WO2022049989A1 - 押出樹脂シートの中間加工方法 - Google Patents

押出樹脂シートの中間加工方法 Download PDF

Info

Publication number
WO2022049989A1
WO2022049989A1 PCT/JP2021/029080 JP2021029080W WO2022049989A1 WO 2022049989 A1 WO2022049989 A1 WO 2022049989A1 JP 2021029080 W JP2021029080 W JP 2021029080W WO 2022049989 A1 WO2022049989 A1 WO 2022049989A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
region
curvature
resin sheet
divided
Prior art date
Application number
PCT/JP2021/029080
Other languages
English (en)
French (fr)
Inventor
和雅 奥村
寿昌 帆高
Original Assignee
株式会社豊田自動織機
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, 帝人株式会社 filed Critical 株式会社豊田自動織機
Priority to US18/022,564 priority Critical patent/US20230321886A1/en
Priority to EP21864047.2A priority patent/EP4209282A4/en
Priority to CN202180053585.1A priority patent/CN115996797B/zh
Publication of WO2022049989A1 publication Critical patent/WO2022049989A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0011Combinations of extrusion moulding with other shaping operations combined with compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/02Combined thermoforming and manufacture of the preform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2490/00Intermixed layers
    • B05D2490/60Intermixed layers compositions varying with a gradient parallel to the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2701/00Coatings being able to withstand changes in the shape of the substrate or to withstand welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0013Extrusion moulding in several steps, i.e. components merging outside the die
    • B29C48/0014Extrusion moulding in several steps, i.e. components merging outside the die producing flat articles having components brought in contact outside the extrusion die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/46Measuring, controlling or regulating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • a flat plate-like base material coated on the surface may be hot-pressed to form a curved shape.
  • the coating is too thick with respect to the magnitude of the curvature of the curved portion, cracks such as cracks and cracks may occur in the coating. Therefore, it is preferable to apply a coating as thick as possible without causing cracks such as cracks and cracks, depending on the magnitude of the curvature.
  • the coating applied in the coating performing step is in a semi-cured state, which is a cured state in the middle of reaching a fully cured state in which curing is completed before the hot pressing step. Will be done.
  • the fully cured state is obtained.
  • the process control system performs the individual region and the division according to the curvature based on the curvature-related information for each individual region and each division region.
  • the degree of curing of the coating in the semi-cured state is set for each region. In the divided region having a large curvature, the degree of curing in the semi-cured state is set to be lower than that in the divided region having a small curvature.
  • the Z-axis direction indicates the vertically upward direction
  • the X-axis direction indicates the extrusion direction (substantially horizontal direction) of the extruded resin sheet W
  • the Y-axis indicates the extrusion direction (substantially horizontal direction) of the extruded resin sheet W
  • the Y-axis indicates the extrusion direction (substantially horizontal direction) of the extruded resin sheet W
  • the Y-axis refers to a substantially horizontal direction orthogonal to the X-axis direction.
  • the resin sheet manufacturing process includes an extrusion molding process P1, a shrinkage prediction process P2, a coating process P3, a printing process P4, a trimming process P5, a hot pressing process P6, an inspection process P8, and the like.
  • the manufacturing process is controlled and controlled by the process control system 1, and the process control system 1 is used in the overall control device 2 and the control device (10, 20, 30, 40, 50, 60, 80) of each process. It is composed of.
  • the "intermediate processing” is processing after the shrinkage prediction step P2.
  • the intermediate processing includes processing by the coating process P3, the printing process P4, and the trimming process P5, and does not include the heat pressing process P6.
  • post-processing is processing after extrusion molding and includes hot press processing.
  • post-processing is processing after the shrinkage prediction process P2, and includes a coating process P3, a printing process P4, a trimming process P5, and a hot pressing process P6.
  • the marker transport roller Rm engraves a small marker Mk on the edge of the extruded resin sheet each time it makes one rotation.
  • the mark Mk is used as a boundary of individual regions in the virtual division process described later. However, if the boundary of the individual area can be set without providing the mark Mk, the marking of the mark Mk may be omitted.
  • the region corresponding to the resin sheet Wz (finished product) is divided into small divided regions and recognized. Then, the contraction state is predicted for each region and each divided region. If it is a small region, it is possible to predict the contraction state. Then, the contraction state predicted for each individual region and each divided region is integrated, and the contraction state of the entire region corresponding to the resin sheet Wz (finished product) is predicted for each individual region.
  • the shrinkage prediction process P2 is performed by the shrinkage prediction process control device 20 before intermediate processing (in this case, coating, printing, trimming) and hot pressing (that is, post-processing).
  • the individual regions W1, W2, W3 and the like correspond to the resin sheet Wz (finished product) (see FIG. 1) cut out from the extruded resin sheet W. Specifically, the individual areas W1, W2, W3 and the like are slightly wider than the resin sheet Wz (finished product). In the example shown in FIGS. 3 and 4, the individual regions W1, W2, W3 ... Are virtually divided at the positions indicated by the alternate long and short dash lines (positions of the marks Mk).
  • the shrinkage prediction process management device 20 virtually divides each of the individual regions W1, W2 ... As shown by a dotted line in FIGS. 3 and 4, into a plurality of divided regions.
  • the individual region W1 is divided into 16 divided regions of W1 (A, 1), W1 (A, 2), ... W1 (D, 4).
  • the vertical ⁇ horizontal size of the divided region is, for example, about several tens [mm] ⁇ several tens [mm]. Since the shrinkage prediction process management device 20 virtually divides both the individual area and the divided area, it does not mean that the extruded resin sheet W is actually provided with a line or the like.
  • the heat press processing condition information corresponds to each of the (divided) regions (A, 1), (A, 2), ... (D, 4) of the individual region W1, and the heating distribution (heating temperature) during heating. Distribution, temperature application amount), pressure distribution at the time of pressing (pressure application amount), are set.
  • the coating process P3 is carried out by the coating process management device 30 (for example, a personal computer), the coating device 31, the curing device 33, and the like.
  • the coating process control device 30 operates the coating device 31 and the curing device 33 based on an instruction from the overall control device 2 (or an input instruction from an operator or the like).
  • the resin sheet Wz (finished product) after the completion of the hot pressing step P6 (see FIG. 1) has a curved shape in which each region is curved by a curvature by hot pressing.
  • the coating layer applied to the surface of the resin sheet is preferably thick, but if it is too thick, cracks such as cracks and cracks may occur when the bending rate at the time of shaping by the hot press is large. Therefore, it is desired to apply a coating as thick as possible without causing cracks such as cracks and cracks.
  • the coating process control device 30 acquires the maximum curvature from the hot press process control device 60 (see FIG. 1) that manages the hot press process P6 via the communication line T, and obtains the coating thickness information (see FIG. 10). Store in each area of "maximum curvature".
  • the maximum curvature is the maximum curvature at the time of contraction to the target contour Lt, and is the curvature-related information related to the curvature after the end of the hot pressing step P6.
  • the coating process management device 30 is used for each individual region and each division region according to the curvature based on the curvature-related information for each individual region and each division region.
  • the storage device 30A of the coating process control device 30 stores the curvature / maximum allowable coating thickness characteristic (see FIG. 9) in which the maximum allowable coating thickness corresponding to the curvature of the resin sheet is set.
  • the coating process control device 30 has, for each (division) region associated with the individual region W1 corresponding to the resin sheet, the maximum curvature corresponding to the (division) region, and the curvature / maximum allowable coating thickness characteristic. Determine the maximum permissible coating thickness based on this.
  • the maximum curvature is the maximum curvature based on curvature-related information.
  • the coating process control device 30 controls the coating device 31 to apply the coating to the range of the pre-shrinkage contour Ls (see FIGS. 3 and 4). Therefore, since the coating is not applied to a useless range, waste of the coating agent, wasted time for coating to an extra range, and the like can be reduced. In this way, the coating corrected for each individual region using the shrinkage-related information for each individual region and each division region and the pre-shrinkage contour based on the heat press working condition information for each individual region and each division region ( Perform intermediate processing and post-processing).
  • the coating process control device 30 of FIG. 8 applies coating with a coating thickness set for each (divided) region based on the coating thickness information (see FIG. 10) (see FIG. 11).
  • the resin sheet Wz (finished product) may have a spherical shape or a cylindrical shape, and the curvature may be substantially constant as a whole. In this case, it is not necessary to set the coating thickness for each divided region, and the coating thickness may be set for each individual region.
  • the coating process management device 30 controls the curing device 33.
  • the curing device 33 is irradiated with ultraviolet rays so that the coating applied to each divided region in the coating implementation step P3D is in a fully cured state in which the curing is almost completed.
  • Print process P4 (correction amount acquisition process P4A, printing execution process P4B) (FIGS. 12 to 14)
  • the printing process P4 is performed by the printing process management device 40 (for example, a personal computer), the printing device 41, and the like.
  • the printing process management device 40 operates the printing device 41 based on an instruction from the overall control device 2 (or an input instruction from an operator or the like).
  • the printing apparatus 41 sprays paint by, for example, an inkjet method to form a printing layer on the front surface (or front surface and back surface) of the extruded resin sheet W.
  • the printing process P4 includes a correction amount acquisition process P4A, a printing execution process P4B, and the like. The details of these will be described below.
  • the printing step P4 is one of the intermediate processing steps (which is also one of the post-processing steps), and the printing execution step P4B included in the printing step P4 is one of the intermediate processing execution steps.
  • the printing process management device 40 obtains a correction amount at the time of printing in the correction amount acquisition step P4A before the printing execution step P4B. Specifically, the printing process management device 40 determines the range, shape, and scale to be printed for each individual area, such as the pre-shrinkage contour Ls corresponding to the individual area, the target contour Lt, and each individual area and each divided area. The shrinkage rate related information and the heat press working condition information for each individual area and each divided area are obtained, and the correction amount at the time of printing is obtained.
  • the printed area At (the area shown by hatching in FIG. 14) of the resin sheet Wz (finished product) may be a predetermined width of the edge portion of the resin sheet Wz (finished product) as shown in FIG.
  • the printing process control device 40 obtains the print area As shown by hatching in FIG.
  • the individual region W1 may be the target contour Lt and the pre-shrinkage contour Ls.
  • the printing process management device 40 has the target contour Lt, the contour Ls before shrinkage, the shrinkage rate related information for each individual region and each division region (see FIG. 5), and the heat press working condition information for each individual region and each division region. (See FIG. 6), the shrinkage direction and the shrinkage amount of each divided area are estimated, and the print area As for each individual area is obtained.
  • Print process P4B In the printing execution step P4B, the printing process management device 40 controls the printing device 41 to print in the range of the printing area As (see FIG. 13). Therefore, since printing is not performed to a wasteful range, wasteful use of paint and wasteful time for printing to an extra range can be reduced, and misalignment and distortion of the printed area at the time of completion can be reduced. In this way, printing corrected for each individual area based on the shrinkage rate related information for each individual area and each divided area, the heat press working condition information for each individual area and each divided area, the pre-shrinkage contour, and the target contour. (Intermediate processing and post-processing) will be carried out.
  • the identification information ID corresponding to the individual area W1 is printed on the edge portion in the pre-shrinkage contour Ls with a two-dimensional code, a bar code, or the like.
  • the identification information ID is "YMD-0001" in the example of this embodiment.
  • the identification information is allocated in the shrinkage prediction step P2 and is used in the coating step P3, the printing step P4, the trimming step P5, the hot pressing step P6, and the inspection step P8 to identify individual regions.
  • the identification information is used to identify the intermediate resin sheet Wn (intermediate manufactured product) and the resin sheet Wz (finished product).
  • trim step P5 (correction amount acquisition step P5A, trim implementation step P5B) (FIGS. 15 and 16)
  • the trim step P5 is carried out by the trim process management device 50 (for example, a personal computer), the trim device 51, and the like.
  • the trim process control device 50 operates the trim device 51 based on an instruction from the overall control device 2 (or an input instruction from an operator or the like).
  • the trim device 51 is, for example, a laser cutter, and is irradiated with laser light La to cut out an intermediate resin sheet Wn (intermediate manufactured product) from the extruded resin sheet W (see FIGS. 1 and 16).
  • the trim step P5 includes a correction amount acquisition step P5A, a trim implementation step P5B, and the like. The details of these will be described below.
  • the trim step P5 is one of the intermediate processing steps (also one of the post-processing steps), and the trim execution step P5B included in the trim step P5 is one of the intermediate processing execution steps.
  • the trim process management device 50 sets the range cut out from the individual area for each individual area in the correction amount acquisition step P5A to the range of the pre-shrinkage contour Ls corresponding to the individual area. Then, the correction amount for trimming is obtained for each individual area.
  • trim process management device 50 controls the trim device 51 to cut out the range of the pre-shrinkage contour Ls from the individual region. Therefore, no useless region is left (in the resin sheet Wz (finished product), the pre-shrinkage contour Ls shrinks to the target contour Lt). In this way, the trim corrected for each individual region using the shrinkage-related information for each individual region and each division region and the pre-shrinkage contour based on the heat press working condition information for each individual region and each division region ( Perform intermediate processing and post-processing).
  • the strip-shaped extruded resin sheet W is separated into individual intermediate resin sheets Wn (intermediate manufactured products). Therefore, the next step (heat pressing step P6, inspection step P8) may be performed at the factory where the trim step P5 has been carried out, or the intermediate resin sheet Wn (intermediate manufactured product) is transported to a factory at a remote location. It may be done at a remote factory.
  • the hot press process P6 and the inspection process P8 are performed at a remote location, for example, the overall control device 2, the hot press process control device 60, and the inspection process control device 80 are connected to the Internet.
  • the hot pressing process P6 is carried out by a hot pressing process management device 60 (for example, a personal computer), a heating device 61, a pressing device 63, and the like.
  • the heat press process control device 60 operates the heating device 61 and the press device 63 based on an instruction from the overall control device 2 (or an input instruction from an operator or the like).
  • the hot pressing process P6 includes a heating implementation process P6B, a correction amount acquisition process P6A corresponding to the heating implementation process P6B, a press implementation process P6D, a correction amount acquisition process P6C corresponding to the press implementation process P6D, and the like. The details of these will be described below.
  • the hot pressing process P6 is one of the post-processing processes.
  • the "hot press processing condition information" shown in FIG. 6 is stored in the storage device 60A of the hot press process control device 60.
  • the hot press process management device 60 obtains a correction amount for each region of the "temperature distribution" of the hot press processing condition information in the correction amount acquisition step P6A before the heating execution step P6B.
  • the heat press process management device 60 has the pre-shrinkage contour Ls (see FIG. 4) and the target contour Lt (see FIG. 4) corresponding to the individual region for each individual region, and the individual region and the divided region. Correction of hot press working condition information for each area of "temperature distribution" based on shrinkage rate related information for each area (see FIG. 5) and hot press working condition information for each individual area and each divided area (see Fig. 6). Find the amount.
  • the heating implementation step P6B is performed by the heat press process control device 60, the heating device 61, and the like.
  • the heating device 61 is, for example, a heat insulating tank, and has a transport device 61A such as a conveyor and a heating table 62 or the like mounted on the transport device 61A.
  • the heating table 62 is divided in the same manner as the (divided) regions (A, 1), (A, 2) ... (D, 4) (see FIG. 4) virtually divided in the virtual division step P2A. There is.
  • the heating table 62 heats each divided region of the intermediate resin sheet Wn (intermediate manufactured product) placed on itself at a different temperature (different temperature distribution) for each divided region at each temperature. Can be done.
  • the heat press process management device 60 is a heating table based on the temperature distribution for each (divided) region stored in the heat press processing condition information shown in FIG. 6 and the correction amount in the correction amount acquisition step P6A described above. The temperature of each of the 62 (divided) regions is adjusted as needed. In this way, based on the shrinkage rate related information for each individual region and each divided region and the heat press working condition information for each individual region and each divided region, heating (post-processing) corrected as necessary for each individual region is performed. ).
  • the "hot press processing condition information" shown in FIG. 6 is stored in the storage device 60A of the hot press process control device 60.
  • the hot press process management device 60 obtains a correction amount for each region of the "pressure distribution" of the hot press processing condition information in the correction amount acquisition step P6C before the press execution step P6D.
  • the heat press process control device 60 has, for each individual region, the pre-shrink contour Ls (see FIG. 4) and the target contour Lt (see FIG. 4) corresponding to the individual region, and the shrinkage rate for each divided region. Based on the related information (see FIG. 5) and the hot press working condition information (see FIG. 6), the correction amount for each region of the "pressure distribution" of the hot press working condition information is obtained.
  • the pressing process P6D is performed by the hot pressing process control device 60, the pressing device 63, and the like.
  • the press device 63 has an upper die 63A and a lower die 63B.
  • the press surfaces of the upper die 63A and the lower die 63B are virtually divided (divided) regions (A, 1), (A, 2) ... (D, 4) (see FIG. 4) in the virtual division step P2A. ) Is divided.
  • the pressed surface is shaped by pressing each divided region of the set intermediate resin sheet Wn (intermediate manufactured product) at a different pressure (different pressure distribution) for each divided region. Can be done.
  • each divided region is heated at each temperature (temperature distribution), and in the press implementation step P6D, each divided region is subjected to the respective pressure (pressure distribution). ) Has been described, but it is sufficient if at least one of them can be performed. Then, by carrying out the heating step P6B and the press step P6D, a resin sheet Wz (finished product) can be obtained.
  • the inspection process P8 is carried out by the inspection process management device 80 (for example, a personal computer), the inspection device 81, and the like.
  • the inspection process management device 80 operates the inspection device 81 based on an instruction from the overall control device 2 (or an input instruction from an operator or the like).
  • the inspection device 81 is, for example, a three-dimensional data acquisition device composed of two image pickup devices 81A and 81B arranged at predetermined intervals.
  • the inspection process control device 80 uses two image pickup devices 81A and 81B to image the resin sheet Wz (finished product) from various directions and measures the three-dimensional shape of the resin sheet Wz (finished product). Then, as shown in the example of the final product inspection information in FIG. 18, the inspection process control device 80 has a contour error (dimensional error) and a curvature error (shape) for each divided region for each individual region (W1, W2 ). Error) etc. are obtained and stored.
  • the inspection process control device 80 transmits the final product inspection information (see FIG. 18) to the shrinkage prediction process control device 20 (see FIG. 1) and the hot press process control device 60 via the communication line T.
  • the shrinkage prediction process management device 20 that has received the final product inspection information corrects when obtaining the pre-shrinkage contour Ls in the contour calculation step P2C so that the error of the final product inspection information is reduced based on the final product inspection information. Correct the amount etc.
  • a correction amount for correcting the machine difference (individual difference) of the heating device 61 and the pressing device 63 is obtained, and the control amount of the heating device 61 and the pressing device 63 from the heat pressing process control device 60 is obtained. It may be corrected.
  • the hot press working conditions of each heating device and pressing device having individual differences can be matched with typical conditions (in this case, hot press working condition information), so that hot press working condition information (Fig.) 6) can be more accurately realized, and corrections can be made more accurately in each intermediate processing and hot pressing (that is, each post-processing).
  • the contour after hot pressing which is the contour after hot pressing, is estimated based on the shrinkage rate related information, the trim shape (contour before shrinking Ls), the hot pressing condition information before correction, etc., and the estimated post-hot pressing contour.
  • the heat press working condition information may be corrected according to the difference between the target contour Lt and the target contour Lt.
  • the shrinkage prediction process control device 20 corrects at least a part of the hot press working condition information by the following procedures (1-1) to (1-3), and finally shrinks.
  • the front contour Ls is calculated.
  • the shrinkage prediction process control device 20 estimates the (provisional) pre-shrinkage contour based on the shrinkage rate related information and the (pre-correction) hot press working condition information.
  • the shrinkage rate related information is set for each individual region and each divided region (see FIG. 5), and the hot press working condition information is set for each individual region and each divided region (see FIG. 6).
  • the shrinkage prediction process control device 20 reduces the amount of shrinkage so that the (provisional) pre-shrinkage contour fits in the individual region.
  • Correct at least part of the hot press working condition information first, based on the hot press working condition information for each individual region and each divided region, and the intermediate working condition information for each individual region and each divided region. , The corrected hot press working condition information corrected with the hot press working condition information is obtained, and the obtained corrected hot press working condition information is updated (overwritten) as the hot press working condition information.
  • the shrinkage prediction process control device 20 has shrinkage rate-related information for each individual region and each division region, and heat press working condition information (corrected and updated (overwritten)) for each individual region and each division region.
  • the final pre-shrinkage contour Ls is calculated based on (corresponding to the corrected heat press working condition information).
  • the corrected and updated (overwritten) hot press processing condition information is used.
  • the shrinkage prediction process control device 20 is described in the following (2-1) even when the (provisional) pre-shrinkage contour is contained within the individual region in the above "other example 1".
  • the procedure of (2-3) at least a part of the heat press working condition information is corrected so that the shrinkage amount is reduced (or the strain due to shrinkage is reduced), and the final pre-shrinkage contour Ls is corrected. Is calculated.
  • the shrinkage prediction process control device 20 estimates the (provisional) pre-shrinkage contour based on the shrinkage rate related information and the (pre-correction) hot press working condition information.
  • the shrinkage rate related information is set for each individual region and each divided region (see FIG.
  • the shrinkage prediction process control device 20 reduces the amount of shrinkage (or the strain due to shrinkage) regardless of whether the estimated (provisional) pre-shrinkage contour fits within the individual region.
  • the corrected hot press working condition information obtained by correcting the hot press working condition information is obtained by the same processing as described in (1-2) above.
  • the corrected hot press working condition information is updated (overwritten) as hot press working condition information.
  • various processing conditions for performing intermediate processing in this case, coating, printing, trimming
  • the shrinkage prediction process control device 20 has shrinkage rate-related information for each individual region and each divided region, and heat press working condition information (corrected and updated (overwritten)) for each individual region and each divided region. Based on, the final pre-shrink contour Ls is calculated.
  • the shrinkage prediction process management device 20 is set so that, for example, the pre-shrinkage contour is a preset pre-shrinkage contour (a contour preset as a size slightly larger than the target contour Lt).
  • the pre-shrinkage contour is a preset pre-shrinkage contour (a contour preset as a size slightly larger than the target contour Lt).
  • the heat press working condition information is corrected so as to reduce (adjust) the shrinkage amount and the strain.
  • hot press working is performed using the hot press working condition information in which at least a part of the individual regions and each divided region is corrected.
  • the intermediate processing in this case, coating, printing, trimming
  • the processing which is not individually corrected is performed, and the uniform processing is performed according to the set pre-shrink contour.
  • FIG. 19 shows an outline of the entire manufacturing process of the resin sheet of the second embodiment.
  • the manufacturing process of the resin sheet of the second embodiment shown in FIG. 19 is different from the manufacturing process of the resin sheet of the first embodiment shown in FIG. 1 in the coating curing step P3E in the coating step P3.
  • the step of making the coating in a cured state) has been changed to the coating semi-curing step P3F in which the coating is made into a semi-cured state.
  • the process control system 1 is composed of an overall control device 2 and a control device (10, 20, 30, 40, 50, 60, 70, 80) for each process.
  • the "fully cured state” refers to a state in which the coating is almost completely cured
  • the "semi-cured state” refers to a cured state in the process of reaching the fully cured state.
  • the coating process management device 30 is used for each individual region and for each individual region according to the curvature based on the curvature-related information for each divided region.
  • the storage device 30A of the coating process control device 30 stores a curvature / target curing degree characteristic (see FIG. 20) in which a target curing degree corresponding to the curvature of the resin sheet is set.
  • the coating process control device 30 has a maximum curvature (maximum curvature based on curvature-related information) corresponding to the (divided) region for each (divided) region associated with the individual region W1 corresponding to the resin sheet. , Curvature / target curing degree The target curing degree is obtained based on the characteristics. Then, the coating process control device 30 stores (sets) the obtained target curing degree in the corresponding region in the “target curing degree” of the curing degree information (see FIG. 21).
  • the divided region having a large curvature is set so that the degree of curing in the semi-cured state is lower than that of the divided region having a small curvature.
  • the "maximum curvature" and "target curing degree” for each individual region and each divided region at the target contour Lt are cured degree information. It may be stored (set) in (see FIG. 21). Further, instead of setting a different target curing degree for each individual region and each divided region, the lowest target curing degree among the target curing degrees obtained for each individual region and each divided region is set for all divisions within the individual region. It may be applied to the area.
  • the coating process control device 30 controls the coating device 31 to apply the coating to the range of the pre-shrinkage contour Ls (see FIGS. 3 and 4). In this way, the coating corrected for each individual region using the shrinkage-related information for each individual region and each division region and the pre-shrinkage contour based on the heat press working condition information for each individual region and each division region ( Perform intermediate processing and post-processing).
  • the coating process control device 30 coats each divided region so as to have a preset coating thickness.
  • the degree of curing in the semi-cured state is set to be lower in the divided region having a large curvature than in the divided region having a small curvature. That is, during the hot press working, the coating of the divided region having a large curvature has a low degree of curing and the elastic force is increased, so that the occurrence of cracks such as cracks and cracks is suppressed.
  • the coating total curing step P7 is carried out by the coating total curing process management device 70 (for example, a personal computer), the curing device 73, and the like.
  • the coating total curing process management device 70 is connected to the communication line T, and operates the curing device 73 based on an instruction from the overall control device 2 (or an input instruction from an operator or the like).
  • the curing device 73 is a device that irradiates ultraviolet rays, for example, when the coating agent is an ultraviolet curing type paint. Further, the coating total curing step P7 is carried out after the hot pressing step P6 and before the inspection step P8.
  • the coating of the intermediate resin sheet Wn (intermediate manufactured product) for which the hot pressing process P6 has been completed remains in a semi-cured state.
  • the coating total curing process control device 70 controls the curing device 73 to cure the semi-cured coating to the fully cured state.
  • the entire manufacturing process of the resin sheet of the third embodiment is the same as that of the second embodiment shown in FIG. 19, but the following points are different from the second embodiment.
  • the resin sheet manufacturing process of the third embodiment is different from the resin sheet manufacturing process of the second embodiment in the coating step P3, the setting contents in the region-by-region coating condition setting step P3C, and the coating implementation step.
  • the contents of P3D and the contents of the coating semi-curing step P3F are different. Differences from these second embodiments will be mainly described, and the same points as those of the second embodiment will be omitted.
  • the "fully cured state” refers to a state in which the coating is almost completely cured
  • the "semi-cured state” refers to a cured state in the process of reaching the fully cured state. Is the same as.
  • the coating process management device 30 is used for each individual region and for each individual region according to the curvature based on the curvature-related information for each divided region.
  • the "coating condition for each region" is the "thickness of the coating for each individual region and each divided region", but it differs from the first embodiment in the following points.
  • the coating is semi-cured and hot-pressed.
  • the coating is fully cured and hot press working is performed.
  • the coating thickness is made thinner in the divided region having a large curvature than in the divided region having a small curvature so that the coating in the fully cured state does not generate cracks in the portion having a large curvature.
  • the coating having elastic force in the semi-cured state does not generate cracks by hot pressing. Therefore, in the divided region having a large curvature, the coating is thickly coated in advance in anticipation that the coating will be stretched and thinned by the large curvature.
  • the storage device 30A of the coating process control device 30 stores the curvature / target coating thickness characteristic (see FIG. 22) in which the target coating thickness corresponding to the curvature of the resin sheet is set.
  • the coating process control device 30 has a maximum curvature (maximum curvature based on curvature-related information) corresponding to the (divided) region for each (divided) region associated with the individual region W1 corresponding to the resin sheet. , Curvature / target coating thickness The target coating thickness is obtained based on the characteristics. Then, the coating process control device 30 stores (sets) the obtained target coating thickness in the corresponding region in the "target coating thickness" of the coating thickness information (see FIG. 23). In the third embodiment, the coating thickness is set to be thicker in the divided region having a large curvature than in the divided region having a small curvature.
  • the intermediate resin sheet Wn shrinks.
  • the "maximum curvature" when shrinking to the target contour Lt and the "maximum curvature” corresponding to the maximum curvature are used for each individual region and each divided region.
  • “Target coating thickness” was set.
  • it may be an intermediate resin sheet Wn (intermediate manufactured product) having a shrinkage rate of, for example, about 1 to 5 [%]. In this case, it is assumed that there is almost no shrinkage due to the hot pressing step P6.
  • the intermediate resin sheet Wn intermediate manufactured product
  • the resin sheet Wz finished product
  • the "maximum curvature" and the "target coating thickness” for each individual region and each divided region in the target contour Lt may be stored (set) in the coating thickness information (see FIG. 23).
  • the thickest target coating thickness among the target coating thicknesses obtained for each individual region and each division region is set in the individual region. It may be applied to all the divided areas.
  • the coating process control device 30 controls the coating device 31 to apply the coating to the range of the pre-shrinkage contour Ls (see FIGS. 3 and 4). In this way, the coating corrected for each individual region using the shrinkage-related information for each individual region and each division region and the pre-shrinkage contour based on the heat press working condition information for each individual region and each division region ( Perform intermediate processing and post-processing).
  • the coating process control device 30 applies the coating with the coating thickness set for each (division) region based on the coating thickness information (see FIG. 23).
  • the method is described.
  • the extruded resin sheet is virtually divided into a plurality of regions (individual region, divided region). Then, different shrinkage rates are obtained for each region, and corrections for intermediate processing and hot press processing (that is, post-processing) are appropriately corrected for each region (each individual region, each divided region).
  • waste of the extruded resin sheet corresponding to the base material
  • the coating agent and the occurrence of printing misalignment
  • the accuracy can be further improved by feeding back the inspection results such as the dimensions and shape of the resin sheet Wz (finished product).
  • the intermediate processing method of the extruded resin sheet and the hot press processing method of the intermediate resin sheet obtained by intermediate processing of the extruded resin sheet according to one embodiment of the present disclosure are not limited to the processing methods and the like described in the present embodiment. , Various changes, additions and deletions are possible without changing the gist of one form of the present disclosure.
  • the thickness of the resin sheet described in the present embodiment is, for example, about several [mm], but the thickness of the target resin sheet is not particularly limited and is about several tens [mm]. It may be in the form of a resin panel having.
  • the material of the resin sheet is not particularly limited.
  • the above ( ⁇ ), the following ( ⁇ ), the larger (>), the less than ( ⁇ ), etc. may or may not include the equal sign.
  • the numerical value used in the explanation of this embodiment is an example, and is not limited to this numerical value.
  • the storage device can include a volatile or non-volatile memory.
  • suitable storage devices are RAM (random access memory), flash memory, ROM (read-only memory), PROM (programmable read-only memory), EPROM (erasable programmable read-only memory), EEPROM. (Electrically erasable programmable read-only memory), registers, magnetic disks, optical disks, hard drives, other suitable storage media, or a combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • General Factory Administration (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

工程管理システム(1)は、押出樹脂シートを複数の樹脂シートに対応する複数の個別領域へと仮想的に分割する。個別領域をさらに複数の分割領域へと仮想的に分割する。熱プレス工程の終了後の曲率に関連する曲率関連情報を個別領域ごとかつ分割領域ごとに取得している。領域毎コーティング条件設定工程(P3C)において、個別領域ごとかつ分割領域ごとの曲率関連情報に基づいた曲率に応じて、個別領域ごとかつ分割領域ごとにコーティング条件を設定する。コーティング実施工程(P3D)において、コーティング条件に基づいてそれぞれの個別領域の分割領域のコーティングを行う。

Description

押出樹脂シートの中間加工方法
 本開示の1つの形態は、加熱されて押出成形された帯状の押出樹脂シートから、熱プレス加工に用いる樹脂シートである中間樹脂シートを製造するための、押出樹脂シートの中間加工方法に関する。
  例えば数[mm]以下の厚さの樹脂シートは、種々の分野で、種々の機器に幅広く利用されている。例えば車両には、数[mm]程度の厚さの透明な樹脂シートが、リアウィンドウや、サンルーフ搭載車のルーフ等、種々の個所に用いられている。しかしながらリアウィンドウやルーフ等に樹脂シートを用いる場合、平板状の樹脂シートを湾曲形状に賦形する必要がある。具体的には、樹脂シートを加熱してプレスして賦形する、いわゆる熱プレス加工が必要となる。
 また樹脂シートの表面には、キズがつきにくく耐候性を向上させるため、例えば10~20[μm]程度の厚さのコーティングが施される。
 例えば特開2018-34562号公報には、窓用部材が開示されている。窓用部材は、熱可塑性樹脂を含む材料を用いて形成された基材と、基材の少なくとも一方の面側に設けられたコート層とを有している。基材は、JIS K 6735に規定された方法に準拠して測定された加熱収縮率が5%以下である。風防板の製造の際には、平板状の基材の表面にコート層を形成した後、熱プレスにて賦形して風防板を湾曲形状にしている。コート層(コーティング)の厚さは、薄すぎると耐候性等が低下するので好ましくない。コート層の厚さは、厚すぎると熱プレスで賦形した際の湾曲部において割れやヒビ等が発生するので好ましくない。したがってコート層の厚さは、2~30[μm]が好ましく、5~20[μm]がさらに好ましいとされている。
 上述したように、表面にコーティングが施された平板状の基材を熱プレスして湾曲形状とする場合がある。この場合、湾曲部の曲率の大きさに対してコーティングが厚すぎるとコーティングに割れやヒビ等のクラックが発生する場合がある。そのため、曲率の大きさに応じて、割れやヒビ等のクラックを発生させることなくできるだけ厚いコーティングを施すことが好ましい。
 特開2018-34562号公報に記載の風防板は、種々の領域に、それぞれ異なる曲率の湾曲部を有している。しかし、領域毎にコーティングの厚さを変える点について記載が見受けられず、全体的に一律の厚さでコーティングされていると見受けられる。つまり、最大曲率の領域でも割れやヒビ等が発生しない厚さのコーティングが全体に施されていると見受けられる。従って、曲率の小さい領域では、もっと厚いコーティングを施しても割れやヒビ等が発生しないはずであるが、必要以上に薄いコーティングとされてしまっている。
 したがって、種々の領域がそれぞれ異なる曲率の湾曲部を有する樹脂シートにおいて、それぞれの領域を、曲率に応じた適切な条件でコーティングすることで、熱プレス加工にて湾曲形状に賦形した際の割れやヒビ等の発生を防止できる、押出樹脂シートの中間加工方法が必要とされている。
 本開示の1つの形態は、加熱されて押出成形された帯状の押出樹脂シートから、熱プレス加工に用いる樹脂シートである中間樹脂シートを製造するための、押出樹脂シートの中間加工方法である。前記押出成形の後の加工であって前記熱プレス加工の前までの加工である中間加工には、前記熱プレス加工を含む熱プレス工程よりも前に、コーティング装置を用いて、前記押出樹脂シートの表面にコーティングを施すコーティング実施工程が含まれている。前記熱プレス工程の終了後の前記樹脂シートは、それぞれの領域がそれぞれの曲率にて湾曲されている。コンピュータを備えた工程管理システムは、前記押出成形された帯状の前記押出樹脂シートを複数の前記樹脂シートに対応する複数の個別領域へと仮想的に分割する。仮想的に分割したそれぞれの前記個別領域をさらに複数の分割領域へと仮想的に分割する。前記熱プレス工程の終了後の曲率に関連する曲率関連情報を、前記個別領域ごとかつ前記分割領域ごとに取得する。前記コーティング実施工程よりも前に、前記工程管理システムは、それぞれの前記個別領域ごとかつ前記分割領域ごとの前記曲率関連情報に基づいた曲率に応じて、それぞれの前記個別領域ごとかつ前記分割領域ごとにコーティング条件を設定する、領域毎コーティング条件設定工程を行う。前記コーティング装置は、前記個別領域ごとかつ前記分割領域ごとに設定した前記コーティング条件に基づいてそれぞれの前記個別領域の前記分割領域のコーティングを行う、前記コーティング実施工程を行う。
 したがって、1つずつの製品に対応する個別領域を、さらに複数の分割領域へと仮想的に分割する。個別領域ごとかつ分割領域ごとの曲率関連情報(曲率)に基づいて、個別領域ごとかつ分割領域ごとにコーティング条件を設定する。これにより、種々の領域がそれぞれ異なる曲率の湾曲部を有する樹脂シートにおいて、それぞれの領域を、曲率に応じたそれぞれの適切な条件でコーティングする。これによって、熱プレス加工にて湾曲形状に賦形した際の割れやヒビ等のクラックの発生を防止できる。
 本開示の他の形態によると、前記コーティング実施工程にて施された前記コーティングが、前記熱プレス工程よりも前に、硬化が完了した全硬化状態とされる。この場合、前記領域毎コーティング条件設定工程にて、前記工程管理システムは、それぞれの前記個別領域ごとかつ前記分割領域ごとの前記曲率関連情報に基づいた曲率に応じて、前記個別領域ごとかつ前記分割領域ごとに前記コーティングの厚さを設定する。曲率が大きな前記分割領域では、曲率が小さな前記分割領域よりも前記コーティングの厚さが薄くなるように設定する。
 したがって、熱プレス工程よりも前にコーティングが全硬化状態とされる場合、全硬化状態とされて弾性力をほとんど有していないコーティングの厚さを、曲率が大きな分割領域では薄くする。全硬化状態とされたコーティングは、薄いほうが割れやヒビ等のクラックが発生しにくい。このように、個別領域ごとかつ分割領域ごとに、曲率に応じた適切なコーティング厚さ(コーティング条件)とする。これによって、熱プレス加工にて湾曲形状に賦形した際の割れやヒビ等のクラックの発生を防止できる。
 本開示の他の形態によると、前記工程管理システムは記憶装置を有している。前記記憶装置には、前記樹脂シートの曲率に対応させた最大許容コーティング厚さが設定された曲率・最大許容コーティング厚さ特性が記憶されている。前記領域毎コーティング条件設定工程にて、前記工程管理システムは、前記樹脂シートに対応付けられたそれぞれの前記分割領域ごとに、当該分割領域に対応する前記曲率関連情報に基づいた最大曲率と、前記曲率・最大許容コーティング厚さ特性とに基づいて最大許容コーティング厚さを求める。求めた最大許容コーティング厚さ以下となるように前記個別領域ごとかつ前記分割領域ごとの前記コーティングの厚さを設定する。
 したがって、曲率・最大許容コーティング厚さ特性を有することで、曲率に応じた適切なコーティングの厚さを、容易に求めることができる。
 本開示の他の形態によると、前記コーティング実施工程にて施された前記コーティングが、前記熱プレス工程よりも前に、硬化が完了した全硬化状態に至る途中の硬化状態である半硬化状態とされる。前記熱プレス工程よりも後で、前記全硬化状態とされる。この場合、前記領域毎コーティング条件設定工程にて、前記工程管理システムは、それぞれの前記個別領域ごとかつ前記分割領域ごとの前記曲率関連情報に基づいた曲率に応じて、前記個別領域ごとかつ前記分割領域ごとに前記コーティングの前記半硬化状態の硬化度合いを設定する。曲率が大きな前記分割領域では、曲率が小さな前記分割領域よりも前記半硬化状態の硬化度合いが低くなるように設定する。
 したがって、熱プレス工程よりも前ではコーティングが半硬化状態とされ、熱プレス工程よりも後でコーティングが全硬化状態とされる。この場合、半硬化状態とされて弾性力を有するコーティングを、曲率が大きな分割領域では、割れやヒビ等のクラックの発生を防止するように、硬化度合いを低くしてより柔らかくする。半硬化状態とされたコーティングは、硬化度合いが低いほうが割れやヒビ等のクラックが発生しにくい。このように、個別領域ごとかつ分割領域ごとに、曲率に応じた適切な硬化度合い(コーティング条件)とする。これによって、熱プレス加工にて湾曲形状に賦形した際の割れやヒビ等のクラックの発生を防止できる。
 本開示の他の形態によると、前記コーティング実施工程にて施された前記コーティングが、前記熱プレス工程よりも前に、硬化が完了した全硬化状態に至る途中の硬化状態である半硬化状態とされる。前記熱プレス工程よりも後で、前記全硬化状態とされる。この場合、前記領域毎コーティング条件設定工程にて、前記工程管理システムは、それぞれの前記個別領域ごとかつ前記分割領域ごとの前記曲率関連情報に基づいた曲率に応じて、前記個別領域ごとかつ前記分割領域ごとに前記コーティングの厚さを設定する。曲率が大きな前記分割領域では、曲率が小さな前記分割領域よりも前記コーティングの厚さが厚くなるように設定する。
 したがって、熱プレス工程よりも前ではコーティングが半硬化状態とされ、熱プレス工程よりも後でコーティングが全硬化状態とされる。この場合、半硬化状態とされて弾性力を有するコーティングの厚さを、曲率が大きな分割領域では厚くする。曲率が大きな個所では、湾曲によってコーティングが引き延ばされて薄くなるが、曲率が大きな個所(分割領域)では予めコーティングを厚くする。これによって、曲率が大きな個所(分割領域)と、それ以外の個所(分割領域)とで、コーティングの厚さをほぼ同じとすることができる。
第1の実施の形態の樹脂シートの製造工程の全体を説明する図である。 押出成形工程の例を説明する斜視図である。 仮想分割工程、収縮率関連情報取得工程、輪郭算出工程、輪郭記憶工程の例を説明する斜視図である。 図3の平面図であり、個別領域、分割領域、目標輪郭、収縮前輪郭の例を説明する図である。 収縮率関連情報の例を説明する図である。 熱プレス加工条件情報の例を説明する図である。 目標輪郭、収縮前輪郭に関連する輪郭情報の例を説明する図である。 コーティング工程の例を説明する斜視図である。 樹脂シートの曲率に対応させた最大許容コーティング厚さが設定された曲率・最大許容コーティング厚さ特性の例を説明する図である。 種々の曲率とされた分割領域のそれぞれに応じた最大許容コーティング厚さが設定されたコーティング厚さ情報の例を説明する図である。 図8におけるXI-XI断面図であり、それぞれの分割領域に応じた厚さのコーティングを施した例を説明する図である。 印刷工程の例を説明する斜視図である。 収縮を考慮して、収縮前輪郭の縁部に印刷を施した例を説明する図である。 熱プレスを完了して収縮した最終品の縁部の印刷状態の例を説明する図である。 トリム工程の例を説明する斜視図である。 トリム工程にて収縮前輪郭で切り出した樹脂シートの例を説明する図である。 熱プレス工程、検査工程の例を説明する斜視図である。 検査工程にて取得した最終品検査情報の例を説明する図である。 第2、第3の実施の形態の樹脂シートの製造工程の全体を説明する図である。 第2の実施の形態における、樹脂シートの曲率に対応させた目標硬化度合いが設定された曲率・目標硬化度合い特性の例を説明する図である。 第2の実施の形態における、種々の曲率とされた分割領域のそれぞれに応じた目標硬化度合いが設定された硬化度合い情報の例を説明する図である。 第3の実施の形態における、樹脂シートの曲率に対応させた目標コーティング厚さが設定された曲率・目標コーティング厚さ特性の例を説明する図である。 第3の実施の形態における、種々の曲率とされた分割領域のそれぞれに応じた目標コーティング厚さが設定されたコーティング厚さ情報の例を説明する図である。
 以下に本開示の1つの形態を実施するための形態を図面を用いて説明する。なお図中にX軸、Y軸、Z軸が記載されている場合、Z軸方向は鉛直上方向を指し、X軸方向は押出樹脂シートWの押し出し方向(略水平方向)を指し、Y軸方向はX軸方向と直交する略水平方向を指す。以下、本開示の1つの形態の押出樹脂シートの中間加工方法、及び押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法を含む樹脂シートの製造工程について、第1~第3の実施の形態について順に説明する。第1の実施の形態では、コーティング工程P3にコーティング硬化工程P3E(コーティングを全硬化状態にする工程)が含まれている。第2の実施の形態では、コーティング硬化工程P3Eがコーティング半硬化工程P3F(コーティングを半硬化状態にする工程)に変更されており、熱プレス工程P6と検査工程P8の間にコーティング全硬化工程P7(コーティングを全硬化状態にする工程)が追加されている。
[第1の実施の形態(図1~図18)]
 まず図1を用いて、樹脂シートを製造する製造工程の全体の概略を説明する。樹脂シートの製造工程には、押出成形工程P1、収縮予測工程P2、コーティング工程P3、印刷工程P4、トリム工程P5、熱プレス工程P6、検査工程P8等が有る。当該製造工程は、工程管理システム1にて管理及び制御されており、工程管理システム1は、全体管理装置2、各工程の管理装置(10、20、30、40、50、60、80)にて構成されている。また、全体管理装置2、及び各工程の管理装置(10、20、30、40、50、60、80)は、通信回線Tに接続されており、種々の情報を互いに送受信することができる。なお、通信回線Tは、有線、無線のいずれでもよく、インターネットであってもよい。インターネットとした場合、押出成形工程P1~トリム工程P5までと、熱プレス工程P6及び検査工程P8と、を別々の遠隔地で実施することができる。
 全体管理装置2は、例えばパーソナルコンピュータであり、各工程の管理装置(10~60、80)のそれぞれの起動や停止、各種の情報の送受信等を行い、各工程が正常に実施されているか集中管理している。
 図1に示すように、押出成形工程P1にて押出成形装置11を用いて樹脂材料13から帯状の押出樹脂シートWを押出成形する。帯状の押出樹脂シートWは、収縮予測工程P2、コーティング工程P3、印刷工程P4、トリム工程P5を経て、個々の中間樹脂シートWn(中間製造品)に切り出される。そして個々の中間樹脂シートWn(中間製造品)は、熱プレス工程P6(加熱実施工程P6B、プレス実施工程P6D)の終了後、完成された製品としての樹脂シートWz(完成品)とされる。各工程の中で、熱プレス工程P6では中間樹脂シートWn(中間製造品)を加熱実施工程P6Bにて加熱する。その後、中間樹脂シートWnをプレス実施工程P6Dにてプレスする。この間において、中間樹脂シートWn(中間製造品)の種々の領域が種々の方向に収縮する。この収縮は、樹脂材料13のロットが変わると当然のごとく変化する。同一ロットであっても、押出時の残留応力等の種々の要因で、押出樹脂シートWの領域ごとに収縮が変化する。従って、樹脂シートWz(完成品)の精度を安定的に確保することは、従来では非常に困難であった。しかし、本実施の形態にて説明する押出樹脂シートの中間加工方法、及び押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法では、樹脂シートWz(完成品)の精度を安定的に確保することができる。
 従来では、図1に示す中間樹脂シートWn(中間製造品)を、余裕ある大きさに作成しておき、熱プレス工程P6にて収縮させる。その後、余分な部分を切り落として樹脂シートWz(完成品)とする。すなわち従来方法は、余分な部分を切り落とす工程が必要になる。また、どのように収縮するかわからない状態で熱プレスするので、中間樹脂シートWnをかなり余裕ある大きさにしておく必要がある。そのため、切り落とされて無駄となる樹脂シートが多い(コーティング、印刷も無駄が多くなる)。また、中間樹脂シートWnがどのように収縮するかわからない状態で熱プレスするので、印刷ズレが発生する可能性がある。本実施の形態にて説明する押出樹脂シートの中間加工方法、及び押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法では、熱プレス工程の後の余分な部分を切り落とす工程は不要である。そのため、無駄となる樹脂シート、無駄となるコーティングや印刷を、より少量とすることが可能であり、印刷ズレの発生を抑制することができる。
[「中間加工」と「後加工」について]
 帯状の押出樹脂シートWは、樹脂材料を加熱して押出すことで成形される。以下、帯状の押出樹脂シートWから、熱プレス加工に用いる樹脂シートである中間樹脂シートWn(中間製造品)を製造する各工程を説明する。各工程には、押出樹脂シートの中間加工方法、及び押出樹脂シートWに中間加工が施された中間樹脂シートWn(中間製造品)の熱プレス加工方法が含まれる。なお、本実施の形態の説明において「中間加工」とは、押出成形の後の加工であって熱プレス加工の前(直前、手前)までの加工である。そして本実施の形態の説明において「中間加工」は、収縮予測工程P2よりも後の加工である。例えば、中間加工は、コーティング工程P3、印刷工程P4、トリム工程P5による加工を含み、熱プレス工程P6を含まない。また本実施の形態の説明において「後加工」とは、押出成形の後の加工であって熱プレス加工を含む。そして本実施の形態の説明において「後加工」は、収縮予測工程P2よりも後の加工であり、コーティング工程P3、印刷工程P4、トリム工程P5、熱プレス工程P6を含む。
[押出成形工程P1(図2)]
 図2に示すように、押出成形工程P1は、押出成形工程管理装置10(例えばパーソナルコンピュータ)、押出成形装置11等にて実施される。押出成形工程管理装置10は、全体管理装置2からの指示(あるいは作業者等からの入力指示)に基づいて、押出成形装置11を動作させる。押出成形装置11は、ポリカーボネイト等の樹脂材料13が投入され、樹脂材料13を所定温度となるまで加熱して溶融させる。溶融状態とされた樹脂材料13は、所定圧力にて樹脂シート吐出口11Aから吐出され、一定幅、一定厚さの帯状の押出樹脂シートWとされる。樹脂シート吐出口11Aから吐出された帯状の押出樹脂シートWは、押出成形ローラ12A、12Bによって一定厚さとされて一定速度で搬送されていく。
 目印用搬送ローラRmは、1回転するごとに、押出樹脂シートの縁部に小さな目印Mkを刻印する。目印Mkは、後述する仮想分割工程における個別領域の境界として利用される。ただし、目印Mkを設けなくても個別領域の境界を設定できれば、目印Mkの刻印を省略してもよい。
 押出成形ローラ12A(または押出成形ローラ12B)には、押出成形ローラ12Aの回転に応じた検出信号を出力する回転検出手段14(例えば回転センサ)が設けられている。押出成形工程管理装置10は、回転検出手段14からの検出信号に基づいて、押出成形ローラ12Aの回転速度(回転数)を検出することができる。
 押出成形装置11には、押出成形ローラ12Aの温度に応じた検出信号を出力するローラ温度検出手段15(例えば非接触式の温度センサ)が設けられている。また押出成形装置11には、押出樹脂シートWの温度に応じた検出信号を出力する押出樹脂シート温度検出手段16(例えば非接触式の温度センサ)が設けられている。押出成形工程管理装置10は、ローラ温度検出手段15からの検出信号に基づいて押出成形ローラ12Aのローラ面の温度を検出可能である。押出成形工程管理装置10は、押出樹脂シート温度検出手段16からの検出信号に基づいて、その位置における押出樹脂シートWの温度を検出可能である。なお、押出成形ローラ12Aの回転速度、押出成形ローラ12Aの温度、押出樹脂シートWの温度は、後述する輪郭算出工程P2Cにて使用される。
 押出成形工程管理装置10は、押出樹脂シートWの先端からの位置(後述する個別領域W1、W2・・に相当)に対応させてローラ回転数、ローラ温度、樹脂シート温度を計測し、通信回線Tを介して収縮予測工程管理装置20に送信する。例えば押出成形ローラ12A、12Bの直径は約500~600[mm]程度であり、1回転するごとに押出樹脂シートWの板厚等が微妙にばらつく。
[収縮予測工程P2(仮想分割工程P2A、収縮率関連情報取得工程P2B、輪郭算出工程P2C、輪郭記憶工程P2D)(図3~図7)]
 次に図3~図7を用いて、収縮予測工程P2(仮想分割工程P2A、収縮率関連情報取得工程P2B、輪郭算出工程P2C、輪郭記憶工程P2D)について説明する。当該収縮予測工程P2にて、図1に示すように押出樹脂シートWから樹脂シートWz(完成品)を製造した際、どのように収縮するかを予測する。上述したとおり、押出樹脂シートWは、同一ロットの帯状の連続したシートであっても、位置によって収縮率が異なるので、樹脂シートWz(完成品)に対応する広い領域の全体の収縮状態を予測することは困難である。したがって、樹脂シートWz(完成品)に対応する領域を小さな分割領域に分割して認識する。そして、領域ごとかつ分割領域ごとに収縮状態を予測する。小さな領域であれば、収縮状態を予測することが充分可能である。そして個別領域ごとかつ分割領域ごとに予測した収縮状態を総合して、個別領域ごとに、樹脂シートWz(完成品)に対応する領域全体の収縮状態を予測する。収縮予測工程P2は、収縮予測工程管理装置20によって、中間加工(この場合、コーティング、印刷、トリム)および熱プレス(つまり、後加工)が実施される前に実施される。
 収縮予測工程P2は、仮想分割工程P2A、収縮率関連情報取得工程P2B、輪郭算出工程P2C、輪郭記憶工程P2D等を有している。以下、これらの詳細を説明する。
[仮想分割工程P2A(図3、図4)]
 図3に示すように、仮想分割工程P2Aは、中間加工および熱プレス加工(つまり、後加工)を施す前に、収縮予測工程管理装置20(例えばパーソナルコンピュータ)、領域撮像装置21(例えばカメラ)等にて実施される。一定速度で搬送されている押出樹脂シートWの縁部には、上述したように、目印用搬送ローラRmにて一定間隔で目印Mkが刻印されている。収縮予測工程管理装置20は、全体管理装置2からの指示(あるいは作業者等からの入力指示)に基づいて、領域撮像装置21を用いて、帯状に連続した押出樹脂シートWを個別領域W1、W2、W3・・へと仮想的に分割する。個別領域W1、W2、W3等は、押出樹脂シートWから切り出される樹脂シートWz(完成品)(図1参照)に対応する。具体的には、個別領域W1、W2、W3等は、樹脂シートWz(完成品)よりもやや広い。図3及び図4に示す例では、一点鎖線で示す位置(目印Mkの位置)にて、個別領域W1、W2、W3・・へと仮想的に分割している。
 そして収縮予測工程管理装置20は、それぞれの個別領域W1、W2・・を、図3及び図4中に点線にて示すように、さらに複数の分割領域へと仮想的に分割する。図3及び図4に示す例では、例えば個別領域W1は、W1(A、1)、W1(A、2)・・W1(D、4)の16個の分割領域に分割した例を示している。分割領域の縦×横のサイズは、例えば数10[mm]×数10[mm]程度である。なお、収縮予測工程管理装置20は、個別領域、分割領域ともに仮想的に分割しているので、押出樹脂シートWに実際に線等を付けている訳ではない。
[収縮率関連情報取得工程P2B(図3~図5)]
 図3に示すように、収縮率関連情報取得工程P2Bは、中間加工および熱プレス加工(つまり、後加工)を施す前に、収縮予測工程管理装置20、収縮率関連情報計測装置25A、25B、26A、26B等にて実施される。収縮率関連情報計測装置25A、25B、26A、26Bは、例えば、板厚分布を計測する板厚分布計測装置、温度分布を計測する温度分布計測装置、屈折率分布を計測する屈折率分布計測装置等である。収縮予測工程管理装置20は、収縮率関連情報計測装置を用いて、仮想的に分割したそれぞれの分割領域の収縮率に関連する収縮率関連情報を、個別領域ごとかつ分割領域ごとに取得し、記憶装置に記憶する。
 例えば図5に示すように、収縮予測工程管理装置20は、個別領域W1、W2・・ごとの収縮率関連情報を記憶している。図5の例では、個別領域W1の収縮率関連情報には、ローラ温度TRw1、ローラ回転数RRw1、シート温度TSw1(以上は、押出成形工程P1の押出成形工程管理装置10から通信回線Tを介して受信した情報)が記憶されている。収縮予測工程管理装置20は、押出成形工程管理装置10から、個別領域に対応するローラ温度、ローラ回転数、シート温度等を受信して、個別領域に対応させて記憶する。また図5に示す個別領域W1の収縮率関連情報には、(分割)領域(A、1)、(A、2)・・(D、4)ごとの板厚分布、温度分布、屈折率分布等が記憶されている。
[輪郭算出工程P2C、輪郭記憶工程P2D(図3~図7)]
 図3に示すように、輪郭算出工程P2C、輪郭記憶工程P2Dは、中間加工および熱プレス加工(つまり、後加工)を施す前に、収縮予測工程管理装置20にて実施される。輪郭算出工程P2Cでは、収縮予測工程管理装置20が、熱プレス工程管理装置60から、収縮に関連する後加工(この場合、熱プレス)の加工条件情報である熱プレス加工条件情報を受信して記憶する。図6は、熱プレス加工条件情報の例を示している。図6の例は、個別領域W1を熱プレスする際に予定されている加工条件が、個別領域ごとかつ分割領域ごとに設定されている例を示している。熱プレス加工条件情報には、個別領域W1の(分割)領域(A、1)、(A、2)・・(D、4)のそれぞれに対応させて、加熱の際の加熱分布(加熱温度分布、温度印加量)、プレスの際の圧力分布(圧力印加量)、が設定されている。
 次に収縮予測工程管理装置20は、中間加工および熱プレス加工(つまり、後加工)の完了後の樹脂シートWz(完成品)に対応する輪郭である目標輪郭Lt(図3、図4参照)を、個別領域W1、W2・・ごとに、仮想的に設定する。図3及び図4の例は、収縮予測工程管理装置20が、輪郭算出工程P2Cにて、個別領域W1に対して、目標輪郭Ltを仮想的に設定した例を示している。
 次に収縮予測工程管理装置20は、個別領域ごとかつ分割領域ごとの収縮率関連情報(図5参照)及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報(図6参照)に基づいて、目標輪郭Ltへと収縮する前の輪郭である収縮前輪郭Lsを、個別領域ごとに算出して(予測して)仮想的に設定する。図3及び図4の例は、収縮予測工程管理装置20が、輪郭算出工程P2Cにて、個別領域W1に対して、目標輪郭Ltに対応する収縮前輪郭Lsを算出して仮想的に設定した例を示している。
 また収縮予測工程管理装置20は、輪郭記憶工程P2Dにて、仮想的に設定した目標輪郭Lt、仮想的に設定した収縮前輪郭Ls、に関する情報を、図7に示す輪郭情報として、個別領域W1、W2・・に対応させて記憶装置に記憶する(この例では、輪郭を複数の位置座標(a、b)に分解して記憶している)。
[コーティング工程P3(補正量取得工程P3A、曲率関連情報取得工程P3B、領域毎コーティング条件設定工程P3C、コーティング実施工程P3D、コーティング硬化工程P3E)(図8~図11)]
 図8に示すように、コーティング工程P3は、コーティング工程管理装置30(例えばパーソナルコンピュータ)、コーティング装置31、硬化装置33等にて実施される。コーティング工程管理装置30は、全体管理装置2からの指示(あるいは作業者等からの入力指示)に基づいて、コーティング装置31、硬化装置33を動作させる。コーティング装置31は、例えばインクジェット方式にてコーティング剤を噴射して、押出樹脂シートWの表面(上面、または上面と下面)に、所定の厚さ(例えば10~20[μm]程度)のコーティング層を形成する。硬化装置33は、例えばコーティング剤が紫外線硬化タイプの塗料の場合、紫外線を照射する装置である。
 コーティング工程P3は、補正量取得工程P3A、曲率関連情報取得工程P3B、領域毎コーティング条件設定工程P3C、コーティング実施工程P3D、コーティング硬化工程P3E等を有している。以下、これらの詳細を説明する。なお、コーティング工程P3は中間加工工程の1つである(後加工工程の1つでもある)。当該コーティング工程P3に含まれているコーティング実施工程P3Dは中間加工実施工程の1つである。
[補正量取得工程P3A]
 コーティング工程管理装置30は、コーティング実施工程P3Dの前に、補正量取得工程P3Aにて、個別領域ごとにコーティングを行う際の補正量を求める。具体的には、コーティング工程管理装置30は、個別領域ごとに、当該個別領域に対応する収縮前輪郭の範囲を、コーティングを施す範囲に設定する。この場合、コーティング工程管理装置30は、個別領域W1のコーティング範囲を、個別領域W1に対応付けられている収縮前輪郭Ls(図3、図4参照)の範囲に設定する。
[曲率関連情報取得工程P3B(図10)]
 熱プレス工程P6(図1参照)の終了後の樹脂シートWz(完成品)は、熱プレスにて、それぞれの領域がそれぞれに曲率にて湾曲された湾曲形状とされる。樹脂シートの表面に施すコーティング層は、厚いほうが好ましいが、厚すぎると熱プレスの賦形の際の湾曲率が大きい場合に割れやヒビ等のクラックが発生する場合がある。従って、割れやヒビ等のクラックを発生させることなく、できるだけ厚いコーティングを施すことが所望される。
 コーティング工程管理装置30の記憶装置30Aには、図10に示すコーティング厚さ情報が記憶されている。コーティング厚さ情報には、個別領域ごとに、個別領域の各(分割)領域に対応させて、目標輪郭Lt(図3、図4参照)への収縮時の最大曲率と、当該最大曲率に対応する最大許容コーティング厚さ、とが設定されている。コーティング厚さ情報における(分割)領域ごとの最大許容コーティング厚さは、その(分割)領域の(目標輪郭Ltへの収縮時の)最大曲率と、曲率・最大許容コーティング厚さ特性(図9参照)と、から求められている。
 コーティング工程管理装置30は、熱プレス工程P6を管理する熱プレス工程管理装置60(図1参照)から、通信回線Tを介して最大曲率を取得して、コーティング厚さ情報(図10参照)の「最大曲率」の各領域に記憶する。この場合、最大曲率は、目標輪郭Ltへの収縮時の最大曲率であり、熱プレス工程P6の終了後の曲率に関連する曲率関連情報である。
[領域毎コーティング条件設定工程P3C(図9、図10)]
 第1の実施の形態では、領域毎コーティング条件設定工程P3Cにて、コーティング工程管理装置30は、個別領域ごとかつ分割領域ごとの曲率関連情報に基づいた曲率に応じて、個別領域ごとかつ分割領域ごとに「コーティング厚さ」を設定する。つまり第1の実施の形態における「領域毎コーティング条件」は、「個別領域ごとかつ分割領域ごとのコーティング厚さ」である。
 コーティング工程管理装置30の記憶装置30Aには、樹脂シートの曲率に対応させた最大許容コーティング厚さが設定された曲率・最大許容コーティング厚さ特性(図9参照)が記憶されている。コーティング工程管理装置30は、樹脂シートに対応する個別領域W1に対応付けられた(分割)領域ごとに、当該(分割)領域に対応する最大曲率と、曲率・最大許容コーティング厚さ特性と、に基づいて最大許容コーティング厚さを求める。最大曲率は、曲率関連情報に基づいた最大曲率である。そしてコーティング工程管理装置30は、求めた最大許容コーティング厚さを、コーティング厚さ情報(図10参照)の「最大許容コーティング厚さ」における該当する領域に記憶(設定)する。求めた最大許容コーティング厚さは、最大許容コーティング厚さ以下の厚さである。第1の実施の形態では、曲率が大きな分割領域では、曲率が小さな分割領域よりもコーティングの厚さが薄くなるように設定されている。
 図1に示す熱プレス工程P6において中間樹脂シートWn(中間製造品)が収縮する。この収縮を考慮して、上記のコーティング厚さ情報(図10参照)では、個別領域ごとかつ分割領域ごとに、目標輪郭Ltへ収縮した際の「最大曲率」と、当該最大曲率に対応する「最大許容コーティング厚さ」を設定した。収縮率が例えば1~5[%]程度の中間樹脂シートWn(中間製造品)である場合がある。この場合、熱プレス工程P6による収縮はほぼ無いと仮定する。すなわち中間樹脂シートWn(中間製造品)がほぼ収縮することなく樹脂シートWz(完成品)に賦形されたと仮定する。この場合、目標輪郭Ltでの個別領域ごとかつ分割領域ごとの「最大曲率」と「最大許容コーティング厚さ」をコーティング厚さ情報(図10参照)に記憶(設定)するようにしてもよい。
[コーティング実施工程P3D]
 図8に示すようにコーティング実施工程P3Dにて、コーティング工程管理装置30は、コーティング装置31を制御して、収縮前輪郭Ls(図3、図4参照)の範囲にコーティングを施す。従って、無駄な範囲にまでコーティングを施さないので、コーティング剤の無駄、余分な範囲までコーティングする無駄な時間、等を削減できる。このように、個別領域ごとかつ分割領域ごとの収縮率関連情報及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報に基づいた収縮前輪郭を用いて、それぞれの個別領域ごとに補正したコーティング(中間加工および後加工)を実施する。
 図8のコーティング工程管理装置30は、コーティング厚さ情報(図10参照)に基づいて、(分割)領域ごとに設定されたコーティング厚さにてコーティングを施す(図11参照)。樹脂シートWz(完成品)が球面状や円筒状で、曲率が全体的にほぼ一定の場合がある。この場合は、分割領域ごとにコーティング厚さを設定する必要が無く、個別領域ごとにコーティング厚さを設定すればよい。
[コーティング硬化工程P3E]
 コーティング硬化工程P3Eにて、コーティング工程管理装置30は、硬化装置33を制御する。硬化装置33は、コーティング実施工程P3Dにて各分割領域に施したコーティングが、硬化がほぼ完了した硬化状態である全硬化状態となるように紫外線を照射して硬化させる。
[印刷工程P4(補正量取得工程P4A、印刷実施工程P4B)(図12~図14)]
 図12に示すように、印刷工程P4は、印刷工程管理装置40(例えばパーソナルコンピュータ)、印刷装置41等にて実施される。印刷工程管理装置40は、全体管理装置2からの指示(あるいは作業者等からの入力指示)に基づいて、印刷装置41を動作させる。印刷装置41は、例えばインクジェット方式にて塗料を噴射して、押出樹脂シートWの表面(または表面と裏面)に、印刷層を形成する。
 印刷工程P4は、補正量取得工程P4A、印刷実施工程P4B等を有している。以下、これらの詳細を説明する。なお、印刷工程P4は中間加工工程の1つであり(後加工工程の1つでもある)、当該印刷工程P4に含まれている印刷実施工程P4Bは中間加工実施工程の1つである。
[補正量取得工程P4A]
 印刷工程管理装置40は、印刷実施工程P4Bの前に、補正量取得工程P4Aにて、印刷を行う際の補正量を求める。具体的には、印刷工程管理装置40は、個別領域ごとに印刷するべき範囲と形状と縮尺を、当該個別領域に対応する収縮前輪郭Lsと、目標輪郭Ltと、個別領域ごとかつ分割領域ごとの収縮率関連情報及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報と、に基づいて求め、印刷を行う際の補正量を求める。
 例えば樹脂シートWz(完成品)の印刷領域At(図14中にハッチングで示した領域)が、図14に示すように樹脂シートWz(完成品)の縁部の所定幅である場合がある。この場合、印刷工程管理装置40は、図13中にハッチングで示した印刷領域Asを求める。図13に示すように個別領域W1が目標輪郭Lt、収縮前輪郭Lsである場合がある。この場合、印刷工程管理装置40は、目標輪郭Lt、収縮前輪郭Ls、個別領域ごとかつ分割領域ごとの収縮率関連情報(図5参照)及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報(図6参照)、に基づいて、各分割領域の収縮方向及び収縮量を推定し、個別領域ごとの印刷領域Asを求める。
[印刷実施工程P4B]
 印刷実施工程P4Bにて、印刷工程管理装置40は、印刷装置41を制御して、印刷領域As(図13参照)の範囲に印刷を施す。従って、無駄な範囲にまで印刷を施さないので、塗料の無駄や余分な範囲まで印刷する無駄な時間を削減し、完成時の印刷領域のズレや歪み等を低減できる。このように、個別領域ごとかつ分割領域ごとの収縮率関連情報及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報、収縮前輪郭、目標輪郭に基づいて、それぞれの個別領域ごとに補正した印刷(中間加工および後加工)を実施する。
 なお、印刷工程P4にて、収縮前輪郭Ls内の縁部等に、個別領域W1に対応する識別情報IDを二次元コードやバーコード等にて印刷する。識別情報IDは、本実施の形態の例では「YMD―0001」である。当該識別情報は、収縮予測工程P2にて割り付けられ、コーティング工程P3、印刷工程P4、トリム工程P5、熱プレス工程P6、検査工程P8にて、個別領域を識別するために利用される。例えば、当該識別情報は、中間樹脂シートWn(中間製造品)、樹脂シートWz(完成品)を識別するために利用される。例えば、押出樹脂シートWから中間樹脂シートWn(中間製造品)をトリム工程P5にて切り出すまでは、各管理装置(10、20、30、40、50)は、押出樹脂シートWの先端からの位置に応じて個別領域W1、W2・・等を特定する。また、押出樹脂シートWから中間樹脂シートWn(中間製造品)をトリム工程P5にて切り出した後は、各管理装置(60、80)は、識別情報IDをコード読取装置等にて読み取って、個別領域W1から切り出した中間樹脂シートWn(中間製造品)である、等の特定を行う。
[トリム工程P5(補正量取得工程P5A、トリム実施工程P5B)(図15、図16)]
 図15に示すように、トリム工程P5は、トリム工程管理装置50(例えばパーソナルコンピュータ)、トリム装置51等にて実施される。トリム工程管理装置50は、全体管理装置2からの指示(あるいは作業者等からの入力指示)に基づいて、トリム装置51を動作させる。トリム装置51は、例えばレーザカッタであり、レーザ光Laを照射して、押出樹脂シートWから中間樹脂シートWn(中間製造品)を切り出す(図1、図16参照)。
 トリム工程P5は、補正量取得工程P5A、トリム実施工程P5B等を有している。以下、これらの詳細を説明する。なお、トリム工程P5は中間加工工程の1つであり(後加工工程の1つでもある)、当該トリム工程P5に含まれているトリム実施工程P5Bは中間加工実施工程の1つである。
[補正量取得工程P5A]
 トリム工程管理装置50は、トリム実施工程P5Bの前に、補正量取得工程P5Aにて、個別領域ごとに個別領域から切り出す範囲を、当該個別領域に対応する収縮前輪郭Lsの範囲に設定することで、トリムを行う際の補正量を個別領域ごとに求める。
[トリム実施工程P5B]
 トリム実施工程P5Bにて、トリム工程管理装置50は、トリム装置51を制御して、収縮前輪郭Lsの範囲を、個別領域から切り出す。従って、無駄な領域を残していない(樹脂シートWz(完成品)では、この収縮前輪郭Lsが目標輪郭Ltへと収縮する)。このように、個別領域ごとかつ分割領域ごとの収縮率関連情報及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報に基づいた収縮前輪郭を用いて、それぞれの個別領域ごとに補正したトリム(中間加工および後加工)を実施する。
 トリム工程P5まで終えた場合、帯状の押出樹脂シートWから個々の中間樹脂シートWn(中間製造品)に分離される。そのため、次の工程(熱プレス工程P6、検査工程P8)は、トリム工程P5まで実施した工場で行ってもよいし、遠隔地の工場へ中間樹脂シートWn(中間製造品)を運搬し、当該遠隔地の工場で行ってもよい。遠隔地で熱プレス工程P6、検査工程P8を行う場合、例えば全体管理装置2、熱プレス工程管理装置60、検査工程管理装置80は、インターネットに接続される。
[熱プレス工程P6(図17)]
 図17に示すように、熱プレス工程P6は、熱プレス工程管理装置60(例えばパーソナルコンピュータ)、加熱装置61、プレス装置63等にて実施される。熱プレス工程管理装置60は、全体管理装置2からの指示(あるいは作業者等からの入力指示)に基づいて、加熱装置61とプレス装置63を動作させる。
 熱プレス工程P6は、加熱実施工程P6B、加熱実施工程P6Bに対応する補正量取得工程P6A、プレス実施工程P6D、プレス実施工程P6Dに対応する補正量取得工程P6C等を有している。以下、これらの詳細を説明する。なお、熱プレス工程P6は後加工工程の1つである。
[補正量取得工程P6A(加熱実施工程P6Bに対応)]
 熱プレス工程管理装置60の記憶装置60Aには、図6に示す「熱プレス加工条件情報」が記憶されている。熱プレス工程管理装置60は、加熱実施工程P6Bの前に、補正量取得工程P6Aにて、熱プレス加工条件情報の「温度分布」の領域ごとの補正量を求める。具体的には、熱プレス工程管理装置60は、個別領域ごとに、当該個別領域に対応する収縮前輪郭Ls(図4参照)と目標輪郭Lt(図4参照)と、個別領域ごとかつ分割領域ごとの収縮率関連情報(図5参照)及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報(図6参照)とに基づいて、熱プレス加工条件情報の「温度分布」の領域ごとの補正量を求める。
[加熱実施工程P6B]
 加熱実施工程P6Bは、熱プレス工程管理装置60と加熱装置61等にて実施される。加熱装置61は、例えば保温槽であり、コンベア等の搬送装置61Aと、搬送装置61Aに載置された加熱テーブル62等を有している。加熱テーブル62は、仮想分割工程P2Aにて仮想的に分割された(分割)領域(A、1)、(A、2)・・(D、4)(図4参照)と同様に分割されている。加熱テーブル62は、分割された領域ごとに異なる温度(異なる温度分布)にて、自身に載置された中間樹脂シートWn(中間製造品)のそれぞれの分割領域を、それぞれの温度で加熱することができる。
 熱プレス工程管理装置60は、図6に示す熱プレス加工条件情報に記憶されている(分割)領域ごとの温度分布と、上述した補正量取得工程P6Aでの補正量とに基づいて、加熱テーブル62の(分割)領域のそれぞれの温度を必要に応じて調整する。このように、個別領域ごとかつ分割領域ごとの収縮率関連情報及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報に基づいて、それぞれの個別領域ごとに必要に応じて補正した加熱(後加工)を実施する。
[補正量取得工程P6C(プレス実施工程P6Dに対応)]
 熱プレス工程管理装置60の記憶装置60Aには、図6に示す「熱プレス加工条件情報」が記憶されている。熱プレス工程管理装置60は、プレス実施工程P6Dの前に、補正量取得工程P6Cにて、熱プレス加工条件情報の「圧力分布」の領域ごとの補正量を求める。具体的には、熱プレス工程管理装置60は、個別領域ごとに、当該個別領域に対応する収縮前輪郭Ls(図4参照)と目標輪郭Lt(図4参照)と、分割領域ごとの収縮率関連情報(図5参照)及び熱プレス加工条件情報(図6参照)とに基づいて、熱プレス加工条件情報の「圧力分布」の領域ごとの補正量を求める。
[プレス実施工程P6D]
 プレス実施工程P6Dは、熱プレス工程管理装置60とプレス装置63等にて実施される。プレス装置63は、上型63A、下型63Bを有している。上型63A、下型63Bのプレス面は、仮想分割工程P2Aにて仮想的に分割された(分割)領域(A、1)、(A、2)・・(D、4)(図4参照)と同様に分割されている。プレス面は、分割された領域ごとに異なる圧力(異なる圧力分布)にて、セットされた中間樹脂シートWn(中間製造品)のそれぞれの分割領域を、それぞれの圧力でプレスして賦形することができる。
 熱プレス工程管理装置60は、図6に示す熱プレス加工条件情報に記憶されている(分割)領域ごとの圧力分布と、上述した補正量取得工程P6Cでの補正量とに基づいて、プレス装置63の(分割)領域のそれぞれの圧力を必要に応じて調整する。このように、個別領域ごとかつ分割領域ごとの収縮率関連情報及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報に基づいて、それぞれの個別領域ごとに必要に応じて補正したプレス(後加工)を実施する。
 なお、上記の説明では、加熱実施工程P6Bにて、それぞれの分割領域を、それぞれの温度(温度分布)で加熱し、プレス実施工程P6Dにて、それぞれの分割領域を、それぞれの圧力(圧力分布)でプレスする例を説明したが、少なくとも一方を行うことができればよい。そして加熱実施工程P6B、プレス実施工程P6Dを実施することで、樹脂シートWz(完成品)を得ることができる。
[検査工程P8(図17、図18)]
 樹脂シートWz(完成品)は、検査工程P8にて寸法、形状等が検査され、検査結果は輪郭算出工程P2Cなどにフィードバックされる。図17に示すように、検査工程P8は、検査工程管理装置80(例えばパーソナルコンピュータ)、検査装置81等にて実施される。検査工程管理装置80は、全体管理装置2からの指示(あるいは作業者等からの入力指示)に基づいて、検査装置81を動作させる。
 検査装置81は、例えば所定間隔で配置された2台の撮像装置81A、81Bにて構成された3次元データ取得装置である。検査工程管理装置80は、2台の撮像装置81A、81Bを用いて、樹脂シートWz(完成品)を種々の方向から撮像し、樹脂シートWz(完成品)の3次元形状を計測する。そして検査工程管理装置80は、図18の最終品検査情報の例に示すように、個別領域(W1、W2・・)ごとに、分割領域ごとの輪郭誤差(寸法の誤差)、曲率誤差(形状の誤差)等を求めて記憶する。
 そして例えば検査工程管理装置80は、最終品検査情報(図18参照)を、通信回線Tを介して収縮予測工程管理装置20(図1参照)、熱プレス工程管理装置60に送信する。最終品検査情報を受信した収縮予測工程管理装置20は、最終品検査情報に基づいて、最終品検査情報の誤差が低減するように、輪郭算出工程P2Cにて収縮前輪郭Lsを求める際の補正量等を修正する。
 また最終品検査情報に基づいて、加熱装置61やプレス装置63の機差(個体差)を補正する補正量を求め、熱プレス工程管理装置60からの加熱装置61やプレス装置63の制御量を補正するようにしてもよい。これにより、個体差を有するそれぞれの加熱装置やプレス装置の熱プレス加工条件を、代表的な条件(この場合、熱プレス加工条件情報)に一致させることができるので、熱プレス加工条件情報(図6参照)での加工(熱プレス加工)をより正確に実現し、各中間加工および熱プレス加工(つまり、各後加工)での補正を、より正確に行うことができる。
 また、収縮率関連情報、トリム形状(収縮前輪郭Ls)、補正前の熱プレス加工条件情報等に基づいて、熱プレス後の輪郭である熱プレス後輪郭を推定し、推定した熱プレス後輪郭と目標輪郭Ltとの差異に応じて熱プレス加工条件情報を補正するようにしてもよい。
[収縮前輪郭Lsを算出する別の方法など]
 以上の説明の例では、収縮予測工程P2にて、目標輪郭Ltに対応する収縮前輪郭Lsを算出する際、収縮率関連情報(図5参照)と、熱プレス加工条件情報(図6参照)に基づいて収縮前輪郭Lsを個別領域ごとに算出(予測)している。そして、下記の中間加工条件情報を補正することを前提とし、熱プレス加工条件情報を必要に応じて補正する。この例に代えて、以下の[その他の例1]~[その他の例3]に示すように、熱プレス加工条件情報を補正することを前提とし、下記の中間加工条件情報を必要に応じて補正するようにしてもよい。
[その他の例1]
 その他の例1では、収縮予測工程管理装置20は、以下の(1-1)~(1-3)の手順にて、熱プレス加工条件情報の少なくとも一部を補正して、最終的な収縮前輪郭Lsを算出する。
(1-1)収縮予測工程管理装置20は、収縮率関連情報と(補正前の)熱プレス加工条件情報とに基づいて、(仮)収縮前輪郭を推定する。収縮率関連情報は、個別領域ごとかつ分割領域ごとに設定されており(図5参照)、熱プレス加工条件情報は、個別領域ごとかつ分割領域ごとに設定されている(図6参照)。
(1-2)収縮予測工程管理装置20は、推定した(仮)収縮前輪郭が個別領域内に収まらない場合、収縮量が低減されて(仮)収縮前輪郭が個別領域内に収まるように、熱プレス加工条件情報の少なくとも一部を補正する。熱プレス加工条件情報の少なくとも一部を補正する際には、まず、個別領域ごとかつ分割領域ごとの熱プレス加工条件情報と、個別領域ごとかつ分割領域ごとの中間加工条件情報と、に基づいて、熱プレス加工条件情報を補正した補正熱プレス加工条件情報を求め、求めた補正熱プレス加工条件情報を、熱プレス加工条件情報として更新(上書き)する。なお、中間加工条件情報には、中間加工(この場合、コーティング、印刷、トリム)を行う際の種々の加工条件が、個別領域ごとかつ分割領域ごとに設定されている。
(1-3)収縮予測工程管理装置20は、個別領域ごとかつ分割領域ごとの収縮率関連情報と、個別領域ごとかつ分割領域ごとの(補正して更新(上書き)した)熱プレス加工条件情報(補正熱プレス加工条件情報に相当)とに基づいて、最終的な収縮前輪郭Lsを算出する。
 以降の中間加工および熱プレス加工(つまり、後加工)では、熱プレス加工条件情報を使用する際、補正して更新(上書き)した熱プレス加工条件情報を使用する。
[その他の例2]
 その他の例2では、収縮予測工程管理装置20は、上記の「その他の例1」で(仮)収縮前輪郭が個別領域内に収まっている場合であっても、以下の(2-1)~(2-3)の手順にて、収縮量が低減するように(あるいは収縮による歪が低減するように)熱プレス加工条件情報の少なくとも一部を補正して、最終的な収縮前輪郭Lsを算出する。
(2-1)収縮予測工程管理装置20は、収縮率関連情報と(補正前の)熱プレス加工条件情報とに基づいて、(仮)収縮前輪郭を推定する。収縮率関連情報は、個別領域ごとかつ分割領域ごとに設定されており(図5参照)、熱プレス加工条件情報は、個別領域ごとかつ分割領域ごとに設定されている(図6参照)。
(2-2)収縮予測工程管理装置20は、推定した(仮)収縮前輪郭が個別領域内に収まる/収まらないにかかわらず、収縮量が低減されるように(あるいは収縮による歪が低減されるように)熱プレス加工条件情報の少なくとも一部を補正する。熱プレス加工条件情報の少なくとも一部を補正する際には、上記の(1-2)の記載と同様の処理にて、熱プレス加工条件情報を補正した補正熱プレス加工条件情報を求め、求めた補正熱プレス加工条件情報を、熱プレス加工条件情報として更新(上書き)する。なお、中間加工条件情報には、中間加工(この場合、コーティング、印刷、トリム)を行う際の種々の加工条件が、個別領域ごとかつ分割領域ごとに設定されている。
(2-3)収縮予測工程管理装置20は、個別領域ごとかつ分割領域ごとの収縮率関連情報と、個別領域ごとかつ分割領域ごとの(補正して更新(上書き)した)熱プレス加工条件情報とに基づいて、最終的な収縮前輪郭Lsを算出する。
 以降の中間加工および熱プレス加工(つまり、後加工)では、熱プレス加工条件情報を使用する際、更新(上書き)した熱プレス加工条件情報を使用する。
[その他の例3]
 その他の例3では、収縮予測工程管理装置20は、例えば、収縮前輪郭が予め設定された設定収縮前輪郭(目標輪郭Ltよりも少しだけ大きなサイズとして予め設定された輪郭)となるように、「その他の例2」に説明した手順にて、収縮量と歪を低減(調整)するように熱プレス加工条件情報の少なくとも一部を補正する。そして、個別領域ごとかつ分割領域ごとに少なくとも一部を補正した熱プレス加工条件情報を用いて熱プレス加工を行う。また、熱プレス加工以外の後加工である中間加工(この場合、コーティング、印刷、トリム)では、特に個別に補正した加工を行わず、設定収縮前輪郭に応じた一律の加工を行う。
[第2の実施の形態(図19~図21)]
 次に図19~図21を用いて、第2の実施の形態の樹脂シートの製造工程について説明する。図19は、第2の実施の形態の樹脂シートの製造工程の全体の概略を示している。図19に示す第2の実施の形態の樹脂シートの製造工程は、図1に示す第1の実施の形態の樹脂シートの製造工程に対して、コーティング工程P3におけるコーティング硬化工程P3E(コーティングを全硬化状態にする工程)が、コーティングを半硬化状態にするコーティング半硬化工程P3Fに変更されている。また熱プレス工程P6と検査工程P8の間に、コーティングを全硬化状態にするコーティング全硬化工程P7が追加されている。また、これらに伴って、コーティング工程P3における領域毎コーティング条件設定工程P3Cでの設定内容が異なっている。図19に示す製造工程では、工程管理システム1は、全体管理装置2、各工程の管理装置(10、20、30、40、50、60、70、80)にて構成されている。以下、これらの第1の実施の形態との相違点を主に説明し、第1の実施の形態と同様な点については説明を省略する。なお、「全硬化状態」とは、コーティングがほぼ完全に硬化した状態を指し、「半硬化状態」とは、全硬化状態へと至る途中の硬化状態を指す。
[領域毎コーティング条件設定工程P3C(図20、図21)]
 第2の実施の形態では、領域毎コーティング条件設定工程P3Cにて、コーティング工程管理装置30は、それぞれの個別領域ごとかつ分割領域ごとの曲率関連情報に基づいた曲率に応じて、個別領域ごとかつ分割領域ごとに「コーティングの半硬化状態の硬化度合い」を設定する。つまり第2の実施の形態における「領域毎コーティング条件」は、「個別領域ごとかつ分割領域ごとのコーティングの硬化度合い」である。
 コーティング工程管理装置30の記憶装置30Aには、樹脂シートの曲率に対応させた目標硬化度合いが設定された曲率・目標硬化度合い特性(図20参照)が記憶されている。コーティング工程管理装置30は、樹脂シートに対応する個別領域W1に対応付けられたそれぞれの(分割)領域ごとに、当該(分割)領域に対応する最大曲率(曲率関連情報に基づいた最大曲率)と、曲率・目標硬化度合い特性と、に基づいて目標硬化度合いを求める。そしてコーティング工程管理装置30は、求めた目標硬化度合いを、硬化度合い情報(図21参照)の「目標硬化度合い」における該当する領域に記憶(設定)する。第2の実施の形態では、曲率が大きな分割領域では、曲率が小さな分割領域よりも半硬化状態の硬化度合いが低くなるように設定されている。
 上記の硬化度合い情報(図21参照)では、熱プレス工程P6による中間樹脂シートWn(中間製造品)の収縮を考慮して、個別領域ごとかつ分割領域ごとに、目標輪郭Ltへ収縮した際の「最大曲率」と、当該最大曲率に対応する「目標硬化度合い」を設定した。しかし、収縮率が例えば1~5[%]程度の中間樹脂シートWn(中間製造品)である場合、熱プレス工程P6による収縮はほぼ無いと仮定して(中間樹脂シートWn(中間製造品)がほぼ収縮することなく樹脂シートWz(完成品)に賦形されたと仮定して)、目標輪郭Ltでの個別領域ごとかつ分割領域ごとの「最大曲率」と「目標硬化度合い」を硬化度合い情報(図21参照)に記憶(設定)するようにしてもよい。また、個別領域ごとかつ分割領域ごとに異なる目標硬化度合いを設定する代わりに、個別領域ごとかつ分割領域ごとに求めた目標硬化度合いの中で最も低い目標硬化度合いを、個別領域内の全ての分割領域に適用するようにしてもよい。
[コーティング実施工程P3D]
 コーティング実施工程P3Dにて、コーティング工程管理装置30は、コーティング装置31を制御して、収縮前輪郭Ls(図3、図4参照)の範囲にコーティングを施す。このように、個別領域ごとかつ分割領域ごとの収縮率関連情報及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報に基づいた収縮前輪郭を用いて、それぞれの個別領域ごとに補正したコーティング(中間加工および後加工)を実施する。
 また、コーティングを実施する際、コーティング工程管理装置30は、予め設定されたコーティング厚さとなるように、各分割領域にコーティングを施す。
[コーティング半硬化工程P3F]
 コーティング半硬化工程P3Fにて、コーティング工程管理装置30は、硬化度合い情報に基づいて、個別領域ごとかつ分割領域ごとに異なる硬化度合いとなるように、硬化装置33を制御する。例えば硬化装置33が紫外線を照射する装置である場合がある。この場合、分割領域に対応する遮蔽板等を用いて、コーティング工程管理装置30は、個別領域ごとかつ分割領域ごとに、目標硬化度合いに応じた時間や、目標硬化度合いに応じた照射強度にて、硬化装置33を制御する。
 なお、図20の曲率・目標硬化度合い特性に示すように、曲率が大きな分割領域では、曲率が小さな分割領域よりも半硬化状態の硬化度合いが低くなるように設定されている。つまり、熱プレス加工の際、曲率が大きい分割領域のコーティングは、低い硬化度合いとされて弾性力が増しているので、割れやヒビ等のクラックの発生が抑制される。
[コーティング全硬化工程P7(図19)]
 図19に示すように、コーティング全硬化工程P7は、コーティング全硬化工程管理装置70(例えばパーソナルコンピュータ)、硬化装置73等にて実施される。コーティング全硬化工程管理装置70は、通信回線Tに接続されており、全体管理装置2からの指示(あるいは作業者等からの入力指示)に基づいて、硬化装置73を動作させる。硬化装置73は、例えばコーティング剤が紫外線硬化タイプの塗料の場合、紫外線を照射する装置である。またコーティング全硬化工程P7は、熱プレス工程P6の後、かつ、検査工程P8の前、にて実施される。
 熱プレス工程P6が完了した中間樹脂シートWn(中間製造品)は、コーティングが半硬化状態とされたままである。コーティング全硬化工程P7にて、コーティング全硬化工程管理装置70は、硬化装置73を制御して、半硬化状態のコーティングを全硬化状態へと硬化する。
[第3の実施の形態(図19、図22、図23)]
 次に図19、図22、図23を用いて、第3の実施の形態の樹脂シートの製造工程について説明する。なお、第3の実施の形態の樹脂シートの製造工程の全体は、図19に示す第2の実施の形態と同じであるが、以下の点が第2の実施の形態とは異なる。第3の実施の形態の樹脂シートの製造工程は、第2の実施の形態の樹脂シートの製造工程に対して、コーティング工程P3において、領域毎コーティング条件設定工程P3Cでの設定内容、コーティング実施工程P3Dの実施内容、コーティング半硬化工程P3Fの実施内容が異なる。これらの第2の実施の形態からの相違点を主に説明し、第2の実施の形態と同様な点については説明を省略する。なお、「全硬化状態」とは、コーティングがほぼ完全に硬化した状態を指し、「半硬化状態」とは、全硬化状態へと至る途中の硬化状態を指すことは、第2の実施の形態と同じである。
[領域毎コーティング条件設定工程P3C(図20、図21)]
 第3の実施の形態では、領域毎コーティング条件設定工程P3Cにて、コーティング工程管理装置30は、それぞれの個別領域ごとかつ分割領域ごとの曲率関連情報に基づいた曲率に応じて、個別領域ごとかつ分割領域ごとに「コーティングの厚さ」を設定する。つまり第3の実施の形態における「領域毎コーティング条件」は、「個別領域ごとかつ分割領域ごとのコーティングの厚さ」である。
 なお、第1の実施の形態も「領域毎コーティング条件」は、「個別領域ごとかつ分割領域ごとのコーティングの厚さ」であるが、以下の点で第1の実施の形態とは異なる。第3の実施の形態では、コーティングを半硬化状態にして熱プレス加工を行う。一方、第1の実施の形態では、コーティングを全硬化状態にして熱プレス加工を行う。第1の実施の形態では、全硬化状態のコーティングが曲率の大きな個所でクラックを発生させないように、曲率が大きな分割領域では曲率が小さな分割領域よりもコーティング厚さを薄くした。これに対して第3の実施の形態では、半硬化状態で弾性力を有するコーティングは熱プレス加工でクラックを発生させない。このため、曲率が大きい分割領域では、大きな曲率でコーティングが延ばされて薄くなることを見越して、予め厚くコーティングしておく。
 コーティング工程管理装置30の記憶装置30Aには、樹脂シートの曲率に対応させた目標コーティング厚さが設定された曲率・目標コーティング厚さ特性(図22参照)が記憶されている。コーティング工程管理装置30は、樹脂シートに対応する個別領域W1に対応付けられたそれぞれの(分割)領域ごとに、当該(分割)領域に対応する最大曲率(曲率関連情報に基づいた最大曲率)と、曲率・目標コーティング厚さ特性と、に基づいて目標コーティング厚さを求める。そしてコーティング工程管理装置30は、求めた目標コーティング厚さを、コーティング厚さ情報(図23参照)の「目標コーティング厚さ」における該当する領域に記憶(設定)する。第3の実施の形態では、曲率が大きな分割領域では、曲率が小さな分割領域よりもコーティングの厚さが厚くなるように設定されている。
 熱プレス工程P6では、中間樹脂シートWn(中間製造品)が収縮する。この収縮を考慮して、上記のコーティング厚さ情報(図23参照)では、個別領域ごとかつ分割領域ごとに、目標輪郭Ltへ収縮した際の「最大曲率」と、当該最大曲率に対応する「目標コーティング厚さ」を設定した。しかし、収縮率が例えば1~5[%]程度の中間樹脂シートWn(中間製造品)である場合がある。この場合、熱プレス工程P6による収縮はほぼ無いと仮定する。すなわち中間樹脂シートWn(中間製造品)がほぼ収縮することなく樹脂シートWz(完成品)に賦形されたと仮定する。この場合、目標輪郭Ltでの個別領域ごとかつ分割領域ごとの「最大曲率」と「目標コーティング厚さ」をコーティング厚さ情報(図23参照)に記憶(設定)するようにしてもよい。また、個別領域ごとかつ分割領域ごとに異なる目標コーティング厚さを設定する代わりに、個別領域ごとかつ分割領域ごとに求めた目標コーティング厚さの中で最も厚い目標コーティング厚さを、個別領域内の全ての分割領域に適用するようにしてもよい。
[コーティング実施工程P3D]
 コーティング実施工程P3Dにて、コーティング工程管理装置30は、コーティング装置31を制御して、収縮前輪郭Ls(図3、図4参照)の範囲にコーティングを施す。このように、個別領域ごとかつ分割領域ごとの収縮率関連情報及び個別領域ごとかつ分割領域ごとの熱プレス加工条件情報に基づいた収縮前輪郭を用いて、それぞれの個別領域ごとに補正したコーティング(中間加工および後加工)を実施する。
 また、コーティングを実施する際、コーティング工程管理装置30は、コーティング厚さ情報(図23参照)に基づいて、(分割)領域ごとに設定されたコーティング厚さにてコーティングを施す。
[コーティング半硬化工程P3F]
 コーティング半硬化工程P3Fにて、コーティング工程管理装置30は、硬化装置33を制御する。具体的には、コーティング工程管理装置30は、予め設定された半硬化状態の硬化度合いに基づいて、個別領域内のすべての分割領域がほぼ同じ硬化度合いとなるように、硬化装置33を制御する。
 熱プレス加工の際には、弾性力を有する半硬化状態のコーティングは、湾曲されても割れやヒビ等のクラックの発生が抑制される。曲率が大きな分割領域では、湾曲形状に沿ってコーティングが延ばされてコーティングが薄くなるが、コーティング厚さ情報(図23参照)にて予め厚く設定している。これにより、曲率が大きい個所と、それ以外の個所とで、コーティングの厚さをほぼ同じにすることができる。
[コーティング全硬化工程P7(図19)]
 第3の実施の形態のコーティング全硬化工程P7は、第2の実施の形態のコーティング全硬化工程P7と同様である。図19に示すように、コーティング全硬化工程P7は、コーティング全硬化工程管理装置70(例えばパーソナルコンピュータ)、硬化装置73等にて実施される。コーティング全硬化工程管理装置70は、全体管理装置2からの指示(あるいは作業者等からの入力指示)に基づいて、硬化装置73を動作させる。硬化装置73は、例えばコーティング剤が紫外線硬化タイプの塗料の場合、紫外線を照射する装置である。またコーティング全硬化工程P7は、熱プレス工程P6の後、かつ、検査工程P8の前、にて実施される。
 熱プレス工程P6が完了した中間樹脂シートWn(中間製造品)は、コーティングが半硬化状態とされたままである。コーティング全硬化工程P7にて、コーティング全硬化工程管理装置70は、硬化装置73を制御して、半硬化状態のコーティングを全硬化状態へと硬化する。
 以上、第1~第3の実施の形態にて説明した押出樹脂シートの中間加工方法、及び押出樹脂シートに中間加工が施された中間樹脂シートWn(中間製造品)の熱プレス加工方法では、押出樹脂シートを複数の領域(個別領域、分割領域)に仮想的に分割する。そして、領域ごとに異なる収縮率を求め、中間加工および熱プレス加工(つまり、後加工)の補正を、領域ごと(個別領域ごと、分割領域ごと)に適切な補正を行う。これにより、押出樹脂シート(基材に相当)やコーティング剤等の無駄及び印刷ズレの発生をより低減し、より安定した精度の製品を製造することができる。また、樹脂シートWz(完成品)の寸法、形状等の検査結果をフィードバックさせることで、精度をさらに向上させることができる。
 また例えば、図1及び図19に示す押出成形工程P1からトリム工程P5までをA社の工場で実施して中間樹脂シートWn(中間製造品)を作成する。そして、熱プレス工程P6~検査工程P8をB社の工場で実施するようにしてもよい。この場合、全体管理装置2、熱プレス工程管理装置60、(コーティング全硬化工程管理装置70、)検査工程管理装置80はインターネットに接続される。この場合、熱プレス工程P6にて利用する熱プレス加工条件情報(図6参照)を、収縮予測工程管理装置20にて作成して、通信回線T、全体管理装置2及びインターネットを介して熱プレス工程管理装置60に送信するようにしてもよい。また、A社からB社に熱プレス加工条件情報を提供するだけでなく、熱プレス加工条件情報の提供に加えて、A社にて図1に示す熱プレス工程管理装置60、加熱装置61、プレス装置63を用意してB社に提供するようにしてもよい。
 なお、第1~第3の実施の形態にて説明した製造工程では、中間加工の工程である中間加工工程と熱プレス工程を有している。また加工条件の補正(個別領域ごとや分割領域ごとの補正)を行う工程としては、コーティング工程、印刷工程、トリム工程、熱プレス工程、のうちの少なくとも1つでもよい。
 本開示の1つの形態の、押出樹脂シートの中間加工方法及び押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法は、本実施の形態で説明した加工方法等に限定されず、本開示の1つの形態の要旨を変更しない範囲で種々の変更、追加、削除が可能である。なお、本実施の形態にて説明した樹脂シートの厚さは、例えば数[mm]程度であるが、対象とする樹脂シートの厚さは特に限定せず、数10[mm]程度の厚さを有する樹脂パネル状であってもよい。また樹脂シートの材質は、特に限定しない。
 本実施の形態にて説明した収縮率関連情報(図5参照)、熱プレス加工条件情報(図6参照)、輪郭情報(図7参照)、曲率・最大許容コーティング厚さ特性(図9参照)、コーティング厚さ情報(図10参照)、最終品検査情報(図18参照)、硬化度合い情報(図21参照)、コーティング厚さ情報(図23参照)等は、一例を示すものであり、これらの項目、形態等に限定されるものではない。また収縮率関連情報には、個別領域に対応させた、押出成形された押出樹脂シートの温度、押出成形にて使用されるローラの温度、前記ローラの回転数、分割領域ごとの板厚分布、分割領域ごとの温度分布、分割領域ごとの屈折率分布、の少なくとも1つが記憶されていればよい。また熱プレス加工条件情報には、個別領域に対応させた、分割領域ごとの加熱分布と、分割領域ごとの圧力分布と、の少なくとも1つが記憶されていればよい。
 本実施の形態では、コーティング装置の例としてインクジェット方式の例を説明し、印刷装置の例としてインクジェット方式の例を説明し、トリム装置の例としてレーザカッタの例を説明したが、これらに限定されるものではない。またコーティング剤、印刷の塗料等についても特に限定しない。
 また、以上(≧)、以下(≦)、より大きい(>)、未満(<)等は、等号を含んでも含まなくてもよい。また、本実施の形態の説明に用いた数値は一例であり、この数値に限定されるものではない。
 上記管理装置(10、20、30、40、50、60、80)は、少なくとも1つのプロブラムされた電子プロセッサを有する。管理装置は、少なくとも1つの本願に記載する管理装置の機能を実現するために電子プロセッサによって実行される命令またはソフトウェアを格納するメモリを含む。例えば、実施形態によっては、管理装置はメモリを別個に備えたマイクロプロセッサとして実装してもよい。
 上記記憶装置は、揮発性や不揮発性のメモリを含むことができる。適切な記憶装置の例には、RAM(ランダムアクセスメモリ)、フラッシュメモリ、ROM(読み取り専用メモリ)、PROM(プログラム可能な読み取り専用メモリ)、EPROM(消去可能なプログラム可能な読み取り専用メモリ)、EEPROM(電気的に消去可能なプログラム可能な読み取り専用メモリ))、レジスタ、磁気ディスク、光ディスク、ハードドライブ、その他適切なストレージメディア、あるいはこれらの組み合わせがある。
 ソフトウェアは、例えば、ファームウェア、1つまたは複数のアプリケーション、プログラムデータ、フィルタ、ルール、1つまたは複数のプログラムモジュール、および他の実行可能な命令を含む。

Claims (5)

  1.  加熱されて押出成形された帯状の押出樹脂シートから、熱プレス加工に用いる樹脂シートである中間樹脂シートを製造するための、押出樹脂シートの中間加工方法であって、
     前記押出成形の後の加工であって前記熱プレス加工の前までの加工である中間加工には、前記熱プレス加工を含む熱プレス工程よりも前に、コーティング装置を用いて、前記押出樹脂シートの表面にコーティングを施すコーティング実施工程が含まれており、
     前記熱プレス工程の終了後の前記樹脂シートは、それぞれの領域がそれぞれの曲率にて湾曲されており、
     コンピュータを備えた工程管理システムを用い、前記工程管理システムは、前記押出成形された帯状の前記押出樹脂シートを複数の前記樹脂シートに対応する複数の個別領域へと仮想的に分割し、仮想的に分割したそれぞれの前記個別領域をさらに複数の分割領域へと仮想的に分割し、前記熱プレス工程の終了後の曲率に関連する曲率関連情報を、前記個別領域ごとかつ前記分割領域ごとに取得しており、
     前記コーティング実施工程よりも前に、前記工程管理システムを用いて、それぞれの前記個別領域ごとかつ前記分割領域ごとの前記曲率関連情報に基づいた曲率に応じて、それぞれの前記個別領域ごとかつ前記分割領域ごとにコーティング条件を設定する、領域毎コーティング条件設定工程と、
     前記コーティング装置を用いて、前記個別領域ごとかつ前記分割領域ごとに設定した前記コーティング条件に基づいてそれぞれの前記個別領域の前記分割領域のコーティングを行う、前記コーティング実施工程と、
    を有する、
     押出樹脂シートの中間加工方法。
  2.  請求項1に記載の押出樹脂シートの中間加工方法であって、
     前記コーティング実施工程にて施された前記コーティングが、前記熱プレス工程よりも前に、硬化が完了した全硬化状態とされる場合、
     前記領域毎コーティング条件設定工程にて、前記工程管理システムを用いて、それぞれの前記個別領域ごとかつ前記分割領域ごとの前記曲率関連情報に基づいた曲率に応じて、前記個別領域ごとかつ前記分割領域ごとに前記コーティングの厚さを設定し、曲率が大きな前記分割領域では、曲率が小さな前記分割領域よりも前記コーティングの厚さが薄くなるように設定する、
     押出樹脂シートの中間加工方法。
  3.  請求項2に記載の押出樹脂シートの中間加工方法であって、
     前記工程管理システムは記憶装置を有しており、
     前記記憶装置には、前記樹脂シートの曲率に対応させた最大許容コーティング厚さが設定された曲率・最大許容コーティング厚さ特性が記憶されており、
     前記領域毎コーティング条件設定工程にて、前記工程管理システムを用いて、前記樹脂シートに対応付けられたそれぞれの前記分割領域ごとに、当該分割領域に対応する前記曲率関連情報に基づいた最大曲率と、前記曲率・最大許容コーティング厚さ特性とに基づいて最大許容コーティング厚さを求め、求めた最大許容コーティング厚さ以下となるように前記個別領域ごとかつ前記分割領域ごとの前記コーティングの厚さを設定する、
     押出樹脂シートの中間加工方法。
  4.  請求項1に記載の押出樹脂シートの中間加工方法であって、
     前記コーティング実施工程にて施された前記コーティングが、前記熱プレス工程よりも前に、硬化が完了した全硬化状態に至る途中の硬化状態である半硬化状態とされ、前記熱プレス工程よりも後で、前記全硬化状態とされる場合、
     前記領域毎コーティング条件設定工程にて、前記工程管理システムを用いて、それぞれの前記個別領域ごとかつ前記分割領域ごとの前記曲率関連情報に基づいた曲率に応じて、前記個別領域ごとかつ前記分割領域ごとに前記コーティングの前記半硬化状態の硬化度合いを設定し、曲率が大きな前記分割領域では、曲率が小さな前記分割領域よりも前記半硬化状態の硬化度合いが低くなるように設定する、
     押出樹脂シートの中間加工方法。
  5.  請求項1に記載の押出樹脂シートの中間加工方法であって、
     前記コーティング実施工程にて施された前記コーティングが、前記熱プレス工程よりも前に、硬化が完了した全硬化状態に至る途中の硬化状態である半硬化状態とされ、前記熱プレス工程よりも後で、前記全硬化状態とされる場合、
     前記領域毎コーティング条件設定工程にて、前記工程管理システムを用いて、それぞれの前記個別領域ごとかつ前記分割領域ごとの前記曲率関連情報に基づいた曲率に応じて、前記個別領域ごとかつ前記分割領域ごとに前記コーティングの厚さを設定し、曲率が大きな前記分割領域では、曲率が小さな前記分割領域よりも前記コーティングの厚さが厚くなるように設定する、
     押出樹脂シートの中間加工方法。
PCT/JP2021/029080 2020-09-02 2021-08-05 押出樹脂シートの中間加工方法 WO2022049989A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/022,564 US20230321886A1 (en) 2020-09-02 2021-08-05 Intermediate processing method of extruded resin sheet
EP21864047.2A EP4209282A4 (en) 2020-09-02 2021-08-05 INTERMEDIATE PROCESSING METHOD FOR EXTRUDED RESIN FILM
CN202180053585.1A CN115996797B (zh) 2020-09-02 2021-08-05 挤出树脂片的中间加工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020147630A JP7335212B2 (ja) 2020-09-02 2020-09-02 押出樹脂シートの中間加工方法
JP2020-147630 2020-09-02

Publications (1)

Publication Number Publication Date
WO2022049989A1 true WO2022049989A1 (ja) 2022-03-10

Family

ID=80491692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029080 WO2022049989A1 (ja) 2020-09-02 2021-08-05 押出樹脂シートの中間加工方法

Country Status (5)

Country Link
US (1) US20230321886A1 (ja)
EP (1) EP4209282A4 (ja)
JP (1) JP7335212B2 (ja)
CN (1) CN115996797B (ja)
WO (1) WO2022049989A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023136547A (ja) 2022-03-17 2023-09-29 セイコーエプソン株式会社 保持ユニット及び液体吐出装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978764A (ja) * 1972-12-05 1974-07-30
JPH079460A (ja) * 1993-06-29 1995-01-13 Sekisui Chem Co Ltd 成形品の製造方法
JPH07195506A (ja) * 1993-12-28 1995-08-01 Sekisui Plastics Co Ltd 結晶性発泡ポリエチレンテレフタレートシートの成形方法
JP2010201712A (ja) * 2009-03-02 2010-09-16 Fujifilm Corp 樹脂シートの製造方法及び製造装置
JP2018034562A (ja) 2016-08-29 2018-03-08 住友ベークライト株式会社 窓用部材および車両
WO2018131066A1 (ja) * 2017-01-10 2018-07-19 株式会社Fuji 管理装置、実装関連装置及び実装システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3839000A (en) * 1973-02-20 1974-10-01 Ppg Industries Inc Method for controlling curvature of regions in a shaped thermoplastic sheet
DE3929930C1 (ja) * 1989-09-08 1990-04-12 Henk Sen. Dijkman
US8846149B2 (en) * 2006-02-21 2014-09-30 Taiwan Semiconductor Manufacturing Co., Ltd. Delamination resistant semiconductor film and method for forming the same
JP2008293914A (ja) * 2007-05-28 2008-12-04 Toyota Industries Corp 有機el素子製造方法における基板の前処理方法
JP5800655B2 (ja) * 2011-09-29 2015-10-28 ポリプラスチックス株式会社 樹脂成形体変形改善方法及び樹脂成形体軽量化方法
JP6078975B2 (ja) * 2012-04-12 2017-02-15 富士ゼロックス株式会社 定着装置および画像形成装置
KR101828516B1 (ko) * 2014-09-18 2018-02-12 주식회사 엘지화학 플라스틱 필름 및 이의 제조 방법
DE102015200948A1 (de) * 2015-01-21 2016-07-21 Automotive Lighting Reutlingen Gmbh Verfahren zum Beschichten eines Kunststoffteils mit einem Lack, Lackieranlage zur Ausführung des Verfahrens und Abdeckscheibe einer Kraftfahrzeugbeleuchtungseinrichtung, die nach dem Verfahren beschichtet worden ist
RU2671338C1 (ru) * 2015-09-09 2018-10-30 Ниссан Мотор Ко., Лтд. Способ изготовления композиционного материала, устройство для изготовления композиционного материала и заготовка для композиционного материала

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978764A (ja) * 1972-12-05 1974-07-30
JPH079460A (ja) * 1993-06-29 1995-01-13 Sekisui Chem Co Ltd 成形品の製造方法
JPH07195506A (ja) * 1993-12-28 1995-08-01 Sekisui Plastics Co Ltd 結晶性発泡ポリエチレンテレフタレートシートの成形方法
JP2010201712A (ja) * 2009-03-02 2010-09-16 Fujifilm Corp 樹脂シートの製造方法及び製造装置
JP2018034562A (ja) 2016-08-29 2018-03-08 住友ベークライト株式会社 窓用部材および車両
WO2018131066A1 (ja) * 2017-01-10 2018-07-19 株式会社Fuji 管理装置、実装関連装置及び実装システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4209282A4

Also Published As

Publication number Publication date
US20230321886A1 (en) 2023-10-12
CN115996797A (zh) 2023-04-21
JP7335212B2 (ja) 2023-08-29
CN115996797B (zh) 2024-03-12
EP4209282A4 (en) 2024-01-31
JP2022042276A (ja) 2022-03-14
EP4209282A1 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
EP3433085B1 (en) 3d printing system
US7423523B2 (en) Composite ply layup using electronically identifiable tags
WO2022049989A1 (ja) 押出樹脂シートの中間加工方法
JP3587208B1 (ja) 光造形用加工基準補正方法及び光造形装置
US20180290387A1 (en) Three-dimensional processing device
US20050286017A1 (en) Method for the parallax-free centering of an optical element and device for carrying out said method
KR20180020251A (ko) 유리 시트를 이송하기 위한 장치
WO2022049988A1 (ja) 押出樹脂シートの中間加工方法及び押出樹脂シートに中間加工が施された中間樹脂シートの熱プレス加工方法
CN103596891B (zh) 修整具有正常或结构表面的浮制玻璃条的装置及方法
US7488437B2 (en) Methods for assembling prepreg stacks having exact weight for producing SMC components
JP4376051B2 (ja) フィルム厚の制御方法
CN210820959U (zh) 压膜生产流水线
US20220161328A1 (en) Method and apparatus for producing an object by means of additive manufacturing
JP3646092B2 (ja) 射出成形品およびその処理装置
KR20170138898A (ko) 필름 처리장치 및 처리방법
CN117565402B (zh) 3d打印控制执行方法、系统及3d打印设备
KR102653903B1 (ko) 커팅 머신 및 그 동작 방법
US11565484B2 (en) System and method for the manufacture of an article
EP4031342B1 (en) Method and apparatus for the production of an article made of a composite material
WO2023276400A1 (ja) タイヤの管理方法および管理システム並びにタイヤの製造方法および製造システム
TWI705902B (zh) 類玻璃保護膜製造方法
WO2024204502A1 (ja) ポリエステル系シュリンクフィルム
CN113954064A (zh) 机器人导航控制方法、装置、系统、机器人和存储介质
WO2023135560A1 (en) Method for digital printing on a sheet
JP3082172B2 (ja) スクリーン印刷制御方法及びその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021864047

Country of ref document: EP

Effective date: 20230403