WO2022049988A1 - 押出樹脂シートの中間加工方法及び押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法 - Google Patents

押出樹脂シートの中間加工方法及び押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法 Download PDF

Info

Publication number
WO2022049988A1
WO2022049988A1 PCT/JP2021/029079 JP2021029079W WO2022049988A1 WO 2022049988 A1 WO2022049988 A1 WO 2022049988A1 JP 2021029079 W JP2021029079 W JP 2021029079W WO 2022049988 A1 WO2022049988 A1 WO 2022049988A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
region
individual
hot press
processing
Prior art date
Application number
PCT/JP2021/029079
Other languages
English (en)
French (fr)
Inventor
和雅 奥村
寿昌 帆高
Original Assignee
株式会社豊田自動織機
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, 帝人株式会社 filed Critical 株式会社豊田自動織機
Priority to EP21864046.4A priority Critical patent/EP4209328A4/en
Priority to CN202180053566.9A priority patent/CN115996828A/zh
Priority to US18/022,574 priority patent/US20230333538A1/en
Publication of WO2022049988A1 publication Critical patent/WO2022049988A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/906Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using roller calibration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5875Measuring, controlling or regulating the material feed to the moulds or mould parts, e.g. controlling feed flow, velocity, weight, doses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92209Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92219Degree of crosslinking, solidification, crystallinity or homogeneity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92923Calibration, after-treatment or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92933Conveying, transporting or storage of articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0011Combinations of extrusion moulding with other shaping operations combined with compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0023Combinations of extrusion moulding with other shaping operations combined with printing or marking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/02Combined thermoforming and manufacture of the preform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/02Bending or folding
    • B29C53/04Bending or folding of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45244Injection molding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • One form of the present disclosure relates to a processing method for a resin sheet.
  • the resin material is extruded while being heated to form a strip-shaped extruded resin sheet.
  • An intermediate resin sheet used for hot press processing is manufactured from an extruded resin sheet.
  • the present embodiment relates to an intermediate processing method for an extruded resin sheet and a hot press processing method for an intermediate resin sheet in which an intermediate processing is applied to the extruded resin sheet.
  • resin sheets with a thickness of several [mm] or less are widely used in various devices in various fields.
  • a transparent resin sheet having a thickness of about several [mm] is used in various places such as a rear window and a roof of a vehicle equipped with a sunroof.
  • a resin sheet is used for the rear window, roof, etc., it is necessary to shape the flat resin sheet into a curved shape.
  • so-called hot press processing in which the resin sheet is heated and pressed to form a shape, is required.
  • the shrinkage rate differs depending on the position of the resin sheet.
  • the dimensional variation due to the difference in shrinkage rate is, for example, about 1 to 5 [%], and the variation range is relatively large, and it is desired to reduce the variation in accuracy.
  • Japanese Patent Application Laid-Open No. 2018-34562 discloses a window member.
  • the window member has a base material formed of a material containing a thermoplastic resin and a coat layer provided on at least one surface side of the base material.
  • the base material has a heat shrinkage rate of 5% or less as measured according to the method specified in JIS K 6735.
  • An extruder is used in the method of manufacturing the window member.
  • the pressure in the extruder is preferably set to 15-25 [MPa].
  • the temperature inside the extruder is preferably set to 260 to 280 [° C.].
  • the molten sheet (base material) from the extruder is flattened via three rolls, a touch roll, a cooling roll, and a subsequent cooling roll.
  • the sheet is cooled by a plurality of cooling rolls, sandwiched between the two tension rolls, and sent out in the transport direction. It is described in Japanese Patent Application Laid-Open No. 562 that the heat shrinkage rate of the base material can be set to 5 [%] or less by going through each of these steps.
  • a coating layer forming step, a printing step, and a molding step are mentioned as a step of post-processing of a base material from an extruder. Then, in Japanese Patent Application Laid-Open No. 562, a coat layer (coating) is formed on a substrate having a heat shrinkage rate of 5 [%] or less in a "coating layer forming step".
  • a printed surface is formed on the base material (when the substrate has a "printing step")
  • printing is performed on the coat layer prior to the molding step to form the printed surface.
  • a windshield plate is obtained by heating a flat plate (base material), pressing it against a mold immediately after softening, and removing the remaining flat plate along the contour thereof.
  • the sheet processing method is an intermediate processing method of an extruded resin sheet for producing an intermediate resin sheet used for hot press processing, or a hot press processing method of an intermediate resin sheet in which an intermediate resin sheet is subjected to intermediate processing. ..
  • One form of the present disclosure is an intermediate processing method for an extruded resin sheet for producing an intermediate resin sheet, which is a resin sheet used for hot press processing, from a strip-shaped extruded resin sheet that has been extruded by heating.
  • This method uses a process control system equipped with a computer.
  • the process control system virtually divides the extruded strip-shaped extruded resin sheet into a plurality of individual regions corresponding to the plurality of resin sheets.
  • Each of the virtually divided individual areas is virtually divided into a plurality of divided areas.
  • the shrinkage rate-related information related to the shrinkage rate of each divided region of each individual region is acquired for each of the individual regions and for each of the divided regions.
  • the process control system When performing intermediate processing, which is processing after the extrusion molding and before the heat press processing, for each of the individual regions, the process control system is used for each of the individual regions.
  • the intermediate processing with the processing conditions corrected is performed.
  • the correction is based on the shrinkage rate-related information for each individual region and each divided region, and the heat press working condition information which is the processing condition information for the hot press working for each individual region and each divided region. It is done for each of the individual areas.
  • the individual area corresponding to each product is virtually divided into a plurality of divided areas. Then, based on the shrinkage rate related information for each individual region and each divided region and the heat press working condition information, the intermediate processing corrected for each individual region is performed.
  • the heat shrinkage data (shrinkage rate related information, heat press working condition information) of each product from the resin sheet whose shrinkage rate differs depending on the position (divided region) is acquired. Then, based on the heat shrinkage data, intermediate processing is performed with appropriate corrections for each region. As a result, waste of the base material, coating agent, etc. and occurrence of printing misalignment can be further reduced, and a product with more stable accuracy can be manufactured.
  • the process control system may provide a target contour that is a contour corresponding to the resin sheet after completion of the intermediate processing and the hot press processing. Virtually set for each individual area.
  • Pre-shrinkage contour which is a contour before shrinking to the target contour based on the shrinkage rate related information for each individual region and each division region and the heat press working condition information for each individual region and each division region. Is calculated for each individual area and virtually set, and a contour calculation step is carried out. Then, the process control system carries out a contour storage step of storing the target contour and the pre-shrinkage contour in correspondence with the individual areas.
  • the process control system is based on the target contour and the pre-shrinkage contour stored in the contour storage step.
  • the correction amount acquisition step of obtaining the correction amount at the time of performing the intermediate processing for each individual region is carried out.
  • the process control system implements an intermediate processing execution step of performing the intermediate processing corrected for each individual region based on the correction amount for each individual region obtained in the correction amount acquisition step. is doing.
  • the target contour which is the contour of the resin sheet after the completion of the intermediate processing and the hot press processing
  • the pre-shrinkage contour which is the contour before shrinking to the target contour
  • the intermediate processing implementation step includes a coating implementation step of applying a coating to the surface of the extruded resin sheet.
  • the process control system obtains the correction amount for each individual region in the correction amount acquisition step corresponding to the coating implementation step.
  • the correction amount is obtained by setting the range in which the coating is applied to the individual region to the range of the pre-shrinkage contour corresponding to the individual region for each individual region. This makes it possible to reduce unnecessary coating for each individual region.
  • the intermediate processing implementation step includes a printing implementation step of printing on the surface of the extruded resin sheet.
  • the process control system obtains a correction amount for each individual area in the correction amount acquisition step corresponding to the printing execution process.
  • the correction amount indicates the range, shape, and scale to be printed in the individual area for each individual area, the pre-shrinkage contour corresponding to the individual area, the target contour, and the shrinkage rate-related information for each divided area. And, it is obtained by obtaining it based on the hot press processing condition information. Therefore, it is possible to reduce the occurrence of printing misalignment, distortion, and the like for each individual area.
  • the intermediate processing implementation step includes a trim implementation step of cutting out a region corresponding to the resin sheet from the strip-shaped extruded resin sheet from the individual region.
  • the process control system obtains a correction amount for each individual region in the correction amount acquisition step corresponding to the trim implementation step.
  • the correction amount is obtained by setting the range cut out from the individual region to the range of the pre-shrinkage contour corresponding to the individual region for each individual region. Therefore, it is possible to appropriately cut out a range of shrinkage from the strip-shaped extruded resin sheet to the target contour for each individual region.
  • the shrinkage related information includes the temperature of the extruded resin sheet corresponding to the individual region and the temperature of the roller used in the extrusion molding. , The number of rotations of the roller, the plate thickness distribution for each divided region, the temperature distribution for each divided region, and the refractive index distribution for each divided region are included. Therefore, appropriate information can be obtained as the shrinkage rate related information.
  • the heat press working condition information includes at least one of a heating distribution for each divided region and a pressure distribution for each divided region corresponding to the individual regions. ing. Therefore, appropriate information can be obtained as hot press working condition information.
  • Another form of the present disclosure is a hot press working method for an intermediate resin sheet in which an intermediate process is applied to a strip-shaped extruded resin sheet that has been heated and extruded.
  • This method uses a process control system equipped with a computer.
  • the process control system virtually divides the extruded strip-shaped extruded resin sheet into a plurality of individual regions corresponding to the plurality of resin sheets. Each of the virtually divided individual areas is virtually divided into a plurality of divided areas. Shrinkage rate-related information related to the shrinkage rate of each divided region of each individual region is acquired for each individual region and for each divided region.
  • the intermediate processing is processing after the extrusion molding and before the hot press processing.
  • the process control system carries out the hot press processing.
  • the hot press processing In the hot press processing, the shrinkage rate related information for each individual region and each divided region, the hot press processing condition information which is the processing condition information for the hot press processing for each individual region and each divided region, and the above
  • the hot press working condition information obtained by correcting the hot press working condition information for at least a part of the individual region based on the intermediate working condition information which is the machining condition information of the intermediate machining for each individual region and for each divided region. Is carried out based on.
  • the hot press working condition information is corrected based on the hot press working condition information and the intermediate working condition information for each individual region and each divided region.
  • the hot press working is performed based on the corrected hot press working condition information and the shrinkage rate related information for each individual region and each divided region.
  • hot press working that is appropriately corrected for each individual region is performed.
  • the correction is further added to the heat press working condition information for correction for each individual region, it is possible to manufacture a product with more stable accuracy.
  • Another form of the present disclosure is a hot press working method for an intermediate resin sheet in which an intermediate process is applied to a strip-shaped extruded resin sheet that has been heated and extruded.
  • This method uses a process control system equipped with a computer.
  • the process control system virtually divides the extruded strip-shaped extruded resin sheet into a plurality of individual regions corresponding to the plurality of resin sheets. Each of the virtually divided individual areas is virtually divided into a plurality of divided areas. Shrinkage rate-related information related to the shrinkage rate of each divided region of each individual region is acquired for each individual region and for each divided region.
  • the intermediate processing is processing after the extrusion molding and before the hot press processing.
  • the process control system includes the shrinkage rate-related information for each individual region and each divided region, and hot press working condition information which is processing condition information for the hot press working for each individual region and each divided region.
  • hot press processing is performed on each of the intermediate resin sheets, which are the respective resin sheets to which the intermediate processing has been performed in which the processing conditions are corrected for each of the individual regions based on the above.
  • the step is performed.
  • the shrinkage rate-related information for each individual region and each division region, and the hot press processing condition information which is the processing condition information for the hot press processing for each individual region and each division region.
  • the heat press working condition information for each individual region and each divided region is not corrected, complicated processing is reduced, and based on the hot press working condition information and shrinkage rate related information for each individual region and each divided region. , Perform hot press working with appropriate correction for each individual area.
  • a hot press processing method of an intermediate resin sheet in which an intermediate processing is performed on an extruded resin sheet, which can produce a product with more stable accuracy.
  • the shrinkage related information includes the temperature of the extruded resin sheet corresponding to the individual region and the temperature of the roller used in the extrusion molding. , The number of rotations of the roller, the plate thickness distribution for each divided region, the temperature distribution for each divided region, and the refractive index distribution for each divided region are included. Therefore, appropriate information can be obtained as the shrinkage rate related information.
  • the heat press working condition information includes at least one of a heating distribution for each divided region and a pressure distribution for each divided region corresponding to the individual regions. ing. Therefore, appropriate information can be obtained as hot press working condition information.
  • FIG. 3 is a plan view of FIG. 3 and is a diagram illustrating an example of an individual region, a divided region, a target contour, and a pre-shrink contour. It is a figure explaining the example of the shrinkage rate related information. It is a figure explaining an example of heat press working condition information. It is a figure explaining the example of the contour information related to the target contour and the contour before contraction. It is a perspective view explaining the example of a coating process.
  • FIG. 8 is a cross-sectional view taken along the line XI-XI in FIG. 8 and is a diagram illustrating an example in which a coating having a thickness corresponding to each divided region is applied. It is a perspective view explaining an example of a printing process. It is a figure explaining the example which printed on the edge part of the contour before shrinkage in consideration of shrinkage.
  • the Z-axis direction indicates the vertically upward direction
  • the X-axis direction indicates the extrusion direction (substantially horizontal direction) of the extruded resin sheet W
  • the Y-axis indicates the extrusion direction (substantially horizontal direction) of the extruded resin sheet W
  • the Y-axis indicates the extrusion direction (substantially horizontal direction) of the extruded resin sheet W
  • the Y-axis refers to a substantially horizontal direction orthogonal to the X-axis direction.
  • the coating step P3 includes a coating curing step P3E (a step of bringing the coating into a fully cured state).
  • the coating curing step P3E is changed to the coating semi-curing step P3F (the step of putting the coating into a semi-cured state), and the coating total curing step P7 is performed between the hot pressing step P6 and the inspection step P8. (Step to make the coating fully cured) has been added.
  • the resin sheet manufacturing process includes an extrusion molding process P1, a shrinkage prediction process P2, a coating process P3, a printing process P4, a trimming process P5, a hot pressing process P6, an inspection process P8, and the like.
  • the manufacturing process is controlled and controlled by the process control system 1, and the process control system 1 is used in the overall control device 2 and the control device (10, 20, 30, 40, 50, 60, 80) of each process. It is composed of.
  • the overall management device 2 and the management device (10, 20, 30, 40, 50, 60, 80) of each process are connected to the communication line T and can transmit and receive various information to and from each other.
  • the communication line T may be wired or wireless, or may be the Internet.
  • the extrusion molding process P1 to the trimming process P5, and the hot pressing process P6 and the inspection process P8 can be performed at different remote locations.
  • the overall management device 2 is, for example, a personal computer, which starts and stops the management devices (10 to 60, 80) of each process, sends and receives various information, and concentrates on whether or not each process is normally performed. I manage it.
  • the strip-shaped extruded resin sheet W is extruded from the resin material 13 using the extrusion molding apparatus 11.
  • the strip-shaped extruded resin sheet W is cut into individual intermediate resin sheets Wn (intermediate manufactured products) through a shrinkage prediction step P2, a coating step P3, a printing step P4, and a trimming step P5.
  • the individual intermediate resin sheet Wn (intermediate manufactured product) is regarded as a resin sheet Wz (finished product) as a completed product after the completion of the hot pressing step P6 (heating performing step P6B, pressing performing step P6D).
  • the intermediate resin sheet Wn (intermediate manufactured product) is heated in the heating implementation step P6B. Then, the intermediate resin sheet Wn is pressed in the pressing step P6D. During this period, various regions of the intermediate resin sheet Wn (intermediate manufactured product) shrink in various directions. This shrinkage naturally changes when the lot of the resin material 13 changes. Even in the same lot, the shrinkage changes for each region of the extruded resin sheet W due to various factors such as residual stress during extrusion. Therefore, it has been very difficult in the past to stably secure the accuracy of the resin sheet Wz (finished product).
  • the accuracy of the resin sheet Wz is stable. Can be secured.
  • the intermediate resin sheet Wn (intermediate manufactured product) shown in FIG. 1 is prepared to have a sufficient size and is shrunk in the hot pressing step P6. After that, the excess portion is cut off to obtain a resin sheet Wz (finished product). That is, the conventional method requires a step of cutting off an excess portion. Further, since the heat is pressed without knowing how it shrinks, it is necessary to set the intermediate resin sheet Wn to a size having a considerable margin. Therefore, many resin sheets are cut off and wasted (coating and printing are also wasted). Further, since the intermediate resin sheet Wn is hot-pressed in a state where it is not known how the intermediate resin sheet Wn shrinks, printing misalignment may occur.
  • the step of cutting off the excess portion after the hot press step is Not needed. Therefore, it is possible to reduce the amount of wasteful resin sheet, wasteful coating and printing to a smaller amount, and it is possible to suppress the occurrence of printing misalignment.
  • the strip-shaped extruded resin sheet W is formed by heating and extruding a resin material.
  • each step of manufacturing the intermediate resin sheet Wn (intermediate manufactured product), which is a resin sheet used for hot press processing, from the strip-shaped extruded resin sheet W will be described.
  • Each step includes an intermediate processing method for the extruded resin sheet and a hot press processing method for the intermediate resin sheet Wn (intermediate manufactured product) in which the extruded resin sheet W is intermediately processed.
  • the "intermediate processing” is a processing after extrusion molding and before (immediately before, before) hot press processing.
  • the "intermediate processing” is processing after the shrinkage prediction step P2.
  • the intermediate processing includes processing by the coating process P3, the printing process P4, and the trimming process P5, and does not include the heat pressing process P6.
  • post-processing is processing after extrusion molding and includes hot press processing.
  • post-processing is processing after the shrinkage prediction process P2, and includes a coating process P3, a printing process P4, a trimming process P5, and a hot pressing process P6.
  • Extrusion molding process P1 (FIG. 2)
  • the extrusion molding step P1 is carried out by an extrusion molding process management device 10 (for example, a personal computer), an extrusion molding device 11, or the like.
  • the extrusion molding process management device 10 operates the extrusion molding device 11 based on an instruction from the overall control device 2 (or an input instruction from an operator or the like).
  • a resin material 13 such as polycarbonate is charged, and the resin material 13 is heated and melted until it reaches a predetermined temperature.
  • the molten resin material 13 is discharged from the resin sheet discharge port 11A at a predetermined pressure to form a strip-shaped extruded resin sheet W having a constant width and a constant thickness.
  • the strip-shaped extruded resin sheet W discharged from the resin sheet discharge port 11A has a constant thickness and is conveyed at a constant speed by the extrusion molding rollers 12A and 12B.
  • the marker transport roller Rm engraves a small marker Mk on the edge of the extruded resin sheet each time it makes one rotation.
  • the mark Mk is used as a boundary of individual regions in the virtual division process described later. However, if the boundary of the individual area can be set without providing the mark Mk, the marking of the mark Mk may be omitted.
  • the extrusion roller 12A (or the extrusion roller 12B) is provided with a rotation detection means 14 (for example, a rotation sensor) that outputs a detection signal according to the rotation of the extrusion roller 12A.
  • the extrusion molding process management device 10 can detect the rotation speed (rotation speed) of the extrusion molding roller 12A based on the detection signal from the rotation detection means 14.
  • the extrusion molding apparatus 11 is provided with a roller temperature detecting means 15 (for example, a non-contact temperature sensor) that outputs a detection signal according to the temperature of the extrusion molding roller 12A. Further, the extrusion molding apparatus 11 is provided with an extrusion resin sheet temperature detecting means 16 (for example, a non-contact temperature sensor) that outputs a detection signal according to the temperature of the extrusion resin sheet W.
  • the extrusion molding process management device 10 can detect the temperature of the roller surface of the extrusion molding roller 12A based on the detection signal from the roller temperature detecting means 15.
  • the extrusion molding process management device 10 can detect the temperature of the extrusion resin sheet W at that position based on the detection signal from the extrusion resin sheet temperature detecting means 16.
  • the rotation speed of the extrusion roller 12A, the temperature of the extrusion roller 12A, and the temperature of the extrusion resin sheet W are used in the contour calculation step P2C described later.
  • the extrusion molding process management device 10 measures the roller rotation speed, the roller temperature, and the resin sheet temperature according to the position from the tip of the extruded resin sheet W (corresponding to the individual regions W1, W2, which will be described later), and communicates with the communication line. It is transmitted to the shrinkage prediction process control device 20 via T.
  • the diameters of the extruded rollers 12A and 12B are about 500 to 600 [mm], and the plate thickness of the extruded resin sheet W slightly varies with each rotation.
  • shrinkage prediction step P2 (virtual division step P2A, shrinkage rate related information acquisition step P2B, contour calculation step P2C, contour storage step P2D) (FIGS. 3 to 7)]
  • the shrinkage prediction step P2 (virtual division step P2A, shrinkage rate related information acquisition step P2B, contour calculation step P2C, contour storage step P2D) will be described with reference to FIGS. 3 to 7.
  • the shrinkage prediction step P2 when a resin sheet Wz (finished product) is manufactured from the extruded resin sheet W as shown in FIG. 1, how the shrinkage is predicted. As described above, even if the extruded resin sheet W is a continuous strip-shaped sheet of the same lot, the shrinkage rate differs depending on the position.
  • the region corresponding to the resin sheet Wz (finished product) is divided into small divided regions and recognized. Then, the contraction state is predicted for each region and each divided region. If it is a small region, it is possible to predict the contraction state. Then, the contraction state predicted for each individual region and each divided region is integrated, and the contraction state of the entire region corresponding to the resin sheet Wz (finished product) is predicted for each individual region.
  • the shrinkage prediction process P2 is performed by the shrinkage prediction process control device 20 before intermediate processing (in this case, coating, printing, trimming) and hot pressing (that is, post-processing).
  • the shrinkage prediction step P2 includes a virtual division step P2A, a shrinkage rate related information acquisition step P2B, a contour calculation step P2C, a contour storage step P2D, and the like. The details of these will be described below.
  • the virtual division step P2A includes a shrinkage prediction process management device 20 (for example, a personal computer) and a region imaging device 21 (for example, a camera) before performing intermediate processing and hot press processing (that is, post-processing). Etc. will be carried out.
  • the mark Mk is engraved on the edge of the extruded resin sheet W transported at a constant speed by the mark transport roller Rm at regular intervals.
  • the shrinkage prediction process management device 20 uses the region image pickup device 21 based on an instruction from the overall control device 2 (or an input instruction from an operator or the like) to form a strip-shaped continuous extruded resin sheet W into an individual region W1.
  • the individual regions W1, W2, W3 and the like correspond to the resin sheet Wz (finished product) (see FIG. 1) cut out from the extruded resin sheet W. Specifically, the individual areas W1, W2, W3 and the like are slightly wider than the resin sheet Wz (finished product). In the example shown in FIGS. 3 and 4, the individual regions W1, W2, W3 ... Are virtually divided at the positions indicated by the alternate long and short dash lines (positions of the marks Mk).
  • the shrinkage prediction process management device 20 virtually divides each of the individual regions W1, W2 ... As shown by a dotted line in FIGS. 3 and 4, into a plurality of divided regions.
  • the individual region W1 is divided into 16 divided regions of W1 (A, 1), W1 (A, 2), ... W1 (D, 4).
  • the vertical ⁇ horizontal size of the divided region is, for example, about several tens [mm] ⁇ several tens [mm]. Since the shrinkage prediction process management device 20 virtually divides both the individual area and the divided area, it does not mean that the extruded resin sheet W is actually provided with a line or the like.
  • shrinkage rate related information acquisition process P2B (FIGS. 3 to 5)] As shown in FIG. 3, in the shrinkage rate-related information acquisition step P2B, the shrinkage prediction process management device 20, the shrinkage rate-related information measuring devices 25A, 25B, before performing intermediate processing and hot press processing (that is, post-processing). It is carried out at 26A, 26B, etc.
  • the contraction rate related information measuring devices 25A, 25B, 26A, 26B are, for example, a plate thickness distribution measuring device for measuring a plate thickness distribution, a temperature distribution measuring device for measuring a temperature distribution, and a refractive index distribution measuring device for measuring a refractive index distribution. And so on.
  • the shrinkage prediction process management device 20 uses a shrinkage rate-related information measuring device to acquire shrinkage rate-related information related to the shrinkage rate of each virtually divided divided region for each individual region and each divided region. Store in storage device.
  • the shrinkage prediction process management device 20 stores shrinkage rate related information for each individual area W1, W2, and so on.
  • the shrinkage rate related information of the individual region W1 includes the roller temperature TRw1, the roller rotation speed RRw1, and the sheet temperature TSw1 (the above are the extrusion molding process management devices 10 of the extrusion molding step P1 via the communication line T). Information received) is stored.
  • the shrinkage prediction process management device 20 receives from the extrusion molding process management device 10 the roller temperature, the roller rotation speed, the sheet temperature, etc. corresponding to the individual regions, and stores them in correspondence with the individual regions.
  • the shrinkage rate related information of the individual region W1 shown in FIG. 5 includes the plate thickness distribution, the temperature distribution, and the refractive index distribution for each (divided) region (A, 1), (A, 2) ... (D, 4). Etc. are remembered.
  • contour calculation process P2C, contour storage process P2D (FIGS. 3 to 7)] As shown in FIG. 3, the contour calculation step P2C and the contour storage step P2D are carried out by the shrinkage prediction process management device 20 before performing intermediate processing and hot press processing (that is, post-processing).
  • the shrinkage prediction process management device 20 receives heat press processing condition information which is processing condition information of post-processing (in this case, heat press) related to shrinkage from the heat press process management device 60.
  • heat press processing condition information which is processing condition information of post-processing (in this case, heat press) related to shrinkage from the heat press process management device 60.
  • FIG. 6 shows an example of hot press working condition information.
  • the example of FIG. 6 shows an example in which the machining conditions scheduled for hot pressing the individual region W1 are set for each individual region and each divided region.
  • the heat press processing condition information corresponds to each of the (divided) regions (A, 1), (A, 2), ... (D, 4) of the individual region W1, and the heating distribution (heating temperature) during heating. Distribution, temperature application amount), pressure distribution at the time of pressing (pressure application amount), are set.
  • the shrinkage prediction process control device 20 has a target contour Lt (see FIGS. 3 and 4) which is a contour corresponding to the resin sheet Wz (finished product) after the completion of intermediate processing and hot press processing (that is, post-processing). Is virtually set for each individual area W1, W2, and so on.
  • the examples of FIGS. 3 and 4 show an example in which the shrinkage prediction process management device 20 virtually sets the target contour Lt for the individual region W1 in the contour calculation step P2C.
  • the shrinkage prediction process control device 20 is based on the shrinkage rate related information for each individual region and each divided region (see FIG. 5) and the hot press working condition information for each individual region and each divided region (see FIG. 6).
  • the pre-shrinkage contour Ls which is the contour before shrinking to the target contour Lt, is calculated (predicted) and virtually set for each individual region.
  • the shrinkage prediction process management device 20 calculates and virtually sets the pre-shrinkage contour Ls corresponding to the target contour Lt for the individual region W1 in the contour calculation step P2C. An example is shown.
  • the shrinkage prediction process management device 20 uses the information regarding the virtually set target contour Lt and the virtually set pre-shrinkage contour Ls in the contour storage process P2D as the contour information shown in FIG. 7, in the individual area W1. , W2 ... Are stored in the storage device (in this example, the contour is decomposed into a plurality of position coordinates (a, b) and stored).
  • the coating process P3 is carried out by the coating process management device 30 (for example, a personal computer), the coating device 31, the curing device 33, and the like.
  • the coating process control device 30 operates the coating device 31 and the curing device 33 based on an instruction from the overall control device 2 (or an input instruction from an operator or the like).
  • the coating device 31 sprays a coating agent by, for example, an inkjet method, and a coating layer having a predetermined thickness (for example, about 10 to 20 [ ⁇ m]) is applied to the surface (upper surface or upper surface and lower surface) of the extruded resin sheet W.
  • a coating layer having a predetermined thickness for example, about 10 to 20 [ ⁇ m]
  • the curing device 33 is a device that irradiates ultraviolet rays, for example, when the coating agent is an ultraviolet curing type paint.
  • the coating process P3 includes a correction amount acquisition process P3A, a curvature-related information acquisition process P3B, a region-specific coating condition setting process P3C, a coating implementation process P3D, a coating curing process P3E, and the like. The details of these will be described below.
  • the coating step P3 is one of the intermediate processing steps (also one of the post-processing steps).
  • the coating implementation step P3D included in the coating process P3 is one of the intermediate processing implementation steps.
  • the coating process management device 30 obtains a correction amount when coating is performed for each individual region in the correction amount acquisition step P3A before the coating implementation step P3D. Specifically, the coating process control device 30 sets the range of the pre-shrinkage contour corresponding to the individual region to the range to be coated for each individual region. In this case, the coating process control device 30 sets the coating range of the individual region W1 to the range of the pre-shrink contour Ls (see FIGS. 3 and 4) associated with the individual region W1.
  • the resin sheet Wz (finished product) after the completion of the hot pressing step P6 (see FIG. 1) has a curved shape in which each region is curved by a curvature by hot pressing.
  • the coating layer applied to the surface of the resin sheet is preferably thick, but if it is too thick, cracks such as cracks and cracks may occur when the curvature rate at the time of shaping by the hot press is large. Therefore, it is desired to apply a coating as thick as possible without causing cracks such as cracks and cracks.
  • the coating thickness information shown in FIG. 10 is stored in the storage device 30A of the coating process control device 30.
  • the coating thickness information corresponds to each (divided) region of the individual region for each individual region, and corresponds to the maximum curvature at the time of shrinkage to the target contour Lt (see FIGS. 3 and 4) and the maximum curvature.
  • the maximum allowable coating thickness and is set.
  • the maximum allowable coating thickness for each (divided) region in the coating thickness information is the maximum curvature (when shrinking to the target contour Lt) of the (divided) region and the curvature / maximum allowable coating thickness characteristics (see FIG. 9). ), And is required from.
  • the coating process control device 30 acquires the maximum curvature from the hot press process control device 60 (see FIG. 1) that manages the hot press process P6 via the communication line T, and obtains the coating thickness information (see FIG. 10). Store in each area of "maximum curvature".
  • the maximum curvature is the maximum curvature at the time of contraction to the target contour Lt, and is the curvature-related information related to the curvature after the end of the hot pressing step P6.
  • the coating process management device 30 is used for each individual region and each division region according to the curvature based on the curvature-related information for each individual region and each division region.
  • the storage device 30A of the coating process control device 30 stores the curvature / maximum allowable coating thickness characteristic (see FIG. 9) in which the maximum allowable coating thickness corresponding to the curvature of the resin sheet is set.
  • the coating process control device 30 has, for each (division) region associated with the individual region W1 corresponding to the resin sheet, the maximum curvature corresponding to the (division) region, and the curvature / maximum allowable coating thickness characteristic. Determine the maximum permissible coating thickness based on this.
  • the maximum curvature is the maximum curvature based on curvature-related information.
  • the coating process control device 30 stores (sets) the obtained maximum allowable coating thickness in the corresponding region in the "maximum allowable coating thickness" of the coating thickness information (see FIG. 10).
  • the obtained maximum permissible coating thickness is a thickness equal to or less than the maximum permissible coating thickness.
  • the coating thickness is set to be thinner in the divided region having a large curvature than in the divided region having a small curvature.
  • the intermediate resin sheet Wn shrinks.
  • the "maximum curvature" when shrinking to the target contour Lt and the "maximum curvature” corresponding to the maximum curvature are used for each individual region and each divided region.
  • “Maximum allowable coating thickness” was set. It may be an intermediate resin sheet Wn (intermediate manufactured product) having a shrinkage rate of, for example, about 1 to 5 [%]. In this case, it is assumed that there is almost no shrinkage due to the hot pressing step P6.
  • the intermediate resin sheet Wn intermediate manufactured product
  • the resin sheet Wz finished product
  • the "maximum curvature” and the “maximum allowable coating thickness” for each individual region and each divided region at the target contour Lt may be stored (set) in the coating thickness information (see FIG. 10).
  • the coating process control device 30 controls the coating device 31 to apply the coating to the range of the pre-shrinkage contour Ls (see FIGS. 3 and 4). Therefore, since the coating is not applied to a useless range, waste of the coating agent, wasted time for coating to an extra range, and the like can be reduced. In this way, the coating corrected for each individual region using the shrinkage-related information for each individual region and each division region and the pre-shrinkage contour based on the heat press working condition information for each individual region and each division region ( Perform intermediate processing and post-processing).
  • the coating process control device 30 of FIG. 8 applies coating with a coating thickness set for each (divided) region based on the coating thickness information (see FIG. 10) (see FIG. 11).
  • the resin sheet Wz (finished product) may have a spherical shape or a cylindrical shape, and the curvature may be substantially constant as a whole. In this case, it is not necessary to set the coating thickness for each divided region, and the coating thickness may be set for each individual region.
  • the coating process management device 30 controls the curing device 33.
  • the curing device 33 is irradiated with ultraviolet rays so that the coating applied to each divided region in the coating implementation step P3D is in a fully cured state in which the curing is almost completed.
  • Print process P4 (correction amount acquisition process P4A, printing execution process P4B) (FIGS. 12 to 14)
  • the printing process P4 is performed by the printing process management device 40 (for example, a personal computer), the printing device 41, and the like.
  • the printing process management device 40 operates the printing device 41 based on an instruction from the overall control device 2 (or an input instruction from an operator or the like).
  • the printing apparatus 41 sprays paint by, for example, an inkjet method to form a printing layer on the front surface (or front surface and back surface) of the extruded resin sheet W.
  • the printing process P4 includes a correction amount acquisition process P4A, a printing execution process P4B, and the like. The details of these will be described below.
  • the printing step P4 is one of the intermediate processing steps (also one of the post-processing steps), and the printing execution step P4B included in the printing step P4 is one of the intermediate processing execution steps.
  • the printing process management device 40 obtains a correction amount at the time of printing in the correction amount acquisition step P4A before the printing execution step P4B. Specifically, the printing process management device 40 determines the range, shape, and scale to be printed for each individual area, such as the pre-shrinkage contour Ls corresponding to the individual area, the target contour Lt, and each individual area and each divided area. The shrinkage rate related information and the heat press working condition information for each individual area and each divided area are obtained, and the correction amount at the time of printing is obtained.
  • the printed area At (the area shown by hatching in FIG. 14) of the resin sheet Wz (finished product) may be a predetermined width of the edge portion of the resin sheet Wz (finished product) as shown in FIG.
  • the printing process control device 40 obtains the print area As shown by hatching in FIG.
  • the individual region W1 may be the target contour Lt and the pre-shrinkage contour Ls.
  • the printing process management device 40 has the target contour Lt, the contour Ls before shrinkage, the shrinkage rate related information for each individual region and each division region (see FIG. 5), and the heat press working condition information for each individual region and each division region. (See FIG. 6), the shrinkage direction and the shrinkage amount of each divided area are estimated, and the print area As for each individual area is obtained.
  • Print process P4B In the printing execution step P4B, the printing process management device 40 controls the printing device 41 to print in the range of the printing area As (see FIG. 13). Therefore, since printing is not performed to a wasteful range, wasteful use of paint and wasteful time for printing to an extra range can be reduced, and misalignment and distortion of the printed area at the time of completion can be reduced. In this way, printing corrected for each individual area based on the shrinkage rate related information for each individual area and each divided area, the heat press working condition information for each individual area and each divided area, the pre-shrinkage contour, and the target contour. (Intermediate processing and post-processing) will be carried out.
  • the identification information ID corresponding to the individual area W1 is printed on the edge portion in the contour Ls before shrinkage with a two-dimensional code, a bar code, or the like.
  • the identification information ID is "YMD-0001" in the example of this embodiment.
  • the identification information is allocated in the shrinkage prediction step P2 and is used in the coating step P3, the printing step P4, the trimming step P5, the hot pressing step P6, and the inspection step P8 to identify individual regions.
  • the identification information is used to identify the intermediate resin sheet Wn (intermediate manufactured product) and the resin sheet Wz (finished product).
  • each control device (10, 20, 30, 40, 50) is from the tip of the extruded resin sheet W.
  • Individual areas W1, W2, etc. are specified according to the position.
  • each management device (60, 80) reads the identification information ID with a code reading device or the like.
  • the intermediate resin sheet Wn (intermediate manufactured product) cut out from the individual region W1 is specified.
  • trim step P5 (correction amount acquisition step P5A, trim implementation step P5B) (FIGS. 15 and 16)
  • the trim step P5 is carried out by the trim process management device 50 (for example, a personal computer), the trim device 51, and the like.
  • the trim process control device 50 operates the trim device 51 based on an instruction from the overall control device 2 (or an input instruction from an operator or the like).
  • the trim device 51 is, for example, a laser cutter, and is irradiated with laser light La to cut out an intermediate resin sheet Wn (intermediate manufactured product) from the extruded resin sheet W (see FIGS. 1 and 16).
  • the trim step P5 includes a correction amount acquisition step P5A, a trim implementation step P5B, and the like. The details of these will be described below.
  • the trim step P5 is one of the intermediate processing steps (also one of the post-processing steps), and the trim execution step P5B included in the trim step P5 is one of the intermediate processing execution steps.
  • the trim process management device 50 sets the range cut out from the individual area for each individual area in the correction amount acquisition step P5A to the range of the pre-shrinkage contour Ls corresponding to the individual area. Then, the correction amount for trimming is obtained for each individual area.
  • trim process management device 50 controls the trim device 51 to cut out the range of the pre-shrinkage contour Ls from the individual region. Therefore, no useless region is left (in the resin sheet Wz (finished product), the pre-shrinkage contour Ls shrinks to the target contour Lt). In this way, the trim corrected for each individual region using the shrinkage-related information for each individual region and each division region and the pre-shrinkage contour based on the heat press working condition information for each individual region and each division region ( Perform intermediate processing and post-processing).
  • the strip-shaped extruded resin sheet W is separated into individual intermediate resin sheets Wn (intermediate manufactured products). Therefore, the next step (heat pressing step P6, inspection step P8) may be performed at the factory where the trim step P5 has been carried out, or the intermediate resin sheet Wn (intermediate manufactured product) is transported to a factory at a remote location. It may be done at a remote factory.
  • the hot press process P6 and the inspection process P8 are performed at a remote location, for example, the overall control device 2, the hot press process control device 60, and the inspection process control device 80 are connected to the Internet.
  • the hot pressing process P6 is carried out by a hot pressing process management device 60 (for example, a personal computer), a heating device 61, a pressing device 63, and the like.
  • the heat press process control device 60 operates the heating device 61 and the press device 63 based on an instruction from the overall control device 2 (or an input instruction from an operator or the like).
  • the hot pressing process P6 includes a heating implementation process P6B, a correction amount acquisition process P6A corresponding to the heating implementation process P6B, a press implementation process P6D, a correction amount acquisition process P6C corresponding to the press implementation process P6D, and the like. The details of these will be described below.
  • the hot pressing process P6 is one of the post-processing processes.
  • the "hot press processing condition information" shown in FIG. 6 is stored in the storage device 60A of the hot press process control device 60.
  • the hot press process management device 60 obtains a correction amount for each region of the "temperature distribution" of the hot press processing condition information in the correction amount acquisition step P6A before the heating execution step P6B.
  • the heat press process management device 60 has the pre-shrinkage contour Ls (see FIG. 4) and the target contour Lt (see FIG. 4) corresponding to the individual region for each individual region, and the individual region and the divided region. Correction of hot press working condition information for each area of "temperature distribution" based on shrinkage rate related information for each area (see FIG. 5) and hot press working condition information for each individual area and each divided area (see Fig. 6). Find the amount.
  • the heating implementation step P6B is performed by the heat press process control device 60, the heating device 61, and the like.
  • the heating device 61 is, for example, a heat insulating tank, and has a transport device 61A such as a conveyor and a heating table 62 or the like mounted on the transport device 61A.
  • the heating table 62 is divided in the same manner as the (divided) regions (A, 1), (A, 2) ... (D, 4) (see FIG. 4) virtually divided in the virtual division step P2A. There is.
  • the heating table 62 heats each divided region of the intermediate resin sheet Wn (intermediate manufactured product) placed on itself at a different temperature (different temperature distribution) for each divided region at each temperature. Can be done.
  • the heat press process management device 60 is a heating table based on the temperature distribution for each (divided) region stored in the heat press processing condition information shown in FIG. 6 and the correction amount in the correction amount acquisition step P6A described above. The temperature of each of the 62 (divided) regions is adjusted as needed. In this way, based on the shrinkage rate related information for each individual region and each divided region and the heat press working condition information for each individual region and each divided region, heating (post-processing) corrected as necessary for each individual region is performed. ).
  • the "hot press processing condition information" shown in FIG. 6 is stored in the storage device 60A of the hot press process control device 60.
  • the hot press process management device 60 obtains a correction amount for each region of the "pressure distribution" of the hot press processing condition information in the correction amount acquisition step P6C before the press execution step P6D.
  • the heat press process control device 60 has, for each individual region, the pre-shrink contour Ls (see FIG. 4) and the target contour Lt (see FIG. 4) corresponding to the individual region, and the shrinkage rate for each divided region. Based on the related information (see FIG. 5) and the hot press working condition information (see FIG. 6), the correction amount for each region of the "pressure distribution" of the hot press working condition information is obtained.
  • the pressing process P6D is performed by the hot pressing process control device 60, the pressing device 63, and the like.
  • the press device 63 has an upper die 63A and a lower die 63B.
  • the press surfaces of the upper die 63A and the lower die 63B are virtually divided (divided) regions (A, 1), (A, 2) ... (D, 4) (see FIG. 4) in the virtual division step P2A. ) Is divided.
  • the pressed surface is shaped by pressing each divided region of the set intermediate resin sheet Wn (intermediate manufactured product) at a different pressure (different pressure distribution) for each divided region. Can be done.
  • the hot press process management device 60 is a press device based on the pressure distribution for each (divided) region stored in the hot press processing condition information shown in FIG. 6 and the correction amount in the correction amount acquisition step P6C described above. Adjust the pressure in each of the 63 (divided) regions as needed. In this way, based on the shrinkage rate related information for each individual region and each divided region and the heat press processing condition information for each individual region and each divided region, the press (post-processing) corrected as necessary for each individual region. ).
  • each divided region is heated at each temperature (temperature distribution), and in the press implementation step P6D, each divided region is subjected to the respective pressure (pressure distribution). ) Has been described, but it is sufficient if at least one of them can be performed. Then, by carrying out the heating step P6B and the press step P6D, a resin sheet Wz (finished product) can be obtained.
  • the inspection process P8 is carried out by the inspection process management device 80 (for example, a personal computer), the inspection device 81, and the like.
  • the inspection process management device 80 operates the inspection device 81 based on an instruction from the overall control device 2 (or an input instruction from an operator or the like).
  • the inspection device 81 is, for example, a three-dimensional data acquisition device composed of two image pickup devices 81A and 81B arranged at predetermined intervals.
  • the inspection process control device 80 uses two image pickup devices 81A and 81B to image the resin sheet Wz (finished product) from various directions and measures the three-dimensional shape of the resin sheet Wz (finished product). Then, as shown in the example of the final product inspection information in FIG. 18, the inspection process control device 80 has a contour error (dimensional error) and a curvature error (shape) for each divided region for each individual region (W1, W2 ). Error) etc. are obtained and stored.
  • the inspection process control device 80 transmits the final product inspection information (see FIG. 18) to the shrinkage prediction process control device 20 (see FIG. 1) and the hot press process control device 60 via the communication line T.
  • the shrinkage prediction process management device 20 that has received the final product inspection information corrects when obtaining the pre-shrinkage contour Ls in the contour calculation step P2C so that the error of the final product inspection information is reduced based on the final product inspection information. Correct the amount etc.
  • a correction amount for correcting the machine difference (individual difference) of the heating device 61 and the pressing device 63 is obtained, and the control amount of the heating device 61 and the pressing device 63 from the heat pressing process control device 60 is obtained. It may be corrected.
  • the hot press working conditions of each heating device and pressing device having individual differences can be matched with typical conditions (in this case, hot press working condition information), so that hot press working condition information (Fig.) 6) can be more accurately realized, and corrections can be made more accurately in each intermediate processing and hot pressing (that is, each post-processing).
  • the contour after hot pressing which is the contour after hot pressing, is estimated based on the shrinkage rate related information, the trim shape (contour before shrinking Ls), the hot pressing condition information before correction, etc., and the estimated post-hot pressing contour.
  • the heat press working condition information may be corrected according to the difference between the target contour Lt and the target contour Lt.
  • the shrinkage prediction process control device 20 corrects at least a part of the hot press working condition information by the following procedures (1-1) to (1-3), and finally shrinks.
  • the front contour Ls is calculated.
  • the shrinkage prediction process control device 20 estimates the (provisional) pre-shrinkage contour based on the shrinkage rate related information and the (pre-correction) hot press working condition information.
  • the shrinkage rate related information is set for each individual region and each divided region (see FIG. 5), and the hot press working condition information is set for each individual region and each divided region (see FIG. 6).
  • the shrinkage prediction process control device 20 reduces the amount of shrinkage so that the (provisional) pre-shrinkage contour fits in the individual region.
  • Correct at least part of the hot press working condition information first, based on the hot press working condition information for each individual region and each divided region, and the intermediate working condition information for each individual region and each divided region. , The corrected hot press working condition information corrected with the hot press working condition information is obtained, and the obtained corrected hot press working condition information is updated (overwritten) as the hot press working condition information.
  • the shrinkage prediction process control device 20 has shrinkage rate-related information for each individual region and each division region, and heat press working condition information (corrected and updated (overwritten)) for each individual region and each division region.
  • the final pre-shrinkage contour Ls is calculated based on (corresponding to the corrected heat press working condition information).
  • the corrected and updated (overwritten) hot press processing condition information is used.
  • the shrinkage prediction process control device 20 is described in the following (2-1) even when the (provisional) pre-shrinkage contour is contained within the individual region in the above "other example 1".
  • the procedure of (2-3) at least a part of the heat press working condition information is corrected so that the shrinkage amount is reduced (or the strain due to shrinkage is reduced), and the final pre-shrinkage contour Ls is corrected. Is calculated.
  • the shrinkage prediction process control device 20 estimates the (provisional) pre-shrinkage contour based on the shrinkage rate related information and the (pre-correction) hot press working condition information.
  • the shrinkage rate related information is set for each individual region and each divided region (see FIG.
  • the shrinkage prediction process control device 20 reduces the amount of shrinkage (or the strain due to shrinkage) regardless of whether the estimated (provisional) pre-shrinkage contour fits within the individual region.
  • the corrected hot press working condition information obtained by correcting the hot press working condition information is obtained by the same processing as described in (1-2) above.
  • the corrected hot press working condition information is updated (overwritten) as hot press working condition information.
  • various processing conditions for performing intermediate processing in this case, coating, printing, trimming
  • the shrinkage prediction process control device 20 has shrinkage rate-related information for each individual region and each divided region, and heat press working condition information (corrected and updated (overwritten)) for each individual region and each divided region. Based on, the final pre-shrink contour Ls is calculated.
  • the updated (overwritten) hot press processing condition information is used.
  • the shrinkage prediction process management device 20 is set so that, for example, the pre-shrinkage contour is a preset pre-shrinkage contour (a contour preset as a size slightly larger than the target contour Lt).
  • the pre-shrinkage contour is a preset pre-shrinkage contour (a contour preset as a size slightly larger than the target contour Lt).
  • the heat press working condition information is corrected so as to reduce (adjust) the shrinkage amount and the strain.
  • hot press working is performed using the hot press working condition information in which at least a part of the individual regions and each divided region is corrected.
  • the intermediate processing in this case, coating, printing, trimming
  • the processing which is not individually corrected is performed, and the uniform processing is performed according to the set pre-shrink contour.
  • FIG. 19 shows an outline of the entire manufacturing process of the resin sheet of the second embodiment.
  • the manufacturing process of the resin sheet of the second embodiment shown in FIG. 19 is different from the manufacturing process of the resin sheet of the first embodiment shown in FIG. 1 in the coating curing step P3E in the coating step P3.
  • the step of making the coating in a cured state) has been changed to the coating semi-curing step P3F in which the coating is made into a semi-cured state.
  • the process control system 1 is composed of an overall control device 2 and a control device (10, 20, 30, 40, 50, 60, 70, 80) for each process.
  • the "fully cured state” refers to a state in which the coating is almost completely cured
  • the "semi-cured state” refers to a cured state in the process of reaching the fully cured state.
  • the coating process management device 30 is used for each individual region and for each individual region according to the curvature based on the curvature-related information for each divided region.
  • the storage device 30A of the coating process control device 30 stores a curvature / target curing degree characteristic (see FIG. 20) in which a target curing degree corresponding to the curvature of the resin sheet is set.
  • the coating process control device 30 has a maximum curvature (maximum curvature based on curvature-related information) corresponding to the (divided) region for each (divided) region associated with the individual region W1 corresponding to the resin sheet. , Curvature / target curing degree The target curing degree is obtained based on the characteristics. Then, the coating process control device 30 stores (sets) the obtained target curing degree in the corresponding region in the “target curing degree” of the curing degree information (see FIG. 21).
  • the divided region having a large curvature is set so that the degree of curing in the semi-cured state is lower than that of the divided region having a small curvature.
  • the "maximum curvature" and "target curing degree” for each individual region and each divided region at the target contour Lt are cured degree information. It may be stored (set) in (see FIG. 21). Further, instead of setting a different target curing degree for each individual region and each divided region, the lowest target curing degree among the target curing degrees obtained for each individual region and each divided region is set for all divisions within the individual region. It may be applied to the area.
  • the coating process control device 30 controls the coating device 31 to apply the coating to the range of the pre-shrinkage contour Ls (see FIGS. 3 and 4). In this way, the coating corrected for each individual region using the shrinkage-related information for each individual region and each division region and the pre-shrinkage contour based on the heat press working condition information for each individual region and each division region ( Perform intermediate processing and post-processing).
  • the coating process control device 30 coats each divided region so as to have a preset coating thickness.
  • the coating process management device 30 controls the curing device 33 so that the curing degree is different for each individual region and each divided region based on the curing degree information.
  • the curing device 33 may be a device that irradiates ultraviolet rays.
  • the coating process control device 30 sets the time according to the target curing degree and the irradiation intensity according to the target curing degree for each individual region and each divided region. , Control the curing device 33.
  • the degree of curing in the semi-cured state is set to be lower in the divided region having a large curvature than in the divided region having a small curvature. That is, during the hot press working, the coating of the divided region having a large curvature has a low degree of curing and the elastic force is increased, so that the occurrence of cracks such as cracks and cracks is suppressed.
  • the coating total curing step P7 is carried out by the coating total curing process management device 70 (for example, a personal computer), the curing device 73, and the like.
  • the coating total curing process management device 70 is connected to the communication line T, and operates the curing device 73 based on an instruction from the overall control device 2 (or an input instruction from an operator or the like).
  • the curing device 73 is a device that irradiates ultraviolet rays, for example, when the coating agent is an ultraviolet curing type paint. Further, the coating total curing step P7 is carried out after the hot pressing step P6 and before the inspection step P8.
  • the coating of the intermediate resin sheet Wn (intermediate manufactured product) for which the hot pressing process P6 has been completed remains in a semi-cured state.
  • the coating total curing process control device 70 controls the curing device 73 to cure the semi-cured coating to the fully cured state.
  • the entire manufacturing process of the resin sheet of the third embodiment is the same as that of the second embodiment shown in FIG. 19, but the following points are different from the second embodiment.
  • the resin sheet manufacturing process of the third embodiment is different from the resin sheet manufacturing process of the second embodiment in the coating step P3, the setting contents in the region-by-region coating condition setting step P3C, and the coating implementation step.
  • the contents of P3D and the contents of the coating semi-curing step P3F are different. Differences from these second embodiments will be mainly described, and the same points as those of the second embodiment will be omitted.
  • the "fully cured state” refers to a state in which the coating is almost completely cured
  • the "semi-cured state” refers to a cured state in the process of reaching the fully cured state. Is the same as.
  • the coating process management device 30 is used for each individual region and for each individual region according to the curvature based on the curvature-related information for each divided region.
  • the "coating condition for each region" is the "thickness of the coating for each individual region and each divided region", but it differs from the first embodiment in the following points.
  • the coating is semi-cured and hot-pressed.
  • the coating is fully cured and hot press working is performed.
  • the coating thickness is made thinner in the divided region having a large curvature than in the divided region having a small curvature so that the coating in the fully cured state does not generate cracks in the portion having a large curvature.
  • the coating having elastic force in the semi-cured state does not generate cracks by hot pressing. Therefore, in the divided region having a large curvature, the coating is thickly coated in advance in anticipation that the coating will be stretched and thinned by the large curvature.
  • the storage device 30A of the coating process control device 30 stores the curvature / target coating thickness characteristic (see FIG. 22) in which the target coating thickness corresponding to the curvature of the resin sheet is set.
  • the coating process control device 30 has a maximum curvature (maximum curvature based on curvature-related information) corresponding to the (divided) region for each (divided) region associated with the individual region W1 corresponding to the resin sheet. , Curvature / target coating thickness The target coating thickness is obtained based on the characteristics. Then, the coating process control device 30 stores (sets) the obtained target coating thickness in the corresponding region in the "target coating thickness" of the coating thickness information (see FIG. 23). In the third embodiment, the coating thickness is set to be thicker in the divided region having a large curvature than in the divided region having a small curvature.
  • the intermediate resin sheet Wn shrinks.
  • the "maximum curvature" when shrinking to the target contour Lt and the "maximum curvature” corresponding to the maximum curvature are used for each individual region and each divided region.
  • “Target coating thickness” was set.
  • it may be an intermediate resin sheet Wn (intermediate manufactured product) having a shrinkage rate of, for example, about 1 to 5 [%]. In this case, it is assumed that there is almost no shrinkage due to the hot pressing step P6.
  • the intermediate resin sheet Wn intermediate manufactured product
  • the resin sheet Wz finished product
  • the "maximum curvature" and the "target coating thickness” for each individual region and each divided region in the target contour Lt may be stored (set) in the coating thickness information (see FIG. 23).
  • the thickest target coating thickness among the target coating thicknesses obtained for each individual region and each division region is set in the individual region. It may be applied to all the divided areas.
  • the coating process control device 30 controls the coating device 31 to apply the coating to the range of the pre-shrinkage contour Ls (see FIGS. 3 and 4). In this way, the coating corrected for each individual region using the shrinkage-related information for each individual region and each division region and the pre-shrinkage contour based on the heat press working condition information for each individual region and each division region ( Perform intermediate processing and post-processing).
  • the coating process control device 30 applies the coating with the coating thickness set for each (division) region based on the coating thickness information (see FIG. 23).
  • the coating process management device 30 controls the curing device 33. Specifically, the coating process control device 30 controls the curing device 33 so that all the divided regions in the individual regions have substantially the same curing degree based on the curing degree in the semi-cured state set in advance. ..
  • the semi-cured coating with elastic force suppresses the occurrence of cracks such as cracks and cracks even if it is curved.
  • the coating is stretched along the curved shape and the coating becomes thin, but the thickness is set in advance in the coating thickness information (see FIG. 23).
  • the thickness of the coating can be made substantially the same at the portion having a large curvature and the portion having a large curvature.
  • the coating total curing step P7 of the third embodiment is the same as the coating total curing step P7 of the second embodiment.
  • the coating total curing step P7 is carried out by the coating total curing process management device 70 (for example, a personal computer), the curing device 73, and the like.
  • the coating total curing process control device 70 operates the curing device 73 based on an instruction from the overall control device 2 (or an input instruction from an operator or the like).
  • the curing device 73 is a device that irradiates ultraviolet rays, for example, when the coating agent is an ultraviolet curing type paint. Further, the coating total curing step P7 is carried out after the hot pressing step P6 and before the inspection step P8.
  • the coating of the intermediate resin sheet Wn (intermediate manufactured product) for which the hot pressing process P6 has been completed remains in a semi-cured state.
  • the coating total curing process control device 70 controls the curing device 73 to cure the semi-cured coating to the fully cured state.
  • the method is described.
  • the extruded resin sheet is virtually divided into a plurality of regions (individual region, divided region). Then, different shrinkage rates are obtained for each region, and corrections for intermediate processing and hot press processing (that is, post-processing) are appropriately corrected for each region (each individual region, each divided region).
  • waste of the extruded resin sheet corresponding to the base material
  • the coating agent and the occurrence of printing misalignment
  • the accuracy can be further improved by feeding back the inspection results such as the dimensions and shape of the resin sheet Wz (finished product).
  • the extrusion molding process P1 to the trimming process P5 shown in FIGS. 1 and 19 are carried out at the factory of company A to prepare an intermediate resin sheet Wn (intermediate manufactured product).
  • the heat pressing process P6 to the inspection process P8 may be carried out at the factory of Company B.
  • the overall control device 2, the hot press process control device 60, and the inspection process control device 80 (coating total curing process control device 70) are connected to the Internet.
  • the heat press processing condition information (see FIG. 6) used in the heat press process P6 is created by the shrinkage prediction process management device 20, and the heat press is performed via the communication line T, the overall control device 2, and the Internet. It may be transmitted to the process control device 60.
  • company A provides the hot press process control device 60 and the heating device 61, as shown in FIG.
  • the press device 63 may be prepared and provided to the company B.
  • the manufacturing process described in the first to third embodiments includes an intermediate processing process and a hot pressing process, which are intermediate processing processes. Further, the step of correcting the processing conditions (correction for each individual region or each divided region) may be at least one of a coating step, a printing step, a trimming step, and a hot pressing step.
  • the intermediate processing method of the extruded resin sheet and the hot press processing method of the intermediate resin sheet obtained by intermediate processing of the extruded resin sheet according to one embodiment of the present disclosure are not limited to the processing methods and the like described in the present embodiment. , Various changes, additions and deletions are possible without changing the gist of one form of the present disclosure.
  • the thickness of the resin sheet described in the present embodiment is, for example, about several [mm], but the thickness of the target resin sheet is not particularly limited and is about several tens [mm]. It may be in the form of a resin panel having.
  • the material of the resin sheet is not particularly limited.
  • Shrinkage related information (see FIG. 5), hot press working condition information (see FIG. 6), contour information (see FIG. 7), curvature / maximum allowable coating thickness characteristics (see FIG. 9) described in this embodiment.
  • Coating thickness information (see FIG. 10), final product inspection information (see FIG. 18), curing degree information (see FIG. 21), coating thickness information (see FIG. 23), etc. are examples. It is not limited to the items, forms, etc.
  • the shrinkage rate related information includes the temperature of the extruded resin sheet corresponding to the individual region, the temperature of the roller used in the extrusion molding, the number of rotations of the roller, and the plate thickness distribution for each divided region.
  • At least one of the temperature distribution for each divided region and the refractive index distribution for each divided region may be stored. Further, the heat press working condition information may store at least one of a heating distribution for each divided region and a pressure distribution for each divided region corresponding to the individual regions.
  • an example of an inkjet method has been described as an example of a coating device
  • an example of an inkjet method has been described as an example of a printing device
  • an example of a laser cutter has been described as an example of a trimming device, but the present invention is limited thereto. It's not something.
  • the coating agent, printing paint, etc. are not particularly limited.
  • the above ( ⁇ ), the following ( ⁇ ), the larger (>), the less than ( ⁇ ), etc. may or may not include the equal sign.
  • the numerical value used in the explanation of this embodiment is an example, and is not limited to this numerical value.
  • the management device (10, 20, 30, 40, 50, 60, 80) has at least one programmed electronic processor.
  • the management device includes at least one memory for storing instructions or software executed by an electronic processor to realize the functions of the management device described in the present application.
  • the management device may be implemented as a microprocessor with separate memory.
  • the storage device can include a volatile or non-volatile memory.
  • suitable storage devices are RAM (random access memory), flash memory, ROM (read-only memory), PROM (programmable read-only memory), EPROM (erasable programmable read-only memory), EEPROM. (Electrically erasable programmable read-only memory), registers, magnetic disks, optical disks, hard drives, other suitable storage media, or a combination thereof.
  • Software includes, for example, firmware, one or more applications, program data, filters, rules, one or more program modules, and other executable instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • General Factory Administration (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

コンピュータを備えた工程管理システム(1)は、押出成形された帯状の押出樹脂シート(W)を複数の樹脂シートに対応する複数の個別領域へと仮想的に分割する。それぞれの個別領域をさらに複数の分割領域へと仮想的に分割する。各分割領域の収縮率に関連する収縮率関連情報を分割領域ごとに取得する。中間加工を施す際に、工程管理システムは、個別領域ごとかつ分割領域ごとの収縮率関連情報及び熱プレス加工の加工条件情報である熱プレス加工条件情報に基づいてそれぞれの個別領域ごとに加工条件を補正した中間加工を実施する。

Description

押出樹脂シートの中間加工方法及び押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法
 本開示の1つの形態は、樹脂シートの加工方法に関する。例えば、樹脂材料が加熱されつつ押出成形されて帯状の押出樹脂シートを形成する。押出樹脂シートから熱プレス加工に用いる中間樹脂シートを製造する。本形態は、押出樹脂シートの中間加工方法、及び押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法、に関する。
 例えば数[mm]以下の厚さの樹脂シートは、種々の分野で、種々の機器に幅広く利用されている。例えば車両には、数[mm]程度の厚さの透明な樹脂シートが、リアウィンドウや、サンルーフ搭載車のルーフ等、種々の個所に用いられている。しかしながらリアウィンドウやルーフ等に樹脂シートを用いる場合、平板状の樹脂シートを湾曲形状に賦形する必要がある。具体的には、樹脂シートを加熱してプレスして賦形する、いわゆる熱プレス加工が必要となる。
 樹脂シートの製造の際、材料の樹脂のロットが変わると押出時の残留応力等が変わって熱による収縮率が変わってしまう。また同一ロットであっても、平板状かつ帯状の樹脂シートを押出成形した際、樹脂シートの位置によって温度分布や板厚分布等が異なる。これにより樹脂シートの位置によって収縮率が異なる。収縮率の違いによる寸法の変動は、例えば1~5[%]程度であって比較的変動幅が大きく、精度のバラツキの低減が望まれている。
 例えば特開2018-34562号公報には、窓用部材が開示されている。窓用部材は、熱可塑性樹脂を含む材料を用いて形成された基材と、基材の少なくとも一方の面側に設けられたコート層とを有している。基材は、JIS K 6735に規定された方法に準拠して測定された加熱収縮率が5%以下である。窓用部材の製造方法では、押出機を利用する。押出機内の圧力は、好ましくは15~25[MPa]に設定される。押出機内の温度は、好ましくは260~280[℃]に設定される。押出機からの溶融シート(基材)を、タッチロール、冷却ロール、後段冷却ロール、の3つのロールを経由させて平坦化させる。その後、シートを複数の冷却ロールで冷却し、2つのテンションロールで挟み込んで搬送方向に送り出している。これらの各工程を経ることで、基材の加熱収縮率を5[%]以下に設定することができる、と上記562号公報に記載されている。
 562号公報に記載の窓用部材の製造方法では、押出機からの基材の後加工の工程として、塗布層形成工程、印刷工程、成形工程が挙げられている。そして562号公報では、加熱収縮率が5[%]以下とされた基材に対して、「塗布層形成工程」にてコート層(コーティング)を形成する。基材に印刷面を形成する場合(「印刷工程」を有する場合)には成形工程に先立ってコート層上に印刷を施して印刷面を形成する。「成形工程」にて、平板(基材)を加熱し、軟化した直後に型に押し当てて成形し、その輪郭に沿って残存している平板を取り除くことにより、風防板が得られる。
 つまり、加熱収縮率が5[%]以下とはいえ、シートがどのように収縮するかは熱プレスを行うまでわからない。そのため大きめの平板を熱プレスして、収縮後の余分な部分を取り除いており、基材の無駄が比較的多い。また、コート層の形成の際には、どこからが余分な部分かわからないので、大きめの平板の全体に、コート層の形成を施す必要がある。そのためコーティング剤の無駄も比較的多い。また印刷については、基材の加熱収縮率を5[%]以下にする他には、収縮に対する印刷位置や印刷形状の補正等について記載がない。すなわち、基材のどの領域がどのように収縮するかわからない状態で基材に印刷しているので、収縮後に印刷ズレが発生している可能性がある。
 したがって、基材やコーティング剤等の無駄及び印刷ズレの発生をより低減し、より安定した精度の製品を製造することができるシートの加工方法が必要とされている。例えば、シートの加工方法は、熱プレス加工に用いる中間樹脂シートを製造するための押出樹脂シートの中間加工方法、または押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法である。
 本開示の1つの形態は、加熱されて押出成形された帯状の押出樹脂シートから、熱プレス加工に用いる樹脂シートである中間樹脂シートを製造するための、押出樹脂シートの中間加工方法である。本方法は、コンピュータを備えた工程管理システムを用いる。前記工程管理システムは、前記押出成形された帯状の前記押出樹脂シートを複数の前記樹脂シートに対応する複数の個別領域へと仮想的に分割する。仮想的に分割したそれぞれの前記個別領域をさらに複数の分割領域へと仮想的に分割する。各個別領域の各分割領域の収縮率に関連する収縮率関連情報を、前記個別領域ごとかつ前記分割領域ごとに取得している。それぞれの前記個別領域に対して、前記押出成形の後の加工であって前記熱プレス加工の前までの加工である中間加工を施す際に、前記工程管理システムは、それぞれの前記個別領域ごとに加工条件を補正した前記中間加工を実施する。補正は、前記個別領域ごとかつ前記分割領域ごとの前記収縮率関連情報と、前記個別領域ごとかつ前記分割領域ごとの前記熱プレス加工の加工条件情報である熱プレス加工条件情報と、に基づいてそれぞれの前記個別領域ごとになされる。
 したがって、1つずつの製品に対応する個別領域を、さらに複数の分割領域へと仮想的に分割する。そして、個別領域ごとかつ分割領域ごとの収縮率関連情報と熱プレス加工条件情報とに基づいて、個別領域ごとに補正した中間加工を実施する。位置(分割領域)によって収縮率が異なる樹脂シートからの製品1つずつのそれぞれの熱収縮データ(収縮率関連情報、熱プレス加工条件情報)を取得する。そして、その熱収縮データに基づいてそれぞれの領域ごとに適切な補正をした中間加工を行う。これによって、基材やコーティング剤等の無駄及び印刷ズレの発生をより低減し、より安定した精度の製品を製造することができる。
 本開示の他の形態によると、前記中間加工を実施する前には、前記工程管理システムは、前記中間加工及び前記熱プレス加工の完了後の前記樹脂シートに対応する輪郭である目標輪郭を前記個別領域ごとに仮想的に設定する。前記個別領域ごとかつ前記分割領域ごとの前記収縮率関連情報及び前記個別領域ごとかつ前記分割領域ごとの前記熱プレス加工条件情報に基づいて前記目標輪郭へと収縮する前の輪郭である収縮前輪郭を前記個別領域ごとに算出して仮想的に設定する、輪郭算出工程を実施している。そして、前記工程管理システムは、前記目標輪郭と前記収縮前輪郭とを前記個別領域に対応させて記憶する、輪郭記憶工程を実施している。そして、前記中間加工の工程である中間加工工程には、前記中間加工を施す前に、前記工程管理システムは、前記輪郭記憶工程にて記憶された前記目標輪郭と前記収縮前輪郭とに基づいて、前記中間加工を行う際の補正量を前記個別領域ごとに求める、補正量取得工程を実施している。そして前記工程管理システムは、前記補正量取得工程にて求めた前記個別領域ごとの前記補正量に基づいて、それぞれの前記個別領域ごとに補正した前記中間加工を実施する、中間加工実施工程を実施している。
 したがって、中間加工及び熱プレス加工の完了後の樹脂シートの輪郭である目標輪郭と、目標輪郭へと収縮する前の輪郭である収縮前輪郭と、を算出して記憶する。そして収縮前輪郭と目標輪郭に基づいて各中間加工の補正量を個別領域ごとに求めるので、個別領域ごとに適切な補正を行うことができる。従って、個別領域ごとに適切に補正した中間加工を行うことで、基材やコーティング剤等の無駄及び印刷ズレの発生をより低減し、より安定した精度の製品を製造することができる。
 本開示の他の形態によると、前記中間加工実施工程には、前記押出樹脂シートの表面にコーティングを施すコーティング実施工程が含まれている。前記工程管理システムは、前記コーティング実施工程に対応する前記補正量取得工程にて、前記個別領域ごとの前記補正量を求める。前記補正量は、前記個別領域ごとに、当該個別領域に前記コーティングを施す範囲を、当該個別領域に対応する前記収縮前輪郭の範囲に設定することで求められる。これにより、個別領域ごとに、無駄なコーティングを低減することができる。
 本開示の他の形態によると、前記中間加工実施工程には、前記押出樹脂シートの表面に印刷を施す印刷実施工程が含まれている。前記工程管理システムは、前記印刷実施工程に対応する前記補正量取得工程にて、前記個別領域ごとの補正量を求める。前記補正量は、前記個別領域ごとに、当該個別領域に印刷するべき範囲と形状と縮尺を、当該個別領域に対応する前記収縮前輪郭と前記目標輪郭と前記分割領域ごとの前記収縮率関連情報及び前記熱プレス加工条件情報とに基づいて求めることで求められる。したがって、個別領域ごとに、印刷ズレや歪み等の発生を低減することができる。
 本開示の他の形態によると、前記中間加工実施工程には、帯状の前記押出樹脂シートから、前記樹脂シートに対応する領域を前記個別領域から切り出すトリム実施工程が含まれている。前記工程管理システムは、前記トリム実施工程に対応する前記補正量取得工程にて、前記個別領域ごとの補正量を求める。前記補正量は、前記個別領域ごとに、当該個別領域から切り出す範囲を、当該個別領域に対応する前記収縮前輪郭の範囲に設定することで求められる。したがって、個別領域ごとに、帯状の押出樹脂シートから、目標輪郭へと収縮する範囲を適切に切り出すことができる。
 本開示の他の形態によると、前記収縮率関連情報には、前記個別領域に対応させた、前記押出成形された前記押出樹脂シートの温度と、前記押出成形にて使用されるローラの温度と、前記ローラの回転数と、前記分割領域ごとの板厚分布と、前記分割領域ごとの温度分布と、前記分割領域ごとの屈折率分布と、の少なくとも1つが含まれている。したがって、収縮率関連情報として適切な情報を得ることができる。
 本開示の他の形態によると、前記熱プレス加工条件情報には、前記個別領域に対応させた、前記分割領域ごとの加熱分布と、前記分割領域ごとの圧力分布と、の少なくとも1つが含まれている。したがって、熱プレス加工条件情報として適切な情報を得ることができる。
 本開示の他の形態は、加熱されて押出成形された帯状の押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法である。本方法は、コンピュータを備えた工程管理システムを用いる。前記工程管理システムは、前記押出成形された帯状の前記押出樹脂シートを複数の樹脂シートに対応する複数の個別領域へと仮想的に分割する。仮想的に分割したそれぞれの前記個別領域をさらに複数の分割領域へと仮想的に分割する。各個別領域の各分割領域の収縮率に関連する収縮率関連情報を、前記個別領域ごとかつ前記分割領域ごとに取得している。前記中間加工は、前記押出成形の後の加工であって熱プレス加工の前までの加工である。前記中間加工が施されたそれぞれの前記樹脂シートであるそれぞれの前記中間樹脂シートに対して、前記熱プレス加工を施す際に、前記工程管理システムは、熱プレス加工を実施する。熱プレス加工は、前記個別領域ごとかつ前記分割領域ごとの前記収縮率関連情報と、前記個別領域ごとかつ前記分割領域ごとの前記熱プレス加工の加工条件情報である熱プレス加工条件情報、及び前記個別領域ごとかつ前記分割領域ごとの前記中間加工の加工条件情報である中間加工条件情報、に基づいて前記個別領域の少なくとも一部について前記熱プレス加工条件情報を補正した前記熱プレス加工条件情報と、に基づいて実施される。
 したがって、個別領域ごとかつ分割領域ごとの、熱プレス加工条件情報及び中間加工条件情報に基づいて熱プレス加工条件情報を補正する。個別領域ごとかつ分割領域ごとの、補正した熱プレス加工条件情報及び収縮率関連情報に基づいて熱プレス加工を実施する。これにより、個別領域ごとに適切に補正した熱プレス加工を行う。さらに、個別領域ごとに補正するための熱プレス加工条件情報に、さらに補正を加えるので、より安定した精度の製品を製造することができる。
 本開示の他の形態は、加熱されて押出成形された帯状の押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法である。本方法は、コンピュータを備えた工程管理システムを用いる。前記工程管理システムは、前記押出成形された帯状の前記押出樹脂シートを複数の樹脂シートに対応する複数の個別領域へと仮想的に分割する。仮想的に分割したそれぞれの前記個別領域をさらに複数の分割領域へと仮想的に分割する。各個別領域の各分割領域の収縮率に関連する収縮率関連情報を、前記個別領域ごとかつ前記分割領域ごとに取得している。前記中間加工は、前記押出成形の後の加工であって熱プレス加工の前までの加工である。前記工程管理システムは、前記個別領域ごとかつ前記分割領域ごとの前記収縮率関連情報と、前記個別領域ごとかつ前記分割領域ごとの前記熱プレス加工の加工条件情報である熱プレス加工条件情報と、に基づいてそれぞれの前記個別領域ごとに加工条件を補正した前記中間加工が施されたそれぞれの前記樹脂シートであるそれぞれの前記中間樹脂シートに対して、前記熱プレス加工を施す際に、前記工程管理システムを用い、前記個別領域ごとかつ前記分割領域ごとの前記収縮率関連情報と、前記個別領域ごとかつ前記分割領域ごとの前記熱プレス加工の加工条件情報である前記熱プレス加工条件情報と、に基づいて前記熱プレス加工を実施する。
 したがって、個別領域ごとかつ分割領域ごとの熱プレス加工条件情報の補正を行わず、複雑な処理を低減し、個別領域ごとかつ分割領域ごとの、熱プレス加工条件情報及び収縮率関連情報に基づいて、個別領域ごとに適切に補正した熱プレス加工を行う。これにより、より安定した精度の製品を製造することができる、押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法を提供できる。
 本開示の他の形態によると、前記収縮率関連情報には、前記個別領域に対応させた、前記押出成形された前記押出樹脂シートの温度と、前記押出成形にて使用されるローラの温度と、前記ローラの回転数と、前記分割領域ごとの板厚分布と、前記分割領域ごとの温度分布と、前記分割領域ごとの屈折率分布と、の少なくとも1つが含まれている。したがって、収縮率関連情報として適切な情報を得ることができる。
 本開示の他の形態によると、前記熱プレス加工条件情報には、前記個別領域に対応させた、前記分割領域ごとの加熱分布と、前記分割領域ごとの圧力分布と、の少なくとも1つが含まれている。したがって、熱プレス加工条件情報として適切な情報を得ることができる。
第1の実施の形態の樹脂シートの製造工程の全体を説明する図である。 押出成形工程の例を説明する斜視図である。 仮想分割工程、収縮率関連情報取得工程、輪郭算出工程、輪郭記憶工程の例を説明する斜視図である。 図3の平面図であり、個別領域、分割領域、目標輪郭、収縮前輪郭の例を説明する図である。 収縮率関連情報の例を説明する図である。 熱プレス加工条件情報の例を説明する図である。 目標輪郭、収縮前輪郭に関連する輪郭情報の例を説明する図である。 コーティング工程の例を説明する斜視図である。 樹脂シートの曲率に対応させた最大許容コーティング厚さが設定された曲率・最大許容コーティング厚さ特性の例を説明する図である。 種々の曲率とされた分割領域のそれぞれに応じた最大許容コーティング厚さが設定されたコーティング厚さ情報の例を説明する図である。 図8におけるXI-XI断面図であり、それぞれの分割領域に応じた厚さのコーティングを施した例を説明する図である。 印刷工程の例を説明する斜視図である。 収縮を考慮して、収縮前輪郭の縁部に印刷を施した例を説明する図である。 熱プレスを完了して収縮した最終品の縁部の印刷状態の例を説明する図である。 トリム工程の例を説明する斜視図である。 トリム工程にて収縮前輪郭で切り出した樹脂シートの例を説明する図である。 熱プレス工程、検査工程の例を説明する斜視図である。 検査工程にて取得した最終品検査情報の例を説明する図である。 第2、第3の実施の形態の樹脂シートの製造工程の全体を説明する図である。 第2の実施の形態における、樹脂シートの曲率に対応させた目標硬化度合いが設定された曲率・目標硬化度合い特性の例を説明する図である。 第2の実施の形態における、種々の曲率とされた分割領域のそれぞれに応じた目標硬化度合いが設定された硬化度合い情報の例を説明する図である。 第3の実施の形態における、樹脂シートの曲率に対応させた目標コーティング厚さが設定された曲率・目標コーティング厚さ特性の例を説明する図である。 第3の実施の形態における、種々の曲率とされた分割領域のそれぞれに応じた目標コーティング厚さが設定されたコーティング厚さ情報の例を説明する図である。
 以下に本開示の1つの形態を実施するための形態を図面を用いて説明する。なお図中にX軸、Y軸、Z軸が記載されている場合、Z軸方向は鉛直上方向を指し、X軸方向は押出樹脂シートWの押し出し方向(略水平方向)を指し、Y軸方向はX軸方向と直交する略水平方向を指す。以下、本開示の1つの形態の押出樹脂シートの中間加工方法、及び押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法を含む樹脂シートの製造工程について、第1~第3の実施の形態について順に説明する。第1の実施の形態では、コーティング工程P3にコーティング硬化工程P3E(コーティングを全硬化状態にする工程)が含まれている。第2の実施の形態では、コーティング硬化工程P3Eがコーティング半硬化工程P3F(コーティングを半硬化状態にする工程)に変更されており、熱プレス工程P6と検査工程P8の間にコーティング全硬化工程P7(コーティングを全硬化状態にする工程)が追加されている。
[第1の実施の形態(図1~図18)]
 まず図1を用いて、樹脂シートを製造する製造工程の全体の概略を説明する。樹脂シートの製造工程には、押出成形工程P1、収縮予測工程P2、コーティング工程P3、印刷工程P4、トリム工程P5、熱プレス工程P6、検査工程P8等が有る。当該製造工程は、工程管理システム1にて管理及び制御されており、工程管理システム1は、全体管理装置2、各工程の管理装置(10、20、30、40、50、60、80)にて構成されている。また、全体管理装置2、及び各工程の管理装置(10、20、30、40、50、60、80)は、通信回線Tに接続されており、種々の情報を互いに送受信することができる。なお、通信回線Tは、有線、無線のいずれでもよく、インターネットであってもよい。インターネットとした場合、押出成形工程P1~トリム工程P5までと、熱プレス工程P6及び検査工程P8と、を別々の遠隔地で実施することができる。
 全体管理装置2は、例えばパーソナルコンピュータであり、各工程の管理装置(10~60、80)のそれぞれの起動や停止、各種の情報の送受信等を行い、各工程が正常に実施されているか集中管理している。
 図1に示すように、押出成形工程P1にて押出成形装置11を用いて樹脂材料13から帯状の押出樹脂シートWを押出成形する。帯状の押出樹脂シートWは、収縮予測工程P2、コーティング工程P3、印刷工程P4、トリム工程P5を経て、個々の中間樹脂シートWn(中間製造品)に切り出される。そして個々の中間樹脂シートWn(中間製造品)は、熱プレス工程P6(加熱実施工程P6B、プレス実施工程P6D)の終了後、完成された製品としての樹脂シートWz(完成品)とされる。各工程の中で、熱プレス工程P6では中間樹脂シートWn(中間製造品)を加熱実施工程P6Bにて加熱する。その後、中間樹脂シートWnをプレス実施工程P6Dにてプレスする。この間において、中間樹脂シートWn(中間製造品)の種々の領域が種々の方向に収縮する。この収縮は、樹脂材料13のロットが変わると当然のごとく変化する。同一ロットであっても、押出時の残留応力等の種々の要因で、押出樹脂シートWの領域ごとに収縮が変化する。従って、樹脂シートWz(完成品)の精度を安定的に確保することは、従来では非常に困難であった。しかし、本実施の形態にて説明する押出樹脂シートの中間加工方法、及び押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法では、樹脂シートWz(完成品)の精度を安定的に確保することができる。
 従来では、図1に示す中間樹脂シートWn(中間製造品)を、余裕ある大きさに作成しておき、熱プレス工程P6にて収縮させる。その後、余分な部分を切り落として樹脂シートWz(完成品)とする。すなわち従来方法は、余分な部分を切り落とす工程が必要になる。また、どのように収縮するかわからない状態で熱プレスするので、中間樹脂シートWnをかなり余裕ある大きさにしておく必要がある。そのため、切り落とされて無駄となる樹脂シートが多い(コーティング、印刷も無駄が多くなる)。また、中間樹脂シートWnがどのように収縮するかわからない状態で熱プレスするので、印刷ズレが発生する可能性がある。本実施の形態にて説明する押出樹脂シートの中間加工方法、及び押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法では、熱プレス工程の後の余分な部分を切り落とす工程は不要である。そのため、無駄となる樹脂シート、無駄となるコーティングや印刷を、より少量とすることが可能であり、印刷ズレの発生を抑制することができる。
[「中間加工」と「後加工」について]
 帯状の押出樹脂シートWは、樹脂材料を加熱して押出すことで成形される。以下、帯状の押出樹脂シートWから、熱プレス加工に用いる樹脂シートである中間樹脂シートWn(中間製造品)を製造する各工程を説明する。各工程には、押出樹脂シートの中間加工方法、及び押出樹脂シートWに中間加工が施された中間樹脂シートWn(中間製造品)の熱プレス加工方法が含まれる。なお、本実施の形態の説明において「中間加工」とは、押出成形の後の加工であって熱プレス加工の前(直前、手前)までの加工である。そして本実施の形態の説明において「中間加工」は、収縮予測工程P2よりも後の加工である。例えば、中間加工は、コーティング工程P3、印刷工程P4、トリム工程P5による加工を含み、熱プレス工程P6を含まない。また本実施の形態の説明において「後加工」とは、押出成形の後の加工であって熱プレス加工を含む。そして本実施の形態の説明において「後加工」は、収縮予測工程P2よりも後の加工であり、コーティング工程P3、印刷工程P4、トリム工程P5、熱プレス工程P6を含む。
[押出成形工程P1(図2)]
 図2に示すように、押出成形工程P1は、押出成形工程管理装置10(例えばパーソナルコンピュータ)、押出成形装置11等にて実施される。押出成形工程管理装置10は、全体管理装置2からの指示(あるいは作業者等からの入力指示)に基づいて、押出成形装置11を動作させる。押出成形装置11は、ポリカーボネイト等の樹脂材料13が投入され、樹脂材料13を所定温度となるまで加熱して溶融させる。溶融状態とされた樹脂材料13は、所定圧力にて樹脂シート吐出口11Aから吐出され、一定幅、一定厚さの帯状の押出樹脂シートWとされる。樹脂シート吐出口11Aから吐出された帯状の押出樹脂シートWは、押出成形ローラ12A、12Bによって一定厚さとされて一定速度で搬送されていく。
 目印用搬送ローラRmは、1回転するごとに、押出樹脂シートの縁部に小さな目印Mkを刻印する。目印Mkは、後述する仮想分割工程における個別領域の境界として利用される。ただし、目印Mkを設けなくても個別領域の境界を設定できれば、目印Mkの刻印を省略してもよい。
 押出成形ローラ12A(または押出成形ローラ12B)には、押出成形ローラ12Aの回転に応じた検出信号を出力する回転検出手段14(例えば回転センサ)が設けられている。押出成形工程管理装置10は、回転検出手段14からの検出信号に基づいて、押出成形ローラ12Aの回転速度(回転数)を検出することができる。
 押出成形装置11には、押出成形ローラ12Aの温度に応じた検出信号を出力するローラ温度検出手段15(例えば非接触式の温度センサ)が設けられている。また押出成形装置11には、押出樹脂シートWの温度に応じた検出信号を出力する押出樹脂シート温度検出手段16(例えば非接触式の温度センサ)が設けられている。押出成形工程管理装置10は、ローラ温度検出手段15からの検出信号に基づいて押出成形ローラ12Aのローラ面の温度を検出可能である。押出成形工程管理装置10は、押出樹脂シート温度検出手段16からの検出信号に基づいて、その位置における押出樹脂シートWの温度を検出可能である。なお、押出成形ローラ12Aの回転速度、押出成形ローラ12Aの温度、押出樹脂シートWの温度は、後述する輪郭算出工程P2Cにて使用される。
 押出成形工程管理装置10は、押出樹脂シートWの先端からの位置(後述する個別領域W1、W2・・に相当)に対応させてローラ回転数、ローラ温度、樹脂シート温度を計測し、通信回線Tを介して収縮予測工程管理装置20に送信する。例えば押出成形ローラ12A、12Bの直径は約500~600[mm]程度であり、1回転するごとに押出樹脂シートWの板厚等が微妙にばらつく。
[収縮予測工程P2(仮想分割工程P2A、収縮率関連情報取得工程P2B、輪郭算出工程P2C、輪郭記憶工程P2D)(図3~図7)]
 次に図3~図7を用いて、収縮予測工程P2(仮想分割工程P2A、収縮率関連情報取得工程P2B、輪郭算出工程P2C、輪郭記憶工程P2D)について説明する。当該収縮予測工程P2にて、図1に示すように押出樹脂シートWから樹脂シートWz(完成品)を製造した際、どのように収縮するかを予測する。上述したとおり、押出樹脂シートWは、同一ロットの帯状の連続したシートであっても、位置によって収縮率が異なるので、樹脂シートWz(完成品)に対応する広い領域の全体の収縮状態を予測することは困難である。したがって、樹脂シートWz(完成品)に対応する領域を小さな分割領域に分割して認識する。そして、領域ごとかつ分割領域ごとに収縮状態を予測する。小さな領域であれば、収縮状態を予測することが充分可能である。そして個別領域ごとかつ分割領域ごとに予測した収縮状態を総合して、個別領域ごとに、樹脂シートWz(完成品)に対応する領域全体の収縮状態を予測する。収縮予測工程P2は、収縮予測工程管理装置20によって、中間加工(この場合、コーティング、印刷、トリム)および熱プレス(つまり、後加工)が実施される前に実施される。
 収縮予測工程P2は、仮想分割工程P2A、収縮率関連情報取得工程P2B、輪郭算出工程P2C、輪郭記憶工程P2D等を有している。以下、これらの詳細を説明する。
[仮想分割工程P2A(図3、図4)]
 図3に示すように、仮想分割工程P2Aは、中間加工および熱プレス加工(つまり、後加工)を施す前に、収縮予測工程管理装置20(例えばパーソナルコンピュータ)、領域撮像装置21(例えばカメラ)等にて実施される。一定速度で搬送されている押出樹脂シートWの縁部には、上述したように、目印用搬送ローラRmにて一定間隔で目印Mkが刻印されている。収縮予測工程管理装置20は、全体管理装置2からの指示(あるいは作業者等からの入力指示)に基づいて、領域撮像装置21を用いて、帯状に連続した押出樹脂シートWを個別領域W1、W2、W3・・へと仮想的に分割する。個別領域W1、W2、W3等は、押出樹脂シートWから切り出される樹脂シートWz(完成品)(図1参照)に対応する。具体的には、個別領域W1、W2、W3等は、樹脂シートWz(完成品)よりもやや広い。図3及び図4に示す例では、一点鎖線で示す位置(目印Mkの位置)にて、個別領域W1、W2、W3・・へと仮想的に分割している。
 そして収縮予測工程管理装置20は、それぞれの個別領域W1、W2・・を、図3及び図4中に点線にて示すように、さらに複数の分割領域へと仮想的に分割する。図3及び図4に示す例では、例えば個別領域W1は、W1(A、1)、W1(A、2)・・W1(D、4)の16個の分割領域に分割した例を示している。分割領域の縦×横のサイズは、例えば数10[mm]×数10[mm]程度である。なお、収縮予測工程管理装置20は、個別領域、分割領域ともに仮想的に分割しているので、押出樹脂シートWに実際に線等を付けている訳ではない。
[収縮率関連情報取得工程P2B(図3~図5)]
 図3に示すように、収縮率関連情報取得工程P2Bは、中間加工および熱プレス加工(つまり、後加工)を施す前に、収縮予測工程管理装置20、収縮率関連情報計測装置25A、25B、26A、26B等にて実施される。収縮率関連情報計測装置25A、25B、26A、26Bは、例えば、板厚分布を計測する板厚分布計測装置、温度分布を計測する温度分布計測装置、屈折率分布を計測する屈折率分布計測装置等である。収縮予測工程管理装置20は、収縮率関連情報計測装置を用いて、仮想的に分割したそれぞれの分割領域の収縮率に関連する収縮率関連情報を、個別領域ごとかつ分割領域ごとに取得し、記憶装置に記憶する。
 例えば図5に示すように、収縮予測工程管理装置20は、個別領域W1、W2・・ごとの収縮率関連情報を記憶している。図5の例では、個別領域W1の収縮率関連情報には、ローラ温度TRw1、ローラ回転数RRw1、シート温度TSw1(以上は、押出成形工程P1の押出成形工程管理装置10から通信回線Tを介して受信した情報)が記憶されている。収縮予測工程管理装置20は、押出成形工程管理装置10から、個別領域に対応するローラ温度、ローラ回転数、シート温度等を受信して、個別領域に対応させて記憶する。また図5に示す個別領域W1の収縮率関連情報には、(分割)領域(A、1)、(A、2)・・(D、4)ごとの板厚分布、温度分布、屈折率分布等が記憶されている。
[輪郭算出工程P2C、輪郭記憶工程P2D(図3~図7)]
 図3に示すように、輪郭算出工程P2C、輪郭記憶工程P2Dは、中間加工および熱プレス加工(つまり、後加工)を施す前に、収縮予測工程管理装置20にて実施される。輪郭算出工程P2Cでは、収縮予測工程管理装置20が、熱プレス工程管理装置60から、収縮に関連する後加工(この場合、熱プレス)の加工条件情報である熱プレス加工条件情報を受信して記憶する。図6は、熱プレス加工条件情報の例を示している。図6の例は、個別領域W1を熱プレスする際に予定されている加工条件が、個別領域ごとかつ分割領域ごとに設定されている例を示している。熱プレス加工条件情報には、個別領域W1の(分割)領域(A、1)、(A、2)・・(D、4)のそれぞれに対応させて、加熱の際の加熱分布(加熱温度分布、温度印加量)、プレスの際の圧力分布(圧力印加量)、が設定されている。
 次に収縮予測工程管理装置20は、中間加工および熱プレス加工(つまり、後加工)の完了後の樹脂シートWz(完成品)に対応する輪郭である目標輪郭Lt(図3、図4参照)を、個別領域W1、W2・・ごとに、仮想的に設定する。図3及び図4の例は、収縮予測工程管理装置20が、輪郭算出工程P2Cにて、個別領域W1に対して、目標輪郭Ltを仮想的に設定した例を示している。
 次に収縮予測工程管理装置20は、個別領域ごとかつ分割領域ごとの収縮率関連情報(図5参照)及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報(図6参照)に基づいて、目標輪郭Ltへと収縮する前の輪郭である収縮前輪郭Lsを、個別領域ごとに算出して(予測して)仮想的に設定する。図3及び図4の例は、収縮予測工程管理装置20が、輪郭算出工程P2Cにて、個別領域W1に対して、目標輪郭Ltに対応する収縮前輪郭Lsを算出して仮想的に設定した例を示している。
 また収縮予測工程管理装置20は、輪郭記憶工程P2Dにて、仮想的に設定した目標輪郭Lt、仮想的に設定した収縮前輪郭Ls、に関する情報を、図7に示す輪郭情報として、個別領域W1、W2・・に対応させて記憶装置に記憶する(この例では、輪郭を複数の位置座標(a、b)に分解して記憶している)。
[コーティング工程P3(補正量取得工程P3A、曲率関連情報取得工程P3B、領域毎コーティング条件設定工程P3C、コーティング実施工程P3D、コーティング硬化工程P3E)(図8~図11)]
 図8に示すように、コーティング工程P3は、コーティング工程管理装置30(例えばパーソナルコンピュータ)、コーティング装置31、硬化装置33等にて実施される。コーティング工程管理装置30は、全体管理装置2からの指示(あるいは作業者等からの入力指示)に基づいて、コーティング装置31、硬化装置33を動作させる。コーティング装置31は、例えばインクジェット方式にてコーティング剤を噴射して、押出樹脂シートWの表面(上面、または上面と下面)に、所定の厚さ(例えば10~20[μm]程度)のコーティング層を形成する。硬化装置33は、例えばコーティング剤が紫外線硬化タイプの塗料の場合、紫外線を照射する装置である。
 コーティング工程P3は、補正量取得工程P3A、曲率関連情報取得工程P3B、領域毎コーティング条件設定工程P3C、コーティング実施工程P3D、コーティング硬化工程P3E等を有している。以下、これらの詳細を説明する。なお、コーティング工程P3は中間加工工程の1つである(後加工工程の1つでもある)。当該コーティング工程P3に含まれているコーティング実施工程P3Dは中間加工実施工程の1つである。
[補正量取得工程P3A]
 コーティング工程管理装置30は、コーティング実施工程P3Dの前に、補正量取得工程P3Aにて、個別領域ごとにコーティングを行う際の補正量を求める。具体的には、コーティング工程管理装置30は、個別領域ごとに、当該個別領域に対応する収縮前輪郭の範囲を、コーティングを施す範囲に設定する。この場合、コーティング工程管理装置30は、個別領域W1のコーティング範囲を、個別領域W1に対応付けられている収縮前輪郭Ls(図3、図4参照)の範囲に設定する。
[曲率関連情報取得工程P3B(図10)]
 熱プレス工程P6(図1参照)の終了後の樹脂シートWz(完成品)は、熱プレスにて、それぞれの領域がそれぞれに曲率にて湾曲された湾曲形状とされる。樹脂シートの表面に施すコーティング層は、厚いほうが好ましいが、厚すぎると熱プレスの賦形の際の湾曲率が大きい場合に割れやヒビ等のクラックが発生する場合がある。従って、割れやヒビ等のクラックを発生させることなく、できるだけ厚いコーティングを施すことが所望される。
 コーティング工程管理装置30の記憶装置30Aには、図10に示すコーティング厚さ情報が記憶されている。コーティング厚さ情報には、個別領域ごとに、個別領域の各(分割)領域に対応させて、目標輪郭Lt(図3、図4参照)への収縮時の最大曲率と、当該最大曲率に対応する最大許容コーティング厚さ、とが設定されている。コーティング厚さ情報における(分割)領域ごとの最大許容コーティング厚さは、その(分割)領域の(目標輪郭Ltへの収縮時の)最大曲率と、曲率・最大許容コーティング厚さ特性(図9参照)と、から求められている。
 コーティング工程管理装置30は、熱プレス工程P6を管理する熱プレス工程管理装置60(図1参照)から、通信回線Tを介して最大曲率を取得して、コーティング厚さ情報(図10参照)の「最大曲率」の各領域に記憶する。この場合、最大曲率は、目標輪郭Ltへの収縮時の最大曲率であり、熱プレス工程P6の終了後の曲率に関連する曲率関連情報である。
[領域毎コーティング条件設定工程P3C(図9、図10)]
 第1の実施の形態では、領域毎コーティング条件設定工程P3Cにて、コーティング工程管理装置30は、個別領域ごとかつ分割領域ごとの曲率関連情報に基づいた曲率に応じて、個別領域ごとかつ分割領域ごとに「コーティング厚さ」を設定する。つまり第1の実施の形態における「領域毎コーティング条件」は、「個別領域ごとかつ分割領域ごとのコーティング厚さ」である。
 コーティング工程管理装置30の記憶装置30Aには、樹脂シートの曲率に対応させた最大許容コーティング厚さが設定された曲率・最大許容コーティング厚さ特性(図9参照)が記憶されている。コーティング工程管理装置30は、樹脂シートに対応する個別領域W1に対応付けられた(分割)領域ごとに、当該(分割)領域に対応する最大曲率と、曲率・最大許容コーティング厚さ特性と、に基づいて最大許容コーティング厚さを求める。最大曲率は、曲率関連情報に基づいた最大曲率である。そしてコーティング工程管理装置30は、求めた最大許容コーティング厚さを、コーティング厚さ情報(図10参照)の「最大許容コーティング厚さ」における該当する領域に記憶(設定)する。求めた最大許容コーティング厚さは、最大許容コーティング厚さ以下の厚さである。第1の実施の形態では、曲率が大きな分割領域では、曲率が小さな分割領域よりもコーティングの厚さが薄くなるように設定されている。
 図1に示す熱プレス工程P6において中間樹脂シートWn(中間製造品)が収縮する。この収縮を考慮して、上記のコーティング厚さ情報(図10参照)では、個別領域ごとかつ分割領域ごとに、目標輪郭Ltへ収縮した際の「最大曲率」と、当該最大曲率に対応する「最大許容コーティング厚さ」を設定した。収縮率が例えば1~5[%]程度の中間樹脂シートWn(中間製造品)である場合がある。この場合、熱プレス工程P6による収縮はほぼ無いと仮定する。すなわち中間樹脂シートWn(中間製造品)がほぼ収縮することなく樹脂シートWz(完成品)に賦形されたと仮定する。この場合、目標輪郭Ltでの個別領域ごとかつ分割領域ごとの「最大曲率」と「最大許容コーティング厚さ」をコーティング厚さ情報(図10参照)に記憶(設定)するようにしてもよい。
[コーティング実施工程P3D]
 図8に示すようにコーティング実施工程P3Dにて、コーティング工程管理装置30は、コーティング装置31を制御して、収縮前輪郭Ls(図3、図4参照)の範囲にコーティングを施す。従って、無駄な範囲にまでコーティングを施さないので、コーティング剤の無駄、余分な範囲までコーティングする無駄な時間、等を削減できる。このように、個別領域ごとかつ分割領域ごとの収縮率関連情報及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報に基づいた収縮前輪郭を用いて、それぞれの個別領域ごとに補正したコーティング(中間加工および後加工)を実施する。
 図8のコーティング工程管理装置30は、コーティング厚さ情報(図10参照)に基づいて、(分割)領域ごとに設定されたコーティング厚さにてコーティングを施す(図11参照)。樹脂シートWz(完成品)が球面状や円筒状で、曲率が全体的にほぼ一定の場合がある。この場合は、分割領域ごとにコーティング厚さを設定する必要が無く、個別領域ごとにコーティング厚さを設定すればよい。
[コーティング硬化工程P3E]
 コーティング硬化工程P3Eにて、コーティング工程管理装置30は、硬化装置33を制御する。硬化装置33は、コーティング実施工程P3Dにて各分割領域に施したコーティングが、硬化がほぼ完了した硬化状態である全硬化状態となるように紫外線を照射して硬化させる。
[印刷工程P4(補正量取得工程P4A、印刷実施工程P4B)(図12~図14)]
 図12に示すように、印刷工程P4は、印刷工程管理装置40(例えばパーソナルコンピュータ)、印刷装置41等にて実施される。印刷工程管理装置40は、全体管理装置2からの指示(あるいは作業者等からの入力指示)に基づいて、印刷装置41を動作させる。印刷装置41は、例えばインクジェット方式にて塗料を噴射して、押出樹脂シートWの表面(または表面と裏面)に、印刷層を形成する。
 印刷工程P4は、補正量取得工程P4A、印刷実施工程P4B等を有している。以下、これらの詳細を説明する。なお、印刷工程P4は中間加工工程の1つであり(後加工工程の1つでもある)、当該印刷工程P4に含まれている印刷実施工程P4Bは中間加工実施工程の1つである。
[補正量取得工程P4A]
 印刷工程管理装置40は、印刷実施工程P4Bの前に、補正量取得工程P4Aにて、印刷を行う際の補正量を求める。具体的には、印刷工程管理装置40は、個別領域ごとに印刷するべき範囲と形状と縮尺を、当該個別領域に対応する収縮前輪郭Lsと、目標輪郭Ltと、個別領域ごとかつ分割領域ごとの収縮率関連情報及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報と、に基づいて求め、印刷を行う際の補正量を求める。
 例えば樹脂シートWz(完成品)の印刷領域At(図14中にハッチングで示した領域)が、図14に示すように樹脂シートWz(完成品)の縁部の所定幅である場合がある。この場合、印刷工程管理装置40は、図13中にハッチングで示した印刷領域Asを求める。図13に示すように個別領域W1が目標輪郭Lt、収縮前輪郭Lsである場合がある。この場合、印刷工程管理装置40は、目標輪郭Lt、収縮前輪郭Ls、個別領域ごとかつ分割領域ごとの収縮率関連情報(図5参照)及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報(図6参照)、に基づいて、各分割領域の収縮方向及び収縮量を推定し、個別領域ごとの印刷領域Asを求める。
[印刷実施工程P4B]
 印刷実施工程P4Bにて、印刷工程管理装置40は、印刷装置41を制御して、印刷領域As(図13参照)の範囲に印刷を施す。従って、無駄な範囲にまで印刷を施さないので、塗料の無駄や余分な範囲まで印刷する無駄な時間を削減し、完成時の印刷領域のズレや歪み等を低減できる。このように、個別領域ごとかつ分割領域ごとの収縮率関連情報及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報、収縮前輪郭、目標輪郭に基づいて、それぞれの個別領域ごとに補正した印刷(中間加工および後加工)を実施する。
 なお、印刷工程P4にて、収縮前輪郭Ls内の縁部等に、個別領域W1に対応する識別情報IDを二次元コードやバーコード等にて印刷する。識別情報IDは、本実施の形態の例では「YMD―0001」である。当該識別情報は、収縮予測工程P2にて割り付けられ、コーティング工程P3、印刷工程P4、トリム工程P5、熱プレス工程P6、検査工程P8にて、個別領域を識別するために利用される。例えば、当該識別情報は、中間樹脂シートWn(中間製造品)、樹脂シートWz(完成品)を識別するために利用される。例えば、押出樹脂シートWから中間樹脂シートWn(中間製造品)をトリム工程P5にて切り出すまでは、各管理装置(10、20、30、40、50)は、押出樹脂シートWの先端からの位置に応じて個別領域W1、W2・・等を特定する。また、押出樹脂シートWから中間樹脂シートWn(中間製造品)をトリム工程P5にて切り出した後は、各管理装置(60、80)は、識別情報IDをコード読取装置等にて読み取って、個別領域W1から切り出した中間樹脂シートWn(中間製造品)である、等の特定を行う。
[トリム工程P5(補正量取得工程P5A、トリム実施工程P5B)(図15、図16)]
 図15に示すように、トリム工程P5は、トリム工程管理装置50(例えばパーソナルコンピュータ)、トリム装置51等にて実施される。トリム工程管理装置50は、全体管理装置2からの指示(あるいは作業者等からの入力指示)に基づいて、トリム装置51を動作させる。トリム装置51は、例えばレーザカッタであり、レーザ光Laを照射して、押出樹脂シートWから中間樹脂シートWn(中間製造品)を切り出す(図1、図16参照)。
 トリム工程P5は、補正量取得工程P5A、トリム実施工程P5B等を有している。以下、これらの詳細を説明する。なお、トリム工程P5は中間加工工程の1つであり(後加工工程の1つでもある)、当該トリム工程P5に含まれているトリム実施工程P5Bは中間加工実施工程の1つである。
[補正量取得工程P5A]
 トリム工程管理装置50は、トリム実施工程P5Bの前に、補正量取得工程P5Aにて、個別領域ごとに個別領域から切り出す範囲を、当該個別領域に対応する収縮前輪郭Lsの範囲に設定することで、トリムを行う際の補正量を個別領域ごとに求める。
[トリム実施工程P5B]
 トリム実施工程P5Bにて、トリム工程管理装置50は、トリム装置51を制御して、収縮前輪郭Lsの範囲を、個別領域から切り出す。従って、無駄な領域を残していない(樹脂シートWz(完成品)では、この収縮前輪郭Lsが目標輪郭Ltへと収縮する)。このように、個別領域ごとかつ分割領域ごとの収縮率関連情報及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報に基づいた収縮前輪郭を用いて、それぞれの個別領域ごとに補正したトリム(中間加工および後加工)を実施する。
 トリム工程P5まで終えた場合、帯状の押出樹脂シートWから個々の中間樹脂シートWn(中間製造品)に分離される。そのため、次の工程(熱プレス工程P6、検査工程P8)は、トリム工程P5まで実施した工場で行ってもよいし、遠隔地の工場へ中間樹脂シートWn(中間製造品)を運搬し、当該遠隔地の工場で行ってもよい。遠隔地で熱プレス工程P6、検査工程P8を行う場合、例えば全体管理装置2、熱プレス工程管理装置60、検査工程管理装置80は、インターネットに接続される。
[熱プレス工程P6(図17)]
 図17に示すように、熱プレス工程P6は、熱プレス工程管理装置60(例えばパーソナルコンピュータ)、加熱装置61、プレス装置63等にて実施される。熱プレス工程管理装置60は、全体管理装置2からの指示(あるいは作業者等からの入力指示)に基づいて、加熱装置61とプレス装置63を動作させる。
 熱プレス工程P6は、加熱実施工程P6B、加熱実施工程P6Bに対応する補正量取得工程P6A、プレス実施工程P6D、プレス実施工程P6Dに対応する補正量取得工程P6C等を有している。以下、これらの詳細を説明する。なお、熱プレス工程P6は後加工工程の1つである。
[補正量取得工程P6A(加熱実施工程P6Bに対応)]
 熱プレス工程管理装置60の記憶装置60Aには、図6に示す「熱プレス加工条件情報」が記憶されている。熱プレス工程管理装置60は、加熱実施工程P6Bの前に、補正量取得工程P6Aにて、熱プレス加工条件情報の「温度分布」の領域ごとの補正量を求める。具体的には、熱プレス工程管理装置60は、個別領域ごとに、当該個別領域に対応する収縮前輪郭Ls(図4参照)と目標輪郭Lt(図4参照)と、個別領域ごとかつ分割領域ごとの収縮率関連情報(図5参照)及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報(図6参照)とに基づいて、熱プレス加工条件情報の「温度分布」の領域ごとの補正量を求める。
[加熱実施工程P6B]
 加熱実施工程P6Bは、熱プレス工程管理装置60と加熱装置61等にて実施される。加熱装置61は、例えば保温槽であり、コンベア等の搬送装置61Aと、搬送装置61Aに載置された加熱テーブル62等を有している。加熱テーブル62は、仮想分割工程P2Aにて仮想的に分割された(分割)領域(A、1)、(A、2)・・(D、4)(図4参照)と同様に分割されている。加熱テーブル62は、分割された領域ごとに異なる温度(異なる温度分布)にて、自身に載置された中間樹脂シートWn(中間製造品)のそれぞれの分割領域を、それぞれの温度で加熱することができる。
 熱プレス工程管理装置60は、図6に示す熱プレス加工条件情報に記憶されている(分割)領域ごとの温度分布と、上述した補正量取得工程P6Aでの補正量とに基づいて、加熱テーブル62の(分割)領域のそれぞれの温度を必要に応じて調整する。このように、個別領域ごとかつ分割領域ごとの収縮率関連情報及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報に基づいて、それぞれの個別領域ごとに必要に応じて補正した加熱(後加工)を実施する。
[補正量取得工程P6C(プレス実施工程P6Dに対応)]
 熱プレス工程管理装置60の記憶装置60Aには、図6に示す「熱プレス加工条件情報」が記憶されている。熱プレス工程管理装置60は、プレス実施工程P6Dの前に、補正量取得工程P6Cにて、熱プレス加工条件情報の「圧力分布」の領域ごとの補正量を求める。具体的には、熱プレス工程管理装置60は、個別領域ごとに、当該個別領域に対応する収縮前輪郭Ls(図4参照)と目標輪郭Lt(図4参照)と、分割領域ごとの収縮率関連情報(図5参照)及び熱プレス加工条件情報(図6参照)とに基づいて、熱プレス加工条件情報の「圧力分布」の領域ごとの補正量を求める。
[プレス実施工程P6D]
 プレス実施工程P6Dは、熱プレス工程管理装置60とプレス装置63等にて実施される。プレス装置63は、上型63A、下型63Bを有している。上型63A、下型63Bのプレス面は、仮想分割工程P2Aにて仮想的に分割された(分割)領域(A、1)、(A、2)・・(D、4)(図4参照)と同様に分割されている。プレス面は、分割された領域ごとに異なる圧力(異なる圧力分布)にて、セットされた中間樹脂シートWn(中間製造品)のそれぞれの分割領域を、それぞれの圧力でプレスして賦形することができる。
 熱プレス工程管理装置60は、図6に示す熱プレス加工条件情報に記憶されている(分割)領域ごとの圧力分布と、上述した補正量取得工程P6Cでの補正量とに基づいて、プレス装置63の(分割)領域のそれぞれの圧力を必要に応じて調整する。このように、個別領域ごとかつ分割領域ごとの収縮率関連情報及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報に基づいて、それぞれの個別領域ごとに必要に応じて補正したプレス(後加工)を実施する。
 なお、上記の説明では、加熱実施工程P6Bにて、それぞれの分割領域を、それぞれの温度(温度分布)で加熱し、プレス実施工程P6Dにて、それぞれの分割領域を、それぞれの圧力(圧力分布)でプレスする例を説明したが、少なくとも一方を行うことができればよい。そして加熱実施工程P6B、プレス実施工程P6Dを実施することで、樹脂シートWz(完成品)を得ることができる。
[検査工程P8(図17、図18)]
 樹脂シートWz(完成品)は、検査工程P8にて寸法、形状等が検査され、検査結果は輪郭算出工程P2Cなどにフィードバックされる。図17に示すように、検査工程P8は、検査工程管理装置80(例えばパーソナルコンピュータ)、検査装置81等にて実施される。検査工程管理装置80は、全体管理装置2からの指示(あるいは作業者等からの入力指示)に基づいて、検査装置81を動作させる。
 検査装置81は、例えば所定間隔で配置された2台の撮像装置81A、81Bにて構成された3次元データ取得装置である。検査工程管理装置80は、2台の撮像装置81A、81Bを用いて、樹脂シートWz(完成品)を種々の方向から撮像し、樹脂シートWz(完成品)の3次元形状を計測する。そして検査工程管理装置80は、図18の最終品検査情報の例に示すように、個別領域(W1、W2・・)ごとに、分割領域ごとの輪郭誤差(寸法の誤差)、曲率誤差(形状の誤差)等を求めて記憶する。
 そして例えば検査工程管理装置80は、最終品検査情報(図18参照)を、通信回線Tを介して収縮予測工程管理装置20(図1参照)、熱プレス工程管理装置60に送信する。最終品検査情報を受信した収縮予測工程管理装置20は、最終品検査情報に基づいて、最終品検査情報の誤差が低減するように、輪郭算出工程P2Cにて収縮前輪郭Lsを求める際の補正量等を修正する。
 また最終品検査情報に基づいて、加熱装置61やプレス装置63の機差(個体差)を補正する補正量を求め、熱プレス工程管理装置60からの加熱装置61やプレス装置63の制御量を補正するようにしてもよい。これにより、個体差を有するそれぞれの加熱装置やプレス装置の熱プレス加工条件を、代表的な条件(この場合、熱プレス加工条件情報)に一致させることができるので、熱プレス加工条件情報(図6参照)での加工(熱プレス加工)をより正確に実現し、各中間加工および熱プレス加工(つまり、各後加工)での補正を、より正確に行うことができる。
 また、収縮率関連情報、トリム形状(収縮前輪郭Ls)、補正前の熱プレス加工条件情報等に基づいて、熱プレス後の輪郭である熱プレス後輪郭を推定し、推定した熱プレス後輪郭と目標輪郭Ltとの差異に応じて熱プレス加工条件情報を補正するようにしてもよい。
[収縮前輪郭Lsを算出する別の方法など]
 以上の説明の例では、収縮予測工程P2にて、目標輪郭Ltに対応する収縮前輪郭Lsを算出する際、収縮率関連情報(図5参照)と、熱プレス加工条件情報(図6参照)に基づいて収縮前輪郭Lsを個別領域ごとに算出(予測)している。そして、下記の中間加工条件情報を補正することを前提とし、熱プレス加工条件情報を必要に応じて補正する。この例に代えて、以下の[その他の例1]~[その他の例3]に示すように、熱プレス加工条件情報を補正することを前提とし、下記の中間加工条件情報を必要に応じて補正するようにしてもよい。
[その他の例1]
 その他の例1では、収縮予測工程管理装置20は、以下の(1-1)~(1-3)の手順にて、熱プレス加工条件情報の少なくとも一部を補正して、最終的な収縮前輪郭Lsを算出する。
(1-1)収縮予測工程管理装置20は、収縮率関連情報と(補正前の)熱プレス加工条件情報とに基づいて、(仮)収縮前輪郭を推定する。収縮率関連情報は、個別領域ごとかつ分割領域ごとに設定されており(図5参照)、熱プレス加工条件情報は、個別領域ごとかつ分割領域ごとに設定されている(図6参照)。
(1-2)収縮予測工程管理装置20は、推定した(仮)収縮前輪郭が個別領域内に収まらない場合、収縮量が低減されて(仮)収縮前輪郭が個別領域内に収まるように、熱プレス加工条件情報の少なくとも一部を補正する。熱プレス加工条件情報の少なくとも一部を補正する際には、まず、個別領域ごとかつ分割領域ごとの熱プレス加工条件情報と、個別領域ごとかつ分割領域ごとの中間加工条件情報と、に基づいて、熱プレス加工条件情報を補正した補正熱プレス加工条件情報を求め、求めた補正熱プレス加工条件情報を、熱プレス加工条件情報として更新(上書き)する。なお、中間加工条件情報には、中間加工(この場合、コーティング、印刷、トリム)を行う際の種々の加工条件が、個別領域ごとかつ分割領域ごとに設定されている。
(1-3)収縮予測工程管理装置20は、個別領域ごとかつ分割領域ごとの収縮率関連情報と、個別領域ごとかつ分割領域ごとの(補正して更新(上書き)した)熱プレス加工条件情報(補正熱プレス加工条件情報に相当)とに基づいて、最終的な収縮前輪郭Lsを算出する。
 以降の中間加工および熱プレス加工(つまり、後加工)では、熱プレス加工条件情報を使用する際、補正して更新(上書き)した熱プレス加工条件情報を使用する。
[その他の例2]
 その他の例2では、収縮予測工程管理装置20は、上記の「その他の例1」で(仮)収縮前輪郭が個別領域内に収まっている場合であっても、以下の(2-1)~(2-3)の手順にて、収縮量が低減するように(あるいは収縮による歪が低減するように)熱プレス加工条件情報の少なくとも一部を補正して、最終的な収縮前輪郭Lsを算出する。
(2-1)収縮予測工程管理装置20は、収縮率関連情報と(補正前の)熱プレス加工条件情報とに基づいて、(仮)収縮前輪郭を推定する。収縮率関連情報は、個別領域ごとかつ分割領域ごとに設定されており(図5参照)、熱プレス加工条件情報は、個別領域ごとかつ分割領域ごとに設定されている(図6参照)。
(2-2)収縮予測工程管理装置20は、推定した(仮)収縮前輪郭が個別領域内に収まる/収まらないにかかわらず、収縮量が低減されるように(あるいは収縮による歪が低減されるように)熱プレス加工条件情報の少なくとも一部を補正する。熱プレス加工条件情報の少なくとも一部を補正する際には、上記の(1-2)の記載と同様の処理にて、熱プレス加工条件情報を補正した補正熱プレス加工条件情報を求め、求めた補正熱プレス加工条件情報を、熱プレス加工条件情報として更新(上書き)する。なお、中間加工条件情報には、中間加工(この場合、コーティング、印刷、トリム)を行う際の種々の加工条件が、個別領域ごとかつ分割領域ごとに設定されている。
(2-3)収縮予測工程管理装置20は、個別領域ごとかつ分割領域ごとの収縮率関連情報と、個別領域ごとかつ分割領域ごとの(補正して更新(上書き)した)熱プレス加工条件情報とに基づいて、最終的な収縮前輪郭Lsを算出する。
 以降の中間加工および熱プレス加工(つまり、後加工)では、熱プレス加工条件情報を使用する際、更新(上書き)した熱プレス加工条件情報を使用する。
[その他の例3]
 その他の例3では、収縮予測工程管理装置20は、例えば、収縮前輪郭が予め設定された設定収縮前輪郭(目標輪郭Ltよりも少しだけ大きなサイズとして予め設定された輪郭)となるように、「その他の例2」に説明した手順にて、収縮量と歪を低減(調整)するように熱プレス加工条件情報の少なくとも一部を補正する。そして、個別領域ごとかつ分割領域ごとに少なくとも一部を補正した熱プレス加工条件情報を用いて熱プレス加工を行う。また、熱プレス加工以外の後加工である中間加工(この場合、コーティング、印刷、トリム)では、特に個別に補正した加工を行わず、設定収縮前輪郭に応じた一律の加工を行う。
[第2の実施の形態(図19~図21)]
 次に図19~図21を用いて、第2の実施の形態の樹脂シートの製造工程について説明する。図19は、第2の実施の形態の樹脂シートの製造工程の全体の概略を示している。図19に示す第2の実施の形態の樹脂シートの製造工程は、図1に示す第1の実施の形態の樹脂シートの製造工程に対して、コーティング工程P3におけるコーティング硬化工程P3E(コーティングを全硬化状態にする工程)が、コーティングを半硬化状態にするコーティング半硬化工程P3Fに変更されている。また熱プレス工程P6と検査工程P8の間に、コーティングを全硬化状態にするコーティング全硬化工程P7が追加されている。また、これらに伴って、コーティング工程P3における領域毎コーティング条件設定工程P3Cでの設定内容が異なっている。図19に示す製造工程では、工程管理システム1は、全体管理装置2、各工程の管理装置(10、20、30、40、50、60、70、80)にて構成されている。以下、これらの第1の実施の形態との相違点を主に説明し、第1の実施の形態と同様な点については説明を省略する。なお、「全硬化状態」とは、コーティングがほぼ完全に硬化した状態を指し、「半硬化状態」とは、全硬化状態へと至る途中の硬化状態を指す。
[領域毎コーティング条件設定工程P3C(図20、図21)]
 第2の実施の形態では、領域毎コーティング条件設定工程P3Cにて、コーティング工程管理装置30は、それぞれの個別領域ごとかつ分割領域ごとの曲率関連情報に基づいた曲率に応じて、個別領域ごとかつ分割領域ごとに「コーティングの半硬化状態の硬化度合い」を設定する。つまり第2の実施の形態における「領域毎コーティング条件」は、「個別領域ごとかつ分割領域ごとのコーティングの硬化度合い」である。
 コーティング工程管理装置30の記憶装置30Aには、樹脂シートの曲率に対応させた目標硬化度合いが設定された曲率・目標硬化度合い特性(図20参照)が記憶されている。コーティング工程管理装置30は、樹脂シートに対応する個別領域W1に対応付けられたそれぞれの(分割)領域ごとに、当該(分割)領域に対応する最大曲率(曲率関連情報に基づいた最大曲率)と、曲率・目標硬化度合い特性と、に基づいて目標硬化度合いを求める。そしてコーティング工程管理装置30は、求めた目標硬化度合いを、硬化度合い情報(図21参照)の「目標硬化度合い」における該当する領域に記憶(設定)する。第2の実施の形態では、曲率が大きな分割領域では、曲率が小さな分割領域よりも半硬化状態の硬化度合いが低くなるように設定されている。
 上記の硬化度合い情報(図21参照)では、熱プレス工程P6による中間樹脂シートWn(中間製造品)の収縮を考慮して、個別領域ごとかつ分割領域ごとに、目標輪郭Ltへ収縮した際の「最大曲率」と、当該最大曲率に対応する「目標硬化度合い」を設定した。しかし、収縮率が例えば1~5[%]程度の中間樹脂シートWn(中間製造品)である場合、熱プレス工程P6による収縮はほぼ無いと仮定して(中間樹脂シートWn(中間製造品)がほぼ収縮することなく樹脂シートWz(完成品)に賦形されたと仮定して)、目標輪郭Ltでの個別領域ごとかつ分割領域ごとの「最大曲率」と「目標硬化度合い」を硬化度合い情報(図21参照)に記憶(設定)するようにしてもよい。また、個別領域ごとかつ分割領域ごとに異なる目標硬化度合いを設定する代わりに、個別領域ごとかつ分割領域ごとに求めた目標硬化度合いの中で最も低い目標硬化度合いを、個別領域内の全ての分割領域に適用するようにしてもよい。
[コーティング実施工程P3D]
 コーティング実施工程P3Dにて、コーティング工程管理装置30は、コーティング装置31を制御して、収縮前輪郭Ls(図3、図4参照)の範囲にコーティングを施す。このように、個別領域ごとかつ分割領域ごとの収縮率関連情報及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報に基づいた収縮前輪郭を用いて、それぞれの個別領域ごとに補正したコーティング(中間加工および後加工)を実施する。
 また、コーティングを実施する際、コーティング工程管理装置30は、予め設定されたコーティング厚さとなるように、各分割領域にコーティングを施す。
[コーティング半硬化工程P3F]
 コーティング半硬化工程P3Fにて、コーティング工程管理装置30は、硬化度合い情報に基づいて、個別領域ごとかつ分割領域ごとに異なる硬化度合いとなるように、硬化装置33を制御する。例えば硬化装置33が紫外線を照射する装置である場合がある。この場合、分割領域に対応する遮蔽板等を用いて、コーティング工程管理装置30は、個別領域ごとかつ分割領域ごとに、目標硬化度合いに応じた時間や、目標硬化度合いに応じた照射強度にて、硬化装置33を制御する。
 なお、図20の曲率・目標硬化度合い特性に示すように、曲率が大きな分割領域では、曲率が小さな分割領域よりも半硬化状態の硬化度合いが低くなるように設定されている。つまり、熱プレス加工の際、曲率が大きい分割領域のコーティングは、低い硬化度合いとされて弾性力が増しているので、割れやヒビ等のクラックの発生が抑制される。
[コーティング全硬化工程P7(図19)]
 図19に示すように、コーティング全硬化工程P7は、コーティング全硬化工程管理装置70(例えばパーソナルコンピュータ)、硬化装置73等にて実施される。コーティング全硬化工程管理装置70は、通信回線Tに接続されており、全体管理装置2からの指示(あるいは作業者等からの入力指示)に基づいて、硬化装置73を動作させる。硬化装置73は、例えばコーティング剤が紫外線硬化タイプの塗料の場合、紫外線を照射する装置である。またコーティング全硬化工程P7は、熱プレス工程P6の後、かつ、検査工程P8の前、にて実施される。
 熱プレス工程P6が完了した中間樹脂シートWn(中間製造品)は、コーティングが半硬化状態とされたままである。コーティング全硬化工程P7にて、コーティング全硬化工程管理装置70は、硬化装置73を制御して、半硬化状態のコーティングを全硬化状態へと硬化する。
[第3の実施の形態(図19、図22、図23)]
 次に図19、図22、図23を用いて、第3の実施の形態の樹脂シートの製造工程について説明する。なお、第3の実施の形態の樹脂シートの製造工程の全体は、図19に示す第2の実施の形態と同じであるが、以下の点が第2の実施の形態とは異なる。第3の実施の形態の樹脂シートの製造工程は、第2の実施の形態の樹脂シートの製造工程に対して、コーティング工程P3において、領域毎コーティング条件設定工程P3Cでの設定内容、コーティング実施工程P3Dの実施内容、コーティング半硬化工程P3Fの実施内容が異なる。これらの第2の実施の形態からの相違点を主に説明し、第2の実施の形態と同様な点については説明を省略する。なお、「全硬化状態」とは、コーティングがほぼ完全に硬化した状態を指し、「半硬化状態」とは、全硬化状態へと至る途中の硬化状態を指すことは、第2の実施の形態と同じである。
[領域毎コーティング条件設定工程P3C(図20、図21)]
 第3の実施の形態では、領域毎コーティング条件設定工程P3Cにて、コーティング工程管理装置30は、それぞれの個別領域ごとかつ分割領域ごとの曲率関連情報に基づいた曲率に応じて、個別領域ごとかつ分割領域ごとに「コーティングの厚さ」を設定する。つまり第3の実施の形態における「領域毎コーティング条件」は、「個別領域ごとかつ分割領域ごとのコーティングの厚さ」である。
 なお、第1の実施の形態も「領域毎コーティング条件」は、「個別領域ごとかつ分割領域ごとのコーティングの厚さ」であるが、以下の点で第1の実施の形態とは異なる。第3の実施の形態では、コーティングを半硬化状態にして熱プレス加工を行う。一方、第1の実施の形態では、コーティングを全硬化状態にして熱プレス加工を行う。第1の実施の形態では、全硬化状態のコーティングが曲率の大きな個所でクラックを発生させないように、曲率が大きな分割領域では曲率が小さな分割領域よりもコーティング厚さを薄くした。これに対して第3の実施の形態では、半硬化状態で弾性力を有するコーティングは熱プレス加工でクラックを発生させない。このため、曲率が大きい分割領域では、大きな曲率でコーティングが延ばされて薄くなることを見越して、予め厚くコーティングしておく。
 コーティング工程管理装置30の記憶装置30Aには、樹脂シートの曲率に対応させた目標コーティング厚さが設定された曲率・目標コーティング厚さ特性(図22参照)が記憶されている。コーティング工程管理装置30は、樹脂シートに対応する個別領域W1に対応付けられたそれぞれの(分割)領域ごとに、当該(分割)領域に対応する最大曲率(曲率関連情報に基づいた最大曲率)と、曲率・目標コーティング厚さ特性と、に基づいて目標コーティング厚さを求める。そしてコーティング工程管理装置30は、求めた目標コーティング厚さを、コーティング厚さ情報(図23参照)の「目標コーティング厚さ」における該当する領域に記憶(設定)する。第3の実施の形態では、曲率が大きな分割領域では、曲率が小さな分割領域よりもコーティングの厚さが厚くなるように設定されている。
 熱プレス工程P6では、中間樹脂シートWn(中間製造品)が収縮する。この収縮を考慮して、上記のコーティング厚さ情報(図23参照)では、個別領域ごとかつ分割領域ごとに、目標輪郭Ltへ収縮した際の「最大曲率」と、当該最大曲率に対応する「目標コーティング厚さ」を設定した。しかし、収縮率が例えば1~5[%]程度の中間樹脂シートWn(中間製造品)である場合がある。この場合、熱プレス工程P6による収縮はほぼ無いと仮定する。すなわち中間樹脂シートWn(中間製造品)がほぼ収縮することなく樹脂シートWz(完成品)に賦形されたと仮定する。この場合、目標輪郭Ltでの個別領域ごとかつ分割領域ごとの「最大曲率」と「目標コーティング厚さ」をコーティング厚さ情報(図23参照)に記憶(設定)するようにしてもよい。また、個別領域ごとかつ分割領域ごとに異なる目標コーティング厚さを設定する代わりに、個別領域ごとかつ分割領域ごとに求めた目標コーティング厚さの中で最も厚い目標コーティング厚さを、個別領域内の全ての分割領域に適用するようにしてもよい。
[コーティング実施工程P3D]
 コーティング実施工程P3Dにて、コーティング工程管理装置30は、コーティング装置31を制御して、収縮前輪郭Ls(図3、図4参照)の範囲にコーティングを施す。このように、個別領域ごとかつ分割領域ごとの収縮率関連情報及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報に基づいた収縮前輪郭を用いて、それぞれの個別領域ごとに補正したコーティング(中間加工および後加工)を実施する。
 また、コーティングを実施する際、コーティング工程管理装置30は、コーティング厚さ情報(図23参照)に基づいて、(分割)領域ごとに設定されたコーティング厚さにてコーティングを施す。
[コーティング半硬化工程P3F]
 コーティング半硬化工程P3Fにて、コーティング工程管理装置30は、硬化装置33を制御する。具体的には、コーティング工程管理装置30は、予め設定された半硬化状態の硬化度合いに基づいて、個別領域内のすべての分割領域がほぼ同じ硬化度合いとなるように、硬化装置33を制御する。
 熱プレス加工の際には、弾性力を有する半硬化状態のコーティングは、湾曲されても割れやヒビ等のクラックの発生が抑制される。曲率が大きな分割領域では、湾曲形状に沿ってコーティングが延ばされてコーティングが薄くなるが、コーティング厚さ情報(図23参照)にて予め厚く設定している。これにより、曲率が大きい個所と、それ以外の個所とで、コーティングの厚さをほぼ同じにすることができる。
[コーティング全硬化工程P7(図19)]
 第3の実施の形態のコーティング全硬化工程P7は、第2の実施の形態のコーティング全硬化工程P7と同様である。図19に示すように、コーティング全硬化工程P7は、コーティング全硬化工程管理装置70(例えばパーソナルコンピュータ)、硬化装置73等にて実施される。コーティング全硬化工程管理装置70は、全体管理装置2からの指示(あるいは作業者等からの入力指示)に基づいて、硬化装置73を動作させる。硬化装置73は、例えばコーティング剤が紫外線硬化タイプの塗料の場合、紫外線を照射する装置である。またコーティング全硬化工程P7は、熱プレス工程P6の後、かつ、検査工程P8の前、にて実施される。
 熱プレス工程P6が完了した中間樹脂シートWn(中間製造品)は、コーティングが半硬化状態とされたままである。コーティング全硬化工程P7にて、コーティング全硬化工程管理装置70は、硬化装置73を制御して、半硬化状態のコーティングを全硬化状態へと硬化する。
 以上、第1~第3の実施の形態にて説明した押出樹脂シートの中間加工方法、及び押出樹脂シートに中間加工が施された中間樹脂シートWn(中間製造品)の熱プレス加工方法では、押出樹脂シートを複数の領域(個別領域、分割領域)に仮想的に分割する。そして、領域ごとに異なる収縮率を求め、中間加工および熱プレス加工(つまり、後加工)の補正を、領域ごと(個別領域ごと、分割領域ごと)に適切な補正を行う。これにより、押出樹脂シート(基材に相当)やコーティング剤等の無駄及び印刷ズレの発生をより低減し、より安定した精度の製品を製造することができる。また、樹脂シートWz(完成品)の寸法、形状等の検査結果をフィードバックさせることで、精度をさらに向上させることができる。
 また例えば、図1及び図19に示す押出成形工程P1からトリム工程P5までをA社の工場で実施して中間樹脂シートWn(中間製造品)を作成する。そして、熱プレス工程P6~検査工程P8をB社の工場で実施するようにしてもよい。この場合、全体管理装置2、熱プレス工程管理装置60、(コーティング全硬化工程管理装置70、)検査工程管理装置80はインターネットに接続される。この場合、熱プレス工程P6にて利用する熱プレス加工条件情報(図6参照)を、収縮予測工程管理装置20にて作成して、通信回線T、全体管理装置2及びインターネットを介して熱プレス工程管理装置60に送信するようにしてもよい。また、A社からB社に熱プレス加工条件情報を提供するだけでなく、熱プレス加工条件情報の提供に加えて、A社にて図1に示す熱プレス工程管理装置60、加熱装置61、プレス装置63を用意してB社に提供するようにしてもよい。
 なお、第1~第3の実施の形態にて説明した製造工程では、中間加工の工程である中間加工工程と熱プレス工程を有している。また加工条件の補正(個別領域ごとや分割領域ごとの補正)を行う工程としては、コーティング工程、印刷工程、トリム工程、熱プレス工程、のうちの少なくとも1つでもよい。
 本開示の1つの形態の、押出樹脂シートの中間加工方法及び押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法は、本実施の形態で説明した加工方法等に限定されず、本開示の1つの形態の要旨を変更しない範囲で種々の変更、追加、削除が可能である。なお、本実施の形態にて説明した樹脂シートの厚さは、例えば数[mm]程度であるが、対象とする樹脂シートの厚さは特に限定せず、数10[mm]程度の厚さを有する樹脂パネル状であってもよい。また樹脂シートの材質は、特に限定しない。
 本実施の形態にて説明した収縮率関連情報(図5参照)、熱プレス加工条件情報(図6参照)、輪郭情報(図7参照)、曲率・最大許容コーティング厚さ特性(図9参照)、コーティング厚さ情報(図10参照)、最終品検査情報(図18参照)、硬化度合い情報(図21参照)、コーティング厚さ情報(図23参照)等は、一例を示すものであり、これらの項目、形態等に限定されるものではない。また収縮率関連情報には、個別領域に対応させた、押出成形された押出樹脂シートの温度、押出成形にて使用されるローラの温度、前記ローラの回転数、分割領域ごとの板厚分布、分割領域ごとの温度分布、分割領域ごとの屈折率分布、の少なくとも1つが記憶されていればよい。また熱プレス加工条件情報には、個別領域に対応させた、分割領域ごとの加熱分布と、分割領域ごとの圧力分布と、の少なくとも1つが記憶されていればよい。
 本実施の形態では、コーティング装置の例としてインクジェット方式の例を説明し、印刷装置の例としてインクジェット方式の例を説明し、トリム装置の例としてレーザカッタの例を説明したが、これらに限定されるものではない。またコーティング剤、印刷の塗料等についても特に限定しない。
 また、以上(≧)、以下(≦)、より大きい(>)、未満(<)等は、等号を含んでも含まなくてもよい。また、本実施の形態の説明に用いた数値は一例であり、この数値に限定されるものではない。
 上記管理装置(10、20、30、40、50、60、80)は、少なくとも1つのプロブラムされた電子プロセッサを有する。管理装置は、少なくとも1つの本願に記載する管理装置の機能を実現するために電子プロセッサによって実行される命令またはソフトウェアを格納するメモリを含む。例えば、実施形態によっては、管理装置はメモリを別個に備えたマイクロプロセッサとして実装してもよい。
 上記記憶装置は、揮発性や不揮発性のメモリを含むことができる。適切な記憶装置の例には、RAM(ランダムアクセスメモリ)、フラッシュメモリ、ROM(読み取り専用メモリ)、PROM(プログラム可能な読み取り専用メモリ)、EPROM(消去可能なプログラム可能な読み取り専用メモリ)、EEPROM(電気的に消去可能なプログラム可能な読み取り専用メモリ))、レジスタ、磁気ディスク、光ディスク、ハードドライブ、その他適切なストレージメディア、あるいはこれらの組み合わせがある。
 ソフトウェアは、例えば、ファームウェア、1つまたは複数のアプリケーション、プログラムデータ、フィルタ、ルール、1つまたは複数のプログラムモジュール、および他の実行可能な命令を含む。

Claims (11)

  1.  加熱されて押出成形された帯状の押出樹脂シートから、熱プレス加工に用いる樹脂シートである中間樹脂シートを製造するための、押出樹脂シートの中間加工方法であって、
     コンピュータを備えた工程管理システムを用い、前記工程管理システムは、前記押出成形された帯状の前記押出樹脂シートを複数の前記樹脂シートに対応する複数の個別領域へと仮想的に分割し、仮想的に分割したそれぞれの前記個別領域をさらに複数の分割領域へと仮想的に分割し、各個別領域の各分割領域の収縮率に関連する収縮率関連情報を、前記個別領域ごとかつ前記分割領域ごとに取得しており、
     それぞれの前記個別領域に対して、前記押出成形の後の加工であって前記熱プレス加工の前までの加工である中間加工を施す際に、前記工程管理システムを用い、
     前記個別領域ごとかつ前記分割領域ごとの前記収縮率関連情報と、
     前記個別領域ごとかつ前記分割領域ごとの前記熱プレス加工の加工条件情報である熱プレス加工条件情報と、
    に基づいてそれぞれの前記個別領域ごとに加工条件を補正した前記中間加工を実施する、
     押出樹脂シートの中間加工方法。
  2.  請求項1に記載の押出樹脂シートの中間加工方法であって、
     前記中間加工を実施する前には、
     前記工程管理システムを用いて、前記中間加工及び前記熱プレス加工の完了後の前記樹脂シートに対応する輪郭である目標輪郭を前記個別領域ごとに仮想的に設定し、前記個別領域ごとかつ前記分割領域ごとの前記収縮率関連情報及び前記個別領域ごとかつ前記分割領域ごとの前記熱プレス加工条件情報に基づいて前記目標輪郭へと収縮する前の輪郭である収縮前輪郭を前記個別領域ごとに算出して仮想的に設定する、輪郭算出工程と、
     前記工程管理システムを用いて、前記目標輪郭と前記収縮前輪郭とを前記個別領域に対応させて記憶する、輪郭記憶工程と、
    が実施されており、
     前記中間加工の工程である中間加工工程には、
     前記中間加工を施す前に、前記工程管理システムを用いて、前記輪郭記憶工程にて記憶された前記目標輪郭と前記収縮前輪郭とに基づいて、前記中間加工を行う際の補正量を前記個別領域ごとに求める、補正量取得工程と、
     前記工程管理システムを用いて、前記補正量取得工程にて求めた前記個別領域ごとの前記補正量に基づいて、それぞれの前記個別領域ごとに補正した前記中間加工を実施する、中間加工実施工程と、
    が含まれている、
     押出樹脂シートの中間加工方法。
  3.  請求項2に記載の押出樹脂シートの中間加工方法であって、
     前記中間加工実施工程には、前記押出樹脂シートの表面にコーティングを施すコーティング実施工程が含まれており、
     前記工程管理システムを用いて、前記コーティング実施工程に対応する前記補正量取得工程にて、前記個別領域ごとに、当該個別領域に前記コーティングを施す範囲を、当該個別領域に対応する前記収縮前輪郭の範囲に設定することで、前記個別領域ごとの前記補正量を求める、
     押出樹脂シートの中間加工方法。
  4.  請求項2または3に記載の押出樹脂シートの中間加工方法であって、
     前記中間加工実施工程には、前記押出樹脂シートの表面に印刷を施す印刷実施工程が含まれており、
     前記工程管理システムを用いて、前記印刷実施工程に対応する前記補正量取得工程にて、前記個別領域ごとに、当該個別領域に印刷するべき範囲と形状と縮尺を、当該個別領域に対応する前記収縮前輪郭と前記目標輪郭と前記分割領域ごとの前記収縮率関連情報及び前記熱プレス加工条件情報とに基づいて求めることで、前記個別領域ごとの前記補正量を求める、
     押出樹脂シートの中間加工方法。
  5.  請求項2~4のいずれか一項に記載の押出樹脂シートの中間加工方法であって、
     前記中間加工実施工程には、帯状の前記押出樹脂シートから、前記樹脂シートに対応する領域を前記個別領域から切り出すトリム実施工程が含まれており、
     前記工程管理システムを用いて、前記トリム実施工程に対応する前記補正量取得工程にて、前記個別領域ごとに、当該個別領域から切り出す範囲を、当該個別領域に対応する前記収縮前輪郭の範囲に設定することで、前記個別領域ごとの前記補正量を求める、
     押出樹脂シートの中間加工方法。
  6.  請求項1~5のいずれか一項に記載の押出樹脂シートの中間加工方法であって、
     前記収縮率関連情報には、
     前記個別領域に対応させた、
     前記押出成形された前記押出樹脂シートの温度と、
     前記押出成形にて使用されるローラの温度と、
     前記ローラの回転数と、
     前記分割領域ごとの板厚分布と、
     前記分割領域ごとの温度分布と、
     前記分割領域ごとの屈折率分布と、
    の少なくとも1つが含まれている、
     押出樹脂シートの中間加工方法。
  7.  請求項1~6のいずれか一項に記載の押出樹脂シートの中間加工方法であって、
     前記熱プレス加工条件情報には、
     前記個別領域に対応させた、
     前記分割領域ごとの加熱分布と、
     前記分割領域ごとの圧力分布と、
    の少なくとも1つが含まれている、
     押出樹脂シートの中間加工方法。
  8.  加熱されて押出成形された帯状の押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法であって、
     コンピュータを備えた工程管理システムを用い、前記工程管理システムは、前記押出成形された帯状の前記押出樹脂シートを複数の樹脂シートに対応する複数の個別領域へと仮想的に分割し、仮想的に分割したそれぞれの前記個別領域をさらに複数の分割領域へと仮想的に分割し、各個別領域の各分割領域の収縮率に関連する収縮率関連情報を、前記個別領域ごとかつ前記分割領域ごとに取得しており、
     前記中間加工は、前記押出成形の後の加工であって熱プレス加工の前までの加工であり、
     前記中間加工が施されたそれぞれの前記樹脂シートであるそれぞれの前記中間樹脂シートに対して、前記熱プレス加工を施す際に、前記工程管理システムを用い、
     前記個別領域ごとかつ前記分割領域ごとの前記収縮率関連情報と、
     前記個別領域ごとかつ前記分割領域ごとの前記熱プレス加工の加工条件情報である熱プレス加工条件情報、及び前記個別領域ごとかつ前記分割領域ごとの前記中間加工の加工条件情報である中間加工条件情報、に基づいて前記個別領域の少なくとも一部について前記熱プレス加工条件情報を補正した前記熱プレス加工条件情報と、
    に基づいて前記熱プレス加工を実施する、
     押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法。
  9.  加熱されて押出成形された帯状の押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法であって、
     コンピュータを備えた工程管理システムを用い、前記工程管理システムは、前記押出成形された帯状の前記押出樹脂シートを複数の樹脂シートに対応する複数の個別領域へと仮想的に分割し、仮想的に分割したそれぞれの前記個別領域をさらに複数の分割領域へと仮想的に分割し、各個別領域の各分割領域の収縮率に関連する収縮率関連情報を、前記個別領域ごとかつ前記分割領域ごとに取得しており、
     前記中間加工は、前記押出成形の後の加工であって熱プレス加工の前までの加工であり、
     前記工程管理システムを用い、
     前記個別領域ごとかつ前記分割領域ごとの前記収縮率関連情報と、
     前記個別領域ごとかつ前記分割領域ごとの前記熱プレス加工の加工条件情報である熱プレス加工条件情報と、
    に基づいてそれぞれの前記個別領域ごとに加工条件を補正した前記中間加工が施されたそれぞれの前記樹脂シートであるそれぞれの前記中間樹脂シートに対して、前記熱プレス加工を施す際に、前記工程管理システムを用い、
     前記個別領域ごとかつ前記分割領域ごとの前記収縮率関連情報と、
     前記個別領域ごとかつ前記分割領域ごとの前記熱プレス加工の加工条件情報である前記熱プレス加工条件情報と、
    に基づいて前記熱プレス加工を実施する、
     押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法。
  10.  請求項8または9に記載の押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法であって、
     前記収縮率関連情報には、
     前記個別領域に対応させた、
     前記押出成形された前記押出樹脂シートの温度と、
     前記押出成形にて使用されるローラの温度と、
     前記ローラの回転数と、
     前記分割領域ごとの板厚分布と、
     前記分割領域ごとの温度分布と、
     前記分割領域ごとの屈折率分布と、
    の少なくとも1つが含まれている、
     押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法。
  11.  請求項8~10のいずれか一項に記載の押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法であって、
     前記熱プレス加工条件情報には、
     前記個別領域に対応させた、
     前記分割領域ごとの加熱分布と、
     前記分割領域ごとの圧力分布と、
    の少なくとも1つが含まれている、
     押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法。
PCT/JP2021/029079 2020-09-02 2021-08-05 押出樹脂シートの中間加工方法及び押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法 WO2022049988A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21864046.4A EP4209328A4 (en) 2020-09-02 2021-08-05 INTERMEDIATE PROCESSING METHOD FOR EXTRUDED RESIN SHEET AND HEAT PRESSING PROCESSING METHOD FOR INTERMEDIATE RESIN SHEET IN WHICH AN INTERMEDIATE TREATMENT IS APPLIED TO AN EXTRUDED RESIN SHEET
CN202180053566.9A CN115996828A (zh) 2020-09-02 2021-08-05 挤出树脂片的中间加工方法以及对挤出树脂片实施了中间加工的中间树脂片的热压加工方法
US18/022,574 US20230333538A1 (en) 2020-09-02 2021-08-05 Intermediate processing method for extruded resin sheet and heat press processing method for intermediate resin sheet with extruded resin sheet subjected to intermediate processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020147629A JP7335211B2 (ja) 2020-09-02 2020-09-02 押出樹脂シートの中間加工方法及び押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法
JP2020-147629 2020-09-02

Publications (1)

Publication Number Publication Date
WO2022049988A1 true WO2022049988A1 (ja) 2022-03-10

Family

ID=80491690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029079 WO2022049988A1 (ja) 2020-09-02 2021-08-05 押出樹脂シートの中間加工方法及び押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法

Country Status (5)

Country Link
US (1) US20230333538A1 (ja)
EP (1) EP4209328A4 (ja)
JP (1) JP7335211B2 (ja)
CN (1) CN115996828A (ja)
WO (1) WO2022049988A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978764A (ja) * 1972-12-05 1974-07-30
JPH07195506A (ja) * 1993-12-28 1995-08-01 Sekisui Plastics Co Ltd 結晶性発泡ポリエチレンテレフタレートシートの成形方法
JP2010201712A (ja) * 2009-03-02 2010-09-16 Fujifilm Corp 樹脂シートの製造方法及び製造装置
JP2018034562A (ja) 2016-08-29 2018-03-08 住友ベークライト株式会社 窓用部材および車両
WO2018131066A1 (ja) * 2017-01-10 2018-07-19 株式会社Fuji 管理装置、実装関連装置及び実装システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978764A (ja) * 1972-12-05 1974-07-30
JPH07195506A (ja) * 1993-12-28 1995-08-01 Sekisui Plastics Co Ltd 結晶性発泡ポリエチレンテレフタレートシートの成形方法
JP2010201712A (ja) * 2009-03-02 2010-09-16 Fujifilm Corp 樹脂シートの製造方法及び製造装置
JP2018034562A (ja) 2016-08-29 2018-03-08 住友ベークライト株式会社 窓用部材および車両
WO2018131066A1 (ja) * 2017-01-10 2018-07-19 株式会社Fuji 管理装置、実装関連装置及び実装システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4209328A4

Also Published As

Publication number Publication date
JP7335211B2 (ja) 2023-08-29
CN115996828A (zh) 2023-04-21
JP2022042275A (ja) 2022-03-14
EP4209328A1 (en) 2023-07-12
EP4209328A4 (en) 2024-02-21
US20230333538A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
EP3433085B1 (en) 3d printing system
WO2022049989A1 (ja) 押出樹脂シートの中間加工方法
ES2717605T3 (es) Sistema de conformación en prensa, procedimiento de conformación en prensa y producto de programa de ordenador
US7423523B2 (en) Composite ply layup using electronically identifiable tags
CN108067837A (zh) 用于制造板状金属坯料的方法和设备
JP3587208B1 (ja) 光造形用加工基準補正方法及び光造形装置
WO2022049988A1 (ja) 押出樹脂シートの中間加工方法及び押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法
CN103596891B (zh) 修整具有正常或结构表面的浮制玻璃条的装置及方法
NL2023591B1 (en) Method of determining a local height of a build surface
US7488437B2 (en) Methods for assembling prepreg stacks having exact weight for producing SMC components
CN103304132A (zh) 板状物的切线加工装置及板状物的切线加工方法以及玻璃板的制造装置及玻璃板的制造方法
JP2688490B2 (ja) プラスチックシートのプロファイル計測方法および装置
JP4376051B2 (ja) フィルム厚の制御方法
KR101955757B1 (ko) 필름 처리장치 및 처리방법
JP2807318B2 (ja) ガラス板の曲げ成形方法の選定方法及びガラス板の曲げ成形方法
KR102653903B1 (ko) 커팅 머신 및 그 동작 방법
WO2023276400A1 (ja) タイヤの管理方法および管理システム並びにタイヤの製造方法および製造システム
KR101754107B1 (ko) 얼라인 마크의 실시간 업데이트를 이용한 수축에 따른 보정 방법
TWI705902B (zh) 類玻璃保護膜製造方法
JP2005081464A (ja) トリミング装置およびトリミング方法
CN210820959U (zh) 压膜生产流水线
JP7092245B1 (ja) タイヤの製造方法および製造システム
CA2711166C (en) Method of heating up thermoplastic boards by means of heat conduction
JP2945749B2 (ja) フィルムシートのプロファイル制御方法
US20220161328A1 (en) Method and apparatus for producing an object by means of additive manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021864046

Country of ref document: EP

Effective date: 20230403