifying it by hydrogenation, disproportionation, dimerization, esterification, or the like.
  • the phenol-based resin is not particularly limited, and examples thereof include phenol formaldehyde resin, alkylphenol formaldehyde resin, alkylphenol acetylene resin, and oil-modified phenol formaldehyde resin.
  • the softening point of the resin component is preferably 60 ° C. or higher, more preferably 65 ° C. or higher, from the viewpoint of wet grip performance. Further, from the viewpoint of workability and improvement of dispersibility between the rubber component and the filler, 150 ° C. or lower is preferable, 140 ° C. or lower is more preferable, and 130 ° C. or lower is further preferable.
  • the softening point can be defined as the temperature at which the sphere has fallen by measuring the softening point defined in JIS K 6220-1: 2001 with a ring-shaped softening point measuring device.
  • an aromatic petroleum resin is preferable, and an aromatic vinyl resin is more preferable, from the viewpoint of obtaining a well-balanced wet grip performance and steering stability performance.
  • the content of the rubber component with respect to 100 parts by mass is preferably 2.0 parts by mass or more, more preferably 3.0 parts by mass or more, further preferably 4.0 parts by mass or more, and 5.0 parts by mass. More than a portion is particularly preferable.
  • the content of the resin component in the above range, the heat generation performance in the high frequency region can be improved, the adhesive friction can also be improved, and the wet grip performance tends to be further improved.
  • 50 parts by mass or less is preferable, 40 parts by mass or less is more preferable, 30 parts by mass or less is further preferable, and 20 parts by mass or less is particularly preferable.
  • the rubber composition according to the present disclosure includes compounding agents generally used in the tire industry, for example, oil, wax, processing aid, antiaging agent, stearic acid, zinc oxide, sulfur and the like.
  • a vulcanizing agent, a vulcanization accelerator and the like can be appropriately contained.
  • Examples of the oil include process oils, vegetable oils and fats, animal oils and fats, and the like.
  • Examples of the process oil include paraffin-based process oils, naphthen-based process oils, aromatic process oils and the like.
  • process oils having a low content of polycyclic aromatic compounds (PCA) compounds can be mentioned.
  • Examples of the low PCA content process oil include Treated Distillate Aromatic Extract (TDAE), which is a re-extracted oil aromatic process oil, an aroma substitute oil which is a mixed oil of asphalt and naphthenic oil, and mild extraction solutions: MES), heavy naphthenic oil and the like.
  • TDAE Treated Distillate Aromatic Extract
  • MES mild extraction solutions
  • the content of the rubber component with respect to 100 parts by mass is preferably 1 part by mass or more, more preferably 2 parts by mass or more, further preferably 3 parts by mass or more, and 5 parts by mass or more. More preferably, 8 parts by mass or more is further preferable, and 12 parts by mass or more is particularly preferable. Further, from the viewpoint of fuel efficiency and durability, 80 parts by mass or less is preferable, 60 parts by mass or less is more preferable, and 40 parts by mass or less is further preferable.
  • the oil content also includes the amount of oil contained in the oil-extended rubber.
  • the content with respect to 100 parts by mass of the rubber component is preferably 0.5 parts by mass or more, and more preferably 1 part by mass or more, from the viewpoint of weather resistance of rubber. Further, from the viewpoint of preventing whitening of the tire due to bloom, 10 parts by mass or less is preferable, and 5 parts by mass or less is more preferable.
  • a processing aid As a processing aid, it is widely marketed as a fatty acid metal salt for the purpose of reducing the viscosity of rubber and ensuring releasability when unvulcanized, and as a compatibilizer from the viewpoint of suppressing micro-layer separation of rubber components. You can use what you have.
  • the content of the rubber component with respect to 100 parts by mass is preferably 0.5 parts by mass or more, and more preferably 1 part by mass or more, from the viewpoint of exerting the effect of improving processability. Further, from the viewpoint of wear resistance and breaking strength, 10 parts by mass or less is preferable, and 8 parts by mass or less is more preferable.
  • the anti-aging agent is not particularly limited, and examples thereof include amine-based, quinoline-based, quinone-based, phenol-based, and imidazole-based compounds, and anti-aging agents such as carbamic acid metal salts.
  • the content of the rubber component with respect to 100 parts by mass is preferably 0.5 parts by mass or more, and more preferably 1 part by mass or more, from the viewpoint of ozone crack resistance of rubber. Further, from the viewpoint of wear resistance and wet grip performance, 10 parts by mass or less is preferable, and 5 parts by mass or less is more preferable.
  • the content of the rubber component with respect to 100 parts by mass is preferably 0.5 parts by mass or more, and more preferably 1 part by mass or more from the viewpoint of processability. Further, from the viewpoint of the vulcanization rate, 10 parts by mass or less is preferable, and 5 parts by mass or less is more preferable.
  • the content of the rubber component with respect to 100 parts by mass is preferably 0.5 parts by mass or more, and more preferably 1 part by mass or more from the viewpoint of processability. Further, from the viewpoint of wear resistance, 10 parts by mass or less is preferable, and 5 parts by mass or less is more preferable.
  • Sulfur is preferably used as the vulcanizing agent.
  • the sulfur powdered sulfur, oil-treated sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur and the like can be used.
  • the content with respect to 100 parts by mass of the rubber component is preferably 0.1 part by mass or more, more preferably 0.3 parts by mass or more, from the viewpoint of ensuring a sufficient vulcanization reaction. More preferably, 0.5 part by mass or more. From the viewpoint of preventing deterioration, 5.0 parts by mass or less is preferable, 4.0 parts by mass or less is more preferable, and 3.0 parts by mass or less is further preferable.
  • the content of the vulcanizing agent is the total content of pure sulfur contained in the oil-containing sulfur.
  • Examples of the vulcanizing agent other than sulfur include alkylphenol / sulfur chloride condensate, 1,6-hexamethylene-sodium dithiosulfate / dihydrate, and 1,6-bis (N, N'-dibenzylthiocarbamoyldithio). ) Hexane) and the like.
  • these vulcanizing agents other than sulfur those commercially available from Taoka Chemical Industry Co., Ltd., LANXESS Co., Ltd., Flexis Co., Ltd. and the like can be used.
  • vulcanization accelerator examples include sulfenamide-based, thiazole-based, thiuram-based, thiourea-based, guanidine-based, dithiocarbamic acid-based, aldehyde-amine-based or aldehyde-ammonia-based, imidazoline-based, and xantate-based vulcanization accelerators. And so on. These vulcanization accelerators may be used alone or in combination of two or more.
  • one or more vulcanization accelerators selected from the group consisting of sulfenamide-based, guanidine-based, and thiazole-based vulcanization accelerators are preferable, and sulfenamide-based ones are preferable, because the desired effect can be obtained more preferably. It is more preferable to combine a vulcanization accelerator and a guanidine-based vulcanization accelerator.
  • sulfenamide-based vulcanization accelerator examples include N-tert-butyl-2-benzothiazolyl sulfenamide (TBBS), N-cyclohexyl-2-benzothiazolyl sulfenamide (CBS), N, N. -Dicyclohexyl-2-benzothiazolyl sulfenamide (DCBS) and the like can be mentioned.
  • TBBS N-tert-butyl-2-benzothiazolyl sulphenamide
  • CBS N-cyclohexyl-2-benzothiazolyl sulphenamide
  • CBS N-cyclohexyl-2-benzothiazolyl sulphenamide
  • Examples of the guanidine-based gluconidine accelerator include 1,3-diphenylguanidine (DPG), 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, and di-o-tolylguanidine salt of dicatecholbolate. , 1,3-di-o-cumenylguanidine, 1,3-di-o-biphenylguanidine, 1,3-di-o-cumenyl-2-propionylguanidine and the like. Of these, 1,3-diphenylguanidine (DPG) is preferable.
  • DPG 1,3-diphenylguanidine
  • Examples of the thiazole-based vulcanization accelerator include 2-mercaptobenzothiazole, cyclohexylamine salt of 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide and the like. Of these, 2-mercaptobenzothiazole is preferable.
  • the content with respect to 100 parts by mass of the rubber component is preferably 1.0 part by mass or more, more preferably 1.5 parts by mass or more, still more preferably 2.0 parts by mass or more.
  • the content of the vulcanization accelerator with respect to 100 parts by mass of the rubber component is preferably 8.0 parts by mass or less, more preferably 7.0 parts by mass or less, further preferably 6.0 parts by mass or less, and 5.0 parts by mass. Part or less is particularly preferable.
  • the rubber composition according to the present disclosure can be produced by a known method.
  • each of the above components can be produced by kneading using a rubber kneading device such as an open roll or a closed kneader (Banbury mixer, kneader, etc.).
  • a base kneading step of kneading a compounding agent and an additive other than the vulcanizing agent and the vulcanization accelerator, and a vulcanizing agent and a vulcanization accelerator are added to the kneaded product obtained in the base kneading step. It includes a final kneading (F kneading) step of adding and kneading. Further, the base kneading step can be divided into a plurality of steps, if desired.
  • the kneading conditions are not particularly limited, but for example, in the base kneading step, kneading is performed at a discharge temperature of 150 to 170 ° C. for 1 to 10 minutes, and in the final kneading step, kneading is performed at 70 to 110 ° C. for 1 to 5 minutes. There is a method of kneading.
  • the tires disclosed in the present disclosure are suitable for passenger car tires, truck / bus tires, large SUV tires, competition tires, motorcycle tires, etc., and can be used as summer tires, winter tires, studless tires, etc., respectively. ..
  • the passenger car tire is a tire that is premised on being mounted on a vehicle traveling on four wheels and has a maximum load capacity of 1000 kg or less.
  • a tire having a tread composed of the above rubber composition can be manufactured by a usual method. That is, an unvulcanized rubber composition in which each of the above components is blended with the rubber component as necessary is extruded according to the shape of at least one rubber layer constituting the tread, and is processed on a tire molding machine. An unvulcanized tire is formed by laminating it together with other tire members and molding it by a usual method, and the tire can be manufactured by heating and pressurizing the unvulcanized tire in a vulcanizer. ..
  • the vulcanization conditions are not particularly limited, and examples thereof include a method of vulcanizing at 150 to 200 ° C. for 10 to 30 minutes.
  • NR TSR20 SBR: Modified solution-polymerized SBR produced in Production Example 1 described later (styrene content: 30% by mass, vinyl content: 52 mol%, Mw: 250,000, non-oil-extended product)
  • BR UBEPOL BR (registered trademark) 150B manufactured by Ube Kosan Co., Ltd.
  • Carbon black Diamond black N220 (N 2 SA: 115m 2 / g) manufactured by Mitsubishi Chemical Corporation Silica: ULTRASIL® VN3 (N 2 SA: 175 m 2 / g, average primary particle size: 17 nm) manufactured by Evonik Degussa.
  • Silane coupling agent Si266 (bis (3-triethoxysilylpropyl) disulfide) manufactured by Evonik Degussa Oil: VivaTec400 (TDAE oil) manufactured by H & R Resin component: Sylvares SA85 manufactured by Clayton (copolymer of ⁇ -methylstyrene and styrene, softening point: 85 ° C)
  • Zinc oxide Zinc oxide No. 1 manufactured by Mitsui Metal Mining Co., Ltd.
  • Stearic acid Beads made by NOF Corporation Tsubaki Sulfur: HK-200-5 (5% oil-containing powder) manufactured by Hosoi Chemical Industry Co., Ltd.
  • Vulcanization Accelerator 1 Noxeller CZ (N-Cyclohexyl-2-benzothiazolyl sulfeneamide (CBS)) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • Vulcanization accelerator 2 Noxeller D (1,3-diphenylguanidine (DPG)) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • Production Example 1 Synthesis of SBR Cyclohexane, tetrahydrofuran, styrene, and 1,3-butadiene were charged into a nitrogen-substituted autoclave reactor. After adjusting the temperature of the contents of the reactor to 20 ° C., n-butyllithium was added to initiate polymerization. Polymerization was carried out under adiabatic conditions, and the maximum temperature reached 85 ° C. When the polymerization conversion reaches 99%, 1,3-butadiene is added, and after further polymerization for 5 minutes, N, N-bis (trimethylsilyl) -3-aminopropyltrimethoxysilane is added as a denaturant. The reaction was carried out. After completion of the polymerization reaction, 2,6-di-tert-butyl-p-cresol was added. Then, the solvent was removed by steam stripping and dried by a heat roll adjusted to 110 ° C. to obtain SBR.
  • Examples and comparative examples According to the formulation shown in Table 1, a 1.7 L closed-type Banbury mixer is used to knead chemicals other than sulfur and vulcanization accelerator for 1 to 10 minutes until the discharge temperature reaches 150 to 160 ° C, and the kneaded product is kneaded. Got Next, using a twin-screw open roll, sulfur and a vulcanization accelerator were added to the obtained kneaded product and kneaded for 4 minutes until the temperature reached 105 ° C. to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press-vulcanized at 170 ° C. for 12 minutes to prepare a test vulcanized rubber composition.
  • the tread is extruded according to the shape of the first layer (thickness: 3.0 mm) of the tread with an extruder equipped with a base having a predetermined shape.
  • Tables 2 to 5 show a tire not vulcanized by laminating it together with a second layer (thickness: 3.0 mm) and other tire members to prepare an unvulcanized tire and press vulcanizing it under the condition of 170 ° C. for 12 minutes. Each test tire was manufactured.
  • the tires of the present disclosure having the tire weight with respect to the maximum load capacity of the tire and the tan ⁇ and the complex elastic modulus of the rubber composition constituting the tread within a predetermined range have improved wet grip performance. You can see that. Further, in a preferred embodiment, it can be seen that the steering stability performance is also improved.
  • the tread is at least one composed of a rubber composition containing a rubber component and a reinforcing filler. It has a rubber layer, and the tan ⁇ (30 ° C. tan ⁇ ) of the rubber composition at 30 ° C. is more than 0.15 (preferably 0.16 or more, more preferably 0.17 or more) and is complex at 30 ° C.
  • the elastic modulus (E * 30 ) is less than 8.0 MPa (preferably 7.8 MPa or less, more preferably 7.6 MPa or less), and the ratio of the 30 ° C. tan ⁇ to the G is 0.
  • a tire having 016 or more preferably 0.017 or more, more preferably 0.018 or more, still more preferably 0.019 or more, particularly preferably 0.020 or more.
  • the reinforcing filler contains silica, and the ratio of the carbon black content to the silica content in the reinforcing filler is 0.21 or less (preferably 0.17 or less, more preferably 0.
  • the rubber composition contains 4.0 parts by mass or more (preferably 4.0 to 40 parts by mass, more preferably 5.0 to 30 parts by mass) of a resin component with respect to 100 parts by mass of the rubber component.
  • the rubber composition has a specific gravity of 1.270 or less (preferably 1.260 or less, more preferably 1.250 or less, still more preferably 1.240 or less, particularly preferably 1.230 or less).
  • the tread portion has a land portion partitioned by two or more circumferential grooves continuously extending in the tire circumferential direction, and is an extension line of the land portion and the deepest portion of the groove bottom of the circumferential groove.
  • the rubber layer composed of the rubber composition is arranged in at least a part of the region of the distance H inward in the radial direction from the outermost surface of the land portion.
  • H / E * 30 is 1.30 or less (preferably 1.27 or less, more preferably 1.25 or less, still more preferably 1.22 or less, particularly preferably 1.20 or less). 5] The tire described. [7] The tread portion has a pair of shoulder land portions and a center land portion located between the pair of shoulder land portions, which are partitioned by the circumferential groove, and the center land portion with respect to the area of the entire land portion.
  • the tread portion has two or more circumferential grooves, widthwise grooves, and sipes that continuously extend in the tire circumferential direction, and the ratio of the total groove area to the ground contact area of the tread portion is 0.
  • the total area of the circumferential groove with respect to the ground contact area of the tread portion is 0.09 to 0.16 (preferably 0.10 to 0.15, more preferably 0.11 to 0.14).
  • the total area of the groove and the sipe in the width direction with respect to the ground contact area of the tread portion is 0.08 to 0.14 (preferably 0.09 to 0.13, more preferably 0.10 to 0.12). ]
  • the ratio La / Lb to and from is 0.10 to 0.20 (preferably 0.11 to 0.29, more preferably 0.12 to 0.18, still more preferably 0.13 to 0.17). , The tire according to the above [8] or [9].
  • the tread portion includes a first rubber layer constituting a tread surface and a second rubber layer adjacent to the inside of the first layer in the radial direction, and the first rubber layer and the second rubber layer.
  • the deepest portion of the groove bottom of the circumferential groove is formed so as to be located inside the tire radial direction with respect to the outermost side of the second rubber layer.
  • the ratio (t2 / t1) of the thickness t2 of the rubber of the second layer to the thickness t1 of the first rubber layer is 5/95 to 60/40 (preferably 15/85 to 65/45, more preferably). Is 25/75 to 50/50), the tire according to the above [12] or [13].

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Tires In General (AREA)

Abstract

トレッド部を備えたタイヤであって、前記タイヤの最大負荷能力WL(kg)に対するタイヤ重量G(kg)の比(G/WL)が0.0131以下であり、前記トレッドは、ゴム成分および補強用充填剤を含有するゴム組成物からなる少なくとも1層のゴム層を有し、前記ゴム組成物の30℃におけるtanδが0.15超であり、30℃における複素弾性率(E*30)が8.0MPa未満であり、前記Gに対する前記30℃tanδの比(30℃tanδ/G)が0.016以上であるタイヤ。

Description

タイヤ
 本開示は、タイヤに関する。
 空気入りタイヤでは、燃費の向上の観点から軽量化が求められている。特許文献1には、軽量化のためゴムボリュームを低減した所定のタイヤが記載されている。
特開2017-43281号公報
 しかしながら、ゴムボリュームを低減した重量の軽いタイヤは、ウェットグリップ性能について改善の余地がある。
 本開示は、ウェットグリップ性能が改善されたタイヤを提供することを目的とする。
 鋭意検討した結果、タイヤの最大負荷能力に対するタイヤ重量、トレッドを構成するゴム組成物のtanδおよび複素弾性率、並びにタイヤ重量に対する前記tanδを所定の範囲とすることにより、ウェットグリップ性能が改善されたタイヤが得られることが見出された。
 すなわち、本開示は、トレッド部を備えたタイヤであって、前記タイヤの最大負荷能力WL(kg)に対するタイヤ重量G(kg)の比(G/WL)が0.0131以下であり、前記トレッドは、ゴム成分および補強用充填剤を含有するゴム組成物からなる少なくとも1層のゴム層を有し、前記ゴム組成物の30℃におけるtanδ(30℃tanδ)が0.15超であり、30℃における複素弾性率(E*30)が8.0MPa未満であり、前記Gに対する前記30℃tanδの比(30℃tanδ/G)が0.016以上であるタイヤに関する。
 本開示によれば、ウェットグリップ性能が改善されたタイヤが提供される。
タイヤのトレッドの一部が模式的に示された拡大断面図である。 トレッドを平面に押し付けたときのタイヤの接地面の模式図である。 タイヤの断面における、タイヤ断面幅G、タイヤ断面高さHt、およびタイヤ外径Dtを示す図である。
 本開示の一実施形態であるタイヤは、トレッドを備えたタイヤであって、前記タイヤの最大負荷能力WL(kg)に対するタイヤ重量G(kg)の比(G/WL)が0.0131以下であり、前記トレッドは、ゴム成分および補強用充填剤を含有するゴム組成物からなる少なくとも1層のゴム層を有し、前記ゴム組成物の30℃におけるtanδが0.15超であり、30℃における複素弾性率(E*30)が8.0MPa未満であり、前記Gに対する前記30℃tanδの比(30℃tanδ/G)が0.016以上であるタイヤである。
 前記ゴム組成物の30℃におけるtanδおよび30℃における複素弾性率(E*30)が上記の要件を満たすことで、得られたタイヤは、ウェットグリップ性能が改善される。その理由については、理論に拘束されることは意図しないが、以下のように考えられる。
 最大負荷能力に対して重量の軽いタイヤは、路面からの入力を緩和しにくいため、振動しやすく、振動周波数が高くなる傾向にある。そこで、タイヤ重量に応じてトレッドゴムの30℃におけるtanδを所定の値より大きくすると、高周波数の振動を熱エネルギーに変換しやすくなることから、トレッドゴムの発熱が促進され、ウェットグリップ性能を向上させることができる。さらに、トレッドゴムの複素弾性率を(E*30)を所定の値より小さくすることにより、振動エネルギーを熱エネルギーにより変換しやすくなることから、ウェットグリップ性能の向上効果をより高めることができると考えらえる。
 前記Gに対する前記30℃tanδの比(30℃tanδ/G)は、0.016以上であり、0.017以上が好ましく、0.018以上がより好ましく、0.019以上がさらに好ましく、0.020以上が特に好ましい。また、30℃tanδ/Gの上限値は、本開示の効果の観点からは特に制限されないが、0.080以下が好ましく、0.070以下がより好ましく、0.060以下がさらに好ましく、0.050以下が特に好ましい。
 なお、本明細書において最大負荷能力WL(kg)は、JATMA規格で定められる使用条件下で、そのロードインデックス(LI)を有するタイヤに対応する最高空気圧(kPa)を充填した時の負荷能力値(kg)を示す。なお、JATMA規格において定めを持たないサイズのタイヤの場合は、タイヤに250kPaの空気を充填したときのタイヤ断面幅をWt(mm)、タイヤ断面高さをHt(mm)、タイヤ外径をDt(mm)としたとき、下記式(1)および(2)により算出される値とする。なお、Wtは、正規状態において、タイヤ側面に模様または文字などがある場合にはそれらを除いたものとしてのサイドウォール外面間の最大幅である。Htは、ビード部底面からトレッド最表面までの距離であり、タイヤの外径とリム径の呼びとの差の1/2である。
 V={(Dt/2)2-(Dt/2-Ht)2}×π×Wt ・・・(1)
 WL=0.000011×V+100 ・・・(2)
 前記補強用充填剤はシリカを含有し、補強用充填剤中のシリカの含有量に対するカーボンブラックの含有量の比が0.21以下であることが好ましい。
 前記ゴム組成物は、前記ゴム成分100質量部に対して樹脂成分を4.0質量部以上含有することが好ましい。
 前記ゴム組成物の比重は、1.270以下であることが好ましい。
 前記トレッド部は、タイヤ周方向に連続して延びる2以上の周方向溝によって仕切られた陸部を有し、前記陸部の延長線と前記周方向溝の溝底の最深部の延長線との距離をHとしたとき、前記陸部の最表面から半径方向内側への距離Hの領域の少なくとも一部に、前記ゴム組成物により構成されたゴム層が配置されていることが好ましい。
 H/E*30は、1.33以下であることが好ましく、1.30以下がより好ましく、1.27以下がさらに好ましく、1.25以下がさらに好ましく、1.22以下がさらに好ましく、1.20以下が特に好ましい。本開示のタイヤは重量が軽く、かつ複素弾性率が小さいため、操縦安定性能の低下が懸念される。そこで、複素弾性率に応じて周方向溝の深さを浅くすることにより、操縦安定性能を向上させることができる。なお、H/E*30の下限値は、本開示の効果の観点からは特に制限されないが、0.70以上が好ましく、0.75以上がより好ましく、0.80以上がさらに好ましく、0.85以上が特に好ましい。
 前記トレッド部は、前記周方向溝によって仕切られた、一対のショルダー陸部および前記一対のショルダー陸部の間に位置するセンター陸部を有し、前記陸部全体の面積に対するセンター陸部の合計面積の比が0.35~0.80であることが好ましい。
 前記トレッド部は、タイヤ周方向に連続して延びる2以上の周方向溝と、幅方向溝と、サイプとを有し、前記トレッド部の接地面積に対する全溝面積の比は、0.15~0.35であることが好ましい。
 前記トレッド部の接地面積に対する周方向溝の合計面積の比は、0.09~0.16であることが好ましく、前記トレッド部の接地面積に対する幅方向溝およびサイプの合計面積の比は、0.08~0.14であることが好ましい。
 前記タイヤの周方向の長さLaと、前記幅方向溝の前記幅方向のエッジ成分の長さの合計Lb1および前記サイプの前記幅方向のエッジ成分の長さの合計Lb2の総和Lbとの比La/Lbは、0.10~0.20であることが好ましい。
 前記トレッド部は、その両端が前記周方向溝に開口していないサイプを有することが好ましい。
 前記トレッド部は、トレッド面を構成する第一のゴム層と、第一層の半径方向内側に隣接する第二のゴム層とを備え、前記第一のゴム層および前記第二のゴム層のうち少なくとも1つが前記ゴム組成物により構成されていることが好ましく、前記第一のゴム層が前記ゴム組成物により構成されていることがより好ましい。
 前記周方向溝の溝底の最深部は、前記第二のゴム層の最外部よりもタイヤ半径方向内側に位置するように形成されていることが好ましい。
 前記第一のゴム層の厚みt1に対する前記第二層のゴムの厚みt2の割合(t2/t1)は、5/95~60/40であることが好ましい。
 本明細書において「タイヤ重量」はG(kg)で表す。ただし、Gはリムの重量を含まないタイヤ単体の重量である。また、タイヤ内腔部に制音材、シーラント、センサーなどを取り付けた場合には、Gはこれらの重量を含む値である。なお、タイヤ重量Gは常法により変動させることができ、すなわち、タイヤの比重を大きくする、あるいは、タイヤの各部材の厚さを大きくすることにより大きくすることができ、その逆により小さくすることもできる。
 本開示に係るタイヤは、最大負荷能力WL(kg)に対するタイヤ重量G(kg)の比(G/WL)は、本開示の効果の観点から、0.0131以下であり、0.0130以下がより好ましく、0.0129以下がさらに好ましく、0.0128以下がさらに好ましく、0.0127以下が特に好ましい。また、該G/WLの下限値は、本開示の効果の観点からは特に限定されないが、例えば、0.0080以上、0.0090以上、0.0100以上、0.0110以上、0.0115以上、0.0120以上、0.0121以上とすることができる。
 最大負荷能力WL(kg)は、本開示の効果をより良好に発揮する観点から、300以上が好ましく、400以上がより好ましく、450以上がさらに好ましく、500以上が特に好ましい。また、最大負荷能力WL(kg)は、本開示の効果をより良好に発揮する観点から、例えば、1300以下、1200以下、1100以下、1000以下、900以下、800以下、700以下、650以下とすることができる。なお、最大負荷能力WLは、前記のタイヤが占める空間の仮想体積Vを大きくすることにより大きくすることができ、その逆により小さくすることもできる。
 「正規リム」は、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、JATMAであれば“標準リム”、TRAであれば“Design Rim”、ETRTOであれば“Measuring Rim”である。なお、前記の規格体系において定めを持たないサイズのタイヤの場合は、そのタイヤにリム組可能であり、リム/タイヤの間でエア漏れを発生させない最小径のリムのうち、最も幅の狭いものを指すものとする。
 「正規内圧」は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば“最高空気圧”、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“INFLATION PRESSURE”である。なお、前記の規格体系において定めを持たないサイズのタイヤの場合は、正規内圧を250kPaとする。
 「正規状態」は、タイヤが正規リムにリム組みされかつ正規内圧が充填され、しかも、無負荷の状態である。なお、前記の規格体系において定めを持たないサイズのタイヤの場合は、そのタイヤが前記の最小リムにリム組みされかつ250kPaが充填され、しかも、無負荷の状態をいうものとする。
 図1は、タイヤのトレッドの一部が模式的に示された拡大断面図である。図1において、上下方向がタイヤ半径方向であり、左右方向がタイヤ幅方向であり、紙面に垂直な方向がタイヤ周方向である。なお、本開示では、特に断りがない場合、タイヤ各部の寸法等は、前記正規状態で測定された値である。
 周方向溝1の溝深さHは、陸部2の延長線4と周方向溝1の溝底の最深部の延長線5との距離によって求められる。なお、溝深さHは、例えば、周方向溝1が複数ある場合、陸部2の延長線4と、複数の周方向溝1のうち最も深い溝深さを有する周方向溝1(図1においては左側の周方向溝1)の溝底の最深部の延長線5との距離とすることができる。本開示のタイヤは、陸部2の最表面(トレッド面3)からタイヤ半径方向内側への距離Hの領域の少なくとも一部に、上述した所定のゴム組成物により構成されたゴム層を配置することが好ましい。また、本開示のタイヤは、陸部2の最表面からタイヤ半径方向内側への距離Hの領域に、ゴム層が2層以上存在し、2層以上のゴム層のうちの少なくとも1つのゴム層が所定のゴム組成物により構成されていることが好ましい。ゴム層が2層以上によって構成されている場合、2層以上のゴム層のうち、少なくとも1つが上述した所定のゴム組成物によって構成されていればよい。
 本開示のタイヤのトレッド部は、第一のゴム層6、および第二のゴム層7を備え(以下、単に「第一層6」、「第二層7」と表記することがある)、第一層6の外面がトレッド面3を構成し、第二層7が第一層6の半径方向内側に隣接している。第一層6は、典型的にはキャップトレッドに相当する。第二層7は、典型的にはベーストレッドまたはアンダートレッドに相当する。また、本開示の目的が達成される限り、第二層7とベルト層との間に、さらに1または2以上のゴム層を有していてもよい。本開示のタイヤは、第一層6および第二層7のうち少なくとも1つが所定のゴム組成物により構成されていることが好ましく、第一層6が所定のゴム組成物により構成されていることがより好ましい。
 図1の左側に示された一方の周方向溝1は、周方向溝1の溝底の最深部が、第二層7の最外部よりもタイヤ半径方向内側に位置するように形成されている。具体的には、第二層7は最外部に対してタイヤ半径方向内側に凹んだ凹部を有し、第一層6の一部が第二層7の当該凹部内に所定の厚さで形成されている。周方向溝1は第二層7の外面を越えて第二層7の凹部の内側へ入り込むように形成されている。なお、周方向溝1は、図1の右側に示される周方向溝1のように、第二層7の外面に到達しない溝深さで形成されていてもよい。
 図1において、両矢印t1は第一層6の厚み、両矢印t2は第二層7の厚みである。図1には、陸部2のタイヤ幅方向の中点が、記号Pとして示されている。記号Nで示される直線は、点Pを通り、この点Pにおける接平面に垂直な直線(法線)である。本明細書では、厚みt1およびt2は、図1の断面において、溝が存在しない位置におけるトレッド面上の点Pから引いた法線Nに沿って測定される。
 本開示において、第一層6の厚みt1は特に限定されないが、1.0mm以上が好ましく、2.0mm以上がより好ましく、3.0mm以上がさらに好ましい。また、第一層6の厚みt1は、10.0mm以下が好ましく、9.0mm以下がより好ましく、8.0mm以下がさらに好ましい。
 本開示において、第二層7の厚みt2は特に限定されないが、0.5mm以上が好ましく、1.0mm以上がより好ましく、1.5mm以上がさらに好ましい。また、第二層7の厚みt2は、8.0mm以下が好ましく、6.0mm以下がより好ましく、4.0mm以下がさらに好ましい。
 t1とt2との比t2/t1は、タイヤのブローアウトを抑制し、ウェットグリップ性能を維持する観点から、5/95以上が好ましく、8/92以上がより好ましく、10/90以上がさらに好ましく、12/88以上がさらに好ましく、15/85以上がさらに好ましく、20/80以上がさらに好ましく、25/75以上が特に好ましい。また、ウェットグリップの観点から、60/40以下が好ましく、55/45以下がより好ましく、50/50以下がさらに好ましく、40/60以下が特に好ましい。
 図2に、トレッドを平面に押し付けたときの接地面の模式図を示す。本開示に係るタイヤを構成するトレッド10は、図1に示すように、タイヤ周方向Cに連続して延びる(図1の例では、タイヤ周方向に沿って直線状に延びる)周方向溝1と、幅方向に延びる横溝21およびサイプ22、23とを有する。
 トレッド部10は、周方向Cに連続して延びる複数の周方向溝1を有している。図1においては、周方向溝1は3つ設けられているが、周方向溝の数は特に限定されず、例えば2つ~5つであってもよい。また、周方向溝1は、本開示では、周方向に沿って直線状に延びているが、このような態様に限定されるものではなく、例えば、周方向に沿って波状や正弦波状やジクザク状に延びていてもよい。
 トレッド部10は、タイヤ幅方向Wで、複数の周方向溝1によって仕切られた陸部2を有している。ショルダー陸部11は、周方向溝1とトレッド端Teとの間に形成された一対の陸部である。センター陸部12は、一対のショルダー陸部11の間に形成された陸部である。図1においては、センター陸部12は2つ設けられているが、センター陸部の数は特に限定されず、例えば1つ~5つであってもよい。
 陸部2には、陸部2を横断する横溝および/またはサイプが設けられていることが好ましい。また、陸部2には、両端または片端が周方向溝1に開口していないサイプを有することがより好ましい。図2においては、ショルダー陸部11には、末端が周方向溝1に開口している複数のショルダー横溝21と、両端が周方向溝1に開口していな複数のショルダーサイプ22とが設けられ、センター陸部12には、両端が周方向溝1に開口していない複数のショルダーサイプ23が設けられているが、このような態様に限定されない。
 なお、本開示において、周方向溝、横溝を含め「溝」は、少なくとも2.0mmよりも大きい幅の凹みをいう。一方、本明細書において、「サイプ」は、幅が2.0mm以下、好ましくは0.5~2.0mmの細い切り込みをいう。
 本開示では、タイヤの周方向Cの長さをLa、幅方向溝21の幅方向Wのエッジ成分の長さの合計Lb1およびサイプ22、23の幅方向Wのエッジ成分の長さの合計Lb2の総和をLbとしたとき、La/Lbは、0.10以上が好ましく、0.11以上が好ましく、0.12以上がさらに好ましく、0.13以上が特に好ましい。また、La/Lbは、0.20以下が好ましく、0.19以下が好ましく、0.18以下がさらに好ましく、0.17以下が特に好ましい。La/Lbを上記範囲とすることにより、トレッド部10の変形を所定範囲とし、陸部2の面積を所定以上に確保することができ、後述するゴム組成物をトレッドに用いた際に、高速走行時の操縦安定性を向上させることができる。
 なお、幅方向溝21およびサイプ22、23の「幅方向Wのエッジ成分の長さ」とは、幅方向溝21およびサイプ22、23の幅方向Wの投影長さ(幅方向成分および周方向成分のうち、幅方向成分)をいう。
 陸部2全体の面積に対するセンター陸部12の合計面積の比は、0.35以上が好ましく、0.40以上がより好ましく、0.45以上がさらに好ましい。陸部2全体の面積に対するセンター陸部12の合計面積の比を上記範囲とすることにより、センター陸部の体積を大きくすることができ、陸部剛性を大きくできるため、より優れた操縦安定性を得ることができる。また、陸部2全体の面積に対するセンター陸部12の合計面積の比は、本開示の効果の観点から、0.80以下が好ましく、0.70以下がより好ましく、0.60以下がさらに好ましく、0.55以下が特に好ましい。
 トレッド部10の接地面積に対する全溝面積の比は、0.15以上が好ましく、0.17以上がより好ましく、0.20以上がさらに好ましい。また、トレッド部10の接地面積に対する全溝面積の比は、0.35以下が好ましく、0.32以下がより好ましく、0.30以下がさらに好ましい。
 トレッド部10の接地面積に対する周方向溝1の合計面積の比は、0.09以上が好ましく、0.10以上がより好ましく、0.11以上がさらに好ましい。また、トレッド部10の接地面積に対する周方向溝1の合計面積の比は、0.16以下が好ましく、0.15以下がより好ましく、0.14以下がさらに好ましい。
 トレッド部10の接地面積に対する幅方向溝21およびサイプ22、23の合計面積の比は、0.08以上が好ましく、0.09以上がより好ましく、0.10以上がさらに好ましい。また、トレッド部10の接地面積に対する幅方向溝21およびサイプ22、23の合計面積の比は、0.14以下が好ましく、0.13以下がより好ましく、0.12以下がさらに好ましい。
 接地面積に対する全溝面積、周方向溝の合計面積、ならびに幅方向溝およびサイプの合計面積の割合を上記範囲とすることにより、トレッドの陸部剛性を大きくすることができ、かつ本開示に係るトレッド用ゴム組成物の有するゴムのしなやかさとの相乗効果により、高速走行時において、高い操縦安定性を発揮しつつ、低温下における乗り心地性を改善することができる。接地面積に対する全溝面積、周方向溝の合計面積、ならびに幅方向溝およびサイプの合計面積の割合が上記範囲未満の場合には、陸部の割合が多くなりすぎるため、排水性やグリップ性が低下する傾向がある。一方、接地面積に対する全溝面積、周方向溝の合計面積、ならびに幅方向溝およびサイプの合計面積の割合が上記範囲を超える場合には、充分なトレッドの陸部剛性を得ることができないために、操縦安定性が低下する傾向がある。
 なお、本明細書において「トレッド部の接地面積」とは、トレッド部2の全ての溝を埋めた状態でのトレッド部の接地面積を意味する。また、トレッド部の接地面積、周方向溝の合計面積、幅方向溝の合計面積、およびサイプの合計面積は、正規リムにリム組みされ、正規内圧を充填したときの無負荷の状態において、前記の最大負荷能力を負荷してトレッドを平面に押し付けたときに測定される値である。
 前記の少なくとも1層のゴム層を構成するゴム組成物は、初期歪5%、動歪1%、周波数10Hzの条件下で、30℃におけるtanδ(30℃tanδ)が0.15超であり、0.16以上が好ましく、0.17以上がより好ましい。ゴム層(好ましくは第一層6)を構成するゴム組成物の30℃tanδを上記の範囲とすることにより、ウェットグリップ性能が良好となる傾向がある。また、前記ゴム組成物の30℃tanδの上限値は、本開示の効果の観点からは特に制限されないが、低燃費性能の観点から、0.50以下が好ましく、0.40以下がより好ましく、0.35以下がさらに好ましく、0.30以下が特に好ましい。なお、本開示において、30℃tanδは、加硫後のゴム試験片を、タイヤのトレッド部の各ゴム層から、タイヤ周方向が長辺となるように切り出して作製し、該ゴム試験片について、動的粘弾性測定装置を用いて測定することができる。
 前記の少なくとも1層のゴム層を構成するゴム組成物は、初期歪5%、動歪1%、周波数10Hzの条件下で、30℃における複素弾性率(E*30)が8.0MPa未満であり、7.8MPa以下が好ましく、7.6MPa以下がより好ましい。ゴム層(好ましくは第一層6)を構成するゴム組成物のE*30を上記の範囲とすることにより、ウェットグリップ性能が良好となる傾向がある。また、前記ゴム組成物のE*30の下限値は、本開示の効果の観点からは特に制限されないが、4.0MPa以上が好ましく、4.5MPa以上がより好ましく、5.0MPa以上がさらに好ましく、5.5MPa以上が特に好ましい。なお、本開示において、E*30は、加硫後のゴム試験片を、タイヤのトレッド部の各ゴム層から、タイヤ周方向が長辺となるように切り出して作製し、該ゴム試験片について、動的粘弾性測定装置を用いて測定することができる。
 前記の少なくとも1層のゴム層を構成するゴム組成物の比重は、操縦安定性能の観点から、1.270以下が好ましく、1.260以下がより好ましく、1.250以下がさらに好ましく、1.240以下がさらに好ましく、1.230以下が特に好ましい。一方、また、該比重の下限値は、本開示の効果の観点からは特に制限されないが、1.160以上であることが好ましく、1.165以上がより好ましく、1.170以上がさらに好ましい。比重は、例えば、シリカの含有量を増やすことにより上昇させることができ、逆に、シリカの含有量を減らすことにより低下させることができる。なお、本明細書において、ゴム組成物の比重とは、加硫後のゴム組成物についての比重であり、JIS K 2249-4:2011に基づいて測定される。
 本開示の一実施形態であるトレッドを含むタイヤの作製手順について、以下に詳細に説明する。但し、以下の記載は本開示を説明するための例示であり、本開示の技術的範囲をこの記載範囲にのみ限定する趣旨ではない。なお、本明細書において、「~」を用いて数値範囲を示す場合、その両端の数値を含むものとする。
[ゴム組成物]
 本開示のタイヤは、前述したタイヤの構造、特にトレッドの形状と、ゴム組成物の前記の物性とが協働することにより、ウェットグリップ性能をより効果的に改善することができる。
<ゴム成分>
 本開示に係るゴム組成物は、ゴム成分としてイソプレン系ゴム、スチレンブタジエンゴム(SBR)およびブタジエンゴム(BR)からなる群から選ばれる少なくとも1種を含有することが好ましい。ゴム成分は、SBRおよびBRを含むゴム成分としてもよく、イソプレン系ゴム、SBR、およびBRを含むゴム成分としてもよい。またゴム成分は、SBRおよびBRのみからなるゴム成分としてもよく、イソプレン系ゴム、SBR、およびBRのみからなるゴム成分としてもよい。
(イソプレン系ゴム)
 イソプレン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、改質NR、変性NR、変性IR等が挙げられる。NRとしては、例えば、SIR20、RSS♯3、TSR20等、タイヤ工業において一般的なものを使用できる。IRとしては、特に限定されず、例えば、IR2200等、タイヤ工業において一般的なものを使用できる。改質NRとしては脱タンパク質天然ゴム(DPNR)、高純度天然ゴム等を、変性NRとしてはエポキシ化天然ゴム(ENR)、水素添加天然ゴム(HNR)、グラフト化天然ゴム等を、変性IRとしてはエポキシ化イソプレンゴム、水素添加イソプレンゴム、グラフト化イソプレンゴム等を挙げることができる。これらのイソプレン系ゴムは、1種単独で用いてもよく、2種以上を併用してもよい。
 イソプレン系ゴムを含有する場合のゴム成分100質量%中の含有量は、加工性および耐久性能の観点から、20質量%以上が好ましく、25質量%以上がより好ましく、30質量%以上がさらに好ましく、35質量%以上が特に好ましい。一方、イソプレン系のゴム成分中の含有量の上限値は特に制限されないが、トレッド部での減衰性による良好な乗り心地性能を得る観点から、85質量%以下が好ましく、80質量%以下がより好ましく、75質量%以下がさらに好ましく、70質量%以下が特に好ましい。
(SBR)
 SBRとしては特に限定されず、溶液重合SBR(S-SBR)、乳化重合SBR(E-SBR)、これらの変性SBR(変性S-SBR、変性E-SBR)等が挙げられる。変性SBRとしては、末端および/または主鎖が変性されたSBR、スズ、ケイ素化合物等でカップリングされた変性SBR(縮合物、分岐構造を有するもの等)等が挙げられる。さらに、これらSBRの水素添加物(水素添加SBR)等も使用することができる。なかでもS-SBRが好ましく、変性S-SBRがより好ましい。
 変性SBRとしては、通常この分野で使用される官能基が導入された変性SBRが挙げられる。上記官能基としては、例えば、アミノ基(好ましくはアミノ基が有する水素原子が炭素数1~6のアルキル基に置換されたアミノ基)、アミド基、シリル基、アルコキシシリル基(好ましくは炭素数1~6のアルコキシシリル基)、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基(好ましくは炭素数1~6のアルコキシ基)、水酸基、オキシ基、エポキシ基等が挙げられる。なお、これらの官能基は、置換基を有していてもよい。置換基としては、例えば、アミノ基、アミド基、アルコキシシリル基、カルボキシル基、水酸基等の官能基が挙げられる。また、変性SBRとしては、水素添加されたもの、エポキシ化されたもの、スズ変性されたもの等を挙げることができる。
 SBRとしては油展SBRを用いることもできるし、非油展SBRを用いることもできる。油展SBRを用いる場合、SBRの油展量、すなわち、SBRに含まれる油展オイルの含有量は、SBRのゴム固形分100質量部に対して、10~50質量部であることが好ましい。
 前記で列挙されたSBRは、1種単独で用いてもよく、2種以上を併用してもよい。前記で列挙されたSBRとしては、例えば、住友化学(株)、JSR(株)、旭化成(株)、日本ゼオン(株)、ZSエラストマー(株)等より市販されているものを使用することができる。
 SBRのスチレン含量は、トレッド部での減衰性の確保およびウェットグリップ性能の観点から、15質量%以上が好ましく、20質量%以上がより好ましく、25質量%以上がさらに好ましい。また、グリップ性能の温度依存性および耐摩耗性能の観点からは、60質量%以下が好ましく、50質量%以下がより好ましく、45質量%以下がさらに好ましい。なお、本明細書において、SBRのスチレン含量は、1H-NMR測定により算出される。
 SBRのビニル含量は、シリカとの反応性の担保、ゴム強度や耐摩耗性能の観点から10モル%以上が好ましく、13モル%以上がより好ましく、16モル%以上がさらに好ましい。また、SBRのビニル含量は、温度依存性の増大防止、ウェットグリップ性能、破断伸び、および耐摩耗性能の観点から、70モル%以下が好ましく、65モル%以下がより好ましく、60モル%以下がさらに好ましい。なお、本明細書において、SBRのビニル含量(1,2-結合ブタジエン単位量)は、赤外吸収スペクトル分析法によって測定される。
 SBRの重量平均分子量(Mw)は、耐摩耗性能の観点から15万以上が好ましく、20万以上がより好ましく、25万以上がさらに好ましい。また、Mwは、架橋均一性等の観点から、250万以下が好ましく、200万以下がより好ましく、150万以下がさらに好ましい。なお、SBRのMwは、ゲルパーミエーションクロマトグラフィー(GPC)(例えば、東ソー(株)製のGPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMALTIPORE HZ-M)による測定値を基に、標準ポリスチレン換算により求めることができる。
 SBRを含有する場合のゴム成分100質量%中の含有量は、トレッド部での減衰性の確保およびウェットグリップ性能の観点から、10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上がさらに好ましく、25質量%以上が特に好ましい。また、トレッド部の発熱抑制による耐久性能向上の観点からは、85質量%以下が好ましく、80質量%以下がより好ましく、75質量%以下がさらに好ましく、70質量%以下が特に好ましい。
(BR)
 BRとしては特に限定されるものではなく、例えば、シス含量が50モル%未満のBR(ローシスBR)、シス含量が90モル%以上のBR(ハイシスBR)、希土類元素系触媒を用いて合成された希土類系ブタジエンゴム(希土類系BR)、シンジオタクチックポリブタジエン結晶を含有するBR(SPB含有BR)、変性BR(ハイシス変性BR、ローシス変性BR)等タイヤ工業において一般的なものを使用することができる。変性BRとしては、上記SBRで説明したのと同様の官能基等で変性されたBRが挙げられる。これらのBRは、1種単独で用いてもよく、2種以上を併用してもよい。
 ハイシスBRとしては、例えば、日本ゼオン(株)、宇部興産(株)、JSR(株)等より市販されているものを使用することができる。ハイシスBRを含有することで低温特性および耐摩耗性能を向上させることができる。シス含量は、好ましくは95モル%以上、より好ましくは96モル%以上、さらに好ましくは97モル%以上、特に好ましくは98モル%以上である。なお、本明細書において、シス含量(シス-1,4-結合ブタジエン単位量)は、赤外吸収スペクトル分析により算出される値である。
 希土類系BRとしては、希土類元素系触媒を用いて合成され、ビニル含量が、好ましくは1.8モル%以下、より好ましくは1.0モル%以下、さらに好ましくは0.8%モル以下であり、シス含量が、好ましくは95モル%以上、より好ましくは96モル%以上、さらに好ましくは97モル%以上、特に好ましくは98モル%以上である。希土類系BRとしては、例えば、ランクセス(株)等より市販されているものを使用することができる。
 SPB含有BRは、1,2-シンジオタクチックポリブタジエン結晶が、単にBR中に結晶を分散させたものではなく、BRと化学結合したうえで分散しているものが挙げられる。このようなSPB含有BRとしては、宇部興産(株)等より市販されているものを使用することができる。
 変性BRとしては、末端および/または主鎖がケイ素、窒素および酸素からなる群から選択される少なくとも一つの元素を含む官能基によって変性された変性ブタジエンゴム(変性BR)が好適に用いられる。
 その他の変性BRとしては、リチウム開始剤により1,3-ブタジエンの重合を行ったのち、スズ化合物を添加することにより得られ、さらに変性BR分子の末端がスズ-炭素結合で結合されているもの(スズ変性BR)等が挙げられる。また、変性BRは、水素添加されていないもの、水素添加されているもののいずれであってもよい。
 BRのガラス転移温度(Tg)は、低温脆性防止の観点から、-14℃以下が好ましく、-17℃以下がより好ましく、-20℃以下がさらに好ましい。一方、該Tgの下限値は特に制限されないが、耐摩耗性の観点から、-150℃以上が好ましく、-120℃以上がより好ましく、-110℃以上がさらに好ましい。なお、BRのガラス転移温度は、JIS K 7121に従い、昇温速度10℃/分の条件で示差走査熱量測定(DSC)を行って測定される値である。
 BRの重量平均分子量(Mw)は、耐摩耗性能の観点から、30万以上が好ましく、35万以上がより好ましく、40万以上がさらに好ましい。また、架橋均一性等の観点からは、200万以下が好ましく、150万以下がより好ましく、100万以下がさらに好ましい。なお、BRのMwは、ゲルパーミエーションクロマトグラフィー(GPC)(例えば、東ソー(株)製のGPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMALTIPORE HZ-M)による測定値を基に、標準ポリスチレン換算により求めることができる。
 BRを含有する場合のゴム成分100質量%中の含有量は、耐摩耗性能の観点から、1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上がさらに好ましい。また、ウェットグリップ性能の観点からは、40質量%以下が好ましく、35質量%以下がより好ましく、30質量%以下がさらに好ましく、25質量%以下が特に好ましい。
(その他のゴム成分)
 本開示に係るゴム成分として、前記のイソプレン系ゴム、SBR、およびBR以外のゴム成分を含有してもよい。他のゴム成分としては、タイヤ工業で一般的に用いられる架橋可能なゴム成分を用いることができ、例えば、スチレンイソプレンゴム(SIR)、スチレンイソプレンブタジエンゴム(SIBR)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)等のイソプレン系ゴム、SBR、およびBR以外のジエン系ゴム;ブチルゴム(IIR)、ハロゲン化ブチルゴム、エチレンプロピレンゴム、ポリノルボルネンゴム、シリコーンゴム、塩化ポリエチレンゴム、フッ素ゴム(FKM)、アクリルゴム(ACM)、ヒドリンゴム等のジエン系ゴム以外のゴム成分が挙げられる。これらその他のゴム成分は、1種単独で用いてもよく、2種以上を併用してもよい。本開示に係るゴム成分は、ジエン系ゴムを80質量%以上含むことが好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、98質量%以上が特に好ましく、ジエン系ゴムのみからなるゴム成分としてもよい。
<補強用充填剤>
 本開示に係るゴム組成物は、補強用充填剤としてシリカを含有することが好ましく、カーボンブラックおよびシリカを含有することがより好ましい。また、補強用充填剤は、カーボンブラックおよびシリカのみからなる補強用充填剤としてもよい。
(シリカ)
 シリカとしては、特に限定されず、例えば、乾式法により調製されたシリカ(無水シリカ)、湿式法により調製されたシリカ(含水シリカ)等、タイヤ工業において一般的なものを使用することができる。なかでもシラノール基が多いという理由から、湿式法により調製された含水シリカが好ましい。これらのシリカは、1種単独で用いてもよく、2種以上を併用してもよい。
 シリカの窒素吸着比表面積(N2SA)は、補強性およびトレッド部での減衰性の確保の観点から、140m2/g以上が好ましく、150m2/g以上がより好ましく、160m2/g以上がさらに好ましく、170m2/g以上が特に好ましい。また、発熱性および加工性の観点からは、350m2/g以下が好ましく、300m2/g以下がより好ましく、250m2/g以下がさらに好ましい。なお、本明細書におけるシリカのN2SAは、ASTM D3037-93に準じてBET法で測定される値である。
 シリカの平均一次粒子径は、20nm以下が好ましく、18nm以下がより好ましい。該平均一次粒子径の下限値は特に限定されないが、1nm以上が好ましく、3nm以上がより好ましく、5nm以上がさらに好ましい。シリカの平均一次粒子径が前期の範囲であることによって、シリカの分散性をより改善でき、補強性、破壊特性、耐摩耗性をさらに改善できる。なお、シリカの平均一次粒子径は、透過型または走査型電子顕微鏡により観察し、視野内に観察されたシリカの一次粒子を400個以上測定し、その平均により求めることができる。
 シリカを含有する場合のゴム成分100質量部に対する含有量は、トレッド部での減衰性の確保およびウェットグリップ性能の観点から、30質量部以上が好ましく、35質量部以上がより好ましく、40質量部以上がさらに好ましく、45質量部以上が特に好ましい。また、ゴムの比重を低減させ軽量化を図る観点から、110質量部以下が好ましく、100質量部以下がより好ましく、95質量部以下がさらに好ましく、90質量部以下が特に好ましい。
(カーボンブラック)
 カーボンブラックとしては特に限定されず、GPF、FEF、HAF、ISAF、SAF等、タイヤ工業において一般的なものを使用でき、具体的にはN110、N115、N120、N125、N134、N135、N219、N220、N231、N234、N293、N299、N326、N330、N339、N343、N347、N351、N356、N358、N375、N539、N550、N582、N630、N642、N650、N660、N683、N754、N762、N765、N772、N774、N787、N907、N908、N990、N991等を好適に用いることができ、これ以外にも自社合成品等も好適に用いることができる。これらのカーボンブラックは、1種単独で用いてもよく、2種以上を併用してもよい。
 カーボンブラックの窒素吸着比表面積(N2SA)は、耐候性や補強性の観点から、50m2/g以上が好ましく、80m2/g以上がより好ましく、100m2/g以上がさらに好ましい。また、分散性、低燃費性能、破壊特性および耐久性能の観点からは、250m2/g以下が好ましく、220m2/g以下がより好ましい。なお、本明細書におけるカーボンブラックのN2SAは、JIS K 6217-2「ゴム用カーボンブラック基本特性-第2部:比表面積の求め方-窒素吸着法-単点法」のA法に準じて測定される値である。
 カーボンブラックを含有する場合のゴム成分100質量部に対する含有量は、耐候性や補強性の観点から、1質量部以上が好ましく、3質量部以上がより好ましく、5質量部以上がさらに好ましい。また、低燃費性能の観点からは、40質量部以下が好ましく、30質量部以下がより好ましく、20質量部以下がさらに好ましく、18質量部以下が特に好ましい。
(その他の補強用充填剤)
 シリカおよびカーボンブラック以外の補強用充填剤としては、水酸化アルミニウム、炭酸カルシウム、アルミナ、クレー、タルク等、従来からタイヤ工業において一般的に用いられているものを配合することができる。
 シリカの含有量に対するカーボンブラックの含有量の比は、0.40以下が好ましく、0.30以下がより好ましく、0.21以下がさらに好ましく、0.17以下がさらに好ましく、0.13以下がさらに好ましく、0.10以下が特に好ましい。シリカの含有量に対するカーボンブラックの含有量の比を前記の範囲とすることにより、高歪領域の剛性を維持しつつ、ゴム組成物のE*30をさらに低減することができるので、ウェットグリップ性能をより向上させることができる。一方、シリカの含有量に対するカーボンブラックの含有量の比の下限値は特に制限されず、例えば0.01以上、0.02以上、0.05以上とすることができ、カーボンブラックを含有しない補強用充填剤としてもよい。
 補強用充填剤のゴム成分100質量部に対する合計含有量は、補強性およびトレッド部での減衰性の確保の観点から、30質量部以上が好ましく、40質量部以上がより好ましく、45質量部以上がさらに好ましく、50質量部以上が特に好ましい。本開示の効果の観点から、120質量部以下が好ましく、110質量部以下がより好ましく、100質量部以下がさらに好ましく、95質量部以下が特に好ましい。
(シランカップリング剤)
 シリカは、シランカップリング剤と併用することが好ましい。シランカップリング剤としては、特に限定されず、タイヤ工業において、従来からシリカと併用される任意のシランカップリング剤を使用することができるが、例えば、下記のメルカプト系シランカップリング剤;ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリエトキシシリルプロピル)テトラスルフィド等のスルフィド系シランカップリング剤;3-オクタノイルチオ-1-プロピルトリエトキシシラン、3-ヘキサノイルチオ-1-プロピルトリエトキシシラン、3-オクタノイルチオ-1-プロピルトリメトキシシラン等のチオエステル系シランカップリング剤;ビニルトリエトキシシラン、ビニルトリメトキシシラン等のビニル系シランカップリング剤;3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン等のアミノ系シランカップリング剤;γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等のグリシドキシ系シランカップリング剤;3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシラン等のニトロ系シランカップリング剤;3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン等のクロロ系シランカップリング剤;等が挙げられる。なかでも、スルフィド系シランカップリング剤および/またはメルカプト系シランカップリング剤を含有することが好ましい。これらのシランカップリング剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 メルカプト系シランカップリング剤は、下記式(3)で表される化合物、および/または下記式(4)で表される結合単位Aと下記式(5)で表される結合単位Bとを含む化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
(式中、R101、R102、およびR103は、それぞれ独立して、炭素数1~12のアルキル、炭素数1~12のアルコキシ、または-O-(R111-O)z-R112(z個のR111は、それぞれ独立して、炭素数1~30の2価の炭化水素基を表し;R112は、炭素数1~30のアルキル、炭素数2~30のアルケニル、炭素数6~30のアリール、または炭素数7~30のアラルキルを表し;zは、1~30の整数を表す。)で表される基を表し;R104は、炭素数1~6のアルキレンを表す。)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
(式中、xは0以上の整数を表し;yは1以上の整数を表し;R201は、水素原子、ハロゲン原子、ヒドロキシルもしくはカルボキシルで置換されていてもよい炭素数1~30のアルキル、炭素数2~30のアルケニル、または炭素数2~30のアルキニルを表し;R202は、炭素数1~30のアルキレン、炭素数2~30のアルケニレン、または炭素数2~30のアルキニレンを表し;ここにおいて、R201とR202とで環構造を形成してもよい。)
 式(3)で表される化合物としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシランや、下記式(6)で表される化合物(エボニックデグサ社製のSi363)等が挙げられ、下記式(6)で表される化合物を好適に使用することができる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000004
 式(4)で示される結合単位Aと式(5)で示される結合単位Bとを含む化合物としては、例えば、モメンティブ社等により市販されているものが挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。
 シランカップリング剤を含有する場合のシリカ100質量部に対する含有量は、シリカの分散性を高める観点から、1.0質量部以上が好ましく、3.0質量部以上がより好ましく、5.0質量部以上がさらに好ましい。また、耐摩耗性能の低下を防止する観点からは、30質量部以下が好ましく、20質量部以下がより好ましく、15質量部以下がさらに好ましい。
<樹脂成分>
 本開示に係るゴム組成物は、樹脂成分を含有することが好ましい。樹脂成分としては、特に限定されないが、タイヤ工業で慣用される石油樹脂、テルペン系樹脂、ロジン系樹脂、フェノール系樹脂等が挙げられ、これらの樹脂成分は、1種単独で用いてもよく、2種以上を併用してもよい。
 石油樹脂としては、例えば、C5系石油樹脂、芳香族系石油樹脂、C5C9系石油樹脂が挙げられる。これらの石油樹脂は、1種単独で用いてもよく、2種以上を併用してもよい。
 本明細書において「C5系石油樹脂」とは、C5留分を重合することにより得られる樹脂をいう。C5留分としては、例えば、シクロペンタジエン、ペンテン、ペンタジエン、イソプレン等の炭素数4~5個相当の石油留分が挙げられる。C5系石油樹脂しては、ジシクロペンタジエン樹脂(DCPD樹脂)が好適に用いられる。
 本明細書において「芳香族系石油樹脂」とは、C9留分を重合することにより得られる樹脂をいい、それらを水素添加したものや変性したものであってもよい。C9留分としては、例えば、ビニルトルエン、アルキルスチレン、インデン、メチルインデン等の炭素数8~10個相当の石油留分が挙げられる。芳香族系石油樹脂の具体例としては、例えば、クマロンインデン樹脂、クマロン樹脂、インデン樹脂、および芳香族ビニル系樹脂が好適に用いられる。芳香族ビニル系樹脂としては、経済的で、加工しやすく、発熱性に優れているという理由から、α-メチルスチレンもしくはスチレンの単独重合体、またはα-メチルスチレンとスチレンとの共重合体が好ましく、α-メチルスチレンとスチレンとの共重合体がより好ましい。芳香族ビニル系樹脂としては、例えば、クレイトン社、イーストマンケミカル社等より市販されているものを使用することができる。
 本明細書において「C5C9系石油樹脂」とは、前記C5留分と前記C9留分を共重合することにより得られる樹脂をいい、それらを水素添加したものや変性したものであってもよい。C5留分およびC9留分としては、前記の石油留分が挙げられる。C5C9系石油樹脂としては、例えば、東ソー(株)、LUHUA社等より市販されているものを使用することができる。
 テルペン系樹脂としては、α-ピネン、β-ピネン、リモネン、ジペンテン等のテルペン化合物から選ばれる少なくとも1種からなるポリテルペン樹脂;前記テルペン化合物と芳香族化合物とを原料とする芳香族変性テルペン樹脂;テルペン化合物とフェノール系化合物とを原料とするテルペンフェノール樹脂;並びにこれらのテルペン系樹脂に水素添加処理を行ったもの(水素添加されたテルペン系樹脂)が挙げられる。芳香族変性テルペン樹脂の原料となる芳香族化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、ジビニルトルエン等が挙げられる。テルペンフェノール樹脂の原料となるフェノール系化合物としては、例えば、フェノール、ビスフェノールA、クレゾール、キシレノール等が挙げられる。
 ロジン系樹脂としては、特に限定されないが、例えば天然樹脂ロジン、それを水素添加、不均化、二量化、エステル化等で変性したロジン変性樹脂等が挙げられる。
 フェノール系樹脂としては、特に限定されないが、フェノールホルムアルデヒド樹脂、アルキルフェノールホルムアルデヒド樹脂、アルキルフェノールアセチレン樹脂、オイル変性フェノールホルムアルデヒド樹脂等が挙げられる。
 樹脂成分の軟化点は、ウェットグリップ性能の観点から、60℃以上が好ましく、65℃以上がより好ましい。また、加工性、ゴム成分とフィラーとの分散性向上という観点からは、150℃以下が好ましく、140℃以下がより好ましく、130℃以下がさらに好ましい。なお、本明細書において、軟化点は、JIS K 6220-1:2001に規定される軟化点を環球式軟化点測定装置で測定し、球が降下した温度として定義され得る。
 樹脂成分としては、ウェットグリップ性能および操縦安定性能がバランスよく得られる観点から、芳香族系石油樹脂が好ましく、芳香族ビニル系樹脂がより好ましい。
 樹脂成分を含有する場合のゴム成分100質量部に対する含有量は、2.0質量部以上が好ましく、3.0質量部以上がより好ましく、4.0質量部以上がさらに好ましく、5.0質量部以上が特に好ましい。樹脂成分の含有量を前記の範囲とすることにより、高周波数領域での発熱性能を向上させつつ、粘着摩擦も向上することができ、ウェットグリップ性能がより向上する傾向がある。また、耐久性能の観点からは、50質量部以下が好ましく、40質量部以下がより好ましく、30質量部以下がさらに好ましく、20質量部以下が特に好ましい。
<その他の配合剤>
 本開示に係るゴム組成物には、前記成分以外にも、従来タイヤ工業で一般に使用される配合剤、例えば、オイル、ワックス、加工助剤、老化防止剤、ステアリン酸、酸化亜鉛、硫黄等の加硫剤、加硫促進剤等を適宜含有することができる。
 オイルとしては、例えば、プロセスオイル、植物油脂、動物油脂等が挙げられる。前記プロセスオイルとしてはパラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル等が挙げられる。また、環境対策で多環式芳香族(polycyclic aromatic compound:PCA)化合物の含量の低いプロセスオイルが挙げられる。前記低PCA含量プロセスオイルとしては、オイル芳香族系プロセスオイルを再抽出したTreated Distillate Aromatic Extract(TDAE)、アスファルトとナフテン油の混合油であるアロマ代替オイル、軽度抽出溶媒和物(mild extraction solvates:MES)、および重ナフテン系オイル等が挙げられる。
 オイルを含有する場合のゴム成分100質量部に対する含有量は、加工性の観点から、1質量部以上が好ましく、2質量部以上がより好ましく、3質量部以上がさらに好ましく、5質量部以上がさらに好ましく、8質量部以上がさらに好ましく、12質量部以上が特に好ましい。また、低燃費性能および耐久性能の観点からは、80質量部以下が好ましく、60質量部以下がより好ましく、40質量部以下がさらに好ましい。なお、本明細書において、オイルの含有量には、油展ゴムに含まれるオイル量も含まれる。
 ワックスを含有する場合のゴム成分100質量部に対する含有量は、ゴムの耐候性の観点から、0.5質量部以上が好ましく、1質量部以上がより好ましい。また、ブルームによるタイヤの白色化防止の観点からは、10質量部以下が好ましく、5質量部以下がより好ましい。
 加工助剤としては、未加硫時におけるゴムの低粘度化や離型性の確保を目的とした脂肪酸金属塩や、ゴム成分のミクロな層分離を抑制する観点から広く相溶化剤として市販されているもの等を使用することができる。
 加工助剤を含有する場合のゴム成分100質量部に対する含有量は、加工性の改善効果を発揮させる観点から、0.5質量部以上が好ましく、1質量部以上がより好ましい。また、耐摩耗性および破壊強度の観点からは、10質量部以下が好ましく、8質量部以下がより好ましい。
 老化防止剤としては、特に限定されるものではないが、例えば、アミン系、キノリン系、キノン系、フェノール系、イミダゾール系の各化合物や、カルバミン酸金属塩などの老化防止剤が挙げられる。
 老化防止剤を含有する場合のゴム成分100質量部に対する含有量は、ゴムの耐オゾンクラック性の観点から、0.5質量部以上が好ましく、1質量部以上がより好ましい。また、耐摩耗性能やウェットグリップ性能の観点からは、10質量部以下が好ましく、5質量部以下がより好ましい。
 ステアリン酸を含有する場合のゴム成分100質量部に対する含有量は、加工性の観点から、0.5質量部以上が好ましく、1質量部以上がより好ましい。また、加硫速度の観点からは、10質量部以下が好ましく、5質量部以下がより好ましい。
 酸化亜鉛を含有する場合のゴム成分100質量部に対する含有量は、加工性の観点から、0.5質量部以上が好ましく、1質量部以上がより好ましい。また、耐摩耗性能の観点からは、10質量部以下が好ましく、5質量部以下がより好ましい。
 加硫剤としては硫黄が好適に用いられる。硫黄としては、粉末硫黄、油処理硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄等を用いることができる。
 加硫剤として硫黄を含有する場合のゴム成分100質量部に対する含有量は、十分な加硫反応を確保する観点から、0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.5質量部以上がさらに好ましい。また、劣化防止の観点からは、5.0質量部以下が好ましく、4.0質量部以下がより好ましく、3.0質量部以下がさらに好ましい。なお、加硫剤として、オイル含有硫黄を使用する場合の加硫剤の含有量は、オイル含有硫黄に含まれる純硫黄分の合計含有量とする。
 硫黄以外の加硫剤としては、例えば、アルキルフェノール・塩化硫黄縮合物、1,6-ヘキサメチレン-ジチオ硫酸ナトリウム・二水和物、1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)等が挙げられる。これらの硫黄以外の加硫剤は、田岡化学工業(株)、ランクセス(株)、フレクシス社等より市販されているものを使用することができる。
 加硫促進剤としては、例えば、スルフェンアミド系、チアゾール系、チウラム系、チオウレア系、グアニジン系、ジチオカルバミン酸系、アルデヒド-アミン系若しくはアルデヒド-アンモニア系、イミダゾリン系、またはキサンテート系加硫促進剤等が挙げられる。これら加硫促進剤は、1種単独で用いてもよく、2種以上を併用してもよい。なかでも、所望の効果がより好適に得られる点から、スルフェンアミド系、グアニジン系、およびチアゾール系加硫促進剤からなる群から選ばれる1以上の加硫促進剤が好ましく、スルフェンアミド系加硫促進剤およびグアニジン系加硫促進剤を組み合わせることがより好ましい。
 スルフェンアミド系加硫促進剤としては、例えば、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(TBBS)、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N,N-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(DCBS)等が挙げられる。なかでも、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(TBBS)およびN-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)が好ましい。
 グアニジン系加硫促進剤としては、例えば、1,3-ジフェニルグアニジン(DPG)、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジン等が挙げられる。なかでも、1,3-ジフェニルグアニジン(DPG)が好ましい。
 チアゾール系加硫促進剤としては、例えば、2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾールのシクロヘキシルアミン塩、ジ-2-ベンゾチアゾリルジスルフィド等が挙げられる。なかでも、2-メルカプトベンゾチアゾールが好ましい。
 加硫促進剤を含有する場合のゴム成分100質量部に対する含有量は、1.0質量部以上が好ましく、1.5質量部以上がより好ましく、2.0質量部以上がさらに好ましい。また、加硫促進剤のゴム成分100質量部に対する含有量は、8.0質量部以下が好ましく、7.0質量部以下がより好ましく、6.0質量部以下がさらに好ましく、5.0質量部以下が特に好ましい。加硫促進剤の含有量を上記範囲内とすることにより、破壊強度および伸びが確保できる傾向がある。
 本開示に係るゴム組成物は、公知の方法により製造することができる。例えば、前記の各成分をオープンロール、密閉式混練機(バンバリーミキサー、ニーダー等)等のゴム混練装置を用いて混練りすることにより製造できる。
 混練り工程は、例えば、加硫剤および加硫促進剤以外の配合剤および添加剤を混練りするベース練り工程と、ベース練り工程で得られた混練物に加硫剤および加硫促進剤を添加して混練りするファイナル練り(F練り)工程とを含んでなるものである。さらに、前記ベース練り工程は、所望により、複数の工程に分けることもできる。混練条件としては特に限定されるものではないが、例えば、ベース練り工程では、排出温度150~170℃で1~10分間混練りし、ファイナル練り工程では、70~110℃で1~5分間混練りする方法が挙げられる。
[タイヤ]
 本開示のタイヤは、乗用車用タイヤ、トラック・バス用タイヤ、大型SUV用タイヤ、競技用タイヤ、モーターサイクル用タイヤ等に好適であり、それぞれのサマータイヤ、ウインタータイヤ、スタッドレスタイヤとして使用可能である。なお、本明細書において、乗用車用タイヤとは、四輪で走行する自動車に装着されることを前提としたタイヤであり、その最大負荷能力が1000kg以下のものを指す。
 上記ゴム組成物から構成されるトレッドを備えたタイヤは、通常の方法により製造することができる。すなわち、ゴム成分に対して上記各成分を必要に応じて配合した未加硫のゴム組成物を、トレッドを構成する少なくとも1層のゴム層の形状にあわせて押出し加工し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせ、通常の方法にて成型することにより、未加硫タイヤを形成し、この未加硫タイヤを加硫機中で加熱加圧することにより、タイヤを製造することができる。加硫条件としては、特に限定されるものではなく、例えば、150~200℃で10~30分間加硫する方法が挙げられる。
 以下、本開示を実施例に基づいて説明するが、本開示はこれら実施例のみに限定されるものではない。
 以下、実施例および比較例において用いた各種薬品をまとめて示す。
NR:TSR20
SBR:後述の製造例1で製造した変性溶液重合SBR(スチレン含量:30質量%、ビニル含量:52モル%、Mw:25万、非油展品)
BR:宇部興産(株)製のUBEPOL BR(登録商標)150B(シス含量:97モル%、Tg:-108℃、Mw:44万)
カーボンブラック:三菱ケミカル(株)製のダイヤブラックN220(N2SA:115m2/g)
シリカ:エボニックデグサ社製のULTRASIL(登録商標)VN3(N2SA:175m2/g、平均一次粒子径:17nm)
シランカップリング剤:エボニックデグサ社製のSi266(ビス(3-トリエトキシシリルプロピル)ジスルフィド)
オイル:H&R社製のVivaTec400(TDAEオイル)
樹脂成分:クレイトン社製のSylvares SA85(α-メチルスチレンとスチレンとの共重合体、軟化点:85℃)
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
ステアリン酸:日油(株)製のビーズステアリン酸つばき
硫黄:細井化学工業(株)製のHK-200-5(5%オイル含有粉末硫黄)
加硫促進剤1:大内新興化学工業(株)製のノクセラーCZ(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS))
加硫促進剤2:大内新興化学工業(株)製のノクセラーD(1,3-ジフェニルグアニジン(DPG))
製造例1:SBRの合成
 窒素置換されたオートクレーブ反応器に、シクロヘキサン、テトラヒドロフラン、スチレン、及び1,3-ブタジエンを仕込んだ。反応器の内容物の温度を20℃に調整した後、n-ブチルリチウムを添加して重合を開始した。断熱条件で重合し、最高温度は85℃に達した。重合転化率が99%に達した時点で1,3-ブタジエンを追加し、更に5分重合させた後、N,N-ビス(トリメチルシリル)-3-アミノプロピルトリメトキシシランを変性剤として加えて反応を行った。重合反応終了後、2,6-ジ-tert-ブチル-p-クレゾールを添加した。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールにより乾燥し、SBRを得た。
(実施例および比較例)
 表1に示す配合処方にしたがい、1.7Lの密閉型バンバリーミキサーを用いて、硫黄および加硫促進剤以外の薬品を排出温度150~160℃になるまで1~10分間混練りし、混練物を得た。次に、2軸オープンロールを用いて、得られた混練物に硫黄および加硫促進剤を添加し、4分間、105℃になるまで練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で12分間プレス加硫することで、試験用加硫ゴム組成物を作製した。
 また、得られた未加硫ゴム組成物を用いて、所定の形状の口金を備えた押し出し機でトレッドの第一層(厚さ:3.0mm)の形状に合わせて押し出し成形し、トレッドの第二層(厚さ:3.0mm)および他のタイヤ部材とともに貼り合わせて未加硫タイヤを作製し、170℃の条件下で12分間プレス加硫することにより、表2~表5に記載の各試験用タイヤを作製した。
 得られた試験用加硫ゴム組成物および試験用タイヤについて下記の評価を行った。評価結果を表2~表5に示す。
<tanδおよび複素弾性率E*測定>
 加硫後の各ゴム試験片を、各試験用タイヤのトレッド部の各ゴム層から、タイヤ周方向が長辺となるように、長さ20mm×幅4mm×厚さ2mmで切り出して作製した。各ゴム試験片について、動的粘弾性測定装置(GABO社製のイプレクサーシリーズ)を用いて、温度30℃、初期歪5%、動歪1%、周波数10Hzの条件下でtanδおよび複素弾性率(E*)を測定した。結果を表1に示す。なお、サンプルの厚み方向はタイヤ半径方向とした。
<ウェットグリップ性能>
 各試験用タイヤに250kPaの空気を充填し、排気量が2000ccである自動車の全輪に装着し、湿潤アスファルト路面にて、初速度100km/hで走行中にブレーキを踏み、制動距離を測定した。制動距離の逆数の値について、基準例(表2および表3では実施例1、表4では実施例9、表5では実施例13)の制動距離を100として指数表示した。指数が大きいほど、ウェットグリップ性能に優れることを示す。
<操縦安定性能>
 各試験用タイヤに250kPaの空気を充填し、排気量が2000ccである自動車の全輪に装着し、ドライアスファルト面のテストコースにて実車走行を行った。テストドライバーによる120km/hでの走行時の、直進、車線変更、加減速時の各々のフィーリングに基づき、ハンドリング特性を評価した。評価は1点~10点の整数値で行い、評点が高いほどハンドリング特性に優れる評価基準のもと、テストドライバー10名の合計点を算出した。基準例(表2および表3では実施例1、表4では実施例9、表5では実施例13)の合計点を基準値(100)に換算し、各試験用タイヤの評価結果を合計点に比例するように指数化して表示した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表1~表5の結果より、タイヤの最大負荷能力に対するタイヤ重量、およびトレッドを構成するゴム組成物のtanδおよび複素弾性率を所定の範囲とした本開示のタイヤは、ウェットグリップ性能が改善されていることがわかる。また、好ましい態様においては、操縦安定性能も改善されていることがわかる。
<実施形態>
 本開示の実施形態の例を以下に示す。
〔1〕トレッド部を備えたタイヤであって、前記タイヤの最大負荷能力WL(kg)に対するタイヤ重量G(kg)の比(G/WL)が0.0131以下(好ましくは0.0130以下、より好ましくは0.0129以下、さらに好ましくは0.0128以下、特に好ましくは0.0127以下)であり、前記トレッドは、ゴム成分および補強用充填剤を含有するゴム組成物からなる少なくとも1層のゴム層を有し、前記ゴム組成物の30℃におけるtanδ(30℃tanδ)が0.15超(好ましくは0.16以上、より好ましくは0.17以上)であり、30℃における複素弾性率(E*30)が8.0MPa未満(好ましくは7.8MPa以下、より好ましくは7.6MPa以下)であり、前記Gに対する前記30℃tanδの比(30℃tanδ/G)が0.016以上(好ましくは0.017以上、より好ましくは0.018以上、さらに好ましくは0.019以上、特に好ましくは0.020以上)であるタイヤ。
〔2〕前記補強用充填剤がシリカを含有し、補強用充填剤中のシリカの含有量に対するカーボンブラックの含有量の比が0.21以下(好ましくは0.17以下、より好ましくは0.13以下、さらに好ましくは0.10以下)である、上記〔1〕記載のタイヤ。
〔3〕前記ゴム組成物が、前記ゴム成分100質量部に対して樹脂成分を4.0質量部以上(好ましくは4.0~40質量部、より好ましくは5.0~30質量部)含有する、上記〔1〕または〔2〕記載のタイヤ。
〔4〕前記ゴム組成物の比重が1.270以下(好ましくは1.260以下、より好ましくは1.250以下、さらに好ましくは1.240以下、特に好ましくは1.230以下)である、上記〔1〕~〔3〕のいずれかに記載のタイヤ。
〔5〕前記トレッド部が、タイヤ周方向に連続して延びる2以上の周方向溝によって仕切られた陸部を有し、前記陸部の延長線と前記周方向溝の溝底の最深部の延長線との距離をHとしたとき、前記陸部の最表面から半径方向内側への距離Hの領域の少なくとも一部に、前記ゴム組成物により構成されたゴム層が配置された、上記〔1〕~〔4〕のいずれかに記載のタイヤ。
〔6〕H/E*30が1.30以下(好ましくは1.27以下、より好ましくは1.25以下、さらに好ましくは1.22以下、特に好ましくは1.20以下)である、上記〔5〕記載のタイヤ。
〔7〕前記トレッド部が、前記周方向溝によって仕切られた、一対のショルダー陸部および前記一対のショルダー陸部の間に位置するセンター陸部を有し、前記陸部全体の面積に対するセンター陸部の合計面積の比が0.35~0.80(好ましくは0.40~0.70、より好ましくは0.45~0.60)である、上記〔5〕または〔6〕記載のタイヤ。
〔8〕前記トレッド部が、タイヤ周方向に連続して延びる2以上の周方向溝と、幅方向溝と、サイプとを有し、前記トレッド部の接地面積に対する全溝面積の比が0.15~0.35(好ましくは0.17~0.32、より好ましくは0.20~0.30)である、上記〔1〕~〔7〕のいずれかに記載のタイヤ。
〔9〕前記トレッド部の接地面積に対する周方向溝の合計面積が0.09~0.16(好ましくは0.10~0.15、より好ましくは0.11~0.14)であり、前記トレッド部の接地面積に対する幅方向溝およびサイプの合計面積が0.08~0.14(好ましくは0.09~0.13、より好ましくは0.10~0.12)である、上記〔8〕記載のタイヤ。
〔10〕前記タイヤの周方向の長さLaと、前記幅方向溝の前記幅方向のエッジ成分の長さの合計Lb1および前記サイプの前記幅方向のエッジ成分の長さの合計Lb2の総和Lbとの比La/Lbが、0.10~0.20(好ましくは0.11~0.29、より好ましくは0.12~0.18、さらに好ましくは0.13~0.17)である、上記〔8〕または〔9〕記載のタイヤ。
〔11〕前記トレッド部が、その両端が前記周方向溝に開口していないサイプを有する、上記〔8〕~〔10〕のいずれかに記載のタイヤ。
〔12〕前記トレッド部が、トレッド面を構成する第一のゴム層と、第一層の半径方向内側に隣接する第二のゴム層とを備え、前記第一のゴム層のおよび前記第二のゴム層のうち少なくとも1つが前記ゴム組成物により構成された、上記〔1〕~〔11〕のいずれかに記載のタイヤ。
〔13〕前記周方向溝の溝底の最深部が、前記第二のゴム層の最外部よりもタイヤ半径方向内側に位置するように形成されている、上記〔12〕記載のタイヤ。
〔14〕前記第一のゴム層の厚みt1に対する前記第二層のゴムの厚みt2の割合(t2/t1)が5/95~60/40(好ましくは15/85~65/45、より好ましくは25/75~50/50)である、上記〔12〕または〔13〕記載のタイヤ。
 1・・・周方向溝
 2・・・陸部
 3・・・トレッド面
 4・・・陸部の延長線
 5・・・周方向溝の溝底の最深部の延長線
 6・・・第一層
 7・・・第二層
 8・・・第二層の最外部の延長線
 10・・・トレッド部
 11・・・センター陸部
 12・・・ショルダー陸部
 21・・・幅方向溝
 22、23・・・サイプ

Claims (14)

  1. トレッド部を備えたタイヤであって、
    前記タイヤの最大負荷能力WL(kg)に対するタイヤ重量G(kg)の比(G/WL)が0.0131以下であり、
    前記トレッドは、ゴム成分および補強用充填剤を含有するゴム組成物からなる少なくとも1層のゴム層を有し、
    前記ゴム組成物の30℃におけるtanδ(30℃tanδ)が0.15超であり、30℃における複素弾性率(E*30)が8.0MPa未満であり、
    前記Gに対する前記30℃tanδの比(30℃tanδ/G)が0.016以上であるタイヤ。
  2. 前記補強用充填剤がシリカを含有し、補強用充填剤中のシリカの含有量に対するカーボンブラックの含有量の比が0.21以下である、請求項1記載のタイヤ。
  3. 前記ゴム組成物が、前記ゴム成分100質量部に対して樹脂成分を4.0質量部以上含有する、請求項1または2記載のタイヤ。
  4. 前記ゴム組成物の比重が1.270以下である、請求項1~3のいずれか一項に記載のタイヤ。
  5. 前記トレッド部が、タイヤ周方向に連続して延びる2以上の周方向溝によって仕切られた陸部を有し、
    前記陸部の延長線と前記周方向溝の溝底の最深部の延長線との距離をHとしたとき、
    前記陸部の最表面から半径方向内側への距離Hの領域の少なくとも一部に、前記ゴム組成物により構成されたゴム層が配置された、請求項1~4のいずれか一項に記載のタイヤ。
  6. H/E*30が1.30以下である、請求項5記載のタイヤ。
  7. 前記トレッド部が、前記周方向溝によって仕切られた、一対のショルダー陸部および前記一対のショルダー陸部の間に位置するセンター陸部を有し、
    前記陸部全体の面積に対するセンター陸部の合計面積の比が0.35~0.80である、請求項5または6記載のタイヤ。
  8. 前記トレッド部が、タイヤ周方向に連続して延びる2以上の周方向溝と、幅方向溝と、サイプとを有し、
    前記トレッド部の接地面積に対する全溝面積の比が0.15~0.35である、請求項1~7のいずれか一項に記載のタイヤ。
  9. 前記トレッド部の接地面積に対する周方向溝の合計面積が0.09~0.16であり、前記トレッド部の接地面積に対する幅方向溝およびサイプの合計面積が0.08~0.14である、請求項8記載のタイヤ。
  10. 前記タイヤの周方向の長さLaと、前記幅方向溝の前記幅方向のエッジ成分の長さの合計Lb1および前記サイプの前記幅方向のエッジ成分の長さの合計Lb2の総和Lbとの比La/Lbが、0.10~0.20である、請求項8または9記載のタイヤ。
  11. 前記トレッド部が、その両端が前記周方向溝に開口していないサイプを有する、請求項8~10のいずれか一項に記載のタイヤ。
  12. 前記トレッド部が、トレッド面を構成する第一のゴム層と、第一層の半径方向内側に隣接する第二のゴム層とを備え、
    前記第一のゴム層のおよび前記第二のゴム層のうち少なくとも1つが前記ゴム組成物により構成された、請求項1~11のいずれか一項に記載のタイヤ。
  13. 前記周方向溝の溝底の最深部が、前記第二のゴム層の最外部よりもタイヤ半径方向内側に位置するように形成されている、請求項12記載のタイヤ。
  14. 前記第一のゴム層の厚みt1に対する前記第二層のゴムの厚みt2の割合(t2/t1)が5/95~60/40である、請求項12または13記載のタイヤ。
PCT/JP2021/032672 2020-10-14 2021-09-06 タイヤ WO2022080037A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21879779.3A EP4108720A4 (en) 2020-10-14 2021-09-06 TIRES
JP2022557260A JPWO2022080037A1 (ja) 2020-10-14 2021-09-06
CN202180031186.5A CN115515803B (zh) 2020-10-14 2021-09-06 轮胎
US18/030,850 US20230373247A1 (en) 2020-10-14 2021-09-06 Tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020173414 2020-10-14
JP2020-173414 2020-10-14

Publications (1)

Publication Number Publication Date
WO2022080037A1 true WO2022080037A1 (ja) 2022-04-21

Family

ID=81207930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032672 WO2022080037A1 (ja) 2020-10-14 2021-09-06 タイヤ

Country Status (5)

Country Link
US (1) US20230373247A1 (ja)
EP (1) EP4108720A4 (ja)
JP (1) JPWO2022080037A1 (ja)
CN (1) CN115515803B (ja)
WO (1) WO2022080037A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349505A (ja) * 1986-08-18 1988-03-02 Sumitomo Rubber Ind Ltd 乗用車用ラジアルタイヤ
JP2002503177A (ja) * 1997-06-09 2002-01-29 ザ グッドイヤー タイヤ アンド ラバー カンパニー 軽量アラミドベルテッドラジアルタイヤ
JP2011213988A (ja) * 2010-03-16 2011-10-27 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
JP2012036370A (ja) * 2010-07-16 2012-02-23 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物及び空気入りタイヤ
JP2012148651A (ja) * 2011-01-18 2012-08-09 Yokohama Rubber Co Ltd:The 空気入りタイヤ
WO2015170615A1 (ja) * 2014-05-08 2015-11-12 株式会社ブリヂストン タイヤ
JP2017043281A (ja) 2015-08-28 2017-03-02 住友ゴム工業株式会社 空気入りタイヤ
JP6863504B1 (ja) * 2020-04-24 2021-04-21 住友ゴム工業株式会社 タイヤ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101472597B1 (ko) * 2008-08-07 2014-12-15 스미도모 고무 고교 가부시기가이샤 타이어
JP5216077B2 (ja) * 2010-12-29 2013-06-19 住友ゴム工業株式会社 重荷重用空気入りタイヤ
JP5548183B2 (ja) * 2011-12-29 2014-07-16 住友ゴム工業株式会社 自動二輪車用タイヤ
JP6130205B2 (ja) * 2013-05-01 2017-05-17 住友ゴム工業株式会社 空気入りタイヤ
US10710414B2 (en) * 2013-06-10 2020-07-14 Compagnie Generale Des Etablissements Michelin Tire comprising an improved tread
JP6445915B2 (ja) * 2015-04-01 2018-12-26 株式会社ブリヂストン タイヤ
JP6633972B2 (ja) * 2016-05-27 2020-01-22 株式会社ブリヂストン 空気入りタイヤ
JP6784066B2 (ja) * 2016-06-08 2020-11-11 住友ゴム工業株式会社 空気入りタイヤ
JP6253822B1 (ja) * 2017-02-20 2017-12-27 住友ゴム工業株式会社 キャップトレッド用ゴム組成物及び空気入りタイヤ
US20200223258A1 (en) * 2017-07-21 2020-07-16 The Yokohama Rubber Co., Ltd Pneumatic tire
JP6624216B2 (ja) * 2018-02-05 2019-12-25 横浜ゴム株式会社 空気入りタイヤ
JP7124546B2 (ja) * 2018-08-09 2022-08-24 住友ゴム工業株式会社 空気入りタイヤ
JP7242003B2 (ja) * 2019-03-27 2023-03-20 住友ゴム工業株式会社 タイヤトレッド用ゴム組成物及びタイヤ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349505A (ja) * 1986-08-18 1988-03-02 Sumitomo Rubber Ind Ltd 乗用車用ラジアルタイヤ
JP2002503177A (ja) * 1997-06-09 2002-01-29 ザ グッドイヤー タイヤ アンド ラバー カンパニー 軽量アラミドベルテッドラジアルタイヤ
JP2011213988A (ja) * 2010-03-16 2011-10-27 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
JP2012036370A (ja) * 2010-07-16 2012-02-23 Sumitomo Rubber Ind Ltd トレッド用ゴム組成物及び空気入りタイヤ
JP2012148651A (ja) * 2011-01-18 2012-08-09 Yokohama Rubber Co Ltd:The 空気入りタイヤ
WO2015170615A1 (ja) * 2014-05-08 2015-11-12 株式会社ブリヂストン タイヤ
JP2017043281A (ja) 2015-08-28 2017-03-02 住友ゴム工業株式会社 空気入りタイヤ
JP6863504B1 (ja) * 2020-04-24 2021-04-21 住友ゴム工業株式会社 タイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4108720A4

Also Published As

Publication number Publication date
CN115515803B (zh) 2024-03-15
EP4108720A1 (en) 2022-12-28
JPWO2022080037A1 (ja) 2022-04-21
US20230373247A1 (en) 2023-11-23
CN115515803A (zh) 2022-12-23
EP4108720A4 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
WO2021215279A1 (ja) タイヤ
WO2021215278A1 (ja) タイヤ
CN115175818B (zh) 轮胎
JP6988862B2 (ja) タイヤ用ゴム組成物及びタイヤ
WO2021220634A1 (ja) タイヤ
JP2022062125A (ja) 空気入りタイヤ
US20210395499A1 (en) Tire
WO2021261009A1 (ja) タイヤ
JP2022029764A (ja) タイヤ
WO2022024884A1 (ja) タイヤ
WO2021090660A1 (ja) タイヤ用ゴム組成物およびタイヤ
WO2021261010A1 (ja) タイヤ
WO2022080037A1 (ja) タイヤ
JP2022076708A (ja) タイヤ
WO2021261221A1 (ja) タイヤ
EP4349617A1 (en) Tire
EP4349618A1 (en) Tire
JP7501084B2 (ja) タイヤ用ゴム組成物
EP4382313A1 (en) Tire
EP4186711A1 (en) Pneumatic tire
JP2024014499A (ja) タイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557260

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021879779

Country of ref document: EP

Effective date: 20220923

NENP Non-entry into the national phase

Ref country code: DE