WO2022075350A1 - 樹脂組成物 - Google Patents

樹脂組成物 Download PDF

Info

Publication number
WO2022075350A1
WO2022075350A1 PCT/JP2021/036930 JP2021036930W WO2022075350A1 WO 2022075350 A1 WO2022075350 A1 WO 2022075350A1 JP 2021036930 W JP2021036930 W JP 2021036930W WO 2022075350 A1 WO2022075350 A1 WO 2022075350A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
resin composition
tert
carbon atoms
thermoplastic resin
Prior art date
Application number
PCT/JP2021/036930
Other languages
English (en)
French (fr)
Inventor
昌太 阿部
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to KR1020237011932A priority Critical patent/KR20230065319A/ko
Priority to CN202180067384.7A priority patent/CN116234836A/zh
Priority to US18/029,891 priority patent/US20230365794A1/en
Priority to JP2022555524A priority patent/JP7476337B2/ja
Priority to EP21877649.0A priority patent/EP4227331A1/en
Publication of WO2022075350A1 publication Critical patent/WO2022075350A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Definitions

  • the present invention relates to a resin composition having good moldability and capable of suppressing the occurrence of bleeding or the like in a molded product.
  • thermoplastic resins have been used for various purposes as molded bodies such as films, sheets, fibers, etc. by extrusion molding.
  • a resin having a low melt flow rate MFR
  • a resin having a low MFR is used in an extruder into a screw. It causes many problems in moldability, such as poor biting of the resin, poor melting of the resin, instability of the discharge amount due to high extrusion torque, and limitation of the extrusion speed.
  • problems in moldability such as poor biting of the resin, poor melting of the resin, instability of the discharge amount due to high extrusion torque, and limitation of the extrusion speed.
  • improvement in moldability has been further demanded. There is.
  • a method of adding a molding aid to a resin and molding is known.
  • a method of applying a molding aid such as oil or polyethylene wax to a thermoplastic resin to be molded has been studied (for example, Patent Documents 1 and 2).
  • liquid polyolefin as a plasticizer to a thermoplastic resin.
  • thermoplastic resin such as polypropylene and molded
  • An object of the present invention is to provide a resin composition which has good compatibility and does not cause problems such as bleeding in a molded product.
  • the present invention relates to, for example, the following [1] to [5].
  • the polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) is 25 to 99.99% by mass of the thermoplastic resin (A) having a weight average molecular weight (Mw) of 50,000 or more, and the following requirements (b).
  • -1) The kinematic viscosity at 100 ° C.
  • the content of the structural unit derived from the ⁇ -olefin having 3 or more carbon atoms is in the range of 60 to 85 mol%.
  • B-3 The polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) is 1,000 to 30,000, and the molecular weight distribution (Mw / Mn) is 2.5 or less. There is. [2] The resin composition according to [1], wherein the thermoplastic resin (A) is a polyolefin. [3] The resin composition according to [1] or [2], wherein the ⁇ -olefin having 3 or more carbon atoms is propylene.
  • thermoplastic resin (A) is polypropylene.
  • a method for producing a resin composition containing. (B-4) 1 The methyl group index measured by 1 H-NMR is in the range of 60 to 130%.
  • Method (B-5) No melting peak is observed when differential scanning calorimetry (DSC) is performed in the temperature range of -100 ° C to 150 ° C.
  • a method comprising a step of solution polymerization of ethylene and an ⁇ -olefin having 3 or more carbon atoms in the presence of a catalyst system containing the above.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 8 , R 9 and R 12 are independently hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups and are adjacent to each other. Multiple groups may be linked to each other to form a ring structure.
  • R 6 and R 11 are the same groups as each other and are hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups.
  • R 7 and R 10 are the same groups as each other and are hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups.
  • R 6 and R 7 may be bonded to a hydrocarbon having 2 to 3 carbon atoms to form a ring structure.
  • R 10 and R 11 may be bonded to a hydrocarbon having 2 to 3 carbon atoms to form a ring structure.
  • R 6 , R 7 , R 10 and R 11 are not hydrogen atoms at the same time;
  • Y is a carbon atom or a silicon atom;
  • R 13 and R 14 are independently aryl groups;
  • M is Ti, Zr or Hf;
  • Q is independently a neutral ligand capable of coordinating a halogen atom, a hydrocarbon group, an anionic ligand or a lone pair of electrons; j is an integer of 1 to 4. ]
  • the resin composition of the present invention has good compatibility, and a thermoplastic resin such as polypropylene is mixed with an ⁇ -olefin copolymer as a plasticizer in an excellent compatible state, so that problems such as bleeding occur. No dots occur.
  • the resin composition according to the present invention contains the following thermoplastic resin (A) and the following copolymer (B).
  • thermoplastic resin (A) used in the present invention is not particularly limited, and is, for example, low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear linear low-density polyethylene, polypropylene, polybutene, cyclic olefin polymer, ethylene-.
  • Polyolefins such as propylene copolymers and cyclic olefin copolymers; styrene-based weights such as polystyrene, acrylonitrile-styrene copolymers, acrylonitrile-butadiene-styrene copolymers, styrene-butadiene copolymers, and styrene-isoprene copolymers.
  • ethylene-methacrylic acid copolymer ethylene-methacrylic acid ester copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer; polycarbonate, polymethacrylate; polyesters such as polyethylene terephthalate and polybutylene terephthalate; Examples include polymers such as nylon 6, nylon 11, nylon 12, nylon 46, nylon 66, nylon MXD6, fully aromatic polyamides, and semi-aromatic polyamides; polyacetals, and blends of these resins.
  • polyolefin is preferable, low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear linear low-density polyethylene, polypropylene, and ethylene-propylene copolymer are more preferable, and polypropylene is particularly preferable.
  • the polypropylene may be a polypropylene elastomer.
  • thermoplastic resin (A) is the polyolefin
  • the compatibility between the thermoplastic resin (A) and the copolymer (B) described later is particularly excellent, and the mechanical properties are deteriorated, bleed-out to the surface, etc. A good resin composition without plasticity can be obtained.
  • the thermoplastic resin (A) has a polystyrene-equivalent weight average molecular weight (Mw) of 50,000 or more as measured by gel permeation chromatography (GPC).
  • the weight average molecular weight (Mw) is preferably 60,000 to 2,000,000, more preferably 80,000 to 1,000,000.
  • GPC gel permeation chromatography
  • the MFR (JIS K 7210; 230 ° C. test load 2.16 kgf) of polypropylene is preferably in the range of 0.1 to 60 g / 10 minutes, preferably 0.3 to 20 g / 10. The range of minutes is more preferable, and the range of 0.3 to 10 g / 10 minutes is particularly preferable.
  • thermoplastic resin (A) The content of the thermoplastic resin (A) in the entire resin composition of the present invention is 25 to 99.99% by mass, preferably 90 to 99.99% by mass, and more preferably 96.2 to 99.8% by mass. %, Especially preferably 97 to 99.4% by mass, and more preferably 98 to 99.4% by mass.
  • thermoplastic resin (A) in the entire resin composition When the content of the thermoplastic resin (A) in the entire resin composition is less than the lower limit, the characteristics of the thermoplastic resin (A) are impaired, and the mechanical properties, heat resistance, chemical resistance and the like are excellent. A molded product may not be obtained. On the other hand, if the content of the thermoplastic resin (A) in the entire resin composition exceeds the upper limit value, there are problems such as poor moldability, destabilization of the discharge amount, and limitation of the extrusion speed. It may occur.
  • the copolymer (B) contains a structural unit derived from an ⁇ -olefin having 3 or more carbon atoms.
  • the copolymer (B) satisfies the requirements (b1-1) to (b1-3) described later.
  • Examples of the ⁇ -olefin having 3 or more carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-.
  • Linear ⁇ -olefins such as trisene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, and 3-methyl-1-pentene.
  • ⁇ -olefins 4-Methyl-1-pentene, 8-methyl-1-nonene, 7-methyl-1-decene, 6-methyl-1-undecene, 6,8-dimethyl-1-decene and other branched ⁇ -olefins. Can be mentioned. These ⁇ -olefins can be used alone or in combination of two or more.
  • the ⁇ -olefin having 3 or more carbon atoms is preferably an ⁇ -olefin having 3 to 20 carbon atoms, more preferably an ⁇ -olefin having 3 to 8 carbon atoms, and particularly preferably propylene.
  • the copolymer (B) has a kinematic viscosity of 10 to 5,000 mm 2 / s at 100 ° C.
  • the kinematic viscosity is preferably 10 to 3,500 mm 2 / s, more preferably 50 to 3500 mm 2 / s, still more preferably 50 to 2,500 mm 2 / s, and particularly preferably 50 to 700 mm 2 / s. be.
  • the kinematic viscosity at 100 ° C. is measured based on ASTM D445.
  • the kinematic viscosity of the copolymer (B) at 100 ° C. is less than 10 mm 2 / s, the content of low molecular weight components having high fluidity and volatility increases as in the case of softeners such as commonly used process oils. , The amount of bleed-out or volatility from the resin composition or its molded product may increase, which is not preferable. If the kinematic viscosity of the copolymer (B) at 100 ° C. is higher than 5,000 mm 2 / s, the fluidity deteriorates.
  • the copolymer (B) when the copolymer (B) is mixed with the thermoplastic resin (A), it becomes adhesive. Is not preferable because the amount may increase and the workability may decrease. In other words, when the kinematic viscosity of the copolymer (B) at 100 ° C. is within the above range, a resin composition having excellent heat aging resistance and processability or a molded product thereof can be obtained, which is preferable.
  • the copolymer (B) has a content of structural units derived from ⁇ -olefins having 3 or more carbon atoms in the range of 60 to 85 mol%.
  • the content ratio means the molar ratio of the structural unit derived from the ⁇ -olefin having 3 or more carbon atoms to all the structural units contained in the copolymer (B).
  • the content of the structural unit derived from the ⁇ -olefin having 3 or more carbon atoms in the copolymer (B) is preferably 63 to 83 mol%, more preferably 67 to 80 mol%.
  • the resin composition of the present invention has a high content of a structural unit derived from an ⁇ -olefin having 3 or more carbon atoms in the copolymer (B) of 60 mol%, so that a thermoplastic resin such as a polyolefin can be used.
  • the compatibility between A) and the copolymer (B) is excellent, and problems such as bleeding do not occur. Further, since the content of the structural unit derived from the ⁇ -olefin having 3 or more carbon atoms in the copolymer (B) is 85 mol% or less, the crystallinity is lowered, so that the copolymer (B) has a thermoplastic resin (A) such as polyolefin. Good compatibility.
  • the content of the structural unit other than the structural unit derived from the ⁇ -olefin having 3 or more carbon atoms contained in the copolymer (B) is in the range of 15 to 40 mol%, preferably 17 to 37 mol%, and more preferably. It is 20 to 33 mol%.
  • the copolymer (B) has a polystyrene-equivalent weight average molecular weight (Mw) of 1,000 to 30,000 and a molecular weight distribution (Mw / Mn) of 2.5 as measured by gel permeation chromatography (GPC). It is as follows.
  • the copolymer (B) has a weight average molecular weight (Mw) of preferably 1,500 to 25,000, more preferably 1,700 to 20,000.
  • Mw weight average molecular weight
  • the motility of the copolymer (B) in the resin composition becomes high, so that bleed-out is likely to occur.
  • the weight average molecular weight of the copolymer (B) is larger than the upper limit, a sufficient fluidity improving effect cannot be obtained, the moldability does not improve, or the compatibility with the thermoplastic resin (A) is poor. This may cause deterioration of mechanical properties and bleed-out.
  • the copolymer (B) has a molecular weight distribution (Mw / Mn) of preferably 2.3 or less, more preferably 2.1 or less. If the molecular weight distribution of the copolymer (B) is wide (Mw / Mn is large), it contains a large amount of low molecular weight or high molecular weight components that can cause bleed-out and deterioration of mechanical properties, which is not preferable.
  • the weight average molecular weight and molecular weight distribution of the copolymer (B) can be measured by gel permeation chromatography (GPC) calibrated using a standard substance (monodisperse polystyrene) having a known molecular weight.
  • GPC gel permeation chromatography
  • the copolymer (B) may satisfy the following requirements (b-4) and (b-5) in addition to the above requirements (b-1) to (b-3).
  • the copolymer (B) satisfying the requirements (b-4) and (b-5) can be produced, for example, by the method ( ⁇ ) described later.
  • the copolymer (B) has a methyl group index in the range of 60 to 130% as measured by 1 H-NMR.
  • the methyl group index is preferably in the range of 70 to 125%, more preferably in the range of 80 to 120%.
  • a resin composition having good mechanical characteristics can be obtained. It is considered that the reason why the resin composition having good mechanical characteristics can be obtained is that the methyl group in the copolymer (B) enhances the interaction with the molecule of the thermoplastic resin (A).
  • the methyl group index is obtained by dissolving the copolymer (B) in deuterated chloroform, measuring 1 H-NMR, and using the solvent peak appearing at 7.24 ppm based on CHCl 3 in deuterated chloroform as a reference.
  • the methyl group index is an index showing the ratio of branching in the copolymer (B)
  • the methyl group index is equal to or higher than the above lower limit
  • the copolymer (B) is sufficiently branched. Therefore, it is preferable because the molecular chains are difficult to orient with each other, have molecular motility, and have good fluidity, flexibility, and light weight.
  • the methyl group index of the copolymer (B) is not more than the above upper limit, the side chains of the copolymer (B) do not exist too densely and the molecular motility does not decrease, which is good. It is preferable because it can maintain fluidity, flexibility, and lightness.
  • the methyl group index is larger than the above upper limit, the number of branched structures of the copolymer (B) increases, so that when exposed to high temperatures, the decomposition of the molecular chain is likely to proceed, and there is a concern that the heat resistance will decrease. be.
  • the methyl group index of the copolymer (B) is within the above range, the copolymer (B) exhibits excellent molecular motility while maintaining heat resistance, and has good fluidity. It is preferable because it is considered that a resin composition exhibiting lightness, flexibility, and heat resistance can be easily obtained.
  • differential scanning calorimetry The details of the differential scanning calorimetry are as follows. Using a differential scanning calorimeter (eg, Seiko Instruments X-DSC-7000), place a sample of about 8 mg of the copolymer in an aluminum sample pan that can be easily sealed and place it in the DSC cell, and place the DSC cell in a nitrogen atmosphere. The temperature is raised from room temperature to 150 ° C. at 10 ° C./min, then held at 150 ° C. for 5 minutes, then lowered at 10 ° C./min, and the DSC cell is cooled to ⁇ 100 ° C. (temperature lowering process).
  • a differential scanning calorimeter eg, Seiko Instruments X-DSC-7000
  • the temperature is raised to 150 ° C at 10 ° C / min, and the temperature at which the enthalpy curve obtained in the temperature raising process shows the maximum value is set as the melting point (Tm), and the amount of heat absorbed due to melting.
  • Tm the melting point
  • the sum of the above be the amount of heat of fusion ( ⁇ H). If no melting peak is observed or the value of heat of melting ( ⁇ H) is 1 J / g or less, the melting point (Tm) is considered not to be observed. Refer to JIS K7121 for how to determine the melting point (Tm) and the amount of heat of melting ( ⁇ H).
  • the method for producing the copolymer (B) is not particularly limited, but a vanadium-based catalyst composed of a vanadium compound and an organoaluminum compound as described in Japanese Patent Publication No. 2-1163 and Japanese Patent Publication No. 2-7998 can be used. The method to be used can be mentioned. Further, as a method for producing a copolymer with high polymerization activity, a metallocene compound such as zirconocene and organoaluminum as described in JP-A No. 61-221207, JP-A-7-121969, and Patent No. 2796376 are used. A method using a catalytic system composed of an oxy compound (aluminoxane) may be used, and this method is more preferable because the chlorine content of the obtained copolymer and the 2,1-insertion of ⁇ -olefin can be reduced.
  • a vanadium-based catalyst composed of a vanadium compound and an organoaluminum compound as described in Japanese Patent Publication No.
  • the method using a vanadium catalyst uses a larger amount of chlorine compound as a co-catalyst, so there is a high possibility that a small amount of chlorine remains in the obtained copolymer (B). ..
  • the method using a metallocene-based catalyst is preferable in that chlorine does not substantially remain, and therefore deterioration of the resin composition due to chlorine can be prevented.
  • the chlorine content is preferably 100 ppm or less, more preferably 50 ppm or less, further preferably 20 ppm or less, and particularly preferably 5 ppm or less.
  • the chlorine content can be quantified by various known methods.
  • an ethylene / ⁇ -olefin copolymer was placed in a sample boat and burned and decomposed in an Ar / O 2 stream at a combustion furnace set temperature of 900 ° C. at this time.
  • Examples of the method using a metallocene-based catalyst include the following method ( ⁇ ).
  • a method ( ⁇ ) comprising a step of solution polymerization of ethylene and an ⁇ -olefin having 3 or more carbon atoms in the presence of a catalyst system containing the above.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 8 , R 9 and R 12 are independently hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups and are adjacent to each other. Multiple groups may be linked to each other to form a ring structure.
  • R 6 and R 11 are the same groups as each other and are hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups.
  • R 7 and R 10 are the same groups as each other and are hydrogen atoms, hydrocarbon groups or silicon-containing hydrocarbon groups.
  • R 6 and R 7 may be bonded to a hydrocarbon having 2 to 3 carbon atoms to form a ring structure.
  • R 10 and R 11 may be bonded to a hydrocarbon having 2 to 3 carbon atoms to form a ring structure.
  • R 6 , R 7 , R 10 and R 11 are not hydrogen atoms at the same time;
  • Y is a carbon atom or a silicon atom;
  • R 13 and R 14 are independently aryl groups;
  • M is Ti, Zr or Hf;
  • Q is independently a neutral ligand capable of coordinating a halogen atom, a hydrocarbon group, an anionic ligand or a lone pair of electrons; j is an integer of 1 to 4.
  • the hydrocarbon group has 1 to 20, preferably 1 to 15, more preferably 4 to 10, and means, for example, an alkyl group, an aryl group, or the like, and the aryl group has 6 carbon atoms. It is ⁇ 20, preferably 6 ⁇ 15.
  • silicon-containing hydrocarbon group examples include an alkyl group or an aryl group having 3 to 20 carbon atoms containing 1 to 4 silicon atoms, and more particularly, a trimethylsilyl group and a tert-butyldimethylsilyl group. , Triphenylsilyl group and the like.
  • the cyclopentadienyl group may be substituted or unsubstituted.
  • the crosslinked metallocene compound represented by the formula 1 (I) It is preferable that at least one of the substituents (R 1 , R 2 , R 3 and R 4 ) bonded to the cyclopentadienyl group is a hydrocarbon group. (Ii) It is more preferable that at least one of the substituents (R 1 , R 2 , R 3 and R 4 ) is a hydrocarbon group having 4 or more carbon atoms.
  • the substituent (R 2 or R 3 ) bonded to the 3-position of the cyclopentadienyl group is a hydrocarbon group having 4 or more carbon atoms (for example, an n-butyl group).
  • R 1 , R 2 , R 3 and R 4 are substituents (ie, not hydrogen atoms), the above substituents may be the same or different, with at least one substituent being carbon. It is preferably a hydrocarbon group of several 4 or more.
  • R 6 and R 11 bonded to the fluorenyl group are the same, R 7 and R 10 are the same, but R 6 , R 7 , R 10 and R 11 are simultaneously. Is not a hydrogen atom.
  • R 6 nor R 11 is preferably a hydrogen atom, and more preferably all of R 6 , R 7 , R 10 and R 11 are hydrogen. Not an atom.
  • R 6 and R 11 attached to the 2- and 7-positions of the fluorenyl group are the same hydrocarbon groups having 1 to 20 carbon atoms, preferably all tert-butyl groups, and R 7 and R 10 are.
  • the main chain portion (bonding portion, Y) connecting the cyclopentadienyl group and the fluorenyl group is one carbon as a structural cross-linking portion that imparts steric rigidity to the cross-linked metallocene compound represented by the formula 1. It is a cross-linking part of two covalent bonds containing an atom or a silicon atom.
  • the crosslinked atom (Y) in the crosslinked portion has two aryl groups (R 13 and R 14 ) which may be the same or different. Therefore, the cyclopentadienyl group and the fluorenyl group are bonded by a covalent bond cross-linking portion containing an aryl group.
  • aryl groups are phenyl, naphthyl, anthracenyl, and substituted aryl groups, which are substituents on one or more aromatic hydrogens (sp type 2 hydrogen) of phenyl, naphthyl or anthrasenyl groups. It is formed by replacement.).
  • substituent contained in the substituted aryl group include a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing hydrocarbon group having 1 to 20 carbon atoms, a halogen atom and the like, and a phenyl group is preferable.
  • R 13 and R 14 are preferably the same from the viewpoint of ease of production.
  • Q is preferably a halogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • the halogen atom include fluorine, chlorine, bromine and iodine
  • examples of the hydrocarbon group having 1 to 10 carbon atoms include methyl, ethyl, n-propyl, isopropyl, 2-methylpropyl and 1,1-dimethylpropyl.
  • Examples include compounds in which the zirconium atom of these compounds is replaced with a hafnium atom or compounds in which a chloro ligand is replaced with a methyl group, but the crosslinked metallocene compound (a) is not limited to these examples.
  • organoaluminum oxy compound (b1) used in the catalyst system in the method ( ⁇ ) conventional aluminoxane can be used.
  • linear or cyclic aluminoxane represented by the following formulas 2 to 5 can be used.
  • the organoaluminum oxy compound may contain a small amount of organoaluminum compound.
  • R is an independently a hydrocarbon group having 1 to 10 carbon atoms
  • Rx is an independent hydrocarbon group having 2 to 20 carbon atoms
  • m and n are independently 2 or more. It is preferably an integer of 3 or more, more preferably 10 to 70, and most preferably 10 to 50.
  • R c is a hydrocarbon group having 1 to 10 carbon atoms
  • R d is independently a hydrogen atom, a halogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • R is a methyl group (Me) of an organoaluminum oxy compound conventionally called "methylaluminoxane". Since the methylaluminoxane is easily available and has high polymerization activity, it is generally used as an activator in polyolefin polymerization. However, methylaluminoxane has been used as a solution of environmentally undesirable aromatic hydrocarbons such as toluene or benzene because it is difficult to dissolve in saturated hydrocarbons. Therefore, in recent years, a flexible body of methylaluminoxane represented by the formula 4 has been developed and used as an aluminoxane dissolved in a saturated hydrocarbon.
  • the modified methylaluminoxane represented by the formula 4 is prepared using alkylaluminum other than trimethylaluminum and trimethylaluminum as shown in US Pat. No. 4,960,878 and US Pat. No. 5,451,584, for example. Prepared using trimethylaluminum and triisobutylaluminum.
  • Aluminoxane having Rx as an isobutyl group is commercially available in the form of a saturated hydrocarbon solution under the trade names of MMAO and TMAO. (See Tosoh Finechem Corporation, Tosoh Research & Technology Review, Vol 47, 55 (2003)).
  • Examples of the compound (b2) (hereinafter, optionally referred to as “ionic compound”) contained in the catalytic system (ii) that reacts with the crosslinked metallocene compound to form an ionic pair include Lewis acid and an ionic compound.
  • Bolan, Bolan compound, Carbolan compound which are Korean Patent No. 10-0551147, JP-A-1-501950, JP-A-3-179005, JP-A-3-179006, JP-A-3. -207703, JP-A-3-207704, US Pat. No. 5,321,106 and the like.
  • a heteropoly compound, an isopoly compound, or the like can be used, and the ionic compound described in JP-A-2004-51676 can be used.
  • the ionic compound may be used alone or in admixture of two or more.
  • Lewis acid examples include compounds represented by BR 3 (R is a fluoride, substituted or unsubstituted alkyl groups having 1 to 20 carbon atoms (such as methyl groups), substituted or substituted. Examples thereof include an unsubstituted aryl group having 6 to 20 carbon atoms (such as a phenyl group)), for example, trifluoroboron, triphenylboron, tris (4-fluorophenyl) boron, tris (3,5-difluoro).
  • Phenyl) boron, tris (4-fluorophenyl) boron, tris (pentafluorophenyl) boron, and tris (p-tolyl) boron can be mentioned.
  • the use of the ionic compound is economically advantageous because the amount used and the amount of sludge generated are relatively small as compared with the organoaluminum oxy compound.
  • the compound represented by the following formula 6 is preferably used as the ionic compound.
  • R e + is an H + , a carbenium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptylrienyl cation, or a ferrosenium cation having a transition metal
  • R f to R i are Each is independently an organic group, preferably a hydrocarbon group having 1 to 20 carbon atoms, and more preferably an aryl group, for example, a pentafluorophenyl group.
  • Examples of the carbenium cation include tris (methylphenyl) carbenium cation, tris (dimethylphenyl) carbenium cation and the like, and examples of the ammonium cation include dimethylanilinium cation and the like.
  • the compound represented by the above formula 6 is preferably N, N-dialkylanilinium salt, specifically N, N-dimethylanilinium tetraphenylborate, N, N-dimethylanilinium tetrakis (pentafluorophenyl).
  • the catalyst system used in the method ( ⁇ ) further contains (c) an organoaluminum compound, if necessary.
  • the organoaluminum compound plays a role of activating the crosslinked metallocene compound, the organoaluminum oxy compound, the ionic compound and the like.
  • the organoaluminum compound preferably organoaluminum represented by the following formula 7 and a complex alkylated product of a Group 1 metal represented by the following formula 8 and aluminum can be used.
  • M 2 AlR a 4 ...
  • Ra is a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms.
  • organoaluminum compound represented by the formula 7 examples include easily available trimethylaluminum and triisobutylaluminum.
  • alkyl complex compound of the Group 1 metal represented by the formula 8 and aluminum examples include LiAl (C 2 H 5 ) 4 , LiAl (C 7 H 15 ) 4 , and the like.
  • a compound similar to the compound represented by the formula 7 can be used.
  • an organoaluminum compound in which at least two aluminum compounds are bonded via a nitrogen atom such as (C 2 H 5 ) 2 AlN (C 2 H 5 ) Al (C 2 H 5 ) 2 , can be used.
  • the amount of the crosslinked metallocene compound (a) represented by the formula 1 is preferably 5 to 50% by weight based on the total catalyst composition. And preferably, (i) the amount of the organoaluminum oxy compound (b1) is 50 to 500 equivalents with respect to the number of moles of the crosslinked metallocene compound used, and (ii) the ion reacts with the crosslinked metallocene compound.
  • the amount of the compound (b2) forming the pair is 1 to 5 equivalents with respect to the number of moles of the crosslinked metallocene compound used, and the amount of the organoaluminum compound (c) is the number of moles of the crosslinked metallocene compound used. It is 5 to 100 equivalents.
  • the catalyst system used in the method ( ⁇ ) may have, for example, the following [1] to [4].
  • a cross-linked metallocene compound represented by the formula 1 (component (a)), (i) an organoaluminum oxy compound (component (b1)), (ii) a compound (b2) that reacts with a cross-linked metallocene compound to form an ion pair.
  • the organoaluminum compound (component (c)) may be introduced into the starting material monomer (a mixture of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms) in any order.
  • the components (a), (b) and / or (c) are introduced alone or in any order into a polymerization reactor packed with raw material monomers.
  • the mixed catalyst composition is introduced into a polymerization reactor filled with a raw material monomer.
  • the copolymer (B) is prepared by solution polymerization of ethylene and ⁇ -olefin having 3 or more carbon atoms, for example, ⁇ -olefin having 3 to 20 carbon atoms under the catalyst system.
  • ⁇ -olefin having 3 to 20 carbon atoms include linear ⁇ -olefins such as propylene, 1-butene, 1-pentene, and 1-hexene, isobutylene, 3-methyl-1-butene, and 4-methyl-1-.
  • branched ⁇ -olefins such as pentene and mixtures thereof can be used.
  • one or more ⁇ -olefins having 3 to 6 carbon atoms can be used, and more preferably propylene can be used.
  • the solution polymerization can be carried out by using an inert solvent such as propane, butane or hexane, or the olefin monomer itself as a medium.
  • the copolymerization temperature is usually 80 to 150 ° C., preferably 90 to 120 ° C.
  • the copolymerization pressure is usually atmospheric pressure to 500 kgf / cm 2 , preferably atmospheric pressure to 50 kgf / cm. 2 , and these may vary depending on the reaction material, reaction conditions, and the like.
  • the polymerization can be carried out in batch, semi-continuous or continuous manners, preferably in a continuous manner.
  • the copolymer (B) may be a non-modified product or a modified product to which some polar group is imparted by graft modification.
  • Vinyl compounds having polar groups used for modification include vinyl compounds having oxygen-containing groups such as acids, acid anhydrides, esters, alcohols, epoxys and ethers, vinyl compounds having nitrogen-containing groups such as isocyanates and amides, and vinyl compounds having nitrogen-containing groups such as isocyanates and amides.
  • a vinyl compound having a silicon-containing group such as vinylsilane can be used.
  • the copolymer (B) may be a modified product partially chlorinated by a method as described in JP-A-2020-97743.
  • vinyl compounds having an oxygen-containing group are preferable, and specifically, unsaturated epoxy monomers, unsaturated carboxylic acids and derivatives thereof are preferable.
  • unsaturated epoxy monomer include unsaturated glycidyl ether and unsaturated glycidyl ester (for example, glycidyl methacrylate).
  • unsaturated carboxylic acid include acrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, and nadic acid TM (endosis-bicyclo [2,2,1] hepto-5). -En-2,3-dicarboxylic acid) and the like.
  • Examples of the unsaturated carboxylic acid derivative include acid halide compounds, amide compounds, imide compounds, acid anhydrides, and ester compounds of the unsaturated carboxylic acid. Specific examples thereof include malenyl chloride, maleimide, maleic anhydride, citraconic anhydride, monomethyl maleate, dimethyl maleate, and glycidyl maleate.
  • unsaturated dicarboxylic acids and their acid anhydrides are more preferable, and maleic acid, Nasic acid TM and their acid anhydrides are particularly preferably used.
  • the position where the vinyl compound having a polar group or a derivative thereof grafts to the copolymer (B) is not particularly limited, and an unsaturated carboxylic acid or an unsaturated carboxylic acid thereof can be attached to any carbon atom of the polymer (B). It suffices if the derivative is bound.
  • thermoplastic resin (A) has a polar group
  • the copolymer (B) by imparting the polar group to the copolymer (B), good compatibility between the copolymer (B) and the thermoplastic resin (A) can be obtained. As a result, it is possible to suppress deterioration of mechanical properties and bleed-out of the resin composition.
  • the copolymer (B) which is a modified product as described above can be prepared by using various conventionally known methods, for example, the following methods.
  • an organic peroxide for example, an organic peroxide, an azo compound, or the like is used.
  • the organic peroxide include benzoyl peroxide, dichlorobenzoyl peroxide, dicumyl peroxide and the like
  • the azo compound include azobisisobutylnitrile and dimethylazoisobutyrate.
  • radical initiators include dicumyl peroxide, di-tert-butyl peroxide, and 2,5-dimethyl-2,5-di (tert-butylperoxy) hexin-3,2,5-.
  • Dialkyl peroxides such as dimethyl-2,5-di (tert-butylperoxy) hexane and 1,4-bis (tert-butylperoxyisopropyl) benzene are preferably used.
  • radical initiators are usually 0.001 to 1 part by mass, preferably 0.003 to 0.5 part by mass, and more preferably 0.05 to 0 with respect to 100 parts by mass of the copolymer (B). It is used in an amount of 3 parts by mass.
  • the reaction temperature in the graft reaction using the radical initiator as described above or the graft reaction performed without using the radical initiator is usually set in the range of 60 to 350 ° C, preferably 120 to 300 ° C.
  • the graft amount of the vinyl compound having a polar group in the modified copolymer thus obtained is usually 0.01 to 15% by mass, preferably 0, when the mass of the modified copolymer is 100% by mass. It is 0.05 to 10% by mass.
  • the content of the copolymer (B) in the entire resin composition of the present invention is 0.01 to 15% by mass, preferably 0.1 to 13% by mass, and more preferably 0.5 to 12% by mass. Particularly preferably, it is 1 to 10% by mass.
  • the content of the copolymer (B) in the entire resin composition is less than the above lower limit value, the fluidity improving effect of the copolymer (B) is not sufficiently exhibited.
  • the content of the copolymer (B) in the entire resin composition exceeds the upper limit value, the mechanical strength of the resin composition may decrease or bleed-out may occur, which is not preferable.
  • the content of the copolymer (B) is within the above range, it is preferable because there is no bleed-out and it is easy to obtain a resin composition having excellent mechanical strength and moldability.
  • the above-mentioned effect is particularly useful because the moldability can be improved with respect to the low MFR thermoplastic resin (A) having excellent mechanical strength while maintaining its characteristic mechanical strength.
  • the resin composition of the present invention is, if necessary, an additive such as an antioxidant, an ultraviolet absorber, a stabilizer such as a light stabilizer, a metal soap, a filler, a flame retardant, an antibacterial agent, an antifungal agent, and a pigment. May be contained.
  • an additive such as an antioxidant, an ultraviolet absorber, a stabilizer such as a light stabilizer, a metal soap, a filler, a flame retardant, an antibacterial agent, an antifungal agent, and a pigment. May be contained.
  • antioxidants such as findard phenol-based compounds, phosphite-based compounds and thioether-based compounds
  • ultraviolet absorbers such as benzotriazole-based compounds and benzophenone-based compounds
  • light stabilizers such as hindered amine-based compounds. Be done.
  • Examples of the metal soap include stearate such as magnesium stearate, calcium stearate, barium stearate, and zinc stearate.
  • Examples of the filler include glass fiber, silica fiber, metal fiber (stainless steel, aluminum, titanium, copper, etc.), natural fiber (wood flour, wood fiber, bamboo, bamboo fiber, cotton, cellulose, nanocellulose, wool, straw, etc.).
  • fillers having an anisotropic structure such as glass fiber, silica fiber, metal fiber, natural fiber, carbon nanotube, carbon nanofiber, carbon nanohorn, and carbon fiber are broken by shearing during kneading.
  • the copolymer (B) is useful because it reduces shearing during kneading due to the effect of improving the fluidity and facilitates the maintenance of the anisotropy. ..
  • the flame retardant examples include halogenated diphenyl ethers such as degabromdiphenyl ether and octabromdiphenyl ether, and halogen compounds such as halogenated polycarbonate; antimony trioxide, antimony tetroxide, antimony pentoxide, sodium pyroantimonate, aluminum hydroxide and the like. Inorganic compounds; phosphorus-based compounds and the like can be mentioned. Further, in order to prevent drip, a compound such as tetrafluoroethylene can be added as a flame retardant aid.
  • antibacterial agent and antifungal agent examples include organic compounds such as imidazole compounds, thiazole compounds, nitrile compounds, haloalkyl compounds and pyridine compounds; silver, silver compounds, zinc compounds, copper compounds and titanium compounds.
  • organic compounds such as imidazole compounds, thiazole compounds, nitrile compounds, haloalkyl compounds and pyridine compounds
  • silver, silver compounds, zinc compounds, copper compounds and titanium compounds examples include inorganic substances such as compounds and inorganic compounds.
  • a pigment conventionally used for coloring a synthetic resin can be used.
  • metals such as aluminum, silver, and gold
  • carbonates such as calcium carbonate and barium carbonate
  • oxides such as ZnO and TiO 2 ; Al 2 O 3 ⁇ nH 2 O, Fe 2 O 3 ⁇ nH 2 Hydroxide such as O
  • Sulfate such as CaSO 4 , BaSO 4
  • Nitrate such as Bi (OH) 2 NO 3
  • Chloride such as PbCl 2
  • Chromate such as CaCrO 4 , BaCrO 4; CoCrO 4 etc.
  • Inorganic pigments such as iron salts, phthalates, CaS, ZnS, CdS, graphite and carbon black, natural organic pigments such as cochineal lake and madder lake, nitroso pigments such as naphthol green Y and naphthol green B; Nitro pigments such as Naftollero S, Pigment Chlorine 2G; Permanent Red 4R; Azo pigments such as Hansaello, Brilliant Carmin 68, Scarlet 2R; Basic dyes such as Malakine Green and Rhodamine B Lake, Acid, Green Lake, etc.
  • Acid dye rake such as eosin rake, medium dye rake such as alizarin rake, purpurin rake, building dye pigment such as thio indigo red B, intenslen orange, phthalocyanine blue, phthalocyanine such as phthalocyanine green
  • building dye pigment such as thio indigo red B, intenslen orange, phthalocyanine blue, phthalocyanine such as phthalocyanine green
  • organic pigments such as pigments.
  • the additive can be used in any proportion and any addition method as long as the effect of the present invention is impaired.
  • the resin composition according to the present invention is characterized by containing a thermoplastic resin (A) and a copolymer (B) as essential components.
  • the above-mentioned other components can be contained as long as the effects of the invention are not impaired.
  • the composition and molecular weight of the resin composition according to the present invention are not particularly limited as long as they do not impair the present invention, but from the viewpoint of obtaining good moldability and mechanical properties, gel permeation chromatography (The proportion of the component having a molecular weight of less than 5,000 observed by GPC) is preferably 0.7 to 4.5%, preferably 1.0 to 4.5%, based on the total components of the resin composition. It is more preferably 1.2 to 4.5%, and particularly preferably 1.3 to 3.0%.
  • a component having a molecular weight of less than 5,000 improves the moldability of the resin composition, but may cause problems such as deterioration of mechanical properties and bleed-out.
  • the ratio of the components having a molecular weight of less than 5,000 in the resin composition is within the above range, it is preferable that the effect of improving the moldability can be easily obtained while suppressing problems such as deterioration of mechanical properties and bleed-out.
  • the resin composition according to the present invention is produced by melt-kneading a thermoplastic resin (A), a copolymer (B) and, if necessary, an additive.
  • a method of melt-kneading a single-screw extruder, a twin-screw extruder, or the like can be used.
  • thermoplastic resin (A) As for the method of adding the copolymer (B) to the thermoplastic resin (A), various methods can be used as long as the effects of the invention are not impaired. For example, a method in which the thermoplastic resin (A) and the copolymer (B) are dry-blended using a high-speed mixer such as a Henshell mixer or a tumbler and then melt-kneaded, or the thermoplastic resin (A) is melt-kneaded. At that time, a method of melt-kneading by adding the copolymer (B) directly from the open portion or inserting the copolymer (B) by a side feeder or a liquid feed pump can be mentioned.
  • a high-speed mixer such as a Henshell mixer or a tumbler
  • the temperature at the time of melt-kneading is not particularly limited as long as the temperature is such that the thermoplastic resin (A) melts.
  • the temperature is usually 190 to 300 ° C.
  • the range is preferably in the range of 200 to 250 ° C.
  • the copolymer (B) is melt-kneaded with the thermoplastic resin (A) to produce a master batch containing the copolymer (B), and the copolymer (B) is produced.
  • the thermoplastic resin (A) may be further added to the contained master batch, and both may be melt-kneaded to produce a resin composition.
  • thermoplastic resin (A) used for producing the copolymer (B) -containing masterbatch and the thermoplastic resin (A) further added to the masterbatch after producing the masterbatch are the same resin. However, it may be a different resin.
  • the method for producing the copolymer (B) -containing masterbatch is not particularly limited, and for example, the copolymer (B) and the thermoplastic resin (A) and, if necessary, additives are extruded by a single-screw extruder or a twin-screw extruder. Examples thereof include a method of melting and kneading with a machine, a plastic mill, a brabender, a kneader, a roll mixer, a Banbury mixer and the like.
  • the method of using a single-screw extruder or a twin-screw extruder is preferable because it is easy to mass-produce and it is easy to obtain a pellet-shaped masterbatch, and the compatibility of the copolymer (B) is improved. From the viewpoint of suppressing bleed-out, a method using a twin-screw extruder is particularly preferable.
  • the temperature at the time of melt-kneading in masterbatch production is not particularly limited as long as it is a temperature at which the thermoplastic resin (A) or the like melts.
  • the thermoplastic resin (A) is polypropylene, it is usually 190. It is in the range of about 300 ° C, preferably in the range of 200 to 250 ° C.
  • the blending amount of the copolymer (B) in the copolymer (B) -containing master batch used in the present invention is not particularly limited, but the thermoplastic resin contained in the copolymer (B) -containing master batch ( A) With respect to 100 parts by mass, the range is usually 0.1 to 100 parts by mass, preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass, and particularly preferably 3. It is in the range of ⁇ 10 parts by mass.
  • the copolymer (B) When the copolymer (B) is blended with a mass equal to or higher than the lower limit of the above range, the copolymer (B) facilitates softening and melting of the components of the thermoplastic resin (A), and contains the copolymer (B). When the master batch and the thermoplastic resin (A) to be further added are melt-kneaded by an extruder, a good fluidity improving effect can be obtained, which is preferable. Further, when the copolymer (B) is blended with a mass equal to or less than the upper limit of the above range, the bleed-out of the copolymer (B) can be suppressed, and a non-sticky copolymer (B) -containing masterbatch can be obtained. It is preferable because it can be done.
  • the method for melt-kneading the copolymer (B) -containing masterbatch and the thermoplastic resin (A) added to the masterbatch is not particularly limited, and for example, the above-mentioned production of the copolymer (B) -containing masterbatch.
  • a method similar to the melt-kneading method in the method can be adopted.
  • the amount ratio of the masterbatch containing the copolymer (B) to the thermoplastic resin (A) added to the masterbatch is the same with respect to 100 parts by mass of the thermoplastic resin (A) added to the masterbatch.
  • the polymer (B) -containing masterbatch is preferably 1 part by mass to 110 parts by mass, more preferably 15 parts by mass to 110 parts by mass, and particularly preferably 15 parts by mass to 50 parts by mass.
  • the amount ratio of the copolymer (B) -containing masterbatch to the thermoplastic resin (A) added to the masterbatch is smaller than the lower limit of the above range, the copolymer (B) in the resin composition The content may be low, and it may be difficult to develop the effect of improving moldability.
  • thermoplastic resin (A) and the copolymer (B) are dissolved. ..
  • the resin composition can be used to obtain a molded product containing the resin composition.
  • the molded product is obtained, for example, by melt-kneading the thermoplastic resin (A) and the copolymer (B).
  • a copolymer (B) -containing masterbatch may be produced, and the thermoplastic resin (A) may be further added to the masterbatch for melt-kneading.
  • the resin composition may be melt-kneaded and then immediately molded to obtain a molded product.
  • Examples of the molding method include T-die molding, blow molding, injection molding, and other known molding methods.
  • T-die extrusion molding using polypropylene as the thermoplastic resin (A)
  • it is usually 170 to 300 ° C., preferably 180 to 270 ° C., more preferably 190 to 250 ° C.
  • a molded product can be obtained by extrusion molding in the temperature range of ° C.
  • a stretched film can be obtained by stretching a film extruded from an extruder by, for example, a tenter method (longitudinal horizontal stretching, horizontal vertical stretching), a simultaneous biaxial stretching method, or a uniaxial stretching method.
  • the molded product of the present invention is obtained by extrusion blow molding using polypropylene as the thermoplastic resin (A), it should be extruded as a tubular parison from a die in a resin temperature range of 170 to 240 ° C. and then applied. After holding the parison in the mold of the shape, air is blown into the mold and the molded product is usually attached to the mold in the resin temperature range of 160 to 230 ° C. to obtain a molded product. Further, when extrusion blow molding is performed, it may be stretched to an appropriate magnification.
  • the cylinder temperature during injection molding is usually in the range of 180 to 400 ° C, preferably 200 to 300 ° C, and more preferably 200 to 250 ° C.
  • the injection pressure is usually in the range of 10 to 200 MPa, preferably 20 to 150 MPa, and the mold temperature is usually in the range of 20 to 200 ° C, preferably 20 to 80 ° C, and more preferably 20 to 60 ° C.
  • the propylene content was determined from the 13 C-NMR spectrum measured as described above by G.I. J. Ray (Macropolymers, 10, 773 (1977)), J. Mol. C. Randall (Macro-polymers, 15,353 (1982)), K. et al. It was obtained based on the report of Kimura (Polymer, 25, 4418 (1984)) et al.
  • Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) The weight average molecular weight (Mw) and the number average molecular weight (Mn) of the copolymer (B) were measured using the following high-speed GPC measuring device. Calibration was performed using monodisperse polystyrene with a known molecular weight as a standard material. The molecular weight distribution (Mw / Mn) was calculated from each of the obtained molecular weights.
  • Measuring device Tosoh HLC8320GPC
  • Mobile phase THF (manufactured by Wako Pure Chemical Industries, Ltd., stabilizer-free, liquid chromatography grade)
  • Column Two TSKgel Super Multipore HZ-M manufactured by Tosoh Corporation were connected in series.
  • Sample concentration 5 mg / mL
  • Mobile phase flow velocity 0.35 mL / min
  • Measurement temperature 40 ° C Standard sample for calibration curve: PStQuick MP-M manufactured by Tosoh Corporation
  • the molecular weight of the polyethylene wax used in the comparative example was measured using the following measuring device. Calibration was performed using monodisperse polystyrene with a known molecular weight as a standard material.
  • Measuring device HLC-8321GPC / HT type mobile phase manufactured by Tosoh Co., Ltd .: o-dichlorobenzene column: Two TSKgel GMH6-HT manufactured by Tosoh Co., Ltd.
  • PO1 indicates the mole fraction contained in the structural unit derived from the first olefin
  • PO2 indicates the mole fraction contained in the structural unit derived from the second olefin
  • PO1-O2 indicates the molar fraction contained in the structural unit derived from the second olefin.
  • the mole fraction of the "first olefin-second olefin" chain of the entire dyad chain is shown.
  • the density was measured according to JIS K7112 (Density Gradient Tube Method). [Melting point] Using Seiko Instruments X-DSC-7000, place a sample of about 8 mg of copolymer in a simple sealable aluminum sample pan and place it in the DSC cell, and place the DSC cell in a nitrogen atmosphere from room temperature to 150 ° C. The temperature was raised at 10 ° C./min, then held at 150 ° C. for 5 minutes, then lowered at 10 ° C./min, and the DSC cell was cooled to ⁇ 100 ° C. (temperature lowering process).
  • the temperature is raised to 150 ° C at 10 ° C / min, and the temperature at which the enthalpy curve obtained in the heating process shows the maximum value is set as the melting point (Tm), and the amount of heat absorbed due to melting.
  • Tm melting point
  • ⁇ H amount of heat of fusion
  • thermoplastic resin (A) As the thermoplastic resin (A), polypropylene F113G manufactured by Prime Polymer Co., Ltd. (hereinafter referred to as the thermoplastic resin (a)) was used.
  • Copolymer (B) and Other Copolymers The copolymer (b-1) produced by the following production method was used as the copolymer (B). As other copolymers, the copolymers (b-2) and (b-3) produced by the following production methods were used.
  • Method for producing copolymer (b-1) After charging 250 mL of decan into a glass polymerizer having an internal volume of 1 L sufficiently substituted with nitrogen and raising the temperature in the system to 130 ° C., ethylene is 15 L / hr, propylene is 85 L / hr, and hydrogen is 100 L / l. It was continuously supplied into the polymer at a flow rate of hr and stirred at a stirring rotation speed of 600 rpm.
  • the obtained polymer solution was washed 3 times with 100 mL of 0.2 mol / l hydrochloric acid and then 3 times with 100 mL of distilled water, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure.
  • the obtained polymer was dried overnight under reduced pressure at 80 ° C. to obtain 0.83 g of a propylene-ethylene copolymer (copolymer (b-1)).
  • the amount of unsaturated bonds after the hydrogenation operation was less than 0.1 / 1000C, and the chlorine content was less than 0.1 ppm.
  • the propylene content of the obtained copolymer was 70.0 mol%, Mw was 4,235, Mw / Mn was 1.7, B value was 1.2, 100 ° C.
  • kinematic viscosity was 100 mm 2 / s, 1 H-.
  • the methyl group index measured from NMR was 83%.
  • (b-2) After charging 250 mL of decan into a glass polymerizer having an internal volume of 1 L sufficiently substituted with nitrogen and raising the temperature in the system to 130 ° C., ethylene is 25 L / hr, propylene is 75 L / hr, and hydrogen is 100 L / hr. The mixture was continuously supplied into the polymer at a flow rate of hr and stirred at a stirring rotation speed of 600 rpm.
  • the obtained polymer solution was washed 3 times with 100 mL of 0.2 mol / l hydrochloric acid and then 3 times with 100 mL of distilled water, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure.
  • the obtained polymer was dried overnight under reduced pressure at 80 ° C. to obtain 0.77 g of a propylene-ethylene copolymer (copolymer (b-2)).
  • the amount of unsaturated bonds after the hydrogenation operation was less than 0.1 / 1000C, and the chlorine content was less than 0.1 ppm.
  • the propylene content of the obtained copolymer was 51.2 mol%, Mw was 4,172, Mw / Mn was 1.7, B value was 1.2, 100 ° C.
  • kinematic viscosity was 102 mm 2 / s, 1 H-.
  • the methyl group index measured from NMR was 54%.
  • the obtained polymer solution was washed 3 times with 100 mL of 0.2 mol / l hydrochloric acid and then 3 times with 100 mL of distilled water, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure.
  • the obtained polymer was dried overnight under a reduced pressure of 80 ° C. to obtain 0.87 g of a propylene-ethylene copolymer (copolymer (b-3)).
  • the amount of unsaturated bonds after the hydrogenation operation was less than 0.1 / 1000C, and the chlorine content was less than 0.1 ppm.
  • the propylene content of the obtained copolymer was 86.0 mol%, Mw was 4,208, Mw / Mn was 1.7, B value was 1.2, 100 ° C. kinematic viscosity was 104 mm 2 / s, 1 H-.
  • the methyl group index measured from NMR was 118%.
  • the obtained polymer was a white turbid, grease-like, semi-solid state with no fluidity, and was significantly inferior in handleability. Therefore, it seems clear that the copolymer (b-3) does not have sufficient performance as a plasticizer for the thermoplastic resin required in the present invention. , The study using the copolymer (b-3) was not carried out.
  • Table 1 shows the physical property values of the obtained copolymers (b-1), (b-2) and (b-3).
  • the content of structural units derived from propylene is referred to as "propylene content”.
  • Polyethylene wax As the polyethylene wax, polyethylene wax produced by the following production method was used.
  • the obtained polymer solution was dried under reduced pressure at 100 ° C. overnight to obtain polyethylene wax.
  • the obtained polyethylene wax had a density of 926 kg / m 3 , a weight average molecular weight (Mw) of 10,270, a molecular weight distribution (Mw / Mn) of 2.8, and a melting point of 109 ° C.
  • Example 1 and Example 2 [T-die film molding] Attach a T-die with a die width of 150 mm to a 20 mm ⁇ single-screw extruder (D2020, manufactured by Toyo Seiki Seisakusho Co., Ltd.), set the rotation speed to 25 rpm, the cylinder temperature, and the die temperature to 205 ° C., and use the thermoplastic resin (a). It was thrown in from the hopper.
  • a plunger-type metering pump with an extension nozzle installed separately at the discharge port of the hopper continuously feeds the copolymer (b-1) to the blending amount shown in Table 2, extrudes a film, and forms a 50 ⁇ m-thick film. Obtained.
  • Example 1 A film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1 except that the copolymer (B) was not blended.
  • Comparative Example 2 A film having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1 except that the copolymer (b-1) of Example 1 was changed to the copolymer (b-2).
  • Comparative Example 3 Prior to film molding, the thermoplastic resin (a) and polyethylene wax were dry-blended with the formulations shown in Table 2 in advance, and a 50 ⁇ m-thick film was prepared in the same manner as in Example 1 without blending the copolymer (B). Obtained.

Abstract

ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)が50,000以上である熱可塑性樹脂(A)25~99.99質量%と、下記の要件(b-1)~(b-3)を満たす、炭素数3以上のα-オレフィンから導かれる構造単位を含む共重合体(B)0.01~15質量%とを含有する樹脂組成物:(b-1)100℃における動粘度が10~5,000mm2/sであること。(b-2)炭素数3以上のα-オレフィンから導かれる構造単位の含有率が60~85mol%の範囲にあること。(b-3)ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)が1,000~30,000であり、かつ分子量分布(Mw/Mn)が2.5以下であること。

Description

樹脂組成物
 本発明は、良好な成形性を有し、成形体にブリード等が発生するのを抑制できる樹脂組成物に関する。
 従来、熱可塑性樹脂は、押出成形により、フィルム、シート、繊維等の成形体として様々な用途に用いられている。押出成形にて良好な機械物性を持つ成形体を得るためには、メルトフローレート(MFR)の低い樹脂を使用することが一般的であるが、MFRの低い樹脂は、押出機内で、スクリューへの噛み込み不良や、樹脂の溶融不良、高押出トルクを原因とした吐出量の不安定化や押出速度の制限など、成形性に多くの問題を引き起こす。また、前記問題は樹脂の物性や形状のばらつき、押出機の仕様等にも応じて発生するため、近年、このような問題を解決するべく、成形性向上がより一層強く求められるようになっている。
 押出成形などの際の成形性を改善する一般的な方法としては、樹脂に成形助剤を添加して成形する方法が知られている。例えば、成形する熱可塑性樹脂に対して、オイル、ポリエチレンワックス等の成形助剤を適用して成形する方法が検討されている(例えば、特許文献1、および2)。
 また、液状ポリオレフィンを可塑剤として熱可塑性樹脂に配合することが試みられてきた。
 しかし、液状ポリオレフィンは、ポリプロピレン等に対しては相容性が良好でないので、ポリプロピレン等の熱可塑性樹脂に液状ポリオレフィンを配合して成形すると、得られた成形体にブリード等が発生するなどの問題点があった。
特公平5-80492号公報 特表2003-528948号公報
 本発明の目的は、相容性が良好で、成形体にブリード等が発生するなどの問題点が生じない樹脂組成物を提供することにある。
 本発明は、例えば、次の[1]~[5]に関する。
[1] ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)が50,000以上である熱可塑性樹脂(A)25~99.99質量%と、下記の要件(b-1)~(b-3)を満たす、炭素数3以上のα-オレフィンから導かれる構造単位を含む共重合体(B)0.01~15質量%とを含有する樹脂組成物:(b-1)100℃における動粘度が10~5,000mm2/sであること。(b-2)炭素数3以上のα-オレフィンから導かれる構造単位の含有率が60~85mol%の範囲にあること。(b-3)ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)が1,000~30,000であり、かつ分子量分布(Mw/Mn)が2.5以下であること。
[2] 前記熱可塑性樹脂(A)がポリオレフィンである[1]に記載の樹脂組成物。
[3] 前記炭素数3以上のα-オレフィンがプロピレンである[1]または[2]に記載の樹脂組成物。
[4] 前記熱可塑性樹脂(A)がポリプロピレンである[1]~[3]のいずれかに記載の樹脂組成物。
[5] 前記[1]に記載の樹脂組成物の製造方法であって、
 下記方法(α)を実施し、前記共重合体(B)であって、さらに下記要件(b-4)および(b-5)を満たす共重合体(B)を得る工程(1)、および
 前記熱可塑性樹脂(A)および前記共重合体(B)ならびに任意に添加剤を溶融混練して樹脂組成物を得る工程(2)
を含む樹脂組成物の製造方法。
(b-4)1H-NMRから測定されるメチル基指標が60~130%の範囲にあること。
(b-5)-100℃~150℃の温度範囲において、示差走査熱量測定(DSC)した際に、融解ピークが観測されないこと。
方法(α):下記式1で表される架橋メタロセン化合物(a)、ならびに、
 有機アルミニウムオキシ化合物(b1)、および、前記架橋メタロセン化合物(a)と反応してイオン対を形成する化合物(b2)からなる群より選択される少なくとも1つの化合物(b)
を含む触媒系の存在下で、エチレンと炭素数3以上のα-オレフィンとを溶液重合する工程を含む方法。
Figure JPOXMLDOC01-appb-C000002
 [式1において、R1、R2、R3、R4、R5、R8、R9およびR12はそれぞれ独立して、水素原子、炭化水素基またはケイ素含有炭化水素基であり、隣接する複数の基は、互いに連結して環構造を形成していてもよく、
 R6およびR11は、互いに同一の基であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
 R7およびR10は、互いに同一の基であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
 R6およびR7は、炭素数2~3の炭化水素と結合して環構造を形成していてもよく、
 R10およびR11は、炭素数2~3の炭化水素と結合して環構造を形成していてもよく、
 R6、R7、R10およびR11は、同時に水素原子ではなく;
 Yは、炭素原子またはケイ素原子であり;
 R13およびR14はそれぞれ独立して、アリール基であり;
 Mは、Ti、ZrまたはHfであり;
 Qは独立して、ハロゲン原子、炭化水素基、アニオン性配位子または孤立電子対に配位可能な中性配位子であり;
 jは、1~4の整数である。]
 本発明の樹脂組成物は、相容性が良好であり、ポリプロピレン等の熱可塑性樹脂が可塑剤となるα-オレフィン共重合体と優れた相容状態で混合されているので、ブリード等の問題点が生じない。
 以下、本発明を詳細に説明する。
 本発明に係る樹脂組成物は、下記の熱可塑性樹脂(A)と下記の共重合体(B)とを含有する。
 [熱可塑性樹脂(A)]
 本発明で用いられる熱可塑性樹脂(A)には特に制限はなく、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖線状低密度ポリエチレン、ポリプロピレン、ポリブテン、環状オレフィン重合体、エチレン-プロピレン共重合体、環状オレフィン共重合体などのポリオレフィン;ポリスチレン、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体などのスチレン系重合体およびその水素添加物;ポリ塩化ビニル、ポリ塩化ビニリデン;ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル、ポリメタクリル酸エチルなどのビニルカルボン酸重合体およびビニルカルボン酸エステル重合体;エチレン-メタクリル酸共重合体、エチレン-メタクリル酸エステル共重合体、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体;ポリカーボネート、ポリメタクリレート;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル;ナイロン6、ナイロン11、ナイロン12、ナイロン46、ナイロン66、ナイロンM XD6、全芳香族ポリアミド、半芳香族ポリアミドなどのポリアミド;ポリアセタール、およびこれら樹脂のブレンド物などが挙げられる。
 これら熱可塑性樹脂の中でも、ポリオレフィンが好ましく、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖線状低密度ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体がより好ましく、ポリプロピレンが特に好ましい。前記ポリプロピレンは、ポリプロピレンエラストマーであってもよい。
 熱可塑性樹脂(A)が前記ポリオレフィンである場合には、熱可塑性樹脂(A)と後述する共重合体(B)との相容性が特に優れ、機械物性の低下や表面へのブリードアウト等の無い、良好な樹脂組成物が得られる。
 熱可塑性樹脂(A)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)が50,000以上である。前記重量平均分子量(Mw)は、好ましくは60,000~2,000,000、より好ましくは80,000~1,000,000である。熱可塑性樹脂(A)の前記重量平均分子量(Mw)が50,000以上であると、共重合体(B)との相容性に優れた樹脂組成物を得ることができる。
 熱可塑性樹脂(A)がポリプロピレンである場合、ポリプロピレンのMFR(JIS K 7210;230℃ 試験荷重2.16kgf)としては0.1~60g/10分の範囲が好ましく、0.3~20g/10分の範囲がより好ましく、0.3~10g/10分の範囲が特に好ましい。
 ポリプロピレンのMFRが前記範囲にある場合には、機械物性、耐熱性、耐薬品性などに優れた成形体を得ることができる。
 〈熱可塑性樹脂(A)の含有量〉
 本発明の樹脂組成物全体における熱可塑性樹脂(A)の含有量は、25~99.99質量%であり、好ましくは90~99.99質量%、さらに好ましくは96.2~99.8質量%、特に好ましくは97~99.4質量%、より好ましくは98~99.4質量%である。
 前記樹脂組成物全体における熱可塑性樹脂(A)の含有量が、前記下限値未満であると、熱可塑性樹脂(A)の特性が損なわれ、機械物性、耐熱性、耐薬品性などに優れた成形体が得られない場合がある。一方、前記樹脂組成物全体における熱可塑性樹脂(A)の含有量が、前記上限値を超えると、成形性が悪くなり、吐出量が不安定化する、押出速度が制限されるなどの問題が発生する場合がある。
 [共重合体(B)]
 共重合体(B)は、炭素数3以上のα-オレフィンから導かれる構造単位を含む。共重合体(B)は後述する要件(b1-1)~(b1-3)を満たす。
 前記炭素数3以上のα-オレフィンの例としては、プロピレン,1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセンなどの直鎖状α-オレフィンや、3-メチル-1-ペンテン、4-メチル-1-ペンテン、8-メチル-1-ノネン、7-メチル-1-デセン、6-メチル-1-ウンデセン、6,8-ジメチル-1-デセンなどの分岐を有するα-オレフィンを挙げることができる。これらのα-オレフィンは1種単独でまたは2種以上を組み合わせて用いることができる。
 前記炭素数3以上のα-オレフィンは、好ましくは炭素数3~20のα-オレフィンであり、より好ましくは炭素数3~8のα-オレフィンであり、特に好ましくはプロピレンである。
 <要件(b-1)>
 共重合体(B)は、100℃における動粘度が10~5,000mm2/sである。
 前記動粘度は、好ましくは10~3,500mm2/sであり、より好ましくは50~3500mm2/s、さらに好ましくは50~2,500mm2/s、特に好ましくは50~700mm2/sである。
 本発明において、100℃における動粘度は、ASTM D 445に基づいて測定される。
 共重合体(B)の100℃における動粘度が10mm2/s未満では、一般的に用いられるプロセスオイル等の軟化剤と同様に流動性や揮発性の高い低分子量成分の含有量が多くなり、樹脂組成物またはその成形体からのブリードアウト量や揮発量が多くなる場合があるため好ましくない。共重合体(B)の100℃における動粘度が5,000mm2/sより高いと、流動性が悪化するため、共重合体(B)を熱可塑性樹脂(A)と混合した際に粘着性が増加、加工性が低下する場合があるため好ましくない。言い換えると、共重合体(B)の100℃における動粘度が前記範囲内であると、耐熱老化性や加工性に優れた樹脂組成物またはその成形体が得られるため好ましい。
 <要件(b-2)>
 共重合体(B)は、炭素数3以上のα-オレフィンから導かれる構造単位の含有率が60~85mol%の範囲にある。
 前記含有率は、共重合体(B)に含まれる全構成単位に占める、炭素数3以上のα-オレフィンから導かれる構造単位のモル比を意味する。
 共重合体(B)の炭素数3以上のα-オレフィンから導かれる構造単位の含有率は、好ましくは63~83mol%、より好ましくは67~80mol%である。
 本発明の樹脂組成物は、共重合体(B)の炭素数3以上のα-オレフィンから導かれる構造単位の含有率が60mol%という高含有率であることにより、ポリオレフィン等の熱可塑性樹脂(A)と共重合体(B)との相容性に優れ、ブリード等の問題点が生じない。また、共重合体(B)の炭素数3以上のα-オレフィンから導かれる構造単位の含有率が85mol%以下であることにより、結晶性が低くなるためポリオレフィン等の熱可塑性樹脂(A)と良好に相容する。
 共重合体(B)に含まれる、炭素数3以上のα-オレフィンから導かれる構造単位以外の構造単位の含有率は15~40mol%の範囲であり、好ましくは17~37mol%、より好ましくは20~33mol%である。
 共重合体(B)の一態様としては、エチレンと炭素数3以上のα-オレフィンとの共重合体を挙げることができる。
 <要件(b-3)>
 共重合体(B)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)が1,000~30,000であり、分子量分布(Mw/Mn)が2.5以下である。
 共重合体(B)は、前記重量平均分子量(Mw)が、好ましくは1,500~25,000であり、より好ましくは1,700~20,000である。
 重量平均分子量が前記下限値より小さいと、共重合体(B)の樹脂組成物中での運動性が高くなるためブリードアウトが起こり易い。共重合体(B)の重量平均分子量が前記上限値より大きいと、十分な流動性改良効果を得られず、成形性が向上しない場合や、熱可塑性樹脂(A)との相容性が悪くなり、機械物性の低下やブリードアウトの原因となる場合がある。
 共重合体(B)は、前記分子量分布(Mw/Mn)が、好ましくは2.3以下であり、より好ましくは2.1以下である。
 共重合体(B)の分子量分布が広く(Mw/Mnが大きく)なると、ブリードアウトや機械物性の低下の原因となり得る低分子量または高分子量の成分を多く含むことになり、好ましくない。
 共重合体(B)の重量平均分子量および分子量分布は、分子量既知の標準物質(単分散ポリスチレン)を用いて較正されたゲルパーミエーションクロマトグラフィー(GPC)によって測定することができる。
 共重合体(B)は、上記要件(b-1)~(b-3)に加えて、以下の要件(b-4)および(b-5)を満たしてもよい。要件(b-4)および(b-5)を満たす共重合体(B)は、たとえば後述する方法(α)により製造できる。
 <要件(b-4)>
 共重合体(B)は、1H-NMRから測定されるメチル基指標が60~130%の範囲にある。
 前記メチル基指標は、好ましくは70~125%の範囲にあり、より好ましくは80~120%の範囲にある。
 共重合体(B)が1H-NMRから測定されるメチル基指標が前記範囲であると、良好な機械物性を有する樹脂組成物を得ることができる。良好な機械物性を有する樹脂組成物が得られる理由としては、共重合体(B)中のメチル基によって熱可塑性樹脂(A)の分子との相互作用が高まるためだと考えられる。
 ここで、当該メチル基指標とは、共重合体(B)を重クロロホルム中に溶解させて1H-NMRを測定し、重クロロホルム中のCHCl3に基づく7.24ppmに現れる溶媒ピークをリファレンスとしたときにおける、0.50~2.20ppmの範囲内にあるピークの積分値に対する、0.50~1.15ppmの範囲内にあるピークの積分値の割合をいう。
 メチル基指標は、共重合体(B)中の分岐の割合を示す指標であるため、メチル基指標が上記の下限値以上であると、共重合体(B)の分岐が充分に存在することから、分子鎖同士が配向しにくく、分子運動性を有し、良好な流動性、柔軟性、軽量性が得られるため好ましい。一方で、共重合体(B)のメチル基指標が上記の上限値以下であると、共重合体(B)の側鎖が密に存在しすぎず、分子運動性が低下せず、良好な流動性や柔軟性、軽量性を保持できるため好ましい。
 メチル基指標が上記の上限値より大きいと、共重合体(B)の分岐構造が多くなるため、高温に晒された際に、分子鎖の分解が進みやすくなり、耐熱性が低下する懸念がある。言い換えると、共重合体(B)のメチル基指標が上記範囲内にあると、耐熱性を維持したまま、共重合体(B)が優れた分子運動性を示すようになり、良好な流動性や軽量性、柔軟性、耐熱性を示す樹脂組成物が得られ易くなると考えられるため好ましい。
 <要件(b-5)>
 共重合体(B)は、-100℃~150℃の温度範囲で示差走査熱量測定(DSC)した際に、融解ピークが観測されない。
 示差走査熱量測定の詳細は次のとおりである。
 示差走査熱量計(例:セイコーインスツルメント社X-DSC-7000)を用い、簡易密閉できるアルミサンプルパンに約8mgの共重合体の試料を入れてDSCセルに配置し、DSCセルを窒素雰囲気下にて室温から150℃まで10℃/分で昇温し、次いで、150℃で5分間保持した後、10℃/分で降温し、DSCセルを-100℃まで冷却する(降温過程)。次いで、-100℃で5分間保持した後、10℃/分で150℃まで昇温し、昇温過程で得られるエンタルピー曲線が極大値を示す温度を融点(Tm)とし、融解に伴う吸熱量の総和を融解熱量(ΔH)とする。融解ピークが観測されないか、融解熱量(ΔH)の値が1J/g以下の場合、融点(Tm)は観測されないとみなす。融点(Tm)および融解熱量(ΔH)の求め方は、JIS K7121を参照する。
 共重合体(B)の製造方法は特に限定されないが、特公平2-1163号公報、特公平2-7998号公報に記載されているようなバナジウム化合物と有機アルミニウム化合物とからなるバナジウム系触媒を用いる方法が挙げられる。また、高い重合活性で共重合体を製造する方法として特開昭61-221207号、特公平7-121969号公報、特許第2796376号公報に記載されているようなジルコノセンなどのメタロセン化合物と有機アルミニウムオキシ化合物(アルミノキサン)からなる触媒系を用いる方法等を用いてもよく、この方法は、得られる共重合体の塩素含量、およびα-オレフィンの2,1-挿入が低減できるため、より好ましい。
 バナジウム系触媒を用いる方法では、メタロセン系触媒を用いる方法に比較し、助触媒に塩素化合物をより多く使用するため、得られる共重合体(B)中に微量の塩素が残存する可能性が高い。一方、メタロセン系触媒を用いる方法では、実質的に塩素を残存させないため、塩素による樹脂組成物の劣化を防止できる点で好ましい。塩素含量は100ppm以下であることが好ましく、50ppm以下であることがより好ましく、20ppm以下であることがさらに好ましく、5ppm以下であることが特に好ましい。塩素含量は種々の公知の方法で定量することができる。例えば、サーモフィッシャーサイエンティフィック社ICS-1600を用い、エチレン・α-オレフィン共重合体を、試料ボートに入れてAr/O2気流中、燃焼炉設定温度900℃にて燃焼分解し、このときの発生ガスを吸収液に吸収させ、イオンクロマトグラフ法にて定量する方法などがある。
 メタロセン系触媒を用いる方法としては、以下の方法(α)が挙げられる。
 <方法(α)>
 下記式1で表される架橋メタロセン化合物(a)、ならびに、
 有機アルミニウムオキシ化合物(b1)、および、前記架橋メタロセン化合物(a)と反応してイオン対を形成する化合物(b2)からなる群より選択される少なくとも1つの化合物(b)
を含む触媒系の存在下で、エチレンと炭素数3以上のα-オレフィンとを溶液重合する工程を含む、方法(α)。
Figure JPOXMLDOC01-appb-C000003
 [式1において、R1、R2、R3、R4、R5、R8、R9およびR12はそれぞれ独立して、水素原子、炭化水素基またはケイ素含有炭化水素基であり、隣接する複数の基は、互いに連結して環構造を形成していてもよく、
 R6およびR11は、互いに同一の基であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
 R7およびR10は、互いに同一の基であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
 R6およびR7は、炭素数2~3の炭化水素と結合して環構造を形成していてもよく、
 R10およびR11は、炭素数2~3の炭化水素と結合して環構造を形成していてもよく、
 R6、R7、R10およびR11は、同時に水素原子ではなく;
 Yは、炭素原子またはケイ素原子であり;
 R13およびR14はそれぞれ独立して、アリール基であり;
 Mは、Ti、ZrまたはHfであり;
 Qは独立して、ハロゲン原子、炭化水素基、アニオン性配位子または孤立電子対に配位可能な中性配位子であり;
 jは、1~4の整数である。]
 ここで、前記炭化水素基は、炭素数が1~20、好ましくは1~15、より好ましくは4~10であり、例えばアルキル基、アリール基等を意味し、アリール基は、炭素数が6~20、好ましくは6~15である。
 前記ケイ素含有炭化水素基の例としては、1~4個のケイ素原子を含む炭素原子数3~20のアルキル基またはアリール基が挙げられ、より詳細には、トリメチルシリル基、tert-ブチルジメチルシリル基、トリフェニルシリル基等が挙げられる。
 式1で表される架橋メタロセン化合物において、シクロペンタジエニル基は置換されていても無置換でもよい。
 式1で表される架橋メタロセン化合物において、
(i)シクロペンタジエニル基に結合した置換基(R1、R2、R3およびR4)のうち少なくとも1つが炭化水素基であることが好ましく、
(ii)置換基(R1、R2、R3およびR4)のうち少なくとも1つが炭素数4以上の炭化水素基であることがより好ましく、
(iii)シクロペンタジエニル基の3位に結合した置換基(R2またはR3)が炭素数4以上の炭化水素基(例えば、n-ブチル基)であることが最も好ましい。
 R1、R2、R3およびR4のうち少なくとも2つが置換基である(すなわち、水素原子ではない)場合、上記の置換基は同一でも異なっていてもよく、少なくとも1つの置換基が炭素数4以上の炭化水素基であることが好ましい。
 式1で表されるメタロセン化合物において、フルオレニル基に結合したR6およびR11は同一であり、R7およびR10は同一であるが、R6、R7、R10およびR11は、同時には水素原子ではない。ポリ-α-オレフィンの高温溶液重合においては、重合活性を向上させるため、好ましくはR6もR11も水素原子ではなく、より好ましくはR6、R7、R10およびR11のいずれも水素原子ではない。例えば、フルオレニル基の2位および7位に結合したR6およびR11は、炭素数1~20の同一の炭化水素基であり、好ましくはすべてtert-ブチル基であり、R7およびR10は、炭素数1~20の同一の炭化水素基、好ましくはすべてtert-ブチル基である。
 シクロペンタジエニル基とフルオレニル基とを連結する主鎖部(結合部、Y)は、式1で表される前記架橋メタロセン化合物に立体的剛性を付与する構造架橋部としての、1個の炭素原子またはケイ素原子を含む2つの共有結合の架橋部である。架橋部中の架橋原子(Y)は、同一であっても異なっていてもよい2個のアリール基(R13およびR14)を有する。したがって、前記シクロペンタジエニル基と前記フルオレニル基とは、アリール基を含む共有結合架橋部によって結合されている。アリール基の例としては、フェニル基、ナフチル基、アントラセニル基、および置換アリール基(これは、フェニル基、ナフチル基またはアントラセニル基の1個以上の芳香族水素(sp2型水素)を置換基で置換して形成されたものである。)が挙げられる。前記置換アリール基が有する置換基の例としては、炭素数1~20の炭化水素基、炭素数1~20のケイ素含有炭化水素基、ハロゲン原子などが挙げられ、好ましくはフェニル基が挙げられる。式1で表される前記架橋メタロセン化合物において、好ましくは、製造容易性の観点からR13とR14とは同一である。
 式1で表される架橋メタロセン化合物において、Qは、好ましくは、ハロゲン原子または炭素数1~10の炭化水素基である。ハロゲン原子としては、フッ素、塩素、臭素またはヨウ素が挙げられ、炭素数1~10の炭化水素基としては、メチル、エチル、n-プロピル、イソプロピル、2-メチルプロピル、1,1-ジメチルプロピル、2,2-ジメチルプロピル、1,1-ジエチルプロピル、1-エチル-1-メチルプロピル、1,1,2,2-テトラメチルプロピル、sec-ブチル、tert-ブチル、1,1-ジメチルブチル、1,1,3-トリメチルブチル、ネオペンチル、シクロヘキシルメチル、シクロヘキシル、1-メチル-1-シクロヘキシルなどが挙げられる。また、jが2以上の整数の場合、Qは同一であっても異なっていてもよい。
 このような架橋メタロセン化合物(a)としては、
 エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
 エチレン[η5-(3-tert-ブチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
 エチレン[η5-(3-n-ブチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、エチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
 ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
 ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
 ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジフェニルメチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
 ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチル-5-メチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
 ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-tert-ブチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、
 ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)](η5-フルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)](オクタメチルオクタヒドロジベンズフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)](ベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)](ジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)](オクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)](2,7-ジフェニル-3,6-ジ-tert-ブチルフルオレニル)ジルコニウムジクロリド、ジ(p-トリル)メチレン[η5-(3-n-ブチルシクロペンタジエニル)][η5-(2,7-ジメチル-3,6-ジ-tert-ブチルフルオレニル)]ジルコニウムジクロリド等が挙げられる。
 これらの化合物のジルコニウム原子をハフニウム原子に置き換えた化合物またはクロロ配位子をメチル基に置き換えた化合物などが例示されるが、架橋メタロセン化合物(a)はこれらの例示に限定されない。
 方法(α)における前記触媒系に使用される前記有機アルミニウムオキシ化合物(b1)としては、従来のアルミノキサンを使用できる。例えば、下記式2~5で表される直鎖状または環状のアルミノキサンを使用できる。前記有機アルミニウムオキシ化合物には、少量の有機アルミニウム化合物が含まれていてもよい。
Figure JPOXMLDOC01-appb-C000004
 式2~4において、Rは独立して炭素数1~10の炭化水素基であり、Rxは独立して炭素数2~20の炭化水素基であり、mおよびnは独立して2以上、好ましくは3以上、より好ましくは10~70、最も好ましくは10~50の整数である。
Figure JPOXMLDOC01-appb-C000005
 式5において、Rcは炭素数1~10の炭化水素基であり、Rdは独立して水素原子、ハロゲン原子または炭素数1~10の炭化水素基である。
 式2または式3において、Rは、従来「メチルアルミノキサン」と呼ばれている有機アルミニウムオキシ化合物のメチル基(Me)である。
 前記メチルアルミノキサンは、容易に入手可能であり、かつ高い重合活性を有するので、ポリオレフィン重合における活性剤として一般的に使用されている。しかしながら、メチルアルミノキサンは、飽和炭化水素に溶解させ難いため、環境的に望ましくないトルエンまたはベンゼンのような芳香族炭化水素の溶液として使用されてきた。そのため、近年、飽和炭化水素に溶解させたアルミノキサンとして、式4で表されるメチルアルミノキサンの可撓性体(flexible body)が開発され、使用されている。式4で表されるこの修飾メチルアルミノキサンは、米国特許第4960878号明細書、米国特許第5041584号明細書に示されるように、トリメチルアルミニウムおよびトリメチルアルミニウム以外のアルキルアルミニウムを用いて調製され、例えば、トリメチルアルミニウムおよびトリイソブチルアルミニウムを用いて調製される。Rxがイソブチル基であるアルミノキサンは、飽和炭化水素溶液の形でMMAO、TMAOの商品名で市販されている。(Tosoh Finechem Corporation、Tosoh Research&Technology Review、Vol 47、55(2003)を参照のこと)。
 前記触媒系に含まれる(ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物(b2)(以下、必要に応じて「イオン性化合物」という。)としては、ルイス酸、イオン性化合物、ボラン、ボラン化合物、カルボラン化合物を使用でき、これらは韓国特許第10-0551147号公報、特開平1-501950号公報、特開平3-179005号公報、特開平3-179006号公報、特開平3-207703号公報、特開平3-207704号公報、米国特許第5321106号明細書等に記載されている。必要に応じて、ヘテロポリ化合物、イソポリ化合物等を使用でき、特開2004-51676号公報に記載のイオン性化合物を使用できる。前記イオン性化合物は、1種単独でまたは2種以上を混合して使用できる。より詳細には、ルイス酸の例としては、BR3で表される化合物(Rはフッ化物、置換されたもしくは無置換の炭素数1~20のアルキル基(メチル基など)、置換されたもしくは無置換の炭素数6~20のアリール基(フェニル基など)などである。)が挙げられ、例えばトリフルオロボロン、トリフェニルボロン、トリス(4-フルオロフェニル)ボロン、トリス(3,5-ジフルオロフェニル)ボロン、トリス(4-フルオロフェニル)ボロン、トリス(ペンタフルオロフェニル)ボロン、およびトリス(p-トリル)ボロンが挙げられる。前記イオン性化合物を用いると、有機アルミニウムオキシ化合物と比較して、その使用量およびスラッジ発生量が比較的少なく、経済的に有利である。本発明においては、前記イオン性化合物として、下記式6で表される化合物が使用されることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 式6において、Re+は、H+、カルベニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、または遷移金属を有するフェロセニウムカチオンであり、Rf~Riは、それぞれ独立に有機基、好ましくは炭素数1~20の炭化水素基、より好ましくはアリール基、例えばペンタフルオロフェニル基である。前記カルベニウムカチオンの例としては、トリス(メチルフェニル)カルベニウムカチオン、トリス(ジメチルフェニル)カルベニウムカチオンなどが挙げられ、前記アンモニウムカチオンの例としては、ジメチルアニリニウムカチオンなどが挙げられる。
 上記式6で表される化合物としては、好ましくはN,N-ジアルキルアニリニウム塩、具体的にはN,N-ジメチルアニリニウムテトラフェニルボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、N,N-ジエチルアニリニウムテトラフェニルボレート、N,N-ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、 N,N-ジエチルアニリニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、N,N-2,4,6-ペンタメチルアニリニウムテトラフェニルボレート、N,N-2,4,6-ペンタメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートなどが挙げられる。
 方法(α)に用いられる前記触媒系は、必要に応じて、さらに(c)有機アルミニウム化合物を含む。前記有機アルミニウム化合物は、前記架橋メタロセン化合物、前記有機アルミニウムオキシ化合物、前記イオン性化合物などを活性化する役割を果たす。前記有機アルミニウム化合物としては、好ましくは下記式7で表される有機アルミニウム、および下記式8で表される第1族金属とアルミニウムとの錯アルキル化物を使用できる。
   Ra mAl(ORb)npq …(式7)
 式7において、Ra及びRbは、それぞれ独立に、炭素数1~15、好ましくは炭素数1~4の炭化水素基であり、Xはハロゲン原子であり、mは0<m≦3の整数であり、nは0≦n≦3の整数であり、pは0<p≦3の整数であり、qは0≦q<3の整数であり、m+n+p+q=3である。
   M2AlRa 4 …(式8)
 式8において、M2はLi、NaまたはKを表し、Raは炭素数1~15、好ましくは炭素数1~4の炭化水素基である。
 式7で表される有機アルミニウム化合物の例としては、入手容易なトリメチルアルミニウム、トリイソブチルアルミニウムなどが挙げられる。式8で表される第1族金属とアルミニウムとのアルキル錯体化合物の例としては、LiAl(C25)4、LiAl(C715)4などが挙げられる。式7で表される化合物に類似する化合物を使用できる。例えば、(C25)2AlN(C25)Al(C25)2のように、少なくとも2つのアルミニウム化合物が窒素原子を介して結合した有機アルミニウム化合物を用いることができる。
 方法(α)において、式1で表される架橋メタロセン化合物(a)の量は、好ましくは全触媒組成物に対して5~50重量%である。そして、好ましくは、(i)有機アルミニウムオキシ化合物(b1)の量は、使用される架橋メタロセン化合物のモル数に対して50~500当量であり、(ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物(b2)の量は、使用される架橋メタロセン化合物のモル数に対して1~5当量であり、有機アルミニウム化合物(c)の量は、使用される架橋メタロセン化合物のモル数に対して5~100当量である。
 方法(α)で用いられる前記触媒系は、例えば以下の[1]~[4]を有していてもよい。
[1]式1で表される架橋メタロセン化合物(a)、および(i)有機アルミニウムオキシ化合物(b1)
[2]式1で表される架橋メタロセン化合物(a)、(i)有機アルミニウムオキシ化合物(b1)、および有機アルミニウム化合物(c)。
[3]式1で表される架橋メタロセン化合物(a)、(ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物(b2)、および有機アルミニウム化合物(c)。
[4]式1で表される架橋メタロセン化合物(a)、ならびに(i)有機アルミニウムオキシ化合物(b1)、および(ii)前記架橋メタロセン化合物と反応してイオン対を形成する化合物(b2)。
 式1で表される架橋メタロセン化合物(成分(a))、(i)有機アルミニウムオキシ化合物(成分(b1))、(ii)架橋メタロセン化合物と反応してイオン対を形成する化合物(b2)、および/または有機アルミニウム化合物(成分(c))は、出発原料モノマー(エチレンと炭素数3~20のα-オレフィンとの混合物)に対して、任意の順序で導入されてもよい。例えば、成分(a)、(b)および/または(c)は、原料モノマーが充填されている重合反応器に、単独でまたは任意の順序で導入される。あるいは、必要に応じて、成分(a)、(b)および/または(c)のうち少なくとも2つの成分を混合した後、混合触媒組成物が、原料モノマーが充填された重合反応器に導入される。
 方法(α)において、前記共重合体(B)は、前記触媒系の下でのエチレンと炭素数3以上、たとえば炭素数3~20のα-オレフィンとの溶液重合によって調製される。炭素数3~20のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセンなどの直鎖状α-オレフィン、イソブチレン、3-メチル-1-ブテン、4-メチル-1-ペンテンなどの分岐状α-オレフィン、およびそれらの混合物のうちの1種以上を使用できる。好ましくは1種以上の炭素数3~6のα-オレフィンを使用でき、より好ましくはプロピレンを使用できる。前記溶液重合は、プロパン、ブタン、ヘキサンなどの不活性溶媒、またはオレフィン単量体そのものを媒体として使用することにより実施できる。方法(α)において、共重合の温度は、通常80~150℃、好ましくは90~120℃であり、共重合の圧力は、通常大気圧~500kgf/cm2、好ましくは大気圧~50kgf/cm2であり、これらは反応材料、反応条件などに応じて変動し得る。
 重合は回分式、半連続式または連続式で実施でき、好ましくは連続式で実施される。
 〈その他の態様〉
 共重合体(B)は、非変性体であってもよいし、あるいは、グラフト変性によって何らかの極性基を付与された変性体であってもよい。変性に利用される極性基を有するビニル化合物には、酸、酸無水物、エステル、アルコール、エポキシ、エーテル等の酸素含有基を有するビニル化合物、イソシアネート、アミド等の窒素含有基を有するビニル化合物、ビニルシラン等のケイ素含有基を有するビニル化合物などを使用することができる。また、共重合体(B)は、特開2020-97743号公報に記載のような方法を用いて、一部を塩素化した変性体であってもよい。
 この中でも、酸素含有基を有するビニル化合物が好ましく、具体的には、不飽和エポキシ単量体、不飽和カルボン酸及びその誘導体などが好ましい。不飽和エポキシ単量体としては、不飽和グリシジルエーテル、不飽和グリシジルエステル(例えば、グリシジルメタクリレート)などがある。前記不飽和カルボン酸としては、アクリル酸、マレイン酸、フマール酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ナジック酸TM(エンドシス-ビシクロ[2,2,1]ヘプト-5-エン-2,3-ジカルボン酸)などがある。
 また、前記不飽和カルボン酸の誘導体としては、前記不飽和カルボン酸の酸ハライド化合物、アミド化合物、イミド化合物、酸無水物、及びエステル化合物などを挙げることができる。具体的には、塩化マレニル、マレイミド、無水マレイン酸、無水シトラコン酸、マレイン酸モノメチル、マレイン酸ジメチル、グリシジルマレエートなどがある。
 これらの中では、不飽和ジカルボン酸及びその酸無水物がより好ましく、特にマレイン酸、ナジック酸TM及びこれらの酸無水物が特に好ましく用いられる。
 なお、前記の極性基を有するビニル化合物又はその誘導体が、共重合体(B)にグラフトする位置は特に制限されず、この共重合体(B)の任意の炭素原子に不飽和カルボン酸又はその誘導体が結合していればよい。
 熱可塑性樹脂(A)が極性基を有する場合、共重合体(B)に前記極性基を付与することで、共重合体(B)と熱可塑性樹脂(A)との良好な相容性が得られ、樹脂組成物の機械物性の低下やブリードアウトを抑制できる。
 前記のような変性体である共重合体(B)は、従来公知の種々の方法、例えば、次のような方法を用いて調製できる。
 (1)非変性の共重合体(B)を押出機、バッチ式反応機などで混合させて、極性基を有するビニル化合物又はその誘導体などを添加してグラフト共重合させる方法。
 (2)非変性の共重合体(B)を溶媒に溶解させて、極性基を有するビニル化合物又はその誘導体などを添加してグラフト共重合させる方法。
 前記いずれの方法も、前記極性基を有するビニル化合物又はその誘導体のグラフトモノマーを効率よくグラフト共重合させるために、ラジカル開始剤の存在下でグラフト反応を行うことが好ましい。
 前記ラジカル開始剤として、例えば、有機ペルオキシド、アゾ化合物などが使用される。前記有機ペルオキシドとしては、ベンゾイルペルオキシド、ジクロルベンゾイルペルオキシド、ジクミルペルオキシドなどが挙げられ、前記アゾ化合物としては、アゾビスイソブチルニトリル、ジメチルアゾイソブチレートなどがある。
 このようなラジカル開始剤としては、具体的には、ジクミルペルオキシド、ジ-tert-ブチルペルオキシド、2,5-ジメチル-2,5-ジ(tert-ブチルペルオキシ)ヘキシン-3、2,5-ジメチル-2,5-ジ(tert-ブチルペルオキシ)ヘキサン、1,4-ビス(tert-ブチルペルオキシイソプロピル)ベンゼンなどのジアルキルペルオキシドが好ましく用いられる。
 これらのラジカル開始剤は、共重合体(B)100質量部に対して、通常は0.001~1質量部、好ましくは0.003~0.5質量部、さらに好ましくは0.05~0.3質量部の量で用いられる。
 前記のようなラジカル開始剤を用いたグラフト反応、あるいは、ラジカル開始剤を使用しないで行うグラフト反応における反応温度は、通常60~350℃、好ましくは120~300℃の範囲に設定される。
 このようにして得られる変性共重合体中の極性基を有するビニル化合物のグラフト量は、変性共重合体の質量を100質量%とした場合に、通常0.01~15質量%、好ましくは0.05~10質量%である。
 〈共重合体(B)の含有量〉
 本発明の樹脂組成物全体における共重合体(B)の含有量は、0.01~15質量%であり、好ましくは0.1~13質量%、さらに好ましくは0.5~12質量%、特に好ましくは1~10質量%である。
 樹脂組成物全体における共重合体(B)の含有量が、前記下限値未満であると、共重合体(B)による流動性改良効果が十分に発現されない。一方、前記樹脂組成物全体における共重合体(B)の含有量が、前記上限値を超えると、樹脂組成物の機械強度低下やブリードアウトが起こる場合があるため好ましくない。言い換えると、共重合体(B)の含量が、前記範囲内にあると、ブリードアウトがなく、機械強度と成形性に優れた樹脂組成物が得られ易いため好ましい。全記効果は、機械強度に優れる低MFRの熱可塑性樹脂(A)に対して、その特徴である機械強度を維持したまま、成形性を改良できるため、特に有用である。
 [その他の成分]
 本発明の樹脂組成物は、必要に応じて、酸化防止剤、紫外線吸収剤、光安定剤等の安定剤、金属石鹸、充填剤、難燃剤、抗菌剤、防カビ剤、顔料等の添加剤を含有してもよい。
 前記安定剤としては、フィンダードフェノール系化合物、フォスファイト系化合物、チオエーテル系化合物などの酸化防止剤;ベンゾトリアゾール系化合物、ベンゾフェノン系化合物などの紫外線吸収剤;ヒンダードアミン系化合物などの光安定剤が挙げられる。
 前記金属石鹸としては、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸亜鉛などのステアリン酸塩等が挙げられる。
 前記充填剤としては、ガラス繊維、シリカ繊維、金属繊維(ステンレス、アルミニウム、チタン、銅等)、天然繊維(木粉、木質繊維、竹、竹繊維、綿花、セルロース、ナノセルロース、羊毛、麦わら、麻、亜麻、ケナフ、カポック、ジュート、ラミー、サイザル麻、ヘネッケン、トウモロコシ、木の実の殻、木材パルプ、レーヨン、コットン等)、カーボンブラック、グラファイト、活性炭、黒鉛、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、グラフェンナノプレートレット、ナノポーラスカーボン、カーボン繊維、シリカ、ガラスビーズ、珪酸塩(珪酸カルシウム、タルク、クレー等)、金属酸化物(酸化鉄、酸化チタン、酸化マグネシウム、アルミナ等)、金属の炭酸塩(炭酸カルシウム、炭酸バリウム等)、硫酸塩(硫酸カルシウム、硫酸バリウム等)及び各種金属(マグネシウム、珪素、アルミニウム、チタン、銅等)粉末、マイカ、ガラスフレーク、軽石粉、軽石バルン、水酸化アルミニウム、水酸化マグネシウム、塩基性炭酸マグネシウム、ドロマイト、チタン酸カルシウム、亜硫酸カルシウム、アスベスト、モンモリロナイト、ベントナイト、硫化モリブデン、有機充填剤(リグニン、スターチなど)、及びその含有製品等が挙げられる。特にガラス繊維、シリカ繊維、金属繊維、天然繊維、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、カーボン繊維などの構造に異方性を有する充填剤は、混練時の剪断により充填剤が破断することで、異方性が低下し、その特徴が損なわれ易いが、共重合体(B)は、流動性改良効果にて混練時の剪断を低減し、異方性を維持し易くするため有用である。
 前記難燃剤としては、デガブロムジフェニルエーテル、オクタブロムジフェニルエーテル等のハロゲン化ジフェニルエーテル、ハロゲン化ポリカーボネートなどのハロゲン化合物;三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、ピロアンチモン酸ソーダ、水酸化アルミニウムなどの無機化合物;リン系化合物などが挙げられる。また、ドリップ防止のため難燃助剤としてはテトラフルオロエチレン等の化合物を添加することができる。
 前記抗菌剤、防カビ剤としては、イミダゾール系化合物、チアゾール系化合物、ニトリル系化合物、ハロアルキル系化合物、ピリジン系化合物などの有機化合物;銀、銀系化合物、亜鉛系化合物、銅系化合物、チタン系化合物などの無機物質、無機化合物などが挙げられる。
 前記顔料としては、合成樹脂の着色に従来から用いられている顔料を使用できる。具体的には、アルミニウム、銀、金などの金属類;炭酸カルシウム、炭酸バリウムなどの炭酸塩;ZnO、TiO2などの酸化物;Al23・nH2O、Fe23・nH2Oなどの水酸化物;CaSO4、BaSO4などの硫酸塩;Bi(OH)2NO3などの硝酸塩;PbCl2などの塩化物;CaCrO4、BaCrO4などのクロム酸塩;CoCrO4などの亜クロム酸塩、マンガン酸塩および過マンガン酸塩;Cu(BO)2などの硼酸塩;Na227・6H2Oなどのウラン酸塩;K3Co(NO26・3H2Oなどの亜硝酸塩;SiO2などの珪酸塩;CuAsO3・Cu(OH)2などのひ酸塩および亜ひ酸塩;Cu(C2322・Cu(OH)2などの酢酸塩;(NH42MnO2(P272などの燐酸塩;アルミ酸塩、モリブデン酸塩、亜鉛酸塩、アンチモン酸塩、タングステン酸塩セレン化物、チタン酸塩、シアン化鉄塩、フタル酸塩、CaS、ZnS、CdS、黒鉛、カーボンブラックなどの無機顔料、コチニール・レーキ、マダー・レーキなどの天然有機顔料、ナフトール・グリーンY、ナフトール・グリーンBなどのニトロソ顔料;ナフトールエローS、ピグメント・クロリン2Gなどのニトロ顔料;パーマネント・レッド4R;ハンザエロー、ブリリアント・カーミン68、スカーレット2Rなどのアゾ顔料;マラカイン・グリーン、ローダミンBなどの塩基性染料レーキ、アシツド、グリーンレーキ、エオシン・レーキなどの酸性染料レーキ、アリザリン・レーキ、プルプリン・レーキ、などの媒染染料レーキ、チオ・インジゴ・レッドB、インタンスレン・オレンジなどの建染染料顔料、フタロシアニンブルー、フタロシアニングリーンなどのフタロシアニン顔料などの有機顔料などが挙げられる。
 前記添加剤は、本発明の効果を損ない範囲で任意の割合および任意の添加方法にて使用できる。
 [樹脂組成物]
 本発明にかかる樹脂組成物は、熱可塑性樹脂(A)および共重合体(B)を必須成分とすることを特徴とする。また、発明の効果を損なわない範囲にて、上述のその他成分を含有することができる。
 本発明に係る樹脂組成物の組成や分子量については、本発明を損なわない範囲であれば特に限定されるものではないが、良好な成形性と機械物性を得る観点から、ゲルパーミエーションクロマトグラフィー(GPC)により観測される分子量が5,000未満の成分の割合が樹脂組成物の成分全体に対して0.7~4.5%であることが好ましく、1.0~4.5%であることがより好ましく、1.2~4.5%であることが更に好ましく、1.3~3.0%であることが特に好ましい。分子量5,000未満の成分は、樹脂組成物の成形性を改善する反面、機械物性の低下やブリードアウト等の問題を引き起こす原因となり得る。樹脂組成物中の分子量5,000未満の成分の割合が前記範囲内にあると、機械物性の低下やブリードアウト等の問題を抑制したまま、成形性を改善する効果が得られ易いため好ましい。
 [樹脂組成物の製造方法]
 本発明に係る樹脂組成物は、熱可塑性樹脂(A)、共重合体(B)及び必要に応じた添加剤を溶融混練することによって製造される。溶融混練する方法としては、1軸押出機や2軸押出機などを使用することができる。
 熱可塑性樹脂(A)に共重合体(B)を添加する方法については、発明の効果を損なわない範囲で種々の方法を使用することができる。例えば、熱可塑性樹脂(A)と共重合体(B)とをヘンシェルミキサーなどの高速ミキサーやタンブラーなどを用いてドライブレンドした後に溶融混練する方法や、熱可塑性樹脂(A)を溶融混練している際に、共重合体(B)を開放部から直接添加したり、サイドフィーダーや液体フィードポンプにより挿入したりすることで溶融混練する方法が挙げられる。
 溶融混練時の温度としては、熱可塑性樹脂(A)等が溶融する温度であれば特に制限はなく、例えば、熱可塑性樹脂(A)がポリプロピレンである場合には、通常、190~300℃の範囲、好ましくは200~250℃の範囲である。
 〈共重合体(B)含有マスターバッチを使用した製造方法〉
 本発明に係る樹脂組成物の製造方法としては、共重合体(B)を、熱可塑性樹脂(A)と溶融混練して共重合体(B)含有マスターバッチを製造し、該共重合体(B)含有マスターバッチにさらに熱可塑性樹脂(A)を加えて、両者を溶融混練して、樹脂組成物を製造しても良い。
 共重合体(B)含有マスターバッチの製造に使用される熱可塑性樹脂(A)と、該マスターバッチを製造した後にさらに該マスターバッチに加えられる熱可塑性樹脂(A)とは、同じ樹脂であっても、異なる樹脂であっても構わない。
 共重合体(B)含有マスターバッチの製造方法は特に制限はないが、例えば共重合体(B)および熱可塑性樹脂(A)および必要に応じて添加剤を、1軸押出機、2軸押出機、プラストミル、ブラベンダー、ニーダー、ロールミキサー、バンバリーミキサーなどで溶融混練して製造する方法が挙げられる。この中でも、大量生産が容易である点、ペレット状のマスターバッチを得やすい点から1軸押出機または2軸押出機を使用する方法が好ましく、共重合体(B)の相容性を高め、ブリードアウトを抑制する観点から2軸押出機を使用する方法が特に好ましい。
 マスターバッチ製造における溶融混練時の温度としては、熱可塑性樹脂(A)等が溶融する温度であれば特に制限はなく、例えば、熱可塑性樹脂(A)がポリプロピレンである場合には、通常、190~300℃の範囲、好ましくは200~250℃の範囲である。
 本発明で用いられる共重合体(B)含有マスターバッチ中の共重合体(B)の配合量は、特に制限はないが、共重合体(B)含有マスターバッチに含有される熱可塑性樹脂(A)100質量部に対して、通常0.1~100質量部の範囲、好ましくは0.1~20質量部の範囲、より好ましくは0.5~10質量部の範囲、特に好ましくは、3~10質量部の範囲である。
 前記範囲の下限値以上の質量で共重合体(B)を配合すると、共重合体(B)により、熱可塑性樹脂(A)の成分が軟化および溶融し易くなり、共重合体(B)含有マスターバッチと、さらに加えられる熱可塑性樹脂(A)とを押出機にて溶融混練する際に、良好な流動性改良効果が得られるため好ましい。また、前記範囲の上限値以下の質量で共重合体(B)を配合すると、共重合体(B)のブリードアウトを抑制でき、べたつきのない共重合体(B)含有マスターバッチを得ることができるため好ましい。
 共重合体(B)含有マスターバッチと、該マスターバッチに加えられる熱可塑性樹脂(A)との溶融混練方法は、特に制限はなく、例えば上述した、共重合体(B)含有マスターバッチの製造方法における溶融混練方法と同様の方法を採用することができる。
 共重合体(B)含有マスターバッチと、該マスターバッチに加えられる熱可塑性樹脂(A)との量比としては、該マスターバッチに加えられる熱可塑性樹脂(A)100質量部に対して、共重合体(B)含有マスターバッチ1質量部~110質量部が好ましく、15質量部~110質量部がより好ましく、15質量部~50質量部が特に好ましい。共重合体(B)含有マスターバッチと、該マスターバッチに加えられる熱可塑性樹脂(A)との量比が前記範囲の下限値よりも小さいと、樹脂組成物中の共重合体(B)の含有量が少なくなり、成形性の改善効果が発現し難い場合がある。一方、共重合体(B)含有マスターバッチと、該マスターバッチに加えられる熱可塑性樹脂(A)との量比が前記範囲の上限値よりも大きいと、共重合体(B)の含有量が多くなり、機械物性の低下を引き起こしやすくなる。
 また、本発明に係る樹脂組成物を接着剤やコート剤として使用する場合には、熱可塑性樹脂(A)、共重合体(B)が溶解する各種有機溶剤等により混練を実施することもできる。
 [成形体]
 前記樹脂組成物を用いて、前記樹脂組成物を含む成形体を得ることができる。前記成形体は、例えば、前記熱可塑性樹脂(A)と共重合体(B)とを溶融混練することにより得られる。この際、前述したように、共重合体(B)含有マスターバッチを製造して、該マスターバッチにさらに熱可塑性樹脂(A)を加えて、溶融混練してもよい。また、前記樹脂組成物を溶融混練した後、直ちに成形して成形体を得てもよい。
 成形方法としては、例えば、Tダイ成形、ブロー成形、射出成形、その他公知の成形方法が挙げられる。
 例えば、熱可塑性樹脂(A)としてポリプロピレンを用いてTダイ押出成形等により、押出シートまたはフィルムを成形する場合には、通常170~300℃、好ましくは180~270℃、より好ましくは190~250℃の範囲で押出成形することにより成形体が得られる。また押出機より押出したフィルムを、例えばテンター法(縦横延伸、横縦延伸)、同時二軸延伸法、一軸延伸法により延伸することにより、延伸フィルムが得られる。
 また、熱可塑性樹脂(A)としてポリプロピレンを用いて押出ブロー成形で本発明の成形体を得る場合には、通常樹脂温度170~240℃の範囲でダイよりチューブ状パリソンとして押出し、次いで付与すべき形状の金型中にパリソンを保持した後、空気を吹き込み通常樹脂温度160~230℃の範囲で金型に着装し成形体が得られる。また押出ブロー成形する際には適切な倍率に延伸してもよい。
 また、熱可塑性樹脂(A)としてポリプロピレンを用いて射出成形する場合には、射出成形時のシリンダー温度は、通常180~400℃、好ましくは200~300℃、より好ましくは200~250℃の範囲であり、射出圧力は通常10~200MPa、好ましくは20~150MPaの範囲であり、金型温度は通常20~200℃、好ましくは20~80℃、より好ましくは20~60℃の範囲である。
 以下、本発明を実施例により説明するが、本発明は、これら実施例により何ら限定されるものではない。
 以下の実施例および比較例において、各物性は、以下の方法により測定あるいは評価した。
 [動粘度]
 動粘度は、ASTM D 445に基づき、100℃にて、キャノン社製全自動粘度計CAV-4を用いて測定を行った。
 [プロピレン含量]
 α-オレフィン共重合体について、日本電子(株)製ECP500型核磁気共鳴装置を用い、溶媒としてオルトジクロロベンゼン/重ベンゼン(80/20容量%)混合溶媒,試料濃度55mg/0.6mL、測定温度120℃、観測核は13C(125MHz)、シーケンスはシングルパルスプロトンデカップリング、パルス幅は4.7μ秒(45°パルス)、繰り返し時間は5.5秒、積算回数は1万回以上、27.50ppmをケミカルシフトの基準値として測定を行った。
 プロピレン含量は、上記のようにして測定された13C-NMRスペクトルから、G.J.Ray(Macromolecules,10,773(1977))、J.C.Randall(Macro-molecules,15,353(1982))、K.Kimura(Polymer,25,4418(1984))らの報告に基づいて求めた。
 [重量平均分子量(Mw)および分子量分布(Mw/Mn)]
 共重合体(B)の重量平均分子量(Mw)および数平均分子量(Mn)は、下記の高速GPC測定装置を用いて測定を行った。標準物質として分子量既知の単分散ポリスチレンを用い校正を行った。得られた各分子量から分子量分布(Mw/Mn)を算出した。
測定装置:東ソー社製HLC8320GPC
移動相:THF(和光純薬工業社製、安定剤不含有、液体クロマトグラフィー用グレード)
カラム:東ソー社製TSKgel  Super  MultiporeHZ-M  2本を直列連結した。
サンプル濃度:5mg/mL
移動相流速:0.35mL/分
測定温度:40℃
検量線用標準サンプル:東ソー社製PStQuick  MP-M
 また、比較例で用いたポリエチレンワックスの分子量は、下記の測定装置を用いて測定を行った。標準物質として分子量既知の単分散ポリスチレンを用い校正を行った。
測定装置:東ソー社製HLC―8321GPC/HT型
移動相:o―ジクロロベンゼン
カラム:東ソー社製TSKgel GMH6-HTを2本、TSKgel GMH6-HTLを2本直列に接続
サンプル濃度:0.1mg/mL
移動相流速:1.0mL/分
測定温度:140℃検量線用標準サンプル:東ソー社製単分散ポリスチレン #3 std set
 [B値]
 o-ジクロロベンゼン/ベンゼン-d6(4/1[vol/vol%])を測定溶媒とし、測定温度120℃、スペクトル幅250ppm、パルス繰り返し時間5.5秒、かつパルス幅4.7・sec(45°パルス)の測定条件下(100MHz、日本電子ECX400P)、または測定温度120℃、スペクトル幅250ppm、パルス繰り返し時間5.5秒、かつパルス幅5.0・sec(45°パルス)の測定条件下(125MHz、ブルカー・バイオスピンAVANCEIIIcryo-500)にて13C-NMRスペクトルを測定し、下記式(1)に基づきB値を算出した。ピークの帰属は前述の公知文献を参考にして行った。
 B=PO1-O2/(2×PO1×PO2)   (1)
 上記式(1)中、PO1は第1のオレフィン由来の構造単位の含有モル分率を示し、PO2は第2のオレフィン由来の構造単位の含有モル分率を示し、PO1-O2は、全dyad連鎖の「第1のオレフィン-第2のオレフィン」連鎖のモル分率を示す。
 [不飽和結合量]
 o-ジクロロベンゼン-d4を測定溶媒とし、測定温度120℃、スペクトル幅20ppm、パルス繰り返し時間7.0秒、かつパルス幅6.15μsec(45°パルス)の測定条件下にて、1H-NMRスペクトル(400MHz、日本電子ECX400P)を測定した。ケミカルシフト基準には、溶媒ピーク(オルトジクロロベンゼン 7.1ppm)を用い、0~3ppmに観測されるメインピークと、4~6ppmに観測される不飽和結合由来のピークとの積分値の比率より、炭素原子1000個当たりの不飽和結合量(個/1000C)を算出した。
 [塩素含量]
 サーモフィッシャーサイエンティフィック社ICS-1600を用い、共重合体の試料を、試料ボートに入れてAr/O2気流中、燃焼炉設定温度900℃にて燃焼分解した。このときの発生ガスを吸収液に吸収させ、イオンクロマトグラフ法にて含有塩素量を定量した。
 [密度]
 密度は、JIS K7112(密度勾配管法)に準拠して、測定した。
 [融点]
 セイコーインスツルメント社X-DSC-7000を用い、簡易密閉できるアルミサンプルパンに約8mgの共重合体の試料を入れてDSCセルに配置し、DSCセルを窒素雰囲気下にて室温から150℃まで10℃/分で昇温し、次いで、150℃で5分間保持した後、10℃/分で降温し、DSCセルを-100℃まで冷却した(降温過程)。次いで、-100℃で5分間保持した後、10℃/分で150℃まで昇温し、昇温過程で得られるエンタルピー曲線が極大値を示す温度を融点(Tm)とし、融解に伴う吸熱量の総和を融解熱量(ΔH)とした。融解ピークが観測されないか、融解熱量(ΔH)の値が1J/g以下の場合、融点(Tm)は観測されないとみなした。融点(Tm)および融解熱量(ΔH)の求め方は、JIS K7121に基づいて行った。
 [メチル基指標]
 日本電子(株)製EX270型核磁気共鳴装置を用い、溶媒として重クロロホルム,試料濃度として55mg/0.6mL、測定温度として室温、観測核として1H(270MHz)、シーケンスとしてシングルパルス、パルス幅として6.5μ秒(45°パルス)、繰り返し時間として5.5秒、積算回数としては16回、ケミカルシフトの基準値として重クロロホルム中のCHCl3に基づく溶媒ピークの7.24ppmを用いて測定した。
 上記のようにして測定された1H-NMRスペクトルから得られたスペクトルにおける、0.50~2.20ppmの範囲内にあるピークの積分値に対する、0.50~1.15ppmの範囲内にあるピークの積分値の割合をメチル基指標とした。ここで、0.50~2.20ppmの範囲内にはα-オレフィン(共)重合体に基づくピークがほぼ含まれる。この範囲のうち、メチル基に基づくピークは、0.50~1.15ppmの範囲内に含まれる可能性が高い。
熱可塑性樹脂(A)
 熱可塑性樹脂(A)としてプライムポリマー(株)製ポリプロピレンF113G(以下、熱可塑性樹脂(a)という)を使用した。
共重合体(B)およびその他の共重合体
 共重合体(B)として下記製造方法で製造した共重合体(b-1)を使用した。その他の共重合体として下記製造方法で製造した共重合体(b-2)および(b-3)を使用した。
〔共重合体(b-1)の製造方法〕
 充分に窒素置換した内容積1Lのガラス製重合器にデカン250mLを装入し、系内の温度を130℃に昇温した後、エチレンを15L/hr、プロピレンを85L/hr、水素を100L/hrの流量で連続的に重合器内に供給し、撹拌回転数600rpmで撹拌した。次にトリイソブチルアルミニウム0.2mmolを重合器に装入し、次いでMMAO2.022mmolと[メチルフェニルメチレン(η5-シクロペンタジエニル)(η5-2,7-ジ-t-ブチルフルオレニル)]ジルコニウムジクロリド0.00670mmolをトルエン中で15分以上予備混合したものを重合器に装入することにより重合を開始した。その後、エチレン、プロピレン、水素の連続的供給を継続し、130℃で15分間重合を行った。少量のイソブチルアルコールを系内に添加することにより重合を停止した後、未反応のモノマーをパージした。得られたポリマー溶液を、0.2mol/lの塩酸100mLで3回、次いで蒸留水100mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥し、プロピレン-エチレン共重合体(共重合体(b-1))0.83 gを得た。水添操作後の不飽和結合量は0.1個/1000C未満、塩素含量は0.1ppm未満であった。得られた共重合体のプロピレン含有量は70.0mol%、Mwは4,235、Mw/Mnは1.7、B値は1.2、100℃動粘度は100mm2/s、1H-NMRから測定されるメチル基指標は83%であった。
〔共重合体(b-2)の製造方法〕
 充分に窒素置換した内容積1Lのガラス製重合器にデカン250mLを装入し、系内の温度を130℃に昇温した後、エチレンを25L/hr、プロピレンを75L/hr、水素を100L/hrの流量で連続的に重合器内に供給し、撹拌回転数600rpmで撹拌した。次にトリイソブチルアルミニウム0.2mmolを重合器に装入し、次いでMMAO1.213mmolと[メチルフェニルメチレン(η5-シクロペンタジエニル)(η5-2,7-ジ-t-ブチルフルオレニル)]ジルコニウムジクロリド0.00402mmolをトルエン中で15分以上予備混合したものを重合器に装入することにより重合を開始した。その後、エチレン、プロピレン、水素の連続的供給を継続し、130℃で15分間重合を行った。少量のイソブチルアルコールを系内に添加することにより重合を停止した後、未反応のモノマーをパージした。得られたポリマー溶液を、0.2mol/lの塩酸100mLで3回、次いで蒸留水100mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥し、プロピレン-エチレン共重合体(共重合体(b-2))0.77 gを得た。水添操作後の不飽和結合量は0.1個/1000C未満、塩素含量は0.1ppm未満であった。得られた共重合体のプロピレン含有量は51.2mol%、Mwは4,172、Mw/Mnは1.7、B値は1.2、100℃動粘度は102mm2/s、1H-NMRから測定されるメチル基指標は54%であった。
〔共重合体(b-3)の製造方法〕
 充分に窒素置換した内容積1Lのガラス製重合器にデカン250mLを装入し、系内の温度を130℃に昇温した後、エチレンを7 L/hr、プロピレンを93L/hr、水素を100L/hrの流量で連続的に重合器内に供給し、撹拌回転数600rpmで撹拌した。次にトリイソブチルアルミニウム0.2mmolを重合器に装入し、次いでMMAO4.332mmolと[メチルフェニルメチレン(η5-シクロペンタジエニル)(η5-2,7-ジ-t-ブチルフルオレニル)]ジルコニウムジクロリド0.0144mmolをトルエン中で15分以上予備混合したものを重合器に装入することにより重合を開始した。その後、エチレン、プロピレン、水素の連続的供給を継続し、130℃で15分間重合を行った。少量のイソブチルアルコールを系内に添加することにより重合を停止した後、未反応のモノマーをパージした。得られたポリマー溶液を、0.2mol/lの塩酸100mLで3回、次いで蒸留水100mLで3回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。得られたポリマーを80℃の減圧下で一晩乾燥し、プロピレン-エチレン共重合体(共重合体(b-3))0.87gを得た。水添操作後の不飽和結合量は0.1個/1000C未満、塩素含量は0.1ppm未満であった。得られた共重合体のプロピレン含有量は86.0mol%、Mwは4,208、Mw/Mnは1.7、B値は1.2、100℃動粘度は104mm2/s、1H-NMRから測定されるメチル基指標は118%であった。
 得られたポリマーは白濁を呈したグリース状の流動性を有さない半固体状であり、取り扱い性の著しく劣るものであった。そのため、共重合体(b-3)は、本願発明で求められる熱可塑性樹脂の可塑剤としては充分な性能を有していないことが明らかであると思われるので、以下に記載する比較例において、共重合体(b-3)を用いた検討は行わなかった。
 得られた共重合体(b-1)、(b-2)および(b-3)の物性値を表1に示す。表1において、プロピレンから導かれる構造単位の含有率を「プロピレン含量」と表記している。
Figure JPOXMLDOC01-appb-T000007
ポリエチレンワックス
 ポリエチレンワックスとして、下記製造方法で製造したポリエチレンワックスを使用した。
 〔ポリエチレンワックスの製造方法〕
 1.触媒の調製
 内容積1.5リットルのガラス製オートクレーブにおいて、市販の無水塩化マグネシウム 25gをヘキサン500mlで懸濁させた。これを30℃に保ち撹拌しながらエタノール 92mlを1時間で滴下し、さらに1時間反応させた。反応終了後、ジエチルアルミニウムモノクロリド93mlを1時間で滴下し、さらに1時間反応させた。反応終了後、四塩化チタン90mlを滴下し、反応容器を80℃に昇温して1時間反応させた。反応終了後、固体部をデカンテーションにより遊離のチタンが検出されなくなるまでヘキサンで洗浄した。洗浄後の前記固体をヘキサン懸濁液としてチタン濃度を滴定により定量し、以下の実験に供した。
 2.ポリエチレンワックスの製造
 充分に窒素置換した内容積2リットルのステンレス製オートクレーブにヘキサン930mlおよびプロピレン70mlを装入し、水素を0.1MPa(ゲージ圧)となるまで導入した。次いで、系内の温度を170℃に昇温した後、トリエチルアルミニウム0.1ミリモル、エチルアルミニウムセスキクロリド0.4ミリモル、前記得られた固体のヘキサン懸濁液を、チタン成分の量が原子換算で0.008ミリモルとなるようにエチレンで圧入することにより重合を開始した。その後、エチレンのみを連続的に供給することにより全圧を2.9MPa(ゲージ圧)に保ち、170℃で40分間重合を行った。
 少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレンおよびプロピレンをパージした。得られたポリマー溶液を、100℃減圧下で一晩乾燥しポリエチレンワックスを得た。得られたポリエチレンワックスは密度926kg/m3、重量平均分子量(Mw):10,270、分子量分布(Mw/Mn):2.8、融点:109℃であった。
〔実施例1および実施例2〕
[Tダイフィルム成形]
 20mmφ単軸押出機(株式会社東洋精機製作所製、D2020)に、ダイス幅150mmのTダイを取り付け、回転数25rpm、シリンダー温度、ダイス温度を205℃に設定して、熱可塑性樹脂(a)をホッパーより投入した。別途ホッパーの吐出口に延長ノズルを設置したプランジャー型定量ポンプより共重合体(b-1)を表2に示す配合量となるよう連続フィードし、押出フィルム成形を行い、50μm厚のフィルムを得た。
〔比較例1〕
 共重合体(B)を配合しなかった以外は実施例1と同様にして50μm厚のフィルムを得た。
〔比較例2〕
 実施例1の共重合体(b-1)を共重合体(b-2)に変更した以外は実施例1と同様にして50μm厚のフィルムを得た。
〔比較例3〕
 フィルム成形前に予め表2に示す配合で熱可塑性樹脂(a)とポリエチレンワックスをドライブレンドし、共重合体(B)を配合せずに実施例1と同様の方法にて50μm厚のフィルムを得た。
 前記実施例および比較例で得られた樹脂組成物またはフィルムにつき、押出トルク、吐出量、引張破壊強度、引張破壊伸び、引張抗張積の測定およびフィルム外観の評価を下記方法により行った。結果を表2に示す。
 [押出トルク]
 ホッパーより樹脂を投入し、押出機を前記の成形条件に設定してから10分後より1分間、押出機が示すトルクの値を計測し、その平均値より求めた。本値が小さいと、成形時に押出トルクが増加側に振れた際も、装置能力の上限値に達し難くなるため、成形時の吐出量のムラを軽減し易くなる。また、本値が小さいと、押出機のスクリュー回転数を上げた際に装置能力の上限値に達し難くなるため、吐出量の調整が容易になる。
 [吐出量]
 ホッパーより樹脂を投入し、押出機を前記の成形条件に設定してから10分後より1分間に成形されたフィルムの質量を計量し、その値より1時間あたりの吐出量を求めた。
 [引張破壊強度、引張破壊伸び、引張抗張積]
 JIS K7127に準じて、フィルムの機械方向について測定を行い、フィルムが破断した強度および伸びの値を求め、それぞれ引張破壊強度、引張破壊伸びとした。また、引張破壊強度および引張破壊伸びの積の値を引張抗張積とした。この値が大きい程、得られたフィルムが破断し難いことを表し、特にこの値が30,000MPa・%以上であると、破断に強いフィルムであることを表す。
 [フィルム外観]
 得られたフィルムの外観を、目視による表面の観察および触感により評価した。フィルム表面に、触れた際にべたつくオイル状の物質が浮き出したことが確認されたフィルムを「ブリードあり」と評価し、フィルム表面に、触れた際にべたつくオイル状の物質が浮き出したことが確認されなかったフィルムを「ブリードなし」と評価した。
Figure JPOXMLDOC01-appb-T000008

Claims (5)

  1.  ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)が50,000以上である熱可塑性樹脂(A)25~99.99質量%と、下記の要件(b-1)~(b-3)を満たす、炭素数3以上のα-オレフィンから導かれる構造単位を含む共重合体(B)0.01~15質量%とを含有する樹脂組成物:
    (b-1)100℃における動粘度が10~5,000mm2/sであること。
    (b-2)炭素数3以上のα-オレフィンから導かれる構造単位の含有率が60~85mol%の範囲にあること。
    (b-3)ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)が1,000~30,000であり、かつ分子量分布(Mw/Mn)が2.5以下であること。
  2.  前記熱可塑性樹脂(A)がポリオレフィンである請求項1に記載の樹脂組成物。
  3.  前記炭素数3以上のα-オレフィンがプロピレンである請求項1または2に記載の樹脂組成物。
  4.  前記熱可塑性樹脂(A)がポリプロピレンである請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  請求項1に記載の樹脂組成物の製造方法であって、
     下記方法(α)を実施し、前記共重合体(B)であって、さらに下記要件(b-4)および(b-5)を満たす共重合体(B)を得る工程(1)、および
     前記熱可塑性樹脂(A)および前記共重合体(B)ならびに任意に添加剤を溶融混練して樹脂組成物を得る工程(2)
    を含む樹脂組成物の製造方法。
    (b-4)1H-NMRから測定されるメチル基指標が60~130%の範囲にあること。
    (b-5)-100℃~150℃の温度範囲において、示差走査熱量測定(DSC)した際に、融解ピークが観測されないこと。
    方法(α):下記式1で表される架橋メタロセン化合物(a)、ならびに、
     有機アルミニウムオキシ化合物(b1)、および、前記架橋メタロセン化合物(a)と反応してイオン対を形成する化合物(b2)からなる群より選択される少なくとも1つの化合物(b)
    を含む触媒系の存在下で、エチレンと炭素数3以上のα-オレフィンとを溶液重合する工程を含む方法
    Figure JPOXMLDOC01-appb-C000001
     [式1において、R1、R2、R3、R4、R5、R8、R9およびR12はそれぞれ独立して、水素原子、炭化水素基またはケイ素含有炭化水素基であり、隣接する複数の基は、互いに連結して環構造を形成していてもよく、
     R6およびR11は、互いに同一の基であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
     R7およびR10は、互いに同一の基であり、水素原子、炭化水素基またはケイ素含有炭化水素基であり、
     R6およびR7は、炭素数2~3の炭化水素と結合して環構造を形成していてもよく、
     R10およびR11は、炭素数2~3の炭化水素と結合して環構造を形成していてもよく、
     R6、R7、R10およびR11は、同時に水素原子ではなく;
     Yは、炭素原子またはケイ素原子であり;
     R13およびR14はそれぞれ独立して、アリール基であり;
     Mは、Ti、ZrまたはHfであり;
     Qは独立して、ハロゲン原子、炭化水素基、アニオン性配位子または孤立電子対に配位可能な中性配位子であり;
     jは、1~4の整数である。]
PCT/JP2021/036930 2020-10-06 2021-10-06 樹脂組成物 WO2022075350A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237011932A KR20230065319A (ko) 2020-10-06 2021-10-06 수지 조성물
CN202180067384.7A CN116234836A (zh) 2020-10-06 2021-10-06 树脂组合物
US18/029,891 US20230365794A1 (en) 2020-10-06 2021-10-06 Resin composition
JP2022555524A JP7476337B2 (ja) 2020-10-06 2021-10-06 樹脂組成物
EP21877649.0A EP4227331A1 (en) 2020-10-06 2021-10-06 Resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020169063 2020-10-06
JP2020-169063 2020-10-06

Publications (1)

Publication Number Publication Date
WO2022075350A1 true WO2022075350A1 (ja) 2022-04-14

Family

ID=81126026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036930 WO2022075350A1 (ja) 2020-10-06 2021-10-06 樹脂組成物

Country Status (5)

Country Link
US (1) US20230365794A1 (ja)
EP (1) EP4227331A1 (ja)
KR (1) KR20230065319A (ja)
CN (1) CN116234836A (ja)
WO (1) WO2022075350A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244879A1 (ja) * 2021-05-20 2022-11-24 三井化学株式会社 樹脂組成物及びその用途ならびに製造方法

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501950A (ja) 1987-01-30 1989-07-06 エクソン・ケミカル・パテンツ・インク 触媒、これらの触媒の製法およびこれらの触媒を使用する重合プロセス
US4960878A (en) 1988-12-02 1990-10-02 Texas Alkyls, Inc. Synthesis of methylaluminoxanes
JPH03179006A (ja) 1989-10-10 1991-08-05 Fina Technol Inc シンジオタクチツク重合体の製造方法および製造用触媒
JPH03179005A (ja) 1989-10-10 1991-08-05 Fina Technol Inc メタロセン触媒
US5041584A (en) 1988-12-02 1991-08-20 Texas Alkyls, Inc. Modified methylaluminoxane
JPH03207704A (ja) 1989-10-30 1991-09-11 Fina Technol Inc オレフイン重合触媒
JPH03207703A (ja) 1989-10-30 1991-09-11 Fina Technol Inc オレフイン重合触媒の製造法
US5321106A (en) 1990-07-03 1994-06-14 The Dow Chemical Company Addition polymerization catalyst with oxidative activation
JP2796376B2 (ja) 1989-10-18 1998-09-10 出光興産株式会社 合成潤滑油の製造法
JP2001348469A (ja) * 2000-06-09 2001-12-18 Chisso Corp プロピレン系樹脂成形体
JP2003528948A (ja) 2000-03-29 2003-09-30 クラリアント・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング 合成樹脂加工分野におけるポリオレフィンワックスの用途
JP2004051676A (ja) 2002-07-16 2004-02-19 Mitsui Chemicals Inc エチレン系共重合体の製造方法
JP2005508416A (ja) * 2001-11-06 2005-03-31 ダウ グローバル テクノロジーズ インコーポレイティド アイソタクチックプロピレンコポリマー類を含むフィルム類
KR100551147B1 (ko) 2002-10-30 2006-02-13 미쯔이가가꾸가부시끼가이샤 저분자량 올레핀 (공)중합체의 제조에 사용되는 중합 촉매
JP2008163140A (ja) * 2006-12-27 2008-07-17 Japan Polypropylene Corp オレフィン共重合体の製造方法
JP2008539290A (ja) * 2005-04-28 2008-11-13 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ 熱成形用プロピレンポリマー組成物
JP2012162631A (ja) * 2011-02-04 2012-08-30 Bridgestone Corp 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP2018172532A (ja) * 2017-03-31 2018-11-08 三井化学株式会社 熱可塑性重合体組成物及びその用途
JP2019189818A (ja) * 2018-04-27 2019-10-31 サンアロマー株式会社 ポリプロピレン組成物および成形体
JP2019218459A (ja) * 2018-06-19 2019-12-26 サンアロマー株式会社 ポリプロピレン組成物および成形品
JP2020097743A (ja) 2018-07-25 2020-06-25 日本製紙株式会社 塩素化ポリオレフィン樹脂及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580492A (ja) 1991-09-25 1993-04-02 Dainippon Printing Co Ltd 位相シフト層を有するフオトマスクの製造方法
EP1444276A1 (en) * 2001-11-06 2004-08-11 Dow Global Technologies, Inc. Isotactic propylene copolymers, their preparation and use
ES2423287T3 (es) * 2008-03-31 2013-09-19 Mitsui Chemicals, Inc. Composición de resina y bolsa fundida
JP7308011B2 (ja) * 2016-06-08 2023-07-13 三井化学株式会社 プロピレン系樹脂組成物およびその製造方法、ならびに該プロピレン系樹脂組成物を用いた成形体
EP4011963B1 (en) * 2016-07-21 2024-03-13 Mitsui Chemicals, Inc. Polypropylene resin composition and monolayer and multilayer film

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501950A (ja) 1987-01-30 1989-07-06 エクソン・ケミカル・パテンツ・インク 触媒、これらの触媒の製法およびこれらの触媒を使用する重合プロセス
US4960878A (en) 1988-12-02 1990-10-02 Texas Alkyls, Inc. Synthesis of methylaluminoxanes
US5041584A (en) 1988-12-02 1991-08-20 Texas Alkyls, Inc. Modified methylaluminoxane
JPH03179006A (ja) 1989-10-10 1991-08-05 Fina Technol Inc シンジオタクチツク重合体の製造方法および製造用触媒
JPH03179005A (ja) 1989-10-10 1991-08-05 Fina Technol Inc メタロセン触媒
JP2796376B2 (ja) 1989-10-18 1998-09-10 出光興産株式会社 合成潤滑油の製造法
JPH03207704A (ja) 1989-10-30 1991-09-11 Fina Technol Inc オレフイン重合触媒
JPH03207703A (ja) 1989-10-30 1991-09-11 Fina Technol Inc オレフイン重合触媒の製造法
US5321106A (en) 1990-07-03 1994-06-14 The Dow Chemical Company Addition polymerization catalyst with oxidative activation
JP2003528948A (ja) 2000-03-29 2003-09-30 クラリアント・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング 合成樹脂加工分野におけるポリオレフィンワックスの用途
JP2001348469A (ja) * 2000-06-09 2001-12-18 Chisso Corp プロピレン系樹脂成形体
JP2005508416A (ja) * 2001-11-06 2005-03-31 ダウ グローバル テクノロジーズ インコーポレイティド アイソタクチックプロピレンコポリマー類を含むフィルム類
JP2004051676A (ja) 2002-07-16 2004-02-19 Mitsui Chemicals Inc エチレン系共重合体の製造方法
KR100551147B1 (ko) 2002-10-30 2006-02-13 미쯔이가가꾸가부시끼가이샤 저분자량 올레핀 (공)중합체의 제조에 사용되는 중합 촉매
JP2008539290A (ja) * 2005-04-28 2008-11-13 バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ 熱成形用プロピレンポリマー組成物
JP2008163140A (ja) * 2006-12-27 2008-07-17 Japan Polypropylene Corp オレフィン共重合体の製造方法
JP2012162631A (ja) * 2011-02-04 2012-08-30 Bridgestone Corp 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ
JP2018172532A (ja) * 2017-03-31 2018-11-08 三井化学株式会社 熱可塑性重合体組成物及びその用途
JP2019189818A (ja) * 2018-04-27 2019-10-31 サンアロマー株式会社 ポリプロピレン組成物および成形体
JP2019218459A (ja) * 2018-06-19 2019-12-26 サンアロマー株式会社 ポリプロピレン組成物および成形品
JP2020097743A (ja) 2018-07-25 2020-06-25 日本製紙株式会社 塩素化ポリオレフィン樹脂及びその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
G. J. RAY, MACROMOLECULES, vol. 10, 1977, pages 773
J. C. RANDALL, MACRO-MOLECULES, vol. 15, 1982, pages 353
K. KIMURA, POLYMER, vol. 25, 1984, pages 4418
TOSOH FINECHEM CORPORATION, TOSOH RESEARCH & TECHNOLOGY REVIEW, vol. 47, 2003, pages 55

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244879A1 (ja) * 2021-05-20 2022-11-24 三井化学株式会社 樹脂組成物及びその用途ならびに製造方法

Also Published As

Publication number Publication date
CN116234836A (zh) 2023-06-06
US20230365794A1 (en) 2023-11-16
JPWO2022075350A1 (ja) 2022-04-14
KR20230065319A (ko) 2023-05-11
EP4227331A1 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
KR100553852B1 (ko) 폴리아미드수지조성물및그의제조방법
JP6291612B1 (ja) 樹脂組成物、該組成物からなる成形体およびパイプ
JP2014141663A (ja) ポリプロピレン系樹脂組成物およびその成形体
JP2007186665A (ja) プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物の製造方法
KR20100123926A (ko) 수지 조성물 및 그 용도
WO2022075350A1 (ja) 樹脂組成物
JP2017222850A (ja) プロピレン系樹脂組成物およびその製造方法、ならびに該プロピレン系樹脂組成物を用いた成形体
JP2009185122A (ja) ポリプロピレン樹脂組成物
JP7476337B2 (ja) 樹脂組成物
WO2022244879A1 (ja) 樹脂組成物及びその用途ならびに製造方法
JP2020075948A (ja) 樹脂組成物および製造方法ならびにその成形体
JP7296786B2 (ja) 熱可塑性樹脂組成物およびその用途
JP4258959B2 (ja) ポリプロピレン樹脂組成物および製造方法
US20230101204A1 (en) Polyamide composition
JP4067990B2 (ja) 重合体組成物
CN113366036B (zh) 树脂组合物
JPH10298363A (ja) 熱可塑性エラストマー樹脂組成物
CN117255828A (zh) 树脂组合物及其用途以及制造方法
JP2002155174A (ja) 難燃性樹脂組成物およびその製造方法
JPWO2022075350A5 (ja)
WO2023243587A1 (ja) フィラー含有ポリプロピレン樹脂組成物
JPH06145261A (ja) 変性ポリオレフィン
WO2020105584A1 (ja) 樹脂成形体及び樹脂組成物
JPS62280227A (ja) 成形物品の製造方法
JPH04275363A (ja) 熱可塑性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555524

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237011932

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021877649

Country of ref document: EP

Effective date: 20230508