WO2022068064A1 - Ignifuge de type microcapsule d'hydroxyde de magnésium et procédé de préparation associé - Google Patents

Ignifuge de type microcapsule d'hydroxyde de magnésium et procédé de préparation associé Download PDF

Info

Publication number
WO2022068064A1
WO2022068064A1 PCT/CN2020/135553 CN2020135553W WO2022068064A1 WO 2022068064 A1 WO2022068064 A1 WO 2022068064A1 CN 2020135553 W CN2020135553 W CN 2020135553W WO 2022068064 A1 WO2022068064 A1 WO 2022068064A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium hydroxide
flame retardant
preparation
dopo
magnesium
Prior art date
Application number
PCT/CN2020/135553
Other languages
English (en)
Chinese (zh)
Inventor
张志华
徐井水
李磊
王煦
崔宝臣
蒋达洪
罗梓博
陈泽霖
Original Assignee
广东石油化工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东石油化工学院 filed Critical 广东石油化工学院
Publication of WO2022068064A1 publication Critical patent/WO2022068064A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the invention relates to the technical field of magnesium hydroxide flame retardants, and more particularly, to a magnesium hydroxide-microcapsule flame retardant and a preparation method thereof.
  • Organic polymer materials have the characteristics of chain network structure, easy processing and formability, versatility, low cost and high cost performance, and have been used in a wide range of fields such as electronic information, industry, agriculture, transportation, aerospace and so on.
  • the vast majority of organic polymer materials are flammable or flammable, and when they are applied and provide human beings with colorful material conditions and benefits, they also pose a huge threat to the safety of human life and property.
  • organic polymer materials are particularly easy to burn under the action of open fire and heat, and release a large amount of heat, thick smoke or toxic gas, and even cause people to be poisoned or suffocated to death.
  • halogen-based flame retardants will produce toxic fumes when heated, which poses a huge threat to the safety of human life and property. Therefore, some of these products have been restricted or banned by regulations such as the "RoHS Directive" and the "Stockholm Convention". With the improvement of my country's environmental protection standards year by year and the improvement of environmental legislation, the demand for environmentally friendly green flame retardants will continue to increase. It is foreseeable that the market demand for green inorganic flame retardants such as magnesium hydroxide is bound to increase significantly. As a typical inorganic flame retardant, magnesium hydroxide has received more and more attention in recent years due to its acid-free, low cost and good smoke suppression properties.
  • magnesium hydroxide Since the role of magnesium hydroxide is to generate oxidation residues by endothermic decomposition and release of water over 300 °C, it can prevent heat from being fed back into the flame material, showing the advantage of being completely environmentally friendly.
  • the biggest disadvantage is that the flame retardant efficiency is relatively low and requires a high amount of addition; Inorganic flame retardants are dispersed in the matrix, resulting in significant deterioration of processability.
  • the Chinese patent "A superfine modified magnesium hydroxide flame retardant and its preparation method” discloses a superfine modified magnesium hydroxide flame retardant, which includes the following preparation raw materials in parts by weight: 30-50% alkaline precipitation agent parts, 20-30 parts of magnesium salt, 6-8 parts of activator, 8-12 parts of surfactant, and 1-3 parts of dispersant.
  • the ultrafine modified magnesium hydroxide flame retardant prepared by the invention has high flame retardant efficiency, good compatibility with materials, high cost performance, environmental protection and non-toxicity.
  • the compatibility between the magnesium hydroxide flame retardant and the material is effectively solved, but the particles of the above-mentioned ultrafine modified magnesium hydroxide flame retardant are only micron, and the flame retardant effect is relatively general.
  • the obtained ultrafine modified magnesium hydroxide is compounded with other materials to prepare a flame retardant material, the addition amount is still relatively high.
  • the present invention aims to overcome at least one defect (deficiency) of the above-mentioned prior art, and provides a magnesium hydroxide-microcapsule flame retardant, which is used to solve the problem that the magnesium hydroxide flame retardant has poor flame retardant effect, high addition amount, and The problem of poor compatibility of other materials.
  • Another object of the present invention is to provide a preparation method of magnesium hydroxide-microcapsule flame retardant.
  • a magnesium hydroxide-microcapsule flame retardant comprises magnesium hydroxide as a flame retardant core and a surface modification layer, a DOPO layer and a polymer layer sequentially wrapped around the flame retardant core.
  • the magnesium hydroxide-microcapsule flame retardant of the present invention uses magnesium hydroxide particles as the flame retardant core, and coats the outer layer with different layers of shells, which can effectively solve the defect of low efficiency of the single-component flame retardant, and can improve the Its dispersibility and compatibility with polymer materials.
  • the magnesium hydroxide has a lamellar structure, and the particle size is 300-400 nm.
  • Magnesium hydroxide has a lamellar structure and its particle size is nano-scale, with better inter-particle compactness and better flame retardant effect.
  • the surface modification layer is formed by vinylization of the surface of magnesium hydroxide particles.
  • the polymer layer is a polymer layer formed by in-situ polymerization of active monomers on the DOPO layer.
  • Preparation of S2DOPO-coated magnesium hydroxide particles Add the magnesium hydroxide obtained from S1 to modifier and distilled water, adjust pH to acidity with glacial acetic acid, stir evenly, heat up and react, after the reaction is complete, pre-dissolve in The mixed solution of DOPO in water ethanol is added, heated up, refluxed at a constant temperature, centrifuged again, washed with absolute ethanol and distilled water for several times in turn, and freeze-dried to constant weight;
  • Preparation of S3 multilayer-coated magnesium hydroxide particles Add composite dispersant B and distilled water to the DOPO-coated magnesium hydroxide particles obtained in S2, stir and disperse, then add prepolymer, stir and disperse evenly, cool to room temperature and use acetic acid Adjust the pH to acidity, heat, slowly increase the temperature, and after the reaction is completed with heat preservation and stirring, cool, adjust the pH to alkalinity with dilute sodium carbonate, wash and dry.
  • Preparation of S1 nano-sheet magnesium hydroxide particles mix 30-60 parts of anhydrous magnesium chloride, 1-5 parts of composite dispersant A, and 50-150 parts of distilled water, maintain the temperature at 5-10 °C, and vigorously stir and mix for 30-60 minutes , after slowly dripping 10-25 parts of 20% ammonia water by mass percentage, continue to slowly drip 20-65 parts of sodium hydroxide solution whose mass concentration is 8%, stir evenly for 30-60 minutes, heat up to 35-45 °C and continue to react for 120 ⁇ 150 minutes, cooled to room temperature, then filtered, washed, and dried under vacuum at 70-90°C;
  • Preparation of S2DOPO-coated magnesium hydroxide particles Weigh 10-60 parts of magnesium hydroxide obtained from S1, add 3-25 parts of modifier, 100-300 ml of distilled water, adjust pH to 3-4 with glacial acetic acid, stir 10-30 minutes, heat up to 60-70 °C and react for 120-150 minutes; then, add the mixed solution of 5-20 parts of DOPO pre-dissolved in 50-100 ml of absolute ethanol, and heat up to 85-95 °C under constant temperature reflux 3 to 6 hours, then centrifuged, washed three times with absolute ethanol and distilled water in turn, and freeze-dried to constant weight;
  • Preparation of S3 Multilayer Coated Magnesium Hydroxide Particles Weigh 30-90 parts of DOPO-coated magnesium hydroxide particles prepared in S2, add 0.15-1.0 parts of composite dispersant B and 100-500 parts of distilled water to disperse in the reactor After 40 ⁇ 100 parts of prepolymer, stir and disperse at 60 ⁇ 75°C, cool to room temperature after 30 ⁇ 45 minutes, adjust pH to 4 ⁇ 5.5 with acetic acid, heat, slowly heat up to 60 ⁇ 80°C, keep stirring for 120 ⁇ 150 minutes, cooling; adjust pH to 8-9 with dilute sodium carbonate, filter, wash and dry.
  • the composite dispersant A is two kinds of sodium lauryl sulfate, polyvinyl alcohol, ethylene glycol, fructose, glucose, cetyltrimethylammonium bromide, and gelatin.
  • the composite powder A is sodium lauryl sulfate: polyvinyl alcohol prepared in a mass ratio of 1:0.5-3 or sodium lauryl sulfate and gelatin in a mass ratio of 1:0.5-3 or fructose and ten
  • the hexaalkyltrimethylammonium bromide is prepared in a mass ratio of 1:0.5-3, or glucose and gelatin are prepared in a mass ratio of 1:0.5-3, or ethylene glycol and fructose are prepared in a mass ratio of 1:0.5-3.
  • the single dispersant is prone to precipitation in the salt solution with strong polarity, and the dispersion effect is not good.
  • the compound dispersion effect in the above-mentioned manner is better, and the particle size distribution of the prepared magnesium hydroxide lamellar structure is narrow.
  • the modifier is one of a silane coupling agent, a monounsaturated fatty acid, and a polyunsaturated fatty acid.
  • the silane coupling agent is 3-triethoxysilyl-1-propylamine, ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - One of the methacryloyloxypropyltrimethoxysilanes.
  • the monounsaturated fatty acid is oleic acid;
  • the polyunsaturated fatty acid is linolenic acid, arachidonic acid, dicosapentaenoic acid, docosahexaenoic acid, and docosapentaenoic acid. a kind of.
  • the composite dispersant B is two kinds of polyethylene glycol, sodium dodecylbenzenesulfonate, sodium dodecyl sulfate, emulsifier OP-10, and stearic acid.
  • the composite dispersant B is prepared by polyethylene glycol and stearic acid in a mass ratio of 1:1-2 or sodium dodecylbenzenesulfonate and emulsifier OP-10 in a mass ratio of 1:1-2 Preparation or sodium lauryl sulfate and emulsifier OP-10 in a mass ratio of 1:1-2 or polyethylene glycol and sodium lauryl sulfate in a mass ratio of 1:1-2.
  • the prepolymer is one of melamine-formaldehyde resin prepolymer, urea-formaldehyde prepolymer, and phenol-formaldehyde prepolymer.
  • the technical scheme of the present invention proposes an integrated construction idea, and a magnesium hydroxide-microcapsule flame retardant with a multi-layer structure is constructed in situ by chemical methods with magnesium hydroxide and a multi-component flame retardant, which not only solves the problem of single-component flame retardant It can reduce the defect of low agent efficiency, and reduce the deterioration degree of multi-component flame retardant on resin performance.
  • the surface of magnesium hydroxide is grafted to form reactive vinylated magnesium hydroxide particles;
  • a layer of DOPO is wrapped on the surface of magnesium hydroxide; then a thin polymer layer is coated on the surface of magnesium hydroxide-DOPO capsule by in-situ polymerization to improve its dispersibility and compatibility with polymer materials, and form It has P-Si flame retardant effect to improve the flame retardant efficiency of magnesium hydroxide flame retardant, and has good applicability.
  • Coating DOPO-modified magnesium hydroxide by in-situ polymerization can achieve good compatibility and uniform dispersion between magnesium hydroxide and the matrix of polymer materials.
  • a preparation method of magnesium hydroxide-microcapsule flame retardant comprising the following steps:
  • a preparation method of magnesium hydroxide-microcapsule flame retardant comprising the following steps:
  • a preparation method of magnesium hydroxide-microcapsule flame retardant comprising the following steps:
  • a preparation method of magnesium hydroxide-microcapsule flame retardant comprising the following steps:
  • S3 take an appropriate amount of 70 parts of DOPO-coated magnesium hydroxide powder, 0.3 part of polyethylene glycol, 0.45 part of stearic acid and 300 parts of distilled water to be dispersed in the reactor, then add 80 parts of melamine-formaldehyde resin prepolymer solution, Stir and disperse at 75°C, cool to room temperature after 30 minutes, adjust pH to 5.0 with acetic acid, heat, slowly heat up to 80°C, keep stirring for 120 minutes, cool; adjust pH to 8 with dilute sodium carbonate, filter, wash and dry, that is, multi-layer Coated with magnesium hydroxide flame retardant.
  • Example 1 The difference from Example 1 is that commercially available flame retardant grade magnesium hydroxide is directly used, and steps S2 and S3 are the same as those of Example 1.
  • Example 1 The difference from Example 1 is that 2.5 parts of sodium dodecyl sulfate in Example 1 is also replaced with polyvinyl alcohol, and other implementation conditions are consistent with Example 1.
  • Example 1 The difference from Example 1 is that 0.05 part of emulsifier OP-10 in Example 1 is replaced with sodium dodecyl sulfate, and other implementation conditions are consistent with Example 1.
  • Burning performance test Limiting Oxygen Index (LOI) test measured according to ASTM D2863, the sample bar is taken from the sample bar pressed by the pressure molding machine, the size is 100 ⁇ 6.5 ⁇ 3mm 3 , and the data is shown in Table 1:
  • Examples 1 to 4 are used in HMEVAC8-7, 150, VA910 three types of methyl vinyl silicone rubber raw materials, and the oxygen indices of the flame retardants of Examples 1 to 4 are significantly higher For the flame retardants of Comparative Examples 1 to 3, Examples 1 to 4 can better achieve flame retardancy for HMEVAC8-7, 150, and VA910 three types of ethylene-vinyl acetate copolymers (EVA).
  • EVA ethylene-vinyl acetate copolymers
  • the vinyl acetate copolymer (EVA) substrate is uniformly dispersed and has good compatibility; especially the flame retardant of Example 3 has excellent flame retardant effect on HMEVAC8-7 and the flame retardant of Example 2 on VA910.
  • Example 1 Example 2
  • Example 3 Example 4 Comparative Example 1 Comparative Example 2 Comparative Example 3
  • EVA HMEVAC8-7 no dripping no dripping no dripping no dripping very intense no dripping very intense 150 no dripping no dripping no dripping no dripping very intense very intense very intense very intense VA910 no dripping no dripping no dripping no dripping very intense very intense very intense very intense very intense very intense
  • the flame retardants of Examples 1 to 4 can well achieve flame retardancy for HMEVAC8-7, 150, VA910 three types of ethylene-vinyl acetate copolymers (EVA), and inorganic magnesium hydroxide in ethylene-vinyl acetate copolymerization
  • EVA ethylene-vinyl acetate copolymers
  • the flame retardant efficiency of the EVA substrate is better; the flame retardant of Example 3 has excellent flame retardant effect on HMEVAC8-7 and the flame retardant of Example 2 on VA910.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

La présente invention concerne un ignifuge de type microcapsule d'hydroxyde de magnésium, comprenant de l'hydroxyde de magnésium en tant que noyau ignifuge, et une couche de modification de surface, une couche DOPO et une couche polymère, qui recouvrent de manière séquentielle l'extérieur du noyau ignifuge. L'ignifuge de type microcapsule d'hydroxyde de magnésium ayant une structure multicouche est construit in situ au moyen d'un procédé chimique à partir d'hydroxyde de magnésium et d'un agent ignifuge à composants multiples. Des particules d'hydroxyde de magnésium vinylées ayant une réactivité sont formées sous un effet de greffage de surface de l'hydroxyde de magnésium ; en outre, le DOPO intermédiaire ayant une efficacité ignifuge relativement bonne est sélectionné, et au moyen de la caractéristique d'une liaison P-H du DOPO intermédiaire ayant une activité extrêmement élevée sur une double liaison, la surface de l'hydroxyde de magnésium est revêtue d'une couche de DOPO ; et la surface de la capsule d'hydroxyde de magnésium-DOPO est ensuite revêtue d'une couche polymère mince au moyen d'une polymérisation in situ. La présente invention est utilisée pour résoudre les problèmes d'un ignifuge à base d'hydroxyde de magnésium ayant un faible effet ignifuge, une quantité d'addition élevée et une faible compatibilité avec d'autres matériaux.
PCT/CN2020/135553 2020-09-29 2020-12-11 Ignifuge de type microcapsule d'hydroxyde de magnésium et procédé de préparation associé WO2022068064A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011050343.0 2020-09-29
CN202011050343.0A CN112225945B (zh) 2020-09-29 2020-09-29 一种氢氧化镁-微胶囊阻燃剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2022068064A1 true WO2022068064A1 (fr) 2022-04-07

Family

ID=74120333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135553 WO2022068064A1 (fr) 2020-09-29 2020-12-11 Ignifuge de type microcapsule d'hydroxyde de magnésium et procédé de préparation associé

Country Status (2)

Country Link
CN (1) CN112225945B (fr)
WO (1) WO2022068064A1 (fr)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112940475A (zh) * 2021-02-05 2021-06-11 合肥工业大学 一种阻燃复合材料及其制备方法
CN114656702A (zh) * 2022-05-10 2022-06-24 安徽永正密封件有限公司 一种建筑安全网用阻燃橡胶及其制备方法
CN114804784A (zh) * 2022-05-25 2022-07-29 绍兴市暖壹节能科技有限公司 一种真空陶瓷微珠改性eps保温板材及制备方法
CN115286890A (zh) * 2022-10-08 2022-11-04 山东东信阻燃科技有限公司 一种含甲基八溴醚的阻燃剂的制备方法
CN115304931A (zh) * 2022-07-28 2022-11-08 辽宁嘉顺科技有限公司 一种高疏水、高绝缘性电工级氧化镁砂及其生产方法
CN115353671A (zh) * 2022-09-14 2022-11-18 山东润义金新材料科技股份有限公司 一种高密闭性甲基膦酸二甲酯阻燃剂微胶囊及其制备方法
CN115491928A (zh) * 2022-10-20 2022-12-20 北京林业大学 一种双壳层复合氮磷微胶囊阻燃型牛皮纸及其制备方法
CN115806706A (zh) * 2022-11-30 2023-03-17 双登电缆股份有限公司 一种低烟无卤聚烯烃电缆防火护套材料及其制备方法
CN116063690A (zh) * 2022-12-29 2023-05-05 浙大宁波理工学院 一种DOPO修饰的二维(Zn/Cu)2(bIm)4复合材料及高效阻燃EVA
CN116102786A (zh) * 2023-03-16 2023-05-12 山东泰星新材料股份有限公司 一种pvc用阻燃抑烟剂及其制备方法
CN116218195A (zh) * 2023-03-20 2023-06-06 固达电线电缆(集团)有限公司 一种高阻燃的改性聚氨酯电缆料及其制备方法
CN116426236A (zh) * 2023-03-07 2023-07-14 永一胶粘(中山)有限公司 一种阻燃胶粘剂及其制备方法与应用
CN116637566A (zh) * 2023-07-27 2023-08-25 潍坊万丰新材料科技有限公司 一种微胶囊化阻燃剂的制备方法
CN117050504A (zh) * 2023-06-19 2023-11-14 常州大学 一种微胶囊型硬质聚氨酯泡沫材料及其制备方法
CN117326814A (zh) * 2023-09-28 2024-01-02 北京工业大学 一种实现隧道沥青路面抑烟阻燃功能一体化的微胶囊、沥青混合料及制备方法
CN117887164A (zh) * 2024-01-29 2024-04-16 联颖科技(安福)有限公司 一种耐高温阻燃线缆及其制备方法
CN118290868A (zh) * 2024-03-27 2024-07-05 广东中德电缆有限公司 一种高绝缘性的阻燃电缆及其生产工艺
CN118344787A (zh) * 2024-06-03 2024-07-16 常州裕隆盈新材料科技有限公司 开关柜内绝缘抗电弧修复凝胶
CN118620314A (zh) * 2024-07-03 2024-09-10 淮安金利达包装有限公司 一种托盘用阻燃木塑复合材料及其制备方法
CN118652450A (zh) * 2024-08-22 2024-09-17 山东东信新材料科技股份有限公司 一种ps阻燃母粒及其制备方法
CN118667284A (zh) * 2024-08-21 2024-09-20 湖南鲁丽木业有限公司 一种阻燃竹木复合材料及其制备方法
CN118955553A (zh) * 2024-08-14 2024-11-15 山东众甫新材料有限公司 一种具有表面活性偶联阻燃作用助剂及其制备方法与应用
CN119060561A (zh) * 2024-11-04 2024-12-03 烟台艾弗尔阻燃科技有限公司 一种改性氢氧化镁阻燃剂及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656700A (zh) * 2022-03-28 2022-06-24 中核核电运行管理有限公司 一种阻燃氯丁橡胶及其制备方法
CN115322439B (zh) * 2022-05-18 2023-06-16 沈阳工业大学 利用水镁石制备的用于环氧树脂的复配阻燃剂的制备方法
CN119039687A (zh) * 2024-08-22 2024-11-29 双登电缆股份有限公司 一种低烟无卤聚烯烃电缆料生产工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101177289A (zh) * 2007-11-05 2008-05-14 昆明理工大学 一种制备纤维状纳米氢氧化镁的方法
CN103788408A (zh) * 2014-01-22 2014-05-14 广州辰东化工科技有限公司 Dopo改性无机阻燃剂及其制备方法
CN104804474A (zh) * 2015-05-19 2015-07-29 山东航通工贸有限公司 一种双包覆氢氧化镁阻燃剂及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101302309B (zh) * 2008-06-06 2011-11-02 中国科学技术大学 一种微胶囊膨胀阻燃淀粉基可降解材料及其制备方法
CN101792537A (zh) * 2010-03-17 2010-08-04 北京理工大学 一种含dopo基团的硅烷偶联剂及其制备方法
CN102492173B (zh) * 2011-12-07 2013-02-13 苏州大学 一种表面修饰的埃洛石及其制备方法
CN103073749B (zh) * 2013-01-10 2014-04-23 苏州安鸿泰新材料有限公司 含dopo和层离石墨烯的纳米复合阻燃剂的制备方法与应用
CN111269461A (zh) * 2020-03-09 2020-06-12 贵州民族大学 一种磷杂菲类硅烷接枝改性石墨烯及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101177289A (zh) * 2007-11-05 2008-05-14 昆明理工大学 一种制备纤维状纳米氢氧化镁的方法
CN103788408A (zh) * 2014-01-22 2014-05-14 广州辰东化工科技有限公司 Dopo改性无机阻燃剂及其制备方法
CN104804474A (zh) * 2015-05-19 2015-07-29 山东航通工贸有限公司 一种双包覆氢氧化镁阻燃剂及其制备方法

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112940475A (zh) * 2021-02-05 2021-06-11 合肥工业大学 一种阻燃复合材料及其制备方法
CN112940475B (zh) * 2021-02-05 2023-03-21 合肥工业大学 一种阻燃复合材料及其制备方法
CN114656702A (zh) * 2022-05-10 2022-06-24 安徽永正密封件有限公司 一种建筑安全网用阻燃橡胶及其制备方法
CN114804784B (zh) * 2022-05-25 2023-03-14 绍兴市暖壹节能科技有限公司 一种真空陶瓷微珠改性eps保温板材及制备方法
CN114804784A (zh) * 2022-05-25 2022-07-29 绍兴市暖壹节能科技有限公司 一种真空陶瓷微珠改性eps保温板材及制备方法
CN115304931A (zh) * 2022-07-28 2022-11-08 辽宁嘉顺科技有限公司 一种高疏水、高绝缘性电工级氧化镁砂及其生产方法
CN115304931B (zh) * 2022-07-28 2023-07-11 辽宁嘉顺科技有限公司 一种高疏水、高绝缘性电工级氧化镁砂及其生产方法
CN115353671B (zh) * 2022-09-14 2024-03-22 山东润义金新材料科技股份有限公司 一种高密闭性甲基膦酸二甲酯阻燃剂微胶囊及其制备方法
CN115353671A (zh) * 2022-09-14 2022-11-18 山东润义金新材料科技股份有限公司 一种高密闭性甲基膦酸二甲酯阻燃剂微胶囊及其制备方法
CN115286890B (zh) * 2022-10-08 2022-12-16 山东东信阻燃科技有限公司 一种含甲基八溴醚的阻燃剂的制备方法
CN115286890A (zh) * 2022-10-08 2022-11-04 山东东信阻燃科技有限公司 一种含甲基八溴醚的阻燃剂的制备方法
CN115491928B (zh) * 2022-10-20 2023-07-25 北京林业大学 一种双壳层复合氮磷微胶囊阻燃型牛皮纸及其制备方法
CN115491928A (zh) * 2022-10-20 2022-12-20 北京林业大学 一种双壳层复合氮磷微胶囊阻燃型牛皮纸及其制备方法
CN115806706A (zh) * 2022-11-30 2023-03-17 双登电缆股份有限公司 一种低烟无卤聚烯烃电缆防火护套材料及其制备方法
CN115806706B (zh) * 2022-11-30 2024-03-01 双登电缆股份有限公司 一种低烟无卤聚烯烃电缆防火护套材料及其制备方法
CN116063690B (zh) * 2022-12-29 2024-04-30 浙大宁波理工学院 一种DOPO修饰的二维(Zn/Cu)2(bIm)4复合材料及高效阻燃EVA
CN116063690A (zh) * 2022-12-29 2023-05-05 浙大宁波理工学院 一种DOPO修饰的二维(Zn/Cu)2(bIm)4复合材料及高效阻燃EVA
CN116426236A (zh) * 2023-03-07 2023-07-14 永一胶粘(中山)有限公司 一种阻燃胶粘剂及其制备方法与应用
CN116426236B (zh) * 2023-03-07 2023-12-15 永一胶粘(中山)有限公司 一种阻燃胶粘剂及其制备方法与应用
CN116102786A (zh) * 2023-03-16 2023-05-12 山东泰星新材料股份有限公司 一种pvc用阻燃抑烟剂及其制备方法
CN116218195A (zh) * 2023-03-20 2023-06-06 固达电线电缆(集团)有限公司 一种高阻燃的改性聚氨酯电缆料及其制备方法
CN116218195B (zh) * 2023-03-20 2023-07-25 固达电线电缆(集团)有限公司 一种高阻燃的改性聚氨酯电缆料及其制备方法
CN117050504A (zh) * 2023-06-19 2023-11-14 常州大学 一种微胶囊型硬质聚氨酯泡沫材料及其制备方法
CN116637566B (zh) * 2023-07-27 2023-10-13 潍坊万丰新材料科技有限公司 一种微胶囊化阻燃剂的制备方法
CN116637566A (zh) * 2023-07-27 2023-08-25 潍坊万丰新材料科技有限公司 一种微胶囊化阻燃剂的制备方法
CN117326814A (zh) * 2023-09-28 2024-01-02 北京工业大学 一种实现隧道沥青路面抑烟阻燃功能一体化的微胶囊、沥青混合料及制备方法
CN117887164A (zh) * 2024-01-29 2024-04-16 联颖科技(安福)有限公司 一种耐高温阻燃线缆及其制备方法
CN118290868A (zh) * 2024-03-27 2024-07-05 广东中德电缆有限公司 一种高绝缘性的阻燃电缆及其生产工艺
CN118344787A (zh) * 2024-06-03 2024-07-16 常州裕隆盈新材料科技有限公司 开关柜内绝缘抗电弧修复凝胶
CN118620314A (zh) * 2024-07-03 2024-09-10 淮安金利达包装有限公司 一种托盘用阻燃木塑复合材料及其制备方法
CN118955553A (zh) * 2024-08-14 2024-11-15 山东众甫新材料有限公司 一种具有表面活性偶联阻燃作用助剂及其制备方法与应用
CN118667284A (zh) * 2024-08-21 2024-09-20 湖南鲁丽木业有限公司 一种阻燃竹木复合材料及其制备方法
CN118652450A (zh) * 2024-08-22 2024-09-17 山东东信新材料科技股份有限公司 一种ps阻燃母粒及其制备方法
CN119060561A (zh) * 2024-11-04 2024-12-03 烟台艾弗尔阻燃科技有限公司 一种改性氢氧化镁阻燃剂及其制备方法和应用

Also Published As

Publication number Publication date
CN112225945A (zh) 2021-01-15
CN112225945B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
CN112225945B (zh) 一种氢氧化镁-微胶囊阻燃剂及其制备方法
CN102585347B (zh) 一种无卤膨胀型阻燃聚丙烯混合物及其制备方法
WO2022068065A1 (fr) Procédé de préparation d'un ignifuge microencapsulé de type composite de montmorillonite-hydroxyde de magnésium
CN102619139B (zh) 水基无卤阻燃纸及其制备方法
CN102516785B (zh) 核-壳型脲醛改性木质素膨胀阻燃成炭剂及其制备方法
CN104844827A (zh) 一种协效改性聚磷酸铵及其制备方法和在阻燃聚丙烯中的应用
CN115286871B (zh) 一种无卤阻燃导电聚丙烯材料
CN113999534A (zh) 一种石墨烯抗紫外光阻燃协效剂及其制备方法
CN101168607A (zh) 一种高热稳定性磷氮系膨胀型阻燃纳米复合材料
CN103288998A (zh) 一种核-壳结构复合阻燃剂及其制备方法
CN110396284A (zh) 一种膨胀型阻燃剂、阻燃聚乳酸材料及其制备方法
Lv et al. Flame retardancy and mechanical properties of EVA nanocomposites based on magnesium hydroxide nanoparticles/microcapsulated red phosphorus
CN114656700A (zh) 一种阻燃氯丁橡胶及其制备方法
CN117264137B (zh) 聚乳酸基有机/无机杂化纳米材料、防火预反应液及其制备方法与应用
CN117264138A (zh) 一种聚乳酸基有机/无机杂化材料、防火预反应液及其制备方法与应用
CN110041636A (zh) 一种无卤阻燃抗静电木塑复合材料及其制备方法
CN101186828A (zh) 一种高热稳定性磷氮系阻燃材料
CN109082017B (zh) 一种磷掺杂碳纳米管/有机改性层状双金属氢氧化物/聚烯烃阻燃材料及其制备方法
CN108997617B (zh) 一种聚多巴胺包覆红磷微胶囊阻燃剂的制备及其使用方法
CN102942750B (zh) 一种软质pvc制品用环保型阻燃添加剂及其制备和应用方法
CN118599204A (zh) 一种高强阻燃抗静电聚乙烯高分子材料及制备工艺
CN108978341B (zh) 一种成膜性能良好的纸用阻燃剂及其制备方法
CN118206912A (zh) 可阻燃、可自修复的环氧基或聚氨酯基复合涂层的制备方法和应用
CN115785530A (zh) 一种天然多糖微胶囊化氢氧化镁复合粉体及其制备方法和应用
CN106496741A (zh) 一种防污闪超高压绝缘材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956081

Country of ref document: EP

Kind code of ref document: A1