WO2022071281A1 - ゴム組成物 - Google Patents

ゴム組成物 Download PDF

Info

Publication number
WO2022071281A1
WO2022071281A1 PCT/JP2021/035546 JP2021035546W WO2022071281A1 WO 2022071281 A1 WO2022071281 A1 WO 2022071281A1 JP 2021035546 W JP2021035546 W JP 2021035546W WO 2022071281 A1 WO2022071281 A1 WO 2022071281A1
Authority
WO
WIPO (PCT)
Prior art keywords
epihalohydrin
mass
parts
based polymer
rubber composition
Prior art date
Application number
PCT/JP2021/035546
Other languages
English (en)
French (fr)
Inventor
和樹 宇野
俊幸 船山
紀樹 北川
Original Assignee
株式会社大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪ソーダ filed Critical 株式会社大阪ソーダ
Priority to JP2022553990A priority Critical patent/JPWO2022071281A1/ja
Publication of WO2022071281A1 publication Critical patent/WO2022071281A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • C08L71/03Polyepihalohydrins

Definitions

  • epihalohydrin-based polymers are widely used as materials having excellent various physical characteristics by being crosslinked, and are used as fuel hoses, air-based hoses, and tube materials in automobile applications.
  • the present inventors include (a) an epihalohydrin-based polymer, (b) calcium silicate whose crystal system is a tovamolite type, (c) a cross-linking agent utilizing the reactivity of a halogen atom, and (a) an epihalohydrin-based polymer.
  • Item 1 (a) Epihalohydrin-based polymer, (b) Calcium silicate whose crystal system is tovamorite type, (c) Cross-linking agent utilizing the reactivity of halogen atom, (a) Epihalohydrin-based polymer 100 mass (B) A rubber composition containing 10 parts by weight or more of calcium silicate having a tovamorite type crystal system.
  • Item 2 The weight of the (a) epihalohydrin-based polymer containing at least one unit selected from an epihalohydrin homopolymer or a structural unit based on epihalohydrin and ethylene oxide, propylene oxide, and allyl glycidyl ether as a structural unit.
  • Item 2. The rubber composition according to Item 1, which is a coalescence.
  • Item 3 A crosslinked product obtained by cross-linking the rubber composition according to Item 1 or Item 2.
  • the crosslinked product obtained by cross-linking the rubber composition of the present invention is excellent in water resistance and acid resistance, and is therefore useful as a rubber packing or the like that requires water resistance and acid resistance.
  • the rubber composition of the present invention contains (a) an epihalohydrin-based polymer as a rubber component, and (b) a cross-linking agent that utilizes the reactivity of calcium silicate having a tovamorite-type crystal system and (c) halogen atoms.
  • the epihalohydrin-based polymer (epihalohydrin rubber) used in the present invention is obtained by ring-opening polymerization of epihalohydrin such as epichlorohydrin and epibromhydrin, has a structural unit based on epihalohydrin, and is an epihalohydrin.
  • epihalohydrin such as epichlorohydrin and epibromhydrin
  • alkylene oxides such as ethylene oxide, propylene oxide and n-butylene oxide
  • glycidyls such as methyl glycidyl ether, ethyl glycidyl ether, n-glycidyl ether, allyl glycidyl ether and phenyl glycidyl ether.
  • the epihalohydrin-based polymer can be used alone or in combination of two or more.
  • the epichlorohydrin-based polymer at least a compound selected from ethylene oxide, propylene oxide, and allylglycidyl ether other than the epichlorohydrin-based structural unit having only the epihalohydrin-based structural unit as a structural unit (epichlorohydrin homopolymer) or at least the epihalohydrin-based structural unit. It is preferable to include a structural unit based on one, and further preferably to contain a structural unit based on at least one selected from propylene oxide, ethylene oxide, and allylglycidyl ether and a structural unit based on epichlorohydrin. Most preferably, the constituent units include units of chlorohydrin and ethylene oxide.
  • the constitutional unit based on epihalohydrin is preferably 10 to 100 mol%, more preferably 15 to 75 mol%, and 20 to 65 mol% with respect to the total polymerization units. Is particularly preferred.
  • the epichlorohydrin-based structural unit is preferably an epichlorohydrin-based structural unit.
  • the ethylene oxide-based constituent unit is preferably 0 to 90 mol%, more preferably 25 to 85 mol%, and 35 to 80 mol% with respect to the total polymerization unit. It is particularly preferable to have.
  • the structural unit based on propylene oxide and the structural unit based on allyl glycidyl ether are preferably 0 to 15 mol%, more preferably 0 to 12 mol%, based on the total polymerization units. It is preferably 0 to 10 mol%, and particularly preferably 0 to 10 mol%.
  • the rubber composition of the present invention may contain only (a) an epihalohydrin-based polymer as a rubber component, or may further contain a rubber type other than the epihalohydrin-based polymer.
  • the rubber other than the epihalohydrin-based polymer include natural rubber and synthetic rubber, and examples of the synthetic rubber include isoprene rubber (IR), 1,2-polybutadiene (VBR), styrene butadiene rubber (SBR), and butyl rubber (IIR).
  • EPM Ethylene propylene rubber
  • EPDM ethylene propylene diene rubber
  • CSM chlorosulfonated polyethylene
  • CPE chlorinated polyethylene
  • ACM acrylic rubber
  • NBR acrylonitrile butadiene rubber
  • H-NBR hydrided acrylonitrile butadiene rubber
  • the epihalohydrin-based polymer is 10 to 90% by mass in the rubber component, other than the epihalohydrin-based polymer. It is preferable to contain 90 to 10% by mass of the rubber type, more preferably 30 to 90% by mass of the epihalohydrin-based polymer, and more preferably 70 to 10% by mass of the rubber type other than the epihalohydrin-based polymer. It is particularly preferable to contain 70 to 90% by mass of the polymer and 30 to 10% by mass of the rubber species other than the epihalohydrin-based polymer.
  • the content of (a) epihalohydrin-based polymer in 100% by mass of the rubber component is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and 100% by mass. May be good.
  • (b) calcium silicate in which the crystal system is a tovamolite type 14 ⁇ tovamolite, 11 ⁇ tovamolite, 9 ⁇ tovamolite, CSH (I), CSH (II).
  • (B) Calcium silicate whose crystal system is a tovamorite type may be used alone or in combination of two or more.
  • the average length of calcium silicate having a tovamorite type crystal system is 10 ⁇ m or more, preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, 200 ⁇ m or less, preferably 45 ⁇ m or less, and more preferably 30 ⁇ m or less. ..
  • the aspect ratio (average length / average width) of calcium silicate having a tovamorite type crystal system is preferably 0.3 or more, more preferably 0.5 or more, still more preferably 0.8 or more. It is preferably 1.4 or less, more preferably 1.3 or less, still more preferably 1.2 or less.
  • the average width of calcium silicate is an average value of the width of calcium silicate measured by a transmission electron microscope (for example, an average value calculated by measuring the width of 100 calcium silicates).
  • the average length of calcium silicate is calculated by measuring the average value of the lengths of calcium silicate measured by a transmission electron microscope (for example, the lengths of 100 calcium silicates). Average value).
  • the width of calcium silicate is the length of the short side of the main surface (the surface having the largest area when viewed in a plan view), and the length of calcium silicate is the length of the long side of the main surface. That's right.
  • (b) calcium silicate having a tovamorite type crystal system is preferably contained in an amount of 10 parts by mass or more, preferably 12 parts by mass or more, based on 100 parts by mass of the (a) epihalohydrin-based polymer. Is more preferable, 15 parts by mass or more is particularly preferable, 20 parts by mass or more is most preferable, 25 parts by mass or more is more preferable, and 30 parts by mass or more is even more preferable.
  • the upper limit is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and particularly preferably 40 parts by mass or less.
  • cross-linking agent utilizing the reactivity of the halogen atom examples include polyamines, thioureas, thiadiazoles, triazines, quinoxalines, bisphenols and the like.
  • the cross-linking agent utilizing the reactivity of the halogen atom may be used alone or in combination of two or more. Of these, quinoxalines are preferable.
  • polyamines examples include ethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, hexamethylenetetramine, p-phenylenediamine, cumenediamine, N, N'-dicinnamilyden-1,6-hexanediamine, ethylenediamine carbamate, and hexamethylenediamine carbamate.
  • thioureas examples include 2-mercaptoimidazoline, 1,3-diethylthiourea, 1,3-dibutylthiourea, and trimethylthiourea.
  • Examples of thiadiazoles include 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-1,3,4-thiadiazole-5-thiobenzoate and the like.
  • Examples of triazines include 2,4,6-trimercapto-1,3,5-triazine, 2-hexylamino-4,6-dimercaptotriazine, 2-diethylamino-4,6-dimercaptotriazine and 2-cyclohexyl.
  • quinoxalines include 2,3-dimercaptoquinoxaline, quinoxaline-2,3-dithiocarbonate, 6-methylquinoxaline-2,3-dithiocarbonate (quinomethionate), and 5,8-dimethylquinoxaline-2,3-dithiocarbonate.
  • bisphenols include bisphenol AF and bisphenol S.
  • the blending amount of the cross-linking agent utilizing the reactivity of the halogen atom is preferably 0.1 part by mass or more, preferably 0.3 part by mass or more, with respect to 100 parts by mass of the (a) epihalohydrin-based polymer.
  • the amount is more preferably 10 parts by mass or less, the upper limit is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and particularly preferably 3 parts by mass or less.
  • the rubber composition of the present invention in addition to the above, various antioxidants, reinforcing agents, plasticizers, processing aids, flame retardants, etc. used in the art, as long as the effects of the present invention are not impaired.
  • a pigment, a cross-linking accelerator, a vulcanizing agent and the like can be optionally blended. Further, as long as the characteristics of the present invention are not lost, it is possible to perform blending of a resin or the like, which is usually performed in the art.
  • Each of these combination agents may be used alone or in combination of two or more.
  • anti-aging agents include benzimidazole-based anti-aging agents, dithiocarbamate-based anti-aging agents, amine-based anti-aging agents, phenol-based anti-aging agents, thiourea-based anti-aging agents, organic thioic acids, and subphosphorus. Acids are mentioned, and at least one selected from these is preferable, benzimidazole-based anti-aging agents and dithiocarbamate-based anti-aging agents are more preferable, and benzimidazole-based anti-aging agents and dithiocarbamate-based agents are more preferable. It is more preferable to use an anti-aging agent in combination.
  • Examples of the benzimidazole-based antiaging agent include zinc salts of 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, and 2-mercaptobenzimidazole.
  • dithiocarbamate-based antiaging agent examples include nickel diethyldithiocarbamate, nickel dimethyldithiocarbamate, nickel dibutyldithiocarbamate, nickel diisobutyldithiocarbamate, copper dimethyldithiocarbamate, copper diethyldithiocarbamate, copper dibutyldithiocarbamate, N.
  • examples thereof include copper ethyl-N-phenyldithiocarbamate, copper N-pentamethylene dithiocarbamate, and copper dibenzyldithiocarbamate.
  • amine-based antiaging agent examples include phenyl- ⁇ -naphthylamine, phenyl- ⁇ -naphthylamine, p- (p-toluenesulfonylamide) -diphenylamine, 4,4'-( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine, 4 , 4'-Dioctyl diphenylamine, high temperature reaction product of diphenylamine and acetone, low temperature reaction product of diphenylamine and acetone and low temperature reaction product, low temperature reaction product of diphenylamine, aniline, acetone, reaction product of diphenylamine and diisobutylene, octylated diphenylamine, Dioctylated diphenylamine, p, p'-dioctyl-diphenylamine, octylated diphenylamine mixture, substituted diphenylamine, alkylated
  • Examples thereof include quinoline, 2,2,4-trimethyl-1,2-dihydroquinoline polymer, 4,4'-bis (a, a-dimethylbenzyl) diphenylamine, N, N'-di-2-naphthyl-. It is preferably at least one selected from p-phenylenediamine.
  • phenolic antiaging agent examples include 2,5-di- (t-amyl) -hydroquinone, 2,5-di-t-butylhydroquinone, and hydroquinone monomethyl ether, and the monophenolic agent is 1-oxy-3-.
  • Methyl-4-isopropylbenzene 2,6-di-t-butylphenol, 2,6-di-t-butyl-4-ethylphenol, 2,6-di-t-butyl-4-methylphenol, 2,6 -Di-t-butyl-4-sec-butylphenol, butyl hydroxyanisole, 2- (1-methylcyclohexyl) -4,6-dimethylphenol, 2,6-di-t-butyl- ⁇ -dimethylamino-p -Cresol, alkylated phenol, aralkyl substituted phenol, phenol derivative, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-methyl-6-cyclohexylphenol), 2 , 2'-methylenebis (4-ethyl-6-tert-butylphenol), 4,4'-methylenebis (2,6-di-tert-butylphenol), 2,2-methylenebis (6
  • 2,2'-Methylenebis (4-ethyl-6-tert-butylphenol), 2'2-Methylenebis (4-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert- Butylphenol), preferably at least one selected from 4,4'-thiobis (3-methyl-6-tert-butylphenol).
  • thiourea-based antiaging agent examples include 1,3-bis (dimethyl-aminopropyl) -2-thiourea and tributylthiourea. It was
  • Dilauryl thiodipropionate disstearyl thiodipropionate, dimyristyl-3,3'-thiodipropionate, ditridecyl-3,3'-thiodipropionate, pentaerythritol-tetrakis- ( ⁇ ) as organic thioacids -Lauryl-thiopropionate), dilauryl-thiodipropionate and the like are exemplified.
  • phosphites examples include tris (nonyl-phenyl) phosphite, tris (mixed mono- and di-nonylphenyl) phosphite, diphenyl mono (2-ethylhexyl) phosphite, diphenyl monotridecyl phosphite, and diphenyl isodecyl.
  • the lower limit is preferably 0.01 part by mass or more, more preferably 0.05 part by mass or more with respect to 100 parts by mass of (a) epihalohydrin-based polymer. It is particularly preferably 0.1 part by mass or more, it may be 0.3 part by mass or more, the upper limit is preferably 3.5 parts by mass or less, and particularly preferably 3.0 parts by mass or less. ..
  • a known acid receiving agent may be used.
  • Preferred acid receiving agents are metal compounds and / or inorganic microporous crystals.
  • the metal compound include oxides of Group II (Groups 2 and 12) metals in the periodic table, hydroxides, carbonates, carboxylates, silicates, borates, phosphites, and Group III of the periodic table.
  • Metal oxides hydroxides, carboxylates, silicates, sulfates, nitrates, phosphates, periodic table Group IV (Groups 4 and 14) metal oxides, Examples thereof include metal compounds such as a basic carbonate, a basic carboxylate, a basic subphosphate, a basic sulfite, and a tribasic sulfate. These may be used alone or in combination of two or more.
  • the metal compound examples include magnesia, magnesium hydroxide, aluminum hydroxide, barium hydroxide, sodium carbonate, magnesium carbonate, barium carbonate, fresh lime, slaked lime, calcium carbonate, calcium stearate, zinc stearate, calcium phthalate, and the like.
  • the inorganic microporous crystal means a crystalline porous body, and can be clearly distinguished from an atypical porous body such as silica gel and alumina.
  • examples of such inorganic microporous crystals include zeolites, aluminophosphate-type molecular sieves, layered silicates, synthetic hydrotalcites, alkali metal titanates and the like.
  • Particularly preferred acid receiving agents include synthetic hydrotalcite.
  • the zeolites are, in addition to natural zeolites, various zeolites such as A-type, X-type, and Y-type synthetic zeolites, sodalites, natural or synthetic mordenites, and ZSM-5, and metal substituents thereof. It may be used in combination of two or more kinds.
  • the metal of the metal substituent is often sodium.
  • As the zeolites those having a large acid receptivity are preferable, and type A zeolites are preferable.
  • the synthetic hydrotalcite is represented by the following general formula (1).
  • z is a real number of 1 to 5
  • w is a real number of 0 to 10, respectively.
  • the lower limit is preferably 0.01 part by mass or more, more preferably 0.05 part by mass or more with respect to 100 parts by mass of (a) epihalohydrin-based polymer. It is particularly preferably 0.1 part by mass or more, preferably 0.3 part by mass or more, and the upper limit is preferably 5 parts by mass or less, and particularly preferably 3.5 parts by mass or less.
  • a known reinforcing agent can be used, specifically, calcium carbonate, talc, silica, clay, carbon fiber, glass fiber, carbon black, titanium oxide, magnesium oxide, hydrotalcite, and hydroxylation.
  • examples thereof include magnesium, antimony oxide, zinc oxide and the like, and carbon black and silica are preferable.
  • carbon black examples include furnace black, acetylene black, thermal black, channel black, graphite, and the like, and specifically, SAF, ISAF, HAF, EPC, XCF, FEF, GPF, HMF, SRF, FT, and MT. It can be exemplified. These carbon blacks may be used alone or in combination of two or more.
  • silica is not particularly limited, and is, for example, wet silica (hydrous silicic acid), dry silica (silicic anhydride), aluminum silicate, and the like.
  • wet method silica is preferable.
  • Wet method silica is a fine particle of hydrous silicic acid produced by acid decomposition of an aqueous sodium silicate solution or an alkaline earth metal silicate, and is a filler for rubber mainly composed of silicon dioxide.
  • the blending amount of the reinforcing agent is preferably 10 to 100 parts by mass, more preferably 20 to 80 parts by mass with respect to 100 parts by mass of the (a) epihalohydrin-based polymer.
  • the blending ratio of carbon black and silica is 4: 1 to 1: 1 (the former is carbon black and the latter is silica).
  • processing aid examples include paraffin waxes such as paraffin waxes and hydrocarbon waxes and hydrocarbon resins; fatty acids such as stearic acid and palmitic acid; fatty acid amides such as stearoamide and oleylamide; n-.
  • Fatty acid esters such as butyl stearate; sorbitan fatty acid esters such as sorbitan stearate; fatty alcohols; etc. may be mentioned, and these may be used alone or in combination of two or more.
  • the blending amount of the processing aid may be 0 to 20 parts by mass, 0.1 to 20 parts by mass, and 0.3 to 10 parts by mass with respect to 100 parts by mass of the (a) epihalohydrin-based polymer. It may be a department.
  • plasticizer examples include phthalic acid derivatives such as dioctyl phthalate (bis phthalate (2-ethylhexyl)) and diallyl ester phthalate, adipic acid derivatives such as dibutyl diglycol-adipate and di (butoxyethoxy) ethyl adipate, and sebacic acid.
  • phthalic acid derivatives such as dioctyl phthalate (bis phthalate (2-ethylhexyl)) and diallyl ester phthalate
  • adipic acid derivatives such as dibutyl diglycol-adipate and di (butoxyethoxy) ethyl adipate
  • sebacic acid examples include sebacic acid derivatives such as dioctyl and trimellitic acid derivatives such as trioctyl remeritate, and these may be used alone or in combination of two or more.
  • the blending amount of the plasticizer may be 0 to 50 parts by mass, 0.1 to 50 parts by mass, or 3 to 35 parts by mass with respect to 100 parts by mass of the (a) epihalohydrin-based polymer. It's okay.
  • any means conventionally used in the field of polymer processing can be used, and for example, a mixing roll, a Banbury mixer, various kneaders and the like can be used.
  • a mixing roll a Banbury mixer, various kneaders and the like can be used.
  • first knead only rubber then prepare an A kneading compound containing a compounding agent other than a cross-linking agent and a cross-linking accelerator, and then perform B-kneading by adding a cross-linking agent and a cross-linking accelerator. be able to.
  • the crosslinked product using the rubber composition of the present invention is obtained by cross-linking the rubber composition of the present invention. Specifically, it is usually obtained by heating to 100 to 200 ° C., and the crosslinking time varies depending on the temperature, but is usually carried out between 0.5 and 300 minutes. In the cross-linking treatment, heating may be performed in one or two steps.
  • cross-linking molding in addition to the case where cross-linking and molding are performed integrally, the case where the rubber-containing composition previously molded is heated again to form a cross-linked product, and the case where the cross-linked product is heated first and processed for molding. It may be applied in any case.
  • any method such as compression molding by a mold, injection molding, steam can, air bath, infrared rays, or heating by microwave can be used.
  • each compounding agent shown in Table 1 was kneaded with a pressurized kneader at 120 ° C. to prepare an A kneading compound.
  • This A kneading compound was kneaded with an open roll to prepare a B kneading compound.
  • A is a raw material of the A kneading compound
  • B is a raw material to be blended in the A kneading compound when the B kneading compound is prepared.
  • the units of Tables 1 to 3 are parts by mass.
  • the compounding agents shown in Table 1 were kneaded with a pressurized kneader at 120 ° C. to prepare an A kneading compound, which was molded into a sheet using an open roll to obtain an A kneading sheet.
  • the vulcanizing agent shown in the table was added to the obtained A kneaded sheet, and the sheet was formed into a sheet by an open roll. Then, it was press-crosslinked at 170 ° C. for 15 minutes to obtain a crosslinked sheet. Further, this was heated in an air oven at 150 ° C. for 2 hours to obtain a secondary crosslinked product.
  • Tobamorite powder TK strip-shaped crystal, aspect ratio (average length / average width): 1.0, average length: 24 ⁇ m) * 12 "Disonet XL-21S” manufactured by Osaka Soda Co., Ltd. * 13 "Perbutyl P” manufactured by NOF CORPORATION
  • Tables 4 to 6 show the test results obtained from the water resistance test method and the acid resistance test method.
  • the water resistance test was carried out in accordance with JIS K6258 by immersing the above-mentioned secondary crosslinked product in distilled water at a temperature of 100 ° C. for 70 hours, and a dipping test was performed to calculate the water absorption rate from the volume change before and after the dipping ( ⁇ (after the test). Volume of crosslinked product-Volume of crosslinked product before test) / Volume of crosslinked product before test ⁇ x 100 (%)).
  • the acid resistance test was based on JIS K6258, and 4 g of formic acid was added to 1000 g of water to prepare a 4000 ppm formic acid aqueous solution. 100 ml of the prepared aqueous solution of formic acid was placed in the autoclave, the secondary crosslinked product cut into approximately 1 cm squares was immersed, stored at 80 ° C. for 72 hours, and then the water absorption rate was calculated from the volume change before and after immersion ( ⁇ (after the test). Volume of crosslinked product-Volume of crosslinked product before test) / Volume of crosslinked product before test ⁇ ⁇ 100 (%)).
  • the crosslinked product obtained by cross-linking the rubber composition of the present invention is excellent in water resistance and acid resistance, it is useful as a rubber packing or the like that requires water resistance and acid resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

エピハロヒドリン系重合体を用いた材料として、更に優れた耐水性、耐酸性を要求されることがあり、そのためのゴム組成物、及びその架橋物を提供することを課題とする。 本発明は、(a)エピハロヒドリン系重合体、(b)結晶系がトバモライト型であるケイ酸カルシウム、(c)ハロゲン原子の反応性を利用する架橋剤を含有し、(a)エピハロヒドリン系重合体100質量部に対して、(b)結晶系がトバモライト型であるケイ酸カルシウム10質重量部以上を含有するゴム組成物、及びその架橋物である。

Description

ゴム組成物
 耐水性、耐酸性に優れる材料のためのゴム組成物及び架橋物を提供することを目的とする。
 一般に、エピハロヒドリン系重合体は、架橋されることにより、諸物性に優れた材料として広汎に用いられ、自動車用途では燃料ホースやエアー系ホース、チューブ材料として使用されている。
 ゴム材料としては、耐水性が求められているが、受酸剤としてマグネシウム系化合物を使用すれば、耐水性は相当劣る。このため、耐水性を改良する手段として、受酸剤としてハイドロタルサイト類を用いる方法が提案されている。(特許文献1参照)。
特開昭57-151652号公報
 しかし、エピハロヒドリン系重合体を用いた材料として、更に優れた耐水性を要求されることがあり、そのためのゴム組成物、及びその架橋物を提供することを課題とする。
 また、エピハロヒドリン系重合体を用いた材料として、更に優れた耐酸性を要求されることがあり、そのためのゴム組成物、及びその架橋物を提供することを課題とする。
 本発明者らは、(a)エピハロヒドリン系重合体、(b)結晶系がトバモライト型であるケイ酸カルシウム、(c)ハロゲン原子の反応性を利用する架橋剤を含有し、(a)エピハロヒドリン系重合体100質量部に対して、(b)結晶系がトバモライト型であるケイ酸カルシウム10質重量部以上を含有するゴム組成物、及びその架橋物により、上記課題を解決することを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下に関する。
項1 (a)エピハロヒドリン系重合体、(b)結晶系がトバモライト型であるケイ酸カルシウム、(c)ハロゲン原子の反応性を利用する架橋剤を含有し、(a)エピハロヒドリン系重合体100質量部に対して、(b)結晶系がトバモライト型であるケイ酸カルシウム10質重量部以上を含有するゴム組成物。
項2 前記(a)エピハロヒドリン系重合体が、エピハロヒドリン単独重合体、又は、エピハロヒドリンに基づく構成単位と、エチレンオキサイド、プロピレンオキサイド、及びアリルグリシジルエーテルから選択される少なくとも一つのユニットを構成単位に含む重合体である項1に記載のゴム組成物。
項3 項1又は項2に記載のゴム組成物を架橋してなる架橋物。
 本発明のゴム組成物を架橋してなる架橋物は耐水性、耐酸性に優れるために、耐水性、耐酸性が要求されるゴムパッキン等として有用である。
 以下に、本発明について詳細に説明する。
 本発明のゴム組成物はゴム成分として、(a)エピハロヒドリン系重合体を含有し、さらに(b)結晶系がトバモライト型であるケイ酸カルシウム、(c)ハロゲン原子の反応性を利用する架橋剤を含有し、(a)エピハロヒドリン系重合体100質量部に対して、(b)結晶系がトバモライト型であるケイ酸カルシウム10質重量部以上を含有する。これにより、耐水性、耐酸性に優れる。
 上記ゴム組成物は前述の効果が得られるが、このような作用効果が得られる理由は必ずしも明らかではないが、以下のように推察される。
 (b)結晶系がトバモライト型であるケイ酸カルシウムは、層状構造(短冊状構造、板状構造)であるため、(a)エピハロヒドリン系重合体、(c)ハロゲン原子の反応性を利用する架橋剤を含有するゴム組成物において、(b)結晶系がトバモライト型であるケイ酸カルシウムを特定量含有することにより、(b)結晶系がトバモライト型であるケイ酸カルシウムの形状に起因して、組成物中において、(b)結晶系がトバモライト型であるケイ酸カルシウムが物理的な盾となり、ポリマーを保護でき、耐水性、耐酸性に優れる。
 本発明に使用される、エピハロヒドリン系重合体(エピハロヒドリンゴム)としては、エピクロロヒドリン、エピブロムヒドリンなどのエピハロヒドリンを開環重合して得られ、エピハロヒドリンに基づく構成単位を有し、エピハロヒドリン類の単独重合体又は、エピハロヒドリン類と、エチレンオキサイド、プロピレンオキサイド、n-ブチレンオキサイドなどのアルキレンオキサイド類、メチルグリシジルエーテル、エチルグリシジルエーテル、n-グリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテルなどのグリシジル類、スチレンオキサイドなどから選択される化合物との共重合体である。(a)エピハロヒドリン系重合体は、一種又は二種以上併用して使用することができる。
 エピハロヒドリン系重合体としては、エピハロヒドリンに基づく構成単位のみを構成単位に有する(エピハロヒドリン単独重合体)、又はエピハロヒドリンに基づく構成単位以外にエチレンオキサイド、プロピレンオキサイド、及びアリルグリシジルエーテルから選択される化合物の少なくとも一つに基づく構成単位を含むことが好ましく、プロピレンオキサイド、エチレンオキサイド、及びアリルグリシジルエーテルから選択される少なくとも一つに基づく構成単位とエピクロロヒドリンに基づく構成単位を含むことが更に好ましく、エピクロロヒドリン、及びエチレンオキサイドのユニットを構成単位に含むことが最も好ましい。
 エピハロヒドリン系重合体としては、エピハロヒドリンに基づく構成単位を全重合単位に対して、10~100モル%であることが好ましく、15~75モル%であることがより好ましく、20~65モル%であることが特に好ましい。エピハロヒドリンに基づく構成単位はエピクロロヒドリンに基づく構成単位であることが好ましい。
 エピハロヒドリン系重合体としては、エチレンオキサイドに基づく構成単位を全重合単位に対して、0~90モル%であることが好ましく、25~85モル%であることがより好ましく、35~80モル%であることが特に好ましい。
 エピハロヒドリン系重合体としては、プロピレンオキサイドに基づく構成単位、アリルグリシジルエーテルに基づく構成単位を全重合単位に対して、0~15モル%であることが好ましく、0~12モル%であることがより好ましく、0~10モル%であることが特に好ましい。
 本発明のゴム組成物においては、ゴム成分として(a)エピハロヒドリン系重合体のみを含有しても良く、前記エピハロヒドリン系重合体以外のゴム種をさらに含有しても良い。エピハロヒドリン系重合体以外のゴムとしては、天然ゴム又は合成ゴムが挙げられ、合成ゴムとしては、イソプレンゴム(IR)、1,2-ポリブタジエン(VBR)、スチレンブタジエンゴム(SBR)、ブチルゴム(IIR)、エチレンプロピレンゴム(EPM)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、クロロスルホン化ポリエチレン(CSM)、塩素化ポリエチレン(CPE)、アクリルゴム(ACM)、アクリロニトリルブタジエンゴム(NBR)、水素化アクリロニトリルブタジエンゴム(H-NBR)が挙げられ、エチレンプロピレンゴム(EPDM)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)、エピハロヒドリン系重合体以外のポリエーテルゴムから選択される少なくとも一種であることが好ましい。
 本発明のゴム組成物のゴム成分として、前記エピハロヒドリン系重合体以外のゴム種を含有する場合には、ゴム成分中、前記エピハロヒドリン系重合体が10~90質量%、前記エピハロヒドリン系重合体以外のゴム種90~10質量%を含有することが好ましく、前記エピハロヒドリン系重合体30~90質量%、前記エピハロヒドリン系重合体以外のゴム種70~10質量%を含有することがより好ましく、前記エピハロヒドリン系重合体70~90質量%、前記エピハロヒドリン系重合体以外のゴム種30~10質量%を含有することが特に好ましい。
 ゴム成分100質量%中、(a)エピハロヒドリン系重合体の含有量は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上であり、100質量%であってもよい。
 本発明においては(b)結晶系がトバモライト型であるケイ酸カルシウムの具体的な例としては、14Åトバモライト、11Åトバモライト、9Åトバモライト、C・S・H(I)、C・S・H(II)を例示することができ、これらから選択される少なくとも1種以上であることが好ましい。(b)結晶系がトバモライト型であるケイ酸カルシウムは、単独で用いてもよく、2種以上を併用してもよい。
 (b)結晶系がトバモライト型であるケイ酸カルシウムの平均長さは、10μm以上、好ましくは15μm以上、より好ましくは20μm以上であり、200μm以下、好ましくは45μm以下、より好ましくは30μm以下である。
 (b)結晶系がトバモライト型であるケイ酸カルシウムのアスペクト比(平均長さ/平均幅)は、好ましくは0.3以上、より好ましくは0.5以上、さらに好ましくは0.8以上であり、好ましくは1.4以下、より好ましくは1.3以下、さらに好ましくは1.2以下である。
 なお、本明細書において、ケイ酸カルシウムの平均幅は、透過型電子顕微鏡により測定したケイ酸カルシウムの幅の平均値(例えば、100個のケイ酸カルシウムの幅を測定し、算出した平均値)である。また、本明細書において、ケイ酸カルシウムの平均長さは、透過型電子顕微鏡により測定したケイ酸カルシウムの長さの平均値(例えば、100個のケイ酸カルシウムの長さを測定し、算出した平均値)である。
 ここで、ケイ酸カルシウムの幅とは、主面(平面視したときに面積が最大となる面)の短辺の長さであり、ケイ酸カルシウムの長さとは、主面の長辺の長さである。
 本発明においては(b)結晶系がトバモライト型であるケイ酸カルシウムを前記(a)エピハロヒドリン系重合体100質量部に対して、10質量部以上含有することが好ましく、12質量部以上含有することがより好ましく、15質量部以上含有することが特に好ましく、20質量部以上含有することが最も好ましく、25質量部以上含有することがより最も好ましく、30質量部以上含有することがさらに最も好ましく、上限は60質量部以下含有することが好ましく、50質量部以下含有することがより好ましく、40質量部以下含有することが特に好ましい。
 本発明においては(c)ハロゲン原子の反応性を利用する架橋剤の具体的な例としては、ポリアミン類、チオウレア類、チアジアゾール類、トリアジン類、キノキサリン類、ビスフェノール類等が挙げられる。(c)ハロゲン原子の反応性を利用する架橋剤は、単独で用いてもよく、2種以上を併用してもよい。なかでも、キノキサリン類が好ましい。
 ポリアミン類としては、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ヘキサメチレンテトラミン、p-フェニレンジアミン、クメンジアミン、N,N’-ジシンナミリデン-1,6-ヘキサンジアミン、エチレンジアミンカーバメート、ヘキサメチレンジアミンカーバメート等が挙げられる。
 チオウレア類としては、2-メルカプトイミダゾリン、1,3-ジエチルチオウレア、1,3-ジブチルチオウレア、トリメチルチオウレア等が挙げられる。
 チアジアゾール類としては、2,5-ジメルカプト-1,3,4-チアジアゾール、2-メルカプト-1,3,4-チアジアゾール-5-チオベンゾエート等が挙げられる。
 トリアジン類としては、2,4,6-トリメルカプト-1,3,5-トリアジン、2-ヘキシルアミノ-4,6-ジメルカプトトリアジン、2-ジエチルアミノ-4,6-ジメルカプトトリアジン、2-シクロヘキシルアミノ-4,6-ジメルカプトトリアジン、2-ジブチルアミノ-4,6-ジメルカプトトリアジン、2-アニリノ-4,6-ジメルカプトトリアジン、2-フェニルアミノ-4,6-ジメルカプトトリアジン等が挙げられる。
 キノキサリン類としては、2,3-ジメルカプトキノキサリン、キノキサリン-2,3-ジチオカーボネート、6-メチルキノキサリン-2,3-ジチオカーボネート(キノメチオナート)、5,8-ジメチルキノキサリン-2,3-ジチカーボネート等が挙げられる。
 ビスフェノール類としてはビスフェノールAF、ビスフェノールS等が挙げられる。
 (c)ハロゲン原子の反応性を利用する架橋剤の配合量は、(a)エピハロヒドリン系重合体100質量部に対して、下限は0.1質量部以上であることが好ましく、0.3質量部以上であることがより好ましく、上限は10質量部以下であることが好ましく、5質量部以下であることがより好ましく、3質量部以下であることが特に好ましい。
 本発明のゴム組成物に対しては、本発明の効果を損なわない限り、上記の他に当該技術分野で使用される各種の老化防止剤、補強剤、可塑剤、加工助剤、難燃剤、顔料、架橋促進剤、加硫剤等を任意で配合することができる。さらに本発明の特性が失われない範囲で、当該技術分野で通常行われている、樹脂等のブレンドを行うことも可能である。これら各配合剤は、単独で用いてもよく、2種以上を併用してもよい。
 老化防止剤の具体的な例としては、ベンズイミダゾール系老化防止剤、ジチオカルバミン酸塩系老化防止剤、アミン系老化防止剤、フェノール系老化防止剤、チオウレア系老化防止剤、有機チオ酸類、亜リン酸類が挙げられ、これらから選択される少なくとも一種であることが好ましく、ベンズイミダゾール系老化防止剤、ジチオカルバミン酸塩系老化防止剤であることがより好ましく、ベンズイミダゾール系老化防止剤、ジチオカルバミン酸塩系老化防止剤を併用することがさらに好ましい。
 ベンズイミダゾール系老化防止剤としては、2-メルカプトベンズイミダゾール、2-メルカプトメチルベンズイミダゾール、2-メルカプトベンズイミダゾールの亜鉛塩が例示される。
 ジチオカルバミン酸塩系老化防止剤を具体的に例示すると、ジエチルジチオカルバミン酸ニッケル、ジメチルジチオカルバミン酸ニッケル、ジブチルジチオカルバミン酸ニッケル、ジイソブチルジチオカルバミン酸ニッケル、ジメチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸銅、ジブチルジチオカルバミン酸銅、N-エチル-N-フェニルジチオカルバミン酸銅、N-ペンタメチレンジチオカルバミン酸銅、ジベンジルジチオカルバミン酸銅が例示される。
 アミン系老化防止剤としては、フェニル-α-ナフチルアミン、フェニル-β-ナフチルアミン、p-(p-トルエン・スルホニルアミド)-ジフェニルアミン、4,4’-(α,α’-ジメチルベンジル)ジフェニルアミン、4,4’-ジオクチル・ジフェニルアミン、ジフェニルアミンとアセトンの高温反応生成品、ジフェニルアミンとアセトンと低温反応生成品、ジフェニルアミン、アニリン、アセトンの低温反応品、ジフェニルアミンと、ジイソブチレンの反応生成品、オクチル化ジフェニルアミン、ジオクチル化ジフェニルアミン、p,p’-ジオクチル・ジフェニルアミン、オクチル化ジフェニルアミンの混合品、置換ジフェニルアミン、アルキル化ジフェニルアミン、アルキル化ジフェニルアミンの混合品、アラルキル化ジフェニルアミンによるアルキルおよびアラルキル置換フェノールの混合品、ジフェニルアミン誘導体、N,N’-ジフェニル-p-フェニレンジアミン、N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン、N-シクロヘキシル-N’-フェニル-p-フェニレンジアミン、N-フェニル-N’-(3-メタクリロイルオキシ-2-ヒドロキシプロピル)-p-フェニレンジアミン、N,N’-ビス(1-メチルヘプチル)-p-フェニレンジアミン、N,N’-ビス(1,4-ジメチルペンチル)-p-フェニレンジアミン、N,N’-ビス(1-エチル-3-メチルペンチル)-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、ジアリル-p-フェニレンジアミンの混合品、フェニル,ヘキシル-p-フェニレンジアミン、フェニル,オクチル-p-フェニレンジアミンなどがあり、その他のアミン系として芳香族アミンと脂肪族ケトンの縮合品、ブチルアルデヒド-アニリン縮合品、2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物、6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリンなどが例示され、2,2,4-トリメチル-1,2-ジヒドロキノリン重合体、4,4´-ビス(a,a-ジメチルベンジル)ジフェニルアミン、N,N´-ジ-2-ナフチル-p-フェニレンジアミンから選択される少なくとも一種であることが好ましい。
 フェノール系老化防止剤としては、2,5-ジ-(t-アミル)-ヒドロキノン、2,5-ジ-t-ブチルヒドロキノン、ヒドロキノンモノメチルエーテルなどがあり、モノフェノール系として1-オキシ-3-メチル-4-イソプロピルベンゼン、2,6-ジ-t-ブチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-4-sec-ブチルフェノール、ブチル・ヒドロキシアニソール、2-(1-メチルシクロヘキシル)-4,6-ジメチルフェノール、2,6-ジ-t-ブチル-α-ジメチルアミノ-p-クレゾール、アルキル化フェノール、アラルキル置換フェノール、フェノール誘導体、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-シクロヘキシルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2-メチレンビス(6-α-メチル-ベンジル-p-クレゾール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルクレゾール)、2,2’-エチリデンビス(4,6-ジ-tert-ブチルフェノール)、1,1’-ビス(4-ヒドロキシフェニル)-シクロヘキサン、2,2’-ジヒドロキシ-3,3’-ジ-(α-メチルシクロヘキシル)-5,5-ジメチル・ジフェニルメタン、アルキル化ビスフェノール、p-クレゾールとジシクロペンタジエンのブチル化反応生成物、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、1,3,5-トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌレート、2-tert-ブチル-6-(3’-tert-ブチル-5’-メチル-2’-ヒドロキシベンジル)-4-メチルフェニル・アクリレート、2-〔1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)-エチル〕-4,6-ジ-tert-ペンチルフェニルアクリレート、3,9-ビス〔2-{3(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル〕-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、ブチル酸3,3-ビス(3-tert-ブチル-4-ヒドロキシフェニル)エチレンエステル、1,3,5-トリ(2-ヒドロキシエチル)-s-トリアジン-2,4,6-(1H,3H,5H)トリオンの3,5-ジ-tert-ブチル-4-ヒドロキシヒドロ桂皮酸トリエステル、変性ポリアルキル亜リン酸塩化多価フェノール、4,4’-チオビス(6-tert-ブチル-3-メチルフェノール)、4,4´-チオビス(3-メチル-6-tert-ブチルフェノール)、4,4’-チオビス-(6-tert-ブチル-o-クレゾール)、4,4’-ジ及びトリ-チオビス-(6-tert-ブチル-o-クレゾール)、ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)スルフィド、1,1,3-トリス-(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2,2-チオビス(4-メチル-6-tert-ブチルフェノール)、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチル・フェニル)プロピオネート、テトラキス-〔メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン、ペンタエリスリトール-テトラキス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、トリス-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、2,2-チオ-ジエチレンビス〔3-(3,5-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕、N,N’-ヘキサメチレビス(3,5-tert-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、2,4-ビス〔(オクチルチオ)メチル〕-o-クレゾール、3,5-ジ-tert-ブチル-4-ヒドロキシベンジル-ホスホネート-ジエチルエステル、テトラキス〔メチレン(3,5-ジ-tert-ブチル-4-ヒドロキシヒドロシンナメイト)〕メタン、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸エステル、ヒンダートフェノール、ヒンダートビスフェノール、2-ヒドロキシナフタレン-3-カーボイル-2’-メトキシアニリド、2-ヒドロキシナフタレン-3-カーボイル-2’-メチルアニリド、2-ヒドロキシナフタレン-3-カーボイル-4’-メトキシアニリド、4,4’-ビス(N,N’-ジメチルアミノ)-トリフェニルメタン、2-ヒドロキシナフタレン-3-カーボイルアニリド、1,1’-ビス(4,4’-N,N’-ジメチルアミノフェニル)-シクロヘキサンなどが例示され、2,2´-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2´2-メチレンビス(4-メチル-6-tert-ブチルフェノール)、4,4´-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、4,4´-チオビス(3-メチル-6-tert-ブチルフェノール)から選択される少なくとも一種であることが好ましい。
 チオウレア系老化防止剤としては、1,3-ビス(ジメチル・アミノプロピル)-2-チオ尿素、トリブチルチオ尿素等が例示される。 
 有機チオ酸類としてジラウリル・チオジプロピオネート、ジステアリル・チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジトリデシル-3,3’-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート)、ジラウリル・チオジプロピオネート等が例示される。
 亜リン酸類としては、トリス(ノニル・フェニル)フォスファイト、トリス(混合モノ-及びジ-ノニルフェニル)フォスファイト、ジフェニル・モノ(2-エチルヘキシル)フォスファイト、ジフェニル・モノトリデシル・フォスファイト、ジフェニル・イソデシル・フォスファイト、ジフェニル・イソオクチル・フォスファイト、ジフェニル・ノニルフェニル・フォスファイト、トリフェニルフォスファイト、トリス(トリデシル)フォスファイト、トリイソデシルフォスファイト、トリス(2-エチルヘキシル)フォスファイト、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、テトラフェニルジプロピレングリコール・ジフォスファイト、テトラフェニルテトラ(トリデシル)ペンタエリスリトールテトラフォスファイト、1,1,3-トリス(2-メチル-4-ジ-トリデシルフォスファイト-5-tert-ブチルフェニル)ブタン、4,4’-ブチリデンビス(3-メチル-6-tert-ブチル-ジ-トリデシルフォスファイト)、2,2’-エチリデンビス(4,6-ジ-tert-ブチルフェノール)フルオロフォスファイト、4,4’-イソプロピデン-ジフェノールアルキル(C12~C15)フォスファイト、環状ネオペンタンテトライルビス(2,4-ジ-tert-ブチルフェニルフォスファイト)、環状ネオペンタンテトライルビス(2,6-ジ-tert-ブチル-4-フェニルフォスファイト)、環状ネオペンタンテトライルビス(ノニルフェニルフォスファイト)、ビス(ノニルフェニル)ペンタエリスリトールジフォスファイト、ジブチルハイドロゲンフォスファイト、ジステアリル・ペンタエリスリトール・ジフォスファイト、水添ビスフェノールA・ペンタエリスリトールフォスファイト・ポリマー等が例示される。
 老化防止剤の添加量としては、(a)エピハロヒドリン系重合体100質量部に対して、下限は0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.1質量部以上であることが特に好ましく、0.3質量部以上であってよく、上限は3.5質量部以下であることが好ましく、3.0質量部以下であることが特に好ましい。
 本発明のゴム組成物においては、公知の受酸剤を使用してもよい。好ましい受酸剤としては金属化合物及び/又は無機マイクロポーラス・クリスタルである。金属化合物としては、周期表第II族(2族及び12族)金属の酸化物、水酸化物、炭酸塩、カルボン酸塩、ケイ酸塩、ホウ酸塩、亜リン酸塩、周期表III族(3族及び13族)金属の酸化物、水酸化物、カルボン酸塩、ケイ酸塩、硫酸塩、硝酸塩、リン酸塩、周期表第IV族(4族及び14族)金属の酸化物、塩基性炭酸塩、塩基性カルボン酸塩、塩基性亜リン酸塩、塩基性亜硫酸塩、三塩基性硫酸塩等の金属化合物が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
前記金属化合物の具体例としては、マグネシア、水酸化マグネシウム、水酸化アルミニウム、水酸化バリウム、炭酸ナトリウム、炭酸マグネシウム、炭酸バリウム、生石灰、消石灰、炭酸カルシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、フタル酸カルシウム、亜リン酸カルシウム、亜鉛華、酸化錫、リサージ、鉛丹、鉛白、二塩基性フタル酸鉛、二塩基性炭酸鉛、ステアリン酸錫、塩基性亜リン酸鉛、塩基性亜リン酸錫、塩基性亜硫酸鉛、三塩基性硫酸鉛等を挙げることができ、炭酸ナトリウム、マグネシア、水酸化マグネシウム、生石灰、消石灰、亜鉛華が挙げられる。
 前記無機マイクロポーラス・クリスタルとは、結晶性の多孔体を意味し、無定型の多孔体、例えばシリカゲル、アルミナ等とは明瞭に区別できるものである。このような無機マイクロポーラス・クリスタルの例としては、ゼオライト類、アルミノホスフェート型モレキュラーシーブ、層状ケイ酸塩、合成ハイドロタルサイト、チタン酸アルカリ金属塩等が挙げられる。特に好ましい受酸剤としては、合成ハイドロタルサイトが挙げられる。
 前記ゼオライト類は、天然ゼオライトの外、A型、X型、Y型の合成ゼオライト、ソーダライト類、天然ないしは合成モルデナイト、ZSM-5などの各種ゼオライト及びこれらの金属置換体であり、これらは単独で用いても2種以上の組み合わせで用いても良い。また金属置換体の金属はナトリウムであることが多い。ゼオライト類としては酸受容能が大きいものが好ましく、A型ゼオライトが好ましい。
 前記合成ハイドロタルサイトは下記一般式(1)で表される。
  MgZnAl(OH)(2(X+Y)+3Z-2)CO・wHO (1)
[式中、xとyはそれぞれx+y=1~10の関係を有する0~10の実数、zは1~5の実数、wは0~10の実数をそれぞれ示す。]
 前記一般式(1)で表されるハイドロタルサイト類の例として、Mg4.5Al(OH)13CO・3.5HO、Mg4.5Al(OH)13CO、MgAl(OH)12CO・3.5HO、MgAl(OH)16CO・4HO、MgAl(OH)14CO・4HO、MgAl(OH)10CO・1.7HO、MgZnAl(OH)12CO・3.5HO、MgZnAl(OH)12CO等を挙げることができる。
 受酸剤の配合量としては、(a)エピハロヒドリン系重合体100質量部に対して、下限は0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.1質量部以上であることが特に好ましく、0.3質量部以上であってよく、上限は5質量部以下であることが好ましく、3.5質量部以下であることが特に好ましい。
 補強剤としては、公知の補強剤を使用することができ、具体的には炭酸カルシウム、タルク、シリカ、クレー、カーボンファイバー、グラスファイバー、カーボンブラック、酸化チタン、酸化マグネシウム、ハイドロタルサイト、水酸化マグネシウム、酸化アンチモン、酸化亜鉛等が挙げられ、カーボンブラックとシリカが好ましい。
 カーボンブラックとしては、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイトなどが挙げられ、具体的には、SAF、ISAF、HAF、EPC、XCF、FEF、GPF、HMF、SRF、FT、MTを例示することができる。これらのカーボンブラックは単独で使用してもよいし、また2種以上を併用してもよい。
 シリカの種類は、特に限定されず、例えば、湿式法シリカ(含水ケイ酸)、乾式法シリカ(無水ケイ酸)、ケイ酸アルミニウム等である。使用するシリカとしては、湿式法シリカが好ましい。湿式法シリカとは、ケイ酸ナトリウム水溶液をまたはアルカリ土類金属ケイ酸塩を、酸分解する等により製造される含水ケイ酸の微粒子で、二酸化ケイ素を主体としたゴム用充填材である。
 補強剤の配合量は(a)エピハロヒドリン系重合体100質量部に対して10~100質量部であることが好ましく、20~80質量部であることがより好ましい。
 補強剤として、カーボンブラックとシリカを併用する場合には、カーボンブラックとシリカとの配合比が4:1~1:1(前者がカーボンブラックで、後者がシリカ)となることが好ましい。
 加工助剤としては、具体的には、例えば、パラフィン・ワックス、炭化水素系ワックスなどのパラフィンおよび炭化水素樹脂;ステアリン酸、パルミチン酸などの脂肪酸;ステアロアミド、オレイル・アミドなどの脂肪酸アミド;n-ブチル・ステアレートなどの脂肪酸エステル;ソルビタンステアレート等のソルビタン脂肪酸エステル;脂肪アルコール;等が挙げられ、これらは一種を単独で用いても、二種以上を組み合わせて用いてもよい。
 加工助剤の配合量は、(a)エピハロヒドリン系重合体100質量部に対して、0~20質量部であってよく、0.1~20質量部であってよく、0.3~10質量部であってよい。
 可塑剤としては、フタル酸ジオクチル(フタル酸ビス(2-エチルヘキシル))やフタル酸ジアリルエステル等のフタル酸誘導体、ジブチルジグリコール-アジペートやジ(ブトキシエトキシ)エチルアジペート等のアジピン酸誘導体、セバシン酸ジオクチル等のセバシン酸誘導体、トリオクチルトリメリテート等のトリメリット酸誘導体などが挙げられ、これらは一種を単独で用いても、二種以上を組み合わせて用いてもよい。
 可塑剤の配合量は、(a)エピハロヒドリン系重合体100質量部に対して、0~50質量部であってよく、0.1~50質量部であってよく、3~35質量部であってよい。
 本発明のゴム組成物の配合方法としては、従来ポリマー加工の分野において利用されている任意の手段を用いることができ、例えばミキシングロール、バンバリーミキサー、各種ニーダー類等を用いることができる。例えば、最初にゴムのみを混練りし、次いで架橋剤、架橋促進剤以外の配合剤を投入したA練りコンパウンドを作製し、その後、架橋剤、架橋促進剤を投入するB練りを行う手順で行うことができる。
 本発明のゴム組成物を用いた架橋物は、本発明のゴム組成物を架橋して得られる。具体的には通常100~200℃に加熱することで得られ、架橋時間は温度により異なるが、0.5~300分の間で行われるのが通常である。架橋処理において、加熱を一段階または二段階で行ってよい。架橋成型は架橋と成型を一体的に行う場合や、先に成型したゴム含有組成物に改めて加熱することで架橋物とする場合のほか、先に加熱して架橋物を成型のために加工を施す場合のいずれでもよい。架橋成型の具体的な方法としては、金型による圧縮成型、射出成型、スチーム缶、エアーバス、赤外線、あるいはマイクロウェーブによる加熱等任意の方法を用いることができる。
 以下において実施例及び比較例により具体的に説明する。なお、本発明はこれに限定されるものではない。
 まず、表1に示す各配合剤を120℃の加圧式ニーダーにて混練りし、A練りコンパウンドを作成した。このA練りコンパウンドをオープンロールにて混練りし、B練りコンパウンドを作成した。表中のAとはA練りコンパウンドの原料であり、Bとは、B練りコンパウンドを作成する際に、A練りコンパウンドに配合する原料を示すものである。表1~表3の単位は質量部とする。
 具体的には、表1に示す配合剤を120℃の加圧式ニーダーにて混練りし、A練りコンパウンドを作成し、オープンロールを使用しシート状に成形し、A練りシートを得た。得られたA練りシートに、ポリエーテル重合体100質量部に対して、表に記載の加硫剤を添加しオープンロールにてシート化した。その後、170℃で15分プレス架橋し、架橋シートを得た。さらにこれをエア・オーブンで150℃2時間加熱し、二次架橋物を得た。
 以下に実施及び比較例で用いた配合剤を示す。
※1 株式会社大阪ソーダ製 エピクロロヒドリン-エチレンオキサイド二元共重合体「エピクロマーD」
※2 株式会社大阪ソーダ製 エピクロロヒドリン-エチレンオキサイド-アリルグリシジルエーテル三元共重合体「EPION301」
※3 花王株式会社製「スプレンダーR-300V」
※4 大内新興化学工業株式会社製「ノクラックNBC」
※5 大内新興化学工業株式会社製「ノクセラーMB」
※6 東海カーボン株式会社製「シースト3」
※7 エボニックジャパン製「カープレックス #1120」
※8 株式会社ADEKA製「アデカサイザー RS-107」
※9 堺化学工業株式会社製「STABIACE HT-1」
※10 巴工業株式会社製 ウォラストナイト型ケイ酸カルシウム 「NYAD 400」(針状結晶、アスペクト比(平均長さ/平均幅):3.0、平均長さ:24μm)
※11 日本インシュレーション株式会社製 トバモライトパウダー(トバモライト型ケイ酸カルシウム) 「トバモライトパウダー TK」(短冊状結晶、アスペクト比(平均長さ/平均幅):1.0、平均長さ:24μm)
※12 株式会社大阪ソーダ製「ダイソネット XL-21S」
※13 日本油脂株式会社製「パーブチルP」
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 耐水性試験方法、耐酸性試験方法より得られた試験結果を表4~6に示す。
[耐水性試験]
 耐水性試験はJIS K6258に準拠して、上記二次架橋物を温度100℃の蒸留水中に70時間浸漬させて浸漬試験を行い浸漬前後の体積変化から吸水率を算出した({(試験後の架橋物の体積-試験前の架橋物の体積)/試験前の架橋物の体積}×100(%)より算出)。
[耐酸性試験方法]
 耐酸性試験はJIS K6258に準拠して、水1000gに蟻酸4gを添加し4000ppmの蟻酸水溶液を作成した。作成した蟻酸水溶液オートクレープに100ml入れ、約1cm角に裁断した上記二次架橋物を浸漬し、80℃で72時間保管後、浸漬前後の体積変化から吸水率を算出した({(試験後の架橋物の体積-試験前の架橋物の体積)/試験前の架橋物の体積}×100(%)より算出)。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表4~表6より、実施例1~3の架橋物は比較例1~6の架橋物と比較して、吸水性が低く、耐水性に優れることが示された。
 表4~表6より、実施例1~3の架橋物は比較例1~6の架橋物と比較して、酸性液体における吸水性が低く、耐酸性に優れることが示された。
 本発明のゴム組成物を架橋してなる架橋物は耐水性、耐酸性に優れるために、耐水性、耐酸性が要求されるゴムパッキン等として有用である。
 

 

Claims (3)

  1.  (a)エピハロヒドリン系重合体、(b)結晶系がトバモライト型であるケイ酸カルシウム、(c)ハロゲン原子の反応性を利用する架橋剤を含有し、(a)エピハロヒドリン系重合体100質量部に対して、(b)結晶系がトバモライト型であるケイ酸カルシウム10質重量部以上を含有するゴム組成物。
  2.  前記(a)エピハロヒドリン系重合体が、エピハロヒドリン単独重合体、又は、エピハロヒドリンに基づく構成単位と、エチレンオキサイド、プロピレンオキサイド、及びアリルグリシジルエーテルから選択される少なくとも一つのユニットを構成単位に含む重合体である請求項1に記載のゴム組成物。
  3.  請求項1、又は請求項2に記載のゴム組成物を架橋してなる架橋物。
     
PCT/JP2021/035546 2020-09-30 2021-09-28 ゴム組成物 WO2022071281A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022553990A JPWO2022071281A1 (ja) 2020-09-30 2021-09-28

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020164277 2020-09-30
JP2020-164277 2020-09-30
JP2021-073820 2021-04-26
JP2021073820 2021-04-26

Publications (1)

Publication Number Publication Date
WO2022071281A1 true WO2022071281A1 (ja) 2022-04-07

Family

ID=80950445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035546 WO2022071281A1 (ja) 2020-09-30 2021-09-28 ゴム組成物

Country Status (2)

Country Link
JP (1) JPWO2022071281A1 (ja)
WO (1) WO2022071281A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921097B1 (ja) * 1970-10-20 1974-05-29
JPS506220B1 (ja) * 1970-10-16 1975-03-12
JPS58122951A (ja) * 1982-01-18 1983-07-21 Adeka Argus Chem Co Ltd 安定化された含ハロゲン樹脂組成物
JP2007100002A (ja) * 2005-10-06 2007-04-19 Japan Insulation Co Ltd ゴム組成物
JP2010509459A (ja) * 2006-11-09 2010-03-25 ヴァルスパー・ソーシング・インコーポレーテッド 粉末組成物及びそれから物品を製造する方法
JP2011208013A (ja) * 2010-03-30 2011-10-20 Sumitomo Chemical Co Ltd 液晶性樹脂組成物及びその成形体
JP2012501293A (ja) * 2008-09-02 2012-01-19 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー 可塑剤含有硬化促進剤組成物
JP2012158676A (ja) * 2011-01-31 2012-08-23 Toppan Forms Co Ltd 帯電防止剤組成物、当該帯電防止剤組成物を用いたマスターバッチ及び樹脂成形品
JP2013199611A (ja) * 2012-03-26 2013-10-03 Toppan Forms Co Ltd 帯電防止性組成物及び成形体
CN105602046A (zh) * 2014-11-18 2016-05-25 神华集团有限责任公司 一种橡胶及其制备方法
CN105670059A (zh) * 2014-11-18 2016-06-15 神华集团有限责任公司 硅钙渣和硅钙渣基橡胶填料及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506220B1 (ja) * 1970-10-16 1975-03-12
JPS4921097B1 (ja) * 1970-10-20 1974-05-29
JPS58122951A (ja) * 1982-01-18 1983-07-21 Adeka Argus Chem Co Ltd 安定化された含ハロゲン樹脂組成物
JP2007100002A (ja) * 2005-10-06 2007-04-19 Japan Insulation Co Ltd ゴム組成物
JP2010509459A (ja) * 2006-11-09 2010-03-25 ヴァルスパー・ソーシング・インコーポレーテッド 粉末組成物及びそれから物品を製造する方法
JP2012501293A (ja) * 2008-09-02 2012-01-19 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー 可塑剤含有硬化促進剤組成物
JP2011208013A (ja) * 2010-03-30 2011-10-20 Sumitomo Chemical Co Ltd 液晶性樹脂組成物及びその成形体
JP2012158676A (ja) * 2011-01-31 2012-08-23 Toppan Forms Co Ltd 帯電防止剤組成物、当該帯電防止剤組成物を用いたマスターバッチ及び樹脂成形品
JP2013199611A (ja) * 2012-03-26 2013-10-03 Toppan Forms Co Ltd 帯電防止性組成物及び成形体
CN105602046A (zh) * 2014-11-18 2016-05-25 神华集团有限责任公司 一种橡胶及其制备方法
CN105670059A (zh) * 2014-11-18 2016-06-15 神华集团有限责任公司 硅钙渣和硅钙渣基橡胶填料及其制备方法

Also Published As

Publication number Publication date
JPWO2022071281A1 (ja) 2022-04-07

Similar Documents

Publication Publication Date Title
JP5239865B2 (ja) 加硫用ゴム組成物
JP6376324B2 (ja) 耐屈曲性組成物及びその架橋物
KR101918614B1 (ko) 반도전성 고무 조성물
EP3029109B1 (en) Crosslinking composition exhibiting excellent storage stability
JP2006176763A (ja) 加硫ゴム用組成物およびその加硫物
WO2022071281A1 (ja) ゴム組成物
JP2010144014A (ja) 自動車用ゴム組成物及びその加硫物
WO2022071279A1 (ja) ゴム組成物
JPWO2019130947A1 (ja) ゴム組成物
JP4300887B2 (ja) 加硫用ゴム組成物およびその加硫ゴム材料
JP4855643B2 (ja) 耐酸性に優れた加硫用ゴム組成物およびその加硫ゴム材料
JP5403419B2 (ja) バイオディーゼル燃料と直接接触する成型部品を製造するための加硫用ゴム組成物
CN106795365B (zh) 电子照相设备部件用组合物
JP5800198B2 (ja) 加硫用ゴム組成物及びその加硫物
WO2022075300A1 (ja) 架橋物
EP2316884B1 (en) Vulcanizable rubber composition for air spring, and molded rubber article for air spring
JP2014025017A (ja) 加硫特性と保存安定性に優れたエピクロルヒドリン系ゴム加硫用組成物
JP2014031449A (ja) 加硫特性と保存安定性に優れたエピクロルヒドリン系ゴム加硫用組成物
CN110382652B (zh) 电阻调节剂
JP5293997B2 (ja) 半導電性加硫ゴム用組成物、半導電性加硫ゴム成形体、及び半導電性ゴムロール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553990

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875582

Country of ref document: EP

Kind code of ref document: A1