WO2022044822A1 - 樹脂組成物、樹脂膜及び表示装置 - Google Patents

樹脂組成物、樹脂膜及び表示装置 Download PDF

Info

Publication number
WO2022044822A1
WO2022044822A1 PCT/JP2021/029727 JP2021029727W WO2022044822A1 WO 2022044822 A1 WO2022044822 A1 WO 2022044822A1 JP 2021029727 W JP2021029727 W JP 2021029727W WO 2022044822 A1 WO2022044822 A1 WO 2022044822A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
resin
mass
acid
Prior art date
Application number
PCT/JP2021/029727
Other languages
English (en)
French (fr)
Inventor
真芳 ▲徳▼田
好寛 原田
慶史 小松
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202180056729.9A priority Critical patent/CN116096799A/zh
Priority to EP21861250.5A priority patent/EP4206286A1/en
Priority to KR1020237007177A priority patent/KR20230061373A/ko
Priority to US18/022,492 priority patent/US20230257571A1/en
Publication of WO2022044822A1 publication Critical patent/WO2022044822A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/477Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/116Deposition methods from solutions or suspensions by spin-coating, centrifugation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the present invention relates to a resin composition, a resin film formed from the resin composition, and a display device including the resin film.
  • Patent Document 1 describes a curable resin composition containing quantum dots and a wavelength conversion film formed by using the curable resin composition.
  • Patent Document 2 describes the above-mentioned glossiness in a black resist composition for forming a black matrix, which contains a black pigment, a photosensitive resin material and a solvent, and the 20-degree mirror surface gloss of the dry coating film thereof is 100 to 200. It is described that the viscosity property of the resist composition is adjusted as a means for achieving the above.
  • the resist composition when it is applied to form a resin film, pinholes may be formed in the resin film.
  • the resist composition may contain a light scattering agent to impart light scattering properties to the resin film, but when the resist composition contains a light scattering agent, pinholes are particularly likely to occur. It became clear by the examination.
  • the content of the solvent (C) is 40% by mass or more and less than 74% by mass with respect to the total amount of the resin composition.
  • a resin composition that meets the requirements.
  • the resin composition according to the present invention contains a resin (A), a light scattering agent (B), and a solvent (C).
  • Resin (A) The resin (A) can contain one kind or two or more kinds of resins.
  • the resin (A) include the following resins [K1] to [K4].
  • Resin [K1]; at least one selected from the group consisting of unsaturated carboxylic acid and unsaturated carboxylic acid anhydride (a) (hereinafter, also referred to as “(a)”) and (a) can be copolymerized with (a).
  • a copolymer with the monomer (c) (however, different from (a)) (hereinafter, also referred to as "(c)"); Resin [K2]; Monomer (b) having a cyclic ether structure having 2 to 4 carbon atoms and an ethylenically unsaturated bond in the copolymer of (a) and (c) (hereinafter, "(b)". Resin reacted with); Resin [K3]; Resin obtained by reacting (a) with a copolymer of (b) and (c); Resin [K4]; A resin obtained by reacting a copolymer of (b) and (c) with (a) and further reacting with a carboxylic acid anhydride.
  • Examples of (a) include unsaturated monocarboxylic acids such as (meth) acrylic acid, crotonic acid, o-, m-, and p-vinylbenzoic acid; Maleic acid, fumaric acid, citraconic acid, mesaconic acid, itaconic acid, 3-vinylphthalic acid, 4-vinylphthalic acid, 3,4,5,6-tetrahydrophthalic acid, 1,2,3,6-tetrahydrophthalic acid, dimethyl Unsaturated dicarboxylic acids such as tetrahydrophthalic acid and 1,4-cyclohexendicarboxylic acid; Methyl-5-norbornene-2,3-dicarboxylic acid, 5-carboxybicyclo [2.2.1] hept-2-ene, 5,6-dicarboxybicyclo [2.2.1] hept-2-ene, 5-carboxy-5-methylbicyclo [2.2.1] hept-2-ene, 5-carboxy-5-ethy
  • Examples thereof include unsaturated (meth) acrylates containing a hydroxy group and a carboxy group in the same molecule, such as ⁇ - (hydroxymethyl) (meth) acrylic acid.
  • (meth) acrylic acid, maleic anhydride and the like are preferable from the viewpoint of copolymerizability and the solubility of the obtained resin (A) in an alkaline aqueous solution.
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid. The same applies to "(meth) acryloyl", "(meth) acrylate” and the like.
  • (B) is a monomer having, for example, a cyclic ether structure having 2 to 4 carbon atoms (for example, at least one selected from the group consisting of an oxylan ring, an oxetane ring and a tetrahydrofuran ring) and an ethylenically unsaturated bond.
  • (B) is preferably a monomer having a cyclic ether structure having 2 to 4 carbon atoms and a (meth) acryloyloxy group.
  • Examples of (b) include glycidyl (meth) acrylate, ⁇ -methylglycidyl (meth) acrylate, ⁇ -ethylglycidyl (meth) acrylate, glycidyl vinyl ether, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p.
  • Monomer having; Examples thereof include tetrahydrofurfuryl acrylate (for example, Viscort V # 150, manufactured by Osaka Organic Chemical Industry Co., Ltd.), tetrahydrofurfuryl methacrylate and other monomers having a tetrahydrofuran ring and an ethylenically unsaturated bond. Since the reactivity of the resins [K2] to [K4] during production is high and the unreacted (b) is unlikely to remain, the (b) is a monomer having an oxylan ring and an ethylenically unsaturated bond. Is preferable.
  • Examples of (c) include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, and 2-ethylhexyl (meth).
  • Decene-8-yl (meth) acrylate (in the art, it is commonly referred to as "dicyclopentenyl (meth) acrylate"), dicyclopentanyl.
  • the ratio of the constituent units derived from each is the ratio of all the constituent units constituting the resin [K1].
  • Constituent unit derived from (c); 40 mol% or more and 98 mol% or less is preferable.
  • the structural unit derived from (a); 10 mol% or more and 50 mol% or less; the structural unit derived from (c); 50 mol% or more and 90 mol% or less is more preferable.
  • the resin [K1] is, for example, the method described in the document "Experimental Method for Polymer Synthesis” (written by Takayuki Otsu, Kagaku-Dojin Co., Ltd., 1st edition, 1st print, published on March 1, 1972) and the relevant document. It can be manufactured with reference to the cited documents described in.
  • a predetermined amount of (a) and (c), a polymerization initiator, a solvent and the like are placed in a reaction vessel, and for example, oxygen is replaced with nitrogen to create a deoxidized atmosphere, and the mixture is stirred. Examples thereof include a method of heating and keeping warm.
  • the polymerization initiator, solvent and the like used here are not particularly limited, and those usually used in the art can be used.
  • an azo compound (2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), etc.) or an organic peroxide (benzoyl peroxide, etc.
  • the solvent may be any solvent as long as it dissolves each monomer, and examples of the solvent (C) contained in the resin composition of the present invention include a solvent described later.
  • the solution after the reaction may be used as it is, a concentrated or diluted solution may be used, or a solid (powder) taken out by a method such as reprecipitation may be used. You may use it. If the solvent (C) described later is used as the solvent at the time of polymerization, the solution after the reaction can be used as it is for the preparation of the resin composition, so that the manufacturing process of the resin composition can be simplified.
  • the resin [K2] adds the cyclic ether having 2 to 4 carbon atoms of (b) to the carboxylic acid and / or carboxylic acid anhydride of (a) to the copolymer of (a) and (c). It can be manufactured by allowing it to be produced.
  • the copolymer of (a) and (c) is produced in the same manner as described as the method for producing the resin [K1]. In this case, the ratio of the constituent units derived from each is preferably the same as the ratio described for the resin [K1].
  • the cyclic ether having 2 to 4 carbon atoms of (b) is reacted with a part of the carboxylic acid and / or the carboxylic acid anhydride derived from (a) in the above-mentioned copolymer.
  • the atmosphere in the flask was replaced with air from nitrogen, and (b), a reaction catalyst of carboxylic acid or carboxylic acid anhydride and cyclic ether (for example, organic phosphorus).
  • the resin [K2] can be produced by reacting in the presence of a compound, a metal complex, an amine compound, etc.), a polymerization inhibitor (for example, hydroquinone, etc.), for example, at 60 ° C. or higher and 130 ° C. or lower for 1 to 10 hours. can.
  • the amount of (b) used is preferably 5 mol or more and 80 mol or less, and more preferably 10 mol or more and 75 mol or less, with respect to (a) 100 mol. Within this range, the storage stability of the resin composition, the developability of the obtained resin film, and the balance between the solvent resistance, heat resistance and mechanical strength of the resin film tend to be improved.
  • Examples of the organic phosphorus compound as a reaction catalyst include triphenylphosphine and the like.
  • the amine compound as the reaction catalyst for example, an aliphatic tertiary amine compound or an aliphatic quaternary ammonium salt compound can be used, and specific examples thereof include tris (dimethylaminomethyl) phenol, triethylamine, and the like. Examples thereof include tetrabutylammonium bromide and tetrabutylammonium chloride.
  • the reaction catalyst is preferably an organophosphorus compound from the viewpoint of the developability of the resin film and the emission light intensity of the wavelength conversion film when the resin film is a wavelength conversion film described later.
  • the "emitted light intensity” as used herein refers to the intensity of the light emitted from the resin film, and may be measured as the brightness.
  • “emitted light intensity” means that the incident light incident on the resin film from the light source is emitted from the side where the incident light is incident to the opposite side of the light source on the opposite main surface of the resin film (for example, back).
  • Quantum dots (D) emit light inside the resin film due to the intensity of the light (the incident light incident on the resin film from the light source of the light unit emits to the display side) and the excitation light incident on the resin film from the light source (inside).
  • the intensity of the light taken out when the light emission) is taken out from the resin film to one side of the facing main surface of the resin film (for example, the display side when the display is arranged above the resin film in the backlight unit). Both may be included.
  • the amount of the reaction catalyst used is preferably 0.001 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the total amount of (a), (b) and (c).
  • the amount of the polymerization inhibitor used is preferably 0.001 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the total amount of (a), (b) and (c).
  • the reaction conditions such as the charging method, reaction temperature and time can be appropriately adjusted in consideration of the manufacturing equipment, the calorific value due to the polymerization, and the like.
  • the charging method and the reaction temperature can be appropriately adjusted in consideration of the production equipment, the calorific value due to the polymerization, and the like.
  • the resin [K3] obtains a copolymer of (b) and (c) in the same manner as in the above-mentioned manufacturing method of the resin [K1].
  • the obtained copolymer may be a solution after the reaction as it is, a concentrated or diluted solution may be used, or a solid (powder) may be used by a method such as reprecipitation. You may use the one taken out as.
  • the ratio of the structural units derived from (b) and (c) is, respectively, with respect to the total number of moles of all the structural units constituting the copolymer.
  • Constituent unit derived from (c); 5 mol% or more and 95 mol% or less is preferable.
  • the structural unit derived from (b); 10 mol% or more and 90 mol% or less; the structural unit derived from (c); 10 mol% or more and 90 mol% or less is more preferable.
  • the resin [K3] contains the carboxylic acid or the carboxylic acid of (a) in the cyclic ether derived from (b) of the copolymer of (b) and (c) under the same conditions as the method for producing the resin [K2]. It can be obtained by reacting with a carboxylic acid anhydride.
  • the amount of (a) used to react with the copolymer is preferably 5 mol or more and 80 mol or less with respect to 100 mol of (b).
  • the resin [K4] is a resin obtained by further reacting the resin [K3] with a carboxylic acid anhydride.
  • the carboxylic acid anhydride is reacted with the hydroxy group generated by the reaction of the cyclic ether with the carboxylic acid or the carboxylic acid anhydride.
  • Examples of the carboxylic acid anhydride include maleic anhydride, citraconic acid anhydride, itaconic acid anhydride, 3-vinylphthalic anhydride, 4-vinylphthalic anhydride, 3,4,5,6-tetrahydrophthalic anhydride.
  • the amount of the carboxylic acid anhydride used is preferably 0.5 mol or more and 1 mol or less with respect to 1 mol of the amount used in (a).
  • resin [K1], resin [K2], resin [K3] and resin [K4] examples include benzyl (meth) acrylate / (meth) acrylic acid copolymer, styrene / (meth) acrylic acid copolymer and the like.
  • Resin [K3] such as the resin reacted with the above; tetrahydrophthalic acid anhydride is further reacted with the resin obtained by reacting the copolymer of tricyclodecyl (meth) acrylate / glycidyl (meth) acrylate with (meth) acrylic acid.
  • a resin [K4] such as a polymer.
  • the resin (A) preferably contains at least one selected from the group consisting of the resin [K2], the resin [K3] and the resin [K4].
  • the alkali-soluble resin described in JP-A-2018-123274 can be mentioned.
  • the resin (A) is one or more selected from the group consisting of the above-mentioned resin [K1], resin [K2], resin [K3], resin [K4], and the alkali-soluble resin described in JP-A-2018-123274. Can be included.
  • a further example of the resin (A) is a polyalkylene glycol compound.
  • the polyalkylene glycol compound include polyethylene glycol and polypropylene glycol.
  • the polyalkylene glycol compound is advantageous in enhancing the dispersibility of the quantum dots (D) in the resin composition when the resin composition further contains the quantum dots (D).
  • the resin (A) has a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC), preferably 9000 or less.
  • GPC gel permeation chromatography
  • the weight average molecular weight of the resin (A) in terms of standard polystyrene is, for example, 1000 or more and 9000 or less, and is preferably 2000 or more and 8500 or less from the viewpoint of the developing speed of the resin film and the emitted light intensity of the wavelength conversion film, more preferably.
  • the standard polystyrene-equivalent weight average molecular weight of the resin (A) is measured according to the measuring method in the column of Examples described later.
  • reaction conditions such as selection of raw materials to be used, charging method, reaction temperature and time can be appropriately combined and adjusted.
  • the molecular weight distribution [weight average molecular weight (Mw) / number average molecular weight (Mn)] of the resin (A) measured by GPC is, for example, 1.0 or more and 6.0 or less, and from the viewpoint of the developability of the resin film, It is preferably 1.2 or more and 4.0 or less.
  • the acid value of the resin (A) is preferably 90 mgKOH / g or more and 150 mgKOH / g or less based on the solid content. If the acid value is less than 90 mgKOH / g, the solubility of the resin film in the alkaline developer becomes low and there is a risk of leaving a residue on the substrate. If the acid value exceeds 150 mgKOH / g, it will be obtained later by development. There is a high possibility that peeling of the curing pattern will occur.
  • the acid value of the resin (A) is preferably 95 mgKOH / g or more and 140 mgKOH / g or less, and more preferably 100 mgKOH / g or more and 130 mgKOH / g or less from the viewpoint of developability of the resin film.
  • the acid value is a value measured as the amount (mg) of potassium hydroxide required to neutralize 1 g of the resin (A), and can be obtained by titration using, for example, an aqueous potassium hydroxide solution.
  • the acid value of the resin (A) is measured according to the measuring method in the column of Examples described later.
  • the resin (A) can include, for example, a resin having a double bond equivalent of 300 g / eq or more and 2000 g / eq or less, preferably 500 g / eq or more and 1500 g / eq or less.
  • a resin having a double bond equivalent of 300 g / eq or more and 2000 g / eq or less By including the resin (A) having a double bond equivalent of 300 g / eq or more and 2000 g / eq or less, it tends to be easy to prevent the phenomenon of quenching during the process of manufacturing the curing pattern described later.
  • the resin (A) contains a resin having a double bond equivalent of more than 2000 g / eq, the resin (A) tends to have a reduced ability to effectively protect the quantum dots (D).
  • the resin (A) contains a resin having a double bond equivalent of less than 300 g / eq, the cured pattern tends to be easily peeled off without being dissolved during development.
  • the resin having a double bond equivalent of 300 g / eq or more and 2000 g / eq or less include (meth) acrylic resins.
  • the resin (A) is preferably made of a (meth) acrylic resin.
  • the content of the resin (A) in the resin composition is, for example, the total mass of the solid content of the resin composition. It is 5% by mass or more and 80% by mass or less, preferably 10% by mass or more and 70% by mass or less, and more preferably 15% by mass or more and 65% by mass or less.
  • the content of the resin (A) is within the above range, the light scattering agent (B) tends to be easily dispersed, and the emitted light intensity tends to be easily maintained high during the process of manufacturing the curing pattern described later. be.
  • the content of the resin (A) in the resin composition is, for example, 5% by mass with respect to the total solid content of the resin composition. It is 80% by mass or less, preferably 10% by mass or more and 65% by mass or less, and more preferably 15% by mass or more and 45% by mass or less.
  • the content of the resin (A) is within the above range, the light scattering agent (B) and the quantum dots (D) are easily dispersed, and the emitted light intensity is increased during the step of manufacturing the curing pattern described later. It tends to be easier to maintain.
  • the total amount of solid content means the total amount of the components contained in the resin composition excluding the solvent (C) described later.
  • the content of each component in the solid content of the resin composition can be measured by a known analytical means such as liquid chromatography or gas chromatography.
  • the content of each component in the solid content of the resin composition may be calculated from the formulation at the time of preparing the resin composition.
  • the (solid content ratio) is, for example, 1 or more, and is preferably 1.5 or more and 3.5 or less from the viewpoint of the developability of the resin film.
  • the mass ratio (solid content ratio) of the resin (A) to the photopolymerizable compound (E) is For example, it is 1 or more, and preferably 2.5 or more and 5.5 or less from the viewpoint of the developability of the resin film.
  • the resin composition contains one or more light scattering agents (B).
  • the resin film formed from the resin composition may exhibit light scattering properties.
  • the light transmittance and viewing angle characteristics of the resin film can be controlled, or when the resin film is used as a bank or the resin film is quantum. It is possible to improve the emission light intensity of the light when the dots (D) are included.
  • Examples of the light scattering agent (B) include particles of metal or metal oxide, inorganic particles such as glass particles, and it is preferable that the light scattering agent (B) does not absorb due to coloring and has only a scattering effect. It is a particle.
  • Examples of the metal oxide include TiO 2 , SiO 2 , BaTiO 3 , ZnO and the like, and since light is efficiently scattered, the particles of TiO 2 are preferable.
  • a dispersant described later is usually used. However, since the specific gravity is large, it tends to settle in the resin composition and may be unevenly dispersed in the resin layer, so that pinholes are likely to occur in the resin layer.
  • the particle size of the light scattering agent (B) is, for example, 0.03 ⁇ m or more and 20 ⁇ m or less, and is preferably 0.05 ⁇ m or more and 1 ⁇ m or less from the viewpoint of enhancing the light scattering ability and enhancing the dispersibility in the resin composition. Yes, more preferably 0.05 ⁇ m or more and 0.5 ⁇ m or less.
  • the light scattering agent (B) one in which the light scattering agent is dispersed in a part or all of the solvent (C) in advance by using a dispersant may be used.
  • a commercially available product can be used as the dispersant.
  • DISPERBYK-101, 102, 103, 106, 107, 108, 109, 110, 111, 116, 118, 130, 140, 154, 161, 162, 163, 164, 165, 166, 170 manufactured by Big Chemie Japan.
  • the content of the light scattering agent (B) in the resin composition is, for example, 0.001% by mass or more and 50% by mass or less with respect to the total solid content of the resin composition, and from the viewpoint of the developability of the resin film, light scattering. From the viewpoint of enhancing the function and improving the emission light intensity of the wavelength conversion film, it is preferably 1% by mass or more and 30% by mass or less, and more preferably 2% by mass or more and 10% by mass or less.
  • the resin composition according to the present invention it is possible to effectively suppress the generation of pinholes in the resin film formed from the light scattering agent (B) even though it is contained.
  • the resin composition contains one kind or two or more kinds of solvents (C).
  • the solvent (C) is not particularly limited as long as it dissolves the resin (A), and a solvent usually used in the art can be used.
  • ester solvent solvent containing -COO- in the molecule and not containing -O-
  • ether solvent solvent containing -O- in the molecule and not containing -COO-
  • ether ester solvent solvent in the molecule.
  • Solvent containing -COO- and -O- Solvent containing -COO- and -O-), Ketone solvent (solvent containing -CO- in the molecule and not containing -COO-), alcohol solvent (solvent containing OH in the molecule, -O-,- CO- and COO-free solvents), aromatic hydrocarbon solvents, amide solvents, dimethylsulfoxide and the like.
  • the solvent (C) dissolves the photopolymerizable compound (E) and the photopolymerization initiator (F). It is preferable to have.
  • ester solvent examples include methyl lactate, ethyl lactate, n-butyl lactate, methyl 2-hydroxyisobutate, ethyl acetate, n-butyl acetate, isobutyl acetate, n-pentyl formate, isopentyl acetate, n-butyl propionate and isopropyl butyrate.
  • ether solvent examples include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl ether.
  • ether ester solvent examples include methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, 3-ethoxy.
  • Ethyl propionate methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, methyl 2-methoxy-2-methylpropionate, Ethyl 2-ethoxy-2-methylpropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, ethylene glycol monomethyl Examples thereof include ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate and diethylene glycol monobutyl ether acetate.
  • Ketone solvents include 4-hydroxy-4-methyl-2-pentanone, acetone, 2-butanone, 2-heptanone, 3-heptanone, 4-heptanone, 4-methyl-2-pentanone, cyclopentanone, cyclohexanone and isophorone. And so on.
  • alcohol solvent examples include methanol, ethanol, propanol, butanol, hexanol, cyclohexanol, ethylene glycol, propylene glycol, glycerin and the like.
  • aromatic hydrocarbon solvent examples include benzene, toluene, xylene, mesitylene and the like.
  • amide solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like.
  • propylene glycol monomethyl ether acetate As the solvent (C), propylene glycol monomethyl ether acetate, ethyl lactate, propylene glycol monomethyl ether, ethyl 3-ethoxypropionate, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, 4-hydroxy-4- Methyl-2-pentanone, cyclohexanol acetate, toluene, or a mixture of two or more thereof is preferable, and propylene glycol monomethyl ether acetate is more preferable.
  • the solvent (C) is a component other than the solid content of the resin composition, and for example, the solvent contained in the resin (A), the light scattering agent (B), the quantum dots (D), and the like is also included in the solvent (C). ..
  • the content of the solvent (C) in the resin composition is preferably 40% by mass or more and less than 74% by mass with respect to the total amount of the resin composition. The details of the content will be described later. Further, from the viewpoint of effectively suppressing the generation of pinholes, the solvent (C) is preferably selected so that the resin composition satisfies the formula [R] described later.
  • the resin composition may contain one or more quantum dots (D).
  • the resin film formed from the resin composition containing the quantum dots (D) can emit light having a wavelength different from the irradiation light by irradiating with ultraviolet light or visible light. Therefore, the resin film containing the quantum dots (D) can be used as a wavelength conversion film.
  • Quantum dots (D) are semiconductor fine particles having a particle diameter of 1 nm or more and 100 nm or less, and are fine particles that absorb ultraviolet light or visible light and emit light by utilizing the band gap of the semiconductor.
  • Quantum dots (D) include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdHgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, ZnSe CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSte, CdHgSeS, CdHgSeTe, CdHgSeS, C
  • the quantum dot (D) contains S or Se
  • the quantum dot surface-modified with a metal oxide or an organic substance may be used.
  • the surface-modified quantum dots it is possible to prevent S and Se from being extracted by the reaction components contained or may be contained in the resin composition.
  • the quantum dots (D) may form a core-shell structure by combining the above compounds.
  • Examples of such a combination include fine particles having a core of CdSe and a shell of ZnS.
  • the energy state of the quantum dot (D) depends on its size, it is possible to freely select the emission wavelength by changing the particle diameter.
  • the peak wavelengths of the fluorescence spectrum when the particle diameters are 2.3 nm, 3.0 nm, 3.8 nm, and 4.6 nm are 528 nm, 570 nm, 592 nm, and 637 nm, respectively.
  • the light emission from the quantum dots (D) has a narrow spectral width, and by combining light having such a steep peak, a color gamut that can be displayed in a display device including a resin film formed from a resin composition. Can be expanded.
  • the quantum dots (D) have high responsiveness, and the light emitted from the light source can be efficiently used.
  • the resin composition may contain only one type of quantum dots that emit light of a specific wavelength by the light emitted from the light source, or may contain two or more types of quantum dots that emit light of different wavelengths in combination. May be.
  • Examples of the light having the specific wavelength include red light, green light, and blue light.
  • the content of the quantum dots (D) in the resin composition is, for example, 1% by mass or more and 60% by mass or less with respect to the total solid content of the resin composition. It is preferably 10% by mass or more and 50% by mass or less, and more preferably 10% by mass or more and 40% by mass or less.
  • the semiconductor particles which are quantum dots (D) are present in the resin composition in a state where the organic ligand is coordinated. May be good.
  • the semiconductor particles to which the organic ligand is coordinated are also referred to as ligand-containing semiconductor particles.
  • the ligand that coordinates with the semiconductor particles can be, for example, an organic compound having a polar group exhibiting a coordination ability with respect to the semiconductor particles.
  • the organic ligand may be an organic ligand added for stabilization or due to synthetic restrictions on the ligand-containing semiconductor particles. For example, in Japanese Patent Application Laid-Open No.
  • the ligand-containing semiconductor particles contain hexaneic acid as an organic ligand from the viewpoint of particle size control, and also contain an organic ligand for post-synthesis stabilization. It is replaced with DDSA (dodecenyl succinic acid).
  • the organic ligand can be coordinated, for example, to the surface of the semiconductor particle.
  • the resin composition can contain one or more organic ligands.
  • the polar group is preferably at least one group selected from the group consisting of, for example, a thiol group (-SH), a carboxyl group (-COOH) and an amino group (-NH 2 ).
  • the polar group selected from the group can be advantageous in enhancing the coordination with the semiconductor particles.
  • the high coordination property can contribute to the improvement of the color unevenness of the resin film and / or the improvement of the patterning property of the resin composition.
  • the polar group is more preferably at least one group selected from the group consisting of a thiol group and a carboxy group.
  • the organic ligand can have one or more polar groups.
  • the organic ligand is, for example, the following formula (X) :.
  • X A -RX ( X ) It can be an organic compound represented by.
  • X A is the above-mentioned polar group
  • RX is a monovalent hydrocarbon group which may contain a hetero atom (N, O, S, halogen atom, etc.).
  • the hydrocarbon group may have one or two or more unsaturated bonds such as carbon-carbon double bonds.
  • the hydrocarbon group may have a linear, branched or cyclic structure.
  • the hydrocarbon group has, for example, 1 or more and 40 or less carbon atoms, and may be 1 or more and 30 or less carbon atoms.
  • the group RX may contain a polar group.
  • the above description relating to the polar group XA is quoted.
  • organic ligand having a carboxy group as the polar group XA include formic acid, acetic acid, propionic acid, and saturated or unsaturated fatty acids.
  • saturated or unsaturated fatty acids include butyric acid, pentanic acid, caproic acid, capric acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, behenic acid, lignoserine.
  • Saturated fatty acids such as acids; monounsaturated fatty acids such as myristoleic acid, palmitoleic acid, oleic acid, icosenoic acid, erucic acid, nervonic acid; Includes polyunsaturated fatty acids such as ⁇ -linolenic acid, arachidonic acid, eikosatetraenoic acid, docosadienoic acid, and adrenoic acid (docosatetraenoic acid).
  • organic ligand having a thiol group or an amino group as the polar group XA are such that the carboxy group of the organic ligand having a carboxy group as the polar group XA exemplified above is replaced with the thiol group or the amino group.
  • Preferred examples of the organic ligand represented by the above formula (X) include compound (J-1) and compound (J-2).
  • Compound (J-1) is a compound having a first functional group and a second functional group.
  • the first functional group is a carboxy group (-COOH) and the second functional group is a carboxy group or a thiol group (-SH). Since the compound (J-1) has a carboxy group and / or a thiol group, it can be a ligand coordinated to the quantum dot (D).
  • the resin composition may contain only one compound (J-1) or two or more compounds.
  • the developing speed of the resin composition can be sufficiently increased, and the resin film (wavelength conversion film or the like) formed from the resin composition can be used.
  • the emission light intensity can be increased.
  • both the carboxy group and the thiol group of the compound (J-1) can impart high developability by the alkaline developer to the resin composition and are well coordinated with the quantum dots (D). It is considered that this is because the dispersibility of the quantum dots (D) in the resin composition can be enhanced.
  • the carboxy group has a higher effect of enhancing the developability of the alkaline developer
  • the thiol group has a higher effect of enhancing the dispersibility of the quantum dots (D).
  • Increasing the development speed of the resin composition can also contribute to increasing the emission light intensity of the resin film (wavelength conversion film, etc.). It is considered that this is because the permeation of water into the resin film during the developing process can be suppressed.
  • the compound (J-1) is a compound represented by the following formula (J-1a).
  • the compound (J-1) may be an acid anhydride of the compound represented by the formula (J-1a).
  • RB represents a divalent hydrocarbon group. If there are multiple RBs , they may be the same or different.
  • the hydrocarbon group may have one or more substituents. When a plurality of substituents are present, they may be the same or different, and they may be bonded to each other to form a ring with the atom to which each is bonded.
  • -CH 2- contained in the above hydrocarbon group may be replaced with at least one of -O-, -S-, -SO 2- , -CO- and -NH-.
  • p represents an integer from 1 to 10.
  • Examples of the divalent hydrocarbon group represented by RB include a chain hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group and the like.
  • chain hydrocarbon group examples include a linear or branched alkanediyl group, the number of carbon atoms thereof is usually 1 to 50, preferably 1 to 20, and more preferably 1 to 10. Is.
  • Examples of the alicyclic hydrocarbon group include a monocyclic or polycyclic cycloalkanediyl group, and the number of carbon atoms thereof is usually 3 to 50, preferably 3 to 20, more preferably 3 to 3. It is 10.
  • aromatic hydrocarbon group examples include a monocyclic or polycyclic arenediyl group, and the number of carbon atoms thereof is usually 6 to 20.
  • Examples of the substituent that the hydrocarbon group may have include an alkyl group having 1 to 50 carbon atoms, a cycloalkyl group having 3 to 50 carbon atoms, an aryl group having 6 to 20 carbon atoms, a carboxy group and an amino group. Groups, halogen atoms and the like can be mentioned.
  • the substituent that the hydrocarbon group may have is preferably a carboxy group, an amino group or a halogen atom.
  • -CH 2- contained in the above hydrocarbon group is replaced with at least one of -O-, -CO- and -NH-, it is preferable that -CH 2- is replaced with -CO- and -NH-. At least one, more preferably -NH-. p is preferably 1 or 2.
  • Examples of the compound represented by the formula (J-1a) include compounds represented by the following formulas (1-1) to (1-9).
  • Specific examples of the compound represented by the formula (J-1a) by chemical name include, for example, mercaptoacetic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, 3-mercaptobutanoic acid, 4-mercaptobutanoic acid.
  • Another example of the compound (J-1) is a polyvalent carboxylic acid compound, and preferably in the compound represented by the above formula (J-1a), —SH in the formula (J-1a) is a carboxy group ( -COOH) has been replaced with a compound (J-1b).
  • Examples of the compound (J-1b) include the following compounds. Succinic acid, glutaric acid, adipic acid, octafluoroadipic acid, azelaic acid, dodecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecandioic acid, dodecafluorosveric acid, 3-ethyl- 3-Methylglutaric acid, hexafluoroglutaric acid, trans-3-hexenedioic acid, sebacic acid, hexadecafluorosevacinic acid, acetylenedicarboxylic acid, trans-aconytic acid, 1,3-adamantandicarboxylic acid, bicyclo [2.2 .2] Octane-1,4-dicarboxylic acid, cis-4-cyclohex
  • the molecular weight of the compound (J-1) is preferably 3000 or less, more preferably 2000 or less, from the viewpoint of increasing the development speed of the resin composition and increasing the emission light intensity of the resin film (wavelength conversion film or the like). It is more preferably 1000 or less, still more preferably 800 or less, and particularly preferably 500 or less.
  • the molecular weight of compound (J-1) is usually 100 or more.
  • the molecular weight may be a number average molecular weight or a weight average molecular weight.
  • the number average molecular weight and the weight average molecular weight are the standard polystyrene-equivalent number average molecular weight and the weight average molecular weight measured by GPC, respectively.
  • the resin composition it is preferable that at least a part of the molecules of the compound (J-1) are coordinated to the quantum dots (D), and all or almost all the molecules thereof are coordinated to the quantum dots (D). You may be doing it. That is, the resin composition preferably contains the compound (J-1) coordinated to the quantum dots (D), but together with the compound (J-1) coordinated to the quantum dots (D). It may contain a compound (J-1) that is not coordinated to the quantum dot (D). It is advantageous to include the compound (J-1) coordinated to the quantum dots (D) from the viewpoint of increasing the development speed of the resin composition and increasing the emission light intensity of the resin film (wavelength conversion film, etc.). Can be. Compound (J-1) can usually be coordinated to a quantum dot (D) via a first functional group and / or a second functional group. Compound (J-1) can be coordinated to, for example, the surface of a quantum dot (D).
  • the content ratio of the compound (J-1) to the quantum dots (D) in the resin composition is a mass ratio, preferably 0. It is 001 or more and 1 or less, more preferably 0.01 or more and 0.5 or less, and further preferably 0.02 or more and 0.1 or less.
  • the content ratio is in this range, it may be advantageous from the viewpoint of increasing the developing speed of the resin composition and increasing the emission light intensity of the resin film (wavelength conversion film or the like).
  • the content of the compound (J-1) in the resin composition is from the viewpoint of increasing the development speed of the resin composition and the appearance of the resin film (wavelength conversion film, etc.). From the viewpoint of increasing the light emission intensity, it is preferably 0.1% by mass or more and 20% by mass or less, and more preferably 0.1% by mass or more and 10% by mass or less, based on the total solid content of the resin composition. It is more preferably 0.2% by mass or more and 8% by mass or less, further preferably 0.2% by mass or more and 5% by mass or less, and particularly preferably 0.5% by mass or more and 4% by mass or less.
  • the compound (J-2) is a compound (J-2) different from the compound (J-1), and is a compound having a polyalkylene glycol structure and having a polar group at the molecular terminal.
  • the molecular end is preferably the end of the longest carbon chain in the compound (J-2) (the carbon atom in the carbon chain may be replaced with another atom such as an oxygen atom).
  • the resin composition may contain only one compound (J-2) or two or more compounds.
  • the compound containing a polyalkylene glycol structure and having the first functional group and the second functional group shall belong to the compound (J-1).
  • the resin composition contains the compound (J-1) or the compound (J-2) from the viewpoint of increasing the development speed of the resin composition and increasing the emission light intensity of the resin film (wavelength conversion film, etc.). It may contain a compound (J-1) and a compound (J-2).
  • the polyalkylene glycol structure is the following formula:
  • RC is an alkylene group, and examples thereof include an ethylene group and a propylene group.
  • Specific examples of the compound (J-2) include polyalkylene glycol-based compounds represented by the following formula (J-2a).
  • X is a polar group
  • Y is a monovalent group
  • Z C is a divalent or trivalent group.
  • n is an integer of 2 or more.
  • m is 1 or 2.
  • RC is an alkylene group.
  • the resin composition it is preferable that at least a part of the molecules of the compound (J-2) are coordinated to the quantum dots (D), and all or almost all the molecules thereof are coordinated to the quantum dots (D). You may be doing it. That is, the resin composition preferably contains the compound (J-2) coordinated to the quantum dots (D), but together with the compound (J-2) coordinated to the quantum dots (D). It may contain a compound (J-2) that is not coordinated to the quantum dot (D). It is advantageous to include the compound (J-2) coordinated to the quantum dots (D) from the viewpoint of increasing the developing speed of the resin composition and increasing the emission light intensity of the resin film (wavelength conversion film, etc.). Can be.
  • the compound (J-2a) can usually be coordinated to the quantum dots (D) via the polar group X.
  • the compound (J-2a) may be coordinated to the quantum dot (D) via the polar group of the group Y or via the polar groups of the polar group X and the group Y.
  • Compound (J-2) can be coordinated to, for example, the surface of a quantum dot (D).
  • the polar group X is preferably at least one group selected from the group consisting of a thiol group (-SH), a carboxy group (-COOH) and an amino group (-NH 2 ).
  • the polar group selected from the group can be advantageous in enhancing the coordination to the quantum dot (D).
  • the polar group X is more preferably at least one group selected from the group consisting of a thiol group and a carboxy group.
  • the group Y is a monovalent group.
  • the group Y is not particularly limited, and examples thereof include monovalent hydrocarbon groups which may have a substituent (N, O, S, halogen atom, etc.).
  • the hydrocarbon group has, for example, 1 or more and 12 or less carbon atoms.
  • the hydrocarbon group may have an unsaturated bond.
  • the group Y includes an alkyl group having a linear, branched chain or cyclic structure and having 1 to 12 carbon atoms; an alkoxy group having a linear, branched chain or cyclic structure and having 1 to 12 carbon atoms. Can be mentioned.
  • the number of carbon atoms of the alkyl group and the alkoxy group is preferably 1 or more and 8 or less, more preferably 1 or more and 6 or less, and further preferably 1 or more and 4 or less.
  • the group Y is preferably a linear or branched alkoxy group having 1 or more and 4 or less carbon atoms, and preferably a linear alkoxy group having 1 or more and 4 or less carbon atoms. More preferred.
  • the group Y may contain a polar group.
  • the polar group include at least one group selected from the group consisting of a thiol group (-SH), a carboxy group (-COOH) and an amino group (-NH 2 ).
  • the compound containing a polyalkylene glycol structure and having the first functional group and the second functional group belongs to the compound (J-1).
  • the polar group is preferably located at the end of group Y.
  • the group ZC is a divalent or trivalent group.
  • the group Z C is not particularly limited, and examples thereof include a divalent or trivalent hydrocarbon group which may contain a hetero atom (N, O, S, halogen atom, etc.).
  • the hydrocarbon group has, for example, 1 or more and 24 or less carbon atoms.
  • the hydrocarbon group may have an unsaturated bond.
  • the group ZC which is a divalent group, is an alkylene group having a linear, branched chain or cyclic structure and having 1 or more carbon atoms and 24 or less carbon atoms; and having a linear, branched chain or cyclic structure and having 1 or more carbon atoms. Examples thereof include an alkenylene group of 24 or less.
  • the alkyl group and the alkenylene group preferably have 1 or more and 12 or less carbon atoms, more preferably 1 or more and 8 or less, and further preferably 1 or more and 4 or less.
  • the group Z C which is a trivalent group a group obtained by removing one hydrogen atom from the group Z C which is a divalent group can be mentioned.
  • the group Z C may have a branched structure.
  • the group ZC having a branched structure has a branched chain different from the branched chain containing the polyalkylene glycol structure represented by the above formula (J-2a), and has the same as the polyalkylene glycol structure represented by the above formula (J-2a). May have another polyalkylene glycol structure.
  • the group Z C is preferably a linear or branched alkylene group having 1 or more and 6 or less carbon atoms, and is a linear alkylene group having 1 or more and 4 or less carbon atoms. Is more preferable.
  • RC is an alkylene group, preferably a linear or branched alkylene group having 1 or more and 6 or less carbon atoms, and preferably a linear alkylene group having 1 or more and 4 or less carbon atoms. Is more preferable.
  • N in the formula (J-2a) is an integer of 2 or more, preferably 2 or more and 540 or less, more preferably 2 or more and 120 or less, and further preferably 2 or more and 60 or less.
  • the molecular weight of the compound (J-2) may be, for example, about 150 or more and 10,000 or less, but from the viewpoint of increasing the developing speed of the resin composition and increasing the emission light intensity of the resin film (wavelength conversion film or the like), 150 It is preferably 5000 or more, and more preferably 150 or more and 4000 or less.
  • the molecular weight may be a number average molecular weight or a weight average molecular weight.
  • the number average molecular weight and the weight average molecular weight are the standard polystyrene-equivalent number average molecular weight and the weight average molecular weight measured by GPC, respectively.
  • the content ratio of the compound (J-2) to the quantum dots (D) in the resin composition is a mass ratio, preferably 0. It is 001 or more and 2 or less, more preferably 0.01 or more and 1.5 or less, and further preferably 0.1 or more and 1 or less.
  • the content ratio is in this range, it may be advantageous from the viewpoint of increasing the developing speed of the resin composition and increasing the emission light intensity of the resin film (wavelength conversion film or the like).
  • the content of the compound (J-2) in the resin composition is from the viewpoint of increasing the development speed of the resin composition and the appearance of the resin film (wavelength conversion film, etc.). From the viewpoint of increasing the light emission intensity, it is preferably 0.1% by mass or more and 40% by mass or less, and more preferably 0.1% by mass or more and 20% by mass or less, based on the total solid content of the resin composition. It is more preferably 1% by mass or more and 15% by mass or less, and even more preferably 2% by mass or more and 10% by mass or less.
  • the content ratio of the compound (J-2) to the compound (J-1) in the resin composition is preferably a mass ratio. Is 1 or more and 50 or less, more preferably 5 or more and 40 or less, and further preferably 10 or more and 25 or less. When the content ratio is in this range, it may be advantageous from the viewpoint of increasing the developing speed of the resin composition and increasing the emission light intensity of the resin film (wavelength conversion film or the like).
  • the resin composition can further contain a compound (J-3) which is a compound other than the compound (J-1) and the compound (J-2) and has a coordinating ability with respect to the quantum dots (D).
  • a compound (J-3) include organic acids, organic amine compounds, thiol compounds and the like.
  • the compound (J-3) may be a silicone oil modified with a carboxy group and an amino group or a thiol group, and by incorporating such a compound (J-3) in the resin composition, a resin layer may be used. (Surface characteristics such as contact angle and surface tension) can be adjusted.
  • the content ratio of the compound (J-3) to the quantum dots (D) in the resin composition is a mass ratio, preferably 0. It is 001 or more and 2 or less, more preferably 0.01 or more and 1.5 or less, and further preferably 0.1 or more and 1 or less.
  • the content ratio is in this range, it may be advantageous from the viewpoint of increasing the developing speed of the resin composition and increasing the emission light intensity of the resin layer (wavelength conversion film or the like).
  • the content of the compound (J-3) in the resin composition is from the viewpoint of increasing the development speed of the resin composition and the appearance of the resin layer (wavelength conversion film, etc.). From the viewpoint of increasing the light emission intensity, it is preferably 0.1% by mass or more and 40% by mass or less, and more preferably 0.1% by mass or more and 20% by mass or less, based on the total solid content of the resin composition. It is more preferably 0.2% by mass or more and 15% by mass or less, and even more preferably 0.2% by mass or more and 10% by mass or less.
  • the compound (J-3) contains a resin (A), a light scattering agent (B), a solvent (C), a photopolymerizable compound (E), a photopolymerization initiator (F), and a photopolymerization initiator (F1). ), Antioxidant (G) and Leveling Agent (H) are not included.
  • the resin composition can contain an organic ligand even when it does not contain the quantum dots (D).
  • the characteristics of the resin layer surface characteristics such as contact angle and surface tension
  • Photopolymerizable compound (E) The resin composition may contain one or more photopolymerizable compounds (E).
  • the resin composition further containing the photopolymerizable compound (E) and the photopolymerization initiator (F) described later exhibits curability.
  • the photopolymerizable compound (E) is a compound that can be polymerized by an active radical, an acid, or the like generated from the photopolymerization initiator (F) described later, and examples thereof include compounds having an ethylenically unsaturated bond, which is preferable. Is a (meth) acrylic acid ester compound.
  • the photopolymerizable compound (E) is preferably a polymerizable compound having three or more ethylenically unsaturated bonds.
  • examples of such polymerizable compounds include trimethylol propantri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (dipentaerythritol hexa ().
  • the content of the photopolymerizable compound (E) in the resin composition is preferably 7% by mass or more and 60 with respect to the total solid content of the resin composition. It is 1% by mass or less, more preferably 10% by mass or more and 45% by mass or less, and further preferably 13% by mass or more and 30% by mass or less.
  • the content of the photopolymerizable compound (E) is within the above range, the residual film ratio of the curing pattern and the chemical resistance of the curing pattern, which will be described later, tend to be further improved.
  • Photopolymerization Initiator (F) When the resin composition contains the photopolymerizable compound (E), the resin composition usually further contains one or more photopolymerization initiators (F).
  • the photopolymerization initiator (F) is a compound capable of initiating polymerization by generating active radicals, acids and the like by the action of light and heat.
  • the photopolymerization initiator (F) preferably contains an oxime compound having a first molecular structure represented by the following formula (1).
  • the oxime compound is also referred to as "oxime compound (1)".
  • the inclusion of the oxime compound (1) as the photopolymerization initiator (F) may be advantageous from the viewpoint of increasing the emitted light intensity of the cured film (wavelength conversion film or the like) of the resin composition.
  • One of the reasons why such an effect can be obtained is that the oxime compound (1) is required when the oxime compound (1) initiates photopolymerization due to the unique molecular structure of the oxime compound (1). Since the absorption wavelength of the oxime compound (1) changes significantly before and after the cleavage (decomposition) of the oxime compound (1), it is presumed that the oxime compound (1) has a high photoradical polymerization initiation ability.
  • R 1 represents R 11 , OR 11 , COR 11 , SR 11 , CONR 12 R 13 or CN.
  • R 11 , R 12 and R 13 each independently have a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or an aralkyl group having 2 to 20 carbon atoms. Represents a heterocyclic group.
  • the hydrogen atoms of the group represented by R 11 , R 12 or R 13 are OR 21 , COR 21 , SR 21 , NR 22 Ra 23 , CONR 22 R 23 , -NR 22 -OR 23 , -N (COR 22 )-.
  • R 21 , R 22 and R 23 independently have a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or an aralkyl group having 2 to 20 carbon atoms. Represents a heterocyclic group.
  • the hydrogen atom of the group represented by R 21 , R 22 or R 23 may be substituted with a CN, a halogen atom, a hydroxy group or a carboxy group.
  • the group represented by R 11 , R 12 , R 13 , R 21 , R 22 or R 23 has an alkylene moiety, the alkylene moiety is -O-, -S-, -COO-, -OCO-, It may be interrupted 1 to 5 times by -NR 24-, -NR 24 CO-, -NR 24 COO- , -OCONR 24- , -SCO-, -COS-, -OCS- or -CSO-.
  • R 24 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms.
  • the alkyl moiety may be branched or cyclic. Further, R 12 and R 13 and R 22 and R 23 may be combined to form a ring, respectively.
  • * Represents a bond with a second molecular structure, which is a molecular structure other than the first molecular structure of the oxime compound (1).
  • Examples of the alkyl group having 1 to 20 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in the formula (1) include a methyl group, an ethyl group and a propyl group.
  • Examples of the aryl group having 6 to 30 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in the formula (1) include a phenyl group, a tolyl group and a xylyl group. Examples thereof include a group, an ethylphenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a phenyl group substituted with one or more of the above alkyl groups, a biphenylyl group, a naphthyl group, an anthryl group and the like.
  • Examples of the aralkyl group having 7 to 30 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in the formula (1) include a benzyl group and ⁇ -methylbenzyl. Groups, ⁇ , ⁇ -dimethylbenzyl group, phenylethyl group and the like can be mentioned.
  • Examples of the heterocyclic group having 2 to 20 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in the formula (1) include a pyridyl group and a pyrimidyl group.
  • R 12 and R 13 and R 22 and R 23 in the equation (1) may be combined to form a ring, respectively, that R 12 and R 13 and R 22 and R 23 are combined. It means that a ring may be formed with a nitrogen atom, a carbon atom or an oxygen atom connected to each other.
  • Examples of the ring that can be formed by Ra 12 and Ra 13 and Ra 22 and Ra 23 in the formula (1) include a cyclopentane ring, a cyclohexane ring, a cyclopentene ring, a benzene ring, a piperidine ring, and a morpholine ring. Examples thereof include a lactone ring and a lactam ring, and a 5- to 7-membered ring is preferable.
  • Examples of the halogen atom that R 11 , R 12 , R 13 , R 21 , R 22 and R 23 in the formula (1) may have as a substituent include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Be done.
  • R 1 in the formula (1) is preferably R 11 , more preferably an alkyl group having 1 to 20 carbon atoms, still more preferably an alkyl group having 1 to 10 carbon atoms, and even more preferably 1. It is an alkyl group of ⁇ 6.
  • the second molecular structure linked to the first molecular structure represented by the formula (1) is the structure represented by the following formula (2).
  • the second molecular structure means a molecular structure portion other than the first molecular structure of the oxime compound (1).
  • the bond represented by "*" in the formula (2) is directly coupled to the bond represented by "*" in the formula (1). That is, when the second molecular structure is a structure represented by the formula (2), the benzene ring having "-*" in the formula (2) and the carbonyl group having "-*" in the formula (1). Are directly connected.
  • R 2 and R 3 are independently R 11 , OR 11 , SR 11 , COR 11 , CONR 12 R 13 , NR 12 COR 11 , OCOR 11 , COOR 11 , SCOR 11 , OCSR 11 . , COSR 11 , CSOR 11 , CN or halogen atom.
  • R2s they may be the same or different.
  • R3s they may be the same or different.
  • R 11 , R 12 and R 13 have the same meanings as described above.
  • s and t each independently represent an integer of 0 to 4.
  • L represents a sulfur atom, CR 31 R 32 , CO or NR 33 .
  • R 31 , R 32 and R 33 independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms or an aralkyl group having 7 to 30 carbon atoms.
  • the alkyl moiety may be branched or cyclic and may be R 31 , R 32 and R 33 . May independently form a ring with either adjacent benzene ring.
  • R4 is a hydroxy group, a carboxy group or the following formula (2-1).
  • L 1 represents -O-, -S-, -NR 22-, -NR 22 CO- , -SO 2- , -CS-, -OCO- or -COO-. ..
  • R 22 has the same meaning as described above.
  • L 2 is an alkyl group having 1 to 20 carbon atoms excluding v hydrogen atoms, an aryl group having 6 to 30 carbon atoms excluding v hydrogen atoms, and an aralkyl group having 7 to 30 carbon atoms. Represents a group from which v hydrogen atoms have been removed or a heterocyclic group having 2 to 20 carbon atoms from which v hydrogen atoms have been removed.
  • the alkylene moiety is -O-, -S-, -COO-, -OCO- , -NR 22-, -NR 22 COO- , -OCONR 22-. , -SCO-, -COS-, -OCS- or -CSO- may be interrupted 1 to 5 times, and the alkylene moiety may be branched or cyclic.
  • R 4a represents OR 41 , SR 41 , CONR 42 R 43 , NR 42 COR 43 , OCOR 41 , COOR 41 , SCOR 41 , OCSR 41 , COSR 41 , CSOR 41 , CN or halogen atom.
  • R 41 , R 42 and R 43 independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms or an aralkyl group having 7 to 30 carbon atoms, and R 41 and R respectively.
  • the group represented by 42 and R 43 has an alkyl moiety, the alkyl moiety may be branched or cyclic, and R 42 and R 43 together form a ring. It may be formed.
  • v represents an integer of 1 to 3.
  • Examples of the alkyl group having 1 to 20 carbon atoms, the aryl group having 6 to 30 carbon atoms, and the aralkyl group having 7 to 30 carbon atoms represented by 41 , R 42 and R 43 are R 11 in the formula (1). The same is true for the examples for R 12 , R 13 , R 21 , R 22 , R 23 and R 24 .
  • Examples of the ring group are the same as those for R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in the formula (1).
  • R 31 , R 32 and R 33 in the formula (2) may independently form a ring together with either adjacent benzene ring, respectively, R 31 , R 32 and R. 33 means that each may independently form a ring with a nitrogen atom connected together with either adjacent benzene ring.
  • Examples of rings in which R 31 , R 32 and R 33 in formula (2) can be formed together with either adjacent benzene ring are Ra 12 and Ra 13 and Ra 22 in formula (1). Similar to the example for a ring in which Ra 23 can be formed together.
  • L 2 in the above formula (2-1) is composed of an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms. Represents a group excluding v hydrogen atoms.
  • Examples of the group obtained by removing v hydrogen atoms from the alkyl group having 1 to 20 carbon atoms include a methylene group, an ethylene group, a propylene group, a methylethylene group, a butylene group and a 1-methylpropylene group when v is 1.
  • 2-Methylpropylene group 1,2-dimethylpropylene group, 1,3-dimethylpropylene group, 1-methylbutylene group, 2-methylbutylene group, 3-methylbutylene group, 4-methylbutylene group, 2,4 -Dimethylbutylene group, 1,3-dimethylbutylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, dodecylene group, tridecylene group, tetradecylene group, pentadecylene group, ethane-1,1- Examples thereof include an alkylene group such as a diyl group and a propane-2,2-diyl group.
  • Examples of the group obtained by removing v hydrogen atoms from the aryl group having 6 to 30 carbon atoms include 1,2-phenylene group, 1,3-phenylene group, and 1,4-phenylene group when v is 1. 2,6-naphthylene group, 1,4-naphthylene group, 2,5-dimethyl-1,4-phenylene group, diphenylmethane-4,4'-diyl group, 2,2-diphenylpropane-4,4'-diyl Examples thereof include an arylene group such as a group, a diphenylsulfide-4,4'-diyl group, and a diphenylsulfon-4,4'-diyl group.
  • Examples of the group obtained by removing v hydrogen atoms from the aralkyl group having 7 to 30 carbon atoms include a group represented by the following formula (a) and a group represented by the following formula (b) when v is 1. And so on.
  • L 3 and L 5 represent an alkylene group having 1 to 10 carbon atoms
  • L 4 and L 6 represent a single bond or an alkylene group having 1 to 10 carbon atoms.
  • alkylene group having 1 to 10 carbon atoms examples include a methylene group, an ethylene group, a propylene group, a methylethylene group, a butylene group, a 1-methylpropylene group, a 2-methylpropylene group, a 1,2-dimethylpropylene group and 1 , 3-dimethylpropylene group, 1-methylbutylene group, 2-methylbutylene group, 3-methylbutylene group, 4-methylbutylene group, 2,4-dimethylbutylene group, 1,3-dimethylbutylene group, pentylene group, Examples thereof include a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group and the like.
  • Examples of the group obtained by removing v hydrogen atoms from the heterocyclic group having 2 to 20 carbon atoms include a 2,5-pyridinediyl group, a 2,6-pyridinediyl group and 2,5-, when v is 1.
  • Pyrimidin diyl group 2,5-thiopheneyl group, 3,4-tetratetradiyl group, 2,5-tetratetradiyl group, 2,5-frangyl group, 3,4-thiazolediyl group, 2,5-benzoflangyl Group, 2,5-benzothiophendiyl group, N-methylindole-2,5-diyl group, 2,5-benzothiazolediyl group, 2,5-benzoxazolediyl group and other divalent heterocyclic groups. Be done.
  • Examples of the halogen atom represented by R 2 and R 3 in the formula (2) and R 4a in the above formula (2-1) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • a preferable example of the structure represented by the formula (2) is the structure represented by the following formula (2a).
  • L' represents a sulfur atom or NR 50
  • R 50 represents a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms
  • R 2 , R 3 , R4 , s and t have the same meanings as described above.
  • R44 is a hydroxy group, a carboxy group or the following formula (2-2).
  • L 11 represents -O- or * -OCO-
  • * represents a bond with L 12
  • L 12 represents an alkylene group having 1 to 20 carbon atoms.
  • the alkylene group may be interrupted by 1 to 3 —O—, where R 44a represents OR 55 or COOR 55 and R 55 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. .) Represents a group represented by. ]
  • R 44 is preferably a group represented by the formula (2-2). In this case, it is advantageous in terms of the solubility of the oxime compound (1) in the solvent (C) and the development speed of the resin composition.
  • the carbon number of the alkylene group represented by L 12 is preferably 1 to 10, and more preferably 1 to 4.
  • R 44a is preferably a hydroxy group or a carboxy group, and more preferably a hydroxy group.
  • the method for producing the oxime compound (1) having the second molecular structure represented by the formula (2) is not particularly limited, but can be produced, for example, by the method described in JP-A-2011-132215.
  • Another example of the second molecular structure linked to the first molecular structure represented by the formula (1) is the structure represented by the following formula (3).
  • the bond represented by "*" in the formula (3) is directly coupled to the bond represented by "*” in the formula (1). That is, when the second molecular structure is a structure represented by the formula (3), the benzene ring having "-*" in the formula (3) and the carbonyl group having "-*" in the formula (1). Are directly connected.
  • R5 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms. Represents. When the group represented by R5 has an alkyl moiety, the alkyl moiety may be branched or cyclic.
  • the hydrogen atoms of the group represented by R 5 are R 21 , OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -N (COR 22 ) -OCOR 23 .
  • R 21 , R 22 and R 23 have the same meanings as described above.
  • the hydrogen atom of the group represented by R 21 , R 22 or R 23 may be substituted with a CN, a halogen atom, a hydroxy group or a carboxy group.
  • the alkylene moiety is -O-, -S-, -COO-, -OCO-, -NR 24- , -NR 24 CO. -, -NR 24 COO-, -OCONR 24- , -SCO-, -COS-, -OCS- or -CSO- may be interrupted 1 to 5 times.
  • R 24 has the same meaning as described above.
  • the alkyl moiety may be branched or cyclic, and R 22 and R 23 may be Together they may form a ring.
  • R 6 , R 7 , R 8 and R 9 are independently R 61 , OR 61 , SR 61 , COR 62 , CONR 63 R 64 , NR 65 COR 61 , OCOR 61 , COOR 62 , SCOR 61 , OCSR 61 , respectively. , COSR 62 , CSOR 61 , hydroxyl group, nitro group, CN or halogen atom.
  • R 61 , R 62 , R 63 , R 64 and R 65 independently have a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, and an aryl alkyl group having 7 to 30 carbon atoms.
  • * Represents a bond with the first molecular structure of the oxime compound (1).
  • Examples of an aryl group of 6 to 30, an aralkyl group having 7 to 30 carbon atoms, and a heterocyclic group having 2 to 20 carbon atoms are R 11 , R 12 , R 13 , R 21 , R 22 , and R 22 in the formula (1). The same is true for the examples for R 23 and R 24 .
  • R 22 and R 23 in the formula (3) may form a ring together, that R 22 and R 23 form a ring together with a nitrogen atom, a carbon atom or an oxygen atom connected together. It means that it may be formed.
  • An example of a ring in which R 22 and R 23 in the formula (3) can be formed together is a ring in which Ra 12 and Ra 13 and Ra 22 and Ra 23 in the formula (1) can be formed together. Is similar to the example for.
  • Examples of halogen atoms that may replace the hydrogen atom of the above include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • R5 is a group represented by the following formula ( 3-1).
  • Z is a group obtained by removing one hydrogen atom from an alkyl group having 1 to 20 carbon atoms, and a group obtained by removing one hydrogen atom from an aryl group having 6 to 30 carbon atoms.
  • the group represented by Z has an alkylene moiety, the alkylene moiety is -O-, -S-, -COO-, -OCO-, -NR 24- , -NR 24 COO-, -OCONR 24- ,.
  • R 21 , R 22 and R 24 have the same meanings as described above. ]
  • Z in the formula (3-1) is preferably a methylene group, ethylene or phenylene group.
  • R 21 and R 22 in the formula (3-1) are preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 30 carbon atoms, and more preferably methyl.
  • R 7 is a nitro group.
  • the method for producing the oxime compound (1) having the second molecular structure represented by the formula (3) is not particularly limited, and is, for example, the methods described in JP-A-2000-80068 and JP-A-2011-178767. Can be manufactured at.
  • Yet another example of the second molecular structure linked to the first molecular structure represented by the formula (1) is the structure represented by the following formula (4).
  • the bond represented by "*" in the formula (4) is directly coupled to the bond represented by "*" in the formula (1). That is, when the second molecular structure is a structure represented by the formula (4), the benzene ring having "-*" in the formula (4) and the carbonyl group having "-*" in the formula (1). Are directly connected.
  • R 71 contains a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms. show. When the group represented by R 71 has an alkyl moiety, the alkyl moiety may be branched or cyclic.
  • the hydrogen atoms of the group represented by R 71 are R 21 , OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -N (COR 22 ) -OCOR 23 .
  • R 21 , R 22 and R 23 have the same meanings as described above.
  • the hydrogen atom of the group represented by R 21 , R 22 or R 23 may be substituted with a CN, a halogen atom, a hydroxy group or a carboxy group.
  • the alkylene moiety is -O-, -S-, -COO-, -OCO-, -NR 24- , -NR 24 CO. -, -NR 24 COO-, -OCONR 24- , -SCO-, -COS-, -OCS- or -CSO- may be interrupted 1 to 5 times.
  • R 24 has the same meaning as described above.
  • the alkyl moiety may be branched or cyclic, and R 22 and R 23 may be Together they may form a ring.
  • R 72 , R 73 and three R 74s are independently R 61 , OR 61 , SR 61 , COR 62 , CONR 63 R 64 , NR 65 COR 61 , OCOR 61 , COOR 62 , SCOR 61 , OCSR 61 , respectively. , COSR 62 , CSOR 61 , hydroxyl group, nitro group, CN or halogen atom.
  • R 61 , R 62 , R 63 , R 64 and R 65 independently have a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, and an aryl alkyl group having 7 to 30 carbon atoms.
  • * Represents a bond with the first molecular structure of the oxime compound (1).
  • Examples of an aryl group of 6 to 30, an aralkyl group having 7 to 30 carbon atoms, and a heterocyclic group having 2 to 20 carbon atoms are R 11 , R 12 , R 13 , R 21 , R 22 , and R 22 in the formula (1). The same is true for the examples for R 23 and R 24 .
  • R 22 and R 23 in the formula (4) may form a ring together, that R 22 and R 23 form a ring together with a nitrogen atom, a carbon atom or an oxygen atom connected together. It means that it may be formed.
  • An example of a ring in which R 22 and R 23 in the formula (4) can be formed together is a ring in which Ra 12 and Ra 13 and Ra 22 and Ra 23 in the formula (1) can be formed together. Is similar to the example for.
  • Examples of halogen atoms in which the above may be substituted include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the method for producing the oxime compound (1) having the second molecular structure represented by the formula (4) is not particularly limited, and is, for example, the method according to International Publication No. 2017/051680 and International Publication No. 2020/004601. Can be manufactured at.
  • Yet another example of the second molecular structure linked to the first molecular structure represented by the formula (1) is the structure represented by the following formula (5).
  • the bond represented by "*" in the formula (5) is directly coupled to the bond represented by "*" in the formula (1). That is, when the second molecular structure is a structure represented by the formula (5), the pyrrole ring having "-*" in the formula (5) and the carbonyl group having "-*" in the formula (1). Are directly connected.
  • R 81 contains a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms. show. When the group represented by R 81 has an alkyl moiety, the alkyl moiety may be branched or cyclic.
  • the hydrogen atoms of the group represented by R 81 are R 21 , OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -N (COR 22 ) -OCOR 23 .
  • R 21 , R 22 and R 23 have the same meanings as described above.
  • the hydrogen atom of the group represented by R 21 , R 22 or R 23 may be substituted with a CN, a halogen atom, a hydroxy group or a carboxy group.
  • the alkylene moiety is -O-, -S-, -COO-, -OCO-, -NR 24- , -NR 24 CO. -, -NR 24 COO-, -OCONR 24- , -SCO-, -COS-, -OCS- or -CSO- may be interrupted 1 to 5 times.
  • R 24 has the same meaning as described above.
  • the alkyl moiety may be branched or cyclic, and R 22 and R 23 may be Together they may form a ring.
  • R 82 , R 83 , R 84 , R 85 and R 86 are independently R 61 , OR 61 , SR 61 , COR 62 , CONR 63 R 64 , NR 65 COR 61 , OCOR 61 , COOR 62 , SCOR 61 , respectively. , OCSR 61 , COSR 62 , CSOR 61 , hydroxyl group, nitro group, CN or halogen atom.
  • R 61 , R 62 , R 63 , R 64 and R 65 independently have a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, and an aryl alkyl group having 7 to 30 carbon atoms. Alternatively, it represents a heterocyclic group having 2 to 20 carbon atoms.
  • * Represents a bond with the first molecular structure of the oxime compound (1).
  • Examples of an aryl group of 6 to 30, an aralkyl group having 7 to 30 carbon atoms, and a heterocyclic group having 2 to 20 carbon atoms are R 11 , R 12 , R 13 , R 21 , R 22 , and R 22 in the formula (1). The same is true for the examples for R 23 and R 24 .
  • R 22 and R 23 in the formula (5) may form a ring together, that R 22 and R 23 form a ring together with a nitrogen atom, a carbon atom or an oxygen atom connected together. It means that it may be formed.
  • An example of a ring in which R 22 and R 23 in the formula (5) can be formed together is a ring in which Ra 12 and Ra 13 and Ra 22 and Ra 23 in the formula (1) can be formed together. Is similar to the example for.
  • Examples of halogen atoms in which the hydrogen atom of R65 may be substituted include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the method for producing the oxime compound (1) having the second molecular structure represented by the formula (5) is not particularly limited, and is, for example, the method according to International Publication No. 2017/051680 and International Publication No. 2020/004601. Can be manufactured at.
  • Yet another example of the second molecular structure linked to the first molecular structure represented by the formula (1) is the structure represented by the following formula (6).
  • the bond represented by "*" in the formula (6) is directly coupled to the bond represented by "*" in the formula (1). That is, when the second molecular structure is a structure represented by the formula (6), the benzene ring having "-*" in the formula (6) and the carbonyl group having "-*" in the formula (1). Are directly connected.
  • R 91 , R 92 , R 93 , R 94 , R 95 , R 96 , and R 97 are independently R 61 , OR 61 , SR 61 , COR 62 , and CONR 63 R, respectively.
  • R 61 , R 62 , R 63 , R 64 and R 65 independently have a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, and an aryl alkyl group having 7 to 30 carbon atoms. Alternatively, it represents a heterocyclic group having 2 to 20 carbon atoms.
  • R 92 and R 93 , R 94 and R 95 , R 95 and R 96 , and R 96 and R 97 may be combined to form a ring, respectively.
  • * Represents a bond with the first molecular structure of the oxime compound (1).
  • Examples of an aralkyl group having 7 to 30 carbon atoms and a heterocyclic group having 2 to 20 carbon atoms are the examples of R 11 , R 12 , R 13 , R 21 , R 22 and R 23 in the formula (1). The same is true.
  • R 22 and R 23 in the formula (6) may form a ring together, that R 22 and R 23 form a ring together with a nitrogen atom, a carbon atom or an oxygen atom connected together. It means that it may be formed.
  • An example of a ring in which R 22 and R 23 in the formula (6) can be formed together is a ring in which Ra 12 and Ra 13 and Ra 22 and Ra 23 in the formula (1) can be formed together. Is similar to the example for.
  • Examples of halogen atoms that may replace the hydrogen atoms of R 64 and R 65 include fluorine atoms, chlorine atoms, bromine atoms and iodine atoms.
  • the method for producing the oxime compound (1) having the second molecular structure represented by the formula (6) is not particularly limited, and is, for example, the method according to International Publication No. 2017/051680 and International Publication No. 2020/004601. Can be manufactured at.
  • the photopolymerization initiator (F) preferably contains an oxime compound (1).
  • the photopolymerization initiator (F) may further contain a photopolymerization initiator other than the oxime compound (1), does not contain the oxime compound (1), and is other than the oxime compound (1). It may contain only the photopolymerization initiator of. Examples of other photopolymerization initiators include oxime compounds other than the oxime compound (1), biimidazole compounds, triazine compounds and acylphosphine compounds.
  • Examples of the oxime compound other than the oxime compound (1) include an oxime compound having a partial structure represented by the following formula (d1). * Represents a bond.
  • Examples of the oxime compound having a partial structure represented by the formula (d1) include N-benzoyloxy-1- (4-phenylsulfanylphenyl) butane-1-on-2-imine and N-benzoyloxy-1-.
  • the oxime compounds having a partial structure represented by the formula (d1) are N-benzoyloxy-1- (4-phenylsulfanylphenyl) butane-1-on-2-imine and N-benzoyloxy-1- ( At least selected from the group consisting of 4-phenylsulfanylphenyl) octane-1-on-2-imine and N-benzoyloxy-1- (4-phenylsulfanylphenyl) -3-cyclopentylpropane-1-on-2-imine.
  • One is preferable, and N-benzoyloxy-1- (4-phenylsulfanylphenyl) octane-1-on-2-imine is more preferable.
  • Examples of the biimidazole compound include a compound represented by the formula (d5).
  • RE to RJ represent an aryl group having 6 to 10 carbon atoms which may have a substituent.
  • Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group, a toluyl group, a xylyl group, an ethylphenyl group and a naphthyl group, and a phenyl group is preferable.
  • Examples of the substituent include a halogen atom and an alkoxy group having 1 to 4 carbon atoms.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a chlorine atom is preferable.
  • Examples of the alkoxy group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like, and a methoxy group is preferable.
  • biimidazole compound examples include 2,2'-bis (2-chlorophenyl) -4,4', 5,5'-tetraphenylbiimidazole and 2,2'-bis (2,3-dichlorophenyl) -4.
  • the phenyl group at the 4,4'5,5'-position is substituted with a carboalkoxy group.
  • examples thereof include imidazole compounds (see, for example, Japanese Patent Laid-Open No. 7-10913) and the like. Of these, a compound represented by the following formula or a mixture thereof is preferable.
  • triazine compound examples include 2,4-bis (trichloromethyl) -6- (4-methoxyphenyl) -1,3,5-triazine and 2,4-bis (trichloromethyl) -6- (4-methoxy).
  • acylphosphine compound examples include bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, (2,4,6-trimethylbenzoyl) diphenylphosphine oxide and the like.
  • photopolymerization initiator other than the oxime compound (1) only one kind may be used alone, or two or more kinds of photopolymerization initiators may be used in combination.
  • photopolymerization initiators when two or more photopolymerization initiators are used in combination, they may be combined with an oxime compound other than the above-mentioned oxime compound (1), a biimidazole compound, a triazine compound, and a photopolymerization initiator other than the acylphosphine compound.
  • photopolymerization initiators include, for example, benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether; benzophenone, o-benzoyl methyl benzoate, 4-phenylbenzophenone, 4-benzoyl. -4'-methyldiphenylsulfide, 3,3', 4,4'-tetra (tert-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzophenone, 4,4'-bis (diethylamino) benzophenone, etc.
  • benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether
  • benzophenone o-benzoyl methyl benzoate
  • 4-phenylbenzophenone 4-benzoy
  • Benzophenone compounds such as 9,10-phenanthrene quinone, 2-ethylanthraquinone, camphorquinone; 10-butyl-2-chloroacrydone, benzyl, methylphenylglycoxylate, titanosen compounds and the like can be mentioned.
  • the content of the photopolymerization initiator (F) in the resin composition is preferably 0.1 with respect to 100 parts by mass of the photopolymerizable compound (E). It is by mass or more and 300 parts by mass or less, and more preferably 0.1 parts by mass or more and 200 parts by mass or less.
  • the content of the photopolymerization initiator (F) in the resin composition is preferably 0.1 part by mass or more and 30 parts by mass with respect to 100 parts by mass of the total amount of the resin (A) and the photopolymerizable compound (E). It is not more than 1 part by mass, and more preferably 1 part by mass or more and 20 parts by mass or less.
  • the resin composition tends to have high sensitivity and the exposure time tends to be shortened, so that the productivity of the cured film of the resin composition tends to improve. It is in.
  • the content of the oxime compound (1) in the photopolymerization initiator (F) is preferably 30% by mass with respect to the total amount of the photopolymerization initiator (F) from the viewpoint of increasing the emission light intensity of the cured film of the resin composition.
  • % Or more and 100% by mass or less more preferably 50% by mass or more and 100% by mass or less, further preferably 80% by mass or more and 100% by mass or less, still more preferably 90% by mass or more and 100% by mass or less. It is particularly preferably 95% by mass or more and 100% by mass or less, and most preferably 100% by mass.
  • the resin composition may further contain one or more photopolymerization initiators (F1) together with the photopolymerization initiator (F).
  • the photopolymerization initiator (F1) is a compound or a sensitizer used to promote the polymerization of the photopolymerizable compound (E) initiated by the photopolymerization initiator (F).
  • Examples of the photopolymerization initiator (F1) include an amine compound, an alkoxyanthracene compound, a thioxanthone compound, and a carboxylic acid compound.
  • Examples of the amine compound include triethanolamine, methyldiethanolamine, triisopropanolamine, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 2-dimethylaminoethyl benzoate, and the like.
  • Commercially available products such as EAB-F (manufactured by Hodogaya Chemical Co., Ltd.) may be used.
  • alkoxyanthracene compound examples include 9,10-dimethoxyanthracene, 2-ethyl-9,10-dimethoxyanthracene, 9,10-diethoxyanthracene, 2-ethyl-9,10-diethoxyanthracene, 9,10-.
  • Examples thereof include dibutoxyanthracene, 2-ethyl-9,10-dibutoxyanthracene and the like.
  • thioxanthone compound examples include 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone and the like.
  • carboxylic acid compound examples include phenylsulfanyl acetic acid, methylphenylsulfanyl acetic acid, ethylphenylsulfanyl acetic acid, methylethylphenylsulfanyl acetic acid, dimethylphenylsulfanyl acetic acid, methoxyphenylsulfanyl acetic acid, dimethoxyphenylsulfanyl acetic acid, chlorophenylsulfanyl acetic acid, and dichlorophenylsulfanyl acetic acid.
  • N-phenylglycine phenoxyacetic acid, naphthylthioacetic acid, N-naphthylglycine, naphthoxyacetic acid and the like.
  • the content of the photopolymerization initiator (F1) in the resin composition is preferably 0 with respect to 100 parts by mass of the photopolymerizable compound (E). .1 part by mass or more and 300 parts by mass or less, more preferably 0.1 part by mass or more and 200 parts by mass or less.
  • the content of the photopolymerization initiator (F1) in the resin composition is preferably 0.1 part by mass or more and 30 parts by mass with respect to 100 parts by mass of the total amount of the resin (A) and the photopolymerizable compound (E). It is less than or equal to parts by mass, more preferably 1 part by mass or more and 20 parts by mass or less.
  • the resin composition can further contain one or more kinds of antioxidants (G).
  • the antioxidant (G) is not particularly limited as long as it is an industrially commonly used antioxidant, and is a phenol-based antioxidant, a phosphorus-based antioxidant, a phosphorus / phenol composite antioxidant, and a sulfur-based antioxidant. Antioxidants and the like can be used.
  • the phosphorus / phenol complex type antioxidant can be a compound having one or more phosphorus atoms and one or more phenol structures in the molecule.
  • the antioxidant (G) preferably contains a phosphorus / phenol composite type antioxidant.
  • phenolic antioxidant examples include Irganox (registered trademark) 1010 (Irganox 1010: pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], BASF Co., Ltd. 1076 (Irganox 1076: Octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, manufactured by BASF Co., Ltd.), 1330 (Irganox 1330: 3,3', 3).
  • Irganox 1010 pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]
  • BASF Co., Ltd. 1076 Irganox 1076: Octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, manufactured by BASF Co
  • Examples of the phosphorus-based antioxidant include Irgafos (registered trademark) 168 (Irgafos 168: Tris (2,4-di-tert-butylphenyl) phosfite, manufactured by BASF Corporation), 12 (Irgafos 12: Tris).
  • Examples of the phosphorus / phenol complex antioxidant include Sumilyzer® GP (6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8, Examples thereof include 10-tetra-tert-butyldibenz [d, f] [1.3.2] dioxaphosphepine (manufactured by Sumitomo Chemical Co., Ltd.).
  • sulfur-based antioxidant examples include ⁇ -alkyl mercaptopropionic acid esters of dialkylthiodipropionate compounds such as dilauryl thiodipropionate, dimyristyl or distearyl and polyols such as tetrakis [methylene (3-dodecylthio) propionate] methane. Examples include compounds.
  • the content of the antioxidant (G) in the resin composition is, for example, 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the resin (A). From the viewpoint of heat resistance of the resin film, it is preferably 5 parts by mass or more and 40 parts by mass or less, more preferably 7 parts by mass or more and 30 parts by mass or less, and further preferably 11 parts by mass or more and 25 parts by mass or less. Is.
  • Leveling agent (H) The resin composition may further contain one or more leveling agents (H). By containing the leveling agent (H), the flatness of the resin film can be further improved.
  • the leveling agent (H) include a silicone-based surfactant, a fluorine-based surfactant, and a silicone-based surfactant having a fluorine atom. These may have a polymerizable group in the side chain.
  • the leveling agent (H) is preferably a fluorine-based surfactant from the viewpoint of developability of the resin film (wavelength conversion film or the like) and emission light intensity.
  • silicone-based surfactant examples include a surfactant having a siloxane bond in the molecule.
  • Torre Silicone DC3PA, SH7PA, DC11PA, SH21PA, SH28PA, SH29PA, SH30PA, SH8400 (trade name: manufactured by Toray Dow Corning Co., Ltd.), KP321, KP322, KP323, KP324.
  • TSF400 TSF401, TSF410, TSF4300, TSF4440, TSF4445, TSF4446, TSF4452, TSF4460 (manufactured by Momentive Performance Materials Japan GK) and the like. ..
  • fluorine-based surfactant examples include surfactants having a fluorocarbon chain in the molecule. Specifically, Florard (registered trademark) FC430, FC431 (manufactured by Sumitomo 3M Co., Ltd.), Megafuck (registered trademark) F142D, F171, F172, F173, F177, F183, F554, and F554.
  • F575, R30, RS-718-K (manufactured by DIC Co., Ltd.), Ftop (registered trademark) EF301, EF303, EF351, EF352 (manufactured by Mitsubishi Materials Electronics Co., Ltd.), Surflon (registered trademark) ) S381, S382, SC101, SC105 (manufactured by Asahi Glass Co., Ltd.), E5844 (manufactured by Daikin Fine Chemical Laboratory Co., Ltd.) and the like.
  • silicone-based surfactant having a fluorine atom examples include a surfactant having a siloxane bond and a fluorocarbon chain in the molecule. Specific examples thereof include Megafuck (registered trademark) R08, BL20, F475, F477 and F443 (manufactured by DIC Corporation).
  • the content of the leveling agent (H) in the resin composition is preferably 0.01% by mass or more and less than 1% by mass with respect to the total amount of the resin composition. Is. The details of the content will be described later. Further, from the viewpoint of effectively suppressing the generation of pinholes, the leveling agent (H) is preferably added so that the resin composition satisfies the formula [R] described later.
  • the resin composition further contains additives known in the art such as polymerization inhibitors, fillers, other polymer compounds, adhesion promoters, light stabilizers, chain transfer agents, etc., if necessary. You may.
  • Resin composition The resin composition satisfies at least one of the following (i) and (ii).
  • the content of the solvent (C) in the resin composition is 40% by mass or more and less than 74% by mass with respect to the total amount of the resin composition, and the content of the leveling agent (H) is the resin composition. It is 0.01% by mass or more and 1% by mass or less with respect to the total amount of.
  • the viscosity of the resin composition at 25 ° C. is ⁇ (mPa ⁇ s) and the surface tension at 25 ° C. is ⁇ (mN / m)
  • the resin composition of the present invention satisfying at least one of the above (i) and (ii), the optical performance required for the resin film formed from the resin film even though it contains the light scattering agent (B) can be obtained. It is possible to effectively suppress the generation of pinholes in the resin film while ensuring good results. From the viewpoint of suppressing the generation of pinholes, the resin composition preferably satisfies both (i) and (ii) above.
  • the content of the solvent (C) in the resin composition is less than 40% by mass, the coatability of the resin composition deteriorates and the resin film is formed, especially when the light scattering agent (B) is contained. Is likely to be difficult. It is advantageous that the content of the solvent (C) is 40% by mass or more and less than 74% by mass in order for the resin composition to easily satisfy the above formula [R]. Further, when the content of the leveling agent (H) in the resin composition is less than 0.01% by mass, even if the content of the solvent (C) is 40% by mass or more and less than 74% by mass, the pin is attached to the resin film. Holes are likely to occur. When the content of the leveling agent (H) is 1% by mass or less, the flatness of the resin film can be further improved.
  • the content of the solvent (C) in the resin composition is preferably 45% by mass or more with respect to the total amount of the resin composition 73. It is mass% or less, more preferably 47% by mass or more and 72% by mass or less, and further preferably 49% by mass or more and 70% by mass or less.
  • the content of the solvent (C) in the above range may be advantageous in terms of the flatness of the resin film formed from the resin composition and the ease of controlling the film thickness. If the content of the solvent (C) has a value after the decimal point, the content may be rounded to an integer.
  • the content of the leveling agent (H) in the resin composition is preferably 0.02 mass by mass with respect to the total amount of the resin composition. % Or more and 0.5% by mass or less, more preferably 0.025% by mass or more and 0.2% by mass or less, and further preferably 0.03% by mass or more and 0.1% by mass or less.
  • the content of the leveling agent (H) in the above range may be advantageous in terms of the flatness of the resin film formed from the resin composition and the ease of controlling the film thickness.
  • the present inventors have found that ⁇ / ( ⁇ 1/2 ) of the resin composition correlates with the occurrence of pinholes in the resin film formed from the resin composition. It is a thing. That is, in order to effectively suppress the generation of pinholes, it is important to consider not only the viscosity ⁇ of the resin composition but also the surface tension ⁇ , and ⁇ / ( ⁇ 1 /). It was found that it is important to adjust the value of 2 ) within the above-mentioned predetermined range.
  • ⁇ / ( ⁇ 1/2 ) of the resin composition exceeds 65, the coatability of the resin composition deteriorates and it tends to be difficult to form a resin film. Further, when ⁇ / ( ⁇ 1/2 ) of the resin composition is less than 4.0, pinholes are likely to occur in the resin film.
  • the resin composition preferably satisfies the following formula [S], more preferably the following formula [T], and further preferably.
  • the following formula [U] is satisfied. 4.2 ⁇ ⁇ / ( ⁇ 1/2 ) ⁇ 62 [S] 4.4 ⁇ ⁇ / ( ⁇ 1/2 ) ⁇ 60 [T] 4.5 ⁇ ⁇ / ( ⁇ 1/2 ) ⁇ 59 [U]
  • the viscosity ⁇ (mPa ⁇ s) at 25 ° C. and the surface tension ⁇ (mN / m) at 25 ° C. of the resin composition are measured according to the measuring method in the column of Examples described later.
  • the ⁇ / ( ⁇ 1/2 ) of the resin composition can be controlled mainly by adjusting the content of the solvent (C) and / or the content of the leveling agent (H) in the resin composition, but the solvent.
  • Other adjusting factors such as the type of (C), the type and content of the resin (A), the content of the photopolymerizable compound (E), and the content ratio of the resin (A) to the photopolymerizable compound (E) It can also be controlled in consideration of the combination.
  • the solvent (C) is not particularly limited as long as it dissolves the resin (A) (however, the resin composition further contains the photopolymerizable compound (E) and the photopolymerization initiator (F). In this case, it is preferable that the photopolymerizable compound (E) and the photopolymerization initiator (F) are further dissolved), propylene glycol monomethyl ether acetate, ethyl lactate, propylene glycol monomethyl ether, ethyl 3-ethoxypropionate.
  • Ethylene glycol monomethyl ether diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, 4-hydroxy-4-methyl-2-pentanone, cyclohexanol acetate, toluene, or a mixture of two or more thereof is preferable.
  • Propylene glycol monomethyl ether acetate is more preferred.
  • the resin composition When the resin composition satisfies the above (ii), the resin composition may or may not contain the leveling agent (H), but preferably contains the leveling agent (H).
  • the leveling agent (H) By including the leveling agent (H), it becomes easy to control ⁇ / ( ⁇ 1/2 ) of the resin composition, particularly the surface tension ⁇ .
  • the content of the leveling agent (H) in the resin composition is as described above.
  • the resin composition satisfies at least one of the above (i) and (ii), and the solvent (C) is propylene glycol monomethyl ether acetate. More preferably, the resin composition satisfies both (i) and (ii) above, and the solvent (C) contains propylene glycol monomethyl ether acetate.
  • the solvent (C) contains propylene glycol monomethyl ether acetate
  • the content of the propylene glycol monomethyl ether acetate in the solvent (C) is preferably 30% by mass from the viewpoint of more effectively suppressing the generation of pinholes. % Or more, more preferably 40% by mass or more, still more preferably 50% by mass or more, and 60% by mass or more, 70% by mass or more, 80% by mass or more, or 90% by mass or more.
  • the viscosity ⁇ of the resin composition at 25 ° C. is, for example, 7 mPa ⁇ s or more and 500 mPa ⁇ s or less, and from the viewpoint of satisfying the above (ii), it is preferably 10 mPa ⁇ s or more and 400 mPa ⁇ s or less, and more preferably 20 mPa. It is s or more and 300 mPa ⁇ s or less, and more preferably 22 mPa ⁇ s or more and 270 mPa ⁇ s or less.
  • the surface tension ⁇ of the resin composition at 25 ° C. is, for example, 10 mN / m or more and 50 mN / m or less, and is preferably 12 mN / m or more and 45 mN / m or less, more preferably, from the viewpoint of satisfying the above (ii). It is 15 mN / m or more and 40 mN / m or less, more preferably 18 mN / m or more and 35 mN / m or less, and even more preferably 20 mN / m or more and 30 mN / m or less.
  • the resin composition can be produced by a method including a step of mixing a predetermined component and, if necessary, other components used.
  • the method for producing the resin composition can further include a step of preparing the resin (A).
  • the first embodiment of the resin film according to the present invention is a film formed from the above-mentioned resin composition according to the present invention, for example, a resin composition is used as a substrate. It can be obtained by a method including a step of applying to and then drying.
  • the resin film is preferably a cured film.
  • the resin composition used for forming the cured film is preferably a photopolymerizable compound (E) in addition to the resin (A), the light scattering agent (B), the solvent (C) and preferably the leveling agent (H). And a curable resin composition further containing a photopolymerization initiator (F).
  • the cured film (also simply referred to as "cured film” in the present specification) can be obtained by applying the above-mentioned curable resin composition to a substrate and further curing it by the action of light and, if necessary, the action of heat. Can be done.
  • the cured film may be formed on the entire surface of the substrate, or may be formed as a cured pattern on a part of the substrate. In the present specification, the cured pattern is one aspect of the cured film, and refers to a cured film formed in a pattern.
  • Examples of the method for forming a cured film on a part of the substrate include a photolithography method, an inkjet method, a printing method and the like. Of these, the photolithography method is preferable.
  • the photolithography method is a method in which a curable resin composition is applied to a substrate and dried to form a composition layer, and the composition layer is exposed and developed through a photomask.
  • a curable resin composition is applied to the substrate and dried to form a composition layer, and the composition layer is heated and / or exposed to the entire surface of the composition layer. The method can be mentioned.
  • the substrate includes a glass plate such as quartz glass, borosilicate glass, alumina silicate glass, soda lime glass whose surface is silica-coated, a resin plate such as polycarbonate, polymethyl methacrylate, or polyethylene terephthalate, silicon, or the above substrate. Examples include those formed with aluminum, silver, silver / copper / palladium alloy thin films, and the like.
  • the substrate is preferably a glass plate, a silicon substrate, or the like.
  • the substrate may be pretreated so that the wettability of the substrate surface can be adjusted.
  • the pretreatment include cleaning with a solvent such as alcohol or acetone, acid treatment, alkali treatment, plasma treatment, corona treatment and the like.
  • the formation of the curing pattern by the photolithography method can be performed by known or conventional equipment and conditions. For example, it can be produced as follows. First, the curable resin composition is applied onto a substrate and dried by heating and / or under reduced pressure to remove volatile components such as a solvent to obtain a composition layer. Examples of the coating method include a spin coating method, a slit coating method, a slit and spin coating method, and the like.
  • the temperature at the time of heat drying is preferably 30 ° C. or higher and 120 ° C. or lower, and more preferably 50 ° C. or higher and 110 ° C. or lower.
  • the heating time is preferably 10 seconds or more and 60 minutes or less, and more preferably 30 seconds or more and 30 minutes or less.
  • the film thickness of the composition layer is not particularly limited and may be appropriately selected depending on the film thickness of the desired curing pattern. For example, it is 1 ⁇ m or more and 20 ⁇ m or less, preferably 3 ⁇ m or more and 18 ⁇ m or less, and more preferably. It is 5 ⁇ m or more and 14 ⁇ m or less, and more preferably 7 ⁇ m or more and 12 ⁇ m or less.
  • the composition layer is then exposed via a photomask to form the desired curing pattern.
  • the shape of the pattern on the photomask is not particularly limited.
  • a light source that generates light having a wavelength of 250 nm or more and 450 nm or less is preferable.
  • light having a wavelength of about 436 nm, a light of about 408 nm, or a light of about 365 nm may be selectively extracted from the light of the wavelength by a bandpass filter, depending on the absorption wavelength of the photopolymerization initiator (F).
  • Specific examples of the light source include a mercury lamp, a light emitting diode, a metal halide lamp, a halogen lamp and the like.
  • An exposure device such as a mask aligner and a stepper can be used to uniformly irradiate the entire exposed surface with parallel rays and to accurately align the photomask with the substrate on which the composition layer is formed. It is preferable to use.
  • the exposed composition layer is cured by polymerizing the photopolymerizable compound (E) and the like contained in the composition layer.
  • the developer By bringing the exposed composition layer into contact with a developing solution for development, the unexposed portion of the composition layer is dissolved and removed in the developing solution to obtain a cured pattern.
  • the developer include an aqueous solution of an alkaline compound such as potassium hydroxide, sodium hydrogen carbonate, sodium carbonate, and tetramethylammonium hydroxide, and an organic solvent.
  • the concentration of the alkaline compound in the aqueous solution is preferably 0.01% by mass or more and 10% by mass or less, and more preferably 0.03% by mass or more and 5% by mass or less.
  • the organic solvent include the same as the above-mentioned solvent (C).
  • the developer may contain a surfactant.
  • the developing method may be any of a paddle method, a dipping method, a spray method and the like. Further, the substrate may be tilted at an arbitrary angle during development.
  • the heating temperature is preferably 150 ° C. or higher and 250 ° C. or lower, and more preferably 160 ° C. or higher and 235 ° C. or lower.
  • the heating time is preferably 1 minute or more and 120 minutes or less, and more preferably 10 minutes or more and 60 minutes or less.
  • the number of pinholes generated is preferably 0.07 / cm 2 or less, and more preferably 0.05 / cm 2 . It is less than or equal to, more preferably 0.03 pieces / cm 2 or less, still more preferably 0.02 pieces / cm 2 or less, particularly preferably 0.01 pieces / cm 2 or less, and most preferably. 0 pieces / cm 2 .
  • the second embodiment of the resin film according to the present invention is a resin film containing a light scattering agent (B), and the number of pinholes generated is 0.07 / cm 2 or less.
  • the resin film usually further contains the resin (A).
  • the resin film can be formed from a resin composition containing the resin (A) and the light scattering agent (B).
  • the resin film according to the second embodiment is preferably a cured film.
  • the resin composition used for forming the cured film preferably further contains a photopolymerizable compound (E) and a photopolymerization initiator (F) in addition to the resin (A) and the light scattering agent (B). It is a resin composition.
  • E photopolymerizable compound
  • F photopolymerization initiator
  • It is a resin composition.
  • the above description is cited for a method for forming a cured film or a cured pattern, which is one aspect of the cured film, from the curable resin composition, a substrate used for the method, and the like.
  • the resin composition or curable resin composition for forming the resin film according to the second embodiment includes a resin (A), a light scattering agent (B), a photopolymerizable compound (E), and a photopolymerization initiator (F). ),
  • the components described in the above section ⁇ Resin composition> may be further contained.
  • the description in the above ⁇ resin composition> section for the component also applies to the resin film according to the present embodiment.
  • the description in the above ⁇ resin composition> section is applied to the resin film according to the present embodiment. Will be done.
  • the number of pinholes generated is preferably 0.05 pieces / cm 2 or less, more preferably 0.03 pieces / cm 2 or less, and further preferably 0.02 pieces. It is / cm 2 or less, more preferably 0.01 pieces / cm 2 or less, and most preferably 0 pieces / cm 2 .
  • the number of pinholes generated in the resin film is measured according to the method described in the section [Examples] described later.
  • the measurement area on the surface of the resin film may be one place or a plurality of places.
  • the number of pinholes generated may be measured for one measurement area having an area of 1 cm 2 , and this may be used as the number of pinholes generated per 1 cm 2 , or a plurality of measurement areas may be set so that the total area is 1 cm 2 . It may be selected and the total number of pinholes generated in these plurality of measurement areas may be the total number of pinholes generated per 1 cm 2 .
  • the area of the measurement area (the total area when the measurement area is a plurality of places) may be an area other than 1 cm 2 .
  • the number of pinholes generated in the measurement area may be measured, and the measured number of pinholes generated may be divided by the area of the measurement area to obtain the number of pinholes generated per 1 cm 2 .
  • the resin film may be formed through the developing process, but usually the number of pinholes generated does not change before and after the developing process.
  • the resin film (preferably a cured film or a cured pattern) containing the quantum dots (D) can emit light having a wavelength different from that of the irradiation light by irradiating with ultraviolet light or visible light.
  • the wavelength of the emitted light can be selected. Since the resin film (preferably a cured film or a cured pattern) has a function of converting the wavelength of irradiation light, it can be used as a color conversion layer (wavelength conversion film) of a display device.
  • Examples of such a display device include JP-A-2006-309219, JP-A-2006-310303, JP-A-2013-15812, JP-A-2009-251129, JP-A-2014-2363, and the like.
  • the display device described in is mentioned.
  • the resin composition according to the present invention can form a resin film that exhibits good optical performance and suppresses the generation of pinholes, it is possible to form a display device, particularly a liquid crystal display device, an organic EL display device, or an inorganic substance. It is useful as a resin composition for forming a color conversion layer (wavelength conversion film) of an EL display device or for forming a bank. Since the resin film according to the present invention can be a resin film that exhibits good optical performance and suppresses the generation of pinholes, color conversion of a display device, particularly a liquid crystal display device, an organic EL display device, or an inorganic EL display device. It is useful as a layer (wavelength conversion film) or a bank.
  • the surface tension (25 ° C) of the resin composition was determined by the following procedure. (1) A resin composition was applied onto a 5 cm square glass substrate (Eagle 2000; manufactured by Corning Inc.) so as to have a film thickness of 10 ⁇ m by a spin coating method to form a coating film. (2) In an environment of 25 ° C., 1.0 ⁇ L of water droplets are dropped on the surface of the coating film, and the coating film is coated by the ⁇ / 2 method using a contact angle measuring device (DM700, manufactured by Kyowa Surface Science Co., Ltd.). The contact angle ⁇ 1 with respect to water was measured.
  • DM700 manufactured by Kyowa Surface Science Co., Ltd.
  • Equation 2 was obtained by substituting m) and 1.3 (mN / m).
  • Equation 2 was obtained by substituting m) and 1.3 (mN / m).
  • Equation 2 was obtained by substituting m) and 1.3 (mN / m).
  • ⁇ S d and ⁇ Sp were obtained, and the surface tension ⁇ ( mN / m) of the resin composition at 25 ° C. was obtained as the sum of these.
  • a resin film was prepared from the resin composition, the surface of the obtained resin film was observed, and the number of pinholes per 1 cm 2 of the resin film was measured. Specifically, it is as follows. A dent (recess) having a diameter of about 100 ⁇ m or more existing on the surface of the resin film was used as a pinhole. A resin composition is applied onto a 5 cm square glass substrate (Eagle 2000; manufactured by Corning Inc.) to a film thickness of 10 ⁇ m by a spin coating method, and then prebaked at 100 ° C. for 3 minutes to form a curable composition layer. Formed.
  • the substrate on which the curable composition layer was formed was irradiated with light using an exposure machine (TME-150RSK; manufactured by Topcon Corporation) at an exposure amount of 80 mJ / cm 2 (365 nm standard) under an atmospheric atmosphere. Then, post-baking was performed at 180 ° C. for 60 minutes to obtain a substrate having a cured film. Then, using a laser microscope (OLS4000, manufactured by Olympus), the surface of the cured film was observed at a magnification of 20 times, the number of pinholes generated on the surface of the cured film was measured, and the measured number of pinholes was measured. The number of pinholes generated per 1 cm 2 was calculated by dividing by the area of the region (25 cm 2 ).
  • the weight average molecular weight (Mw) of the resin (A-1) was measured by the GPC method under the following conditions. Equipment; K2479 (manufactured by Shimadzu Corporation) Column; SHIMADZU Shima-pack GPC-80M Column temperature; 40 ° C Solvent; Tetrahydrofuran flow rate; 1.0 mL / min Detector; RI Calibration standard material; TSK STANDARD POLYSTYRENE F-40, F-4, F-288, A-2500, A-500 (manufactured by Tosoh Corporation)
  • [Acid value of resin] 3 g of the resin (A-1) solution is precisely weighed, dissolved in a mixed solvent of 90 g of acetone and 10 g of water, and an automatic titration device (manufactured by Hiranuma Sangyo Co., Ltd., product) using a 0.1-specified KOH aqueous solution as a titration solution.
  • the acid value of the resin (A-1) solution was measured by the name: COM-555), and the acid value (AV) per 1 g of the solid content was obtained from the acid value of the solution and the solid content of the solution.
  • Solid content of resin solution About 1 g of the resin (A-1) solution was weighed in an aluminum cup, dried at 180 ° C. for 1 hour, and then the mass was measured. The solid content (mass%) of the resin (A-1) solution was calculated from the mass reduction amount.
  • the resin (A-1) has a weight average molecular weight of 7600, a molecular weight distribution of 2.1, an acid value of 100 mgKOH / g in terms of standard polystyrene, and a solid content of 40% by mass in the resin (A-1) solution. there were.
  • the content of each component in the resin composition obtained from the addition amount is as shown in Table 1.
  • the components other than the solvent (C) are the contents (unit: parts by mass) in terms of solid content.
  • the unit of the content of the solvent (C) is a mass part.
  • the quantum dots (D-1) are blended as a dispersion liquid of the quantum dots (D-1) in the preparation of the resin composition, and the content shown in Table 1 is the quantum dots (D-1) contained in the solution. D-1) It is a quantity of itself.
  • the solvent (C) in Table 1 contains the solvent contained in the dispersion liquid and the solution used for preparing the resin composition.
  • the “solvent content” shown in Table 1 means the content (% by mass) of the solvent (C) with respect to the total amount of the resin composition.
  • the “leveling agent content” shown in Table 1 means the content rate (mass%) of the leveling agent (H) with respect to the total amount of the resin composition.
  • the dispersion liquid of the quantum dots (D-1) obtained in Production Example 3 according to the method of the following [a].
  • the concentration of the organic ligand (X-2) in was measured and calculated based on this.
  • Table 1 shows the values of ⁇ / ( ⁇ 1/2 ) for the obtained resin composition.
  • the number of pinholes generated was measured according to the above. The results are also shown in Table 1.
  • Comparative Example 5 since the viscosity of the resin composition was high and it was not possible to form a coating film having a film thickness of 10 ⁇ m, the surface tension and the number of pinholes generated were not measured.
  • Antioxidant (G-1) Sumilizer-GP (phosphorus / phenol complex type antioxidant, manufactured by Sumitomo Chemical Co., Ltd., solid content 100%)
  • Leveling agent (H-1) F-554 (fluorine-based leveling agent, manufactured by DIC Corporation, 100% solid content)

Abstract

樹脂(A)、光散乱剤(B)、溶剤(C)及びレベリング剤(H)を含む樹脂組成物であって、溶剤(C)の含有率が樹脂組成物の総量に対して40質量%以上74質量%未満であり、レベリング剤(H)の含有率が樹脂組成物の総量に対して0.01質量%以上1質量%以下である樹脂組成物が提供される。

Description

樹脂組成物、樹脂膜及び表示装置
 本発明は、樹脂組成物及びそれから形成される樹脂膜、並びに該樹脂膜を含む表示装置に関する。
 特許文献1には、量子ドットを含む硬化性樹脂組成物、及び該硬化性樹脂組成物を用いて形成される波長変換膜が記載されている。
 一方、特許文献2には、黒色顔料、感光性樹脂材料及び溶剤を含有し、その乾燥塗布膜の20度鏡面光沢度が100~200であるブラックマトリックス形成用ブラックレジスト組成物において、上記光沢度を達成するための手段として該レジスト組成物の粘度特性を調整することが記載されている。
特開2016-065178号公報 特開2005-227797号公報
 従来のレジスト組成物は、それを塗工して樹脂膜を形成する際、樹脂膜にピンホールを生じることがあった。レジスト組成物に光散乱剤を含有させて樹脂膜に光散乱性を付与することがあるが、レジスト組成物が光散乱剤を含有する場合にとりわけピンホールを生じやすいことが本発明者らの検討により明らかとなった。
 本発明の1つの目的は、光散乱剤を含む樹脂組成物であって、それから形成される樹脂膜にピンホールが発生することを抑制することができる樹脂組成物を提供することにある。
 本発明の他の目的は、上記樹脂組成物から形成される樹脂膜、及び、該樹脂膜を含む表示装置を提供することにある。
 本発明は、以下に示される樹脂組成物、樹脂膜及び表示装置を提供する。
 [1] 樹脂(A)、光散乱剤(B)、溶剤(C)及びレベリング剤(H)を含む樹脂組成物であって、
 前記溶剤(C)の含有率が、前記樹脂組成物の総量に対して40質量%以上74質量%未満であり、
 前記レベリング剤(H)の含有率が、前記樹脂組成物の総量に対して0.01質量%以上1質量%以下である、樹脂組成物。
 [2] 樹脂(A)、光散乱剤(B)及び溶剤(C)を含む樹脂組成物であって、
 前記樹脂組成物の25℃における粘度をμ(mPa・s)、25℃における表面張力をσ(mN/m)とするとき、下記式:
 4.0≦μ/(σ1/2)≦65
を満たす、樹脂組成物。
 [3] 量子ドット(D)をさらに含む、[1]又は[2]に記載の樹脂組成物。
 [4] 光重合性化合物(E)及び光重合開始剤(F)をさらに含む、[1]~[3]のいずれかに記載の樹脂組成物。
 [5] 前記光散乱剤(B)の含有率が、前記樹脂組成物の固形分の総量に対して1質量%以上30質量%以下である、[1]~[4]のいずれかに記載の樹脂組成物。
 [6] 前記光散乱剤(B)がTiOの粒子を含む、[1]~[5]のいずれかに記載の樹脂組成物。
 [7] 前記樹脂(A)の含有率が、前記樹脂組成物の固形分の総量に対して10質量%以上70質量%以下である、[1]~[6]のいずれかに記載の樹脂組成物。
 [8] 25℃における粘度μが7mPa・s以上500mPa・s以下である、[1]~[7]のいずれかに記載の樹脂組成物。
 [9] [1]~[8]のいずれかに記載の樹脂組成物から形成される樹脂膜。
 [10] 光散乱剤(B)を含む樹脂膜であって、ピンホール発生数が0.07個/cm以下である樹脂膜。
 [11] [9]又は[10]に記載の樹脂膜を含む表示装置。
 樹脂膜にピンホールが発生することを抑制することができる樹脂組成物、該樹脂組成物から形成される樹脂膜、及び、該樹脂膜を含む表示装置を提供することができる。
 <樹脂組成物>
 本発明に係る樹脂組成物(以下、「樹脂組成物」ともいう。)は、樹脂(A)、光散乱剤(B)及び溶剤(C)を含む。
 [1]樹脂(A)
 樹脂(A)は、1種又は2種以上の樹脂を含むことができる。樹脂(A)としては、以下の樹脂[K1]~[K4]等が挙げられる。
 樹脂[K1];不飽和カルボン酸及び不飽和カルボン酸無水物からなる群より選ばれる少なくとも1種(a)(以下、「(a)」ともいう。)と、(a)と共重合可能な単量体(c)(ただし、(a)とは異なる。)(以下、「(c)」ともいう。)との共重合体;
 樹脂[K2];(a)と(c)との共重合体に炭素数2~4の環状エーテル構造とエチレン性不飽和結合とを有する単量体(b)(以下、「(b)」ともいう。)を反応させた樹脂;
 樹脂[K3];(b)と(c)との共重合体に(a)を反応させた樹脂;
 樹脂[K4];(b)と(c)との共重合体に(a)を反応させ、さらにカルボン酸無水物を反応させた樹脂。
 (a)としては、例えば、(メタ)アクリル酸、クロトン酸、o-、m-、p-ビニル安息香酸等の不飽和モノカルボン酸;
 マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸、3-ビニルフタル酸、4-ビニルフタル酸、3,4,5,6-テトラヒドロフタル酸、1,2,3,6-テトラヒドロフタル酸、ジメチルテトラヒドロフタル酸、1,4-シクロヘキセンジカルボン酸等の不飽和ジカルボン酸;
 メチル-5-ノルボルネン-2,3-ジカルボン酸、5-カルボキシビシクロ[2.2.1]ヘプト-2-エン、5,6-ジカルボキシビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-5-エチルビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-6-メチルビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-6-エチルビシクロ[2.2.1]ヘプト-2-エン等のカルボキシ基を含有するビシクロ不飽和化合物;
 無水マレイン酸、シトラコン酸無水物、イタコン酸無水物、3-ビニルフタル酸無水物、4-ビニルフタル酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、1,2,3,6-テトラヒドロフタル酸無水物、ジメチルテトラヒドロフタル酸無水物、5,6-ジカルボキシビシクロ[2.2.1]ヘプト-2-エン無水物等の不飽和ジカルボン酸無水物;
 こはく酸モノ〔2-(メタ)アクリロイルオキシエチル〕、フタル酸モノ〔2-(メタ)アクリロイルオキシエチル〕等の2価以上の多価カルボン酸の不飽和モノ〔(メタ)アクリロイルオキシアルキル〕エステル;
 α-(ヒドロキシメチル)(メタ)アクリル酸のような、同一分子中にヒドロキシ基及びカルボキシ基を含有する不飽和(メタ)アクリレート
等が挙げられる。
 これらのうち、共重合反応性の点や得られる樹脂(A)のアルカリ水溶液への溶解性の点から、(メタ)アクリル酸、無水マレイン酸等が好ましい。
 本明細書において(メタ)アクリル酸とは、アクリル酸及び/又はメタクリル酸を意味する。「(メタ)アクリロイル」、「(メタ)アクリレート」等においても同様である。
 (b)は、例えば、炭素数2~4の環状エーテル構造(例えば、オキシラン環、オキセタン環及びテトラヒドロフラン環からなる群より選ばれる少なくとも1種)とエチレン性不飽和結合とを有する単量体である。(b)は、炭素数2~4の環状エーテル構造と(メタ)アクリロイルオキシ基とを有する単量体であることが好ましい。
 (b)としては、例えば、グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、β-エチルグリシジル(メタ)アクリレート、グリシジルビニルエーテル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、α-メチル-o-ビニルベンジルグリシジルエーテル、α-メチル-m-ビニルベンジルグリシジルエーテル、α-メチル-p-ビニルベンジルグリシジルエーテル、2,3-ビス(グリシジルオキシメチル)スチレン、2,4-ビス(グリシジルオキシメチル)スチレン、2,5-ビス(グリシジルオキシメチル)スチレン、2,6-ビス(グリシジルオキシメチル)スチレン、2,3,4-トリス(グリシジルオキシメチル)スチレン、2,3,5-トリス(グリシジルオキシメチル)スチレン、2,3,6-トリス(グリシジルオキシメチル)スチレン、3,4,5-トリス(グリシジルオキシメチル)スチレン、2,4,6-トリス(グリシジルオキシメチル)スチレン等のオキシラン環とエチレン性不飽和結合とを有する単量体;
 3-メチル-3-メタクリルロイルオキシメチルオキセタン、3-メチル-3-アクリロイルオキシメチルオキセタン、3-エチル-3-メタクリロイルオキシメチルオキセタン、3-エチル-3-アクリロイルオキシメチルオキセタン、3-メチル-3-メタクリロイルオキシエチルオキセタン、3-メチル-3-アクリロイルオキシエチルオキセタン、3-エチル-3-メタクリロイルオキシエチルオキセタン、3-エチル-3-アクリロイルオキシエチルオキセタン等のオキセタン環とエチレン性不飽和結合とを有する単量体;
 テトラヒドロフルフリルアクリレート(例えば、ビスコートV#150、大阪有機化学工業(株)製)、テトラヒドロフルフリルメタクリレート等のテトラヒドロフラン環とエチレン性不飽和結合とを有する単量体
等が挙げられる。
 樹脂[K2]~[K4]の製造時の反応性が高く、未反応の(b)が残存しにくいことから、(b)としては、オキシラン環とエチレン性不飽和結合とを有する単量体が好ましい。
 (c)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-メチルシクロヘキシル(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカン-
8-イル(メタ)アクリレート(当該技術分野では、慣用名として「ジシクロペンタニル(メタ)アクリレート」といわれている。また、「トリシクロデシル(メタ)アクリレート」という場合がある。)、トリシクロ[5.2.1.02,6]デセン-8-イル(メタ)アクリレート(当該技術分野では、慣用名として「ジシクロペンテニル(メタ)アクリレート」といわれている。)、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、アリル(メタ)アクリレート、プロパルギル(メタ)アクリレート、フェニル(メタ)アクリレート、ナフチル(メタ)アクリレート、ベンジル(メタ)アクリレート等の(メタ)アクリル酸エステル;
 2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシ基含有(メタ)アクリル酸エステル;
 マレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジエチル等のジカルボン酸ジエステル;
 ビシクロ[2.2.1]ヘプト-2-エン、5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-エチルビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシメチルビシクロ[2.2.1]ヘプト-2-エン、5-(2’-ヒドロキシエチル)ビシクロ[2.2.1]ヘプト-2-エン、5-メトキシビシクロ[2.2.1]ヘプト-2-エン、5-エトキシビシクロ[2.2.1]ヘプト-2-エン、5,6-ジヒドロキシビシクロ[2.2.1]ヘプト-2-エン、5,6-ジ(ヒドロキシメチル)ビシクロ[2.2.1]ヘプト-2-エン、5,6-ジ(2’-ヒドロキシエチル)ビシクロ[2.2.1]ヘプト-2-エン、5,6-ジメトキシビシクロ[2.2.1]ヘプト-2-エン、5,6-ジエトキシビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシ-5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシ-5-エチルビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシメチル-5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-tert-ブトキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5-シクロヘキシルオキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5-フェノキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5,6-ビス(tert-ブトキシカルボニル)ビシクロ[2.2.1]ヘプト-2-エン、5,6-ビス(シクロヘキシルオキシカルボニル)ビシクロ[2.2.1]ヘプト-2-エン等のビシクロ不飽和化合物;
 N-フェニルマレイミド、N-シクロヘキシルマレイミド、N-ベンジルマレイミド、N-スクシンイミジル-3-マレイミドベンゾエート、N-スクシンイミジル-4-マレイミドブチレート、N-スクシンイミジル-6-マレイミドカプロエート、N-スクシンイミジル-3-マレイミドプロピオネート、N-(9-アクリジニル)マレイミド等のジカルボニルイミド誘導体;
 スチレン、α-メチルスチレン、m-メチルスチレン、p-メチルスチレン、ビニルトルエン、p-メトキシスチレン、アクリロニトリル、メタクリロニトリル、塩化ビニル、塩化ビニリデン、アクリルアミド、メタクリルアミド、酢酸ビニル、1,3-ブタジエンイソプレン、2,3-ジメチル-1,3-ブタジエン
等が挙げられる。
 これらのうち、共重合反応性及び樹脂(A)の耐熱性の点から、スチレン、ビニルトルエン、N-フェニルマレイミド、N-シクロヘキシルマレイミド、N-ベンジルマレイミド、ビシクロ[2.2.1]ヘプト-2-エン等が好ましい。
 樹脂[K1]において、それぞれに由来する構成単位の比率は、樹脂[K1]を構成する全構成単位中、
(a)に由来する構成単位;2モル%以上60モル%以下
(c)に由来する構成単位;40モル%以上98モル%以下
であることが好ましく、
(a)に由来する構成単位;10モル%以上50モル%以下
(c)に由来する構成単位;50モル%以上90モル%以下
であることがより好ましい。
 樹脂[K1]の構成単位の比率が上記の範囲にあると、樹脂組成物の保存安定性、得られる樹脂膜の現像性及び耐溶剤性に優れる傾向がある。
 樹脂[K1]は、例えば、文献「高分子合成の実験法」(大津隆行著 発行所(株)化学同人 第1版第1刷 1972年3月1日発行)に記載された方法及び当該文献に記載された引用文献を参考にして製造することができる。
 具体的には、(a)及び(c)の所定量、重合開始剤並びに溶剤等を反応容器中に入れて、例えば、窒素により酸素を置換することにより、脱酸素雰囲気にし、攪拌しながら、加熱及び保温する方法が挙げられる。
 ここで用いられる重合開始剤及び溶剤等は、特に限定されず、当該分野で通常使用されているものを使用することができる。例えば、重合開始剤としては、アゾ化合物(2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等)や有機過酸化物(ベンゾイルペルオキシド等)が挙げられ、溶剤としては、各モノマーを溶解するものであればよく、本発明の樹脂組成物に含まれる溶剤(C)として後述する溶剤等が挙げられる。
 得られた共重合体は、反応後の溶液をそのまま使用してもよいし、濃縮あるいは希釈した溶液を使用してもよいし、再沈殿等の方法で固体(粉体)として取り出したものを使用してもよい。重合の際の溶剤として後述の溶剤(C)を使用すれば、反応後の溶液をそのまま樹脂組成物の調製に使用することができるため、樹脂組成物の製造工程を簡略化することができる。
 樹脂[K2]は、(a)と(c)との共重合体に、(b)が有する炭素数2~4の環状エーテルを(a)が有するカルボン酸及び/又はカルボン酸無水物に付加させることにより製造することができる。
 まず(a)と(c)との共重合体を、樹脂[K1]の製造方法として記載した方法と同様にして製造する。この場合、それぞれに由来する構成単位の比率は、樹脂[K1]について述べた比率と同じであることが好ましい。
 次に、上記共重合体中の(a)に由来するカルボン酸及び/又はカルボン酸無水物の一部に、(b)が有する炭素数2~4の環状エーテルを反応させる。
 (a)と(c)との共重合体の製造に引き続き、フラスコ内雰囲気を窒素から空気に置換し、(b)、カルボン酸又はカルボン酸無水物と環状エーテルとの反応触媒(例えば有機リン化合物、金属錯体、アミン化合物等)及び重合禁止剤(例えばハイドロキノン等)等の存在下、例えば60℃以上130℃以下で、1~10時間反応することにより、樹脂[K2]を製造することができる。
 (b)の使用量は、(a)100モルに対して、好ましくは5モル以上80モル以下であり、より好ましくは10モル以上75モル以下である。この範囲にすることにより、樹脂組成物の保存安定性、得られる樹脂膜の現像性、並びに、樹脂膜の耐溶剤性、耐熱性及び機械強度のバランスが良好になる傾向がある。
 反応触媒としての有機リン化合物としては、例えばトリフェニルホスフィン等が挙げられる。反応触媒としてのアミン化合物としては、例えば脂肪族第三級アミン化合物又は脂肪族第四級アンモニウム塩化合物等が使用可能であり、その具体例としては、例えばトリス(ジメチルアミノメチル)フェノール、トリエチルアミン、テトラブチルアンモニウムブロミド、テトラブチルアンモニウムクロリド等が挙げられる。樹脂膜の現像性及び樹脂膜が後述する波長変換膜である場合における該波長変換膜の出射光強度の観点から、反応触媒は、好ましくは有機リン化合物である。
 なお、本明細書でいう「出射光強度」とは、樹脂膜から出射する光の強度を指し、輝度として測定されるものであってもよい。例えば、「出射光強度」は、光源から樹脂膜に入射した入射光が、該入射光が入射された側から該樹脂膜における対向する主面の光源とは逆側に出射する(例えば、バックライトユニットの光源から樹脂膜に入射した入射光がディスプレイ側に出射する)光の強度、及び光源から樹脂膜に入射した励起光により、樹脂膜内部で量子ドット(D)が発光した蛍光(内部発光)を樹脂膜から該樹脂膜における対向する主面の一方の側(例えば、バックライトユニットにおいて樹脂膜の上方にディスプレイが配置される場合、ディスプレイ側)に取り出す際の取り出した光の強度の両方を包含していてよい。
 反応触媒の使用量は、(a)、(b)及び(c)の合計量100質量部に対して、好ましくは0.001質量部以上5質量部以下である。
 重合禁止剤の使用量は、(a)、(b)及び(c)の合計量100質量部に対して、好ましくは0.001質量部以上5質量部以下である。
 仕込方法、反応温度及び時間等の反応条件は、製造設備や重合による発熱量等を考慮して適宜調整することができる。なお、重合条件と同様に、製造設備や重合による発熱量等を考慮し、仕込方法や反応温度を適宜調整することができる。
 樹脂[K3]は、第一段階として、上述した樹脂[K1]の製造方法と同様にして、(b)と(c)との共重合体を得る。上記と同様に、得られた共重合体は、反応後の溶液をそのまま使用してもよいし、濃縮あるいは希釈した溶液を使用してもよいし、再沈殿等の方法で固体(粉体)として取り出したものを使用してもよい。
 (b)及び(c)に由来する構成単位の比率は、上記共重合体を構成する全構成単位の合計モル数に対して、それぞれ、
(b)に由来する構成単位;5モル%以上95モル%以下
(c)に由来する構成単位;5モル%以上95モル%以下
であることが好ましく、
(b)に由来する構成単位;10モル%以上90モル%以下
(c)に由来する構成単位;10モル%以上90モル%以下
であることがより好ましい。
 樹脂[K3]は、樹脂[K2]の製造方法と同様の条件で(b)と(c)との共重合体が有する(b)に由来する環状エーテルに、(a)が有するカルボン酸又はカルボン酸無水物を反応させることにより得ることができる。
 上記共重合体に反応させる(a)の使用量は、(b)100モルに対して、5モル以上80モル以下が好ましい。
 樹脂[K4]は、樹脂[K3]に、さらにカルボン酸無水物を反応させた樹脂である。環状エーテルとカルボン酸又はカルボン酸無水物との反応により発生するヒドロキシ基に、カルボン酸無水物を反応させる。
 カルボン酸無水物としては、例えば、無水マレイン酸、シトラコン酸無水物、イタコン酸無水物、3-ビニルフタル酸無水物、4-ビニルフタル酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、1,2,3,6-テトラヒドロフタル酸無水物、ジメチルテトラヒドロフタル酸無水物、5,6-ジカルボキシビシクロ[2.2.1]ヘプト-2-エン無水物等が挙げられる。
 カルボン酸無水物の使用量は、(a)の使用量1モルに対して、0.5モル以上1モル以下が好ましい。
 樹脂[K1]、樹脂[K2]、樹脂[K3]及び樹脂[K4]としては、例えば、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、スチレン/(メタ)アクリル酸共重合体等の樹脂[K1];
 ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体にグリシジル(メタ)アクリレートを付加させた樹脂、トリシクロデシル(メタ)アクリレート/スチレン/(メタ)アクリル酸共重合体にグリシジル(メタ)アクリレートを付加させた樹脂、トリシクロデシル(メタ)アクリレート/ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体にグリシジル(メタ)アクリレートを付加させた樹脂等の樹脂[K2];トリシクロデシル(メタ)アクリレート/グリシジル(メタ)アクリレートの共重合体に(メタ)アクリル酸を反応させた樹脂、トリシクロデシル(メタ)アクリレート/スチレン/グリシジル(メタ)アクリレートの共重合体に(メタ)アクリル酸を反応させた樹脂等の樹脂[K3];トリシクロデシル(メタ)アクリレート/グリシジル(メタ)アクリレートの共重合体に(メタ)アクリル酸を反応させた樹脂にさらにテトラヒドロフタル酸無水物を反応させた樹脂等の樹脂[K4]等が挙げられる。
 中でも、樹脂(A)は、樹脂[K2]、樹脂[K3]及び樹脂[K4]からなる群より選ばれる少なくとも1種を含むことが好ましい。
 樹脂(A)の更なる例として、特開2018-123274号公報に記載のアルカリ可溶性樹脂が挙げられる。
 樹脂(A)は、上述の樹脂[K1]、樹脂[K2]、樹脂[K3]、樹脂[K4]及び特開2018-123274号公報に記載のアルカリ可溶性樹脂からなる群より選ばれる1種以上を含むことができる。
 樹脂(A)の更なる例として、ポリアルキレングリコール化合物が挙げられる。ポリアルキレングリコール化合物としては、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。ポリアルキレングリコール化合物は、樹脂組成物が量子ドット(D)をさらに含む場合において樹脂組成物中の量子ドット(D)の分散性を高めるうえで有利である。
 樹脂(A)は、ゲルパーミエーションクロマトグラフィ(GPC)によって測定される標準ポリスチレン換算の重量平均分子量が、好ましくは9000以下である。樹脂(A)が上記重量平均分子量を有することにより、樹脂膜の現像速度を向上できるとともに、樹脂膜が後述する波長変換膜である場合において出射光強度(輝度)の高い波長変換膜が得られる傾向にある。
 樹脂(A)の標準ポリスチレン換算の重量平均分子量は、例えば1000以上9000以下であり、樹脂膜の現像速度及び波長変換膜の出射光強度の観点から、好ましくは2000以上8500以下であり、より好ましくは3000以上8500以下である。
 樹脂(A)の標準ポリスチレン換算の重量平均分子量は、後述の実施例の欄における測定方法に従って測定される。
 樹脂(A)の重量平均分子量を上記範囲とするために、用いる原料の選択、仕込方法、反応温度及び時間等の反応条件を適宜組み合わせて調整することができる。
 GPCによって測定される樹脂(A)の分子量分布[重量平均分子量(Mw)/数平均分子量(Mn)]は、例えば1.0以上6.0以下であり、樹脂膜の現像性の観点から、好ましくは1.2以上4.0以下である。
 樹脂(A)の酸価は、固形分を基準として、好ましくは90mgKOH/g以上150mgKOH/g以下である。酸価が90mgKOH/g未満の場合、アルカリ現像液に対する樹脂膜の溶解性が低くなり、基板に残渣を残すおそれがあり、酸価が150mgKOH/gを超過する場合には、現像によって得られる後述の硬化パターンの剥離が起きる可能性が高くなる。
 樹脂(A)の酸価は、樹脂膜の現像性の観点から、好ましくは95mgKOH/g以上140mgKOH/g以下であり、より好ましくは100mgKOH/g以上130mgKOH/g以下である。
 酸価は、樹脂(A)1gを中和するに必要な水酸化カリウムの量(mg)として測定される値であり、例えば水酸化カリウム水溶液を用いて滴定することにより求めることができる。樹脂(A)の酸価は、後述の実施例の欄における測定方法に従って測定される。
 樹脂(A)は、二重結合当量が、例えば300g/eq以上2000g/eq以下、好ましくは500g/eq以上1500g/eq以下である樹脂を含むことができる。樹脂(A)が300g/eq以上2000g/eq以下の二重結合当量を有する樹脂を含むことにより、後述の硬化パターンを製造する工程中に消光される現象が防止され易くなる傾向にある。樹脂(A)が2000g/eqを超える二重結合当量を有する樹脂を含む場合、樹脂(A)は、量子ドット(D)を効果的に保護する能力が低下する傾向にある。樹脂(A)が300g/eq未満の二重結合当量を有する樹脂を含む場合、現像時に溶解されずに硬化パターンが剥離し易くなる傾向にある。
 300g/eq以上2000g/eq以下の二重結合当量を有する樹脂としては、(メタ)アクリル系樹脂が挙げられる。樹脂(A)は、好ましくは(メタ)アクリル系樹脂からなる。
 樹脂組成物が光散乱剤(B)を含み、量子ドット(D)を含まない場合において、樹脂組成物における樹脂(A)の含有率は、樹脂組成物の固形分の総量に対して、例えば5質量%以上80質量%以下であり、好ましくは10質量%以上70質量%以下であり、より好ましくは15質量%以上65質量%以下である。樹脂(A)の含有率が上記範囲以内である場合、光散乱剤(B)が分散し易くなり、かつ、後述の硬化パターンを製造する工程中に出射光強度を高く維持し易くなる傾向にある。
 樹脂組成物が光散乱剤(B)及び量子ドット(D)を含む場合において、樹脂組成物における樹脂(A)の含有率は、樹脂組成物の固形分の総量に対して、例えば5質量%以上80質量%以下であり、好ましくは10質量%以上65質量%以下であり、より好ましくは15質量%以上45質量%以下である。樹脂(A)の含有率が上記範囲以内である場合、光散乱剤(B)及び量子ドット(D)が分散し易くなり、かつ、後述の硬化パターンを製造する工程中に出射光強度を高く維持し易くなる傾向にある。
 本明細書において固形分の総量とは、樹脂組成物に含まれる成分のうち、後述する溶剤(C)を除いた成分の合計を意味する。樹脂組成物の固形分中における各成分の含有率は、液体クロマトグラフィー又はガスクロマトグラフィー等の公知の分析手段で測定することができる。樹脂組成物の固形分中における各成分の含有率は、該樹脂組成物調製時の配合から算出されてもよい。
 樹脂組成物が光散乱剤(B)とともに後述する光重合性化合物(E)をさらに含み、量子ドット(D)を含まない場合において、光重合性化合物(E)に対する樹脂(A)の質量比(固形分比)は、例えば1以上であり、樹脂膜の現像性の観点から、好ましくは1.5以上3.5以下である。
 樹脂組成物が光散乱剤(B)、量子ドット(D)及び光重合性化合物(E)を含む場合において、光重合性化合物(E)に対する樹脂(A)の質量比(固形分比)は、例えば1以上であり、樹脂膜の現像性の観点から、好ましくは2.5以上5.5以下である。
 [2]光散乱剤(B)
 樹脂組成物は、1種又は2種以上の光散乱剤(B)を含む。該樹脂組成物から形成される樹脂膜は、光散乱性を示し得る。樹脂膜に光散乱剤(B)を含有させることにより、該樹脂膜(波長変換膜等)の光透過率や視野角特性を制御したり、樹脂膜をバンクとして使用するとき又は樹脂膜が量子ドット(D)を含むときの、光の出射光強度を向上させたりすることができる。
 光散乱剤(B)としては、金属又は金属酸化物の粒子、ガラス粒子等の無機粒子が挙げられ、着色による吸収が無く、散乱効果のみを有する方が好ましいことから、好ましくは金属酸化物の粒子である。金属酸化物としては、TiO、SiO、BaTiO、ZnO等が挙げられ、効率的に光を散乱することから、好ましくはTiOの粒子である。一般的に、上記無機粒子はそのままでは溶媒中に分散しにくいため、通常、後述の分散剤が用いられる。しかし、比重が大きいため、樹脂組成物中で沈降しやすく、樹脂層中で不均一に分散する可能性があるため、樹脂層にピンホールを生じやすい。
 光散乱剤(B)の粒子径は、例えば0.03μm以上20μm以下程度であり、光散乱能を高め、樹脂組成物中での分散性を高める観点から、好ましくは0.05μm以上1μm以下であり、より好ましくは0.05μm以上0.5μm以下である。
 光散乱剤(B)としては、分散剤を用いて溶剤(C)の一部又は全部に予め光散乱剤を分散させたものを用いてもよい。分散剤としては市販品を用いることができる。
 市販品の例としては、
 ビックケミー・ジャパン社製のDISPERBYK-101、102、103、106、107、108、109、110、111、116、118、130、140、154、161、162、163、164、165、166、170、171、174、180、181、182、183、184、185、190、192、2000、2001、2020、2025、2050、2070、2095、2150、2155;ANTI-TERRA-U、U100、203、204、250、;BYK-P104、P104S、P105、220S、6919;BYK-LPN6919、21116;LACTIMON、LACTIMON-WS;Bykumen等;
 日本ルーブリゾール社製のSOLSPERSE-3000、9000、13000、13240、13650、13940、16000、17000、18000、20000、21000、24000、26000、27000、28000、31845、32000、32500、32550、33500、32600、34750、35100、36600、38500、41000、41090、53095、55000、76500等;
 BASF社製のEFKA-46、47、48、452、4008、4009、4010、4015、4020、4047、4050、4055、4060、4080、4400、4401、4402、4403、4406、4408、4300、4310、4320、4330、4340、450、451、453、4540、4550、4560、4800、5010、5065、5066、5070、7500、7554、1101、120、150、1501、1502、1503等;
 味の素ファインテクノ社製のアジスパーPA111、PB711、PB821、PB822、PB824等が挙げられる。
 樹脂組成物における光散乱剤(B)の含有率は、樹脂組成物の固形分の総量に対し、例えば0.001質量%以上50質量%以下であり、樹脂膜の現像性の観点、光散乱能を高める観点及び波長変換膜の出射光強度向上の観点から、好ましくは1質量%以上30質量%以下、より好ましくは2質量%以上10質量%以下である。
 本発明に係る樹脂組成物によれば、光散乱剤(B)を含むにもかかわらず、それから形成される樹脂膜にピンホールが発生することを効果的に抑制することができる。
 [3]溶剤(C)
 樹脂組成物は、1種又は2種以上の溶剤(C)を含む。溶剤(C)は、樹脂(A)を溶解するものであれば特に限定されず、当該分野で通常使用される溶剤を用いることができる。例えば、エステル溶剤(分子内に-COO-を含み、-O-を含まない溶剤)、エーテル溶剤(分子内に-O-を含み、-COO-を含まない溶剤)、エーテルエステル溶剤(分子内に-COO-と-O-とを含む溶剤)、ケトン溶剤(分子内に-CO-を含み、-COO-を含まない溶剤)、アルコール溶剤(分子内にOHを含み、-O-、-CO-及びCOO-を含まない溶剤)、芳香族炭化水素溶剤、アミド溶剤、ジメチルスルホキシド等が挙げられる。
 樹脂組成物が光重合性化合物(E)及び光重合開始剤(F)をさらに含む場合、溶剤(C)は、光重合性化合物(E)及び光重合開始剤(F)を溶解するものであることが好ましい。
 エステル溶剤としては、乳酸メチル、乳酸エチル、乳酸n-ブチル、2-ヒドロキシイソブタン酸メチル、酢酸エチル、酢酸n-ブチル、酢酸イソブチル、ギ酸n-ペンチル、酢酸イソペンチル、プロピオン酸n-ブチル、酪酸イソプロピル、酪酸エチル、酪酸n-ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、シクロヘキサノールアセテート(酢酸シクロヘキシル、シクロヘキシルアセテート)及びγ-ブチロラクトン等が挙げられる。
 エーテル溶剤としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、3-メトキシ-1-ブタノール、3-メトキシ-3-メチルブタノール、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、アニソール、フェネトール及びメチルアニソール等が挙げられる。
 エーテルエステル溶剤としては、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート及びジエチレングリコールモノブチルエーテルアセテート等が挙げられる。
 ケトン溶剤としては、4-ヒドロキシ-4-メチル-2-ペンタノン、アセトン、2-ブタノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、4-メチル-2-ペンタノン、シクロペンタノン、シクロヘキサノン及びイソホロン等が挙げられる。
 アルコール溶剤としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、エチレングリコール、プロピレングリコール及びグリセリン等が挙げられる。
 芳香族炭化水素溶剤としては、ベンゼン、トルエン、キシレン及びメシチレン等が挙げられる。
 アミド溶剤としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド及びN-メチルピロリドン等が挙げられる。
 溶剤(C)としては、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、プロピレングリコールモノメチルエーテル、3-エトキシプロピオン酸エチル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングコールモノエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、シクロヘキサノールアセテート、トルエン、又はこれらのうちの2種以上の混合物が好ましく、プロピレングリコールモノメチルエーテルアセテートを含むことがより好ましい。
 溶剤(C)は、樹脂組成物の固形分以外の成分であり、例えば樹脂(A)、光散乱剤(B)、量子ドット(D)等に含まれる溶剤も溶剤(C)に包含される。
 ピンホールが発生することを効果的に抑制する観点から、樹脂組成物における溶剤(C)の含有率は、好ましくは、樹脂組成物の総量に対して40質量%以上74質量%未満である。該含有率の詳細については後述する。また、ピンホールが発生することを効果的に抑制する観点から、溶剤(C)は、好ましくは、樹脂組成物が後述する式[R]を満たすように選択される。
 [4]量子ドット(D)
 樹脂組成物は、1種又は2種以上の量子ドット(D)を含むことができる。量子ドット(D)を含む樹脂組成物から形成される樹脂膜は、紫外光又は可視光を照射することにより、該照射光とは異なる波長の光を発光することができる。したがって、量子ドット(D)を含む該樹脂膜は、波長変換膜として利用可能である。
 量子ドット(D)は、粒子径1nm以上100nm以下の半導体微粒子であり、半導体のバンドギャップを利用し、紫外光又は可視光を吸収して発光する微粒子である。
 量子ドット(D)としては、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、CdHgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe等の12族元素と16族元素との化合物;GaN、GaP、GaAs、AlN、AlP、AlAs、InN、InP、InAs、GaNP、GaNAs、GaPAs、AlNP、AlNAs、AlPAs、InNP、InNAs、InPAs、GaAlNP、GaAlNAs、GaAlPAs、GaInNP、GaInNAs、GaInPAs、InAlNP、InAlNAs、InAlPAs等の13族元素と15族元素との化合物;PdS、PbSe等の14族元素と16族元素との化合物等が挙げられる。
 量子ドット(D)がSやSeを含む場合、金属酸化物や有機物で表面修飾した量子ドットを使用してもよい。表面修飾した量子ドットを使用することで、樹脂組成物に含まれる又は含まれ得る反応成分によってSやSeが引き抜かれることを防止することができる。
 量子ドット(D)は、上記の化合物を組み合わせてコアシェル構造を形成していてもよい。このような組み合わせとしては、コアがCdSeであり、シェルがZnSである微粒子等が挙げられる。
 量子ドット(D)のエネルギー状態はその大きさに依存するため、粒子径を変えることにより自由に発光波長を選択することが可能である。例えば、CdSeのみから構成される量子ドットの場合、粒子径が2.3nm、3.0nm、3.8nm、4.6nmであるときの蛍光スペクトルのピーク波長は、それぞれ528nm、570nm、592nm、637nmである。
 また、量子ドット(D)からの発光はスペクトル幅が狭く、このような急峻なピークを有する光を組み合わせることにより、樹脂組成物から形成される樹脂膜を含む表示装置において、表示可能な色域を拡大させることができる。さらに、量子ドット(D)は応答性が高く、光源から放射される光を効率良く利用することができる。
 樹脂組成物は、光源から放射される光により特定波長の光を発光する量子ドットを1種のみを含有していてもよく、異なる波長の光を発光する量子ドットを2種以上組み合わせて含有していてもよい。上記特定波長の光としては、例えば、赤色光、緑色光、青色光が挙げられる。
 樹脂組成物が量子ドット(D)を含む場合、樹脂組成物における量子ドット(D)の含有率は、樹脂組成物の固形分の総量に対して、例えば1質量%以上60質量%以下であり、好ましくは10質量%以上50質量%以下であり、より好ましくは10質量%以上40質量%以下である。
 [5]有機配位子
 樹脂組成物が量子ドット(D)を含む場合、量子ドット(D)である半導体粒子は、有機配位子が配位した状態で樹脂組成物中に存在していてもよい。以下、有機配位子が配位している半導体粒子を配位子含有半導体粒子ともいう。半導体粒子に配位する配位子は、例えば、半導体粒子に対する配位能を示す極性基を有する有機化合物であることができる。有機配位子は、配位子含有半導体粒子の合成上の制約から、又は、安定化のために添加した有機配位子であってもよい。例えば、特表2015-529698号公報において、配位子含有半導体粒子は、粒子サイズ制御の観点から有機配位子としてヘキサン酸を含み、また、合成後の安定化のために有機配位子をDDSA(ドデセニルコハク酸)に置換している。
 有機配位子は、例えば半導体粒子の表面に配位することができる。樹脂組成物は、1種又は2種以上の有機配位子を含むことができる。
 極性基は、例えば、チオール基(-SH)、カルボキシル基(-COOH)及びアミノ基(-NH)からなる群より選択される少なくとも1種の基であることが好ましい。該群より選択される極性基は、半導体粒子への配位性を高めるうえで有利となり得る。高い配位性は、樹脂膜の色ムラの改善及び/又は樹脂組成物のパターニング性の改善に貢献し得る。中でも、出射光特性により優れる樹脂膜(波長変換膜等)を得る観点から、極性基は、チオール基及びカルボキシ基からなる群より選択される少なくとも1種の基であることがより好ましい。有機配位子は、1個又は2個以上の極性基を有し得る。
 有機配位子は、例えば、下記式(X):
 X-R  (X)
で表される有機化合物であることができる。式中、Xは上記の極性基であり、Rはヘテロ原子(N、O、S、ハロゲン原子等)を含んでいてもよい1価の炭化水素基である。該炭化水素基は、炭素-炭素二重結合等の不飽和結合を1個又は2個以上有していてもよい。該炭化水素基は、直鎖状、分岐鎖状又は環状構造を有していてもよい。該炭化水素基の炭素数は、例えば1以上40以下であり、1以上30以下であってもよい。該炭化水素基に含まれるメチレン基は、-O-、-S-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-等で置換されていてもよい。
 基Rは、極性基を含んでいてもよい。該極性基の具体例については極性基Xに係る上記記述が引用される。
 極性基Xとしてカルボキシ基を有する有機配位子の具体例として、ギ酸、酢酸、プロピオン酸のほか、飽和又は不飽和脂肪酸を挙げることができる。飽和又は不飽和脂肪酸の具体例は、ブチル酸、ペンタン酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、アラキジン酸、ベヘン酸、リグノセリン酸等の飽和脂肪酸;ミリストレイン酸、パルミトレイン酸、オレイン酸、イコセン酸、エルカ酸、ネルボン酸等の一価不飽和脂肪酸;リノール酸、α-リノレン酸、γ-リノレン酸、ステアドリン酸、ジホモ-γ-リノレン酸、アラキドン酸、エイコサテトラエン酸、ドコサジエン酸、アドレン酸(ドコサテトラエン酸)等の多価不飽和脂肪酸を含む。
 極性基Xとしてチオール基又はアミノ基を有する有機配位子の具体例は、上で例示した極性基Xとしてカルボキシ基を有する有機配位子のカルボキシ基がチオール基又はアミノ基に置き換わった有機配位子を含む。
 上記式(X)で表される有機配位子の好ましい例として化合物(J-1)及び化合物(J-2)が挙げられる。
 [化合物(J-1)]
 化合物(J-1)は、第1官能基及び第2官能基を有する化合物である。第1官能基はカルボキシ基(-COOH)であり、第2官能基はカルボキシ基又はチオール基(-SH)である。化合物(J-1)は、カルボキシ基及び/又はチオール基を有しているため、量子ドット(D)に配位する配位子となり得る。
 樹脂組成物は、化合物(J-1)を1種のみ含んでいてもよいし2種以上含んでいてもよい。
 化合物(J-1)を樹脂組成物に含有させることにより、該樹脂組成物の現像速度を十分に速くすることができるとともに、該樹脂組成物から形成される樹脂膜(波長変換膜等)の出射光強度を高めることができる。これは、化合物(J-1)が有するカルボキシ基及びチオール基がいずれも、アルカリ現像液による高い現像性を樹脂組成物に付与することができるとともに、量子ドット(D)によく配位して樹脂組成物中における量子ドット(D)の分散性を高めることができるためであると考えられる。とりわけカルボキシ基は、アルカリ現像液による現像性を高める効果がより高く、チオール基は、量子ドット(D)の分散性を高める効果がより高い。
 樹脂組成物の現像速度を速くすることは、樹脂膜(波長変換膜等)の出射光強度を高めることにも寄与し得る。これは、現像工程中の樹脂膜への水の浸透を抑えることができるためであると考えられる。
 化合物(J-1)の一例は、下記式(J-1a)で表される化合物である。化合物(J-1)は、式(J-1a)で表される化合物の酸無水物であってもよい。
Figure JPOXMLDOC01-appb-C000001

[式中、Rは、2価の炭化水素基を表す。複数のRが存在する場合、それらは同一でも異なっていてもよい。上記炭化水素基は1以上の置換基を有していてもよい。置換基が複数存在する場合、それらは同一でも異なっていてもよく、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。上記炭化水素基に含まれる-CH-は-O-、-S-、-SO-、-CO-及び-NH-の少なくとも1つに置き換わっていてもよい。
 pは、1~10の整数を表す。]
 Rで表される2価の炭化水素基としては、例えば、鎖状炭化水素基、脂環式炭化水素基、芳香族炭化水素基等が挙げられる。
 鎖状炭化水素基としては、例えば、直鎖状又は分岐状のアルカンジイル基が挙げられ、その炭素数は、通常1~50であり、好ましくは1~20であり、より好ましくは1~10である。
 脂環式炭化水素基としては、例えば、単環式又多環式のシクロアルカンジイル基が挙げられ、その炭素数は、通常3~50であり、好ましくは3~20、より好ましくは3~10である。
 芳香族炭化水素基としては、例えば、単環式又多環式のアレーンジイル基が挙げられ、その炭素数は、通常6~20である。
 上記炭化水素基が有していてもよい置換基としては、例えば、炭素数1~50のアルキル基、炭素数3~50のシクロアルキル基、炭素数6~20のアリール基、カルボキシ基、アミノ基、ハロゲン原子等が挙げられる。
 上記炭化水素基が有していてもよい置換基は、好ましくは、カルボキシ基、アミノ基又はハロゲン原子である。
 上記炭化水素基に含まれる-CH-が-O-、-CO-及び-NH-の少なくとも1つに置き換わる場合、-CH-が置き換わるのは、好ましくは-CO-及び-NH-の少なくとも1つであり、より好ましくは-NH-である。
 pは、好ましくは1又は2である。
 式(J-1a)で表される化合物としては、例えば、下記式(1-1)~(1-9)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 式(J-1a)で表される化合物の具体例を化学名で示せば、例えば、メルカプト酢酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、3-メルカプトブタン酸、4-メルカプトブタン酸、メルカプトコハク酸、メルカプトステアリン酸、メルカプトオクタン酸、4-メルカプト安息香酸、2,3,5,6-テトラフルオロ-4-メルカプト安息香酸、L-システイン、N-アセチル-L-システイン、3-メルカプトプロピオン酸3-メトキシブチル、3-メルカプト-2-メチルプロピオン酸等が挙げられる。
 中でも3-メルカプトプロピオン酸、メルカプトコハク酸が好ましい。
 化合物(J-1)の他の一例は、多価カルボン酸化合物であり、好ましくは上記式(J-1a)で表される化合物において、式(J-1a)中の-SHがカルボキシ基(-COOH)に置き換わった化合物(J-1b)が挙げられる。
 化合物(J-1b)としては、例えば、以下の化合物が挙げられる。
 コハク酸、グルタル酸、アジピン酸、オクタフルオロアジピン酸、アゼライン酸、ドデカン二酸、テトラデカン二酸、ヘキサデカン二酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、ドデカフルオロスベリン酸、3-エチル-3-メチルグルタル酸、ヘキサフルオログルタル酸、trans-3-ヘキセン二酸、セバシン酸、ヘキサデカフルオロセバシン酸、アセチレンジカルボン酸、trans-アコニット酸、1,3-アダマンタンジカルボン酸、ビシクロ[2.2.2]オクタン-1,4-ジカルボン酸、cis-4-シクロヘキセン-1,2-ジカルボン酸、1,1-シクロプロパンジカルボン酸、1,1-シクロブタンジカルボン酸、cis-又はtrans-1,3-シクロヘキサンジカルボン酸、cis-又はtrans-1,4-シクロヘキサンジカルボン酸、1,1-シクロペンタン二酢酸、1,2,3,4-シクロペンタンテトラカルボン酸、デカヒドロ-1,4-ナフタレンジカルボン酸、2,3-ノルボルナンジカルボン酸、5-ノルボルネン-2,3-ジカルボン酸、フタル酸、3-フルオロフタル酸、イソフタル酸、テトラフルオロイソフタル酸、テレフタル酸、テトラフルオロテレフタル酸、2,5-ジメチルテレフタル酸、2,6-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,1’-フェロセンジカルボン酸、2,2’-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸、2,5-フランジカルボン酸、ベンゾフェノン-2,4’-ジカルボン酸一水和物、ベンゾフェノン-4,4’-ジカルボン酸、2,3-ピラジンジカルボン酸、2,3-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、3,5-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、2,6-ピリジンジカルボン酸、3,4-ピリジンジカルボン酸、ピラゾール-3,5-
ジカルボン酸一水和物、4,4’-スチルベンジカルボン酸、アントラキノン-2,3-ジカルボン酸、4-(カルボキシメチル)安息香酸、ケリドン酸一水和物、アゾベンゼン-4,4’-ジカルボン酸、アゾベンゼン-3,3’-ジカルボン酸、クロレンド酸、1H-イミダゾール-4,5-ジカルボン酸、2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパン、1,10-ビス(4-カルボキシフェノキシ)デカン、ジプロピルマロン酸、ジチオジグリコール酸、3,3’-ジチオジプロピオン酸、4,4’-ジチオジブタン酸、4,4’-ジカルボキシジフェニルエーテル、4,4’-ジカルボキシジフェニルスルホン、エチレングリコール ビス(4-カルボキシフェニル)エーテル、3,4-エチレンジオキシチオフェン-2,5-ジカルボン酸、4,4’-イソプロピリデンジフェノキシ酢酸、1,3-アセトンジカルボン酸、メチレンジサリチル酸、5,5’-チオジサリチル酸、トリス(2-カルボキシエチル)イソシアヌレート、テトラフルオロコハク酸、α,α,α’,α’-テトラメチル-1,3-ベンゼンジプロピオン酸、1,3,5-ベンゼントリカルボン酸等。
 樹脂組成物の現像速度を速くする観点及び樹脂膜(波長変換膜等)の出射光強度を高める観点から、化合物(J-1)の分子量は、好ましくは3000以下であり、より好ましくは2000以下であり、さらに好ましくは1000以下であり、なおさらに好ましくは800以下であり、特に好ましくは500以下である。化合物(J-1)の分子量は、通常100以上である。
 上記分子量は、数平均分子量であってもよいし重量平均分子量であってもよい。この場合、数平均分子量及び重量平均分子量はそれぞれ、GPCにより測定される標準ポリスチレン換算の数平均分子量及び重量平均分子量である。
 樹脂組成物において化合物(J-1)は、その少なくとも一部の分子が量子ドット(D)に配位していることが好ましく、そのすべて又はほぼすべての分子が量子ドット(D)に配位していてもよい。すなわち、樹脂組成物は、量子ドット(D)に配位している化合物(J-1)を含むことが好ましいが、量子ドット(D)に配位している化合物(J-1)とともに、量子ドット(D)に配位していない化合物(J-1)を含んでいてもよい。
 量子ドット(D)に配位している化合物(J-1)を含むことは、樹脂組成物の現像速度を速くする観点及び樹脂膜(波長変換膜等)の出射光強度を高める観点から有利となり得る。化合物(J-1)は通常、第1官能基及び/又は第2官能基を介して量子ドット(D)に配位することができる。化合物(J-1)は、例えば量子ドット(D)の表面に配位することができる。
 樹脂組成物が量子ドット(D)及び化合物(J-1)を含む場合、樹脂組成物中の量子ドット(D)に対する化合物(J-1)の含有量比は、質量比で、好ましくは0.001以上1以下であり、より好ましくは0.01以上0.5以下であり、さらに好ましくは0.02以上0.1以下である。該含有量比がこの範囲にあると、樹脂組成物の現像速度を速くする観点及び樹脂膜(波長変換膜等)の出射光強度を高める観点から有利となり得る。
 樹脂組成物が化合物(J-1)を含む場合、樹脂組成物における化合物(J-1)の含有率は、樹脂組成物の現像速度を速くする観点及び樹脂膜(波長変換膜等)の出射光強度を高める観点から、樹脂組成物の固形分の総量に対して、好ましくは0.1質量%以上20質量%以下であり、より好ましくは0.1質量%以上10質量%以下であり、さらに好ましくは0.2質量%以上8質量%以下であり、なおさらに好ましくは0.2質量%以上5質量%以下であり、特に好ましくは0.5質量%以上4質量%以下である。
 [化合物(J-2)]
 化合物(J-2)は、化合物(J-1)とは異なる化合物(J-2)であって、ポリアルキレングリコール構造を含み、かつ極性基を分子末端に有する化合物である。分子末端とは、化合物(J-2)中、最も長い炭素鎖(炭素鎖中の炭素原子は、酸素原子等の他の原子に置き換わっていてもよい。)の末端であることが好ましい。
 樹脂組成物は、化合物(J-2)を1種のみ含んでいてもよいし2種以上含んでいてもよい。
 なお、ポリアルキレングリコール構造を含み、上記第1官能基及び第2官能基を有する化合物は、化合物(J-1)に属するものとする。
 樹脂組成物の現像速度を速くする観点及び樹脂膜(波長変換膜等)の出射光強度を高める観点から、樹脂組成物は、化合物(J-1)又は化合物(J-2)を含んでいてもよいし、化合物(J-1)及び化合物(J-2)を含んでいてもよい。
 ポリアルキレングリコール構造とは、下記式:
Figure JPOXMLDOC01-appb-C000003
で表される構造をいう(nは2以上の整数)。式中、Rはアルキレン基であり、例えば、エチレン基、プロピレン基等が挙げられる。
 化合物(J-2)の具体例として、下記式(J-2a)で表されるポリアルキレングリコール系化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000004
 式(J-2a)中、Xは極性基であり、Yは1価の基であり、Zは2価又は3価の基である。nは2以上の整数である。mは1又は2である。Rはアルキレン基である。
 樹脂組成物において化合物(J-2)は、その少なくとも一部の分子が量子ドット(D)に配位していることが好ましく、そのすべて又はほぼすべての分子が量子ドット(D)に配位していてもよい。すなわち、樹脂組成物は、量子ドット(D)に配位している化合物(J-2)を含むことが好ましいが、量子ドット(D)に配位している化合物(J-2)とともに、量子ドット(D)に配位していない化合物(J-2)を含んでいてもよい。
 量子ドット(D)に配位している化合物(J-2)を含むことは、樹脂組成物の現像速度を速くする観点及び樹脂膜(波長変換膜等)の出射光強度を高める観点から有利となり得る。化合物(J-2a)は通常、極性基Xを介して量子ドット(D)に配位することができる。基Yが極性基を含む場合、化合物(J-2a)は、基Yの極性基を介して、又は極性基X及び基Yの極性基を介して量子ドット(D)に配位することもできる。化合物(J-2)は、例えば量子ドット(D)の表面に配位することができる。
 極性基Xは、チオール基(-SH)、カルボキシ基(-COOH)及びアミノ基(-NH)からなる群より選択される少なくとも1種の基であることが好ましい。該群より選択される極性基は、量子ドット(D)への配位性を高めるうえで有利となり得る。中でも、樹脂膜(波長変換膜等)の出射光強度を高める観点から、極性基Xは、チオール基及びカルボキシ基からなる群より選択される少なくとも1種の基であることがより好ましい。
 基Yは1価の基である。基Yとしては特に制限されず、置換基(N、O、S、ハロゲン原子等)を有していてもよい1価の炭化水素基を挙げることができる。該炭化水素基に含まれる-CH-は、-O-、-S-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-等で置換されていてもよい。
 上記炭化水素基の炭素数は、例えば1以上12以下である。該炭化水素基は、不飽和結合を有していてもよい。
 基Yとしては、直鎖状、分岐鎖状又は環状構造を有する炭素数1以上12以下のアルキル基;直鎖状、分岐鎖状又は環状構造を有する炭素数1以上12以下のアルコキシ基等が挙げられる。該アルキル基及びアルコキシ基の炭素数は、好ましくは1以上8以下であり、より好ましくは1以上6以下であり、さらに好ましくは1以上4以下である。該アルキル基及びアルコキシ基に含まれる-CH-は、-O-、-S-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-等で置換されていてもよい。中でも、基Yは、炭素数が1以上4以下である直鎖状又は分岐鎖状のアルコキシ基であることが好ましく、炭素数が1以上4以下である直鎖状のアルコキシ基であることがより好ましい。
 基Yは、極性基を含んでいてもよい。該極性基としては、チオール基(-SH)、カルボキシ基(-COOH)及びアミノ基(-NH)からなる群より選択される少なくとも1種の基が挙げられる。ただし、上述のとおり、ポリアルキレングリコール構造を含み、上記第1官能基及び第2官能基を有する化合物は、化合物(J-1)に属するものとする。該極性基は、好ましくは基Yの末端に配置される。
 基Zは2価又は3価の基である。基Zとしては特に制限されず、ヘテロ原子(N、O、S、ハロゲン原子等)を含んでいてもよい2価又は3価の炭化水素基を挙げることができる。該炭化水素基の炭素数は、例えば1以上24以下である。該炭化水素基は、不飽和結合を有していてもよい。
 2価の基である基Zとしては、直鎖状、分岐鎖状又は環状構造を有する炭素数1以上24以下のアルキレン基;直鎖状、分岐鎖状又は環状構造を有する炭素数1以上24以下のアルケニレン基等が挙げられる。該アルキル基及びアルケニレン基の炭素数は、好ましくは1以上12以下であり、より好ましくは1以上8以下であり、さらに好ましくは1以上4以下である。該アルキル基及びアルケニレン基に含まれる-CH-は、-O-、-S-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-等で置換されていてもよい。3価の基である基Zの例としては、上記2価の基である基Zから水素原子を1つ取り除いた基を挙げることができる。
 基Zは、分岐構造を有していてもよい。分岐構造を有する基Zは、上記式(J-2a)に示されるポリアルキレングリコール構造を含む分岐鎖とは別の分岐鎖において、上記式(J-2a)に示されるポリアルキレングリコール構造とは別のポリアルキレングリコール構造を有していてもよい。
 中でも、基Zは、炭素数が1以上6以下である直鎖状又は分岐鎖状のアルキレン基であることが好ましく、炭素数が1以上4以下である直鎖状のアルキレン基であることがより好ましい。
 Rはアルキレン基であり、炭素数が1以上6以下である直鎖状又は分岐鎖状のアルキレン基であることが好ましく、炭素数が1以上4以下である直鎖状のアルキレン基であることがより好ましい。
 式(J-2a)中のnは2以上の整数であり、好ましくは2以上540以下であり、より好ましくは2以上120以下であり、さらに好ましくは2以上60以下である。
 化合物(J-2)の分子量は、例えば150以上10000以下程度であり得るが、樹脂組成物の現像速度を速くする観点及び樹脂膜(波長変換膜等)の出射光強度を高める観点から、150以上5000以下であることが好ましく、150以上4000以下であることがより好ましい。
 上記分子量は、数平均分子量であってもよいし重量平均分子量であってもよい。この場合、数平均分子量及び重量平均分子量はそれぞれ、GPCにより測定される標準ポリスチレン換算の数平均分子量及び重量平均分子量である。
 樹脂組成物が量子ドット(D)及び化合物(J-2)を含む場合、樹脂組成物中の量子ドット(D)に対する化合物(J-2)の含有量比は、質量比で、好ましくは0.001以上2以下であり、より好ましくは0.01以上1.5以下であり、さらに好ましくは0.1以上1以下である。該含有量比がこの範囲にあると、樹脂組成物の現像速度を速くする観点及び樹脂膜(波長変換膜等)の出射光強度を高める観点から有利となり得る。
 樹脂組成物が化合物(J-2)を含む場合、樹脂組成物における化合物(J-2)の含有率は、樹脂組成物の現像速度を速くする観点及び樹脂膜(波長変換膜等)の出射光強度を高める観点から、樹脂組成物の固形分の総量に対して、好ましくは0.1質量%以上40質量%以下であり、より好ましくは0.1質量%以上20質量%以下であり、さらに好ましくは1質量%以上15質量%以下であり、なおさらに好ましくは2質量%以上10質量%以下である。
 樹脂組成物が化合物(J-1)及び化合物(J-2)を含む場合、樹脂組成物中の化合物(J-1)に対する化合物(J-2)の含有量比は、質量比で、好ましくは1以上50以下であり、より好ましくは5以上40以下であり、さらに好ましくは10以上25以下である。該含有量比がこの範囲にあると、樹脂組成物の現像速度を速くする観点及び樹脂膜(波長変換膜等)の出射光強度を高める観点から有利となり得る。
 樹脂組成物は、化合物(J-1)及び化合物(J-2)以外の化合物であって、量子ドット(D)に対する配位能を有する化合物(J-3)をさらに含むことができる。
 化合物(J-3)としては、有機酸、有機アミン化合物、チオール化合物等が挙げられる。化合物(J-3)は、カルボキシ基及びアミノ基又はチオール基で変性されたシリコーンオイル等であってもよく、このような化合物(J-3)を樹脂組成物に含有させることにより、樹脂層の特性(接触角、表面張力等の表面特性など)を調整し得る。
 樹脂組成物が量子ドット(D)及び化合物(J-3)を含む場合、樹脂組成物中の量子ドット(D)に対する化合物(J-3)の含有量比は、質量比で、好ましくは0.001以上2以下であり、より好ましくは0.01以上1.5以下であり、さらに好ましくは0.1以上1以下である。該含有量比がこの範囲にあると、樹脂組成物の現像速度を速くする観点及び樹脂層(波長変換膜等)の出射光強度を高める観点から有利となり得る。
 樹脂組成物が化合物(J-3)を含む場合、樹脂組成物における化合物(J-3)の含有率は、樹脂組成物の現像速度を速くする観点及び樹脂層(波長変換膜等)の出射光強度を高める観点から、樹脂組成物の固形分の総量に対して、好ましくは0.1質量%以上40質量%以下であり、より好ましくは0.1質量%以上20質量%以下であり、さらに好ましくは0.2質量%以上15質量%以下であり、なおさらに好ましくは0.2質量%以上10質量%以下である。
 なお、化合物(J-3)に、樹脂(A)、光散乱剤(B)、溶剤(C)、光重合性化合物(E)、光重合開始剤(F)、光重合開始助剤(F1)、酸化防止剤(G)及びレベリング剤(H)は含まれない。
 樹脂組成物は、量子ドット(D)を含まない場合においても有機配位子を含むことができる。有機配位子を樹脂組成物に含有させることにより、樹脂層の特性(接触角、表面張力等の表面特性など)を調整し得る。
 [6]光重合性化合物(E)
 樹脂組成物は、1種又は2種以上の光重合性化合物(E)を含むことができる。光重合性化合物(E)及び後述する光重合開始剤(F)をさらに含む樹脂組成物は、硬化性を示す。光重合性化合物(E)は、後述する光重合開始剤(F)から発生した活性ラジカル、酸等によって重合し得る化合物であり、例えば、エチレン性不飽和結合を有する化合物等が挙げられ、好ましくは(メタ)アクリル酸エステル化合物である。
 中でも、光重合性化合物(E)は、エチレン性不飽和結合を3つ以上有する重合性化合物であることが好ましい。このような重合性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート、テトラペンタエリスリトールノナ(メタ)アクリレート、トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート、エチレングリコール変性ペンタエリスリトールテトラ(メタ)アクリレート、エチレングリコール変性ジペンタエリスリトールヘキサ(メタ)アクリレート、プロピレングリコール変性ペンタエリスリトールテトラ(メタ)アクリレート、プロピレングリコール変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
 光重合性化合物(E)の重量平均分子量は、好ましくは150以上2900以下、より好ましくは250以上1500以下である。
 樹脂組成物が光重合性化合物(E)を含む場合、樹脂組成物における光重合性化合物(E)の含有率は、樹脂組成物の固形分の総量に対して、好ましくは7質量%以上60質量%以下であり、より好ましくは10質量%以上45質量%以下であり、さらに好ましくは13質量%以上30質量%以下である。光重合性化合物(E)の含有率が上記範囲内にあると、後述する硬化パターンの残膜率及び硬化パターンの耐薬品性がより向上する傾向にある。
 [7]光重合開始剤(F)
 樹脂組成物が光重合性化合物(E)を含む場合、通常、樹脂組成物は、1種又は2種以上の光重合開始剤(F)をさらに含む。光重合開始剤(F)は、光や熱の作用により活性ラジカル、酸等を発生し、重合を開始し得る化合物である。
 光重合開始剤(F)は、好ましくは、下記式(1)で表される第1分子構造を有するオキシム化合物を含む。以下、該オキシム化合物を「オキシム化合物(1)」ともいう。
Figure JPOXMLDOC01-appb-C000005
 光重合開始剤(F)としてオキシム化合物(1)を含むことは、樹脂組成物の硬化膜(波長変換膜等)の出射光強度を高める観点から有利となり得る。このような効果を奏することができる一因は、オキシム化合物(1)が有する特有の分子構造に起因して、オキシム化合物(1)が光重合を開始させる際に必要となるオキシム化合物(1)の開裂(分解)前後でのオキシム化合物(1)の吸収波長が大きく変化することから、オキシム化合物(1)は光ラジカル重合開始能力が高いことにあると推定される。
 式(1)中、Rは、R11、OR11、COR11、SR11、CONR1213又はCNを表す。
 R11、R12及びR13は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数2~20の複素環基を表す。
 R11、R12又はR13で表わされる基の水素原子は、OR21、COR21、SR21、NR22Ra23、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。
 R21、R22及びR23は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数2~20の複素環基を表す。
 R21、R22又はR23で表される基の水素原子は、CN、ハロゲン原子、ヒドロキシ基又はカルボキシ基で置換されていてもよい。
 R11、R12、R13、R21、R22又はR23で表される基がアルキレン部分を有する場合、該アルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24CO-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-により1~5回中断されていてもよい。
 R24は、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数2~20の複素環基を表す。
 R11、R12、R13、R21、R22又はR23で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよく、また、R12とR13及びR22とR23はそれぞれ一緒になって環を形成していてもよい。
 *は、オキシム化合物(1)が有する第1分子構造以外の他の分子構造である第2分子構造との結合手を表す。
 式(1)中のR11、R12、R13、R21、R22、R23及びR24で表される炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソオクチル基、2-エチルヘキシル基、tert-オクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、イコシル基、シクロペンチル基、シクロヘキシル基、シクロヘキシルメチル、シクロヘキシルエチル基等が挙げられる。
 式(1)中のR11、R12、R13、R21、R22、R23及びR24で表される炭素数6~30のアリール基としては、例えば、フェニル基、トリル基、キシリル基、エチルフェニル基、ナフチル基、アントリル基、フェナントリル基、上記アルキル基で1つ以上置換されたフェニル基、ビフェニリル基、ナフチル基、アントリル基等が挙げられる。
 式(1)中のR11、R12、R13、R21、R22、R23及びR24で表される炭素数7~30のアラルキル基としては、例えば、ベンジル基、α-メチルベンジル基、α、α-ジメチルベンジル基、フェニルエチル基等が挙げられる。
 式(1)中のR11、R12、R13、R21、R22、R23及びR24で表される炭素数2~20の複素環基としては、例えば、ピリジル基、ピリミジル基、フリル基、チエニル基、テトラヒドロフリル基、ジオキソラニル基、ベンゾオキサゾール-2-イル基、テトラヒドロピラニル基、ピロリジル基、イミダゾリジル基、ピラゾリジル基、チアゾリジル基、イソチアゾリジル基、オキサゾリジル基、イソオキサゾリジル基、ピペリジル基、ピペラジル基、モルホリニル基等が挙げられ、好ましくは5~7員複素環である。
 式(1)中のR12とR13及びR22とR23はそれぞれ一緒になって環を形成していてもよいとは、R12とR13及びR22とR23はそれぞれ一緒になって接続する窒素原子、炭素原子又は酸素原子とともに環を形成していてもよいことを意味する。
 式(1)中のRa12とRa13及びRa22とRa23が一緒になって形成し得る環としては、例えば、シクロペンタン環、シクロヘキサン環、シクロペンテン環、ベンゼン環、ピペリジン環、モルホリン環、ラクトン環、ラクタム環等が挙げられ、好ましくは5~7員環である。
 式(1)中のR11、R12、R13、R21、R22及びR23が置換基として有してもよいハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 式(1)中のRは、好ましくはR11であり、より好ましくは炭素数1~20のアルキル基であり、さらに好ましくは炭素数1~10のアルキル基であり、なおさらに好ましくは1~6のアルキル基である。
 式(1)で表される第1分子構造に連結される第2分子構造の一例は、下記式(2)で表される構造である。第2分子構造とは、オキシム化合物(1)が有する上記第1分子構造以外の他の分子構造部分を意味する。
 式(2)において「*」で表される結合手は、式(1)において「*」で表される結合手と直接結合している。すなわち、第2分子構造が式(2)で表される構造である場合、式(2)中の「-*」を有するベンゼン環と式(1)中の「-*」を有するカルボニル基とは直接結合している。
Figure JPOXMLDOC01-appb-C000006
 式(2)中、R及びRは、それぞれ独立に、R11、OR11、SR11、COR11、CONR1213、NR12COR11、OCOR11、COOR11、SCOR11、OCSR11、COSR11、CSOR11、CN又はハロゲン原子を表す。
 Rが複数存在するとき、それらは同じであっても異なっていてもよい。
 Rが複数存在するとき、それらは同じであっても異なっていてもよい。
 R11、R12及びR13は、上記と同じ意味を表す。
 s及びtは、それぞれ独立に、0~4の整数を表す。
 Lは、硫黄原子、CR3132、CO又はNR33を表す。
 R31、R32及びR33は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基又は炭素数7~30のアラルキル基を表す。
 R31、R32又はR33で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよく、R31、R32及びR33は、それぞれ独立に、隣接するどちらかのベンゼン環と一緒になって環を形成していてもよい。
 Rは、ヒドロキシ基、カルボキシ基又は下記式(2-1)
Figure JPOXMLDOC01-appb-C000007

(式(2-1)中、Lは、-O-、-S-、-NR22-、-NR22CO-、-SO-、-CS-、-OCO-又は-COO-を表す。
 R22は、上記と同じ意味を表す。
 Lは、炭素数1~20のアルキル基からv個の水素原子を除いた基、炭素数6~30のアリール基からv個の水素原子を除いた基、炭素数7~30のアラルキル基からv個の水素原子を除いた基又は炭素数2~20の複素環基からv個の水素原子を除いた基を表す。
 Lで表される基がアルキレン部分を有する場合、該アルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR22-、-NR22COO-、-OCONR22-、-SCO-、-COS-、-OCS-又は-CSO-により1~5回中断されていてもよく、該アルキレン部分は分枝鎖状であってもよく、環状であってもよい。
 R4aは、OR41、SR41、CONR4243、NR42COR43、OCOR41、COOR41、SCOR41、OCSR41、COSR41、CSOR41、CN又はハロゲン原子を表す。
 R4aが複数存在するとき、それらは同じであっても異なっていてもよい。
 R41、R42及びR43は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基又は炭素数7~30のアラルキル基を表し、R41、R42及びR43で表される基がアルキル部分を有する場合、該アルキル部分は分枝鎖状であってもよく、環状であってもよく、R42とR43は、一緒になって環を形成していてもよい。
 vは1~3の整数を表す。)
で表される基を表す。
 *は、オキシム化合物(1)が有する第1分子構造との結合手を表す。
 式(2)中のR11、R12、R13、R21、R22、R23、R24、R31、R32及びR33、並びに上記式(2-1)中のR22、R41、R42及びR43で表される炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基の例は、式(1)中のR11、R12、R13、R21、R22、R23及びR24についての例と同様である。
 式(2)中のR11、R12、R13、R21、R22、R23、R24、並びに上記式(2-1)中のR22で表される炭素数2~20の複素環基の例は、式(1)中のR11、R12、R13、R21、R22、R23及びR24についての例と同様である。
 式(2)中のR31、R32及びR33は、それぞれ独立に、隣接するどちらかのベンゼン環と一緒になって環を形成していてもよいとは、R31、R32及びR33は、それぞれ独立に、隣接するどちらかのベンゼン環と一緒になって接続する窒素原子とともに環を形成していてもよいことを意味する。
 式(2)中のR31、R32及びR33が隣接するどちらかのベンゼン環と一緒になって形成し得る環の例は、式(1)中のRa12とRa13及びRa22とRa23が一緒になって形成し得る環についての例と同様である。
 上記式(2-1)中のLは、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数2~20の複素環基からv個の水素原子を除いた基を表す。
 炭素数1~20のアルキル基からv個の水素原子を除いた基としては、例えば、vが1の場合、メチレン基、エチレン基、プロピレン基、メチルエチレン基、ブチレン基、1-メチルプロピレン基、2-メチルプロピレン基、1,2-ジメチルプロピレン基、1,3-ジメチルプロピレン基、1-メチルブチレン基、2-メチルブチレン基、3-メチルブチレン基、4-メチルブチレン基、2,4-ジメチルブチレン基、1,3-ジメチルブチレン基、ペンチレン基、へキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、エタン-1,1-ジイル基、プロパン-2,2-ジイル基等のアルキレン基が挙げられる。
 炭素数6~30のアリール基からv個の水素原子を除いた基としては、例えば、vが1の場合、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、2,6-ナフチレン基、1,4-ナフチレン基、2,5-ジメチル-1,4-フェニレン基、ジフェニルメタン-4,4’-ジイル基、2,2-ジフェニルプロパン-4,4’-ジイル基、ジフェニルスルフィド-4,4’-ジイル基、ジフェニルスルホン-4,4’-ジイル基等のアリーレン基が挙げられる。
 炭素数7~30のアラルキル基からv個の水素原子を除いた基としては、例えば、vが1の場合、下記式(a)で表される基及び下記式(b)で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000008

[式(a)及び(b)中、L及びLは、炭素数1~10のアルキレン基を表し、L及びLは、単結合又は炭素数1~10のアルキレン基を表す。]
 炭素数1~10のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、メチルエチレン基、ブチレン基、1-メチルプロピレン基、2-メチルプロピレン基、1,2-ジメチルプロピレン基、1,3-ジメチルプロピレン基、1-メチルブチレン基、2-メチルブチレン基、3-メチルブチレン基、4-メチルブチレン基、2,4-ジメチルブチレン基、1,3-ジメチルブチレン基、ペンチレン基、へキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基等が挙げられる。
 炭素数2~20の複素環基からv個の水素原子を除いた基としては、例えば、vが1の場合、2,5-ピリジンジイル基、2,6-ピリジンジイル基、2,5-ピリミジンジイル基、2,5-チオフェンジイル基、3,4-テトラヒドロフランジイル基、2,5-テトラヒドロフランジイル基、2,5-フランジイル基、3,4-チアゾールジイル基、2,5-ベンゾフランジイル基、2,5-ベンゾチオフェンジイル基、N-メチルインドール-2,5-ジイル基、2,5-ベンゾチアゾールジイル基、2,5-ベンゾオキサゾールジイル基等の2価の複素環基が挙げられる。
 式(2)中のR及びR、並びに上記式(2-1)中のR4aで表されるハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 溶剤(C)への溶解性、及び/又は、樹脂組成物の現像速度の観点から、式(2)で表される構造の好ましい例は、下記式(2a)で表される構造である。
Figure JPOXMLDOC01-appb-C000009

[式(2a)中、L’は、硫黄原子又はNR50を表し、R50は、直鎖状、分枝鎖状又は環状の炭素数1~20のアルキル基を表し、R、R、R、s及びtは、前記と同じ意味を表す。]
 上記と同様の観点から、式(2)で表される構造の他の好ましい例は、下記式(2b)で表される構造である。
Figure JPOXMLDOC01-appb-C000010

[式(2b)中、R44は、ヒドロキシ基、カルボキシ基又は下記式(2-2)
Figure JPOXMLDOC01-appb-C000011

(式(2-2)中、L11は、-O-又は*-OCO-を表し、*はL12との結合手を表し、L12は、炭素数1~20のアルキレン基を表し、該アルキレン基は、1~3個の-O-により中断されていてもよく、R44aは、OR55又はCOOR55を表し、R55は、水素原子又は炭素数1~6のアルキル基を表す。)
で表される基を表す。]
 R44は、好ましくは、式(2-2)で表される基である。この場合、オキシム化合物(1)の溶剤(C)への溶解性及び樹脂組成物の現像速度の点で有利となる。
 L12で表されるアルキレン基の炭素数は、好ましくは1~10であり、より好ましくは1~4である。
 R44aは、好ましくはヒドロキシ基又はカルボキシ基であり、より好ましくはヒドロキシ基である。
 式(2)で表される第2分子構造を有するオキシム化合物(1)の製造方法は、特に限定されないが、例えば、特開2011-132215号公報に記載の方法で製造することができる。
 式(1)で表される第1分子構造に連結される第2分子構造の他の一例は、下記式(3)で表される構造である。
 式(3)において「*」で表される結合手は、式(1)において「*」で表される結合手と直接結合している。すなわち、第2分子構造が式(3)で表される構造である場合、式(3)中の「-*」を有するベンゼン環と式(1)中の「-*」を有するカルボニル基とは直接結合している。
Figure JPOXMLDOC01-appb-C000012
 式(3)中、Rは、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表す。
 Rで表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよい。
 Rで表される基の水素原子は、R21、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、NR22COR21、OCOR21、COOR21、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、SCOR21、OCSR21、COSR21、CSOR21、水酸基、ニトロ基、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。
 R21、R22及びR23は、上記と同じ意味を表す。
 R21、R22又はR23で表される基の水素原子は、CN、ハロゲン原子、ヒドロキシ基又はカルボキシ基で置換されていてもよい。
 R21、R22及びR23で表される基がアルキレン部分を有する場合、該アルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24CO-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-により1~5回中断されていてもよい。
 R24は、上記と同じ意味を表す。
 R21、R22及びR23で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよく、また、R22とR23は一緒になって環を形成していてもよい。
 R、R、R及びRは、それぞれ独立に、R61、OR61、SR61、COR62、CONR6364、NR65COR61、OCOR61、COOR62、SCOR61、OCSR61、COSR62、CSOR61、水酸基、ニトロ基、CN又はハロゲン原子を表す。
 R61、R62、R63、R64及びR65は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表す。
 R61、R62、R63、R64又はR65で表わされる基の水素原子は、OR21、COR21、SR21、NR22Ra23、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。
 RとR、RとR及びRとRはそれぞれ一緒になって環を形成していてもよい。
 *は、オキシム化合物(1)が有する第1分子構造との結合手を表す。
 式(3)中のR、R21、R22、R23、R24、R61、R62、R63、R64及びR65で表される炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基、炭素数2~20の複素環基の例は、式(1)中のR11、R12、R13、R21、R22、R23及びR24についての例と同様である。
 式(3)中のR22とR23は一緒になって環を形成していてもよいとは、R22とR23は一緒になって接続する窒素原子、炭素原子又は酸素原子とともに環を形成していてもよいことを意味する。
 式(3)中のR22とR23が一緒になって形成し得る環の例は、式(1)中のRa12とRa13及びRa22とRa23が一緒になって形成し得る環についての例と同様である。
 式(3)中のR、R、R及びRで表されるハロゲン原子、R、R21、R22、R23、R61、R62、R63、R64及びR65の水素原子を置換してもよいハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 溶剤(C)への溶解性、及び/又は、樹脂組成物の現像速度の観点から、1つの好ましい形態において、Rは、下記式(3-1)で表される基である。
Figure JPOXMLDOC01-appb-C000013

[式(3-1)中、Zは、炭素数1~20のアルキル基から1個の水素原子を除いた基、炭素数6~30のアリール基から1個の水素原子を除いた基、炭素数7~30のアラルキル基から1個の水素原子を除いた基又は炭素数2~20の複素環基から1個の水素原子を除いた基を表し、
 Zで表される基がアルキレン部分を有する場合、該アルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-により1~5回中断されていてもよく、該アルキレン部分は分枝鎖状であってもよく、環状であってもよく、
 R21、R22及びR24は、前記と同じ意味を表す。]
 式(3-1)中のZは、上記と同様の観点から、好ましくは、メチレン基、エチレン又はフェニレン基である。
 式(3-1)中のR21及びR22は、上記と同様の観点から、好ましくは、炭素数1~20のアルキル基又は炭素数6~30のアリール基であり、より好ましくは、メチル基、エチル基又はフェニル基である。
 上記と同様の観点から、他の1つの好ましい形態において、Rは、ニトロ基である。
 式(3)で表される第2分子構造を有するオキシム化合物(1)の製造方法は、特に限定されないが、例えば、特開2000-80068号公報及び特開2011-178776号公報に記載の方法で製造することができる。
 式(1)で表される第1分子構造に連結される第2分子構造のさらに他の一例は、下記式(4)で表される構造である。
 式(4)において「*」で表される結合手は、式(1)において「*」で表される結合手と直接結合している。すなわち、第2分子構造が式(4)で表される構造である場合、式(4)中の「-*」を有するベンゼン環と式(1)中の「-*」を有するカルボニル基とは直接結合している。
Figure JPOXMLDOC01-appb-C000014
 式(4)中、R71は、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数2~20の複素環基を表す。
 R71で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよい。
 R71で表される基の水素原子は、R21、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、NR22COR21、OCOR21、COOR21、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、SCOR21、OCSR21、COSR21、CSOR21、水酸基、ニトロ基、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。
 R21、R22及びR23は、前記と同じ意味を表す。
 R21、R22又はR23で表される基の水素原子は、CN、ハロゲン原子、ヒドロキシ基又はカルボキシ基で置換されていてもよい。
 R21、R22及びR23で表される基がアルキレン部分を有する場合、該アルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24CO-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-により1~5回中断されていてもよい。
 R24は、上記と同じ意味を表す。
 R21、R22及びR23で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよく、また、R22とR23は一緒になって環を形成していてもよい。
 R72、R73及び3個のR74は、それぞれ独立に、R61、OR61、SR61、COR62、CONR6364、NR65COR61、OCOR61、COOR62、SCOR61、OCSR61、COSR62、CSOR61、水酸基、ニトロ基、CN又はハロゲン原子を表す。
 R61、R62、R63、R64及びR65は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表す。
 R61、R62、R63、R64又はR65で表わされる基の水素原子は、OR21、COR21、SR21、NR22Ra23、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。
 R72とR73及び2個のR74はそれぞれ一緒になって環を形成していてもよい。
 *は、オキシム化合物(1)が有する第1分子構造との結合手を表す。
 式(4)中のR71、R21、R22、R23、R24、R61、R62、R63、R64及びR65で表される炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基、炭素数2~20の複素環基の例は、式(1)中のR11、R12、R13、R21、R22、R23及びR24についての例と同様である。
 式(4)中のR22とR23は一緒になって環を形成していてもよいとは、R22とR23は一緒になって接続する窒素原子、炭素原子又は酸素原子とともに環を形成していてもよいことを意味する。
 式(4)中のR22とR23が一緒になって形成し得る環の例は、式(1)中のRa12とRa13及びRa22とRa23が一緒になって形成し得る環についての例と同様である。
 式(4)中のR72、R73及びR74で表されるハロゲン原子、R71、R21、R22、R23、R61、R62、R63、R64及びR65の水素原子を置換してもよいハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 式(4)で表される第2分子構造を有するオキシム化合物(1)の製造方法は、特に限定されないが、例えば、国際公開第2017/051680号及び国際公開第2020/004601号に記載の方法で製造することができる。
 式(1)で表される第1分子構造に連結される第2分子構造のさらに他の一例は、下記式(5)で表される構造である。
 式(5)において「*」で表される結合手は、式(1)において「*」で表される結合手と直接結合している。すなわち、第2分子構造が式(5)で表される構造である場合、式(5)中の「-*」を有するピロール環と式(1)中の「-*」を有するカルボニル基とは直接結合している。
Figure JPOXMLDOC01-appb-C000015
 式(5)中、R81は、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数2~20の複素環基を表す。
 R81で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよい。
 R81で表される基の水素原子は、R21、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、NR22COR21、OCOR21、COOR21、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、SCOR21、OCSR21、COSR21、CSOR21、水酸基、ニトロ基、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。
 R21、R22及びR23は、上記と同じ意味を表す。
 R21、R22又はR23で表される基の水素原子は、CN、ハロゲン原子、ヒドロキシ基又はカルボキシ基で置換されていてもよい。
 R21、R22及びR23で表される基がアルキレン部分を有する場合、該アルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24CO-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-により1~5回中断されていてもよい。
 R24は、上記と同じ意味を表す。
 R21、R22及びR23で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよく、また、R22とR23は一緒になって環を形成していてもよい。
 R82、R83、R84、R85及びR86は、それぞれ独立に、R61、OR61、SR61、COR62、CONR6364、NR65COR61、OCOR61、COOR62、SCOR61、OCSR61、COSR62、CSOR61、水酸基、ニトロ基、CN又はハロゲン原子を表す。
 R61、R62、R63、R64及びR65は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表す。
 R61、R62、R63、R64又はR65で表わされる基の水素原子は、OR21、COR21、SR21、NR22Ra23、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。
 R83とR84、R84とR85及びR85とR86はそれぞれ一緒になって環を形成していてもよい。
 *は、オキシム化合物(1)が有する第1分子構造との結合手を表す。
 式(5)中のR81、R21、R22、R23、R24、R61、R62、R63、R64及びR65で表される炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基、炭素数2~20の複素環基の例は、式(1)中のR11、R12、R13、R21、R22、R23及びR24についての例と同様である。
 式(5)中のR22とR23は一緒になって環を形成していてもよいとは、R22とR23は一緒になって接続する窒素原子、炭素原子又は酸素原子とともに環を形成していてもよいことを意味する。
 式(5)中のR22とR23が一緒になって形成し得る環の例は、式(1)中のRa12とRa13及びRa22とRa23が一緒になって形成し得る環についての例と同様である。
 式(5)中のR82、R83、R84、R85及びR86で表されるハロゲン原子、R81、R21、R22、R23、R61、R62、R63、R64及びR65の水素原子を置換してもよいハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 式(5)で表される第2分子構造を有するオキシム化合物(1)の製造方法は、特に限定されないが、例えば、国際公開第2017/051680号及び国際公開第2020/004601号に記載の方法で製造することができる。
 式(1)で表される第1分子構造に連結される第2分子構造のさらに他の一例は、下記式(6)で表される構造である。
 式(6)において「*」で表される結合手は、式(1)において「*」で表される結合手と直接結合している。すなわち、第2分子構造が式(6)で表される構造である場合、式(6)中の「-*」を有するベンゼン環と式(1)中の「-*」を有するカルボニル基とは直接結合している。
Figure JPOXMLDOC01-appb-C000016
 式(6)中、4個のR91、R92、R93、R94、R95、R96及びR97は、それぞれ独立に、R61、OR61、SR61、COR62、CONR6364、NR65COR61、OCOR61、COOR62、SCOR61、OCSR61、COSR62、CSOR61、水酸基、ニトロ基、CN又はハロゲン原子を表す。
 R61、R62、R63、R64及びR65は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表す。
 R61、R62、R63、R64又はR65で表わされる基の水素原子は、OR21、COR21、SR21、NR22Ra23、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。
 R21、R22及びR23は、上記と同じ意味を表す。
 R92とR93、R94とR95、R95とR96及びR96とR97はそれぞれ一緒になって環を形成していてもよい。
 *は、オキシム化合物(1)が有する第1分子構造との結合手を表す。
 式(6)中のR21、R22、R23、R61、R62、R63、R64及びR65で表される炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基、炭素数2~20の複素環基の例は、式(1)中のR11、R12、R13、R21、R22及びR23についての例と同様である。
 式(6)中のR22とR23は一緒になって環を形成していてもよいとは、R22とR23は一緒になって接続する窒素原子、炭素原子又は酸素原子とともに環を形成していてもよいことを意味する。
 式(6)中のR22とR23が一緒になって形成し得る環の例は、式(1)中のRa12とRa13及びRa22とRa23が一緒になって形成し得る環についての例と同様である。
 式(6)中のR91、R92、R93、R94、R95、R96及びR97で表されるハロゲン原子、R21、R22、R23、R61、R62、R63、R64及びR65の水素原子を置換してもよいハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 式(6)で表される第2分子構造を有するオキシム化合物(1)の製造方法は、特に限定されないが、例えば、国際公開第2017/051680号及び国際公開第2020/004601号に記載の方法で製造することができる。
 光重合開始剤(F)は、好ましくはオキシム化合物(1)を含む。ただし、光重合開始剤(F)は、オキシム化合物(1)以外の他の光重合開始剤をさらに含んでいてもよいし、オキシム化合物(1)を含まず、オキシム化合物(1)以外の他の光重合開始剤のみを含んでいてもよい。
 他の光重合開始剤としては、オキシム化合物(1)以外のオキシム化合物、ビイミダゾール化合物、トリアジン化合物及びアシルホスフィン化合物が挙げられる。
 オキシム化合物(1)以外のオキシム化合物としては、下記式(d1)で表される部分構造を有するオキシム化合物が挙げられる。*は結合手を表す。
Figure JPOXMLDOC01-appb-C000017
 式(d1)で表される部分構造を有するオキシム化合物としては、例えば、N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)ブタン-1-オン-2-イミン、N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)オクタン-1-オン-2-イミン、N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)-3-シクロペンチルプロパン-1-オン-2-イミン、N-アセトキシ-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタン-1-イミン、N-アセトキシ-1-[9-エチル-6-{2-メチル-4-(3,3-ジメチル-2,4-ジオキサシクロペンタニルメチルオキシ)ベンゾイル}-9H-カルバゾール-3-イル]エタン-1-イミン、N-アセトキシ-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-3-シクロペンチルプロパン-1-イミン、N-ベンゾイルオキシ-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-3-シクロペンチルプロパン-1-オン-2-イミン;特開2011-132215号公報、国際公開2008/78678号、国際公開2008/78686号、国際公開2012/132558号記載の化合物等が挙げられる。イルガキュアOXE01、OXE02(以上、BASF社製)、N-1919(ADEKA社製)等の市販品を用いてもよい。
 中でも、式(d1)で表される部分構造を有するオキシム化合物は、N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)ブタン-1-オン-2-イミン、N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)オクタン-1-オン-2-イミン及びN-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)-3-シクロペンチルプロパン-1-オン-2-イミンからなる群より選ばれる少なくとも1種が好ましく、N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)オクタン-1-オン-2-イミンがより好ましい。
 ビイミダゾール化合物としては、例えば、式(d5)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000018

[式(d5)中、R~Rは、置換基を有していてもよい炭素数6~10のアリール基を表す。]
 炭素数6~10のアリール基としては、例えば、フェニル基、トルイル基、キシリル基、エチルフェニル基及びナフチル基等が挙げられ、好ましくはフェニル基である。
 置換基としては、例えば、ハロゲン原子、炭素数1~4のアルコキシ基等が挙げられる。ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、好ましくは塩素原子である。炭素数1~4のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等挙げられ、好ましくはメトキシ基である。
 ビイミダゾール化合物としては、例えば、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(2,3-ジクロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール(例えば、特開平06-75372号公報、特開平06-75373号公報等参照。)、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラ(アルコキシフェニル)ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラ(ジアルコキシフェニル)ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラ(トリアルコキシフェニル)ビイミダゾール(例えば、特公昭48-38403号公報、特開昭62-174204号公報等参照。)、4,4’5,5’-位のフェニル基がカルボアルコキシ基により置換されているイミダゾール化合物(例えば、特開平7-10913号公報等参照。)等が挙げられる。中でも、下記式で表される化合物又はこれらの混合物が好ましい。
Figure JPOXMLDOC01-appb-C000019
 トリアジン化合物としては、例えば、2,4-ビス(トリクロロメチル)-6-(4-メトキシフェニル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシナフチル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-ピペロニル-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシスチリル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(5-メチルフラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(フラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(4-ジエルアミノ-2-メチルフェニル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(3,4-ジメトキシフェニル)エテニル〕-1,3,5-トリアジン等が挙げられる。中でも、2,4-ビス(トリクロロメチル)-6-ピペロニル-1,3,5-トリアジンが好ましい。
 アシルホスフィン化合物としては、例えば、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、(2,4,6-トリメチルベンゾイル)ジフェニルホスフィンオキサイド等が挙げられる。
 オキシム化合物(1)以外の他の光重合開始剤は、1種のみを単独で使用してもよいし、2種以上の光重合開始剤を併用してもよい。2以上の光重合開始剤を併用する場合は、上述のオキシム化合物(1)以外のオキシム化合物、ビイミダゾール化合物、トリアジン化合物、及びアシルホスフィン化合物以外の他の光重合開始剤と組み合わせてもよい。
 他の光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン化合物;ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(tert-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン等のベンゾフェノン化合物;9,10-フェナンスレンキノン、2-エチルアントラキノン、カンファーキノン等のキノン化合物;10-ブチル-2-クロロアクリドン、ベンジル、フェニルグリオキシル酸メチル、チタノセン化合物等が挙げられる。
 樹脂組成物が光重合開始剤(F)を含む場合、樹脂組成物における光重合開始剤(F)の含有量は、光重合性化合物(E)100質量部に対して、好ましくは0.1質量部以上300質量部以下であり、より好ましくは0.1質量部以上200質量部以下である。また、樹脂組成物における光重合開始剤(F)の含有量は、樹脂(A)及び光重合性化合物(E)の合計量100質量部に対して、好ましくは0.1質量部以上30質量部以下であり、より好ましくは1質量部以上20質量部以下である。光重合開始剤(F)の含有量が上記範囲内にあると、樹脂組成物が高感度化して露光時間が短縮される傾向があるため、樹脂組成物の硬化膜の生産性が向上する傾向にある。
 光重合開始剤(F)におけるオキシム化合物(1)の含有率は、樹脂組成物の硬化膜の出射光強度を高める観点から、光重合開始剤(F)の総量に対して、好ましくは30質量%以上100質量%以下であり、より好ましくは50質量%以上100質量%以下であり、さらに好ましくは80質量%以上100質量%以下であり、なおさらに好ましくは90質量%以上100質量%以下であり、特に好ましくは95質量%以上100質量%以下であり、最も好ましくは100質量%である。
 [8]光重合開始助剤(F1)
 樹脂組成物は、光重合開始剤(F)とともに1種又は2種以上の光重合開始助剤(F1)をさらに含むことができる。光重合開始助剤(F1)は、光重合開始剤(F)によって開始された光重合性化合物(E)の重合を促進するために用いられる化合物、もしくは増感剤である。光重合開始助剤(F1)としては、アミン化合物、アルコキシアントラセン化合物、チオキサントン化合物及びカルボン酸化合物等が挙げられる。
 アミン化合物としては、例えば、トリエタノールアミン、メチルジエタノールアミン、トリイソプロパノールアミン、4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、安息香酸2-ジメチルアミノエチル、4-ジメチルアミノ安息香酸2-エチルヘキシル、N,N-ジメチルパラトルイジン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン(通称ミヒラーズケトン)、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(エチルメチルアミノ)ベンゾフェノン等が挙げられ、中でも4,4’-ビス(ジエチルアミノ)ベンゾフェノンが好ましい。EAB-F(保土谷化学工業(株)製)等の市販品を用いてもよい。
 アルコキシアントラセン化合物としては、例えば、9,10-ジメトキシアントラセン、2-エチル-9,10-ジメトキシアントラセン、9,10-ジエトキシアントラセン、2-エチル-9,10-ジエトキシアントラセン、9,10-ジブトキシアントラセン、2-エチル-9,10-ジブトキシアントラセン等が挙げられる。
 チオキサントン化合物としては、例えば、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン等が挙げられる。
 カルボン酸化合物としては、例えば、フェニルスルファニル酢酸、メチルフェニルスルファニル酢酸、エチルフェニルスルファニル酢酸、メチルエチルフェニルスルファニル酢酸、ジメチルフェニルスルファニル酢酸、メトキシフェニルスルファニル酢酸、ジメトキシフェニルスルファニル酢酸、クロロフェニルスルファニル酢酸、ジクロロフェニルスルファニル酢酸、N-フェニルグリシン、フェノキシ酢酸、ナフチルチオ酢酸、N-ナフチルグリシン、ナフトキシ酢酸等が挙げられる。
 樹脂組成物が光重合開始助剤(F1)を含む場合、樹脂組成物における光重合開始助剤(F1)の含有量は、光重合性化合物(E)100質量部に対して、好ましくは0.1質量部以上300質量部以下であり、より好ましくは0.1質量部以上200質量部以下である。また、樹脂組成物における光重合開始助剤(F1)の含有量は、樹脂(A)及び光重合性化合物(E)の合計量100質量部に対して、好ましくは0.1質量部以上30質量部以下、より好ましくは1質量部以上20質量部以下である。光重合開始助剤(F1)の含有量が上記範囲内にあると、樹脂組成物のさらなる高感度化を図ることができる。
 [9]酸化防止剤(G)
 樹脂組成物は、1種又は2種以上の酸化防止剤(G)をさらに含むことができる。
 酸化防止剤(G)としては、工業的に一般に使用される酸化防止剤であれば特に限定はなく、フェノール系酸化防止剤、リン系酸化防止剤、リン/フェノール複合型酸化防止剤及び硫黄系酸化防止剤等を用いることができる。
 リン/フェノール複合型酸化防止剤は、分子中にリン原子とフェノール構造とをそれぞれ1以上有する化合物であることができる。中でも、樹脂膜(波長変換膜等)の現像性及び出射光強度の観点から、酸化防止剤(G)は、リン/フェノール複合型酸化防止剤を含むことが好ましい。
 フェノール系酸化防止剤としては、例えば、イルガノックス(登録商標)1010(Irganox 1010:ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、BASF(株)製)、同1076(Irganox 1076:オクタデシル-3-(3,5-ジ-tert-ブチル
-4-ヒドロキシフェニル)プロピオネート、BASF(株)製)、同1330(Irganox 1330:3,3’,3’’,5,5’,5’’-ヘキサ-tert-ブチル-a,a’,a’’-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、BASF(株)製)、同3114(Irganox 3114:1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、BASF(株)製)、同3790(Irganox 3790:1,3,5-トリス((4-tert-ブチル-3-ヒドロキシ-2,6-キシリル)メチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、BASF(株)製)、同1035(Irganox 1035:チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、BASF(株)製)、同1135(Irganox 1135:ベンゼンプロパン酸の3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシ-C7-C9側鎖アルキルエステル、BASF(株)製)、同1520L(Irganox 1520L:4,6-ビス(オクチルチオメチル)-o-クレゾール、BASF(株)製)、同3125(Irganox 3125、BASF(株)製)、同565(Irganox 565:2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3’、5’-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、BASF(株)製)、アデカスタブ(登録商標)AO-80(アデカスタブ AO-80:3,9-ビス(2-(3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ)-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、(株)ADEKA製)、スミライザー(登録商標)BHT、同GA-80、同GS(以上、住友化学(株)製)、サイアノックス(登録商標)1790(Cyanox 1790、(株)サイテック製)、ビタミンE(エーザイ(株)製)等が挙げられる。
 リン系酸化防止剤としては、例えば、イルガフォス(登録商標)168(Irgafos 168:トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、BASF(株)製)、同12(Irgafos 12:トリス[2-[[2,4,8,10-テトラ-tert-ブチルジベンゾ[d、f][1,3,2]ジオキサフォスフィン-6-イル]オキシ]エチル]アミン、BASF(株)製)、同38(Irgafos 38:ビス(2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル)エチルエステル亜りん酸、BASF(株)製)、アデカスタブ(登録商標)329K、同PEP36、同PEP-8(以上、(株)ADEKA製)、Sandstab P-EPQ(クラリアント社製)、Weston(登録商標)618、同619G(以上、GE社製)、Ultranox626(GE社製)等が挙げられる。
 リン/フェノール複合型酸化防止剤としては、例えば、スミライザー(登録商標)GP(6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンズ[d,f][1.3.2]ジオキサホスフェピン)(住友化学(株)製)等が挙げられる。
 硫黄系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリル、ジミリスチル又はジステアリール等のジアルキルチオジプロピオネート化合物及びテトラキス[メチレン(3-ドデシルチオ)プロピオネート]メタン等のポリオールのβ-アルキルメルカプトプロピオン酸エステル化合物等が挙げられる。
 樹脂組成物が酸化防止剤(G)を含む場合、樹脂組成物における酸化防止剤(G)の含有量は、樹脂(A)100質量部に対して、例えば1質量部以上50質量部以下であり、樹脂膜の耐熱性等の観点から、好ましくは5質量部以上40質量部以下であり、より好ましくは7質量部以上30質量部以下であり、さらに好ましくは11質量部以上25質量部以下である。
 [10]レベリング剤(H)
 樹脂組成物は、1種又は2種以上のレベリング剤(H)をさらに含むことができる。レベリング剤(H)を含有させることにより、樹脂膜の平坦性をより良好にすることができる。
 レベリング剤(H)としては、シリコーン系界面活性剤、フッ素系界面活性剤及びフッ素原子を有するシリコーン系界面活性剤等が挙げられる。これらは、側鎖に重合性基を有していてもよい。レベリング剤(H)は、樹脂膜(波長変換膜等)の現像性及び出射光強度の観点から、好ましくはフッ素系界面活性剤である。
 シリコーン系界面活性剤としては、分子内にシロキサン結合を有する界面活性剤等が挙げられる。具体的には、トーレシリコーンDC3PA、同SH7PA、同DC11PA、同SH21PA、同SH28PA、同SH29PA、同SH30PA、同SH8400(商品名:東レ・ダウコーニング(株)製)、KP321、KP322、KP323、KP324、KP326、KP340、KP341(信越化学工業(株)製)、TSF400、TSF401、TSF410、TSF4300、TSF4440、TSF4445、TSF4446、TSF4452及びTSF4460(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)等が挙げられる。
 フッ素系界面活性剤としては、分子内にフルオロカーボン鎖を有する界面活性剤等が挙げられる。具体的には、フロラード(登録商標)FC430、同FC431(住友スリーエム(株)製)、メガファック(登録商標)F142D、同F171、同F172、同F173、同F177、同F183、同F554、同F575、同R30、同RS-718-K(DIC(株)製)、エフトップ(登録商標)EF301、同EF303、同EF351、同EF352(三菱マテリアル電子化成(株)製)、サーフロン(登録商標)S381、同S382、同SC101、同SC105(旭硝子(株)製)及びE5844((株)ダイキンファインケミカル研究所製)等が挙げられる。
 フッ素原子を有するシリコーン系界面活性剤としては、分子内にシロキサン結合及びフルオロカーボン鎖を有する界面活性剤等が挙げられる。具体的には、メガファック(登録商標)R08、同BL20、同F475、同F477及び同F443(DIC(株)製)等が挙げられる。
 ピンホールが発生することを効果的に抑制する観点から、樹脂組成物におけるレベリング剤(H)の含有率は、好ましくは、樹脂組成物の総量に対して0.01質量%以上1質量%未満である。該含有率の詳細については後述する。また、ピンホールが発生することを効果的に抑制する観点から、レベリング剤(H)は、好ましくは、樹脂組成物が後述する式[R]を満たすように添加される。
 なお、樹脂組成物は必要に応じて、重合禁止剤、充填剤、他の高分子化合物、密着促進剤、光安定剤、連鎖移動剤等、当該技術分野で公知の添加剤がさらに含まれていてもよい。
 [11]樹脂組成物
 樹脂組成物は、下記(i)及び(ii)の少なくとも1つを満たす。
 (i)樹脂組成物における溶剤(C)の含有率が、樹脂組成物の総量に対して40質量%以上74質量%未満であり、かつ、レベリング剤(H)の含有率が、樹脂組成物の総量に対して0.01質量%以上1質量%以下である。
 (ii)樹脂組成物の25℃における粘度をμ(mPa・s)、25℃における表面張力をσ(mN/m)とするとき、下記式[R]:
 4.0≦μ/(σ1/2)≦65     [R]
を満たす。
 上記(i)及び(ii)の少なくとも1つを満たす本発明の樹脂組成物によれば、光散乱剤(B)を含むにもかかわらず、それから形成される樹脂膜に要求される光学性能を良好に確保しつつ、該樹脂膜にピンホールが発生することを効果的に抑制することができる。ピンホールが発生することを抑制する観点から、樹脂組成物は、上記(i)及び(ii)の両方を満たすことが好ましい。
 上記(i)に関し、樹脂組成物における溶剤(C)の含有率が40質量%未満であると、特に光散乱剤(B)を含む場合に樹脂組成物の塗布性が悪化し樹脂膜の形成が困難となりやすい。溶剤(C)の含有率が40質量%以上であること及び74質量%未満であることは、樹脂組成物が上記式[R]を満たしやすくなるうえでも有利である。
 また、樹脂組成物におけるレベリング剤(H)の含有率が0.01質量%未満であると、溶剤(C)の含有率が40質量%以上74質量%未満であっても、樹脂膜にピンホールが生じやすい。レベリング剤(H)の含有率が1質量%以下であると、樹脂膜の平坦性をより良好にすることができる。
 上記(i)に関し、ピンホールが発生することを効果的に抑制する観点から、樹脂組成物における溶剤(C)の含有率は、樹脂組成物の総量に対して、好ましくは45質量%以上73質量%以下であり、より好ましくは47質量%以上72質量%以下であり、さらに好ましくは49質量%以上70質量%以下である。
 溶剤(C)の含有率が上記範囲であることは、樹脂組成物から形成される樹脂膜の平坦性及び膜厚の制御のしやすさにも有利となり得る。
 なお、溶剤(C)の含有率について、小数点以下の数値がある場合、四捨五入によって整数とした数値を該含有率としてもよい。
 上記(i)に関し、ピンホールが発生することを効果的に抑制する観点から、樹脂組成物におけるレベリング剤(H)の含有率は、樹脂組成物の総量に対して、好ましくは0.02質量%以上0.5質量%以下であり、より好ましくは0.025質量%以上0.2質量%以下であり、さらに好ましくは0.03質量%以上0.1質量%以下である。
 レベリング剤(H)の含有率が上記範囲であることは、樹脂組成物から形成される樹脂膜の平坦性及び膜厚の制御のしやすさにも有利となり得る。
 上記(ii)に関し、本発明者らは、樹脂組成物のμ/(σ1/2)が、該樹脂組成物から形成される樹脂膜へのピンホール発生と相関していることを見出したものである。すなわち、ピンホールの発生を効果的に抑制するためには、樹脂組成物の粘度μだけを考慮するだけでは足らず、表面張力σをも考慮することが肝要であって、μ/(σ1/2)の値を上記所定の範囲内に調整することが肝要であることを見出したものである。
 樹脂組成物のμ/(σ1/2)が65を超えると、樹脂組成物の塗布性が悪化し樹脂膜の形成が困難となりやすい。また、樹脂組成物のμ/(σ1/2)が4.0未満であると、樹脂膜にピンホールが生じやすい。
 上記(ii)に関し、ピンホールが発生することを効果的に抑制する観点から、樹脂組成物は、好ましくは下記式[S]を満たし、より好ましくは下記式[T]を満たし、さらに好ましくは下記式[U]を満たす。
 4.2≦μ/(σ1/2)≦62     [S]
 4.4≦μ/(σ1/2)≦60     [T]
 4.5≦μ/(σ1/2)≦59     [U]
 樹脂組成物の25℃における粘度μ(mPa・s)及び25℃における表面張力σ(mN/m)は、後述の実施例の欄における測定方法に従って測定される。
 樹脂組成物のμ/(σ1/2)は、主には、樹脂組成物における溶剤(C)の含有率及び/又はレベリング剤(H)の含有率の調整によって制御可能であるが、溶剤(C)の種類、樹脂(A)の種類及び含有率、光重合性化合物(E)の含有率、樹脂(A)と光重合性化合物(E)との含有比等の他の調整因子を併せ考慮して制御することもできる。
 上述のように溶剤(C)は、樹脂(A)を溶解するものであれば特に限定されないが(ただし、樹脂組成物が光重合性化合物(E)及び光重合開始剤(F)をさらに含む場合、光重合性化合物(E)及び光重合開始剤(F)をさらに溶解するものであることが好ましい。)、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、プロピレングリコールモノメチルエーテル、3-エトキシプロピオン酸エチル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングコールモノエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、シクロヘキサノールアセテート、トルエン、又はこれらのうちの2種以上の混合物であることが好ましく、プロピレングリコールモノメチルエーテルアセテートを含むことがより好ましい。
 樹脂組成物が上記(ii)を満たす場合において、樹脂組成物は、レベリング剤(H)を含んでいてもよいし含んでいなくてもよいが、好ましくはレベリング剤(H)を含む。レベリング剤(H)を含むことにより、樹脂組成物のμ/(σ1/2)、とりわけ表面張力σを制御しやすくなる。樹脂組成物におけるレベリング剤(H)の含有率は、上述のとおりである。
 ピンホールが発生することを効果的に抑制する観点から、好ましくは、樹脂組成物が上記(i)及び(ii)の少なくとも1つを満たし、かつ、溶剤(C)がプロピレングリコールモノメチルエーテルアセテートを含み、より好ましくは、樹脂組成物が上記(i)及び(ii)の両方を満たし、かつ、溶剤(C)がプロピレングリコールモノメチルエーテルアセテートを含む。溶剤(C)がプロピレングリコールモノメチルエーテルアセテートを含む場合において、溶剤(C)におけるプロピレングリコールモノメチルエーテルアセテートの含有率は、ピンホールが発生することをより効果的に抑制する観点から、好ましくは30質量%以上であり、より好ましくは40質量%以上であり、さらに好ましくは50質量%以上であり、60質量%以上、70質量%以上、80質量%以上又は90質量%以上であってもよい。
 樹脂組成物の25℃における粘度μは、例えば7mPa・s以上500mPa・s以下であり、上記(ii)を充足させる観点から、好ましくは10mPa・s以上400mPa・s以下であり、より好ましくは20mPa・s以上300mPa・s以下であり、さらに好ましくは22mPa・s以上270mPa・s以下である。
 樹脂組成物の25℃における表面張力σは、例えば10mN/m以上50mN/m以下であり、上記(ii)を充足させる観点から、好ましくは12mN/m以上45mN/m以下であり、より好ましくは15mN/m以上40mN/m以下であり、さらに好ましくは18mN/m以上35mN/m以下であり、なおさらに好ましくは20mN/m以上30mN/m以下である。
 <樹脂組成物の製造方法>
 樹脂組成物は、所定の成分、並びに必要に応じて使用される他の成分を混合する工程を含む方法によって製造することができる。樹脂組成物の製造方法は、樹脂(A)を調製する工程をさらに含むことができる。
 <樹脂膜>
 本発明に係る樹脂膜(本明細書において、単に「樹脂膜」ともいう。)の第1実施形態は、上記本発明に係る樹脂組成物から形成される膜であり、例えば樹脂組成物を基板に塗布した後に乾燥させる工程を含む方法によって得ることができる。
 樹脂膜は、好ましくは硬化膜である。硬化膜の形成に用いられる樹脂組成物は、好ましくは、樹脂(A)、光散乱剤(B)、溶剤(C)及び好ましくはレベリング剤(H)に加えて、光重合性化合物(E)及び光重合開始剤(F)をさらに含む硬化性樹脂組成物である。
 硬化膜(本明細書において、単に「硬化膜」ともいう。)は、上記硬化性樹脂組成物を基板に塗布し、光の作用及び必要に応じてさらに熱の作用で硬化させることにより得ることができる。硬化膜は、上記基板全面に形成されていてもよいし、上記基板の一部に硬化パターンとして形成されていてもよい。
 本明細書において硬化パターンとは、硬化膜の一態様であり、パターン状に形成された硬化膜をいう。
 基板の一部に硬化膜を形成する方法としては、フォトリソグラフ法、インクジェット法、印刷法等が挙げられる。中でも、フォトリソグラフ法が好ましい。フォトリソグラフ法は、硬化性樹脂組成物を基板に塗布し、乾燥させて組成物層を形成し、フォトマスクを介して該組成物層を露光して、現像する方法である。
 基板全面に硬化膜を形成する方法としては、硬化性樹脂組成物を基板に塗布し、乾燥させて組成物層を形成し、該組成物層を加熱及び/又は該組成物層全面に露光する方法が挙げられる。
 基板としては、石英ガラス、ホウケイ酸ガラス、アルミナケイ酸塩ガラス、表面をシリカコートしたソーダライムガラス等のガラス板や、ポリカーボネート、ポリメタクリル酸メチル、ポリエチレンテレフタレート等の樹脂板、シリコン、上記基板上にアルミニウム、銀、銀/銅/パラジウム合金薄膜等を形成したもの等が挙げられる。基板は、好ましくはガラス板、シリコン基板等である。
 基板は、基板表面の濡れ性を調整することのできる前処理を行ったものでもよい。前処理としては、アルコールやアセトン等の溶媒洗浄、酸処理、アルカリ処理、プラズマ処理、コロナ処理等が挙げられる。樹脂膜を積層させたい基板に対して、適切な前処理を選択することにより、未処理の基板よりも硬化性樹脂組成物の塗布性を向上させることができる。
 フォトリソグラフ法による硬化パターンの形成は、公知又は慣用の装置や条件で行うことができる。例えば、以下のようにして作製することができる。
 まず、硬化性樹脂組成物を基板上に塗布し、加熱乾燥(プリベーク)及び/又は減圧乾燥することにより溶剤等の揮発成分を除去して、組成物層を得る。塗布方法としては、スピンコート法、スリットコート法、スリット アンド スピンコート法等が挙げられる。
 加熱乾燥を行う場合の温度は、30℃以上120℃以下が好ましく、50℃以上110℃以下がより好ましい。加熱時間は、10秒間以上60分間以下であることが好ましく、30秒間以上30分間以下であることがより好ましい。
 減圧乾燥を行う場合は、50Pa以上150Pa以下の圧力下、20℃以上25℃以下の温度範囲で行うことが好ましい。
 組成物層の膜厚は、特に限定されず、目的とする硬化パターンの膜厚に応じて適宜選択すればよく、例えば1μm以上20μm以下であり、好ましくは3μm以上18μm以下であり、より好ましくは5μm以上14μm以下であり、さらに好ましくは7μm以上12μm以下である。
 次に、組成物層は、目的の硬化パターンを形成するためのフォトマスクを介して露光される。該フォトマスク上のパターンの形状は特に限定されない。
 露光に用いられる光源としては、250nm以上450nm以下の波長の光を発生する光源が好ましい。例えば、該波長の光から、光重合開始剤(F)の吸収波長に応じて、436nm付近、408nm付近、又は365nm付近の光をバンドパスフィルタにより選択的に取り出してもよい。光源として具体的には、水銀灯、発光ダイオード、メタルハライドランプ、ハロゲンランプ等が挙げられる。
 露光面全体に均一に平行光線を照射することができたり、フォトマスクと組成物層が形成された基板との正確な位置合わせを行うことができたりするため、マスクアライナ及びステッパ等の露光装置を使用することが好ましい。露光された組成物層は、該組成物層に含まれる光重合性化合物(E)等が重合することにより硬化する。
 露光後の組成物層を現像液に接触させて現像することにより、組成物層の未露光部が現像液に溶解して除去されて、硬化パターンが得られる。現像液としては、例えば、水酸化カリウム、炭酸水素ナトリウム、炭酸ナトリウム、水酸化テトラメチルアンモニウム等のアルカリ性化合物の水溶液や有機溶剤が挙げられる。アルカリ性化合物の水溶液中の濃度は、好ましくは0.01質量%以上10質量%以下であり、より好ましくは0.03質量%以上5質量%以下である。有機溶剤としては、上述の溶剤(C)と同様のものが挙げられる。現像液は、界面活性剤を含んでいてもよい。
 現像方法は、パドル法、ディッピング法及びスプレー法等のいずれでもよい。さらに現像時に基板を任意の角度に傾けてもよい。
 現像により得られた硬化パターンに、さらに加熱(ポストベーク)を行うことが好ましい。加熱温度は、150℃以上250℃以下が好ましく、160℃以上235℃以下がより好ましい。加熱時間は、1分間以上120分間以下が好ましく、10分間以上60分間以下がより好ましい。現像後に加熱を行うことにより、硬化パターンに含まれる未反応の光重合性化合物(E)等の重合を進行させることができるため、より耐薬品性に優れた硬化パターンを得ることができる。
 第1実施形態に係る樹脂膜は、ピンホール発生数(1cmあたりのピンホール発生数)のが、好ましくは0.07個/cm以下であり、より好ましくは0.05個/cm以下であり、さらに好ましくは0.03個/cm以下であり、なおさらに好ましくは0.02個/cm以下であり、特に好ましくは0.01個/cm以下であり、最も好ましくは0個/cmである。
 本発明に係る樹脂膜の第2実施形態は、光散乱剤(B)を含む樹脂膜であって、ピンホール発生数が0.07個/cm以下である樹脂膜である。該樹脂膜は通常、樹脂(A)をさらに含む。該樹脂膜は、樹脂(A)及び光散乱剤(B)を含む樹脂組成物から形成することができる。
 第2実施形態に係る樹脂膜は、好ましくは硬化膜である。硬化膜の形成に用いられる樹脂組成物は、好ましくは、樹脂(A)及び光散乱剤(B)に加えて、光重合性化合物(E)及び光重合開始剤(F)をさらに含む硬化性樹脂組成物である。硬化性樹脂組成物から硬化膜又は硬化膜の一態様である硬化パターンを形成する方法及び該方法に用いる基板等については上述の記載が引用される。第2実施形態に係る樹脂膜を形成するための樹脂組成物又は硬化性樹脂組成物は、樹脂(A)、光散乱剤(B)、光重合性化合物(E)及び光重合開始剤(F)以外の、上記<樹脂組成物>の項で述べた成分をさらに含んでいてもよい。該成分が含まれる場合、該成分についての上記<樹脂組成物>の項における記載が本実施形態に係る樹脂膜にも適用される。樹脂(A)、光散乱剤(B)、光重合性化合物(E)及び光重合開始剤(F)についても、上記<樹脂組成物>の項における記載が本実施形態に係る樹脂膜に適用される。
 第2実施形態に係る樹脂膜は、ピンホール発生数が、好ましくは0.05個/cm以下であり、より好ましくは0.03個/cm以下であり、さらに好ましくは0.02個/cm以下であり、なおさらに好ましくは0.01個/cm以下であり、最も好ましくは0個/cmである。
 樹脂膜のピンホール発生数は、後述の[実施例]の項に記載された方法に従って測定される。樹脂膜表面のピンホール発生数を測定するにあたり、樹脂膜表面の測定領域は一箇所であってもよいし、複数箇所であってもよい。例えば、面積が1cmである1つの測定領域についてピンホール発生数を測定し、これを1cmあたりのピンホール発生数としてもよいし、合計面積が1cmとなるように複数の測定領域を選択し、これら複数の測定領域についてのピンホール発生数の合計を1cmあたりのピンホール発生数としてもよい。測定領域が一箇所又は複数箇所である場合において、該測定領域の面積(測定領域が複数箇所である場合は合計面積)は1cm以外の面積であってもよい。この場合、該測定領域におけるピンホール発生数を測定し、測定されたピンホール発生数を測定領域の面積で除して1cmあたりのピンホール発生数としてもよい。
 上述のように、樹脂膜は現像工程を経て形成される場合があるが、通常は現像工程前後でピンホール発生数は変化しない。
 量子ドット(D)を含む樹脂膜(好ましくは硬化膜又は硬化パターン)は、紫外光又は可視光を照射することにより、照射光とは異なる波長の光を発光することができる。量子ドット(D)の成分や粒子径を選択することによって、発光する光の波長を選択することができる。
 上記樹脂膜(好ましくは硬化膜又は硬化パターン)は、照射光の波長を変換する機能を有するため、表示装置の色変換層(波長変換膜)として利用可能である。このような表示装置としては、例えば、特開2006-309219号公報、特開2006-310303号公報、特開2013-15812号公報、特開2009-251129号公報、特開2014-2363号公報等に記載される表示装置が挙げられる。
 本発明に係る樹脂組成物は、良好な光学性能を示すとともにピンホール発生が抑制された樹脂膜を形成することが可能であるため、表示装置、特に、液晶表示装置、有機EL表示装置又は無機EL表示装置の色変換層(波長変換膜)形成用又はバンク形成用の樹脂組成物として有用である。本発明に係る樹脂膜は、良好な光学性能を示すとともにピンホール発生が抑制された樹脂膜であり得るため、表示装置、特に、液晶表示装置、有機EL表示装置又は無機EL表示装置の色変換層(波長変換膜)又はバンクとして有用である。
 以下、実施例により本発明をさらに詳細に説明する。例中の「%」及び「部」は、特記のない限り、質量%及び質量部である。
 〔樹脂組成物の粘度(25℃)の測定〕
 Brookfield回転粘度計を用いて、25℃の恒温下、回転数3rpmの条件下で測定した。
 〔樹脂組成物の表面張力(25℃)の測定〕
 下記手順によって樹脂組成物の表面張力(25℃)を求めた。
(1)5cm角のガラス基板(イーグル2000;コーニング社製)上に、樹脂組成物を、スピンコート法で膜厚が10μmになるように塗布して、塗膜を形成した。
(2)25℃の環境下において、塗膜の表面に水の滴1.0μLを滴下し、接触角測定装置(協和界面科学社製、DM700)を用いてθ/2法にて、塗膜の水に対する接触角θ1を測定した。
(3)25℃の環境下において、塗膜の表面にジヨードメタンの滴1.0μLを滴下し、接触角測定装置(協和界面科学社製、DM700)を用いてθ/2法にて、塗膜のジヨードメタンに対する接触角θ2を測定した。
(4)下記式:
 (1+cosθ)γ=2[(γ γ 1/2+(γ γ 1/2
で表されるヤングオーエンスの式におけるθ(固体の液体に対する接触角)に上記(2)で得られたθ1を代入し、γ (液体の表面張力の分散力成分)、γ (液体の表面張力の極性力成分)にそれぞれ、水についての既知の値である21.8(mN/m)、51.0(mN/m)を代入して方程式1を得た。ヤングオーエンスの式におけるγは、γ +γ である。
(5)同様に、ヤングオーエンスの式におけるθに上記(3)で得られたθ2を代入し、γ 、γ にそれぞれ、ジヨードメタンについての既知の値である49.5(mN/m)、1.3(mN/m)を代入して方程式2を得た。
(6)方程式1及び2の連立方程式から、γ 及びγ を求め、これらの和として、25℃における樹脂組成物の表面張力σ(mN/m)を求めた。
 〔ピンホール発生数の測定〕
 樹脂組成物から樹脂膜を作製し、得られた樹脂膜の表面を観察して、樹脂膜1cmあたりのピンホールの数を測定した。具体的には次のとおりである。なお、樹脂膜表面に存在する直径約100μm以上の窪み(凹部)をピンホールとした。
 5cm角のガラス基板(イーグル2000;コーニング社製)上に、樹脂組成物を、スピンコート法で膜厚が10μmになるように塗布した後、100℃で3分間プリベークして硬化性組成物層を形成した。この硬化性組成物層が形成された基板に対して、露光機(TME-150RSK;トプコン(株)製)を用いて、大気雰囲気下、80mJ/cmの露光量(365nm基準)で光照射し、180℃で60分間ポストベークを行うことにより硬化膜を有する基板を得た。ついで、レーザー顕微鏡(OLS4000、オリンパス製)を用いて、硬化膜の表面を拡大倍率20倍で観察し、硬化膜表面に発生したピンホールの個数を測定し、測定されたピンホール発生数を測定領域(25cm)の面積で除して1cmあたりのピンホール発生数を求めた。
 〔樹脂の重量平均分子量(標準ポリスチレン換算)〕
 樹脂(A-1)の重量平均分子量(Mw)の測定は、GPC法により以下の条件で行った。
 装置;K2479((株)島津製作所製)
 カラム;SHIMADZU Shim-pack GPC-80M
 カラム温度;40℃
 溶媒;テトラヒドロフラン
 流速;1.0mL/min
 検出器;RI
 校正用標準物質 ;TSK STANDARD POLYSTYRENE F-40、F-4、F-288、A-2500、A-500(東ソー(株)製)
 〔樹脂の酸価〕
 樹脂(A-1)溶液3gを精秤し、アセトン90gと水10gとの混合溶剤に溶解し、0.1規定のKOH水溶液を滴定液として用いて、自動滴定装置(平沼産業社製、商品名
:COM-555)により、樹脂(A-1)溶液の酸価を測定し、溶液の酸価と溶液の固形分とから固形分1g当たりの酸価(AV)を求めた。
 〔樹脂溶液の固形分〕
 樹脂(A-1)溶液をアルミカップに約1gはかり取り、180℃で1時間乾燥した後、質量を測定した。その質量減少量から、樹脂(A-1)溶液の固形分(質量%)を計算した。
 (製造例1:樹脂(A-1)溶液の調製)
 撹拌器、温度計付き還流冷却管、滴下ロート及び窒素導入管を具備したフラスコに、プロピレングリコールモノメチルエーテルアセテート(以下、「PGMEA」という。)を110部投入した後、窒素置換しながら撹拌し、80℃に昇温した。ジシクロペンタニルメタクリレート25部、メチルメタクリレート26部、メタクリル酸16部、2,2’-アゾビス(2,4-ジメチルバレロニトリル)11部をPGMEA110部に溶解した溶液を、滴下ロートからフラスコ中に滴下した後、80℃で3時間撹拌した。
 次に、グリシジルメタクリレート16部、2、2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)0.4部、トリフェニルホスフィン0.8部をフラスコ内に投入して110℃まで昇温、8時間撹拌することで重合体中のカルボン酸とエポキシ基とを反応させて、重合性不飽和結合を導入した。次いで、1,2,3,6-テトラヒドロフタル酸無水物17部を加え3時間反応を続けて、側鎖にカルボン酸基を導入した。反応液を室温まで冷却することで樹脂(A-1)溶液を得た。
 樹脂(A-1)は、標準ポリスチレン換算の重量平均分子量が7600、分子量分布が2.1、酸価が100mgKOH/gであり、樹脂(A-1)溶液中の固形分は40質量%であった。
 (製造例2:光散乱剤(B-1)の分散液の調製)
 酸化チタンナノ粒子70部に、DISPERBYK21116(ビックケミー・ジャパン製)を固形分で3部、PGMEAを全量が100部になるように加えた後、ペイントシェイカーで十分に分散するまで撹拌して、光散乱剤(B-1)の分散液(固形分73%)を得た。
 (製造例3:量子ドット(D-1)の分散液の調製)
 配位子としてオレイン酸が配位したInP/ZnSeS量子ドットのトルエン分散液を準備した。分散液を減圧蒸留し、トルエンを除去した。固形分30部に対しシクロヘキシルアセテート70部を添加して、量子ドット(D-1)の分散液(固形分30%)を得た。
 (製造例4:有機配位子(X-1)及び有機配位子(X-2)を含有する量子ドット分散液の調製)
 製造例3で得られた量子ドット(D-1)の分散液に所定量の有機配位子(X-1)を添加し、80℃で2時間攪拌して、有機配位子(X-1)及び有機配位子(X-2)を含有する量子ドット分散液を得た。
 有機配位子(X-2)とは、上記製造例3で用いたオレイン酸が配位したInP/ZnSeS量子ドットが有するオレイン酸を指している。
 <実施例1~6、比較例1~5、参考例1>
 実施例1及び4、比較例4及び5については、製造例1で得られた樹脂(A-1)溶液、製造例2で得られた光散乱剤(B-1)の分散液、並びに、表1に示される他の成分をそれぞれ所定量混合して、硬化性の樹脂組成物を調製した。
 実施例2、3、5、6、比較例1~3については、製造例1で得られた樹脂(A-1)
溶液、製造例2で得られた光散乱剤(B-1)の分散液、製造例4で得られた量子ドット(D-1)分散液、並びに、表1に示される他の成分をそれぞれ所定量混合して、硬化性の樹脂組成物を調製した。
 参考例1については、製造例1で得られた樹脂(A-1)溶液、並びに、表1に示される他の成分をそれぞれ所定量混合して、硬化性の樹脂組成物を調製した。
 添加量から求められる樹脂組成物における各成分の含有量は表1に示されるとおりである。表1において、溶剤(C)以外の成分は固形分換算の含有量(単位:質量部)である。溶剤(C)の含有量の単位は質量部である。例えば量子ドット(D-1)は、樹脂組成物の調製において量子ドット(D-1)の分散液として配合されているが、表1に示される含有量は、その溶液に含まれる量子ドット(D-1)それ自体の量である。表1における溶剤(C)には、樹脂組成物の調製に用いた分散液や溶液に含有される溶剤が含まれている。
 表1に示される「溶剤含有率」は、樹脂組成物の総量に対する溶剤(C)の含有率(質量%)を意味する。表1に示される「レベリング剤含有率」は、樹脂組成物の総量に対するレベリング剤(H)の含有率(質量%)を意味する。
 表1に示される、樹脂組成物における有機配位子(X-2)の含有量については、下記[a]の方法に従って、製造例3で得られた量子ドット(D-1)の分散液における有機配位子(X-2)の濃度を測定し、これに基づいて算出した。
 [a]有機配位子(X-2)の濃度の測定
 量子ドット(D-1)の分散液を150℃で真空乾燥して溶媒を除去した後、残った固形分について、熱重量分析装置「TGDTA6200」を用いて、重量変化を昇温速度5℃/minで50℃から550℃まで測定した。50℃から500℃までの変化重量を有機配位子(X-2)の重量として、量子ドット(D-1)の分散液における有機配位子(X-2)の濃度を算出した。
 得られた樹脂組成物について、μ/(σ1/2)の値を表1に示す。得られた樹脂組成物について、ピンホール発生数を上記に従って測定した。結果を併せて表1に示す。
 なお、比較例5では、樹脂組成物の粘度が高く、膜厚10μmの塗膜を形成することができなかったため、表面張力及びピンホール発生数については測定を行わなかった。
Figure JPOXMLDOC01-appb-T000020
 表1に示される成分の略称の詳細は次のとおりである。
 〔1〕溶剤(C-1):PGMEA(プロピレングリコールモノメチルエーテルアセテート)
 〔2〕溶剤(C-2):シクロヘキシルアセテート
 〔3〕有機配位子(X-1):3-メルカプトプロピオン酸(東京化成工業株式会社製、固形分100%)
 〔4〕有機配位子(X-2):オレイン酸
 〔5〕光重合性化合物(E-1):M-510(多塩基変性アクリレート、東亞合成社製、固形分100%)
 〔6〕光重合性化合物(E-2):A-9550(ジペンタエリスリトールポリアクリレート、新中村化学社製、固形分100%)
 〔7〕光重合開始剤(F-1):下記式で表される化合物。特開2011-132215号公報に記載される方法により製造した(固形分100%)。
Figure JPOXMLDOC01-appb-C000021
 〔8〕酸化防止剤(G-1):Sumilizer-GP(リン/フェノール複合型酸化防止剤、住友化学社製、固形分100%)
 〔9〕レベリング剤(H-1):F-554(フッ素系レベリング剤、DIC社製、固形分100%)

Claims (10)

  1.  樹脂(A)、光散乱剤(B)、溶剤(C)及びレベリング剤(H)を含む樹脂組成物であって、
     前記溶剤(C)の含有率が、前記樹脂組成物の総量に対して40質量%以上74質量%未満であり、
     前記レベリング剤(H)の含有率が、前記樹脂組成物の総量に対して0.01質量%以上1質量%以下である、樹脂組成物。
  2.  樹脂(A)、光散乱剤(B)及び溶剤(C)を含む樹脂組成物であって、
     前記樹脂組成物の25℃における粘度をμ(mPa・s)、25℃における表面張力をσ(mN/m)とするとき、下記式:
     4.0≦μ/(σ1/2)≦65
    を満たす、樹脂組成物。
  3.  量子ドット(D)をさらに含む、請求項1又は2に記載の樹脂組成物。
  4.  光重合性化合物(E)及び光重合開始剤(F)をさらに含む、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  前記光散乱剤(B)の含有率が、前記樹脂組成物の固形分の総量に対して1質量%以上30質量%以下である、請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  前記光散乱剤(B)がTiOの粒子を含む、請求項1~5のいずれか1項に記載の樹脂組成物。
  7.  前記樹脂(A)の含有率が、前記樹脂組成物の固形分の総量に対して10質量%以上70質量%以下である、請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  25℃における粘度μが7mPa・s以上500mPa・s以下である、請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  請求項1~8のいずれか1項に記載の樹脂組成物から形成される樹脂膜。
  10.  請求項9に記載の樹脂膜を含む表示装置。
PCT/JP2021/029727 2020-08-31 2021-08-12 樹脂組成物、樹脂膜及び表示装置 WO2022044822A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180056729.9A CN116096799A (zh) 2020-08-31 2021-08-12 树脂组合物、树脂膜和显示装置
EP21861250.5A EP4206286A1 (en) 2020-08-31 2021-08-12 Resin composition, resin film, and display device
KR1020237007177A KR20230061373A (ko) 2020-08-31 2021-08-12 수지 조성물, 수지막 및 표시 장치
US18/022,492 US20230257571A1 (en) 2020-08-31 2021-08-12 Resin composition, resin film, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020145873 2020-08-31
JP2020-145873 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022044822A1 true WO2022044822A1 (ja) 2022-03-03

Family

ID=80352246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029727 WO2022044822A1 (ja) 2020-08-31 2021-08-12 樹脂組成物、樹脂膜及び表示装置

Country Status (7)

Country Link
US (1) US20230257571A1 (ja)
EP (1) EP4206286A1 (ja)
JP (1) JP2022041899A (ja)
KR (1) KR20230061373A (ja)
CN (1) CN116096799A (ja)
TW (1) TW202219237A (ja)
WO (1) WO2022044822A1 (ja)

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838403A (ja) 1971-09-17 1973-06-06
JPS62174204A (ja) 1986-01-27 1987-07-31 Toyobo Co Ltd 感光性組成物
JPH0675372A (ja) 1992-08-28 1994-03-18 Toppan Printing Co Ltd 感光性着色組成物およびカラーフィルターの製造方法およびカラーフィルター
JPH0675373A (ja) 1992-08-28 1994-03-18 Toppan Printing Co Ltd 感光性着色組成物およびカラーフィルターの製造方法およびカラーフィルター
JPH0710913A (ja) 1993-06-22 1995-01-13 Mitsubishi Chem Corp 光重合性組成物
JP2000080068A (ja) 1998-06-26 2000-03-21 Ciba Specialty Chem Holding Inc 新規o―アシルオキシム光開始剤
JP2005227797A (ja) 1997-02-28 2005-08-25 Mitsubishi Chemicals Corp ブラックマトリックス形成用ブラックレジスト組成物
JP2006309219A (ja) 2005-04-25 2006-11-09 Samsung Electronics Co Ltd 自発光液晶表示装置
JP2006310303A (ja) 2005-04-29 2006-11-09 Samsung Electronics Co Ltd 自発光液晶表示装置
JP2008078686A (ja) 2007-12-13 2008-04-03 Renesas Technology Corp 半導体装置
JP2008078678A (ja) 2007-11-02 2008-04-03 Hitachi Ltd プラズマ処理方法
JP2009251129A (ja) 2008-04-02 2009-10-29 Optoelectronic Industry & Technology Development Association 液晶表示装置用カラーフィルタ、液晶表示装置
JP2011132215A (ja) 2009-11-27 2011-07-07 Adeka Corp オキシムエステル化合物及び該化合物を含有する光重合開始剤
JP2011178776A (ja) 2010-02-05 2011-09-15 Jsr Corp 新規化合物及びそれを含有する感放射線性組成物
JP2012132558A (ja) 2010-12-18 2012-07-12 Boeing Co:The 定常流の熱力学的ポンプ
JP2013015812A (ja) 2011-07-05 2013-01-24 Lg Display Co Ltd 光変換層を含む液晶表示パネル及び液晶表示装置
JP2014002363A (ja) 2012-06-14 2014-01-09 Samsung Display Co Ltd 表示装置
JP2015529698A (ja) 2012-07-02 2015-10-08 ナノシス・インク. 高輝度ナノ構造体およびそれを製造する方法
JP2016065178A (ja) 2014-09-25 2016-04-28 Jsr株式会社 硬化性樹脂組成物、硬化膜、波長変換フィルム、発光素子および発光層の形成方法
JP2016098375A (ja) * 2014-11-21 2016-05-30 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 自発光感光性樹脂組成物、これから製造されたカラーフィルタおよび前記カラーフィルタを含む画像表示装置
JP2017025165A (ja) * 2015-07-17 2017-02-02 Jsr株式会社 硬化膜形成用組成物、硬化膜、発光表示素子、硬化膜の形成方法及び分散液
JP2017032918A (ja) * 2015-08-05 2017-02-09 Jsr株式会社 硬化膜形成用組成物、硬化膜、発光表示素子、フィルム及び硬化膜の形成方法
WO2017051680A1 (ja) 2015-09-25 2017-03-30 株式会社Adeka オキシムエステル化合物及び該化合物を含有する重合開始剤
JP2018123274A (ja) 2017-02-03 2018-08-09 株式会社日本触媒 アルカリ可溶性樹脂、感光性樹脂組成物及びその用途
US20180237690A1 (en) * 2017-02-20 2018-08-23 Samsung Electronics Co., Ltd. Layered structures, production methods thereof, and liquid crystal display including the same
JP2018131612A (ja) * 2017-02-16 2018-08-23 住友化学株式会社 硬化性樹脂組成物、硬化膜及び表示装置
WO2019066064A1 (ja) * 2017-09-29 2019-04-04 日立化成株式会社 波長変換部材、バックライトユニット、画像表示装置、波長変換用樹脂組成物及び波長変換用樹脂硬化物
JP2019086743A (ja) * 2017-11-10 2019-06-06 Dic株式会社 カラーフィルタ用インクジェットインク、光変換層及びカラーフィルタ
WO2020004601A1 (ja) 2018-06-29 2020-01-02 株式会社Adeka オキシムエステル化合物およびこれを含有する光重合開始剤
US20200002604A1 (en) * 2018-07-02 2020-01-02 Samsung Sdi Co., Ltd. Curable composition including quantum dot, resin layer using the same and display device
JP2020114930A (ja) * 2017-02-16 2020-07-30 住友化学株式会社 硬化性樹脂組成物、硬化膜及び表示装置

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838403A (ja) 1971-09-17 1973-06-06
JPS62174204A (ja) 1986-01-27 1987-07-31 Toyobo Co Ltd 感光性組成物
JPH0675372A (ja) 1992-08-28 1994-03-18 Toppan Printing Co Ltd 感光性着色組成物およびカラーフィルターの製造方法およびカラーフィルター
JPH0675373A (ja) 1992-08-28 1994-03-18 Toppan Printing Co Ltd 感光性着色組成物およびカラーフィルターの製造方法およびカラーフィルター
JPH0710913A (ja) 1993-06-22 1995-01-13 Mitsubishi Chem Corp 光重合性組成物
JP2005227797A (ja) 1997-02-28 2005-08-25 Mitsubishi Chemicals Corp ブラックマトリックス形成用ブラックレジスト組成物
JP2000080068A (ja) 1998-06-26 2000-03-21 Ciba Specialty Chem Holding Inc 新規o―アシルオキシム光開始剤
JP2006309219A (ja) 2005-04-25 2006-11-09 Samsung Electronics Co Ltd 自発光液晶表示装置
JP2006310303A (ja) 2005-04-29 2006-11-09 Samsung Electronics Co Ltd 自発光液晶表示装置
JP2008078678A (ja) 2007-11-02 2008-04-03 Hitachi Ltd プラズマ処理方法
JP2008078686A (ja) 2007-12-13 2008-04-03 Renesas Technology Corp 半導体装置
JP2009251129A (ja) 2008-04-02 2009-10-29 Optoelectronic Industry & Technology Development Association 液晶表示装置用カラーフィルタ、液晶表示装置
JP2011132215A (ja) 2009-11-27 2011-07-07 Adeka Corp オキシムエステル化合物及び該化合物を含有する光重合開始剤
JP2011178776A (ja) 2010-02-05 2011-09-15 Jsr Corp 新規化合物及びそれを含有する感放射線性組成物
JP2012132558A (ja) 2010-12-18 2012-07-12 Boeing Co:The 定常流の熱力学的ポンプ
JP2013015812A (ja) 2011-07-05 2013-01-24 Lg Display Co Ltd 光変換層を含む液晶表示パネル及び液晶表示装置
JP2014002363A (ja) 2012-06-14 2014-01-09 Samsung Display Co Ltd 表示装置
JP2015529698A (ja) 2012-07-02 2015-10-08 ナノシス・インク. 高輝度ナノ構造体およびそれを製造する方法
JP2016065178A (ja) 2014-09-25 2016-04-28 Jsr株式会社 硬化性樹脂組成物、硬化膜、波長変換フィルム、発光素子および発光層の形成方法
JP2016098375A (ja) * 2014-11-21 2016-05-30 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 自発光感光性樹脂組成物、これから製造されたカラーフィルタおよび前記カラーフィルタを含む画像表示装置
JP2017025165A (ja) * 2015-07-17 2017-02-02 Jsr株式会社 硬化膜形成用組成物、硬化膜、発光表示素子、硬化膜の形成方法及び分散液
JP2017032918A (ja) * 2015-08-05 2017-02-09 Jsr株式会社 硬化膜形成用組成物、硬化膜、発光表示素子、フィルム及び硬化膜の形成方法
WO2017051680A1 (ja) 2015-09-25 2017-03-30 株式会社Adeka オキシムエステル化合物及び該化合物を含有する重合開始剤
JP2018123274A (ja) 2017-02-03 2018-08-09 株式会社日本触媒 アルカリ可溶性樹脂、感光性樹脂組成物及びその用途
JP2018131612A (ja) * 2017-02-16 2018-08-23 住友化学株式会社 硬化性樹脂組成物、硬化膜及び表示装置
JP2020114930A (ja) * 2017-02-16 2020-07-30 住友化学株式会社 硬化性樹脂組成物、硬化膜及び表示装置
US20180237690A1 (en) * 2017-02-20 2018-08-23 Samsung Electronics Co., Ltd. Layered structures, production methods thereof, and liquid crystal display including the same
WO2019066064A1 (ja) * 2017-09-29 2019-04-04 日立化成株式会社 波長変換部材、バックライトユニット、画像表示装置、波長変換用樹脂組成物及び波長変換用樹脂硬化物
JP2019086743A (ja) * 2017-11-10 2019-06-06 Dic株式会社 カラーフィルタ用インクジェットインク、光変換層及びカラーフィルタ
WO2020004601A1 (ja) 2018-06-29 2020-01-02 株式会社Adeka オキシムエステル化合物およびこれを含有する光重合開始剤
US20200002604A1 (en) * 2018-07-02 2020-01-02 Samsung Sdi Co., Ltd. Curable composition including quantum dot, resin layer using the same and display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAYUKI OTSU: "Experimental Method for Polymer Synthesis", 1 March 1972, KAGAKU-DOJIN PUBLISHING COMPANY

Also Published As

Publication number Publication date
EP4206286A1 (en) 2023-07-05
US20230257571A1 (en) 2023-08-17
KR20230061373A (ko) 2023-05-08
CN116096799A (zh) 2023-05-09
JP2022041899A (ja) 2022-03-11
TW202219237A (zh) 2022-05-16

Similar Documents

Publication Publication Date Title
WO2021200278A1 (ja) 硬化性樹脂組成物及び表示装置
WO2023157560A1 (ja) 組成物、光吸収層、積層体及び表示装置
WO2021200276A1 (ja) 硬化性樹脂組成物及び表示装置
WO2021200277A1 (ja) 硬化性樹脂組成物及び表示装置
JP7406983B2 (ja) 組成物および表示装置
WO2021132331A1 (ja) 硬化性樹脂組成物および表示装置
WO2022044824A1 (ja) 積層体及び表示装置
WO2022044823A1 (ja) 積層体及び表示装置
WO2022044822A1 (ja) 樹脂組成物、樹脂膜及び表示装置
WO2023157559A1 (ja) 組成物、保護層、積層体及び表示装置
WO2023120215A1 (ja) 組成物、膜及び表示装置
WO2022230326A1 (ja) 硬化膜及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021861250

Country of ref document: EP

Effective date: 20230331