WO2022039035A1 - セメント混和材、及びセメント組成物 - Google Patents

セメント混和材、及びセメント組成物 Download PDF

Info

Publication number
WO2022039035A1
WO2022039035A1 PCT/JP2021/029077 JP2021029077W WO2022039035A1 WO 2022039035 A1 WO2022039035 A1 WO 2022039035A1 JP 2021029077 W JP2021029077 W JP 2021029077W WO 2022039035 A1 WO2022039035 A1 WO 2022039035A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
mass
cement admixture
admixture
sio
Prior art date
Application number
PCT/JP2021/029077
Other languages
English (en)
French (fr)
Inventor
泰一郎 森
憲之 荒野
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2022039035A1 publication Critical patent/WO2022039035A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Definitions

  • the present invention relates to a cement admixture and a cement composition.
  • Patent Document 1 describes a method for producing a hardened cement using a powder made of a hydraulic compound arbitrarily mixed with ⁇ -2CaO ⁇ SiO 2 (hereinafter referred to as ⁇ - C 2S). (Claim 1).
  • the present inventor has found that by using a cement admixture configured to contain a predetermined different phase in the ⁇ crystal phase of ⁇ - C 2S, workability and compressive strength are obtained in the cement composition containing the cement admixture. , Storing stability, and temperature dependence can be improved in a well-balanced manner, and the present invention has been completed.
  • a ⁇ crystal phase composed of ⁇ -2CaO ⁇ SiO 2 ( ⁇ -C 2 S) and Including a different phase existing in the ⁇ crystal phase,
  • a cement admixture is provided in which the heterogeneous phase contains 2CaO ⁇ Al 2O 3 ⁇ SiO 2 (C 2 AS).
  • a cement composition comprising the above cement admixture and cement is provided.
  • a cement admixture excellent in workability, compressive strength, storage stability, and temperature dependence, and a cement composition using the same are provided.
  • the cement admixture of the present embodiment contains a ⁇ crystal phase composed of ⁇ -2CaO ⁇ SiO 2 (hereinafter referred to as ⁇ -C 2 S) and a heterogeneous phase existing in the ⁇ crystal phase.
  • the heterogeneous phase is configured to include 2CaO ⁇ Al 2O 3 ⁇ SiO 2 (hereinafter referred to as C 2 AS).
  • This cement admixture is used as an admixture used to form cement concrete.
  • the cement admixture is a water-curable cement admixture used by being mixed with a water-curable cement that is cured by water curing.
  • cement concrete is a general term for cement paste, mortar, or concrete.
  • the cement admixture is a powdery composition at 25 ° C. containing ⁇ - C 2S.
  • Crystal types such as ⁇ -type, ⁇ -type, and ⁇ -type are known for ⁇ -C 2 S. These differ from each other in crystal structure and density. Among them, ⁇ - C 2S, which is a ⁇ type, exerts a neutralization inhibitory effect. By forcibly carbonating with ⁇ - C 2S, densification can be enhanced in the cured product of the cement composition.
  • ⁇ -C 2 S constitutes the ⁇ crystal phase of the cement admixture.
  • the ⁇ crystal phase may be contained as an inorganic base material in the cement admixture.
  • the lower limit of the content of ⁇ - C 2S is, for example, 50 parts by mass or more, preferably 60 parts by mass or more, and more preferably 80 parts by mass or more in 100 parts by mass of the cement admixture.
  • the upper limit of the content of ⁇ - C 2S is, for example, 98 parts by mass or less, preferably 95 parts by mass or less, and more preferably 93 parts by mass or less in 100 parts by mass of the cement admixture.
  • the cement admixture contains a heterogeneous phase present in the ⁇ crystal phase.
  • the heterogeneous phase is present in at least one of the SEM images of the fracture surface of the cement admixture, inside the crystal grains of the crystal formed by the ⁇ crystal phase consisting of ⁇ - C 2S, or along the interface of the crystal grains. It is a thing. In the SEM image, one or more different phases may be contained in the crystal grains.
  • the cement admixture contains C 2 AS as a component constituting the heterogeneous phase.
  • components other than C 2 AS may inevitably be present.
  • the lower limit of the content of C 2 AS is, for example, 0.5% by mass or more, preferably 1.0% by mass or more, and more preferably 2.0% by mass or more with respect to 100% by mass of ⁇ - C 2S. Is. This makes it possible to improve workability, compressive strength, storage stability, and temperature dependence.
  • the upper limit of the content of C 2 AS is, for example, 50% by mass or less, preferably 45% by mass or less, and more preferably 30% by mass or less with respect to 100% by mass of ⁇ - C 2S. This makes it possible to balance various characteristics.
  • the presence of the above-mentioned different phase and the content of the component constituting the different phase can be determined. It is possible to control.
  • a raw material mixture containing CaO raw material, SiO 2 raw material, Al 2 O 3 raw material use a rotary kiln lined in a furnace with high-purity aluminum brick, and / or use brick inside the kiln.
  • the presence of the above-mentioned different phase and the content of the components constituting the different phase can be determined in a desired state. It is mentioned as an element to do.
  • each mineral composition in the cement admixture can be confirmed by a general analytical method.
  • the crushed sample can be confirmed by the powder X-ray diffraction method and the data can be analyzed by the Rietveld method to quantify the mineral composition and the molar ratio (mineral composition amount).
  • the content of each compound composition in the cement admixture can be confirmed by a general analytical method, and for example, the crushed sample can be obtained from each spectrum using SEM-EDS.
  • the cement admixture may be configured so that Al 2 O 3 is not contained in the ⁇ crystal phase. This can improve workability, compressive strength, storage stability, and temperature dependence.
  • the cement admixture may be further configured to contain a ⁇ crystal phase composed of ⁇ -2CaO ⁇ SiO 2 (abbreviated as ⁇ — C 2S).
  • the lower limit of the content of ⁇ - C 2S is, for example, 1.0% by mass or more, preferably 2.0% by mass or more, and more preferably 3.0% by mass with respect to 100% by mass of ⁇ - C 2S. % Or more. Thereby, the compressive strength can be improved.
  • the upper limit of the content of ⁇ - C 2S is, for example, 50% by mass or less, preferably 30% by mass or less, and more preferably 20% by mass or less with respect to 100% by mass of ⁇ - C 2S. .. As a result, it is possible to suppress a decrease in condensation hardening in the cement composition.
  • the cement admixture containing ⁇ -C 2 S may be configured to contain Al 2 O 3 in the ⁇ crystal phase. This can improve workability, compressive strength, storage stability, and temperature dependence.
  • the method for producing a cement admixture includes, for example, a step of firing a raw material mixture containing a CaO raw material, a SiO 2 raw material, and an Al 2 O 3 raw material with a kiln.
  • CaO raw material those commercially available as an industrial raw material may be used, and for example, industrial waste containing limestone, coal ash, quicklime, quicklime, and CaO (acetylene-generated waste, fine particles generated from waste concrete lumps) may be used. It may contain one or more selected from the group consisting of powder, municipal waste incineration ash, sewage sludge incineration ash, etc.). Among these, slaked lime and by-product slaked lime may be used.
  • SiO 2 raw material those commercially available as an industrial raw material may be used, and examples thereof include silica stone, silica sand, quartz, and diatomaceous earth. These may be used alone or in combination of two or more. It should be noted that these may not be used as long as the required amount of SiO 2 is contained in the CaO raw material and the Al2O3 raw material. For example, when coal ash containing SiO 2 is used as the CaO raw material, the above SiO 2 raw material may not be added.
  • coal ash is a general term for combustion ash obtained by burning coal, such as coal combustion ash discharged from a boiler of a thermal power plant.
  • coal ash for example, ash generated from a coal-fired power plant, which is generated by combustion of pulverized coal, and is collected by dropping from the combustion gas of a combustion boiler when passing through an air preheater, a coal saver, or the like.
  • Coal ash collected by an electrostatic collector, and coal ash that has fallen to the bottom of a combustion boiler are used.
  • Al 2 O 3 raw material those commercially available as an industrial raw material may be used, but may contain, for example, one or more selected from the group consisting of bauxite, aluminum hydroxide, and aluminum residual ash.
  • the aluminum residual ash may be mainly composed of aluminum hydroxide.
  • bauxite may be used.
  • these raw materials After firing, these raw materials are mixed and pulverized so as to have a predetermined mineral composition ratio to obtain a raw material mixture.
  • the method of mixed pulverization is not particularly limited, and a dry pulverization method or a wet pulverization method can be applied.
  • a dry pulverization method it is necessary to perform a dehydration treatment for subsequent granulation.
  • quicklime When quicklime is used as a raw material, it is desirable to use a dry method.
  • the ⁇ -C 2 S / C 2 AS ratio in the cement admixture can be controlled.
  • the raw material mixture may be granulated before firing.
  • the granulated product is adjusted to an appropriate size, but may be, for example, 0.5 to 3.0 cm.
  • the firing temperature may be, for example, 1,200 ° C to 1,600 ° C, preferably 1,300 ° C to 1,550 ° C, and more preferably 1,400 ° C to 1,450 ° C.
  • a kiln such as a rotary kiln can be used for firing.
  • a rotary kiln in which the bricks of the fire zone are composed of high-purity alumina bricks having an Al 2 O 3 content of 99% or more in terms of mass may be used, and / or the fire zone of the rotary kiln may be used before firing.
  • Alumina mortar adjusted to an appropriate concentration may be applied to the inner surface of the brick.
  • Clinker is obtained by firing.
  • the clinker may be pulverized by a known method to obtain a pulverized product. From the above, a cement admixture can be obtained.
  • the cement admixture may be a clinker obtained by firing the raw material components, or may be a clinker powder.
  • the specific surface area of the brain of the cement admixture is not particularly limited, but is preferably 1,500 cm 2 / g or more, and the upper limit is preferably 8,000 cm 2 / g or less. Among them, 2,000 cm 2 / g to 6,000 cm 2 / g is more preferable, and 4,000 cm 2 / g to 6,000 cm 2 / g is most preferable.
  • the brain specific surface area is 1,500 cm 2 / g or more, good material separation resistance is obtained, and the carbonation (salting) promoting effect is sufficient. Further, when it is 8,000 cm 2 / g or less, the crushing power at the time of crushing is not increased and it is economical, and weathering is suppressed and deterioration of quality with time can be suppressed.
  • the cement composition of the present embodiment contains the above-mentioned cement admixture and cement.
  • This cement admixture has a different component from cement and is configured not to contain cement.
  • the amount of the cement admixture used varies depending on the purpose of use, but is usually 1 to 90 parts by mass, preferably 2 to 80 parts by mass, and more preferably 3 to 70 parts by mass in 100 parts by mass of cement.
  • "to” means that an upper limit value and a lower limit value are included unless otherwise specified.
  • the cement preferably contains water-curable cement, for example, various Portland cements such as ordinary, early-strength, ultra-fast-strength, low-heat, and moderate heat, and these Portland cements are mixed with blast furnace slag, fly ash, or silica.
  • various mixed cements waste-using cement manufactured from municipal waste incineration ash and sewage sludge incineration ash, so-called eco-cement (R), filler cement mixed with limestone powder, etc., as well as alumina cement and sulfo. Examples thereof include aluminate cement and calcined limestone clay cement (LC3). These may be used alone or in combination of two or more.
  • the amount of water used is not particularly limited, but usually, the water / cement composition ratio is, for example, about 25 to 70% by mass with respect to the cement composition composed of cement and the cement admixture. It may be 30 to 60% by mass.
  • the kneading method is a generally used method and is not particularly limited.
  • any existing stirring device can be used, and for example, a tilting mixer, an omni mixer, a V-type mixer, a Henschel mixer, a Nauter mixer and the like can be used.
  • the cement composition and water may be mixed at the time of construction, or a part or all of them may be mixed in advance.
  • the construction method of the present embodiment may include a step of constructing the above-mentioned cement composition and a step of water-curing the cement composition thereafter.
  • the curing method of the cement composition is not particularly limited, and any of the commonly used curing methods such as normal temperature / normal pressure curing, steam curing, high temperature / high pressure steam curing, and pressure curing can be applied.
  • Cement compositions also include aggregates such as sand and gravel, swelling materials, hardened materials, coagulation adjusters, water reducing agents, high performance water reducing agents, AE agents, AE water reducing agents, high performance AE water reducing agents, and thickening agents.
  • ⁇ Making cement admixture> (Raw materials used) -By-product slaked lime: Slaked lime that is produced as a by-product after acetylene is generated by reacting calcium carbide with water.
  • SiO 2 is 0.8% by mass
  • Al 2 O 3 is 0.6% by mass
  • Fe 2 O 3 is 0.3% by mass
  • CaO is 68.5% by mass
  • MgO is 0.02% by mass
  • Na 2 O Is 0.01% by mass
  • K2O is 0.01% by mass
  • SO 3 is 0.5% by mass.
  • the ignition loss (LOI) is 24.1% by mass.
  • Silica Fine silica powder, SiO 2 99.3% by mass, Al 2 O 3 0.01% by mass, Fe 2 O 3 0.0% by mass, CaO 0.0% by mass, MgO 0. 04 mass%, Na 2 O 0.02 mass%, K 2 O 0.3 mass%, SO 3 0.04 mass%, intense heat loss (LOI) 0.6 mass% ..
  • Alumina Al 2 O 3 is 99.03% by mass, SiO 2 is 0.14% by mass, Fe 2 O 3 is ⁇ 0.01% by mass, CaO is ⁇ 0.01% by mass, and TIO 2 is 0.06. Mass%, ignition loss (LOI) is 0.82 mass%.
  • a calcium carbonate powder having a purity of 99.0% by mass or more and a silicon oxide powder having a purity of 99.0% by mass or more are mixed so that the molar ratio of CaO / SiO 2 becomes 2.00.
  • the mixture was heat-treated at 400 ° C. for 2 hours and slowly cooled in an electric furnace to synthesize ⁇ - C 2S powder.
  • the obtained ⁇ - C 2S powder was used as a cement admixture.
  • the obtained ⁇ -C 2 S powder did not contain C 2 AS and C 12 A 7 in a solid solution.
  • the fracture surface of the clinker obtained in Production Examples 2 and 4 was observed using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the SEM image of Production Example 2 is shown in FIG. 1
  • the SEM image of Production Example 4 is shown in FIG.
  • arrow A (white area) indicates C 2 AS
  • arrow B (gray area) indicates ⁇ -C 2 S.
  • EDS energy dispersive X-ray analyzer
  • C 2 AS was present in the ⁇ crystal phase and that Al 2 O 3 was not contained in the ⁇ crystal phase.
  • ⁇ -C 2 S was confirmed, and it was confirmed that Al 2 O 3 was contained in the ⁇ crystal phase composed of ⁇ -C 2 S.
  • Tables 1 and 2 show the same as in Production Example 2, except that the above alumina was used instead of silica stone and the CaO / SiO 2 molar ratio and Al 2 O 3 content shown in Tables 1 and 2 were adopted.
  • the obtained cement admixture was evaluated based on the following evaluation items.
  • sample A workability, compressive strength (strength), storage stability, and temperature dependence were measured as follows.
  • Test method Workability: Using sample A (storage 0 months) immediately after preparation, the flow value was measured in an environment of 20 ° C. according to the flow test of JIS R5201.
  • the cement admixtures of Examples 1 to 19 are excellent in workability and compressive strength, and have high storage stability because the influence of the storage period and the test temperature on the compressive strength is small as compared with Comparative Example 1. It was shown that the temperature dependence was small. Such a cement admixture can be suitably used as a cement admixture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本発明のセメント混和材は、γ-2CaO・SiO2で構成されるγ結晶相と、γ結晶相中に存在する異相と、を含み、その異相が2CaO・Al2O3・SiO2を含むように構成されるものである。

Description

セメント混和材、及びセメント組成物
 本発明は、セメント混和材、及びセメント組成物に関する。
 これまでセメント混和材について様々な開発がなされてきた。この種の技術として、例えば、特許文献1に記載の技術が知られている。特許文献1には、γ-2CaO・SiO(以下、γ-CSと呼称する。)と任意に混合された水硬性化合物よりなる粉末を用いたセメント硬化体の製造方法が記載されている(請求項1)。
特開平04-214059号公報
 しかしながら、本発明者が検討した結果、上記特許文献1に記載のγ-CS粉末において、作業性、圧縮強度、貯蔵安定性、及び温度依存性の点で改善の余地があることが判明した。
 本発明者はさらに検討したところ、γ-CSのγ結晶相中に所定の異相を含むように構成したセメント混和材を用いることにより、それを含むセメント組成物において、作業性、圧縮強度、貯蔵安定性、及び温度依存性をバランスよく向上できることを見出し、本発明を完成するに至った。
 本発明によれば、
 γ-2CaO・SiO(γ-CS)で構成されるγ結晶相と、
 前記γ結晶相中に存在する異相と、を含み、
 前記異相が、2CaO・Al・SiO(CAS)を含む、セメント混和材が提供される。
 また本発明によれば、
 上記のセメント混和材と、セメントと、を含む、セメント組成物が提供される。
 本発明によれば、作業性、圧縮強度、貯蔵安定性、及び温度依存性に優れたセメント混和材、及びそれを用いたセメント組成物が提供される。
製造例2のSEM画像である。 製造例4のSEM画像である。
 本実施形態のセメント混和材を概説する。
 本実施形態のセメント混和材は、γ-2CaO・SiO(以下、γ-CSと呼称する。)で構成されるγ結晶相と、γ結晶相中に存在する異相と、を含み、その異相が2CaO・Al・SiO(以下、CASと呼称する。)を含むように構成される。
 このセメント混和材は、セメントコンクリートを形成するために用いる混和材に使用される。具体的には、セメント混和材は、水養生で硬化する水硬化性セメントに混和して用いられる水硬化性セメント混和材である。
 ここで、セメントコンクリートとは、セメントペースト、モルタル、又はコンクリートを総称するものである。
 本発明者の知見によれば、γ-CSのγ結晶相中にCASを含む異相が存在するセメント混和材を用いることによって、セメント組成物における作業性及び圧縮強度が向上しつつも、セメント混和材を所定条件下で貯蔵した場合でも作業性や圧縮強度の低減が抑制され、温度環境の変動条件下、好ましくは低温環境下でも作業性や圧縮強度の低減が抑制されること、すなわち、作業性や圧縮強度等のセメント特性における貯蔵安定性及び温度依存性を向上できることが見出された。
 詳細なメカニズムは定かでないが、CASが非水硬化性のフィラーとして振る舞うことによって、上記の効果が得られると考えられる。
 本実施形態によれば、作業性、圧縮強度、貯蔵安定性、及び温度依存性に優れたセメント混和材を実現できる。
 また、原料に含まれるAlの含有量に応じて、CaO/SiOモル比を適切に制御することによって、全体が粉末化したセメント混和材を実現できる。
 以下、本実施形態のセメント混和材を詳述する。
 セメント混和材は、γ-CSを含む、25℃で粉末状の組成物である。
 γ-CSは、α型、β型、γ型などの結晶型が知られている。これらは結晶構造や密度が互いに異なる。この中で、γ型であるγ-CSは、中性化抑制効果を発揮する。γ-CSによって強制炭酸化を施すことで、セメント組成物の硬化物において、緻密化を高められる。
 γ-CSは、セメント混和材のγ結晶相を構成する。γ結晶相は、セメント混和材中、無機母材として含まれてもよい。
 γ-CSの含有量の下限は、セメント混和材100質量部中、例えば、50質量部以上、好ましくは60質量部以上、より好ましくは80質量部以上である。
 一方、γ-CSの含有量の上限は、セメント混和材100質量部中、例えば、98質量部以下、好ましくは95質量部以下、より好ましくは93質量部以下である。
 このような範囲ないとすることにより、作業性及び圧縮強度を向上させることができる。
 セメント混和材は、γ結晶相中に存在する異相を含む。
 異相は、セメント混和材の破断面についてのSEM画像の少なくとも一つにおいて、γ-CSからなるγ結晶相が構成する結晶体の結晶粒の内部、あるいは結晶粒の界面に沿って存在するものである。
 SEM画像中、異相は、結晶粒中に一または二以上含まれてもよい。
 異相を構成する成分として、セメント混和材は、CASを含む。異相中には、CAS以外の成分が不可避に存在してもよい。
 CASの含有量の下限は、γ-CSの100質量%に対して、例えば、0.5質量%以上、好ましくは1.0質量%以上、より好ましくは2.0質量%以上である。これにより、作業性、圧縮強度、貯蔵安定性、及び温度依存性を向上ができる。
 一方、CASの含有量の上限は、γ-CSの100質量%に対して、例えば、50質量%以下、好ましくは45質量%以下、より好ましくは30質量%以下である。これにより、諸特性のバランスを図ることができる。
 本実施形態では、例えばセメント混和材中に含まれる各成分の種類や配合量、セメント混和材の調製方法等を適切に選択することにより、上記異相の存在や異相を構成する成分の含有量を制御することが可能である。これらの中でも、例えばCaO原料、SiO原料、Al原料を含む原料混合物を使用すること、高純度アルミ質レンガで炉内ライニングされたロータリーキルンを使用すること、及び/又はキルン内部のレンガ表面に所定濃度のアルミナモルタルを塗布すること、焼成温度、乾式粉砕、造粒サイズの条件を適切に調整すること等が、上記異相の存在や異相を構成する成分の含有量を所望の状態とするための要素として挙げられる。
 セメント混和材中の各鉱物組成の含有量は、一般の分析方法で確認することができる。例えば、粉砕した試料を粉末X線回折法で生成鉱物組成を確認するとともにデータをリートベルト法にて解析し、鉱物組成やモル比(鉱物組成量)を定量することができる。
 セメント混和材中の各化合物組成の含有量は、一般の分析方法で確認することができるが、例えば、粉砕した試料について、SEM-EDSを用いて、各スペクトルから求めることができる。
 セメント混和材は、γ結晶相中にAlが含まれないように構成されてもよい。これにより、作業性、圧縮強度、貯蔵安定性、及び温度依存性を向上できる。
 セメント混和材は、さらに、β-2CaO・SiO(β-CSと略記)で構成されるβ結晶相を含むように構成されてもよい。
 β-CSの含有量の下限は、γ-CSの100質量%に対して、例えば、1.0質量%以上、好ましくは2.0質量%以上、より好ましくは3.0質量%以上である。これにより、圧縮強度を向上させることができる。
 一方、β-CSの含有量の上限は、γ-CSの100質量%に対して、例えば、50質量%以下、好ましくは30質量%以下、より好ましくは20質量%以下である。これにより、セメント組成物における凝結硬化の低下を抑制できる。
 β-CSを含むセメント混和材は、β結晶相中にAlが含まれるように構成されてもよい。これにより、作業性、圧縮強度、貯蔵安定性、及び温度依存性を向上できる。
 セメント混和材の製造方法について説明する。
 セメント混和材の製造方法は、CaO原料、SiO原料、Al原料を含む原料混合物を、例えば、キルンにより焼成する工程を含む。
 CaO原料として、工業原料として市販されているものを使用してもよいが、例えば、石灰石、石炭灰、生石灰、消石灰、及びCaOを含む産業廃棄物(アセチレン発生屑、廃コンクリート塊から発生する微粉末、都市ゴミ焼却灰、下水汚泥焼却灰、など)からなる群から選ばれる一または二以上を含んでもよい。この中でも、消石灰、副生消石灰を用いてもよい。
 SiO原料として、工業原料として市販されているものを使用してもよいが、例えば、ケイ石、ケイ砂、石英、珪藻土などが挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。なお、これらは、CaO原料やAl原料中にSiOが必要量含まれていれば、使用しなくてもよい。
 例えば、CaO原料として、SiOを含む石炭灰を使用する場合、上記のSiO原料を添加しなくてもよい。
 ここで、石炭灰(フライアッシュ、他)は、例えば、火力発電所のボイラから排出される石炭燃焼灰等、石炭を燃焼させて得られた燃焼灰の総称をいう。石炭灰として、例えば、石炭火力発電所から発生する灰であり、微粉炭燃焼によって生成し、燃焼ボイラの燃焼ガスから空気余熱器、又は節炭器等を通過する際に落下採取された石炭灰、電気集塵機で採取された石炭灰、更には燃焼ボイラの炉底に落下した石炭灰等が用いられる。
 Al原料として、工業原料として市販されているものを使用してもよいが、例えば、ボーキサイト、水酸化アルミニウム、及びアルミ残灰からなる群から選ばれる一または二以上を含んでもよい。アルミ残灰は水酸化アルミニウムを主体としてもよい。この中でも、ボーキサイトを用いてもよい。
 これらの原料を、焼成後に所定の鉱物組成割合となるように調合し混合粉砕し、原料混合物を得る。
 混合粉砕の方法は、特に限定されるものではなく、乾式粉砕法又は湿式粉砕法を適用することができ、湿式粉砕法の場合は、その後造粒するために脱水処理を施す必要がある。また、原料に生石灰を用いる場合は、乾式で行うことが望ましい。
 また原料の仕込み割合を調整することで、セメント混和材中のγ-CS/CAS比を制御できる。
 原料混合物を焼成前に造粒してもよい。造粒物は、適切なサイズに調整されるが、例えば、0.5から3.0cmとしてもよい。
 焼成温度は、例えば、1,200℃~1,600℃でもよく、好ましくは1,300℃~1,550℃、より好ましくは1,400℃~1,450℃である。
 焼成には、ロータリーキルンなどのキルンを使用できる。
 例えばAl含有量が質量換算で99%以上の高純度アルミナ質レンガで焼成帯のレンガが構成されたロータリーキルンを使用してもよいし、及び/又は、焼成前にロータリーキルンの焼成帯のレンガ内部表面に、適当な濃度に調整したアルミナモルタルを塗布してもよい。
 焼成によってクリンカが得られる。クリンカは、公知の方法で粉砕し粉砕物としてもよい。
 以上により、セメント混和材が得られる。
 セメント混和材は、原料成分を焼成してなる焼塊(クリンカ)でもよく、クリンカの粉末物であってもよい。
 セメント混和材のブレーン比表面積は特に限定されるものではないが、1,500cm/g以上が好ましく、また上限は8,000cm/g以下が好ましい。なかでも、2,000cm/g~6,000cm/gがより好ましく、4,000cm/g~6,000cm/gが最も好ましい。ブレーン比表面積が1,500cm/g以上であることで、良好な材料分離抵抗性が得られ、炭酸(塩)化促進効果が充分になる。また、8,000cm/g以下であることで粉砕する際の粉砕動力が大きくならず経済的であり、また、風化が抑制され品質の経時的な劣化を抑えることができる。
 本実施形態のセメント組成物は、上記のセメント混和材と、セメントと、を含む。
 このセメント混和材は、セメントとは異なる成分で、セメントを含まないように構成される。
 セメント混和材の使用量は、使用する目的により異なるが、通常、セメント100質量部中、例えば、1~90質量部、好ましくは2~80質量部、より好ましくは3~70質量部でもよい。
 本明細書中、「~」は、特に明示しない限り、上限値と下限値を含むことを表す。
 セメントとしては、水硬化性セメントを含むことが好ましく、例えば、普通、早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメント、これらポルトランドセメントに高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、都市ゴミ焼却灰や下水汚泥焼却灰などを原料として製造された廃棄物利用セメント、いわゆるエコセメント(R)、及び石灰石粉末等を混合したフィラーセメント、並びに、アルミナセメント、サルフォアルミネートセメント、石灰石焼成粘土セメント(LC3)等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 水の使用量は特に限定されるものではないが、通常、セメントとセメント混和材とからなるセメント組成物に対して、水/セメント組成物比が、例えば、25~70質量%程度であり、30~60質量%でもよい。
 混練方法は、一般に用いられる方法で、特に限定されるものではない。混合装置としては、既存のいかなる撹拌装置も使用可能であり、例えば、傾胴ミキサー、オムニミキサー、V型ミキサー、ヘンシェルミキサー、及びナウターミキサー等が使用可能である。
 セメント組成物と水の混合は、それぞれの材料を施工時に混合してもよいし、あらかじめ一部を、あるいは全部を混合しておいても差し支えない。
 本実施形態の施工方法は、上記のセメント組成物を施工する工程と、その後、前記セメント組成物を水養生する工程と、を含んでもよい。
 セメント組成物の養生方法は特に限定されるものではなく、一般に行われる常温・常圧養生、蒸気養生、高温・高圧蒸気養生、及び加圧養生等のいずれの養生方法も適用可能である。
 セメント組成物は、さらに、砂や砂利などの骨材や、膨張材、急硬材、凝結調整剤、減水剤、高性能減水剤、AE剤、AE減水剤、高性能AE減水剤、増粘剤、防錆剤、防凍剤、水和熱抑制剤、高分子エマルジョン、ベントナイトやモンモリロナイトなどの粘土鉱物、ゼオライト、ハイドロタルサイト、及びハイドロカルマイト等のイオン交換体、硫酸アルミニウムや硫酸ナトリウムなどの硫酸塩、リン酸塩、並びに、ホウ酸、CaOを含む産業廃棄物(廃コンクリート、など)を原料に精製してなる炭酸化カルシウム等のうちの一種又は二種以上のその他の混和材を本発明の目的を実質的に阻害しない範囲で併用することが可能である。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 以下、参考形態の例を付記する。
1. γ-2CaO・SiO(γ-CS)で構成されるγ結晶相と、
 前記γ結晶相中に存在する異相と、を含み、
 前記異相が、2CaO・Al・SiO(CAS)を含む、セメント混和材。
2. 1.に記載のセメント混和材であって、
 前記CASの含有量が、前記γ-CSの100質量%対して、0.5質量%以上50質量%以下である、セメント混和材。
3. 1.又は2.に記載のセメント混和材であって、
 前記γ-CSの含有量が、当該セメント混和材100質量%中、50質量%以上98質量%以下である、セメント混和材。
4. 1.~3.のいずれか一つに記載のセメント混和材であって、
 前記γ結晶相中にAlが含まれない、セメント混和材。
5. 1.~4.のいずれか一つに記載のセメント混和材であって、
 β-2CaO・SiO(β-CS)で構成されるβ結晶相を含む、セメント混和材。
6. 5.に記載のセメント混和材であって、
 前記β-CSの含有量は、前記γ-CSの100質量%対して、1.0質量%以上50質量%以下である、セメント混和材。
7. 5.または6.に記載のセメント混和材であって、
 前記β結晶相中にAlが含まれる、セメント混和材。
8. 1.~7.のいずれか一つに記載のセメント混和材と、セメントと、を含む、セメント組成物。
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
<セメント混和材の作製>
(使用原料)
・副生消石灰:カルシウムカーバイドと水を反応させてアセチレンを発生させた後に副生する消石灰。SiOが0.8質量%、Alが0.6質量%、Feが0.3質量%、CaOが68.5質量%、MgOが0.02質量%、NaOが0.01質量%、KOが0.01質量%、SOが0.5質量%である。強熱減量(L.O.I.)が24.1質量%である。
・珪石:珪石微粉末、SiOが99.3質量%、Alが0.01質量%、Feが0.0質量%、CaOが0.0質量%、MgOが0.04質量%、NaOが0.02質量%、KOが0.3質量%、SOが0.04質量%、強熱減量(L.O.I.)が0.6質量%。
・アルミナ:Alが99.03質量%、SiOが0.14質量%、Feが<0.01質量%、CaOが<0.01質量%、TiOが0.06質量%、強熱減量(L.O.I.)が0.82質量%。
(製造例1)
 純度99.0質量%以上の炭酸カルシウム系粉末と、純度99.0質量%以上の酸化珪素系の粉末とを、CaO/SiOのモル比が2.00になるように混合し、1,400℃で2時間熱処理し、電気炉内で徐冷して、γ-CS粉末を合成した。得られたγ-CS粉末をセメント混和材として使用した。
 得られたγ-CS粉末には、CAS及びC12が固溶せず含まれていなかった。
(製造例2)
 CaO、SiOを含む原料として、上記の副生消石灰及び珪石を、表1に示すCaO/SiOモル比となるように配合し、乾式で混合粉砕して混合原料を得た。得られた混合原料を造粒し、直径が約1cm~2.5cmの造粒物を作製した。
 得られた造粒物を、焼成帯のレンガが高純度アルミナ質レンガ(Al含有量が質量換算で99%以上)で構成されたロータリーキルンに投入し、焼点温度1,400℃で焼成し、室温まで冷却する過程で粉化したクリンカを合成した。得られたクリンカ粉末物をセメント混和材として使用した。
(製造例3、4)
 珪石に代えて上記のアルミナを使用し、表1に示すCaO/SiOモル比、Al含有量を採用した以外は、製造例2と同様にして、表1に示す鉱物割合となるクリンカ粉末物を合成した。得られたクリンカ粉末物をセメント混和材として使用した。
 製造例2、4で得られたクリンカの破断面について、走査型電子顕微鏡(SEM)を用いて観察した。製造例2のSEM画像を図1、製造例4のSEM画像を図2に示す。図中、矢印A(白色領域)がCAS、矢印B(灰色領域)がγ-CSを示す。
 得られたSEM画像とエネルギー分散型X線分析装置(EDS)を用いて元素面分析を行った結果、実験例2~4のセメント混和材において、γ-CSが構成するγ結晶相中にCASが存在すること、そのγ結晶相中にはAlが含まれないが確認された。同様にして、実験例2~4のセメント混和材において、β-CSが確認され、β-CSが構成するβ結晶相中にAlが含まれることが確認された。
(製造例5~20)
 珪石に代えて上記のアルミナを使用し、表1、2に示すCaO/SiOモル比、Al含有量を採用した以外は、製造例2と同様にして、表1、2に示す鉱物割合となるクリンカ粉末物を合成した。得られたクリンカ粉末物をセメント混和材として使用した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、2中、γ-CS:γ-2CaO・SiO、β-CS:β-2CaO・SiO、CAS:2CaO・Al・SiOを表す。
 表1、2中、セメント混和材中の鉱物組成の割合は、蛍光X線を用いて定量した化学組成の結果と、粉末X線回折による同定結果とに基づいて算出した。
 得られたセメント混和材について、以下の評価項目に基づいて評価を行った。
<作業性、圧縮強度、貯蔵安定性、温度依存性>
(モルタルの調製)
 各実施例・比較例のセメント混和材、セメント、水、及び砂を20℃の室内で混合して、セメントと混和材からなるセメント組成物100質量部中の混和材の配合量=7質量部、水/セメント組成物の配合比=1/1(質量比)、セメント組成物/砂の配合比=1/3(質量比)となるモルタルを調製した。
(使用材料)
セメント:普通ポルトランドセメント、市販品
水:水道水
砂:JIS標準砂
 得られたモルタル(サンプルA)を使用して、次のようにして作業性、圧縮強度(強さ)、貯蔵安定性、温度依存性の測定を行った。
(試験方法)
・作業性:調製直後のサンプルA(貯蔵0ヶ月)を用いて、20℃環境下、JIS R 5201のフロー試験に準じて、フロー値を測定した。
・圧縮強度(強さ):調製直後のサンプルA(貯蔵0ヶ月)を用いて、20℃環境下、JIS R 5201に準じて、材齢28日の圧縮強さを測定した。
・貯蔵安定性:作製直後のセメント混和材を、ビニール袋に入れて密閉し、温度20℃、湿度60%の条件下で3ヶ月貯蔵した。3ヶ月貯蔵したセメント混和材を使用した以外は、上記(モルタルの調製)と同様にして、モルタル(サンプルB)を調製した。得られた調製直後のサンプルB(貯蔵3ヶ月)を用いて、上記の条件にて作業性(フロー値)と圧縮強度を測定した。貯蔵0ヶ月のサンプルAの各試験結果に対する貯蔵3ヶ月のサンプルBの各試験結果の比を求めた。
・温度依存性:調製直後のサンプルA(貯蔵0ヶ月)を用いて、試験温度を5℃に変更したこと以外は全て同一条件下で作業性(フロー値)と圧縮強度を測定し、20℃環境下での各試験結果に対する5℃環境下での各試験結果の比を求めた。
 表1、2中、作業性、圧縮強度、貯蔵安定性、温度依存性の各試験において、実用上問題なく使用できる場合を○、実用上の使用に問題が生じる恐れがある場合を×と表記する。
 実施例1~19のセメント混和材は、作業性及び圧縮強度に優れており、比較例1と比較して、圧縮強度における保管期間や試験温度の影響が小さいことから、貯蔵安定性が高く、温度依存性が小さいことが示された。このようなセメント混和材は、セメントの混和材料に好適に用いることができる。
 この出願は、2020年8月18日に出願された日本出願特願2020-137832号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (11)

  1.  γ-2CaO・SiO(γ-CS)で構成されるγ結晶相と、
     前記γ結晶相中に存在する異相と、を含み、
     前記異相が、2CaO・Al・SiO(CAS)を含む、セメント混和材。
  2.  請求項1に記載のセメント混和材であって、
     前記CASの含有量が、前記γ-CSの100質量%対して、0.5質量%以上50質量%以下である、セメント混和材。
  3.  請求項1又は2に記載のセメント混和材であって、
     前記γ-CSの含有量が、当該セメント混和材100質量%中、50質量%以上98質量%以下である、セメント混和材。
  4.  請求項1~3のいずれか一項に記載のセメント混和材であって、
     前記γ結晶相中にAlが含まれない、セメント混和材。
  5.  請求項1~4のいずれか一項に記載のセメント混和材であって、
     β-2CaO・SiO(β-CS)で構成されるβ結晶相を含む、セメント混和材。
  6.  請求項5に記載のセメント混和材であって、
     前記β-CSの含有量は、前記γ-CSの100質量%対して、1.0質量%以上50質量%以下である、セメント混和材。
  7.  請求項5または6に記載のセメント混和材であって、
     前記β結晶相中にAlが含まれる、セメント混和材。
  8.  請求項1~7のいずれか一項に記載のセメント混和材であって、
     水硬化性セメントに混和する水硬化性セメント混和材である、セメント混和材。
  9.  請求項1~8のいずれか一項に記載のセメント混和材であって、
     前記異相は、当該セメント混和材の破断面についてのSEM画像の少なくとも一つにおいて、前記γ結晶相が構成する結晶体の結晶粒の内部、あるいは結晶粒の界面に沿って存在するものである、セメント混和材。
  10.  請求項1~9のいずれか一項に記載のセメント混和材と、セメントと、を含む、セメント組成物。
  11.  請求項10に記載のセメント組成物であって、
     前記セメントが、水硬化性セメントを含む、セメント組成物。
PCT/JP2021/029077 2020-08-18 2021-08-05 セメント混和材、及びセメント組成物 WO2022039035A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020137832A JP7026741B1 (ja) 2020-08-18 2020-08-18 セメント混和材、及びセメント組成物
JP2020-137832 2020-08-18

Publications (1)

Publication Number Publication Date
WO2022039035A1 true WO2022039035A1 (ja) 2022-02-24

Family

ID=80322683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029077 WO2022039035A1 (ja) 2020-08-18 2021-08-05 セメント混和材、及びセメント組成物

Country Status (2)

Country Link
JP (1) JP7026741B1 (ja)
WO (1) WO2022039035A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118742384A (zh) * 2022-02-10 2024-10-01 电化株式会社 Co2固定化陶瓷、及co2固定化物的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206165A (ja) * 2002-01-11 2003-07-22 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
WO2003080532A1 (fr) * 2002-03-22 2003-10-02 Taiheiyo Cement Corporation Adjuvant de ciment
WO2012099254A1 (ja) * 2011-01-21 2012-07-26 電気化学工業株式会社 γ-2CaO・SiO2の製造方法
WO2014002727A1 (ja) * 2012-06-27 2014-01-03 電気化学工業株式会社 γ-2CaO・SiO2の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217013A (ja) * 1985-07-11 1987-01-26 Onoda Cement Co Ltd γ型珪酸二石灰粉末の製造方法
JPH04214059A (ja) * 1991-02-25 1992-08-05 Sumitomo Cement Co Ltd セメント硬化体の製造方法
JPH0598338A (ja) * 1991-10-03 1993-04-20 Astec Irie:Kk スラグ改質剤及び精錬スラグの改質方法
JP4131795B2 (ja) 2002-01-11 2008-08-13 電気化学工業株式会社 セメント混和材及びセメント組成物
JP3844457B2 (ja) 2002-07-19 2006-11-15 電気化学工業株式会社 セメント混和材及びセメント組成物
JP3816036B2 (ja) 2002-07-19 2006-08-30 電気化学工業株式会社 セメント混和材、セメント組成物及びそれを用いてなるモルタルまたはコンクリート
JP2006182583A (ja) 2004-12-27 2006-07-13 Kajima Corp 表層緻密化モルタルまたはコンクリートおよびその製造法
KR101482530B1 (ko) 2006-10-24 2015-01-21 다이헤이요 세멘토 가부시키가이샤 시멘트 클링커 및 시멘트
CN103764562B (zh) 2011-08-25 2015-08-26 电气化学工业株式会社 γ-2CaO·SiO2的制造方法
JP6600140B2 (ja) 2014-03-12 2019-10-30 太平洋セメント株式会社 セメント混和材の製造方法及びセメント組成物の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206165A (ja) * 2002-01-11 2003-07-22 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
WO2003080532A1 (fr) * 2002-03-22 2003-10-02 Taiheiyo Cement Corporation Adjuvant de ciment
WO2012099254A1 (ja) * 2011-01-21 2012-07-26 電気化学工業株式会社 γ-2CaO・SiO2の製造方法
WO2014002727A1 (ja) * 2012-06-27 2014-01-03 電気化学工業株式会社 γ-2CaO・SiO2の製造方法

Also Published As

Publication number Publication date
JP7026741B1 (ja) 2022-02-28
JP2022036364A (ja) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2011152248A1 (ja) セメント組成物及びセメント組成物の製造方法
JP6021753B2 (ja) 混合セメント
WO2012120747A1 (ja) セメント組成物及びその製造方法
JP6793270B1 (ja) 急結性混和材、及び吹付け材料
WO2022039035A1 (ja) セメント混和材、及びセメント組成物
JP4842211B2 (ja) セメント添加材用焼成物、セメント添加材及びセメント組成物
JP2023131119A (ja) セメント組成物
JP7181355B1 (ja) セメント混和材、セメント混和材の製造方法及びセメント組成物
JP4877886B2 (ja) セメント急結剤及びセメント組成物
WO2021215509A1 (ja) セメント混和材、膨張材、及びセメント組成物
WO2023153259A1 (ja) セメント、セメント組成物、セメント硬化物、及びセメント硬化物の製造方法
JP2009035451A (ja) セメント添加材及びセメント組成物
JP7257278B2 (ja) セメント用膨張組成物、及びセメント組成物
JP2001122650A (ja) セメント混和材及びセメント組成物
JP6953787B2 (ja) 環境負荷低減クリンカー、セメント組成物及びその製造方法、並びに地盤改良方法
JP4459379B2 (ja) セメント混和材及びセメント組成物
JP3390075B2 (ja) セメント混和材及びセメント組成物
JP7453047B2 (ja) セメント急結剤、及びセメント組成物
JP7260998B2 (ja) 膨張組成物、セメント組成物およびセメント・コンクリート
JP5235057B2 (ja) 焼成物、セメント添加材及びセメント組成物
JP7293019B2 (ja) セメント用膨張組成物、セメント組成物、及びセメント用膨張組成物の製造方法
JP7062225B2 (ja) 強度増進剤及びその製造方法並びにポルトランドセメントの強度増進方法
WO2023234041A1 (ja) セメント材料、セメント組成物、及び硬化体
JP4852506B2 (ja) セメント添加材及びセメント組成物
JP4315565B2 (ja) セメント混和材及びセメント組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21858182

Country of ref document: EP

Kind code of ref document: A1