WO2022034831A1 - リソグラフィー用下層膜形成用組成物、下層膜及びパターン形成方法 - Google Patents

リソグラフィー用下層膜形成用組成物、下層膜及びパターン形成方法 Download PDF

Info

Publication number
WO2022034831A1
WO2022034831A1 PCT/JP2021/028785 JP2021028785W WO2022034831A1 WO 2022034831 A1 WO2022034831 A1 WO 2022034831A1 JP 2021028785 W JP2021028785 W JP 2021028785W WO 2022034831 A1 WO2022034831 A1 WO 2022034831A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
forming
carbon atoms
underlayer film
composition
Prior art date
Application number
PCT/JP2021/028785
Other languages
English (en)
French (fr)
Inventor
拓央 山本
敦子 岩崎
高史 牧野嶋
雅敏 越後
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US18/021,160 priority Critical patent/US20230324801A1/en
Priority to KR1020227042349A priority patent/KR20230051123A/ko
Priority to CN202180055739.0A priority patent/CN116157436A/zh
Priority to JP2022542814A priority patent/JPWO2022034831A1/ja
Publication of WO2022034831A1 publication Critical patent/WO2022034831A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/06Amines
    • C08G12/08Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/40Chemically modified polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/40Chemically modified polycondensates
    • C08G12/44Chemically modified polycondensates by esterifying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/10Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with phenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • C08G8/32Chemically modified polycondensates by organic acids or derivatives thereof, e.g. fatty oils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • C08G8/36Chemically modified polycondensates by etherifying
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/32Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers using masks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a composition for forming an underlayer film for lithography, an underlayer film, and a pattern forming method.
  • microfabrication is performed by lithography using photoresist materials, but in recent years, with the increasing integration and speed of LSIs (large-scale integrated circuits), further miniaturization by pattern rules has been performed. Is required.
  • the light source for lithography used for forming the resist pattern has been shortened from KrF excimer laser (248 nm) to ArF excimer laser (193 nm), and extreme ultraviolet light (EUV, 13.5 nm) has been introduced. Is also expected.
  • a resist underlayer film material containing a polymer having a specific repeating unit has been proposed to realize a resist underlayer film for lithography having a selectivity of a dry etching rate smaller than that of a resist (see Patent Document 1). ). Further, in order to realize a resist underlayer film for lithography having a selectivity of a dry etching rate smaller than that of a semiconductor substrate, a repeating unit of acenaphthalenes and a repeating unit having a substituted or unsubstituted hydroxy group are copolymerized. A resist underlayer film material containing a polymer is proposed (see Patent Document 2).
  • an amorphous carbon underlayer film formed by Chemical Vapor Deposition (CVD) using methane gas, ethane gas, acetylene gas or the like as a raw material is well known. ..
  • CVD Chemical Vapor Deposition
  • methane gas, ethane gas, acetylene gas or the like is well known. ..
  • a resist underlayer film material capable of forming a resist underlayer film by a wet process such as a spin coating method or screen printing.
  • the present inventors have a composition for forming a lower layer film for lithography, which contains a compound having a specific structure and an organic solvent as a material having excellent etching resistance, high heat resistance, solubility in a solvent, and applicable to a wet process.
  • a product (see Patent Document 3) is proposed.
  • a lower layer for lithography has a feature that the solubility in an organic solvent, etching resistance, and resist pattern forming property are simultaneously satisfied at a high level, and the wafer surface after film formation is further flattened.
  • a composition for forming a film is required.
  • the present invention is a composition for forming a resist underlayer film for lithography, which has excellent flattening performance on a stepped substrate, good embedding performance in a fine hole pattern, and flattening of a wafer surface after film formation. Etc. are intended to be provided.
  • a composition for forming an underlayer film for lithography which comprises a compound having a protecting group.
  • RY is independently a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • RZ is an N-valent group or a single bond having 1 to 60 carbon atoms.
  • P 0 is independently a halogen atom, a nitro group, an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, and 6 to 6 carbon atoms.
  • At least one P 0 is a group in which the hydrogen atom of the hydroxyl group is substituted with a protective group, or a group in which the hydrogen atom of the amino group is substituted with a protective group, and the protective group is desorbable. It may be a protective group.
  • Each of X independently represents an oxygen atom, a sulfur atom, or no crosslink.
  • L is a linear or branched alkylene group having 1 to 30 carbon atoms which may have a single bond or a substituent, or is non-crosslinked.
  • m is an integer of 0 to 9 independently, where at least one m is an integer of 1 to 9.
  • N is an integer from 1 to 4 and r is an integer of 0 to 2 independently of each other.
  • At least one P 0 is a group in which the hydrogen atom of the hydroxyl group is substituted with a protective group, or a group in which the hydrogen atom of the amino group is substituted with a protective group, and the protective group is desorbable.
  • Ar 0 independently represents a phenylene group, a naphthylene group, an anthrylene group, a phenanthrylene group, a pyrylene group, a fluorylene group, a biphenylene group, a diphenylmethylene group or a terphenylene group.
  • R 0 is a substituent of Ar 0 , and each independently may be the same group or a different group, and may have a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, and a substituent.
  • It may have an aryl group having 6 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms which may have a substituent, and 2 to 30 carbon atoms which may have a substituent.
  • X represents a linear or branched alkylene group or an oxygen atom.
  • n represents an integer from 0 to 500 and represents r indicates an integer of 1 to 3 independently of each other.
  • r 0 indicates an integer from 0 to 2 and represents p represents a positive integer independently of each other.
  • q represents a positive integer.
  • Ar 0 , R 0 , p, q, r, r 0 , n are synonymous with the definitions in the above equation (3).
  • P may each independently be a hydrogen atom or a protecting group, where at least one P is the protecting group and the protecting group may be a desorbing protecting group.
  • the compound and / or resin represented by the formula (3-1A) or the following formula (3-1B) is represented by the following formula (3-2A) or the following formula (3-2B) in [6].
  • the composition for forming an underlayer film for lithography according to the above.
  • P may each independently be a hydrogen atom or a protecting group, where at least one P is the protecting group and the protecting group may be a desorbing protecting group.
  • P may each independently be a hydrogen atom or a protecting group, where at least one P is the protecting group and the protecting group may be a desorbing protecting group.
  • the protecting group is an electron-withdrawing protecting group that reduces the electron density at a specific position of a molecule by an inductive effect or a resonance effect.
  • the electron-withdrawing protecting group is one or more selected from the group consisting of a carbonyl-based protecting group, a sulfonyl-based protecting group, and an acyl-based protecting group.
  • the electron-withdrawing protective group is an alkylcarbonyl group having 2 to 20 substituted or unsubstituted carbon atoms, an arylcarbonyl group having 6 to 20 substituted or unsubstituted carbon atoms, or 2 to 20 substituted or unsubstituted carbon atoms.
  • composition for forming an underlayer film for lithography according to [10], which is one or more selected from the group consisting of the acyl groups of the above.
  • the electron-withdrawing protective group is characterized in that it is one or more selected from the group consisting of an acetyl group, a trifluoroacetyl group, a benzoyl group, a mesyl group, a nosyl group, and a triflate group.
  • Composition for forming an underlayer film for lithography [13]
  • the protecting group is an electron-donating protecting group that increases the electron density at a specific position of a molecule by an inductive effect or a resonance effect.
  • the electron-donating protecting group is one or more selected from the group consisting of an alkyl-based protecting group, a benzyl-based protecting group, an acetal-based protecting group, a trityl-based protecting group, a silyl-based protecting group, and a glycidyl-based protecting group.
  • the electron-donating protecting group is an substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted benzyl group having 7 to 20 carbon atoms, or a substituted or unsubstituted alkyl group having 2 to 20 carbon atoms.
  • the electron donating protective group is one or more selected from the group consisting of a methyl group, a tertiarybutyl group, a normal hexyl group, an octyl group, an ethoxyethyl group, an ethoxypropyl group, and a glycidyl group. , [13].
  • the composition for forming an underlayer film for lithography. [16] The composition for forming an underlayer film for lithography according to any one of [1] to [15], wherein the compound has a weight average molecular weight of 500 to 10,000.
  • composition for forming an underlayer film for lithography according to any one of [1] to [18] which further contains a cross-linking agent.
  • An underlayer film for lithography obtained by using the composition for forming an underlayer film for lithography according to any one of [1] to [19].
  • a method for forming a resist pattern including.
  • a step of forming an intermediate layer film on the lower layer film using a resist intermediate layer film material containing a silicon atom A step of forming at least one photoresist layer on the intermediate layer film, A step of irradiating a predetermined area of the photoresist layer with radiation and developing the resist layer to form a resist pattern.
  • a step of etching the intermediate layer film using the resist pattern as a mask A step of etching the lower layer film using the obtained intermediate layer film pattern as an etching mask, and a step of forming a pattern on the substrate by etching the substrate using the obtained lower layer film pattern as an etching mask.
  • Circuit pattern forming method including.
  • a method for forming an underlayer film for lithography which comprises applying the composition for forming an underlayer film for lithography according to any one of [1] to [19] to a substrate having a step.
  • the forming method according to [24] wherein the viscosity of the underlayer film forming composition for lithography is 0.01 to 1.00 Pa ⁇ s.
  • the present embodiment also referred to as “the present embodiment”.
  • the following embodiments are examples for explaining the present invention, and the present invention is not limited to the embodiments thereof. That is, the present invention can be arbitrarily modified and implemented without departing from the gist thereof.
  • the notation of the numerical range of "1 to 100" includes both the lower limit value "1" and the upper limit value "100”. The same applies to the notation of other numerical ranges.
  • the composition for forming an underlayer film for lithography of the present embodiment is a composition containing a compound having a protecting group (preferably a protecting group that lowers or increases the electron density at a specific position of a molecule by an inductive effect or a resonance effect).
  • a composition for forming an underlayer film for lithography a composition containing a compound having a protecting group (preferably a protecting group that lowers or increases the electron density at a specific position of a molecule by an inductive effect or a resonance effect).
  • the compound having a protecting group may be a low molecular weight compound having a molecular weight of 10,000 or less, an oligomer or a prepolymer, or a resin, and may be any combination selected from these. It may be a mixture.
  • the amount of the compound having the protecting group contained in the composition for forming an underlayer film for lithography is not particularly limited, but is, for example, 50 to 50 based on the total mass of all the components (excluding the solvent) contained in the composition. It may be 100% by mass, 60 to 95% by mass, or 70 to 90% by mass.
  • the composition for forming an underlayer film for lithography used here contains a compound having a protecting group, and although it has a relatively low molecular weight, a wet process can be applied. Further, when the compound having a protective group contains an aromatic ring in its structure, it has high heat resistance due to its aromaticity, so that it is not only excellent in heat resistance and etching resistance, but also by high temperature baking alone. It causes a cross-linking reaction and develops high heat resistance. As a result, deterioration of the film during high-temperature baking is suppressed, and a lower layer film having excellent etching resistance to oxygen plasma etching and the like can be formed.
  • the composition for forming an underlayer film for lithography has a high solubility in an organic solvent even though it has an aromatic structure. , High solubility in safe solvents, and good stability of product quality.
  • the composition for the underlayer film for lithography used here has excellent adhesion to the resist layer and the resist intermediate layer film material, so that an excellent resist pattern can be obtained.
  • a hydrogen atom of a part or all of a hydroxyl group or an amino group is substituted (that is, protected) with another substituent, so that the intermolecular force between the compounds (that is, it is protected) (that is, it is protected). (Hydrogen bond) is reduced. Therefore, the viscosity of the composition is lowered as compared with the one in which the hydroxyl group or the amino group is not protected, which tends to improve the embedding property and the flattening property.
  • the lower the polarity of the protective group to be introduced the easier it is for the viscosity to decrease, but if the polarity of the entire molecule is too low, it is soluble in polar solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate. Decreases. With respect to the decrease in solubility due to the introduction of such a protecting group, it is possible to achieve both low viscosity and solubility by controlling the introduction rate of the protecting group.
  • the acetyl group which is an electron-withdrawing protecting group, is relatively difficult to deprotect and maintains a low viscosity state for a long time in the firing process.
  • the electron-withdrawing property by lowering the nucleophilicity of the reaction site, the cross-linking rate between molecules decreases, it becomes possible to maintain a low viscosity state for a long time, the step is small, and the embedding property and flattening property are achieved.
  • An underlayer film having remarkably excellent properties can be obtained.
  • the mesylate group maintains a low viscosity state for a long time due to its electron-withdrawing property, and then the protecting group is desorbed, so that the fired film from which the components containing hydrogen and oxygen are desorbed has a high carbon density. It is possible to obtain an underlayer film having good flattening property and also having etching resistance. Since the decomposed protecting group has a sufficiently small molecular weight and becomes a gas, it is not contained in the sublimation product that solidifies in the device and does not contaminate the device.
  • the alkyl group which is an electron-donating protecting group
  • the alkyl group is relatively difficult to deprotect and maintains a low viscosity state for a long time in the firing process.
  • due to its electron donating property it exhibits sufficient cross-linking property while being a protected body.
  • the low molecular weight component that easily volatilizes is rapidly polymerized, sublimates that solidify in the apparatus are unlikely to be generated.
  • the ethoxyethyl group is easily deprotected in the firing process and has excellent crosslinkability. Further decomposed protecting groups become gases and are not contained in the sublimation material solidified in the apparatus.
  • the fired film has a high carbon density and the etching resistance is improved, so that it is possible to obtain a lower layer film having good flattening property and low sublimation physical properties and etching resistance.
  • the trityl group has a relatively large increase in the molecular weight of the protected compound and / or the resin as compared with the alkyl protecting group, so that sublimation products derived from low molecular weight components are less likely to occur.
  • it is easily deprotected in the firing process and has excellent crosslinkability. Further decomposed protecting groups become gases and are not contained in the sublimation material solidified in the apparatus.
  • the fired film has a high carbon density and the etching resistance is improved, so that it is possible to obtain a lower layer film having good flattening property and low sublimation physical properties and etching resistance.
  • the degradability of the resin can be reduced by forming a large number of structures in which aromatic rings are bonded to each other with quaternary carbon or oxygen atoms or directly bonded to each other.
  • the compound having the protective group of the present embodiment is not particularly limited, but when the underlayer film is obtained by using the composition for forming the underlayer film for lithography, a sublimation product that solidifies in the apparatus may be generated. Since the sublimated product is caused by a low molecular weight component having a weight average molecular weight of Mw500 or less, by controlling the molecular weight range, a film that suppresses the generation of the sublimated product and achieves flattening property can be obtained. Obtainable.
  • the compound having the protecting group of the present embodiment has a dispersity (weight average molecular weight Mw / number average molecular weight Mn) of 1.1 to 5.0.
  • the one in the range of 1.1 to 2.0 is preferable, and the one in the range of 1.1 to 2.0 is more preferable.
  • the Mw, Mn, and the degree of dispersion can be obtained by the method described in Examples described later.
  • the weight ratio of the low molecular weight component having a molecular weight of less than 500 to the total weight of the compound in the compound having a protecting group in the present embodiment is less than 1%. Is preferable.
  • the compound having a protecting group of the present embodiment has a relatively low molecular weight and a low viscosity, even a substrate having a step (particularly a fine space or a hole pattern) has a corner of the step. It is easy to improve the flatness of the obtained underlayer film while uniformly filling the layers. Therefore, the underlayer film formed from the composition for forming the underlayer film for lithography of the present embodiment is excellent not only in the flattening property but also in the embedding property. Further, since it is a compound having a relatively high carbon concentration, high etching resistance can be exhibited.
  • C is either ring A or ring B. It means that it is combined with one or both.
  • composition for forming an underlayer film for lithography of the present embodiment preferably contains a compound and / or a resin represented by the following formula (1).
  • RY is independently a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • RZ is an N-valent group or a single bond having 1 to 60 carbon atoms.
  • P 0 is independently a halogen atom, a nitro group, an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, and 6 to 6 carbon atoms.
  • P 0 is a group in which the hydrogen atom of the hydroxyl group is substituted with a protective group, or a group in which the hydrogen atom of the amino group is substituted with a protective group, and the protective group is desorbable. It may be a protective group,
  • Each of X independently represents an oxygen atom, a sulfur atom, or no crosslink.
  • L is a linear or branched alkylene group having 1 to 30 carbon atoms which may have a single bond or a substituent, or is non-crosslinked.
  • m is an integer of 0 to 9 independently, where at least one m of m is an integer of 1 to 9.
  • N is an integer from 1 to 4 and r is an integer of 0 to 2 independently of each other.
  • the compound and / or resin represented by the above formula (1) is preferably represented by the following formula (1-1).
  • the compound having a protecting group of the present embodiment is configured in this way, it has high heat resistance and high solvent solubility.
  • R 0A is a hydrogen atom and R 1A is an nA - valent group or a single bond having 1 to 30 carbon atoms.
  • n A is an integer of 1 to 4, and here, when n A is an integer of 2 or more in the above equations (1-1) and (2), the structural formulas in [] of n A are the same.
  • X A is an oxygen atom or a sulfur atom independently of each other, and here, since it tends to exhibit high heat resistance, it is more preferable to be an oxygen atom.
  • mA is an integer of 0 to 6 independently of each other.
  • at least one mA is an integer of 1 to 6.
  • q A is 0 or 1 independently of each other.
  • N-valent group and the n- A -valent group include those having a linear hydrocarbon group, a branched hydrocarbon group, an alicyclic hydrocarbon group, and the like.
  • the alicyclic hydrocarbon group includes an Aribashi alicyclic hydrocarbon group.
  • the N-valent group or the n- A -valent group may have an aromatic group having 6 to 60 carbon atoms.
  • the N-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom or an aromatic group having 6 to 60 carbon atoms.
  • the alicyclic hydrocarbon group includes an Aribashi alicyclic hydrocarbon group.
  • the nA - valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a heteroatom or an aromatic group having 6 to 30 carbon atoms.
  • the alicyclic hydrocarbon group includes an Aribashi alicyclic hydrocarbon group.
  • the compound and / or resin represented by the above formula (1-1) is represented by the following formula (1-2A) or the following formula (1-2B) from the viewpoint of ease of crosslinking and solubility in an organic solvent.
  • the compound and / or resin to be used is preferable.
  • L, R 0A , R 1A , mA, n A and q A and X A are synonymous with those described in the above formula (1-1).
  • Each P is independently a hydrogen atom or a protecting group, where at least one P is a protecting group.
  • the protecting group may be a removable protecting group.
  • the compound and / or resin represented by the above formula (1-2A) or (1-2B) is represented by the following formula (1-3A) or the following formula (1-3B). It is preferably the compound and / or resin represented.
  • L, P, X A , R 0A , R 1A , mA, and n A are synonymous with those described in the above formulas (1-2A) and (1-2B).
  • the compound and / or resin represented by the above formula (1) the compound and / or resin represented by the following formula (2) is preferable. Since these compounds and / or resins are configured in this way, they have high heat resistance and high solvent solubility.
  • n is synonymous with N in the above formula (1), and here, when n is an integer of 2 or more, the structural formulas in n [] may be the same or different.
  • p2 to p5 are synonymous with r in the above formula ( 1 ).
  • Examples of the n-valent group include those having a linear hydrocarbon group, a branched hydrocarbon group, an alicyclic hydrocarbon group, and the like.
  • the alicyclic hydrocarbon group includes an Aribashi alicyclic hydrocarbon group.
  • the n-valent group may have an aromatic group having 6 to 60 carbon atoms.
  • the n-valent hydrocarbon group may have an alicyclic hydrocarbon group, a double bond, a hetero atom or an aromatic group having 6 to 60 carbon atoms.
  • the alicyclic hydrocarbon group includes an Aribashi alicyclic hydrocarbon group.
  • the compound and / or resin represented by the above formula (1) or (2) has a relatively low heat flow temperature and a low viscosity when liquefied, so that the flatness of the obtained underlayer film can be improved. Moreover, although it has a relatively low molecular weight, it has high heat resistance due to the rigidity of its structure, so that it can be used even under high temperature baking conditions. In addition, it has a step because it has high solubility in a safe solvent, crystallinity is suppressed, heat resistance and etching resistance are good, and sublimates are relatively suppressed by a wide range of heat treatment from low temperature to high temperature. Even for a substrate (particularly, a fine space, a hole pattern, etc.), it is easy to improve the flatness of the film while uniformly filling every corner of the step.
  • the compound and / or resin represented by the above formula (2) is represented by the following formula (2-1A) or the following formula (2-1B) from the viewpoint of ease of crosslinking and solubility in an organic solvent. Compounds and / or resins are preferred.
  • R 0 is synonymous with RY in the above equation (1).
  • R 1 is synonymous with R Z in the above equation (1).
  • L is synonymous with L in the above formula (1).
  • n is synonymous with N in the above equation (1).
  • p2 to p5 are synonymous with r in the above equation ( 1 ).
  • m 2 and m 3 are independently integers of 0 to 4, and m 4 and m 5 are independently integers of 0 to 5, except that m 2 , m 3 , and m 4 are independent.
  • m5 never become 0 at the same time,
  • Each P is independently a hydrogen atom or a protecting group, where at least one P is a protecting group.
  • the protecting group may be a removable protecting group.
  • the compound and / or resin represented by the above formula (2) is a compound and / or resin represented by the following formula (2-2A) or formula (2-2B). It is preferable to have.
  • L, P, R 0 , R 1 , and n are synonymous with those described by the above formula (2-1A) or formula (2-1B), and m 6 and m 7 are independently 0. It is an integer of 4 and m 8 and m 9 are independently integers of 0 to 5, except that m 6 and m 7 and m 8 and m 9 cannot be 0 at the same time. )
  • At least one P 0 is a group in which a hydrogen atom of a hydroxyl group is substituted with a protecting group, or a group in which a hydrogen atom of an amino group is substituted with a protecting group, and P is a protecting group.
  • Protecting groups are functional groups that reduce or increase the electron density at specific positions of a molecule by inductive or resonant effects.
  • a carbonyl-based protective group (substituted or unsubstituted alkylcarbonyl group having 2 to 20 carbon atoms) is typically used.
  • the electron-withdrawing protective group include a tarchalibtoxicarbonyl group, a trichloroethoxycarbonyl group, a trimethylsilylethoxycarbonyl group, a benzyloxycarbonyl group, a mesyl group, a tosyl group, a nosyl group, a trifurate group, an acetyl group and a trifluoroacetyl group.
  • Examples thereof include a group, a pivaloyl group, a normal butyryl group, a toluoil group, an isobutyryl group, a pentanoyl group, a propionyl group, a benzoyl group, a (meth) acryloyl group, an epoxy (meth) acryloyl group, a urethane (meth) acryloyl group, and the like. It is not particularly limited to these.
  • the electron-withdrawing protective group is preferably an acetyl group, a trifluoroacetyl group, a benzoyl group, a mesyl group, a nosyl group or a triflate group, and particularly preferably an acetyl group, a mesyl group or a triflate group.
  • an electron-withdrawing protecting group By introducing an electron-withdrawing protecting group, it is possible to obtain the effect of inhibiting intermolecular forces such as hydrogen bonds, and to form a flattened film with low viscosity and good fluidity. By reducing the nucleophilicity of the reaction point adjacent to the functional group due to the electron-withdrawing effect of the protecting group, it is possible to reduce the cross-linking rate during formation of the cured film and maintain a low viscosity state for a long time. Therefore, a lower layer film having a small step and excellent flattening property can be obtained. Further, when the electron-withdrawing protecting group is a desorbing protecting group that is desorbed by the action of heat or light, the carbon content and the film density of the formed film are improved, and a lower layer film having high dry etching resistance can be obtained.
  • an alkyl-based protective group (substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, etc.) is typically used.
  • Benzyl-based protective group (substituted or unsubstituted benzyl group having 7 to 20 carbon atoms, etc.); Acetal-based protective group (substituted or unsubstituted, alkoxyalkyl group having 2 to 20 carbon atoms, substituted or unsubstituted carbon, etc.) Tetrahydropyranyl group with 2 to 20 atoms, substituted or unsubstituted alkylthioalkyl group with 2 to 20 carbon atoms, etc.); Trityl-based protective group (substituted or unsubstituted trityl group with 19 to 30 carbon atoms, etc.) ; Cyril-based protective group (substituted or unsubstituted silyl group having 3 to 20 carbon atoms, etc.); glycidyl group; etc., but are not particularly limited thereto.
  • the electron-donating protective group examples include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, an isobutyl group, a tertiary butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group and a benzyl group.
  • Methoxybenzyl group dimethoxybenzyl group, methylbenzyl group, methoxymethyl group, ethoxyethyl group, ethoxypropyl group, tetrahydropyranyl group, methylthiomethyl group, benzyloxymethyl group, methoxyethoxymethyl group, trityl group, monomethoxytrityl
  • examples thereof include, but are not limited to, a group, a dimethoxytrityl group, a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a tertiarybutyldimethylsilyl group, a tertiarybutyldiphenylsilyl group, a glycidyl group and the like.
  • the electron-donating protective group is preferably a methyl group, a tertiary butyl group, a normal hexyl group, an octyl group, an ethoxyethyl group, an ethoxypropyl group or a glycidyl group, and more preferably a tertiary butyl group, an ethoxyethyl group or a glycidyl group. It is a group.
  • an electron-donating protecting group By introducing an electron-donating protecting group, it is possible to increase the cross-linking rate during baking, and by rapidly curing a flattened film with low viscosity and good fluidity, the step is small. An underlayer film with less sublimation is obtained. Further, when the electron donating protecting group is a desorbing protecting group that is desorbed by the action of heat or light, not only the crosslinking rate is further improved, but also the carbon content and the film density of the formed film are improved, and the dry layer is obtained. An underlayer film with high etching resistance can be obtained.
  • composition for forming an underlayer film for lithography of the present embodiment preferably contains a compound and / or a resin represented by the following formula (3).
  • Ar 0 independently represents a phenylene group, a naphthylene group, an anthrylene group, a phenanthrylene group, a pyrylene group, a fluorylene group, a biphenylene group, a diphenylmethylene group or a terphenylene group.
  • R 0 is a substituent of Ar 0 , and each independently may be the same group or a different group, and may have a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, and a substituent.
  • It may have an aryl group having 6 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms which may have a substituent, and 2 to 30 carbon atoms which may have a substituent.
  • X represents a linear or branched alkylene group or an oxygen atom.
  • n represents an integer from 0 to 500 and represents r indicates an integer of 1 to 3 independently of each other.
  • r 0 indicates an integer from 0 to 2 and represents p represents a positive integer independently of each other.
  • q represents a positive integer.
  • R 0 is a substituent of Ar 0 , and each of them may be the same group or a different group independently, and may have a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, or a substituent.
  • a group containing a carboxyl group having 1 to 30 carbon atoms, an amino group having 0 to 30 carbon atoms which may have a substituent, a halogen atom, a cyano group, a nitro group, a thiol group, and a heterocyclic group may be used. It represents, preferably a hydrogen atom, or an alkyl group having 1 to 30 carbon atoms which may have a substituent.
  • X represents a linear or branched alkylene group, and specifically, is a methylene group, an ethylene group, an n-propylene group, an i-propylene group, an n-butylene group, an i-butylene group, and a tert-butylene group. It is preferably a methylene group, an ethylene group, an n-propylene group or an n-butylene group, more preferably a methylene group or an n-propylene group, and most preferably a methylene group.
  • X is an oxygen atom.
  • n is an integer from 0 to 500, preferably an integer from 1 to 500, and more preferably an integer from 1 to 50.
  • r represents an integer from 1 to 3.
  • p represents a positive integer. p appropriately changes depending on the type of Ar 0 .
  • q indicates a positive integer. q appropriately changes depending on the type of Ar 0 .
  • the compound and / or resin represented by the above formula (3) has a relatively low heat flow temperature and a low viscosity when converted into a solution, so that the compound and / or the resin have a flatness and a relatively low molecular weight, but have a structure thereof. Since it has high heat resistance due to its rigidity, it can be used even under high temperature baking conditions. In addition, it has a step because it has high solubility in a safe solvent, crystallinity is suppressed, heat resistance and etching resistance are good, and sublimates are relatively suppressed by a wide range of heat treatment from low temperature to high temperature. Even for a substrate (particularly, a fine space, a hole pattern, etc.), it is easy to improve the flatness of the film while uniformly filling every corner of the step.
  • the compound and / or the resin represented by the above formula (3) has the following formula (3-1A) or the formula (3-1A) from the viewpoint of curability and availability of raw materials. It is more preferably a compound and / or a resin represented by 3-1B).
  • Ar 0 , R 0 , p, q, r, r 0 , n are synonymous with the definitions in the above equation (3).
  • P may each independently be a hydrogen atom or a protecting group, where at least one P is the protecting group and the protecting group may be a desorbing protecting group.
  • P independently comprises a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • It has an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms which may have a substituent, a crosslinkable group which may have a substituent, or a substituent. It represents a dissociative group, wherein at least one P is an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and the like.
  • P is a hydrogen atom or a protecting group.
  • the electron-withdrawing protective group include a tarchalibtoxicarbonyl group, a trichloroethoxycarbonyl group, a trimethylsilylethoxycarbonyl group, a benzyloxycarbonyl group, a mesyl group, a tosyl group, a nosyl group, a trifurate group, an acetyl group and a trifluoroacetyl group.
  • Pivaloyl group normal butyryl group, toluoil group, isobutyryl group, pentanoyl group, propionyl group, benzoyl group, (meth) acryloyl group, epoxy (meth) acryloyl group, urethane (meth) acryloyl group and the like. It is not particularly limited to.
  • the electron-withdrawing protective group is preferably an acetyl group, a trifluoroacetyl group, a benzoyl group, a mesyl group, a nosyl group or a triflate group, and particularly preferably an acetyl group, a mesyl group or a triflate group.
  • the electron-donating protective group examples include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, an isobutyl group, a tertiary butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group and a benzyl group.
  • Methoxybenzyl group dimethoxybenzyl group, methylbenzyl group, methoxymethyl group, ethoxyethyl group, ethoxypropyl group, tetrahydropyranyl group, methylthiomethyl group, benzyloxymethyl group, methoxyethoxymethyl group, trityl group, monomethoxytrityl group , Dimethoxytrityl group, trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, tertiarybutyldimethylsilyl group, tertiarybutyldiphenylsilyl group, glycidyl group and the like, but are not particularly limited thereto.
  • the electron-donating protective group is preferably a methyl group, a tertiary butyl group, a normal hexyl group, an octyl group, an ethoxyethyl group, an ethoxypropyl group or a glycidyl group, and more preferably a tertiary butyl group, an ethoxyethyl group or a glycidyl group. It is a group.
  • the compound and / or resin represented by the above formula (3-1A) or the formula (3-1B) is represented by the following formula (3-2A) or the following formula (3-2B) from the viewpoint of raw material availability. It is preferably a compound and / or a resin.
  • Ar 0 , P, R 0 , p, q, r, n are synonymous with the definitions in the above formula (3-1A) or formula (3-1B).
  • the compound and / or the resin represented by the above formula (3-2A) or the above formula (3-2B) is from the viewpoint of imparting solubility and heat resistance. It is preferably a compound and / or a resin represented by the following formula (3-3A) or formula (3-3B).
  • Ar 2 independently represents a phenylene group, a naphthylene group or a biphenylene group, when Ar 2 is a phenylene group, Ar 1 represents a naphthylene group or a biphenylene group, and Ar 2 is a naphthylene group or a biphenylene group. Ar 1 represents a phenylene group, a naphthylene group or a biphenylene group.
  • Ra is a substituent of Ar 1 , and each independently may be the same group or a different group, and may have a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, and a substituent. It may have an aryl group having 6 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms which may have a substituent, and 2 to 30 carbon atoms which may have a substituent. Alkinyl group, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, an acyl group having 1 to 30 carbon atoms which may have a substituent, and a substituent.
  • R b is a substituent of Ar 2 , and each independently may be the same group or a different group, and may have a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, and a substituent.
  • n represents an integer from 0 to 500 and represents r indicates an integer of 1 to 3 independently of each other.
  • p represents a positive integer independently of each other.
  • q represents a positive integer.
  • the compound and / or the resin represented by the above formula (3-3A) or the above formula (3-3B) has the following formula from the viewpoint of heat resistance and etching resistance. It is preferably a compound and / or a resin represented by (3-4A) or the formula (3-4B).
  • the compound and / or the resin represented by the above formula (3-3A) or the above formula (3-3B) has the following formula from the viewpoint of heat resistance and etching resistance. It is preferably a compound and / or a resin represented by (3-5A) or the formula (3-5B).
  • the compound and / or the resin represented by the above formula (3-4A) or the above formula (3-4B) has the following formula from the viewpoint of heat resistance and etching resistance. It is preferably a compound and / or a resin represented by (3-6A) or the formula (3-6B).
  • R 1 is independently a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • m 1 indicates an integer of 1 to 3 independently of each other.
  • n represents an integer from 1 to 50.
  • the compound and / or resin represented by the above formula (3-5A) or formula (3-5B) is described below from the viewpoint of flatness and heat flow characteristics. It is more preferably a compound and / or a resin represented by the formula (3-7A) or the formula (3-7B).
  • R2 is independently a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • m 2 independently represents an integer of 1 to 3, respectively.
  • n represents an integer from 1 to 50.
  • the compound and / or the resin represented by the above formula (3-4A) or the above formula (3-4B) has the following formula (3-4B) from the viewpoint of heat resistance. It is more preferably a compound and / or a resin represented by 8A) or the formula (3-8B).
  • R 3 is independently a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • m 3 independently represents an integer of 1 to 5, respectively.
  • n represents an integer from 1 to 50.
  • the compound and / or the resin represented by the above formula (3-5A) or the above formula (3-5B) has the following formula from the viewpoint of curability and heat resistance. It is more preferably a compound and / or a resin represented by (3-9A) or the formula (3-9B).
  • R4 is independently a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • m 4 independently represents an integer of 1 to 5, respectively.
  • n represents an integer from 1 to 50.
  • the compound and / or resin represented by the above formula (3) is a compound represented by the following formula (3-10A) or the following formula (3-10B) and / / from the viewpoint of reducing the decomposability. Alternatively, it is preferably a resin.
  • Ar 0 , P, R 0 , p, q, r, n are synonymous with the definitions in the formula (3-1A) or the formula (3-1B). Is.
  • the compound and / or resin represented by the above formula (3) is preferably a compound and / or resin represented by the following formula (3-11A) or the following formula (3-11B).
  • Ar 0 , P, R 0 , p, q, r, n are synonymous with the definitions in the formula (3-1A) or the formula (3-1B). Is.
  • a substituent can be further introduced in addition to the protecting group.
  • “Substituent” means that one or more hydrogen atoms in a functional group are substituted with a substituent, unless otherwise defined.
  • the "substituent” is not particularly limited, but is, for example, a halogen atom, a hydroxyl group, a cyano group, a nitro group, a thiol group, a heterocyclic group, an alkyl group having 1 to 30 carbon atoms, and an aryl having 6 to 20 carbon atoms.
  • alkoxyl group with 1 to 30 carbon atoms alkenyl group with 2 to 30 carbon atoms, alkynyl group with 2 to 30 carbon atoms, acyl group with 1 to 30 carbon atoms, amino with 0 to 30 carbon atoms
  • the group etc. can be mentioned.
  • the alkyl group may be any of a linear aliphatic hydrocarbon group, a branched aliphatic hydrocarbon group, and a cyclic aliphatic hydrocarbon group.
  • crosslinkable group in the present embodiment means a group that crosslinks in the presence of a catalyst or in the absence of a catalyst.
  • examples of such a crosslinkable group include an alkoxy group having 1 to 20 carbon atoms, a group having an allyl group, a group having a (meth) acryloyl group, a group having an epoxy (meth) acryloyl group, and a group having a hydroxyl group.
  • Urethane (meth) acryloyl group Urethane (meth) acryloyl group, glycidyl group, vinyl-containing phenylmethyl group, various alkynyl groups, carbon-carbon double bond, carbon-carbon triple Among the groups having a bond and the groups containing these groups, a group that crosslinks in the presence of a catalyst or in the absence of a catalyst can be mentioned.
  • group containing these groups include -ORx (Rx is a group having an allyl group, a group having a (meth) acryloyl group, a group having an epoxy (meth) acryloyl group, and a group having a hydroxyl group.
  • Group with urethane (meth) acryloyl group, group with glycidyl group, group with vinyl-containing phenylmethyl group, group with various alkynyl groups, group with carbon-carbon double bond, carbon-carbon triple bond , And an alkoxy group represented by a group containing these groups) is preferable.
  • each of the above-mentioned functional groups (excluding the crosslinkable group) constitutes the compound and there is an overlap with the crosslinkable group, there is no crosslinkability based on the presence or absence of the crosslinkable property.
  • those having a crosslinkable property are treated as corresponding to each functional group, and those having a crosslinkable property are treated as corresponding to a crosslinkable group.
  • alkoxy group having 1 to 20 carbon atoms examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a tert-butoxy group, an n-hexanoxy group, and a 2-methylpropoxy. The group is mentioned.
  • Examples of the group having an allyl group include groups represented by the formulas (X-1a) and (X-1b).
  • n X1 is an integer of 1 to 5.
  • Examples of the group having a (meth) acryloyl group include groups represented by the formulas (X-2a) to (X-2c).
  • n X2 is an integer of 1 to 5
  • RX is a hydrogen atom or a methyl group.
  • Examples of the group having an epoxy (meth) acryloyl group include a group represented by the following formula (X-3).
  • the epoxy (meth) acryloyl group is a group formed by the reaction of an epoxy (meth) acrylate with a hydroxyl group.
  • n x3 is an integer of 0 to 5, and 0 is preferable because excellent heat resistance and etching resistance can be obtained.
  • RX is a hydrogen atom or a methyl group, and a methyl group is preferable because excellent curability can be obtained.
  • Examples of the group having a urethane (meth) acryloyl group include a group represented by the formula (X-4).
  • n x4 is an integer of 0 to 5, and 0 is preferable because excellent heat resistance and etching resistance can be obtained.
  • s is an integer of 0 to 3, and 0 is preferable because excellent heat resistance and etching resistance can be obtained.
  • RX is a hydrogen atom or a methyl group, and a methyl group is preferable because excellent curability can be obtained.
  • Examples of the group having a hydroxyl group include groups represented by the following formulas (X-5a) to (X-5e).
  • n x5 is an integer of 1 to 5, and 1 is preferable because excellent heat resistance and etching resistance can be obtained.
  • Examples of the group having a glycidyl group include groups represented by the formulas (X-6a) to (X-6c).
  • n x6 is an integer of 1 to 5.
  • Examples of the group having a vinyl-containing phenylmethyl group include groups represented by the formulas (X-7a) and (X-7b).
  • n x7 is an integer of 1 to 5, and 1 is preferable because excellent heat resistance and etching resistance can be obtained.
  • Examples of the group having various alkynyl groups include groups represented by the following formulas (X-8a) to (X-8h).
  • n x8 is an integer of 1-5.
  • Examples of the carbon-carbon double bond-containing group include a (meth) acryloyl group, a substituted or unsubstituted vinylphenyl group, and a group represented by the formula (X-9).
  • Examples of the carbon-carbon triple bond-containing group include a substituted or unsubstituted ethynyl group, a substituted or unsubstituted propargyl group, a group represented by the formula (X-10a), and a group represented by (X-10b).
  • RX9A , RX9B and RX9C are independently hydrogen atoms or monovalent hydrocarbon groups having 1 to 20 carbon atoms.
  • RX9D , RX9E and RX9F are independently hydrogen atoms or monovalent hydrocarbon groups having 1 to 20 carbon atoms.
  • the "dissociative group” in the present embodiment means a group that dissociates in the presence or absence of a catalyst.
  • the acid dissociative group refers to a group that is cleaved in the presence of an acid to cause a change in an alkali-soluble group or the like.
  • alkali-soluble group examples include a phenolic hydroxyl group, a carboxyl group, a sulfonic acid group, a hexafluoroisopropanol group and the like.
  • phenolic hydroxyl groups and carboxyl groups are preferable, and phenolic hydroxyl groups are more preferable, from the viewpoint of easy availability of the introduction reagent.
  • the acid dissociative group preferably has the property of causing a chain cleavage reaction in the presence of an acid in order to enable highly sensitive and high resolution pattern formation.
  • the acid dissociable group for example, a hydroxystyrene resin used in a chemically amplified resist composition for KrF or ArF, a (meth) acrylic acid resin, or the like, which have been proposed, can be appropriately selected and used. ..
  • Examples of the acid dissociative group include those described in International Publication No. 2016/158168.
  • Examples of the acid dissociable group include a 1-substituted ethyl group, a 1-substituted-n-propyl group, a 1-branched alkyl group, a silyl group, an acyl group, and a 1-substituted alkoxy having the property of being dissociated by an acid.
  • Methyl group, cyclic ether group, thioether group, trityl group, alkoxycarbonyl group (eg-C (O) OC (CH 3 ) 3 , etc.), and alkoxycarbonylalkyl group (eg-(CH 2 ) n C (O) ) OC (CH 3 ) 3 with n 1 to 4) and the like.
  • each of the above-mentioned functional groups excluding dissociative groups
  • there is no dissociative property based on the presence or absence of dissociative disorder Those that are dissociative are treated as those that correspond to each functional group, and those that are dissociative are treated as those that correspond to dissociative groups.
  • Examples of the substituent to be substituted with the dissociable group include a halogen atom, an alkyl group, an aryl group, an aralkyl group, an alkynyl group, an alkenyl group, an acyl group, an alkoxycarbonyl group, an alkyloxy group, an aryloyloxy group and a cyano group. , And a nitro group. These groups may have heteroatoms.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl group the above can be referred to, and examples thereof include an alkyl group having 1 to 10 carbon atoms such as a methyl group, a tert-butyl group, a cyclohexyl group and an adamantyl group.
  • aryl group As the aryl group, the above can be referred to, but an aryl group having 6 to 20 carbon atoms is preferable.
  • the aryl group may further have a substituent such as a halogen atom or an alkyl group having 1 to 5 carbon atoms.
  • aralkyl group examples include a benzyl group and a phenethyl group.
  • the aralkyl group may further have a substituent such as a halogen atom and an alkyl group having 1 to 5 carbon atoms.
  • alkynyl group The above can be referred to as the alkynyl group.
  • acyl group examples include a formyl group, an aliphatic acyl group having 1 to 6 carbon atoms such as an acetyl group, and an aromatic acyl group such as a benzoyl group.
  • alkoxycarbonyl group examples include an alkoxycarbonyl group having 2 to 5 carbon atoms such as a methoxycarbonyl group.
  • alkiloyloxy group examples include an acetoxy group.
  • allyloyloxy group examples include a benzoyloxy group.
  • hetero atom examples include an oxygen atom, a sulfur atom, a selenium atom, a nitrogen atom, a phosphorus atom and the like.
  • the heteroatom may be substituted with the carbon atom of each group.
  • the number of carbon atoms of each group described in this embodiment is the total number of carbon atoms including the substituent when each group further contains a substituent.
  • the protective reagent that can be used in carrying out the protective reaction is not particularly limited, but is, for example, methyl iodide, dimethyl carbonate, ethyl iodide, diethyl carbonate, bromotershalibtoxide, isobutene, benzyl bromide, dihydropyranide.
  • Examples thereof include shalibutyl, anhydrous acetic acid, meshyl lolide, vinyl ethyl ether, dihydropyran, chloromethylmethyl ether and the like.
  • the compound and / or resin having a protecting group in the present embodiment is preferably highly soluble in a solvent from the viewpoint of facilitating the application of a wet process and the like. More specifically, when the oligomer uses 1-methoxy-2-propanol (PGME) and / or propylene glycol monomethyl ether acetate (PGMEA) as a solvent, the solubility in the solvent is preferably 10% by mass or more. ..
  • the solubility in PGME and / or PGMEA is defined as "mass of resin ⁇ (mass of resin + mass of solvent) ⁇ 100 (mass%)".
  • the underlayer film formed by the method for forming the underlayer film for lithography of the present embodiment is applicable to a wet process and has excellent heat resistance and flattening characteristics. Further, since the composition of the present embodiment contains the oligomer of the present embodiment, deterioration of the film during high temperature baking is suppressed, and a lithography film having excellent etching resistance to oxygen plasma etching and the like can be formed. Further, the composition of the present embodiment is also excellent in adhesion to the resist layer, so that an excellent resist pattern can be formed. Therefore, the composition of the present embodiment is suitably used for forming an underlayer film.
  • the composition for forming an underlayer film for lithography in the present embodiment may contain a solvent, and may be mixed with the solvent at the time of use, if necessary.
  • the solvent is not particularly limited as long as it is a solvent in which the compound and / or the resin of the present embodiment can be dissolved.
  • the compound and / or the resin of the present embodiment has excellent solubility in an organic solvent, and therefore various organic solvents are preferably used.
  • Specific examples of the solvent include those described in International Publication No. 2018/016614.
  • solvents one or more selected from the group consisting of cyclohexanone, cyclopentanone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, methyl hydroxyisobutyrate, and anisole from the viewpoint of safety. Is preferable.
  • the content of the solvent is not particularly limited, but is preferably 100 to 10,000 parts by mass, preferably 200 to 5, 5 parts by mass with respect to 100 parts by mass of the oligomer of the present embodiment from the viewpoint of solubility and film formation. It is more preferably 000 parts by mass, and even more preferably 200 to 3,000 parts by mass.
  • the composition for forming an underlayer film for lithography in the present embodiment preferably has a solution viscosity of 0.01 to 1.00 Pa ⁇ s (ICI viscosity, 150 ° C.) from the viewpoint of embedding characteristics in a substrate having a step and flattening characteristics. , 0.01 to 0.10 Pa ⁇ s is more preferable. From the same viewpoint, the softening point (ring ball method) is preferably ⁇ 50 to 100 ° C, more preferably ⁇ 50 to 50 ° C.
  • composition for forming a lower layer film of the present embodiment may contain a cross-linking agent from the viewpoint of suppressing intermixing and the like.
  • the cross-linking agent is not particularly limited, and for example, a phenol compound, an epoxy compound, a cyanate compound, an amino compound, a benzoxazine compound, an acrylate compound, a melamine compound, a guanamine compound, a glycoluril compound, a urea compound, an isocyanate compound, an azido compound and the like. Can be mentioned. Specific examples of these cross-linking agents include those described in International Publication No. 2018/016614 and International Publication No. 2013/024779. These cross-linking agents may be used alone or in combination of two or more. Among these, a fused aromatic ring-containing phenol compound is more preferable from the viewpoint of improving etching resistance. Further, a methylol group-containing phenol compound is more preferable from the viewpoint of improving flatness.
  • the compound having a protecting group and / or the resin in the present embodiment improves the embedding property and the flattening property particularly when the methylol group-containing phenol compound is used as a cross-linking agent. This is because the compound and / or the resin and the cross-linking agent have a similar structure, so that the affinity is higher and the viscosity at the time of coating is lowered.
  • the methylol group-containing phenol compound used as a cross-linking agent is preferably represented by the following formula (11-1) or (11-2) from the viewpoint of improving flatness.
  • V is a single bond or n-valent organic group
  • R 2 and R 4 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 3 and R 5 are independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 40 carbon atoms.
  • n is an integer of 2 to 10.
  • r is an integer of 0 to 6 independently of each other.
  • cross-linking agent of the general formula (11-1) or (11-2) include compounds represented by the following formulas.
  • the cross-linking agent of the general formula (11-1) or (11-2) is not limited to the compound represented by the following formula.
  • the content of the cross-linking agent is not particularly limited, but is preferably 0.1 to 100 parts by mass and 5 to 50 parts by mass with respect to 100 parts by mass of the underlayer film forming composition. More preferably, it is more preferably 10 to 40 parts by mass.
  • the content of the cross-linking agent is within the above range, the occurrence of the mixing phenomenon with the resist layer tends to be suppressed, the antireflection effect is enhanced, and the film-forming property after cross-linking tends to be enhanced. be.
  • the composition for forming a lower layer film of the present embodiment may contain a cross-linking accelerator in order to promote a cross-linking reaction (curing reaction), if necessary.
  • a cross-linking accelerator include a radical polymerization initiator.
  • the radical polymerization initiator may be a photopolymerization initiator that initiates radical polymerization by light, or a thermal polymerization initiator that initiates radical polymerization by heat.
  • the radical polymerization initiator include at least one selected from the group consisting of a ketone-based photopolymerization initiator, an organic peroxide-based polymerization initiator, and an azo-based polymerization initiator.
  • the radical polymerization initiator is not particularly limited, and examples thereof include those described in International Publication No. 2018/016614.
  • the content of the cross-linking accelerator is not particularly limited, but is preferably 0.1 to 100 parts by mass, preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the composition for forming an underlayer film.
  • the amount is more preferably 0.5 to 5 parts by mass.
  • the composition for forming a lower layer film of the present embodiment may contain an acid generator from the viewpoint of further promoting the cross-linking reaction by heat.
  • an acid generator those that generate acid by thermal decomposition, those that generate acid by light irradiation, and the like are known, and any of them can be used.
  • the acid generator for example, those described in International Publication No. 2013/024779 can be used.
  • the content of the acid generator in the composition for forming the lower layer film is not particularly limited, but is preferably 0.1 to 50 parts by mass, more preferably, with respect to 100 parts by mass of the composition for forming the lower layer film. It is 0.5 to 40 parts by mass.
  • the content of the acid generator is within the above range, the crosslinking reaction tends to be enhanced, and the occurrence of the mixing phenomenon with the resist layer tends to be suppressed.
  • the composition for forming a lower layer film of the present embodiment may contain a basic compound from the viewpoint of improving storage stability and the like.
  • the basic compound plays a role of preventing the acid generated in a small amount from the acid generator from advancing the cross-linking reaction, that is, a role of citric acid against the acid.
  • the storage stability of the composition for forming an underlayer film is improved.
  • Such basic compounds are not particularly limited, and examples thereof include those described in International Publication No. 2013/024779.
  • the content of the basic compound in the composition for forming a lower layer film of the present embodiment is not particularly limited, but is preferably 0.001 to 2 parts by mass with respect to 100 parts by mass of the composition for forming a lower layer film. , More preferably 0.01 to 1 part by mass.
  • the content of the basic compound is within the above range, the storage stability tends to be enhanced without excessively impairing the crosslinking reaction.
  • the composition for forming an underlayer film of the present embodiment may contain other resins and / or compounds for the purpose of imparting curability by heat or light and controlling the absorbance.
  • Such other resins and / or compounds are not particularly limited, and for example, naphthalene resin, xylene resin, naphthalene-modified resin, phenol-modified resin of naphthalene resin; polyhydroxystyrene, dicyclopentadiene resin, (meth) acrylate, and the like.
  • Non-resin examples thereof include resins or compounds containing an alicyclic structure such as rosin-based resins, cyclodextrines, adamantan (poly) all, tricyclodecane (poly) all and derivatives thereof.
  • the film forming material for lithography of the present embodiment may contain a known additive.
  • additives include, but are not limited to, heat and / or photocurable catalysts, polymerization inhibitors, flame retardants, fillers, coupling agents, thermosetting resins, photocurable resins, dyes, pigments. , Thickeners, lubricants, defoamers, leveling agents, ultraviolet absorbers, surfactants, colorants, nonionic surfactants and the like.
  • a composition containing a resist underlayer film forming material selected from the group consisting of the above-mentioned compounds or resins thereof is applied onto a substrate.
  • the substrate that can be used in this embodiment is not particularly limited, but for example, a semiconductor substrate such as silicon oxide film, silicon nitride film, or silicon on which a silicon oxide nitride film is formed, a silicon nitride substrate, a quartz substrate, or a glass substrate (non-alkali). Includes glass, low-alkali glass and crystallized glass), glass substrates on which an ITO film is formed, and the like.
  • the procedure for coating in the coating step is not particularly limited, and for example, the composition according to the present embodiment can be coated on the substrate described above by an appropriate coating method such as a spinner or a coater.
  • a preliminary heat treatment step can be applied.
  • the applied composition is heated at 50 ° C. or higher and 300 ° C. or lower. That is, by heating the substrate coated with the composition in the present embodiment at a predetermined temperature, a curing reaction occurs and a resist underlayer film precursor is formed.
  • the heating means in the preheat treatment step is not particularly limited, but for example, a hot plate or the like can be used.
  • the heating conditions at that time are 50 ° C. or higher and 300 ° C. or lower, and more preferably 50 ° C. or higher and 250 ° C. or lower.
  • the preheat treatment step by heating at a temperature of 300 ° C. or lower, the heat resistance of the film due to curing is improved while suppressing deterioration due to excessive oxidation and sublimation of the resist underlayer film forming material even in an air atmosphere. It is possible to make it. Therefore, it is possible to form a resist underlayer film having good flatness, high carbon concentration, and excellent etching resistance while avoiding oxidation and decomposition of the film in the subsequent heat treatment step.
  • the heating time in the preheat treatment step is preferably 15 seconds or longer, more preferably 30 seconds or longer, and even more preferably 45 seconds or longer.
  • the heating time is preferably 20 minutes or less, more preferably 1,200 seconds or less, further preferably 600 seconds or less, and further preferably 300 seconds or less from the viewpoint of avoiding excessive heat history. preferable.
  • the atmosphere in the preheat treatment step may be air, but preferably an inert gas atmosphere in which nitrogen, argon or a mixture thereof is present.
  • the oxygen concentration in the preheat treatment step is preferably less than 20%, more preferably less than 5%. In the present specification, the oxygen concentration is specified as a volume basis.
  • the heat treatment step carried out in the method for forming the resist underlayer film according to the present embodiment is carried out after the above-mentioned preliminary heat treatment step.
  • the heating conditions are a temperature of 250 ° C. or higher and 800 ° C. or lower, preferably 300 ° C. or higher and 500 ° C. or lower, and more preferably 300 ° C. or higher and 450 ° C. or lower.
  • the heat treatment step in the present embodiment may be carried out in air, but preferably in an inert gas atmosphere in which nitrogen, argon or a mixture thereof is present.
  • the oxygen concentration in the preheat treatment step is preferably less than 20%, more preferably less than 5%.
  • the heating time in the heat treatment step is preferably 15 seconds or more and 20 minutes or less.
  • the heating time is more preferably 30 seconds or longer, and even more preferably 45 seconds or longer.
  • the heating time is more preferably 1,200 seconds or less, further preferably 600 seconds or less, and even more preferably 300 seconds or less.
  • the resist underlayer film is formed through the above heat treatment step.
  • the composition in the present embodiment contains a photosensitive acid generator, exposure and heating are combined. Thereby, curing can be promoted to form a resist underlayer film.
  • the radiation used for this exposure includes electromagnetic waves such as visible light, ultraviolet rays, far ultraviolet rays, X-rays, and ⁇ -rays; and particle beams such as electron beams, molecular beams, and ion beams, depending on the type of radiation-sensitive acid generator. It is selected as appropriate.
  • the lower limit of the average thickness of the resist underlayer film to be formed is preferably 0.05 ⁇ m, more preferably 0.1 ⁇ m, and even more preferably 0.2 ⁇ m.
  • As the upper limit of the average thickness 5 ⁇ m is preferable, 3 ⁇ m is more preferable, and 2 ⁇ m is further preferable.
  • the resist pattern forming method of the present embodiment includes a lower layer film forming step of forming a lower layer film on a substrate using the lower layer film forming composition of the present embodiment and a lower layer film formed by the lower layer film forming step. It includes a photoresist layer forming step of forming at least one photoresist layer, and a step of irradiating a predetermined region of the photoresist layer formed by the photoresist layer forming step with radiation to develop the photoresist layer.
  • the resist pattern forming method of the present embodiment can be used for forming various patterns, and is preferably a method for forming an insulating film pattern.
  • the circuit pattern forming method of the present embodiment includes a lower layer film forming step of forming a lower layer film using the lower layer film forming composition of the present embodiment on a substrate, and a lower layer film formed by the lower layer film forming step.
  • the intermediate layer film forming step of forming the intermediate layer film the photoresist layer forming step of forming at least one photoresist layer on the intermediate layer film formed by the intermediate layer film forming step, and the photoresist layer forming step.
  • the present invention includes a substrate pattern forming step of etching the substrate using the underlayer film pattern formed by the pattern forming step as a mask to form a pattern on the substrate.
  • the lithography underlayer of the present embodiment is formed from the underlayer film forming composition of the present embodiment.
  • the forming method is not particularly limited, and a known method can be applied.
  • the composition for forming a lower layer film of the present embodiment is applied onto a substrate by a known coating method such as spin coating or screen printing, a printing method, or the like, and then the organic solvent is volatilized to remove the lower layer.
  • a film can be formed.
  • the lower layer film After preparing the lower layer film, in the case of a two-layer process, it is preferable to prepare a silicon-containing resist layer or a single-layer resist composed of a hydrocarbon on the lower layer film, and in the case of a three-layer process, it is preferable to form a single-layer resist on the lower layer film. It is preferable to prepare a silicon-containing intermediate layer and further prepare a silicon-free single-layer resist layer on the silicon-containing intermediate layer. In this case, a known photoresist material can be used to form the resist layer.
  • a silicon atom-containing polymer such as a polysilsesquioxane derivative or a vinylsilane derivative is used as the base polymer from the viewpoint of oxygen gas etching resistance, and further, an organic solvent, an acid generator, and the like. If necessary, a positive photoresist material containing a basic compound or the like is preferably used.
  • the silicon atom-containing polymer a known polymer used in this type of resist material can be used.
  • a polysilsesquioxane-based intermediate layer is preferably used as the silicon-containing intermediate layer for the three-layer process.
  • the intermediate layer By giving the intermediate layer an effect as an antireflection film, it tends to be possible to effectively suppress reflection.
  • the k value tends to be high and the substrate reflection tends to be high, but the reflection is suppressed by the intermediate layer.
  • the substrate reflection can be reduced to 0.5% or less.
  • the intermediate layer having such an antireflection effect is not limited to the following, but for 193 nm exposure, a phenyl group or an absorbent group having a silicon-silicon bond is introduced, and the polysilseschi is crosslinked by acid or heat. Oxane is preferably used.
  • an intermediate layer formed by the Chemical Vapor Deposition (CVD) method can also be used.
  • the intermediate layer produced by the CVD method and having a high effect as an antireflection film is not limited to the following, and for example, a SiON film is known.
  • the upper layer resist in the three-layer process may be either a positive type or a negative type, and the same single-layer resist as normally used can be used.
  • the underlayer film in the present embodiment can also be used as an antireflection film for a normal single-layer resist or a base material for suppressing pattern collapse. Since the underlayer film has excellent etching resistance for base processing, it can be expected to function as a hard mask for base processing.
  • a wet process such as a spin coating method or screen printing is preferably used as in the case of forming the underlayer film.
  • prebaking is usually performed, and this prebaking is preferably performed at 80 to 180 ° C. for 10 to 300 seconds.
  • a resist pattern can be obtained by performing exposure, post-exposure baking (PEB), and development according to a conventional method.
  • the thickness of the resist film is not particularly limited, but is generally preferably 30 to 500 nm, more preferably 50 to 400 nm.
  • the exposure light may be appropriately selected and used according to the photoresist material used.
  • high-energy rays having a wavelength of 300 nm or less specifically, excimer lasers having a wavelength of 248 nm, 193 nm, and 157 nm, soft X-rays having a wavelength of 3 to 20 nm, electron beams, X-rays, and the like can be mentioned.
  • the resist pattern formed by the above-mentioned method is such that the pattern collapse is suppressed by the underlayer film. Therefore, by using the underlayer film in the present embodiment, a finer pattern can be obtained, and the exposure amount required to obtain the resist pattern can be reduced.
  • gas etching is preferably used as the etching of the lower layer film in the two-layer process.
  • gas etching etching using oxygen gas is preferable.
  • oxygen gas it is also possible to add an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2 , or H 2 gas.
  • an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2 , or H 2 gas.
  • the latter gas is preferably used to protect the side wall to prevent undercutting of the side wall of the pattern.
  • gas etching is also preferably used for etching the intermediate layer in the three-layer process.
  • the gas etching the same ones as described in the above two-layer process can be applied.
  • the processing of the intermediate layer in the three-layer process is preferably performed by using a fluorocarbon-based gas and using the resist pattern as a mask.
  • the lower layer film can be processed by, for example, performing oxygen gas etching using the intermediate layer pattern as a mask as described above.
  • a silicon oxide film, a silicon nitride film, and a silicon oxide nitride film are formed by a CVD method, an ALD method, or the like.
  • the method for forming the nitride film is not limited to the following, and for example, the method described in JP-A-2002-334869 and WO2004 / 0666377 can be used.
  • a photoresist film can be formed directly on such an intermediate layer film, but an organic antireflection film (BARC) is formed on the intermediate layer film by spin coating, and a photoresist film is formed on the organic antireflection film (BARC). You may.
  • a polysilsesquioxane-based intermediate layer is also preferably used.
  • the resist intermediate layer film By giving the resist intermediate layer film an effect as an antireflection film, it tends to be possible to effectively suppress reflection.
  • the specific material of the polysilsesquioxane-based intermediate layer is not limited to the following, and for example, those described in JP-A-2007-226170 and JP-A-2007-226204 can be used.
  • the next etching of the substrate can also be performed by a conventional method.
  • the etching is mainly composed of chlorofluorocarbons
  • the substrate is p-Si, Al or W
  • the etching is chlorine-based or bromine-based.
  • Etching mainly composed of gas can be performed.
  • the silicon-containing resist layer or the silicon-containing intermediate layer is separately peeled off, and generally, dry etching peeling is performed with a freon-based gas after the substrate is processed. ..
  • the underlayer film in the present embodiment has a feature of being excellent in etching resistance of the substrate.
  • a known substrate can be appropriately selected and used, and the present invention is not particularly limited, and examples thereof include Si, ⁇ -Si, p-Si, SiO 2 , SiN, SiON, W, TiN, and Al. Be done.
  • the substrate may be a laminated body having a film to be processed (substrate to be processed) on a base material (support).
  • various Low-k films such as Si, SiO 2 , SiON, SiN, p-Si, ⁇ -Si, W, W-Si, Al, Cu, Al-Si and the like and their stoppers are used.
  • Examples thereof include a film, and usually a material different from the base material (support) is used.
  • the thickness of the substrate or the film to be processed is not particularly limited, but is usually preferably about 50 to 1,000,000 nm, more preferably 75 to 50,000 nm.
  • the resist permanent film of the present embodiment contains the composition of the present embodiment.
  • the resist permanent film formed by applying the composition of the present embodiment is suitable as a permanent film that remains in the final product after forming a resist pattern, if necessary.
  • Specific examples of permanent films include package adhesive layers such as solder resists, package materials, underfill materials, and circuit elements for semiconductor device cans, adhesive layers for integrated circuit elements and circuit boards, and thin film transistor protection for thin displays. Examples thereof include a film, a liquid crystal color filter protective film, a black matrix, and a spacer.
  • the resist permanent film containing the composition of the present embodiment has a very excellent advantage that it is excellent in heat resistance and moisture resistance and is less contaminated by sublimation components.
  • the display material it is a material having high sensitivity, high heat resistance, and moisture absorption reliability with little deterioration of image quality due to important contamination.
  • a composition for a permanent resist film can be obtained by adding various additives such as an agent and dissolving the mixture in an organic solvent.
  • composition for forming an underlayer film of the present embodiment can be adjusted by blending each of the above components and mixing them using a stirrer or the like.
  • a disperser such as a dissolver, a homogenizer, or a three-roll mill.
  • the method for forming a lithographic underlayer film of the present embodiment includes applying a lithographic underlayer film forming composition to a substrate having a step.
  • the application method is not particularly limited, and known coating methods such as the above-mentioned spin coating and screen printing, printing methods and the like can be used.
  • the substrate having a step is not limited, for example, a substrate having a line and space of 1 to 10000 nm, a substrate having a trench having a width of 1 to 100,000, a pitch of 1 to 20000 nm, and a depth of 10 to 100,000 nm, a width of 1 to 100,000 nm, and a pitch.
  • Examples thereof include a substrate having holes of 1 to 20000 nm and a depth of 10 to 100,000 nm.
  • the present embodiment will be described in more detail with reference to synthetic examples, examples and comparative examples, but the present invention is not limited to these examples. That is, the materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Further, the values of various manufacturing conditions and evaluation results in the following examples have meanings as a preferable upper limit value or a preferable lower limit value in the embodiment of the present invention, and the preferable numerical range is the above-mentioned upper limit value or the lower limit value. It may be in the range specified by the combination of the value and the value of the following examples or the values of the examples.
  • the softening point was measured using the following equipment. Equipment used: FP83HT Drop point / softening point measurement system (Mettler Toledo Co., Ltd.) Measurement conditions: Temperature rise rate 2 ° C / min Measurement method: Measure according to the FP83HT manual. Specifically, the molten sample is poured into a sample cup and cooled to harden. Insert the cartridge into the top and bottom of the cup filled with the sample and insert it into the furnace. The temperature at which the resin softens and flows down the orifice and the lower end of the resin passes through the optical path is detected by the photocell as the softening point.
  • Equipment used FP83HT Drop point / softening point measurement system (Mettler Toledo Co., Ltd.) Measurement conditions: Temperature rise rate 2 ° C / min Measurement method: Measure according to the FP83HT manual. Specifically, the molten sample is poured into a sample cup and cooled to harden. Insert the cartridge into the top and bottom of the cup filled with the sample and insert it into the
  • melt viscosity The melt viscosity at 150 ° C. was measured using the following equipment. Equipment used: BROOKFIELD B-type viscometer DV2T (manufactured by Hidehiro Seiki Co., Ltd.) Measurement temperature: 150 ° C Measuring method: Set the temperature inside the furnace of the B-type viscometer to 150 ° C., and weigh a predetermined amount of the sample into the cup. A cup weighing the sample is put into the furnace to melt the resin, and the spindle is put in from the top. Rotate the spindle and read the place where the displayed viscosity value becomes stable as the melt viscosity.
  • oligomer (resin XA) having a structural unit represented by the following formula.
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 1250, and the dispersity was 1.31.
  • an oligomer (En-BBIF-AL) having a structural unit represented by the following formula.
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 1100, and the dispersity was 1.33.
  • oligomer (resin YA) having a structural unit represented by the following formula.
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 900, and the dispersity was 1.28.
  • oligomer (resin YC) having a structural unit represented by the following formula.
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 1000, and the dispersity was 1.28.
  • an oligomer (resin YD) having a structural unit represented by the following formula.
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 1200, and the dispersity was 1.21.
  • a peak near 9.1-9.4 ppm showing a phenolic hydroxyl group was not confirmed, and 100% of the hydroxyl group before the reaction was protected by a glycidyl group. It turned out.
  • the softening point was 13 ° C.
  • Example X1 to X3, Comparative Example X1, Examples Y1 to Y4, Comparative Example Y1 The above resins XA to XC, resins YA to YD, and phenol novolac resins (PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.) as Comparative Examples X1 and Y1 were subjected to the solubility test and heat resistance evaluation shown below. The results are shown in Tables 1-1 and 1-2.
  • Examples X1-1 to X3-2, Comparative Examples X1-1 to X1-2, Examples Y1-1 to Y4-2, Comparative Examples Y1-1 to Y1-2] Compositions for forming an underlayer film for lithography were prepared respectively.
  • the following acid generators, cross-linking agents and organic solvents were used.
  • Acid generator Midori Kagaku Co., Ltd. product "Jitashally butyldiphenyliodonium nonafluoromethanesulfonate" (described as "DTDPI” in the table) :
  • Crosslinking agent Sanwa Chemical Co., Ltd.
  • the embedding property in the stepped substrate was evaluated by the following procedure.
  • the composition for forming an underlayer film for lithography was applied onto a SiO 2 substrate having a line and space of 60 nm, and baked at 400 ° C. for 60 seconds to form a film of about 100 nm.
  • a cross section of the obtained film was cut out and observed with an electron beam microscope to evaluate the embedding property in a stepped substrate.
  • the results are shown in Tables 3-1 and 3-2.
  • C There is a defect in the uneven portion of the SiO 2 substrate and the underlayer film is not embedded.
  • the obtained film-forming composition was applied onto a SiO 2 stepped substrate having trenches having a width of 60 nm, a pitch of 60 nm, and a depth of 200 nm. Then, it was fired at 400 ° C. for 60 seconds in an atmospheric atmosphere to form an underlayer film having a film thickness of 100 nm. The shape of this underlayer is observed with a scanning electron microscope ("S-4800" manufactured by Hitachi High-Technologies Corporation), and the difference between the minimum film thickness in the trench and the maximum film thickness in the non-trench portion (difference in film thickness). ⁇ FT) was measured. The results are shown in Tables 3-1 and 3-2.
  • the etching resistance was evaluated by the following procedure. The etching test was performed on the lower layer film containing the phenol novolac resin of Comparative Example X1-1, and the etching rate (etching rate) at that time was measured. Next, the above etching test was performed on the lower film of each Example and Comparative Example, and the etching rate at that time was measured. Then, based on the etching rate of the underlayer film containing the phenol novolac resin, the etching resistance of each Example and Comparative Example was evaluated according to the following evaluation criteria. The evaluation results are shown in Table 5-1.
  • Examples X4 to X9, Examples Y5 to Y12 Each solution of the underlayer film forming material for lithography prepared in the same manner as in each of the above-mentioned Examples X1-1 to X3-2 and each of Examples Y1-1 to Y4-2 is applied onto a SiO 2 substrate having a film thickness of 300 nm. By baking at 150 ° C. for 60 seconds and further at 400 ° C. for 120 seconds, an underlayer film having a film thickness of 70 nm was formed. A resist solution for ArF was applied onto this underlayer film and baked at 130 ° C. for 60 seconds to form a photoresist layer having a film thickness of 140 nm.
  • a compound represented by the following formula (xx) 5 parts by mass, triphenylsulfonium nonafluoromethanesulfonate: 1 part by mass, tributylamine: 2 parts by mass, and PGMEA: 92 parts by mass.
  • the one prepared by blending was used.
  • the compounds represented by the following formula (xx) are 2-methyl-2-methacryloyloxyadamantane 4.15 g, methacrylloyloxy- ⁇ -butyrolactone 3.00 g, 3-hydroxy-1-adamantyl methacrylate 2.08 g, and azobis.
  • the photoresist layer was then exposed using an electron beam lithography system (ELS-7500, 50 keV) and baked (PEB) at 115 ° C. for 90 seconds to obtain 2.38 mass% tetramethylammonium hydroxide (2.38 mass% tetramethylammonium hydroxide).
  • ELS-7500 electron beam lithography system
  • PEB baked
  • a positive resist pattern was obtained by developing with an aqueous solution of TMAH) for 60 seconds.
  • Tables 6-1 and 6-2 show the results of observing the defects of the obtained resist patterns of 55 nm L / S (1: 1) and 80 nm L / S (1: 1).
  • “good” means that, with respect to the resist pattern shape after development, no major defects were found in the resist patterns formed in the line widths of 55 nmL / S (1: 1) and 80 nmL / S (1: 1).
  • "Defective” indicates that a large defect was found in the resist pattern formed in any of the line widths.
  • “resolution” is the minimum line width with no pattern collapse and good rectangularity
  • sensitivity is the minimum amount of electron beam energy that can draw a good pattern shape.
  • Example X10 to X14, Examples Y13 to Y20 A solution of the underlayer film forming material for lithography prepared in the same manner as in Examples X1-1 to X3-2 and Y1-1 to Y4-2 was applied onto a SiO 2 substrate having a film thickness of 300 nm, and at 240 ° C. By baking for 60 seconds and further at 400 ° C. for 120 seconds, an underlayer film having a film thickness of 80 nm was formed. A silicon-containing intermediate layer material was applied onto the lower layer film and baked at 200 ° C. for 60 seconds to form an intermediate layer film having a film thickness of 35 nm. Further, the resist solution for ArF described above was applied onto the intermediate layer film and baked at 130 ° C.
  • the silicon-containing intermediate layer material the silicon atom-containing polymer described in ⁇ Synthesis Example 1> of JP-A-2007-226170 was used.
  • the photoresist layer was mask-exposed using an electron beam lithography system (ELS-7500, 50 keV) and baked (PEB) at 115 ° C. for 90 seconds to obtain 2.38 mass% tetramethylammonium hydroxide.
  • ELS-7500 electron beam lithography system
  • PEB baked
  • the silicon-containing intermediate layer film (SOG) is dry-etched using the obtained resist pattern as a mask, and then the obtained silicon-containing intermediate layer film pattern is obtained.
  • the dry etching process of the lower layer film used as a mask and the dry etching process of the SiO 2 film using the obtained lower layer film pattern as a mask were sequentially performed.
  • the pattern cross section (that is, the shape of the SiO 2 film after etching) obtained as described above was observed using an "electron microscope (S-4800)" manufactured by Hitachi, Ltd. The observation results are shown in Tables 7-1 and 7-2. In the table, “good” means that no large defect was found in the formed pattern cross section, and “poor” means that no large defect was found in the formed pattern cross section.
  • the oligomers obtained in the synthesis examples were evaluated for quality before and after the purification treatment. That is, a resin film formed on a wafer using a solution of a lower layer film forming material for lithography prepared in the same manner as in Examples X1-1 to X3-2 and Y1-1 to Y4-2 is etched into a substrate. After transferring to the side, it was evaluated by performing defect evaluation. A 12-inch silicon wafer was subjected to thermal oxidation treatment to obtain a substrate having a silicon oxide film having a thickness of 100 nm.
  • the prepared etched wafer was measured for the number of defects of 19 nm or more with a defect inspection device SP5 (manufactured by KLA-tencor), and was carried out as a defect evaluation by etching treatment with a laminated film.
  • Example XE01 Purification of Resin XA with Acid
  • 150 g of a solution (10% by mass) of the resin XA obtained in Synthesis Example X1 dissolved in PGMEA was charged.
  • 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, the mixture was stirred for 5 minutes, and then allowed to stand for 30 minutes.
  • the oil phase and the aqueous phase were separated, and the aqueous phase was removed.
  • Example XE02 Purification of resin XA by passing through a filter 1 In a class 1000 clean booth, the resin XA obtained in Synthesis Example X1 was dissolved in propylene glycol monomethyl ether (PGME) in a 1000 mL volume four-necked flask (bottom punching die) at a concentration of 10% by mass. After charging 500 g of the solution and then removing the air inside the flask under reduced pressure, introduce nitrogen gas and return it to atmospheric pressure, aerate the nitrogen gas at 100 mL per minute, and adjust the internal oxygen concentration to less than 1%. , Heated to 30 ° C. with stirring.
  • PGME propylene glycol monomethyl ether
  • the above solution is withdrawn from the bottom punching valve, and a nylon hollow fiber membrane filter (manufactured by KITZ Micro Filter Co., Ltd.) with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 100 mL / min via a pressure resistant tube made of fluororesin is used.
  • the liquid was passed through the product name: Polyfix Nylon Series) by pressure filtration so that the filtration pressure was 0.5 MPa.
  • the filtered resin solution was diluted with EL grade PGMEA (reagent manufactured by Kanto Chemical Co., Inc.) and the concentration was adjusted to 10% by mass to obtain a PGMEA solution of resin XA having a reduced metal content.
  • Example XE03 Purification of resin XA by passing through a filter 2 As a purification process using a filter, IONKLEEEN manufactured by Nippon Pole, a nylon filter manufactured by Nippon Pole, and an UPE filter with a nominal pore size of 3 nm manufactured by Entegris Japan were connected in series in this order to construct a filter line. The liquid was passed by pressure filtration so that the filtration pressure was 0.5 MPa in the same manner as in Example XE02, except that the prepared filter line was used instead of the 0.1 ⁇ m nylon hollow fiber membrane filter. ..
  • the HCl produced in the reaction was volatilized to the outside of the system as it was, and trapped in alkaline water. At this stage, no unreacted 4,4'-dichloromethylbiphenyl remained, and it was confirmed by gas chromatography that all the reactions had occurred.
  • the pressure was reduced to remove HCl remaining in the system and unreacted phenol to the outside of the system. Finally, by reducing the pressure to 150 ° C. at 30 torr, residual phenol was not detected by gas chromatography. While maintaining the reaction product at 150 ° C., about 30 g thereof was slowly dropped from the lower outlet of the flask onto a stainless pad kept at room temperature by air cooling.
  • the stainless pad was rapidly cooled to 30 ° C. to obtain a solidified polymer.
  • the solidified material was removed and the stainless pad was cooled by air cooling so that the surface temperature of the stainless pad would not rise due to the heat of the polymer. This air cooling / solidification operation was repeated 9 times. Then, in order to remove impurities, 1-butanol (300 g per 100 g of the polymer) and toluene (600 g per 100 g of the polymer) were added and dissolved in the polymer.
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 3100, and the dispersity was 1.33.
  • the viscosity was 0.06 Pa ⁇ s, and the softening point was 39 ° C.
  • an oligomer (M6-PBIF-AL) having a structural unit represented by the following formula.
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 2800, and the dispersity was 1.31.
  • the peak around 9.1-9.4 ppm showing a phenolic hydroxyl group was compared with the peak around 3.7-3.8 ppm showing a methyl group, and the chemical amount was It was confirmed that 60% of the hydroxyl groups before the reaction were protected by a methyl group.
  • the viscosity was 0.01 Pa ⁇ s, and the softening point was 25 ° C.
  • the HCl produced in the reaction was volatilized to the outside of the system as it was, and trapped in alkaline water. At this stage, no unreacted 4,4'-dichloromethylbiphenyl remained, and it was confirmed by gas chromatography that all the reactions had occurred.
  • the pressure was reduced to remove HCl remaining in the system and unreacted phenol to the outside of the system. Finally, by reducing the pressure to 150 ° C. at 30 torr, residual phenol was not detected by gas chromatography. While maintaining the reaction product at 150 ° C., about 30 g thereof was slowly dropped from the lower outlet of the flask onto a stainless pad kept at room temperature by air cooling.
  • the stainless pad was rapidly cooled to 30 ° C. to obtain a solidified polymer.
  • the solidified material was removed and the stainless pad was cooled by air cooling so that the surface temperature of the stainless pad would not rise due to the heat of the polymer. This air cooling / solidification operation was repeated 9 times. Then, in order to remove impurities, 1-butanol (300 g per 100 g of the polymer) and toluene (600 g per 100 g of the polymer) were added and dissolved in the polymer.
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 2556, and the dispersity was 1.21.
  • the viscosity was 0.03 Pa ⁇ s, and the softening point was 35 ° C.
  • the HCl produced in the reaction was volatilized to the outside of the system as it was, and trapped in alkaline water. At this stage, no unreacted 4,4'-dichloromethylbiphenyl remained, and it was confirmed by gas chromatography that all the reactions had occurred.
  • the pressure was reduced to remove HCl remaining in the system and unreacted phenol to the outside of the system. Finally, by reducing the pressure to 150 ° C. at 30 torr, residual phenol was not detected by gas chromatography. While maintaining the reaction product at 150 ° C., about 30 g thereof was slowly dropped from the lower outlet of the flask onto a stainless pad kept at room temperature by air cooling.
  • the stainless pad was rapidly cooled to 30 ° C. to obtain a solidified polymer.
  • the solidified material was removed and the stainless pad was cooled by air cooling so that the surface temperature of the stainless pad would not rise due to the heat of the polymer. This air cooling / solidification operation was repeated 9 times. Then, in order to remove impurities, 1-butanol (300 g per 100 g of the polymer) and toluene (600 g per 100 g of the polymer) were added and dissolved in the polymer.
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 2349, and the dispersity was 1.19.
  • the viscosity was 0.02 Pa ⁇ s, and the softening point was 25 ° C.
  • an oligomer (En-BBIF-AL) having a structural unit represented by the following formula.
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 2200, and the dispersity was 1.20.
  • ethyl acetate 400 g per 100 g of polymer
  • 20% sulfuric acid 108 g per 100 g of polymer
  • the organic solvent was removed by concentration and dried in a vacuum dryer at 60 ° C. for 16 hours to obtain 38.6 g of an oligomer (NAFP-AL) having a structural unit represented by the following formula (NAFP-AL).
  • NAFP-AL an oligomer having a structural unit represented by the following formula
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 2020, and the dispersity was 1.86.
  • the viscosity was 0.12 Pa ⁇ s, and the softening point was 68 ° C.
  • an oligomer (Ms-NAFP-AL) having a structural unit represented by the following formula.
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 1900, and the dispersity was 1.70.
  • a peak near 9.1-9.4 ppm showing a phenolic hydroxyl group was not confirmed, and 100% of the hydroxyl groups before the reaction were Ms groups (mesyl groups). It turned out to be protected.
  • the viscosity was 0.09 Pa ⁇ s, and the softening point was 56 ° C.
  • the HCl produced in the reaction was volatilized to the outside of the system as it was, and trapped in alkaline water. At this stage, no unreacted 4,4'-dichloromethylbiphenyl remained, and it was confirmed by gas chromatography that all the reactions had occurred.
  • the pressure was reduced to remove HCl remaining in the system and unreacted 4-phenylphenol to the outside of the system. Finally, by reducing the pressure to 180 ° C. at 30 torr, residual phenol was not detected by gas chromatography. While maintaining the reaction product at 150 ° C., about 30 g thereof was slowly dropped from the lower outlet of the flask onto a stainless pad kept at room temperature by air cooling.
  • the stainless pad was rapidly cooled to 30 ° C. to obtain a solidified polymer.
  • the solidified material was removed and the stainless pad was cooled by air cooling so that the surface temperature of the stainless pad would not rise due to the heat of the polymer. This air cooling / solidification operation was repeated 9 times. Then, in order to remove impurities, 1-butanol (300 g per 100 g of the polymer) and toluene (600 g per 100 g of the polymer) were added and dissolved in the polymer.
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 2349, and the dispersity was 1.19.
  • the viscosity was 0.10 Pa ⁇ s, and the softening point was 48 ° C.
  • oligomer Ac-p-PBIF-AL having a structural unit represented by the following formula.
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 2250, and the dispersity was 1.24.
  • the solidified material was removed and the stainless pad was cooled by air cooling so that the surface temperature of the stainless pad would not rise due to the heat of the polymer.
  • This air cooling / solidification operation was repeated 9 times to obtain 267.5 g of an oligomer (MPF-AL) having a structural unit represented by the following formula.
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 980, and the dispersity was 1.12.
  • the viscosity was 0.02 Pa ⁇ s, and the softening point was 42 ° C.
  • oligomer (tB-MPF-AL) having a structural unit represented by the following formula.
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 900, and the dispersity was 1.09.
  • Examples Z1-1 to 6-3, Comparative Example Z1-1 the composition for forming the underlayer film for lithography having the compositions shown in Table 10-1 and Table 10-2 were prepared, respectively.
  • these lithographic underlayer film forming compositions were rotationally coated on a silicon substrate, then baked at 240 ° C. for 60 seconds, and then baked at 400 ° C. for 120 seconds to obtain an underlayer film having a film thickness of 200 nm. Each was made. Subsequently, the curability was evaluated according to the following evaluation criteria.
  • Acid generator Midori Kagaku Co., Ltd. product "Jitashally butyldiphenyliodonium nonafluoromethanesulfonate” (described as “DTDPI” in the table) : Acid generator: Pyridinium paratoluenesulfonic acid (indicated as “PPTS” in the table)
  • Crosslinking agent Sanwa Chemical Co., Ltd. product "Nikalac MX270” (indicated as "Nikalac” in the table) Honshu Chemical Industry Co., Ltd.
  • Etching equipment SAMCO International product "RIE-10NR" Output: 50W Pressure: 20Pa Time: 2min Etching gas
  • Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate 50: 5: 5 (sccm)
  • the etching resistance was evaluated by the following procedure. First, a lower layer film containing a phenol novolac resin was prepared under the same conditions as in Example Z1-1 except that a phenol novolac resin (PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.) was used instead of the oligomer used in Example Z1-1. did. Then, the etching test was performed on the underlayer film containing the phenol novolac resin, and the etching rate (etching rate) at that time was measured. Next, the above etching test was performed on the lower film of each Example and Comparative Example, and the etching rate at that time was measured.
  • a phenol novolac resin PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.
  • the film-forming composition obtained above is on a SiO 2 stepped substrate in which a trench (aspect ratio: 1.5) having a width of 100 nm, a pitch of 150 nm and a depth of 150 nm and a trench (open space) having a width of 5 ⁇ m and a depth of 180 nm are mixed. Each thing was applied. Then, it was fired at 400 ° C. for 120 seconds in an atmospheric atmosphere to form a resist underlayer film having a film thickness of 200 nm.
  • Example Z4-9 Each solution of the underlayer film forming material for lithography prepared in each of the above Examples Z1-1 to 6-3 is applied onto a SiO 2 substrate having a film thickness of 300 nm, and is applied at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds. By baking, an underlayer film having a film thickness of 70 nm was formed. A resist solution for ArF was applied onto this underlayer film and baked at 130 ° C. for 60 seconds to form a photoresist layer having a film thickness of 140 nm.
  • a compound represented by the following formula (11) 5 parts by mass, triphenylsulfonium nonafluoromethanesulfonate: 1 part by mass, tributylamine: 2 parts by mass, and PGMEA: 92 parts by mass.
  • the one prepared by blending was used.
  • the compounds represented by the following formula (11) are 2-methyl-2-methacryloyloxyadamantane 4.15 g, methacrylloyloxy- ⁇ -butyrolactone 3.00 g, 3-hydroxy-1-adamantyl methacrylate 2.08 g, and azobis.
  • the photoresist layer was then exposed using an electron beam lithography system (ELS-7500, 50 keV) and baked (PEB) at 115 ° C. for 90 seconds to obtain 2.38 mass% tetramethylammonium hydroxide (2.38 mass% tetramethylammonium hydroxide).
  • ELS-7500 electron beam lithography system
  • PEB baked
  • a positive resist pattern was obtained by developing with an aqueous solution of TMAH) for 60 seconds.
  • Table 12 shows the results of observing the defects of the obtained resist patterns of 55 nm L / S (1: 1) and 80 nm L / S (1: 1).
  • "good” means that no large defect was found in the formed resist pattern
  • “poor” means that no large defect was found in the formed resist pattern.
  • a composition for forming an underlayer film for lithography (Example Z1-1) comprising an oligomer having an aralkyl structure of the present embodiment.
  • the underlayer film formed by using any of Examples Z6-3) is not only excellent in curability and etching resistance but also embedded as compared with the underlayer film made of the phenol novolac resin of Comparative Example Z1-1. It was confirmed that both the property and the flattening property were good. By self-curing without the need for a cross-linking agent and an acid generator, particularly excellent flatness can be exhibited.
  • Examples Z4 to 21 using any of the oligomers having an aralkyl structure of the present embodiment the resist pattern shape after development is good and no major defects are observed. Was confirmed. Furthermore, it was confirmed that each of Examples Z4 to 21 was significantly superior in both resolution and sensitivity as compared with Comparative Example Z2 in which the underlayer film was not formed.
  • the fact that the resist pattern shape after development is good indicates that the underlayer film forming material for lithography used in Examples Z4 to 21 has good adhesion to the resist material (photoresist material, etc.). There is.
  • Examples Z22 to 39 By applying the solution of the underlayer film forming material for lithography of Examples Z1-1 to 6-3 on a SiO 2 substrate having a film thickness of 300 nm and baking at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds. An underlayer film having a film thickness of 80 nm was formed. A silicon-containing intermediate layer material was applied onto the lower layer film and baked at 200 ° C. for 60 seconds to form an intermediate layer film having a film thickness of 35 nm. Further, the resist solution for ArF described above was applied onto the intermediate layer film and baked at 130 ° C. for 60 seconds to form a photoresist layer having a film thickness of 150 nm.
  • the silicon-containing intermediate layer material As the silicon-containing intermediate layer material, the silicon atom-containing polymer described in ⁇ Synthesis Example Z1> of JP-A-2007-226170 was used.
  • the photoresist layer was mask-exposed using an electron beam lithography system (ELS-7500, 50 keV) and baked (PEB) at 115 ° C. for 90 seconds to obtain 2.38 mass% tetramethylammonium hydroxide.
  • ELS-7500 electron beam lithography system
  • PEB baked
  • TMAH aqueous solution of
  • the silicon-containing intermediate layer film (SOG) is dry-etched using the obtained resist pattern as a mask, and then the obtained silicon-containing intermediate layer film pattern is obtained.
  • the dry etching process of the lower layer film used as a mask and the dry etching process of the SiO 2 film using the obtained lower layer film pattern as a mask were sequentially performed.
  • the pattern cross section (that is, the shape of the SiO 2 film after etching) obtained as described above was observed using an "electron microscope (S-4800)" manufactured by Hitachi, Ltd. The observation results are shown in Table 13. In the table, “good” means that no large defect was found in the formed pattern cross section, and “poor” means that no large defect was found in the formed pattern cross section.
  • Example Z40 Purification of M6-PBIF-AL with acid
  • M6-PBIF-AL obtained in Synthesis Example Z1 was placed in EL-MIBK (methyl isobutyl ketone).
  • 150 g of the solution (10% by mass) dissolved in the solution was charged and heated to 80 ° C. with stirring.
  • 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, the mixture was stirred for 5 minutes, and then allowed to stand for 30 minutes.
  • the oil phase and the aqueous phase were separated, and the aqueous phase was removed.
  • Example Z3 Purification of M6-PBIF-AL with ultrapure water M6 was carried out in the same manner as in Example Z40 except that ultrapure water was used instead of the aqueous solution of oxalic acid, and the concentration was adjusted to 10% by mass. -A PGMEA solution of PBIF-AL was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials For Photolithography (AREA)

Abstract

本発明の課題は、段差基板上での平坦化性能に優れ、微細ホールパターンへの埋め込み性能が良好かつ成膜後のウェハ表面が平坦化される特徴を有するリソグラフィー用レジスト下層膜形成用組成物等を提供することである。前記課題は、保護基を有する化合物を含む、リソグラフィー用下層膜形成用組成物によって解決することができる。

Description

リソグラフィー用下層膜形成用組成物、下層膜及びパターン形成方法
 本発明は、リソグラフィー用下層膜形成用組成物、下層膜及びパターン形成方法に関する。
 半導体デバイスの製造において、フォトレジスト材料を用いたリソグラフィーによる微細加工が行われているが、近年、LSI(大規模集積回路)の高集積化と高速度化に伴い、パターンルールによる更なる微細化が求められている。また、レジストパターン形成の際に使用するリソグラフィー用の光源は、KrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化されており、極端紫外光(EUV、13.5nm)の導入も見込まれている。
 しかしながら、レジストパターンの微細化が進むと、解像度の問題若しくは現像後にレジストパターンが倒れるといった問題が生じてくるため、レジストの薄膜化が望まれるようになる。ところが、単にレジストの薄膜化を行うと、基板加工に十分なレジストパターンの膜厚を得ることが難しくなる。そのため、レジストパターンだけではなく、レジストと加工する半導体基板との間にレジスト下層膜を作製し、このレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になっている。
 現在、このようなプロセス用のレジスト下層膜として、種々のものが知られている。例えば、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、特定の繰り返し単位を有する重合体を含むレジスト下層膜材料が提案されている(特許文献1参照)。さらに、半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、アセナフチレン類の繰り返し単位と、置換又は非置換のヒドロキシ基を有する繰り返し単位とを共重合してなる重合体を含むレジスト下層膜材料が提案されている(特許文献2参照)。
 一方、この種のレジスト下層膜において高いエッチング耐性を持つ材料としては、メタンガス、エタンガス、アセチレンガス等を原料に用いたChemical Vapour Deposition(CVD)によって形成されたアモルファスカーボン下層膜がよく知られている。しかしながら、プロセス上の観点から、スピンコート法やスクリーン印刷等の湿式プロセスでレジスト下層膜を形成できるレジスト下層膜材料が求められている。
 また、本発明者らは、エッチング耐性に優れるとともに、耐熱性が高く、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構造の化合物及び有機溶媒を含有するリソグラフィー用下層膜形成組成物(特許文献3を参照。)を提案している。
特開2004-271838号公報 特開2005-250434号公報 国際公開第2013/024779号
 しかしながら、下層膜形成用組成物として、有機溶媒に対する溶解性、エッチング耐性、及びレジストパターン形成性を高い次元で同時に満たしつつ、更に成膜後のウェハ表面が平坦化される特徴を有するリソグラフィー用下層膜形成用組成物が求められている。
 そこで、本発明は、段差基板上での平坦化性能に優れ、微細ホールパターンへの埋め込み性能が良好かつ成膜後のウェハ表面が平坦化される特徴を有するリソグラフィー用レジスト下層膜形成用組成物等を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、特定の下層膜形成用組成物が有用であることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下に示す種々の実施形態を提供する。
[1]
 保護基を有する化合物を含む、リソグラフィー用下層膜形成用組成物。
[2]
 前記化合物が、ポリフェノール、アニリン系化合物、及び樹脂よりなる群から選択される1以上を含むことを特徴とする、[1]に記載のリソグラフィー用下層膜形成用組成物。
[3]
 前記化合物が、下記式(1)で表される化合物及び/又は樹脂を含むことを特徴とする、[1]又は[2]に記載のリソグラフィー用下層膜形成用組成物。
Figure JPOXMLDOC01-appb-C000012
 
(式(1)中、
 Rは、各々独立して、水素原子、直鎖状、分岐状若しくは環状の炭素原子数1~30のアルキル基又は炭素原子数6~30のアリール基であり、
 Rは、炭素原子数1~60のN価の基又は単結合であり、
 Pは、各々独立して、ハロゲン原子、ニトロ基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数2~30のアルキニル基、炭素原子数6~40のアリール基、水酸基、アミノ基、水酸基の水素原子が保護基で置換された基、アミノ基の水素原子が保護基で置換された基、及びこれらの組み合わせからなる官能基よりなる群から選択され、ここで、少なくとも1つのPは、水酸基の水素原子が保護基で置換された基、或いはアミノ基の水素原子が保護基で置換された基であり、前記保護基は脱離性の保護基であってもよく、
 Xは、各々独立して、酸素原子或いは硫黄原子であるか、又は無架橋であることを表し、
 Lは、単結合、置換基を有していてもよい炭素原子数1~30の直鎖状若しくは分岐状のアルキレン基、又は無架橋であり、
 mは、各々独立して、0~9の整数であり、ここで、少なくとも1つのmは1~9の整数であり、
 Nは、1~4の整数であり、
 rは、各々独立して、0~2の整数である。)
[4]
 前記化合物が、下記式(2)で表される化合物及び/又は樹脂を含むことを特徴とする、[1]~[3]のいずれかに記載のリソグラフィー用下層膜形成用組成物。
Figure JPOXMLDOC01-appb-C000013
 
(式(2)中、
 R、R、P、Lは、前記式(1)中の定義と同義であり、
 m及びmは、各々独立して、0~8の整数であり、m及びmは、各々独立して、0~9の整数であり、但し、m、m、m及びmは同時に0となることはなく、
 nは、前記式(1)中のNと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
 p~pは、前記式(1)中のrと同義である。)
[5]
 前記化合物が、下記式(3)で表される化合物及び/又は樹脂を含むことを特徴とする、[1]に記載のリソグラフィー用下層膜形成用組成物。
Figure JPOXMLDOC01-appb-C000014
 
(式(3)中、
 Pは、各々独立して、ハロゲン原子、ニトロ基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数2~30のアルキニル基、炭素原子数6~40のアリール基、水酸基、アミノ基、水酸基の水素原子が保護基で置換された基、アミノ基の水素原子が保護基で置換された基、及びこれらの組み合わせからなる官能基よりなる群から選択され、ここで、少なくとも1つのPは、水酸基の水素原子が保護基で置換された基、或いはアミノ基の水素原子が保護基で置換された基であり、前記保護基は脱離性の保護基であってもよく、
 Arは、各々独立して、フェニレン基、ナフチレン基、アントリレン基、フェナンスリレン基、ピリレン基、フルオリレン基、ビフェニレン基、ジフェニルメチレン基又はターフェニレン基を表し、
 Rは、Arの置換基であり、各々独立に、同一の基でも異なる基でもよく、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数1~30のアシル基、置換基を有していてもよい炭素原子数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素原子数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
 Xは、直鎖或いは分岐のアルキレン基、又は酸素原子を表し、
 nは、0~500の整数を示し、
 rは、各々独立して、1~3の整数を示し、
 rは、0~2の整数を示し、
 pは、各々独立して、正の整数を表し、
 qは、正の整数を表す。)
[6]
 前記式(3)で表される化合物及び/又は樹脂が、下記式(3-1A)或いは下記式(3-1B)で表される、[5]に記載のリソグラフィー用下層膜形成用組成物。
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
(式(3-1A)及び(3-1B)中、Ar、R、p、q、r、r、nは前記式(3)中の定義と同義であり、
 Pは、各々独立して、水素原子、又は保護基であり、ここで少なくとも1つのPは、前記保護基であり、前記保護基は脱離性の保護基であってもよい。)
[7]
 前記式(3-1A)或いは下記式(3-1B)で表される化合物及び/又は樹脂が、下記式(3-2A)或いは下記式(3-2B)で表される、[6]に記載のリソグラフィー用下層膜形成用組成物。
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
(式(3-2A)及び(3-2B)中、Ar、P、R、p、q、r、nは前記式(3-1A)或いは式(3-1B)中の定義と同義である。)
[8]
 前記式(3)で表される化合物及び/又は樹脂が、下記式(3-10A)或いは下記式(3-10B)で表される、[5]に記載のリソグラフィー用下層膜形成用組成物。
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
(式(3-10A)及び(3-10B)中、Ar、R、p、q、r、nは前記式(3)中の定義と同義であり、
 Pは、各々独立して、水素原子、又は保護基であり、ここで少なくとも1つのPは、前記保護基であり、前記保護基は脱離性の保護基であってもよい。)
[9]
 前記式(3)で表される化合物及び/又は樹脂が、下記式(3-11A)或いは下記式(3-11B)で表される、[5]に記載のリソグラフィー用下層膜形成用組成物。
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
(式(3-11A)及び(3-11B)中、Ar、R、p、q、r、nは前記式(3)中の定義と同義であり、
 Pは、各々独立して、水素原子、又は保護基であり、ここで少なくとも1つのPは、前記保護基であり、前記保護基は脱離性の保護基であってもよい。)
[10]
 前記保護基が、誘起効果或いは共鳴効果によって分子の特定の位置の電子密度を下げる電子吸引性保護基であり、
 電子吸引性保護基が、カルボニル系保護基、スルホニル系保護基、及びアシル系保護基よりなる群から選択される1以上であることを特徴とする、[1]~[9]のいずれかに記載のリソグラフィー用下層膜形成用組成物。
[11]
 前記電子吸引性保護基が、置換若しくは無置換の炭素原子数2~20のアルキルカルボニル基、置換若しくは無置換の炭素原子数6~20のアリールカルボニル基、置換若しくは無置換の炭素原子数2~20のアルコキシカルボニル基、置換若しくは無置換の炭素原子数1~10のアルキルスルホニル基、置換若しくは無置換の炭素原子数6~20のアリールスルホニル基、及び置換若しくは無置換の炭素原子数2~13のアシル基よりなる群から選択される1以上であることを特徴とする、[10]に記載のリソグラフィー用下層膜形成用組成物。
[12]
 前記電子吸引性保護基が、アセチル基、トリフルオロアセチル基、ベンゾイル基、メシル基、ノシル基、及びトリフラート基よりなる群から選択される1以上であることを特徴とする、[10]に記載のリソグラフィー用下層膜形成用組成物。
[13]
 前記保護基が、誘起効果或いは共鳴効果によって分子の特定の位置の電子密度を高める電子供与性保護基であり、
 前記電子供与性保護基が、アルキル系保護基、ベンジル系保護基、アセタール系保護基、トリチル系保護基、シリル系保護基、及びグリシジル基よりなる群から選択される1以上であることを特徴とする、[1]~[9]のいずれかに記載のリソグラフィー用下層膜形成用組成物。
[14]
 前記電子供与性保護基が、置換若しくは無置換の炭素原子数1~20のアルキル基、置換若しくは無置換の炭素原子数7~20のベンジル基、置換若しくは無置換の炭素原子数2~20のアルコキシアルキル基、置換若しくは無置換の炭素原子数2~20のテトラヒドロピラニル基、置換若しくは無置換の炭素原子数2~20のアルキルチオアルキル基、置換若しくは無置換の炭素原子数19~30のトリチル基、置換若しくは無置換の炭素原子数3~20のシリル基、及びグリシジル基よりなる群から選択される1以上であることを特徴とする、[13]に記載のリソグラフィー用下層膜形成用組成物。
[15]
 前記電子供与性保護基が、メチル基、ターシャリブチル基、ノルマルヘキシル基、オクチル基、エトキシエチル基、エトキシプロピル基、及びグリシジル基よりなる群から選択される1以上であることを特徴とする、[13]に記載のリソグラフィー用下層膜形成用組成物。
[16]
 前記化合物が、500~10,000の重量平均分子量を有する、[1]~[15]のいずれかに記載のリソグラフィー用下層膜形成用組成物。
[17]
 前記化合物において、分子量が500未満である低分子量成分の重量比率が1%未満である、[1]~[16]のいずれかに記載のリソグラフィー用下層膜形成用組成物。
[18]
 酸発生剤をさらに含有する、[1]~[17]のいずれかに記載のリソグラフィー用下層膜形成用組成物。
[19]
 架橋剤をさらに含有する、[1]~[18]のいずれかに記載のリソグラフィー用下層膜形成用組成物。
[20]
 [1]~[19]のいずれかに記載のリソグラフィー用下層膜形成用組成物で使用される前記化合物及び/又は樹脂。
[21]
 [1]~[19]のいずれかに記載のリソグラフィー用下層膜形成用組成物を用いて得られるリソグラフィー用下層膜。
[22]
 基板上に、[1]~[19]のいずれかに記載のリソグラフィー用下層膜形成用組成物を用いて下層膜を形成する工程、
 前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程、及び
 前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程、
を含む、レジストパターン形成方法。
[23]
 基板上に、[1]~[19]のいずれかに記載のリソグラフィー用下層膜形成用組成物を用いて下層膜を形成する工程、
 前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程、
 前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程、
 前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程、
 前記レジストパターンをマスクとして前記中間層膜をエッチングする工程、
 得られた前記中間層膜パターンをエッチングマスクとして前記下層膜をエッチングする工程、及び
 得られた前記下層膜パターンをエッチングマスクとして前記基板をエッチングすることで前記基板にパターンを形成する工程、
を含む、回路パターン形成方法。
[24]
 [1]~[19]のいずれかに記載のリソグラフィー用下層膜形成用組成物を、段差を有する基板に適用することを含む、リソグラフィー用下層膜の形成方法。
[25]
 前記リソグラフィー用下層膜形成用組成物の粘度が、0.01~1.00Pa・sである、[24]に記載の形成方法。
[26]
 前記リソグラフィー用下層膜形成用組成物の軟化点が、-50~100℃である、[24]又は[25]に記載の形成方法。
 本実施形態によれば、段差を有する基板に対する埋め込み性、平坦化特性に優れた有用なリソグラフィー用下層膜形成用組成物等を提供可能である。
 以下、本発明の実施の形態(「本実施形態」ともいう。)について説明する。ここで、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。すなわち本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。なお、本明細書において、例えば「1~100」との数値範囲の表記は、その下限値「1」及び上限値「100」の双方を包含するものとする。また、他の数値範囲の表記も同様である。
 本実施形態のリソグラフィー用下層膜形成用組成物は、保護基(好ましくは、誘起効果或いは共鳴効果によって、分子の特定の位置の電子密度を下げる又は高める保護基)を有する化合物を含む組成物(以下、リソグラフィー用下層膜形成用組成物と呼ぶ)を用いる。ここで、保護基を有する化合物は、分子量10,000以下の低分子化合物であっても、オリゴマーやプレポリマーであってもよく、樹脂であってもよく、これらから選択される任意の組み合わせの混合物であってもよい。
 リソグラフィー用下層膜形成用組成物に含まれる前記保護基を有する化合物の量は特に限定されないが、前記組成物に含まれる全成分(溶媒を除く。)の合計質量を基準として、例えば、50~100質量%、60~95質量%、70~90質量%としてもよい。
 ここで用いるリソグラフィー用下層膜形成用組成物は、保護基を有する化合物を含み、比較的低分子量ながらも、湿式プロセスが適用可能である。また、保護基を有する化合物がその構造中に芳香族環を含む場合には、その芳香族性により高い耐熱性を有するため、耐熱性及びエッチング耐性に優れるだけでなく、単独でも高温ベークにより、架橋反応を起こし、高い耐熱性を発現する。その結果、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れた下層膜を形成することができる。さらに、保護基を有する化合物がその構造中に芳香族環を含む場合、当該リソグラフィー用下層膜形成用組成物は、芳香族構造を有しているにも関わらず、有機溶媒に対する溶解性が高く、安全溶媒に対する溶解性が高く、また製品品質の安定性が良好である。加えて、ここで用いるリソグラフィー用下層膜用組成物は、レジスト層やレジスト中間層膜材料との密着性にも優れるので、優れたレジストパターンを得ることができる。
 本実施形態の保護基を有する化合物は、水酸基或いはアミノ基の一部ないしは全部の水素原子が他の置換基に置換されている(すなわち保護されている)ことで、化合物間の分子間力(水素結合)が低減されている。したがって、水酸基或いはアミノ基が保護されていないものと比べ、組成物の粘度が低下し、これにより埋め込み性・平坦化性が良化する傾向にある。このとき、導入する保護基は極性が低い方が粘度は低下しやすいが、分子全体の極性が下がりすぎると、例えばプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等の極性溶媒に対して、溶解性が低下する。このような保護基導入に伴う溶解性低下に対しては、保護基の導入率をコントロールすることで、低粘度と溶解性の両立が可能となる。
 例えば、電子吸引性保護基であるアセチル基は比較的脱保護されにくく、焼成過程において、低粘度状態を長く保つ。しかも、その電子吸引性から、反応点の求核性を下げることにより、分子間の架橋速度が低下し、低粘度状態を長時間維持することが可能となり、段差が小さく、埋め込み性や平坦化性が顕著に優れた下層膜が得られる。またメシル基はアセチル基と同様にその電子吸引性から低粘度状態を長時間維持したのち、保護基が脱離することで、水素や酸素を含む成分が脱離した焼成膜は高炭素密度となり、平坦化性が良好で、且つ、エッチング耐性を兼備した下層膜を得ることが可能となる。分解された保護基は分子量が十分に小さく、気体となるため、装置内で固体化する昇華物には含まれず、装置を汚染することもない。
 例えば、電子供与性保護基であるアルキル基は比較的脱保護されにくく、焼成過程において、低粘度状態を長く保つ。しかも、その電子供与性から、保護体でありながら十分な架橋性を発現する。また、揮発しやすい低分子量成分がすばやく重合するため、装置内で固体化する昇華物が発生しにくい。また例えばエトキシエチル基は焼成過程において脱保護しやすく、架橋性に優れる。さらに分解された保護基は気体となり、装置内で固体化する昇華物に含まれない。その結果、焼成膜は高炭素密度となり、エッチング耐性が向上することから、平坦化性が良好で、低昇華物性とエッチング耐性を兼備した下層膜を得ることが可能となる。一方、例えばトリチル基はアルキル保護基に比べ、保護された化合物及び/又は樹脂の分子量の増大量が比較的に大きいことから、低分子量成分由来の昇華物が発生しにくい。加えて、焼成過程において脱保護されやすく、架橋性にも優れる。さらに分解された保護基は気体となり、装置内で固体化する昇華物に含まれない。その結果、焼成膜は高炭素密度となり、エッチング耐性が向上することから、平坦化性が良好で、低昇華物性とエッチング耐性を兼備した下層膜を得ることが可能となる。
 焼成の際に高温下で酸化反応が起こるため、酸化されにくい酸素原子や4級炭素、芳香環で構成された分子構造は分解されにくく、分解物の揮発による装置汚染の問題になりにくい。このような場合は芳香環同士を4級炭素または酸素原子、あるいは直接結合させた構造を多く形成させることで樹脂の分解性を低減できる。
 本実施形態の保護基を有する化合物は、特に限定はされないが、当該リソグラフィー用下層膜形成用組成物を使用して下層膜を得る場合に、装置内で固体化する昇華物が発生することが問題となることがあり、昇華物は重量平均分子量Mw500以下の低分子成分が原因となるため、分子量範囲を制御することで、昇華物の発生を抑制しつつも平坦化性を両立する膜を得ることができる。分子量として、好ましくはポリスチレン換算分子量で、Mw=500~10,000であり、埋込み平坦性と耐熱性のバランスの観点から、より好ましくは、Mw=800~8,000、さらに好ましくは、Mw=1,000~5,000、特に好ましくは、Mw=1,000~2,000である。
 また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、本実施形態の保護基を有する化合物は、分散度(重量平均分子量Mw/数平均分子量Mn)が1.1~5.0の範囲内のものが好ましく、1.1~2.0の範囲内のものがより好ましい。なお、上記Mw、Mn、分散度は、後述する実施例に記載の方法により求めることができる。
 昇華物は分子量500以下の低分子成分が原因となるため、本実施形態における保護基を有する化合物は、化合物全体重量に対する、分子量が500未満である低分子量成分の重量比率が1%未満であることが好ましい。
 また、本実施形態の保護基を有する化合物は、比較的低分子量であり、低粘度であるため、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、得られる下層膜の平坦性を高めることが容易である。よって、本実施形態のリソグラフィー用下層膜形成用組成物から形成された下層膜は、平坦化特性のみならず、埋め込み特性にも優れる。また、比較的高い炭素濃度を有する化合物であることから、高いエッチング耐性も発現できる。
 ここで、本明細書に記載の構造式に関して、例えば下記のように、Cとの結合を示す線が環A及び環Bと接触している場合には、Cが環A及び環Bのいずれか一方又は両方と結合していることを意味する。
Figure JPOXMLDOC01-appb-C000023
 
 本実施形態のリソグラフィー用下層膜形成用組成物は、下記式(1)で表される化合物及び/又は樹脂を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000024
 
(式(1)中、
 Rは、各々独立して、水素原子、直鎖状、分岐状若しくは環状の炭素原子数1~30のアルキル基又は炭素原子数6~30のアリール基であり、
 Rは、炭素原子数1~60のN価の基又は単結合であり、
 Pは、各々独立して、ハロゲン原子、ニトロ基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数2~30のアルキニル基、炭素原子数6~40のアリール基、水酸基、アミノ基、水酸基の水素原子が保護基で置換された基、アミノ基の水素原子が保護基で置換された基、及びこれらの組み合わせからなる官能基よりなる群から選択され、ここで、少なくとも1つのPは、水酸基の水素原子が保護基で置換された基、或いはアミノ基の水素原子が保護基で置換された基であり、前記保護基は脱離性の保護基であってもよく、
 Xは、各々独立して、酸素原子或いは硫黄原子であるか、又は無架橋であることを表し、
 Lは、単結合、置換基を有していてもよい炭素原子数1~30の直鎖状若しくは分岐状のアルキレン基、又は無架橋であり、
 mは、各々独立して、0~9の整数であり、ここで、mの少なくとも1つのmは1~9の整数であり、
 Nは、1~4の整数であり、
 rは、各々独立して、0~2の整数である。)
 上記式(1)で表される化合物及び/又は樹脂は、下記式(1-1)で表されることが好ましい。本実施形態の保護基を有する化合物が、このように構成されていると、耐熱性が高く、溶媒溶解性も高い。
Figure JPOXMLDOC01-appb-C000025
 
(式(1-1)中、
 L、Pは、上記式(1)中の定義と同義であり、
 R0Aは、水素原子であり、
 R1Aは、炭素原子数1~30のn価の基又は単結合であり、
 nは1~4の整数であり、ここで、上記式(1-1)(2)中、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
 Xは、各々独立して、酸素原子或いは硫黄原子であり、ここで、高い耐熱性を発現する傾向にあるため、酸素原子であることがより好ましく、
 mは、各々独立して、0~6の整数である。ここで、少なくとも1つのmは1~6の整数であり、
 qは、各々独立して、0又は1である。)
 なお、前記N価の基とは、N=1のときには、炭素原子数1~60のアルキル基、N=2のときには、炭素原子数1~30のアルキレン基、N=3のときには、炭素原子数2~60のアルカンプロパイル基、N=4のときには、炭素原子数3~60のアルカンテトライル基のことを示す。また、前記n価の基も同様であり、n=1のときには、炭素原子数1~60のアルキル基、n=2のときには、炭素原子数1~30のアルキレン基、n=3のときには、炭素原子数2~60のアルカンプロパイル基、n=4のときには、炭素原子数3~60のアルカンテトライル基のことを示す。前記N価の基やn価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、前記N価の基やn価の基は、炭素原子数6~60の芳香族基を有していてもよい。
 また、前記N価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子若しくは炭素原子数6~60の芳香族基を有していてもよい。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
 また、前記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子若しくは炭素原子数6~30の芳香族基を有していてもよい。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
 上記式(1-1)で表される化合物及び/又は樹脂は、架橋のし易さと有機溶媒への溶解性の観点から、下記式(1-2A)或いは下記式(1-2B)で表される化合物及び/又は樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000027
 
(式(1-2A)及び(1-2B)中、
 L、R0A、R1A、m、n及びq及びXは、上記式(1-1)で説明したものと同義であり、
 Pは、各々独立して、水素原子、又は保護基であり、ここで少なくとも1つのPは、保護基である。該保護基は脱離性の保護基であってもよい。)
 また、原料の供給性の観点から、上記式(1-2A)或いは(1-2B)で表される化合物及び/又は樹脂は、下記式(1-3A)或いは下記式(1-3B)で表される化合物及び/又は樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000029
 
(上記式(1-3A)及び式(1-3B)中、
 L、P、X、R0A、R1A、m、及びnは、上記式(1-2A)及び(1-2B)で説明したものと同義である。)
 上記式(1)で表される化合物及び/又は樹脂としては、下記式(2)で表される化合物及び/又は樹脂が好ましい。これらの化合物及び/又は樹脂は、このように構成されているため、耐熱性が高く、溶媒溶解性も高い。
Figure JPOXMLDOC01-appb-C000030
 
(式(2)中、
 R、R、P、Lは、上記式(1)中の定義と同義であり、
 m及びmは、各々独立して、0~8の整数であり、m及びmは、各々独立して、0~9の整数であり、但し、m、m、m及びmは同時に0となることはなく、
 nは、上記式(1)中のNと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
 p~pは、上記式(1)中のrと同義である。)
 なお、前記n価の基とは、n=1のときには、炭素原子数1~60のアルキル基、n=2のときには、炭素原子数1~30のアルキレン基、n=3のときには、炭素原子数2~60のアルカンプロパイル基、n=4のときには、炭素原子数3~60のアルカンテトライル基のことを示す。前記n価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、前記n価の基は、炭素原子数6~60の芳香族基を有していてもよい。
 また、前記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子若しくは炭素原子数6~60の芳香族基を有していてもよい。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
 上記式(1)或いは(2)で表される化合物及び/又は樹脂は、熱流動温度が比較的に低く、溶液化した場合の粘度が低いため、得られる下層膜の平坦性を高めることができ、また、比較的に低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、安全溶媒に対する溶解性が高く、結晶性が抑制され、耐熱性及びエッチング耐性が良好であり、また低温から高温までの広範囲の熱処理によって昇華物が比較的抑制されることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、膜の平坦性を高めることが容易である。
 上記式(2)で表される化合物及び/又は樹脂は、架橋のし易さと有機溶媒への溶解性の観点から、下記式(2-1A)或いは下記式(2-1B)で表される化合物及び/又は樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000032
 
(式(2-1A)及び式(2-1B)中、
 Rは、上記式(1)中のRと同義であり、
 Rは、上記式(1)中のRと同義であり、
 Lは、上記式(1)中のLと同義であり、
 nは、上記式(1)中のNと同義であり、
 p~pは、上記式(1)中のrと同義であり、
 m及びmは、各々独立して、0~4の整数であり、m及びmは、各々独立して、0~5の整数であり、但し、m、m、m及びmは同時に0となることはなく、
 Pは、各々独立して、水素原子、又は保護基であり、ここで少なくとも1つのPは、保護基である。該保護基は脱離性の保護基であってもよい。)
 また、原料の供給性の観点から、上記式(2)で表される化合物及び/又は樹脂は、下記式(2-2A)或いは式(2-2B)で表される化合物及び/又は樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000034
 
(上記式(2-2A)及び式(2-2B)中、
 L、P、R、R、及びnは、上記式(2-1A)或いは式(2-1B)で説明したものと同義であり、m及びmは、各々独立して、0~4の整数であり、m及びmは、各々独立して、0~5の整数であり、但し、m、m、m及びmは同時に0となることはない。)
 本明細書において、少なくとも1つのPは、水酸基の水素原子が保護基で置換された基、又はアミノ基の水素原子が保護基で置換された基であり、Pは、保護基である。保護基は、誘起効果或いは共鳴効果によって分子の特定の位置の電子密度を低下させる又は高める官能基である。
 誘起効果或いは共鳴効果によって分子の特定の位置の電子密度を低下させる電子吸引性保護基としては、代表的には、カルボニル系保護基(置換若しくは無置換の炭素原子数2~20のアルキルカルボニル基、置換若しくは無置換の炭素原子数6~20のアリールカルボニル基、置換若しくは無置換の炭素原子数2~20のアルコキシカルボニル基等);スルホニル系保護基(置換若しくは無置換の炭素原子数1~10のアルキルスルホニル基、置換若しくは無置換の炭素原子数6~20のアリールスルホニル基等);オキソ酸からヒドロキシ基を取り除いたアシル系保護基(置換若しくは無置換の炭素原子数2~13のアシル基等);等が挙げられるが、これらに特に限定されない。電子吸引性保護基の具体例としては、ターシャリブトキシカルボニル基、トリクロロエトキシカルボニル基、トリメチルシリルエトキシカルボニル基、ベンジルオキシカルボニル基、メシル基、トシル基、ノシル基、トリフラート基、アセチル基、トリフルオロアセチル基、ピバロイル基、ノルマルブチリル基、トルオイル基、イソブチリル基、ペンタノイル基、プロピオニル基、ベンゾイル基、(メタ)アクリロイル基、エポキシ(メタ)アクリロイル基、ウレタン(メタ)アクリロイル基等が挙げられるが、これらに特に限定されない。電子吸引性保護基は、好ましくはアセチル基、トリフルオロアセチル基、ベンゾイル基、メシル基、ノシル基、トリフラート基であり、特に好ましくは、アセチル基、メシル基、トリフラート基である。
 電子吸引性保護基を導入することにより、水素結合等の分子間力を阻害する効果が得られ、低粘度且つ流動性の良好な状態で平坦化した膜を形成することが可能となることを見出し、さらに、保護基の電子吸引性効果によって官能基に隣接する反応点の求核性を低減することで、硬化膜形成時の架橋速度を落とし、低粘度状態を長時間維持することが可能となり、段差が小さく、平坦化性が顕著に優れた下層膜が得られる。また、電子吸引性保護基が熱或いは光による作用で脱離する脱離性保護基であると、形成膜の炭素含有率や膜密度が向上し、ドライエッチング耐性が高い下層膜が得られる。
 誘起効果或いは共鳴効果によって分子の特定の位置の電子密度を高める電子供与性保護基としては、代表的には、アルキル系保護基(置換若しくは無置換の炭素原子数1~20のアルキル基等);ベンジル系保護基(置換若しくは無置換の炭素原子数7~20のベンジル基等);アセタール系保護基(置換若しくは無置換の炭素原子数2~20のアルコキシアルキル基、置換若しくは無置換の炭素原子数2~20のテトラヒドロピラニル基、置換若しくは無置換の炭素原子数2~20のアルキルチオアルキル基等);トリチル系保護基(置換若しくは無置換の炭素原子数19~30のトリチル基等);シリル系保護基(置換若しくは無置換の炭素原子数3~20のシリル基等);グリシジル基;等が挙げられるが、これらに特に限定されない。電子供与性保護基の具体例としては、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、ターシャリブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ベンジル基、メトキシベンジル基、ジメトキシベンジル基、メチルベンジル基、メトキシメチル基、エトキシエチル基、エトキシプロピル基、テトラヒドロピラニル基、メチルチオメチル基、ベンジルオキシメチル基、メトキシエトキシメチル基、トリチル基、モノメトキシトリチル基、ジメトキシトリチル基、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ターシャリブチルジメチルシリル基、ターシャリブチルジフェニルシリル基、グリシジル基等が挙げられるが、これらに特に限定されない。電子供与性保護基は、好ましくはメチル基、ターシャリブチル基、ノルマルヘキシル基、オクチル基、エトキシエチル基、エトキシプロピル基、グリシジル基であり、さらに好ましくはターシャリブチル基、エトキシエチル基、グリシジル基である。
 電子供与性保護基を導入することにより、ベークの際の架橋速度を速めることが可能となり、低粘度且つ流動性の良好な状態で平坦化した膜を急速に硬化させることで、段差が小さく、昇華物の少ない下層膜が得られる。また、電子供与性保護基が熱或いは光による作用で脱離する脱離性保護基であると、架橋速度がさらに向上するだけでなく、形成膜の炭素含有率や膜密度が向上し、ドライエッチング耐性が高い下層膜が得られる。
 本実施形態のリソグラフィー用下層膜形成用組成物は、下記式(3)で表される化合物及び/又は樹脂を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000035
 
(式(3)中、
 Pは、上記式(1)中の定義と同義であり、
 Arは、各々独立して、フェニレン基、ナフチレン基、アントリレン基、フェナンスリレン基、ピリレン基、フルオリレン基、ビフェニレン基、ジフェニルメチレン基又はターフェニレン基を表し、
 Rは、Arの置換基であり、各々独立に、同一の基でも異なる基でもよく、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数1~30のアシル基、置換基を有していてもよい炭素原子数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素原子数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
 Xは、直鎖或いは分岐のアルキレン基、又は酸素原子を表し、
 nは、0~500の整数を示し、
 rは、各々独立して、1~3の整数を示し、
 rは、0~2の整数を示し、
 pは、各々独立して、正の整数を表し、
 qは、正の整数を表す。)
 Rは、Arの置換基であり、各々独立に、同一の基でも異なる基でもよく、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基、又は置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数1~30のアシル基、置換基を有していてもよい炭素原子数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素原子数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、複素環基を表し、好ましくは水素原子、又は置換基を有していてもよい炭素原子数1~30のアルキル基である。
 Xは、直鎖或いは分岐のアルキレン基を表し、具体的にはメチレン基、エチレン基、n-プロピレン基、i-プロピレン基、n-ブチレン基、i-ブチレン基、tert-ブチレン基であり、好ましくはメチレン基、エチレン基、n-プロピレン基、n-ブチレン基であり、さらに好ましくはメチレン基、n-プロピレン基であり、最も好ましくはメチレン基である。あるいは、Xは酸素原子である。
 上記式(3)中、nは、0から500までの整数、好ましくは1から500までの整数、より好ましくは1から50までの整数である。
 上記式(3)中、rは、1から3までの整数を示す。
 上記式(3)中、pは正の整数を示す。pは、Arの種類に応じて適宜変化する。
 上記式(3)中、qは正の整数を示す。qは、Arの種類に応じて適宜変化する。
 上記式(3)で表される化合物及び/又は樹脂は、熱流動温度が比較的に低く、溶液化した場合の粘度が低いため、平坦性また、比較的に低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、安全溶媒に対する溶解性が高く、結晶性が抑制され、耐熱性及びエッチング耐性が良好であり、また低温から高温までの広範囲の熱処理によって昇華物が比較的抑制されることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、膜の平坦性を高めることが容易である。
 本実施形態のリソグラフィー用下層膜形成用組成物において、上記式(3)で表される化合物及び/又は樹脂は、硬化性と原料入手性の観点から、下記式(3-1A)或いは式(3-1B)で表される化合物及/又は樹脂であることがより好ましい。
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000037
 
(式(3-1A)及び(3-1B)中、
 Ar、R、p、q、r、r、nは上記式(3)中の定義と同義であり、
 Pは、各々独立して、水素原子、又は保護基であり、ここで少なくとも1つのPは、前記保護基であり、前記保護基は脱離性の保護基であってもよい。あるいは、Pは、各々独立して、水素原子、置換基を有してもよい炭素数1~30のアルキル基、置換基を有してもよい炭素数6~30のアリール基、置換基を有してもよい炭素数2~20のアルケニル基、置換基を有してもよい炭素数2~20のアルキニル基、置換基を有してもよい架橋性基、又は置換基を有してもよい解離性基を表し、ここで少なくともひとつのPは、置換基を有してもよい炭素数1~30のアルキル基、置換基を有してもよい炭素数6~30のアリール基、置換基を有してもよい炭素数2~20のアルケニル基、置換基を有してもよい炭素数2~20のアルキニル基、置換基を有してもよい架橋性基、又は置換基を有してもよい解離性基であってもよい。)
 Pは、水素原子、又は保護基である。
 電子吸引性保護基の具体例として、ターシャリブトキシカルボニル基、トリクロロエトキシカルボニル基、トリメチルシリルエトキシカルボニル基、ベンジルオキシカルボニル基、メシル基、トシル基、ノシル基、トリフラート基、アセチル基、トリフルオロアセチル基、ピバロイル基、ノルマルブチリル基、トルオイル基、イソブチリル基、ペンタノイル基、プロピオニル基、ベンゾイル基、(メタ)アクリロイル基、エポキシ(メタ)アクリロイル基、ウレタン(メタ)アクリロイル基等が挙げられるが、これらに特に限定されない。電子吸引性保護基は、好ましくはアセチル基、トリフルオロアセチル基、ベンゾイル基、メシル基、ノシル基、トリフラート基であり、特に好ましくは、アセチル基、メシル基、トリフラート基である。
 電子供与性保護基の具体例として、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、ターシャリブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ベンジル基、メトキシベンジル基、ジメトキシベンジル基、メチルベンジル基、メトキシメチル基、エトキシエチル基、エトキシプロピル基、テトラヒドロピラニル基、メチルチオメチル基、ベンジルオキシメチル基、メトキシエトキシメチル基、トリチル基、モノメトキシトリチル基、ジメトキシトリチル基、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ターシャリブチルジメチルシリル基、ターシャリブチルジフェニルシリル基、グリシジル基等が挙げられるが、これらに特に限定されない。電子供与性保護基は、好ましくはメチル基、ターシャリブチル基、ノルマルヘキシル基、オクチル基、エトキシエチル基、エトキシプロピル基、グリシジル基であり、さらに好ましくはターシャリブチル基、エトキシエチル基、グリシジル基である。
 上記式(3-1A)或いは式(3-1B)で表される化合物及び/又は樹脂は、原料入手性の観点から、下記式(3-2A)或いは下記式(3-2B)で表される化合物及び/又は樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000038
 
Figure JPOXMLDOC01-appb-C000039
 
(式(3-2A)及び(3-2B)中、
 Ar、P、R、p、q、r、nは、上記式(3-1A)或いは式(3-1B)中の定義と同義である。)
 本実施形態のリソグラフィー用下層膜形成用組成物において、上記式(3-2A)或いは式(3-2B)で表される化合物及び/又は樹脂は、溶解性と耐熱性の付与の観点から、下記式(3-3A)或いは式(3-3B)で表される化合物及び/又は樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000041
 
(式(3-3A)及び式(3-3B)中、
 Pは、上記式(3-2A)或いは式(3-2B)中の定義と同義であり、
 Arは、各々独立して、フェニレン基、ナフチレン基又はビフェニレン基を表し、Arがフェニレン基のとき、Arはナフチレン基又はビフェニレン基を表し、Arがナフチレン基又はビフェニレン基のとき、Arはフェニレン基、ナフチレン基又はビフェニレン基を表し、
 Rは、Arの置換基であり、各々独立に、同一の基でも異なる基でもよく、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数1~30のアシル基、置換基を有していてもよい炭素原子数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素原子数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
 Rは、Arの置換基であり、各々独立に、同一の基でも異なる基でもよく、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数1~30のアシル基、置換基を有していてもよい炭素原子数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素原子数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
 nは、0~500の整数を示し、
 rは、各々独立して、1~3の整数を示し、
 pは、各々独立して、正の整数を表し、
 qは、正の整数を表す。)
 本実施形態のリソグラフィー用下層膜形成用組成物において、上記式(3-3A)或いは式(3-3B)で表される化合物及び/又は樹脂は、耐熱性とエッチング耐性の観点から、下記式(3-4A)或いは式(3-4B)で表される化合物及び/又は樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000042
 
Figure JPOXMLDOC01-appb-C000043
 
(式(3-4A)及び式(3-4B)中、
 Ar、P、R、r、p、nは、上記式(3-3A)或いは式(3-3B)中の定義と同義である。)
 本実施形態のリソグラフィー用下層膜形成用組成物において、上記式(3-3A)或いは式(3-3B)で表される化合物及び/又は樹脂は、耐熱性とエッチング耐性の観点から、下記式(3-5A)或いは式(3-5B)で表される化合物及び/又は樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000044
 
Figure JPOXMLDOC01-appb-C000045
 
(式(3-5A)及び式(3-5B)中、
 Ar、P、R、r、p、nは、上記式(3-3A)或いは式(3-3B)中の定義と同義である。)
 本実施形態のリソグラフィー用下層膜形成用組成物において、上記式(3-4A)或いは式(3-4B)で表される化合物及び/又は樹脂は、耐熱性とエッチング耐性の観点から、下記式(3-6A)或いは式(3-6B)で表される化合物及び/又は樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000046
 
Figure JPOXMLDOC01-appb-C000047
 
(式(3-6A)及び式(3-6B)中、
 Pは、上記式(3-2A)或いは式(3-2B)中の定義と同義であり、
 Rは、各々独立に、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数1~30のアシル基、置換基を有していてもよい炭素原子数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素原子数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
 mは、各々独立して、1~3の整数を示し、
 nは、1~50の整数を示す。)
 本実施形態のリソグラフィー用下層膜形成用組成物において、上記式(3-5A)或いは式(3-5B)で表される化合物及び/又は樹脂は、平坦性と熱流動特性の観点から、下記式(3-7A)或いは式(3-7B)で表される化合物及び/又は樹脂であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000048
 
Figure JPOXMLDOC01-appb-C000049
 
(式(3-7A)及び式(3-7B)中、
 Pは、上記式(3-2A)或いは式(3-2B)中の定義と同義であり、
 Rは、各々独立に、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数1~30のアシル基、置換基を有していてもよい炭素原子数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素原子数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
 mは、各々独立して、1~3の整数を示し、
 nは、1~50の整数を示す。)
 本実施形態のリソグラフィー用下層膜形成用組成物において、上記式(3-4A)或いは式(3-4B)で表される化合物及び/又は樹脂は、耐熱性の観点から、下記式(3-8A)或いは式(3-8B)で表される化合物及び/又は樹脂であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000050
 
Figure JPOXMLDOC01-appb-C000051
 
(式(3-8A)及び式(3-8B)中、
 Pは、上記式(3-2A)或いは式(3-2B)中の定義と同義であり、
 Rは、各々独立に、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数1~30のアシル基、置換基を有していてもよい炭素原子数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素原子数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
 mは、各々独立して、1~5の整数を示し、
 nは、1~50の整数を示す。)
 本実施形態のリソグラフィー用下層膜形成用組成物において、上記式(3-5A)或いは式(3-5B)で表される化合物及び/又は樹脂は、硬化性と耐熱性の観点から、下記式(3-9A)或いは式(3-9B)で表される化合物及び/又は樹脂であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000052
 
Figure JPOXMLDOC01-appb-C000053
 
(式(3-9A)及び式(3-9B)中、
 Pは、上記式(3-2A)或いは式(3-2B)と同義であり、
 Rは、各々独立に、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数1~30のアシル基、置換基を有していてもよい炭素原子数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素原子数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
 mは、各々独立して、1~5の整数を示し、
 nは、1~50の整数を示す。)
 上記式(3)で表される化合物及び/又は樹脂は、分解性を低下させる観点から、下記式(3-10A)或いは下記式(3-10B)で表されるで表される化合物及び/又は樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000054
 
Figure JPOXMLDOC01-appb-C000055
 
(式(3-10A)及び(3-10B)中、Ar、P、R、p、q、r、nは前記式(3-1A)或いは式(3-1B)中の定義と同義である。)
 上記式(3)で表される化合物及び/又は樹脂は、下記式(3-11A)或いは下記式(3-11B)で表される表される化合物及び/又は樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000056
 
Figure JPOXMLDOC01-appb-C000057
 
(式(3-11A)及び(3-11B)中、Ar、P、R、p、q、r、nは前記式(3-1A)或いは式(3-1B)中の定義と同義である。)
 本実施形態において、保護基に加えて、置換基をさらに導入することができる。「置換」とは別段定義がない限り、官能基中の一つ以上の水素原子が、置換基で置換されることを意味する。「置換基」としては、特に限定されないが、例えば、ハロゲン原子、水酸基、シアノ基、ニトロ基、チオール基、複素環基、炭素原子数1~30のアルキル基、炭素原子数6~20のアリール基、炭素原子数1~30のアルコキシル基、炭素原子数2~30のアルケニル基、炭素原子数2~30のアルキニル基、炭素原子数1~30のアシル基、炭素原子数0~30のアミノ基等が挙げられる。アルキル基は、直鎖状脂肪族炭化水素基、分岐状脂肪族炭化水素基、及び環状脂肪族炭化水素基のいずれの態様でも構わない。
 本実施形態における「架橋性基」とは、触媒存在下、又は無触媒下で架橋する基をいう。このような架橋性基としては、例えば、炭素原子数1~20のアルコキシ基、アリル基を有する基、(メタ)アクリロイル基を有する基、エポキシ(メタ)アクリロイル基を有する基、水酸基を有する基、ウレタン(メタ)アクリロイル基を有する基、グリシジル基を有する基、含ビニルフェニルメチル基を有する基、各種アルキニル基を有する基を有する基、炭素-炭素二重結合を有する基、炭素-炭素三重結合を有する基、及びこれらの基を含む基等のうち、触媒存在下、又は無触媒下で架橋する基が挙げられる。上記「これらの基を含む基」としては、例えば、-ORx(Rxは、アリル基を有する基、(メタ)アクリロイル基を有する基、エポキシ(メタ)アクリロイル基を有する基、水酸基を有する基、ウレタン(メタ)アクリロイル基を有する基、グリシジル基を有する基、含ビニルフェニルメチル基を有する基、各種アルキニル基を有する基を有する基、炭素-炭素二重結合を有する基、炭素-炭素三重結合を有する基、及びこれらの基を含む基である。)で表されるアルコキシ基が好ましい。なお、本実施形態において、化合物を構成するものとして前記した各官能基(架橋性基を除く。)について、架橋性基と重複するものがある場合、架橋性の有無に基づき、架橋性のないものは各官能基に該当するものとして扱い、架橋性があるものは架橋性基に該当するものとして扱う。
 炭素原子数1~20のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基、n-ヘキサノキシ基、及び2-メチルプロポキシ基が挙げられる。
 アリル基を有する基としては、例えば、式(X-1a)及び(X-1b)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000058
 
 式(X-1b)において、nX1は、1~5の整数である。
 (メタ)アクリロイル基を有する基としては、例えば、式(X-2a)~(X-2c)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000059
 
 式(X-2c)において、nX2は、1~5の整数であり、式(X-2a)~(X-2c)において、Rは、水素原子、又はメチル基である。
 エポキシ(メタ)アクリロイル基を有する基としては、例えば、下記式(X-3)で表される基が挙げられる。エポキシ(メタ)アクリロイル基とは、エポキシ(メタ)アクリレートと水酸基が反応して生成する基をいう。
Figure JPOXMLDOC01-appb-C000060
 
 式(X-3)において、nx3は、0~5の整数であり、優れた耐熱性及びエッチング耐性が得られることから、0が好ましい。また、Rは、水素原子、又はメチル基であり、優れた硬化性が得られることから、メチル基が好ましい。
 ウレタン(メタ)アクリロイル基を有する基としては、例えば、式(X-4)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000061
 
 式(X-4)において、nx4は、0~5の整数であり、優れた耐熱性及びエッチング耐性が得られることから、0が好ましい。sは、0~3の整数であり、優れた耐熱性及びエッチング耐性が得られることから、0が好ましい。Rは、水素原子、又はメチル基であり、優れた硬化性が得られることから、メチル基が好ましい。
 水酸基を有する基としては、例えば、下記式(X-5a)~(X-5e)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000062
 
 式(X-5b)及び(X-5e)において、nx5は、1~5の整数であり、優れた耐熱性及びエッチング耐性が得られることから、1が好ましい。
 グリシジル基を有する基としては、例えば、式(X-6a)~(X-6c)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000063
 
 式(X-6b)において、nx6は、1~5の整数である。
 含ビニルフェニルメチル基を有する基としては、例えば、式(X-7a)及び(X-7b)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000064
 
 式(X-7b)において、nx7は、1~5の整数であり、優れた耐熱性及びエッチング耐性が得られることから、1が好ましい。
 各種アルキニル基を有する基としては、例えば、下記式(X-8a)~(X-8h)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000065
 
 式(X-8b)、(X-8d)、(X-8f)及び(X-8h)において、nx8は、1~5の整数である。
 炭素-炭素二重結合含有基としては、例えば、(メタ)アクリロイル基、置換又は非置換のビニルフェニル基、式(X-9)で表される基等が挙げられる。
 また、炭素-炭素三重結合含有基としては、例えば、置換又は非置換のエチニル基、置換又は非置換のプロパルギル基、式(X-10a)、及び(X-10b)で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000066
 
Figure JPOXMLDOC01-appb-C000067
 
Figure JPOXMLDOC01-appb-C000068
 
 式(X-9)中、RX9A、RX9B及びRX9Cは、各々独立して、水素原子又は炭素原子数1~20の1価の炭化水素基である。式(X-10a)、及び(X-10b)中、RX9D、RX9E及びRX9Fは、各々独立して、水素原子又は炭素原子数1~20の1価の炭化水素基である。
 本実施形態における「解離性基」とは、触媒存在下又は無触媒下で解離する基をいう。解離性基の中でも、酸解離性基とは、酸の存在下で開裂して、アルカリ可溶性基等に変化を生じる基をいう。
 アルカリ可溶性基としては、例えば、フェノール性水酸基、カルボキシル基、スルホン酸基、及びヘキサフルオロイソプロパノール基等が挙げられる。これらの中でも、導入試薬の入手容易性の観点から、フェノール性水酸基及びカルボキシル基が好ましく、フェノール性水酸基がより好ましい。
 酸解離性基は、高感度且つ高解像度なパターン形成を可能にするために、酸の存在下で連鎖的に開裂反応を起こす性質を有することが好ましい。
 酸解離性基としては、例えば、KrFやArF用の化学増幅型レジスト組成物に用いられるヒドロキシスチレン樹脂、(メタ)アクリル酸樹脂等において提案されているものの中から適宜選択して用いることができる。
 酸解離性基としては、例えば、国際公開第2016/158168号に記載のものを挙げることができる。また、酸解離性基としては、例えば、酸により解離する性質を有する、1-置換エチル基、1-置換-n-プロピル基、1-分岐アルキル基、シリル基、アシル基、1-置換アルコキシメチル基、環状エーテル基、チオエーテル基、トリチル基、アルコキシカルボニル基(例えば、-C(O)OC(CH等)、及びアルコキシカルボニルアルキル基(例えば、-(CHC(O)OC(CHにおいて、n=1~4であるもの等)等が挙げられる。なお、本実施形態において、化合物を構成するものとして前記した各官能基(解離性基を除く。)について、解離性基と重複するものがある場合、解離性の有無に基づき、解離性のないものは各官能基に該当するものとして扱い、解離性があるものは解離性基に該当するものとして扱う。
 解離性基に置換する置換基としては、例えば、ハロゲン原子、アルキル基、アリール基、アラルキル基、アルキニル基、アルケニル基、アシル基、アルコキシカルボニル基、アルキロイルオキシ基、アリーロイルオキシ基、シアノ基、及びニトロ基が挙げられる。これらの基には、ヘテロ原子を有していてもよい。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 アルキル基としては、前記を参照でき、例えば、メチル基、tert-ブチル基、シクロへキシル基、アダマンチル基等の炭素原子数1~10のアルキル基が挙げられる。
 アリール基としては、前記を参照できるが、炭素原子数6~20のアリール基が好ましい。なお、アリール基は、ハロゲン原子、炭素原子数1~5のアルキル基等の置換基をさらに有していてもよい。
 アラルキル基としては、例えば、ベンジル基、及びフェネチル基等が挙げられる。なお、アラルキル基は、ハロゲン原子、及び炭素原子数1~5のアルキル基等の置換基をさらに有していてもよい。
 アルキニル基としては、前記を参照できる。
 アシル基としては、例えば、ホルミル基、及びアセチル基等の炭素原子数1~6の脂肪族アシル基、並びにベンゾイル基等の芳香族アシル基が挙げられる。
 アルコキシカルボニル基としては、例えば、メトキシカルボニル基等の炭素原子数2~5のアルコキシカルボニル基が挙げられる。
 アルキロイルオキシ基としては、例えば、アセトキシ基が挙げられる。
 アリーロイルオキシ基としては、例えば、ベンゾイルオキシ基が挙げられる。
 ヘテロ原子としては、例えば、酸素原子、硫黄原子、セレン原子、窒素原子、及びリン原子等が挙げられる。ヘテロ原子は、各基の炭素原子と置換していてもよい。
 なお、本実施形態で説明する各基の炭素原子数は、各基がさらに置換基を含む場合、その置換基を含めた合計の炭素原子数である。
 以下に、本実施形態のリソグラフィー用下層膜形成組成物に含まれる化合物及び又は樹脂の構造例を記載するが、下記に限定されない。
Figure JPOXMLDOC01-appb-C000069
 
Figure JPOXMLDOC01-appb-C000070
 
Figure JPOXMLDOC01-appb-C000071
 
Figure JPOXMLDOC01-appb-C000072
 
Figure JPOXMLDOC01-appb-C000073
 
Figure JPOXMLDOC01-appb-C000074
 
Figure JPOXMLDOC01-appb-C000075
 
Figure JPOXMLDOC01-appb-C000076
 
Figure JPOXMLDOC01-appb-C000077
 
Figure JPOXMLDOC01-appb-C000078
 
Figure JPOXMLDOC01-appb-C000079
 
Figure JPOXMLDOC01-appb-C000080
 
Figure JPOXMLDOC01-appb-C000081
 
Figure JPOXMLDOC01-appb-C000082
 
Figure JPOXMLDOC01-appb-C000083
 
Figure JPOXMLDOC01-appb-C000084
 
Figure JPOXMLDOC01-appb-C000085
 
Figure JPOXMLDOC01-appb-C000086
 
Figure JPOXMLDOC01-appb-C000087
 
Figure JPOXMLDOC01-appb-C000088
 
Figure JPOXMLDOC01-appb-C000089
 
Figure JPOXMLDOC01-appb-C000090
 
Figure JPOXMLDOC01-appb-C000091
 
Figure JPOXMLDOC01-appb-C000092
 
Figure JPOXMLDOC01-appb-C000093
 
Figure JPOXMLDOC01-appb-C000094
 
Figure JPOXMLDOC01-appb-C000095
 
Figure JPOXMLDOC01-appb-C000096
 
Figure JPOXMLDOC01-appb-C000097
 
Figure JPOXMLDOC01-appb-C000098
 
Figure JPOXMLDOC01-appb-C000099
 
Figure JPOXMLDOC01-appb-C000100
 
Figure JPOXMLDOC01-appb-C000101
 
Figure JPOXMLDOC01-appb-C000102
 
Figure JPOXMLDOC01-appb-C000103
 
Figure JPOXMLDOC01-appb-C000104
 
Figure JPOXMLDOC01-appb-C000105
 
Figure JPOXMLDOC01-appb-C000106
 
Figure JPOXMLDOC01-appb-C000107
 
Figure JPOXMLDOC01-appb-C000108
 
Figure JPOXMLDOC01-appb-C000109
 
Figure JPOXMLDOC01-appb-C000110
 
Figure JPOXMLDOC01-appb-C000111
 
Figure JPOXMLDOC01-appb-C000112
 
Figure JPOXMLDOC01-appb-C000113
 
Figure JPOXMLDOC01-appb-C000114
 
Figure JPOXMLDOC01-appb-C000115
 
Figure JPOXMLDOC01-appb-C000116
 
Figure JPOXMLDOC01-appb-C000117
 
Figure JPOXMLDOC01-appb-C000118
 
Figure JPOXMLDOC01-appb-C000119
 
Figure JPOXMLDOC01-appb-C000120
 
Figure JPOXMLDOC01-appb-C000121
 
Figure JPOXMLDOC01-appb-C000122
 
Figure JPOXMLDOC01-appb-C000123
 
Figure JPOXMLDOC01-appb-C000124
 
Figure JPOXMLDOC01-appb-C000125
 
Figure JPOXMLDOC01-appb-C000126
 
Figure JPOXMLDOC01-appb-C000127
 
Figure JPOXMLDOC01-appb-C000128
 
Figure JPOXMLDOC01-appb-C000129
 
Figure JPOXMLDOC01-appb-C000130
 
Figure JPOXMLDOC01-appb-C000131
 
Figure JPOXMLDOC01-appb-C000132
 
 また、保護反応を行う際に使用可能な保護試薬としては、特に限定されないが、例えば、ヨウ化メチル、炭酸ジメチル、ヨウ化エチル、炭酸ジエチル、ブロモターシャリブトキシド、イソブテン、ベンジルブロミド、二炭酸ジターシャリブチル、無水酢酸、メシルクロリド、ビニルエチルエーテル、ジヒドロピラン、クロロメチルメチルエーテル等が挙げられる。
 本実施形態における保護基を有する化合物及び/又は樹脂は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、オリゴマーは、1-メトキシ-2-プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、当該溶媒に対する溶解度が10質量%以上であることが好ましい。ここで、PGME及び/又はPGMEAに対する溶解度は、「樹脂の質量÷(樹脂の質量+溶媒の質量)×100(質量%)」と定義される。
 本実施形態のリソグラフィー用下層膜形成方法によって形成される下層膜は、湿式プロセスが適用可能であり、耐熱性及び平坦化特性に優れる。さらに、本実施形態の組成物は、本実施形態のオリゴマーを含有するため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性に優れたリソグラフィー用膜を形成できる。さらに、本実施形態の組成物は、レジスト層との密着性にも優れるので、優れたレジストパターンを形成できる。このため、本実施形態の組成物は、下層膜形成に好適に用いられる。
[溶媒]
 本実施形態におけるリソグラフィー用下層膜形成用組成物は、溶媒を含有していてもよく、また、必要に応じて使用時に溶媒と混合させてもよい。溶媒としては、本実施形態の化合物及び/又は樹脂が溶解可能な溶媒であれば特に限定されない。ここで、本実施形態の化合物及び/又は樹脂は、上述した通り、有機溶媒に対する溶解性に優れるため、種々の有機溶媒が好適に用いられる。具体的な溶媒としては、例えば、国際公開第2018/016614号に記載されたものを挙げることができる。
 溶媒の中でも、安全性の観点から、シクロヘキサノン、シクロペンタノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、ヒドロキシイソ酪酸メチル、及びアニソールからなる群より選択される1種以上であることが好ましい。
 溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、本実施形態のオリゴマー100質量部に対して、100~10,000質量部であることが好ましく、200~5,000質量部であることがより好ましく、200~3,000質量部であることがさらに好ましい。
 本実施形態におけるリソグラフィー用下層膜形成用組成物は、段差を有する基板への埋め込み特性及び平坦化特性の観点から溶液粘度は0.01~1.00Pa・s(ICI粘度、150℃)が好ましく、0.01~0.10Pa・sがより好ましい。また同様の観点から軟化点(環球法)は-50~100℃が好ましく、-50~50℃がより好ましい。
[架橋剤]
 本実施形態の下層膜形成用組成物は、インターミキシングを抑制する等の観点から、架橋剤を含有していてもよい。
 架橋剤としては、特に限定されず、例えば、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、アクリレート化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物、アジド化合物等が挙げられる。これらの架橋剤の具体例としては、例えば、国際公開第2018/016614号や国際公開第2013/024779号に記載されたものが挙げられる。これらの架橋剤は、1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でもエッチング耐性向上の観点から縮合芳香環含有フェノール化合物がより好ましい。また平坦化性向上の観点からメチロール基含有フェノール化合物がより好ましい。
 本実施形態における保護基を有する化合物及び/又は樹脂は、特にメチロール基含有フェノール化合物を架橋剤として用いた時に埋め込み特性及び平坦化特性が向上する。これは上記化合物及び/又は樹脂と架橋剤が類似構造を有することでより親和性が高く、塗布時の粘度が低下するためである。
 架橋剤として用いられるメチロール基含有フェノール化合物は下記式(11-1)或いは(11-2)で表されるものが平坦化性向上の観点から好ましい。
Figure JPOXMLDOC01-appb-C000133
 
(一般式(11-1)及び(11-2)中、
 Vは、単結合又はn価の有機基であり、
 R及びRは、各々独立に、水素原子或いは炭素原子数1~10のアルキル基であり、
 R及びRは、各々独立して、炭素原子数1~10のアルキル基又は炭素原子数6~40のアリール基であり、
 nは、2~10の整数であり、
 rは、各々独立して、0~6の整数である。)
 一般式(11-1)或いは(11-2)の架橋剤の具体例としては、以下の式で表される化合物が挙げられる。ただし、一般式(11-1)或いは(11-2)の架橋剤は、以下の式で表される化合物に限定されない。
Figure JPOXMLDOC01-appb-C000134
 
Figure JPOXMLDOC01-appb-C000135
 
Figure JPOXMLDOC01-appb-C000136
 
 本実施形態において、架橋剤の含有量は、特に限定されないが、下層膜形成用組成物100質量部に対して、0.1~100質量部であることが好ましく、5~50質量部であることがより好ましく、さらに好ましくは10~40質量部である。架橋剤の含有量が上記範囲内にあることにより、レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。
[架橋促進剤]
 本実施形態の下層膜形成用組成物は、必要に応じて架橋反応(硬化反応)を促進させるために架橋促進剤を含有してもよい。架橋促進剤としては、ラジカル重合開始剤が挙げられる。
 ラジカル重合開始剤としては、光によりラジカル重合を開始させる光重合開始剤であってもよく、熱によりラジカル重合を開始させる熱重合開始剤であってもよい。ラジカル重合開始剤としては、例えば、ケトン系光重合開始剤、有機過酸化物系重合開始剤及びアゾ系重合開始剤からなる群より選ばれる少なくとも1種が挙げられる。このようなラジカル重合開始剤としては、特に制限されず、例えば、国際公開第2018/016614号に記載されたものを挙げることができる。
 本実施形態において、架橋促進剤の含有量は、特に限定されないが、下層膜形成用組成物100質量部に対して、0.1~100質量部であることが好ましく、0.5~10質量部であることがより好ましく、さらに好ましくは0.5~5質量部である。架橋促進剤の含有量が上記範囲内にあることにより、レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。
[酸発生剤]
 本実施形態の下層膜形成用組成物は、熱による架橋反応をさらに促進させる等の観点から、酸発生剤を含有していてもよい。酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するもの等が知られているが、いずれも使用することができる。酸発生剤としては、例えば、国際公開第2013/024779号に記載されたものを用いることができる。
 下層膜形成用組成物中の酸発生剤の含有量は、特に限定されないが、下層膜形成用組成物100質量部に対して、0.1~50質量部であることが好ましく、より好ましくは0.5~40質量部である。酸発生剤の含有量が上記範囲内にあることにより、架橋反応が高められる傾向にあり、レジスト層とのミキシング現象の発生が抑制される傾向にある。
[塩基性化合物]
 本実施形態の下層膜形成用組成物は、保存安定性を向上させる等の観点から、塩基性化合物を含有していてもよい。
 塩基性化合物は、酸発生剤から微量に発生した酸が架橋反応を進行させるのを防ぐ役割、すなわち酸に対するクエンチャーの役割を果たす。下層膜形成用組成物の保存安定性が向上する。このような塩基性化合物としては、特に限定されないが、例えば、国際公開第2013/024779号に記載されたものが挙げられる。
 本実施形態の下層膜形成用組成物中の塩基性化合物の含有量は、特に限定されないが、下層膜形成用組成物100質量部に対して、0.001~2質量部であることが好ましく、より好ましくは0.01~1質量部である。塩基性化合物の含有量が上記範囲内にあることにより、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。
[その他の添加剤]
 本実施形態の下層膜形成用組成物は、熱や光による硬化性の付与や吸光度をコントロールする目的で、他の樹脂及び/又は化合物を含有していてもよい。このような他の樹脂及び/又は化合物としては、特に限定されず、例えば、ナフトール樹脂、キシレン樹脂ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂;ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレン等のナフタレン環、フェナントレンキノン、フルオレン等のビフェニル環、チオフェン、インデン等のヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられる。本実施形態のリソグラフィー用膜形成材料は、公知の添加剤を含有していてもよい。公知の添加剤としては、以下に限定されないが、例えば、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等が挙げられる。
[塗布工程]
 本実施形態に係るレジスト下層膜の形成方法において実施される塗布工程では、上述した化合物又はその樹脂からなる群より選択されるレジスト下層膜形成用材料を含む組成物を基板上に塗布する。
 本実施形態において使用し得る基板は特に限定されないが、例えば、酸化珪素膜、窒化珪素膜又は酸化窒化珪素膜が形成されたシリコン等の半導体基板、窒化珪素基板、石英基板、ガラス基板(無アルカリガラス、低アルカリガラス及び結晶化ガラスを含む。)、ITO膜が形成されたガラス基板等が挙げられる。塗布工程における塗布の要領としても特に限定されず、例えば、前述した基板の上に、スピナー、コーター等の適当な塗布方法により、本実施形態における組成物を塗布することができる。
[予備熱処理工程]
 本実施形態に係るレジスト下層膜の形成方法においては、予備熱処理工程を適応することができる。上述の工程にて、塗布された組成物を50℃以上300℃以下で加熱する。すなわち、本実施形態における組成物が塗布された基板を所定温度で加熱することにより硬化反応が生じ、レジスト下層膜前駆体が形成される。
 予備熱処理工程における加熱手段としては特に限定されないが、例えば、ホットプレート等を用いることができる。その際の加熱条件としては、50℃以上300℃以下であり、50℃以上250℃以下であることがより好ましい。予備熱処理工程においては、300℃以下の温度で加熱することにより、空気雰囲気下においても、レジスト下層膜形成用材料の過度な酸化や昇華による変質を抑制しつつ、硬化による膜の耐熱性を向上させることが可能となる。そのため、後続する熱処理工程での膜の酸化や分解を回避しつつ、平坦性が良好で、炭素濃度の高く、エッチング耐性の優れたレジスト下層膜を形成することができる。
 予備熱処理工程における加熱時間としては、15秒以上であることが好ましく、30秒以上がより好ましく、45秒以上がさらに好ましい。また、上記加熱時間としては、20分以下であることが好ましく、1,200秒以下がより好ましく、600秒以下がさらに好ましく、300秒以下であることが、過度な熱履歴を避ける観点からさらに好ましい。
 予備熱処理工程における雰囲気としては、空気中でもよいが、好ましくは窒素、アルゴン又はそれらの混合物が存在する不活性ガス雰囲気であることが好ましい。ここで、予備熱処理工程における酸素濃度としては、20%未満であることが好ましく、より好ましくは5%未満である。なお、本明細書中、酸素濃度は体積基準として特定する。
[熱処理工程]
 本実施形態に係るレジスト下層膜の形成方法において実施される熱処理工程は、上述の予備熱処理工程の後に実施される。加熱条件としては、250℃以上800℃以下の温度であり、300℃以上500℃以下であることが好ましく、300℃以上450℃以下であることがより好ましい。
 本実施形態における熱処理工程は、空気中でもよいが、好ましくは窒素、アルゴン又はそれらの混合物が存在する不活性ガス雰囲気であることが好ましい。ここで、予備熱処理工程における酸素濃度としては、20%未満であることが好ましく、より好ましくは5%未満である。酸素濃度5.0%未満の低酸素濃度雰囲気下で、且つ、加熱温度としては下層膜が熱分解しない程度の温度条件で熱処理することで、過度な酸化を抑制しつつ膜の硬化反応を進めることができ、結果として熱分解温度を向上させることができ、空気中でベークする場合よりもベーク温度の上限値を高く設定することができる。
 熱処理工程における加熱時間としては、15秒以上20分以下であることが好ましい。上記加熱時間は、30秒以上がより好ましく、45秒以上がさらに好ましい。また、上記加熱時間は、1,200秒以下がより好ましく、600秒以下がさらに好ましく、300秒以下がよりさらに好ましい。
 なお、本実施形態においては、上記の熱処理工程を経てレジスト下層膜を形成するが、本実施形態における組成物が感光性の酸発生剤を含有する場合にあっては、露光と加熱とを組み合わせることにより硬化を促進させてレジスト下層膜を形成することもできる。この露光に用いられる放射線としては、感放射線性酸発生剤の種類に応じ、可視光線、紫外線、遠紫外線、X線、γ線等の電磁波;電子線、分子線、イオンビーム等の粒子線から適宜選択される。
 形成されるレジスト下層膜の平均厚みの下限としては、0.05μmが好ましく、0.1μmがより好ましく、0.2μmがさらに好ましい。上記平均厚みの上限としては、5μmが好ましく、3μmがより好ましく、2μmがさらに好ましい。
[レジストパターン形成方法]
 本実施形態のレジストパターン形成方法は、基板上に、本実施形態の下層膜形成用組成物を用いて下層膜を形成する下層膜形成工程と、下層膜形成工程により形成した下層膜上に、少なくとも1層のフォトレジスト層を形成するフォトレジスト層形成工程と、フォトレジスト層形成工程により形成したフォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む。本実施形態のレジストパターン形成方法は、各種パターンの形成に用いることができ、絶縁膜パターンの形成方法であることが好ましい。
[回路パターン形成方法]
 本実施形態の回路パターン形成方法は、基板上に、本実施形態の下層膜形成用組成物を用いて下層膜を形成する下層膜形成工程と、下層膜形成工程により形成した下層膜上に、中間層膜を形成する中間層膜形成工程と、中間層膜形成工程により形成した中間層膜上に、少なくとも1層のフォトレジスト層を形成するフォトレジスト層形成工程と、フォトレジスト層形成工程により形成したフォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成するレジストパターン形成工程と、レジストパターン形成工程により形成したレジストパターンをマスクとして中間層膜をエッチングして中間層膜パターンを形成する中間層膜パターン形成工程と、中間層膜パターン形成工程により形成した中間層膜パターンをマスクとして下層膜をエッチングして下層膜パターンを形成する下層膜パターン形成工程と、下層膜パターン形成工程により形成した下層膜パターンをマスクとして前記基板をエッチングして基板にパターンを形成する基板パターン形成工程とを含む。
 本実施形態のリソグラフィー用下層膜は、本実施形態の下層膜形成用組成物から形成される。その形成方法は、特に限定されず、公知の手法を適用することができる。例えば、本実施形態の下層膜形成用組成物をスピンコートやスクリーン印刷等の公知の塗布方法、印刷法等により基板上に付与した後、有機溶媒を揮発させる等して除去することで、下層膜を形成することができる。
 下層膜を作製した後、2層プロセスの場合は、その下層膜上に珪素含有レジスト層、又は炭化水素からなる単層レジストを作製することが好ましく、3層プロセスの場合はその下層膜上に珪素含有中間層を作製し、さらにその珪素含有中間層上に珪素を含まない単層レジスト層を作製することが好ましい。この場合、このレジスト層を形成するためのフォトレジスト材料としては公知のものを使用することができる。
 2層プロセス用の珪素含有レジスト材料としては、酸素ガスエッチング耐性の観点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、さらに有機溶媒、酸発生剤、必要により塩基性化合物等を含むポジ型のフォトレジスト材料が好ましく用いられる。ここで珪素原子含有ポリマーとしては、この種のレジスト材料において用いられている公知のポリマーを使用することができる。
 3層プロセス用の珪素含有中間層としては、ポリシルセスキオキサンベースの中間層が好ましく用いられる。中間層に反射防止膜としての効果を持たせることによって、効果的に反射を抑えることができる傾向にある。例えば、193nm露光用プロセスにおいて、下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなる傾向にあるが、中間層で反射を抑えることによって、基板反射を0.5%以下にすることができる。このような反射防止効果を有する中間層としては、以下に限定されないが、193nm露光用としては、フェニル基又は珪素-珪素結合を有する吸光基が導入された、酸或いは熱で架橋するポリシルセスキオキサンが好ましく用いられる。
 また、Chemical Vapour Deposition(CVD)法で形成した中間層を用いることもできる。CVD法で作製した、反射防止膜としての効果が高い中間層としては、以下に限定されないが、例えば、SiON膜が知られている。一般的には、CVD法よりスピンコート法やスクリーン印刷等の湿式プロセスによって中間層を形成する方が、簡便でコスト的なメリットがある。なお、3層プロセスにおける上層レジストは、ポジ型、ネガ型のどちらでもよく、また、通常用いられている単層レジストと同じものを用いることができる。
 さらに、本実施形態における下層膜は、通常の単層レジスト用の反射防止膜或いはパターン倒れ抑制のための下地材として用いることもできる。下層膜は、下地加工のためのエッチング耐性に優れるため、下地加工のためのハードマスクとしての機能も期待できる。
 上記フォトレジスト材料によりレジスト層を形成する場合においては、上記下層膜を形成する場合と同様に、スピンコート法やスクリーン印刷等の湿式プロセスが好ましく用いられる。また、レジスト材料をスピンコート法等で塗布した後、通常、プリベークが行われるが、このプリベークは、80~180℃で10~300秒の範囲で行うことが好ましい。その後、常法にしたがい、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行うことで、レジストパターンを得ることができる。なお、レジスト膜の厚さは特に制限されないが、一般的には、30~500nmが好ましく、より好ましくは50~400nmである。
 また、露光光は、使用するフォトレジスト材料に応じて適宜選択して用いればよい。一般的には、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3~20nmの軟X線、電子ビーム、X線等を挙げることができる。
 上述した方法により形成されるレジストパターンは、下層膜によってパターン倒れが抑制されたものとなる。そのため、本実施形態における下層膜を用いることで、より微細なパターンを得ることができ、また、そのレジストパターンを得るために必要な露光量を低下させ得る。
 次に、得られたレジストパターンをマスクにしてエッチングを行う。2層プロセスにおける下層膜のエッチングとしては、ガスエッチングが好ましく用いられる。ガスエッチングとしては、酸素ガスを用いたエッチングが好適である。酸素ガスに加えて、He、Ar等の不活性ガスや、CO、CO、NH、SO、N、NO、Hガスを加えることも可能である。また、酸素ガスを用いずに、CO、CO、NH、N、NO、Hガスだけでガスエッチングを行うこともできる。特に後者のガスは、パターン側壁のアンダーカット防止のための側壁保護のために好ましく用いられる。
 一方、3層プロセスにおける中間層のエッチングにおいても、ガスエッチングが好ましく用いられる。ガスエッチングとしては、上記の2層プロセスにおいて説明したものと同様のものが適用可能である。とりわけ、3層プロセスにおける中間層の加工は、フロン系のガスを用いてレジストパターンをマスクにして行うことが好ましい。その後、上述したように中間層パターンをマスクにして、例えば酸素ガスエッチングを行うことで、下層膜の加工を行うことができる。
 ここで、中間層として無機ハードマスク中間層膜を形成する場合は、CVD法やALD法等で、珪素酸化膜、珪素窒化膜、珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、以下に限定されないが、例えば、特開2002-334869号公報、WO2004/066377に記載された方法を用いることができる。このような中間層膜の上に直接フォトレジスト膜を形成することができるが、中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。
 中間層としては、ポリシルセスキオキサンベースの中間層も好適に用いられる。レジスト中間層膜に反射防止膜としての効果を持たせることによって、効果的に反射を抑えることができる傾向にある。ポリシルセスキオキサンベースの中間層の具体的な材料については、以下に限定されないが、例えば、特開2007-226170号、特開2007-226204号に記載されたものを用いることができる。
 また、次の基板のエッチングも、常法によって行うことができ、例えば、基板がSiO、SiNであればフロン系ガスを主体としたエッチング、p-SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行うことができる。基板をフロン系ガスでエッチングする場合、2層レジストプロセスの珪素含有レジストと3層プロセスの珪素含有中間層は、基板加工と同時に剥離される。一方、塩素系或いは臭素系ガスで基板をエッチングした場合は、珪素含有レジスト層又は珪素含有中間層の剥離が別途行われ、一般的には、基板加工後にフロン系ガスによるドライエッチング剥離が行われる。
 本実施形態における下層膜は、基板のエッチング耐性に優れるという特徴を有する。なお、基板としては、公知のものを適宜選択して使用することができ、特に限定されないが、Si、α-Si、p-Si、SiO、SiN、SiON、W、TiN、Al等が挙げられる。また、基板は、基材(支持体)上に被加工膜(被加工基板)を有する積層体であってもよい。このような被加工膜としては、Si、SiO、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si等、種々のLow-k膜及びそのストッパー膜等が挙げられ、通常、基材(支持体)とは異なる材質のものが用いられる。なお、加工対象となる基板或いは被加工膜の厚さは、特に限定されないが、通常、50~1,000,000nm程度であることが好ましく、より好ましくは75~50,000nmである。
[レジスト永久膜]
 本実施形態のレジスト永久膜は、本実施形態の組成物を含む。本実施形態の組成物を塗布してなるレジスト永久膜は、必要に応じてレジストパターンを形成した後、最終製品にも残存する永久膜として好適である。永久膜の具体例としては、半導体デバイス缶啓関係では、ソルダーレジスト、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や集積回路素子と回路基板の接着層、薄型ディスプレー関連では、薄膜トランジスタ保護膜、液晶カラーフィルター保護膜、ブラックマトリクス、スペーサー等が挙げられる。特に、本実施形態の組成物を含むレジスト永久膜は、耐熱性や耐湿性に優れている上に昇華成分による汚染性が少ないという非常に優れた利点も有する。特に表示材料において、重要な汚染による画質劣化の少ない高感度、高耐熱、吸湿信頼性を兼ね備えた材料となる。
 本実施形態の下層膜形成組用成物をレジスト永久膜用途に用いる場合には、硬化剤の他、更に必要に応じてその他の樹脂、界面活性剤や染料、充填剤、架橋剤、溶解促進剤等の各種添加剤を加え、有機溶剤に溶解することにより、レジスト永久膜用組成物とすることができる。
 本実施形態の下層膜形成用組成物は前記各成分を配合し、攪拌機等を用いて混合することにより調整できる。また、本実施形態の組成物が充填剤や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散又は混合して調整することができる。
[リソグラフィー用下層膜の形成方法]
 本実施形態のリソグラフィー用下層膜の形成方法は、リソグラフィー用下層膜形成用組成物を、段差を有する基板に適用することを含む。適用方法は特に限定されず、上述のスピンコートやスクリーン印刷等の公知の塗布方法、印刷法等を使用することができる。
 段差を有する基板としては、限定されないが、例えば、1~10000nmのラインアンドスペースの基板、幅1~100000、ピッチ1~20000nm、深さ10~100000nmのトレンチを有する基板、幅1~100000nm、ピッチ1~20000nm、深さ10~100000nmのホールを有する基板が挙げられる。
 以下、合成例、実施例及び比較例を挙げて本実施形態をさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。すなわち、以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜変更することができる。また、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における好ましい上限値又は好ましい下限値としての意味をもつものであり、好ましい数値範囲は前記の上限値又は下限値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。
(分子量)
 ゲル浸透クロマトグラフィー(GPC)分析により、本実施形態のオリゴマーの重量平均分子量(Mw)及び分散度(Mw/Mn)は、以下の測定条件にてポリスチレン換算にて求めた。
 装置:Shodex GPC-101型(昭和電工株式会社製)
 カラム:KF-80M×3
 溶離液:THF 1mL/min
 温度:40℃
(軟化点の測定)
 以下の機器を用いて軟化点を測定した。
 使用機器:FP83HT滴点・軟化点測定システム(メトラー・トレド株式会社)製
 測定条件:昇温速度2℃/分
 測定方法:FP83HTのマニュアルに沿って測定する。具体的には、サンプルカップに溶融した試料を注ぎ入れ、冷やし固める。カ-トリッジをサンプルの充填したカップの上下をはめ込み、炉に挿入する。レジンが軟化してオリフィスを流下し、レジンの下端が光路を通過したときの温度を軟化点としてフォトセルで検出する。
(溶融粘度の測定)
 以下の機器を用いて150℃溶融粘度を測定した。
 使用機器:BROOKFIELD製B型粘度計 DV2T(英弘精機株式会社製)
 測定温度:150℃
 測定方法:B型粘度計の炉内温度を150℃に設定し、カップに試料を所定量秤量する。炉内に試料を秤量したカップを投入して樹脂を溶融させ、上部からスピンドルを入れる。スピンドルを回転させて、表示された粘度値が安定になったところを溶融粘度として読み取る。
(合成実施例X1)樹脂XAの合成
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に、原料XA(5.0g)と、ターシャリブトキシカリウム0.774g(6.9mmol)と、テトラヒドロフラン20mLとを仕込み、メシルクロライド3.16g(27.6mmol)をさらに加え、反応液を40℃で6時間撹拌して反応を行った。次に、容器内に1%HSO水溶液を10mlと酢酸エチル20mlを添加し、その後、分液操作により、水層を除去した。次いで、濃縮により有機溶媒を除去し、乾燥させ、下記式で表される構造単位を有するオリゴマー(樹脂XA)5.1gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は1250、分散度は1.31であった。
 得られたオリゴマーについてH-NMR測定を行ったところ、フェノール性水酸基を示す9.1-9.4ppm付近のピークは確認されず、原料XAの水酸基が全てMs基(メシル基/メタンスルホニル基)で保護されていることが分かった。また軟化点は28℃であった。
Figure JPOXMLDOC01-appb-C000137
 
Figure JPOXMLDOC01-appb-C000138
 
(合成実施例X2)樹脂XBの合成
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に、原料XB(5.0g、明和化成(株)製)と、トリエチルアミン0.698g(6.9mmol)と、塩化メチレン20mLとを仕込み、トリフルオロメタンスルホン酸無水物7.73g(27.4mmol)をさらに加えて、反応液を0℃で6時間撹拌して反応を行った。次に、容器内に1%HSO水溶液を10mlと酢酸エチル20mlを添加し、その後、分液操作により、水層を除去した。次いで、濃縮により有機溶媒を除去し、反応液をヘキサンに滴下した。その後、ヘキサンを除去し、乾燥させ、下記式で表される構造単位を有するオリゴマー(B-p-CBIF-AL)5.3gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は1400、分散度は1.46であった。
 得られたオリゴマーについてH-NMR測定を行ったところ、アニリンのプロトンを示す3.4-3.7ppm付近のピークが原料と比較し52%となり、原料XBがTf基(トリフラート基/トリフルオロメチルスルホニル基)で保護されていることが分かった。また軟化点は23℃であった。
Figure JPOXMLDOC01-appb-C000139
 
Figure JPOXMLDOC01-appb-C000140
 
(合成実施例X3)樹脂XCの合成
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に、原料XC(5.0g、明和化成(株)製)と、トリエチルアミン0.693g(6.90mmol)と、テトラヒドロフラン20mLとを仕込み、無水酢酸2.80g(27.4mmol)をさらに加えて、反応液を40℃にて2時間撹拌して反応を行った。次に、容器内に1%HSO水溶液を10mlと酢酸エチル20mlを添加し、その後、分液操作により、水層を除去した。次いで、濃縮により有機溶媒を除去し、乾燥させ、下記式で表される構造単位を有するオリゴマー(E-n-BBIF-AL)5.0gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は1100、分散度は1.33であった。
 得られたオリゴマーについてH-NMR測定を行ったところ、フェノール性水酸基を示す9.1-9.4ppm付近のピークは確認されず、反応前の水酸基の100%がAc基(アセチル基)で保護されていることが分かった。また、軟化点は12℃であった。
Figure JPOXMLDOC01-appb-C000141
 
Figure JPOXMLDOC01-appb-C000142
 
(合成実施例Y1)樹脂YAの合成
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に、原料YA(5.0g、明和化成(株)製)と、炭酸カリウム7.56g(54.7mmol)と、ジメチルホルムアミド20mLとを仕込み、炭酸ジメチル4.92g(54.6mmol)をさらに加え、反応液を120℃で14時間撹拌して反応を行った。次に、容器内に1%HSO水溶液を10mlと酢酸エチル20mlを添加し、その後、分液操作により、水層を除去した。次いで、濃縮により有機溶媒を除去し、乾燥させ、下記式で表される構造単位を有するオリゴマー(樹脂YA)5.1gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は900、分散度は1.28であった。
 得られたオリゴマーについてH-NMR測定を行ったところ、アニリンのプロトンを示す3.4-3.7ppm付近のピークは確認されず、原料YAがメチル基で保護されていることが分かった。また軟化点は9℃であった。
Figure JPOXMLDOC01-appb-C000143
 
Figure JPOXMLDOC01-appb-C000144
 
(合成実施例Y2)樹脂YBの合成
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に、原料YB(5.0g、明和化成(株)製)と、パラトルエンスルホン酸ピリジニウム塩1.73g(6.9mmol)と、テトラヒドロフラン20mLとを仕込み、エチルビニルエーテル2.36g(27.4mmol)をさらに加えて、反応液を35℃で9時間撹拌して反応を行った。次に、容器内に10%炭酸ナトリウム水溶液を10mlと酢酸エチル20mlを添加し、その後、分液操作により、水層を除去した。次いで、濃縮により有機溶媒を除去し、反応液をヘキサンに滴下した。その後、ヘキサンを除去し、乾燥させ、下記式で表される構造単位を有するオリゴマー(樹脂YB)5.3gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は900、分散度は1.32であった。
 得られたオリゴマーについてH-NMR測定を行ったところ、フェノール性水酸基を示す9.1-9.4ppm付近のピークは確認されず、反応前の水酸基の100%がEE基(エトキシエチル基)で保護されていることが分かった。また軟化点は-14℃であった。
Figure JPOXMLDOC01-appb-C000145
 
Figure JPOXMLDOC01-appb-C000146
 
(合成実施例Y3)樹脂YCの合成
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に、原料YC(5.0g、明和化成(株)製)と、パラトルエンスルホン酸ピリジニウム塩1.73g(6.9mmol)と、テトラヒドロフラン20mLとを仕込み、プロピルビニルエーテル2.36g(27.4mmol)をさらに加えて、反応液を40℃で2時間撹拌して反応を行った。次に、容器内に10%炭酸ナトリウム水溶液を10mlと酢酸エチル20mlを添加し、その後、分液操作により、水層を除去した。次いで、濃縮により有機溶媒を除去し、乾燥させ、下記式で表される構造単位を有するオリゴマー(樹脂YC)5.0gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は1000、分散度は1.28であった。
 得られたオリゴマーについてH-NMR測定を行ったところ、フェノール性水酸基を示す9.1-9.4ppm付近のピークは確認されず、反応前の水酸基の100%がEP基(エトキシプロピル基)で保護されていることが分かった。また軟化点は-20℃であった。
Figure JPOXMLDOC01-appb-C000147
 
Figure JPOXMLDOC01-appb-C000148
 
(合成実施例Y4)樹脂YDの合成
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に、原料YD(5.0g)と、トリエチルアミン0.698g(6.9mmol)と、テトラヒドロフラン20mLとを仕込み、エピクロロヒドリン2.53g(27.4mmol)をさらに加えて、反応液を室温にて2時間撹拌して反応を行った。次に、容器内にHOを10mlと酢酸エチル20mlを添加し、その後、分液操作により、水層を除去した。次いで、濃縮により有機溶媒を除去し、乾燥させ、下記式で表される構造単位を有するオリゴマー(樹脂YD)5.3gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は1200、分散度は1.21であった。
 得られたオリゴマーについてH-NMR測定を行ったところ、フェノール性水酸基を示す9.1-9.4ppm付近のピークは確認されず、反応前の水酸基の100%がグリシジル基で保護されていることが分かった。また軟化点は13℃であった。
Figure JPOXMLDOC01-appb-C000149
 
Figure JPOXMLDOC01-appb-C000150
 
[実施例X1~X3、比較例X1、実施例Y1~Y4、比較例Y1]
 上記の樹脂XA~XC、樹脂YA~YD、及び、比較例X1、Y1としてフェノールノボラック樹脂(群栄化学(株)製 PSM4357)につき、以下に示す溶解度試験及び耐熱性評価を行った。結果を表1-1及び1-2に示す。
(溶解性評価)
 23℃にて、本実施形態のオリゴマーをプロピレングリコールモノメチルエーテルアセテート(PGMEA)或いは1-メトキシ-2-プロパノール(PGME)に対して30質量%溶液になるよう溶解させた。その後、-20℃にて30日間静置したときの溶解性を以下の基準にて評価した。
 評価A:目視にて析出物なしを確認
 評価C:目視にて析出物ありを確認
(溶液粘度の評価)
 23℃にて、本実施形態のオリゴマーをプロピレングリコールモノメチルエーテルアセテート(PGMEA)に対して30質量%溶液の溶液粘度を測定した。
〈評価基準〉
 A:10(mPa・s*g/cm)以下
 B:10~20(mPa・s*g/cm
 C:20(mPa・s*g/cm)以上
Figure JPOXMLDOC01-appb-T000151
 
Figure JPOXMLDOC01-appb-T000152
 
[実施例X1-1~X3-2、比較例X1-1~X1-2、実施例Y1-1~Y4-2、比較例Y1-1~Y1-2]
 リソグラフィー用下層膜形成用組成物を各々調製した。
 酸発生剤、架橋剤及び有機溶媒については以下のものを用いた。
 酸発生剤:みどり化学株式会社製品「ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート」(表中、「DTDPI」と記載。)
     :酸発生剤:ピリジニウムパラトルエンスルホン酸(表中、「PPTS」と記載。)
 架橋剤:三和ケミカル株式会社製品「ニカラックMX270」(表中、「ニカラック」と記載。)
     本州化学工業株式会社製品「TMOM-BP」(表中、「TMOM」と記載)
 有機溶媒:PGMEA/PGME=7:3
       PGMEA:プロピレングリコールモノメチルエーテルアセテート
       PGME:1-メトキシ-2-プロパノール
[硬化性試験]
 実施例X1-1~X3-2、比較例X1-1~X1-2、実施例Y1-1~Y4-2、比較例Y1-1~Y1-2のリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布しその後、250℃又は400℃で60秒間ベークして、下層膜を各々作製した。得られた下層膜をPGMEAに120秒浸漬させた後、110℃で60秒間ホットプレートに乾燥後の残膜状態を確認した。結果を表2-1及び2-2に示す。以下の評価基準で硬化性を評価した。
 <評価基準>
 A:どちらの温度でも残膜があることを目視確認
 C:どちらの温度でも残膜が無いことを目視確認
[膜厚減少]
実施例X1-1~X3-2、比較例X1-1~X1-2のリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布した。得られた膜を150℃で60秒間ベークした後400℃で60秒間ベークし膜厚減少率を測定した。結果を表2-1に示す。
以下の評価基準で硬化性を評価した。
 <評価基準>
 A:減少率20%以下
 B:減少率20~30%
 C:減少率30%以上
 実施例Y1-1~Y4-2、比較例Y1-1~Y1-2のリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布した。得られた膜を150℃で60秒間ベークした後400℃で60秒間ベークし膜厚減少率を測定した。結果を表2-2に示す。
以下の評価基準で硬化性を評価した。
 <評価基準>
 A:減少率10%以下
 B:減少率10~20%
 C:減少率30%以上
Figure JPOXMLDOC01-appb-T000153
 
Figure JPOXMLDOC01-appb-T000154
 
[埋め込み性の評価]
 段差基板への埋め込み性の評価は、以下の手順で行った。
 リソグラフィー用下層膜形成用組成物を60nmラインアンドスペースのSiO基板上に塗布して、400℃で60秒間ベークすることにより100nm程度の膜を形成した。得られた膜の断面を切り出し、電子線顕微鏡にて観察し、段差基板への埋め込み性を評価した。結果を表3-1及び3-2に示す。
<評価基準>
 A:SiO基板の凹凸部分に欠陥無く下層膜が埋め込まれている。
 C:SiO基板の凹凸部分に欠陥があり下層膜が埋め込まれていない。
[平坦化性の評価]
 幅60nm、ピッチ60nm、深さ200nmのトレンチを有するSiO段差基板上に、上記得られた膜形成用組成物をそれぞれ塗布した。その後、大気雰囲気下にて、400℃で60秒間焼成して、膜厚100nmの下層膜を形成した。この下層膜の形状を走査型電子顕微鏡(日立ハイテクノロジーズ社の「S-4800」)にて観察し、トレンチにおける膜厚の最小値とトレンチを有さない部分における膜厚の最大値の差(ΔFT)を測定した。結果を表3-1及び3-2に示す。
<評価基準>
 S:ΔFT<10nm(平坦性最良)
 A:10nm≦ΔFT<20nm(平坦性良好)
 B:20nm≦ΔFT<40nm(平坦性やや良好)
 C:40nm≦ΔFT(平坦性不良)
Figure JPOXMLDOC01-appb-T000155
 
Figure JPOXMLDOC01-appb-T000156
 
[架橋性の評価]
 実施例X1-1~X3-2、比較例X1-1~X1-2のリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布した。得られた膜を150℃で60秒間ベークした後PGMEAに120秒浸漬させ、110℃で60秒間ホットプレートに乾燥後の残膜率を測定した。以下の評価基準で架橋性を評価した。結果を表4-1に示す。
 <評価基準>
 S:残膜率0%
 A:残膜率0~10%
 B:残膜率10~30%
 C:残膜率30%以上
 実施例Y1-1~Y4-2、比較例Y1-1~Y1-2のリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布した。得られた膜を150℃で60秒間ベークした後PGMEAに120秒浸漬させ、110℃で60秒間ホットプレートに乾燥後の残膜率を測定した。以下の評価基準で架橋性を評価した。結果を表4-2に示す。
 <評価基準>
 S:残膜率90%以上
 A:残膜率80~90%
 B:残膜率70~80%
 C:残膜率70%以下
[膜耐熱性の評価]
 実施例X1-1~X3-2、比較例X1-1~X1-2のリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布し、その後400℃で60秒間ベークして、下層膜を各々作製した。得られた下層膜をN2下450℃で4分間焼成し、膜厚減少率を測定した。結果を表4に示す。以下の評価基準で膜耐熱性を評価した。
 <評価基準>
 A:減少率20%以下
 B:減少率20~30%
 C:減少率30%以上
 実施例Y1-1~Y4-2、比較例Y1-1~Y1-2のリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布し、その後400℃で60秒間ベークして、下層膜を各々作製した。得られた下層膜をN2下450℃で4分間焼成し、膜厚減少率を測定した。結果を表4-2に示す。以下の評価基準で膜耐熱性を評価した。
 <評価基準>
 A:減少率10%以下
 B:減少率10~20%
 C:減少率20%以上
Figure JPOXMLDOC01-appb-T000157
 
Figure JPOXMLDOC01-appb-T000158
 
 得られた各下層膜について、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。
[エッチング試験]
 エッチング装置:サムコインターナショナル社製品「RIE-10NR」
 出力:50W
 圧力:20Pa
 時間:2min
 エッチングガス
 Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
[エッチング耐性の評価]
 エッチング耐性の評価は、以下の手順で行った。
 比較例X1-1のフェノールノボラック樹脂を含む下層膜について上記エッチング試験を行い、そのときのエッチングレート(エッチング速度)を測定した。次に、各実施例及び比較例の下層膜について上記エッチング試験を行い、そのときのエッチングレートを測定した。そして、フェノールノボラック樹脂を含む下層膜のエッチングレートを基準として、以下の評価基準で各実施例及び比較例のエッチング耐性を評価した。評価結果を表5-1に示す。
 比較例Y1-1のフェノールノボラック樹脂を含む下層膜について上記エッチング試験を行い、そのときのエッチングレート(エッチング速度)を測定した。次に、各実施例及び比較例の下層膜について上記エッチング試験を行い、そのときのエッチングレートを測定した。そして、フェノールノボラック樹脂を含む下層膜のエッチングレートを基準として、以下の評価基準で各実施例及び比較例のエッチング耐性を評価した。評価結果を表5-2に示す。
<評価基準>
 A:ノボラックの下層膜に比べてエッチングレートが、-10%未満
 B:ノボラックの下層膜に比べてエッチングレートが、-10%~+5%
 C:ノボラックの下層膜に比べてエッチングレートが、+5%超
Figure JPOXMLDOC01-appb-T000159
 
Figure JPOXMLDOC01-appb-T000160
 
[実施例X4~X9、実施例Y5~Y12]
 上述の各実施例X1-1~X3-2、各実施例Y1-1~Y4-2と同様に調製したリソグラフィー用下層膜形成材料の各溶液を膜厚300nmのSiO基板上に塗布して、150℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚70nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。なお、ArFレジスト溶液としては、下記式(xx)で表される化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。下記式(xx)で表される化合物は、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。このようにして得られる生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて得た。
Figure JPOXMLDOC01-appb-C000161
 
 上記式(xx)中の数字は、各構成単位の比率を示している。
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。
 得られた55nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの欠陥を観察した結果を、表6-1及び6-2に示す。表中、「良好」とは、現像後のレジストパターン形状について、55nmL/S(1:1)及び80nmL/S(1:1)の線幅において形成されたレジストパターンに大きな欠陥が見られなかったことを示し、「不良」とは、いずれかの線幅において形成されたレジストパターンに大きな欠陥が見られたことを示す。また、表中「解像性」は、パターン倒れがなく、矩形性が良好な最小線幅であり、「感度」は、良好なパターン形状を描画可能な最小の電子線エネルギー量を示す。
[比較例X2、比較例Y2]
 下層膜の形成を行わないこと以外は同様にして、フォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。結果を表6-1及び6-2に示す。
Figure JPOXMLDOC01-appb-T000162
 
Figure JPOXMLDOC01-appb-T000163
 
[実施例X10~X14、実施例Y13~Y20]
 各実施例X1-1~X3-2、実施例Y1-1~Y4-2と同様に調整したリソグラフィー用下層膜形成材料の溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚80nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、上述のArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、特開2007-226170号公報の<合成例1>に記載の珪素原子含有ポリマーを用いた。次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、55nmL/S(1:1)のポジ型のレジストパターンを得た。その後、サムコインターナショナル社製 RIE-10NRを用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行い、続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO膜のドライエッチング加工とを順次行った。
 各々のエッチング条件は、下記に示すとおりである。
 レジストパターンのレジスト中間層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:1min
   エッチングガス
   Arガス流量:CF4ガス流量:O2ガス流量=50:8:2(sccm)
 レジスト中間膜パターンのレジスト下層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
 レジスト下層膜パターンのSiO膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:C12ガス流量:Cガス流量:O2ガス流量
          =50:4:3:1(sccm)
[評価]
 上述のようにして得られたパターン断面(すなわち、エッチング後のSiO膜の形状)を、日立製作所(株)製品の「電子顕微鏡(S-4800)」を用いて観察した。観察結果を表7-1及び7-2に示す。表中、「良好」とは、形成されたパターン断面に大きな欠陥が見られなかったことを示し、「不良」とは、形成されたパターン断面に大きな欠陥が見られたことを示す。
Figure JPOXMLDOC01-appb-T000164
 
Figure JPOXMLDOC01-appb-T000165
 
<積層膜でのエッチング欠陥評価>
 合成実施例で得られたオリゴマーについて、精製処理前後での品質評価を実施した。すなわち、各実施例X1-1~X3-2、実施例Y1-1~Y4-2と同様に調整したリソグラフィー用下層膜形成材料の溶液を用いてウェハ上に成膜した樹脂膜をエッチングにより基板側に転写したのち、欠陥評価を行うことで評価した。
 12インチシリコンウェハに熱酸化処理を実施し、100nmの厚みのシリコン酸化膜を有する基板を得た。当該基板上に、リソグラフィー用下層膜形成材料の溶液を100nmの厚みとなるようにスピンコート条件を調整して成膜後、150℃ベーク1分、続いて350℃ベーク1分を行うことで熱酸化膜付きシリコン上に積層した積層基板を作製した。
 エッチング装置としてTELIUS(東京エレクトロン社製)を用い、CF/O/Arの条件で樹脂膜をエッチングし、酸化膜表面の基板を露出させた。更にCF/Arのガス組成比にて酸化膜を100nmエッチングする条件でエッチング処理を行い、エッチングしたウェハを作成した。
 作成したエッチングウェハを欠陥検査装置SP5(KLA-tencor社製)にて19nm以上の欠陥数を測定し、積層膜でのエッチング処理による欠陥評価として実施した。
 A:欠陥数 ≦ 20個
 B:20個 < 欠陥数 ≦ 50個
 C:50個 < 欠陥数 ≦ 100個
 D:100個 < 欠陥数 ≦ 1000個
 E:1000個 < 欠陥数 ≦ 5000個
 F:5000個 < 欠陥数
[実施例XE01] 樹脂XAの酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例X1で得られた樹脂XAをPGMEAに溶解させた溶液(10質量%)を150g仕込み、攪拌しながら80℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相に分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びPGMEAを濃縮留去した。その後、ELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減された樹脂XAのPGMEA溶液を得た。作成した樹脂溶液を日本インテグリス社性の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
[実施例XE02] 樹脂XAのフィルター通液による精製1
 クラス1000のクリーンブース内にて、1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例X1で得られた樹脂XAをプロピレングリコールモノメチルエーテル(PGME)に溶解させた濃度10質量%の溶液を500g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分100mLの流量で公称孔径が0.01μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックスナイロンシリーズ)に濾過圧が0.5MPaの条件となるように加圧濾過にて通液した。濾過後の樹脂溶液をELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減された樹脂XAのPGMEA溶液を得た。作成した樹脂溶液を日本インテグリス社性の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。なお、酸素濃度はアズワン株式会社製の酸素濃度計「OM-25MF10」により測定した。
[実施例XE03] 樹脂XAのフィルター通液による精製2
 フィルターによる精製工程として、日本ポール社製のIONKLEEN、日本ポール社性のナイロンフィルター、更に日本インテグリス社性の公称孔径3nmのUPEフィルターをこの順番に直列に接続し、フィルターラインとして構築した。0.1μmのナイロン製中空糸膜フィルターの代わりに、作製したフィルターラインを使用した以外は、実施例XE02と同様にして濾過圧が0.5MPaの条件となるように加圧濾過により通液した。ELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減された樹脂XAのPGMEA溶液を得た。作成した樹脂溶液を日本インテグリス社性の公称孔径3nmのUPEフィルターにより濾過圧が0.5MPaの条件となるように加圧濾過した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例XE04~XE09、実施例YE01~YE12)
 合成実施例X2~X3、Y1~Y4で作成した樹脂XB~樹脂XC、樹脂YA~樹脂YDについて、実施例XE01~XE03と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
Figure JPOXMLDOC01-appb-T000166
 
Figure JPOXMLDOC01-appb-T000167
 
(合成例Z1)PBIF-ALの合成
 窒素下、フェノール(311.9g、3.32mol、東京化成工業(株)製)及び4,4’-ジクロロメチルビフェニル(200.0g、0.80mol、東京化成工業(株)製))を、下部に抜出口のある4つ口フラスコに仕込んだ。その後、温度を上昇させると、系内が80℃で均一となり、HClの発生が始まった。100℃で3時間保持し、さらに150℃で1時間熱処理を加えた。反応で出てくるHClはそのまま系外へ揮散させ、アルカリ水でトラップした。この段階で未反応4,4’-ジクロロメチルビフェニルは残存しておらず、全て反応したことをガスクロマトグラフィで確認した。反応終了後、減圧にすることにより、系内に残存するHCl及び未反応のフェノールを系外へ除去した。最終的に30torrで150℃まで減圧処理することで、残存フェノールがガスクロマトグラフィで未検出になった。この反応生成物を150℃に保持しながら、フラスコの下部抜出口からその約30gを、空冷により室温に保たれたステンレスパッド上にゆっくりと滴下した。ステンレスパッド上では1分後に30℃まで急冷され、固化した重合体が得られた。重合体の熱によりステンレスパッドの表面温度が上昇しないように、固化物は取り除き、ステンレスパッドは空冷により冷却した。この空冷・固化操作を9回繰り返した。その後不純物を除去するため、重合体に1-ブタノール(重合体100gに対し300g)とトルエン(重合体100gに対し600g)を加え溶解させた。溶液を分液ロートに移し、0.5%水酸化ナトリウム水溶液(重合体100gに対し250g)で有機層を2回洗浄し、8%水酸化ナトリウム水溶液(重合体100gに対し200g)で逆抽出し、酢酸エチル(重合体100gに対し400g)と20%硫酸(重合体100gに対し108g)を加え抽出し、純水(重合体100gに対し200g)で2回洗浄した。その後濃縮・乾燥により有機溶媒を除去し、下記式で表される構造単位を有するオリゴマー(PBIF-AL)213.3gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は3100、分散度は1.33であった。また、粘度は0.06Pa・s、軟化点は39℃であった。
Figure JPOXMLDOC01-appb-C000168
 
(合成実施例Z1)M6-PBIF-ALの合成
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に、PBIF-AL 5.0g、炭酸カリウム7.56g(54.7mmol)と、ジメチルホルムアミド20mLとを仕込み、炭酸ジメチル4.92g(54.6mmol)をさらに加え、反応液を120℃で14時間撹拌して反応を行った。次に、容器内に1%HCl水溶液を10mlと酢酸エチル20mlを添加し、その後、分液操作により、水層を除去した。次いで、濃縮により有機溶媒を除去し、乾燥させ、下記式で表される構造単位を有するオリゴマー(M6-PBIF-AL)5.1gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は2800、分散度は1.31であった。
 得られたオリゴマーについてH-NMR測定を行ったところ、フェノール性水酸基を示す9.1-9.4ppm付近のピークに対し、メチル基を示す3.7-3.8ppm付近のピークが化学量で1.5倍確認され、反応前の水酸基の60%がメチル基で保護されていることが分かった。また、粘度は0.01Pa・s、軟化点は25℃であった。
Figure JPOXMLDOC01-appb-C000169
 
(合成例Z2)p-CBIF-ALの合成
 窒素下、p-クレゾール(359.0g、3.32mol、東京化成工業(株)製)及び4,4’-ジクロロメチルビフェニル(200.0g、0.80mol、東京化成工業(株)製))を、下部に抜出口のある4つ口フラスコに仕込んだ。その後、温度を上昇させると、系内が80℃で均一となり、HClの発生が始まった。100℃で3時間保持し、さらに150℃で1時間熱処理を加えた。反応で出てくるHClはそのまま系外へ揮散させ、アルカリ水でトラップした。この段階で未反応4,4’-ジクロロメチルビフェニルは残存しておらず、全て反応したことをガスクロマトグラフィで確認した。反応終了後、減圧にすることにより、系内に残存するHCl及び未反応のフェノールを系外へ除去した。最終的に30torrで150℃まで減圧処理することで、残存フェノールがガスクロマトグラフィで未検出になった。この反応生成物を150℃に保持しながら、フラスコの下部抜出口からその約30gを、空冷により室温に保たれたステンレスパッド上にゆっくりと滴下した。ステンレスパッド上では1分後に30℃まで急冷され、固化した重合体が得られた。重合体の熱によりステンレスパッドの表面温度が上昇しないように、固化物は取り除き、ステンレスパッドは空冷により冷却した。この空冷・固化操作を9回繰り返した。その後不純物を除去するため、重合体に1-ブタノール(重合体100gに対し300g)とトルエン(重合体100gに対し600g)を加え溶解させた。溶液を分液ロートに移し、0.5%水酸化ナトリウム水溶液(重合体100gに対し250g)で有機層を2回洗浄し、8%水酸化ナトリウム水溶液(重合体100gに対し200g)で逆抽出し、酢酸エチル(重合体100gに対し400g)と20%硫酸(重合体100gに対し108g)を加え抽出し、純水(重合体100gに対し200g)で2回洗浄した。その後濃縮・乾燥により有機溶媒を除去し、下記式で表される構造単位を有するオリゴマー(p-CBIF-AL)223.1gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は2556、分散度は1.21であった。また、粘度は0.03Pa・s、軟化点は35℃であった。
Figure JPOXMLDOC01-appb-C000170
 
(合成実施例Z2)B-p-CBIF-ALの合成
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に、p-CBIF-AL 5.0g、ターシャリブトキシカリウム0.768g(6.84mmol)と、テトラヒドロフラン20mLとを仕込み、二炭酸ジターシャリブチル8.97g(41.1mmol)をさらに加えて、反応液を40℃で2時間撹拌して反応を行った。次に、容器内にHOを10mlと酢酸エチル20mlを添加し、その後、分液操作により、水層を除去した。次いで、濃縮により有機溶媒を除去し、反応液をヘキサンに滴下した。その後、ヘキサンを除去し、乾燥させ、下記式で表される構造単位を有するオリゴマー(B-p-CBIF-AL)5.3gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は2500、分散度は1.23であった。
 得られたオリゴマーについてH-NMR測定を行ったところ、フェノール性水酸基を示す9.1-9.4ppm付近のピークは確認されず、反応前の水酸基の100%がt-BOC基(ターシャリブトキシカルボニル基)で保護されていることが分かった。また、粘度は0.02Pa・s、軟化点は29℃であった。
Figure JPOXMLDOC01-appb-C000171
 
(合成例Z3)n-BBIF-ALの合成
 窒素下、4-ブチルフェノール(498.7g、3.32mol、東京化成工業(株)製)及び4,4’-ジクロロメチルビフェニル(200.0g、0.80mol、東京化成工業(株)製))を、下部に抜出口のある4つ口フラスコに仕込んだ。その後、温度を上昇させると、系内が80℃で均一となり、HClの発生が始まった。100℃で3時間保持し、さらに150℃で1時間熱処理を加えた。反応で出てくるHClはそのまま系外へ揮散させ、アルカリ水でトラップした。この段階で未反応4,4’-ジクロロメチルビフェニルは残存しておらず、全て反応したことをガスクロマトグラフィで確認した。反応終了後、減圧にすることにより、系内に残存するHCl及び未反応のフェノールを系外へ除去した。最終的に30torrで150℃まで減圧処理することで、残存フェノールがガスクロマトグラフィで未検出になった。この反応生成物を150℃に保持しながら、フラスコの下部抜出口からその約30gを、空冷により室温に保たれたステンレスパッド上にゆっくりと滴下した。ステンレスパッド上では1分後に30℃まで急冷され、固化した重合体が得られた。重合体の熱によりステンレスパッドの表面温度が上昇しないように、固化物は取り除き、ステンレスパッドは空冷により冷却した。この空冷・固化操作を9回繰り返した。その後不純物を除去するため、重合体に1-ブタノール(重合体100gに対し300g)とトルエン(重合体100gに対し600g)を加え溶解させた。溶液を分液ロートに移し、0.5%水酸化ナトリウム水溶液(重合体100gに対し250g)で有機層を2回洗浄し、8%水酸化ナトリウム水溶液(重合体100gに対し200g)で逆抽出し、酢酸エチル(重合体100gに対し400g)と20%硫酸(重合体100gに対し108g)を加え抽出し、純水(重合体100gに対し200g)で2回洗浄した。その後濃縮・乾燥により有機溶媒を除去し、下記式で表される構造単位を有するオリゴマー(n-BBIF-AL)267.5gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は2349、分散度は1.19であった。また、粘度は0.02Pa・s、軟化点は25℃であった。
Figure JPOXMLDOC01-appb-C000172
 
(合成実施例Z3)E-n-BBIF-ALの合成
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に、n-BBIF-AL 5.0g、パラトルエンスルホン酸ピリジニウム塩 1.73g(6.9mmol)と、塩化メチレン20mLとを仕込み、プロピルビニルエーテル2.36g(27.4mmol)をさらに加えて、反応液を40℃で2時間撹拌して反応を行った。次に、容器内に10%炭酸ナトリウム水溶液を10mlと酢酸エチル20mlを添加し、その後、分液操作により、水層を除去した。次いで、濃縮により有機溶媒を除去し、乾燥させ、下記式で表される構造単位を有するオリゴマー(E-n-BBIF-AL)5.0gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は2200、分散度は1.20であった。
 得られたオリゴマーについてH-NMR測定を行ったところ、フェノール性水酸基を示す9.1-9.4ppm付近のピークは確認されず、反応前の水酸基の100%がEP基(エトキシプロピル基)で保護されていることが分かった。また、粘度は0.01Pa・s、軟化点は20℃であった。
Figure JPOXMLDOC01-appb-C000173
 
(合成例Z4)NAFP-ALの合成
 窒素下、300mL四口フラスコに1,4-ビス(クロロメチル)ベンゼン(28.8g、0.148mol、東京化成工業(株)製)、1-ナフトール(30.0g、0.1368mol、東京化成工業(株)製)、パラトルエンスルホン酸一水和物(5.7g、0.029mol、東京化成工業(株)製)を加え、さらにプロピレングリコールモノメチルエーテルアセテート(以下PGMEAという略称で示す。)150.4gを仕込んだ。その後、撹拌し、リフラックスが確認されるまで昇温し溶解させ、重合を開始した。16時間後60℃まで放冷後、メタノール1600gへ再沈殿させ、得られた沈殿物をろ過した。その後不純物を除去するため、重合体に1-ブタノール(重合体100gに対し300g)とトルエン(重合体100gに対し600g)を加え溶解させた。溶液を分液ロートに移し、0.5%水酸化ナトリウム水溶液(重合体100gに対し250g)で有機層を2回洗浄し、8%水酸化ナトリウム水溶液(重合体100gに対し200g)で逆抽出し、酢酸エチル(重合体100gに対し400g)と20%硫酸(重合体100gに対し108g)を加え抽出し、純水(重合体100gに対し200g)で2回洗浄した。その後濃縮により有機溶媒を除去し、減圧乾燥機で60℃、16時間乾燥させ、下記式(NAFP-AL)で表される構造単位を有するオリゴマー(NAFP-AL)38.6gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は2020、分散度は1.86であった。また、粘度は0.12Pa・s、軟化点は68℃であった。
Figure JPOXMLDOC01-appb-C000174
 
(合成実施例Z4)Ms-NAFP-ALの合成
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に、NAFP-AL 5.0g、トリエチルアミンg(mmol)と、テトラヒドロフラン20mLとを仕込み、メシルクロライドg(mmol)をさらに加えて、反応液を室温にて2時間撹拌して反応を行った。次に、容器内にHOを10mlと酢酸エチル20mlを添加し、その後、分液操作により、水層を除去した。次いで、濃縮により有機溶媒を除去し、乾燥させ、下記式で表される構造単位を有するオリゴマー(Ms-NAFP-AL)5.3gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は1900、分散度は1.70であった。
 得られたオリゴマーについてH-NMR測定を行ったところ、フェノール性水酸基を示す9.1-9.4ppm付近のピークは確認されず、反応前の水酸基の100%がMs基(メシル基)で保護されていることが分かった。また、粘度は0.09Pa・s、軟化点は56℃であった。
Figure JPOXMLDOC01-appb-C000175
 
(合成例Z5)p-PBIF-ALの合成
 窒素下、4-フェニルフェノール(565.1g、3.32mol、東京化成工業(株)製)及び4,4’-ジクロロメチルビフェニル(200.0g、0.80mol、東京化成工業(株)製))を、下部に抜出口のある4つ口フラスコに仕込んだ。その後、温度を上昇させると、系内が80℃で均一となり、HClの発生が始まった。100℃で3時間保持し、さらに150℃で1時間熱処理を加えた。反応で出てくるHClはそのまま系外へ揮散させ、アルカリ水でトラップした。この段階で未反応4,4’-ジクロロメチルビフェニルは残存しておらず、全て反応したことをガスクロマトグラフィで確認した。反応終了後、減圧にすることにより、系内に残存するHCl及び未反応の4-フェニルフェノールを系外へ除去した。最終的に30torrで180℃まで減圧処理することで、残存フェノールがガスクロマトグラフィで未検出になった。この反応生成物を150℃に保持しながら、フラスコの下部抜出口からその約30gを、空冷により室温に保たれたステンレスパッド上にゆっくりと滴下した。ステンレスパッド上では1分後に30℃まで急冷され、固化した重合体が得られた。重合体の熱によりステンレスパッドの表面温度が上昇しないように、固化物は取り除き、ステンレスパッドは空冷により冷却した。この空冷・固化操作を9回繰り返した。その後不純物を除去するため、重合体に1-ブタノール(重合体100gに対し300g)とトルエン(重合体100gに対し600g)を加え溶解させた。溶液を分液ロートに移し、0.5%水酸化ナトリウム水溶液(重合体100gに対し250g)で有機層を2回洗浄し、8%水酸化ナトリウム水溶液(重合体100gに対し200g)で逆抽出し、酢酸エチル(重合体100gに対し400g)と20%硫酸(重合体100gに対し108g)を加え抽出し、純水(重合体100gに対し200g)で2回洗浄した。その後濃縮・乾燥により有機溶媒を除去し、下記式で表される構造単位を有するオリゴマー(p-PBIF-AL)267.5gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は2349、分散度は1.19であった。また、粘度は0.10Pa・s、軟化点は48℃であった。
Figure JPOXMLDOC01-appb-C000176
 
(合成実施例Z5)Ac-p-PBIF-ALの合成
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に、p-PBIF-AL 5.0g、トリエチルアミン0.693g(6.90mmol)と、テトラヒドロフラン20mLとを仕込み、無水酢酸2.80g(27.4mmol)をさらに加えて、反応液を40℃にて2時間撹拌して反応を行った。次に、容器内に1%HCl水溶液を10mlと酢酸エチル20mlを添加し、その後、分液操作により、水層を除去した。次いで、濃縮により有機溶媒を除去し、乾燥させ、下記式で表される構造単位を有するオリゴマー(Ac-p-PBIF-AL)5.1gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は2250、分散度は1.24であった。
 得られたオリゴマーについてH-NMR測定を行ったところ、フェノール性水酸基を示す9.1-9.4ppm付近のピークは確認されず、反応前の水酸基の100%がAc基(アセチル基)で保護されていることが分かった。また、粘度は0.01Pa・s、軟化点は18℃であった。
Figure JPOXMLDOC01-appb-C000177
 
(合成例Z6)MPF-ALの合成
 窒素下、フェノール(311.9g、3.32mol、東京化成工業(株)製)及び1,4-ビス(クロロメチル)ベンゼン(140.0g、0.80mol、東京化成工業(株)製))を、下部に抜出口のある4つ口フラスコに仕込んだ。その後、温度を上昇させると、系内が80℃で均一となり、HClの発生が始まった。100℃で3時間保持し、さらに150℃で1時間熱処理を加えた。反応で出てくるHClはそのまま系外へ揮散させ、アルカリ水でトラップした。この段階で未反応4,4’-ジクロロメチルベンゼンは残存しておらず、全て反応したことをガスクロマトグラフィで確認した。反応終了後、減圧にすることにより、系内に残存するHCl及び未反応のフェノールを系外へ除去した。最終的に30torrで150℃まで減圧処理することで、残存フェノールがガスクロマトグラフィで未検出になった。この反応生成物を150℃に保持しながら、フラスコの下部抜出口からその約30gを、空冷により室温に保たれたステンレスパッド上にゆっくりと滴下した。ステンレスパッド上では1分後に30℃まで急冷され、固化した重合体が得られた。重合体の熱によりステンレスパッドの表面温度が上昇しないように、固化物は取り除き、ステンレスパッドは空冷により冷却した。この空冷・固化操作を9回繰り返し、下記式で表される構造単位を有するオリゴマー(MPF-AL)267.5gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は980、分散度は1.12であった。また、粘度は0.02Pa・s、軟化点は42℃であった。
Figure JPOXMLDOC01-appb-C000178
 
(合成実施例Z6)tB-MPF-ALの合成
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に、MPF-AL 5.0g、パラトルエンスルホン酸ピリジニウム塩 1.73g(6.9mmol)と、テトラヒドロフラン20mLとを仕込み、イソブテン(ca.15%テトラヒドロフラン溶液)10.2g(27.4mmol)をさらに加えて、反応液を室温で6時間撹拌して反応を行った。次に、容器内に10%炭酸ナトリウム水溶液を10mlと酢酸エチル20mlを添加し、その後、分液操作により、水層を除去した。次いで、濃縮により有機溶媒を除去し、乾燥させ、下記式で表される構造単位を有するオリゴマー(tB―MPF-AL)4.9gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は900、分散度は1.09であった。
 得られたオリゴマーについてH-NMR測定を行ったところ、フェノール性水酸基を示す9.1-9.4ppm付近のピークは確認されず、反応前の水酸基の100%がt-Bu基(ターシャリブチル基)で保護されていることが分かった。また、粘度は0.01Pa・s、軟化点は17℃であった。
Figure JPOXMLDOC01-appb-C000179
 
[実施例Z1~6、比較例Z1]
 上記の保護基を有するアラルキルオリゴマー、及び比較例Z1として、フェノールノボラック樹脂(群栄化学(株)製 PSM4357)につき、以下に示す溶解度試験及び耐熱性評価を行った。結果を表9に示す。
(溶解性評価)
 23℃にて、本実施形態のオリゴマーをプロピレングリコールモノメチルエーテルアセテート(PGMEA)に対して10質量%溶液になるよう溶解させた。その後、10℃にて30日間静置したときの溶解性を以下の基準にて評価した。
 評価A:目視にて析出物なしを確認
 評価C:目視にて析出物ありを確認
(耐熱性の評価)
 エスアイアイ・ナノテクノロジー社製EXSTAR6000TG-DTA装置を使用し、試料約5mgをアルミニウム製非密封容器に入れ、窒素ガス(300ml/min)気流中昇温速度10℃/minで500℃まで昇温することにより熱重量減少量を測定した。実用的観点からは、下記A又はB評価が好ましい。
<評価基準>
 A:400℃での熱重量減少量が、10%未満
 B:400℃での熱重量減少量が、10%~25%
 C:400℃での熱重量減少量が、25%超
[実施例Z1-1~6-3、比較例Z1-1]
 次に、表10-1及び表10-2に示す組成のリソグラフィー用下層膜形成用組成物を各々調製した。次に、これらのリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布し、その後、240℃で60秒間ベークして、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。続いて、以下の評価基準で硬化性を評価した。
[硬化性試験]
 実施例Z1-1~6-3、比較例Z1-1のリソグラフィー用下層膜形成用組成物で得られた下層膜をPGMEAに120秒浸漬させた後、110℃で60秒間ホットプレートに乾燥後の残膜状態を確認した。結果を表10-1及び表10-2に示す。
 <評価基準>
 A:残膜があることを目視確認
 C:残膜が無いことを目視確認
 酸発生剤、架橋剤及び有機溶媒については以下のものを用いた。
 酸発生剤:みどり化学株式会社製品「ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート」(表中、「DTDPI」と記載。)
     :酸発生剤:ピリジニウムパラトルエンスルホン酸(表中、「PPTS」と記載。)
 架橋剤:三和ケミカル株式会社製品「ニカラックMX270」(表中、「ニカラック」と記載。)
     本州化学工業株式会社製品「TMOM-BP」(表中、「TMOM」と記載)
 有機溶媒:PGMEA/PGME=9:1
  PGMEA:プロピレングリコールモノメチルエーテルアセテート
  PGME: 1-メトキシ-2-プロパノール
 得られた各下層膜について、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表10-1及び表10-2に示す。
[エッチング試験]
 エッチング装置:サムコインターナショナル社製品「RIE-10NR」
 出力:50W
 圧力:20Pa
 時間:2min
 エッチングガス
 Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
[エッチング耐性の評価]
 エッチング耐性の評価は、以下の手順で行った。
 まず、実施例Z1-1において用いるオリゴマーに代えてフェノールノボラック樹脂(群栄化学社製 PSM4357)を用いた以外は、実施例Z1-1と同様の条件で、フェノールノボラック樹脂を含む下層膜を作製した。そして、このフェノールノボラック樹脂を含む下層膜について上記エッチング試験を行い、そのときのエッチングレート(エッチング速度)を測定した。次に、各実施例及び比較例の下層膜について上記エッチング試験を行い、そのときのエッチングレートを測定した。そして、フェノールノボラック樹脂を含む下層膜のエッチングレートを基準として、以下の評価基準で各実施例及び比較例のエッチング耐性を評価した。
<評価基準>
 S:ノボラックの下層膜に比べてエッチングレートが、-15%未満
 A:ノボラックの下層膜に比べてエッチングレートが、-10%未満
 B:ノボラックの下層膜に比べてエッチングレートが、-10%~+5%
 C:ノボラックの下層膜に比べてエッチングレートが、+5%超
[段差基板埋め込み性の評価]
 段差基板への埋め込み性の評価は、以下の手順で行った。
 リソグラフィー用下層膜形成用組成物を膜厚80nmの60nmラインアンドスペースのSiO基板上に塗布して、400℃で60秒間ベークすることにより90nm下層膜を形成した。得られた膜の断面を切り出し、電子線顕微鏡にて観察し、段差基板への埋め込み性を評価した。結果を表11-1及び表11-2に示す。
<評価基準>
 A:60nmラインアンドスペースのSiO基板の凹凸部分に欠陥無く下層膜が埋め込まれている。
 C:60nmラインアンドスペースのSiO基板の凹凸部分に欠陥があり下層膜が埋め込まれていない。
[平坦性の評価]
 幅100nm、ピッチ150nm、深さ150nmのトレンチ(アスペクト比:1.5)及び幅5μm、深さ180nmのトレンチ(オープンスペース)が混在するSiO段差基板上に、上記得られた膜形成用組成物をそれぞれ塗布した。その後、大気雰囲気下にて、400℃で120秒間焼成して、膜厚200nmのレジスト下層膜を形成した。このレジスト下層膜の形状を走査型電子顕微鏡(日立ハイテクノロジーズ社の「S-4800」)にて観察し、トレンチ又はスペース上におけるレジスト下層膜の膜厚の最大値と最小値の差(ΔFT)を測定した。結果を表11-1及び表11-2に示す。
<評価基準>
 S:ΔFT<10nm(平坦性最良)
 A:10nm≦ΔFT<20nm(平坦性良好)
 B:20nm≦ΔFT<40nm(平坦性やや良好)
 C:40nm≦ΔFT(平坦性不良)
 
Figure JPOXMLDOC01-appb-T000180
 
Figure JPOXMLDOC01-appb-T000181
 
Figure JPOXMLDOC01-appb-T000182
 
Figure JPOXMLDOC01-appb-T000183
 
Figure JPOXMLDOC01-appb-T000184
 
[実施例Z4~9]
 上記の各実施例Z1-1~6-3で調製したリソグラフィー用下層膜形成材料の各溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚70nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。なお、ArFレジスト溶液としては、下記式(11)で表される化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。下記式(11)で表される化合物は、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。このようにして得られる生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて得た。
Figure JPOXMLDOC01-appb-C000185
 
 前記式(11)中の数字は、各構成単位の比率を示している。
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。
 得られた55nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの欠陥を観察した結果を、表12に示す。表中、「良好」とは、形成されたレジストパターンに大きな欠陥が見られなかったことを示し、「不良」とは、形成されたレジストパターンに大きな欠陥が見られたことを示す。
[比較例Z2]
 下層膜の形成を行わないこと以外は、実施例Z7と同様にして、フォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。結果を表12に示す。
Figure JPOXMLDOC01-appb-T000186
 
 表9から明らかなように、本実施形態のアラルキル構造を有するオリゴマーのいずれかを用いた実施例Z1~6は、溶解度及び耐熱性のいずれの点も良好であることが確認された。一方、フェノールノボラック樹脂を用いた比較例Z1では、耐熱性が不良であった。
 表10-1及び表10-2並びに表11-1及び表11-2から明らかなように、本実施形態のアラルキル構造を有するオリゴマーからなるリソグラフィー用下層膜形成用組成物(実施例Z1-1~実施例Z6-3)のいずれかを用いて形成された下層膜は、比較例Z1-1のフェノールノボラック樹脂からなる下層膜に比較して、硬化性、エッチング耐性に優れるだけでなく、埋込み性、及び平坦化性のいずれの点も良好であることが確認された。架橋剤及び酸発生剤を必要とせず、自己硬化することにより、特に優れた平坦性を発現することができる。
 また、表12から明らかなように、本実施形態のアラルキル構造を有するオリゴマーのいずれかを用いた実施例Z4~21では、現像後のレジストパターン形状が良好であり、大きな欠陥が見られないことが確認された。更に、各実施例Z4~21は、下層膜を形成していない比較例Z2と比較して、解像性及び感度のいずれにおいても有意に優れていることが確認された。ここで、現像後のレジストパターン形状が良好であることは、実施例Z4~21において用いたリソグラフィー用下層膜形成材料が、レジスト材料(フォトレジスト材料等)との密着性がよいことを示している。
[実施例Z22~39]
 各実施例Z1-1~6-3のリソグラフィー用下層膜形成材料の溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚80nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、上記のArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、特開2007-226170号公報の<合成例Z1>に記載の珪素原子含有ポリマーを用いた。次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、55nmL/S(1:1)のポジ型のレジストパターンを得た。その後、サムコインターナショナル社製 RIE-10NRを用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行い、続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO膜のドライエッチング加工とを順次行った。
 各々のエッチング条件は、下記に示すとおりである。
 レジストパターンのレジスト中間層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:1min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:8:2(sccm)
 レジスト中間膜パターンのレジスト下層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
 レジスト下層膜パターンのSiO膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:C12ガス流量:Cガス流量:Oガス流量
          =50:4:3:1(sccm)
[評価]
 上記のようにして得られたパターン断面(すなわち、エッチング後のSiO膜の形状)を、日立製作所株式会社製品の「電子顕微鏡(S-4800)」を用いて観察した。観察結果を表13に示す。表中、「良好」とは、形成されたパターン断面に大きな欠陥が見られなかったことを示し、「不良」とは、形成されたパターン断面に大きな欠陥が見られたことを示す。
Figure JPOXMLDOC01-appb-T000187
 
(実施例Z40) M6-PBIF-ALの酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例Z1で得られたM6-PBIF-ALをEL-MIBK(メチルイソブチルケトン)に溶解させた溶液(10質量%)を150g仕込み、攪拌しながら80℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相に分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、ELグレードのPGMEA(関東化学社製試薬)を投入し80℃に加熱しながらフラスコ内を100hPa以下に減圧することで、残留水分及びMIBKを濃縮留去した。その後、ELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたM6-PBIF-ALのPGMEA溶液を得た。
(比較例Z3) M6-PBIF-ALの超純水による精製
 蓚酸水溶液の代わりに、超純水を用いる以外は実施例Z40と同様に実施し、10質量%に濃度調整を行うことにより、M6-PBIF-ALのPGMEA溶液を得た。
 処理前のM6-PBIF-ALの10質量%PGMEA溶液、実施例Z40及び比較例Z3において得られた溶液について、各種金属含有量をICP-MSによって測定した。測定結果を表14に示す。
Figure JPOXMLDOC01-appb-T000188
 

Claims (26)

  1.  保護基を有する化合物を含む、リソグラフィー用下層膜形成用組成物。
  2.  前記化合物が、ポリフェノール、アニリン系化合物、及び樹脂よりなる群から選択される1以上を含むことを特徴とする
    請求項1に記載のリソグラフィー用下層膜形成用組成物。
  3.  前記化合物が、下記式(1)で表される化合物及び/又は樹脂を含むことを特徴とする
    請求項1又は請求項2に記載のリソグラフィー用下層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000001
     
    (式(1)中、
     Rは、各々独立して、水素原子、直鎖状、分岐状若しくは環状の炭素原子数1~30のアルキル基又は炭素原子数6~30のアリール基であり、
     Rは、炭素原子数1~60のN価の基又は単結合であり、
     Pは、各々独立して、ハロゲン原子、ニトロ基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数2~30のアルキニル基、炭素原子数6~40のアリール基、水酸基、アミノ基、水酸基の水素原子が保護基で置換された基、アミノ基の水素原子が保護基で置換された基、及びこれらの組み合わせからなる官能基よりなる群から選択され、ここで、少なくとも1つのPは、水酸基の水素原子が保護基で置換された基、或いはアミノ基の水素原子が保護基で置換された基であり、前記保護基は脱離性の保護基であってもよく、
     Xは、各々独立して、酸素原子或いは硫黄原子であるか、又は無架橋であることを表し、
     Lは、単結合、置換基を有していてもよい炭素原子数1~30の直鎖状若しくは分岐状のアルキレン基、又は無架橋であり、
     mは、各々独立して、0~9の整数であり、ここで、少なくとも1つのmは1~9の整数であり、
     Nは、1~4の整数であり、
     rは、各々独立して、0~2の整数である。)
  4.  前記化合物が、下記式(2)で表される化合物及び/又は樹脂を含むことを特徴とする
    請求項1~3のいずれか一項に記載のリソグラフィー用下層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000002
     
    (式(2)中、
     R、R、P、Lは、前記式(1)中の定義と同義であり、
     m及びmは、各々独立して、0~8の整数であり、m及びmは、各々独立して、0~9の整数であり、但し、m、m、m及びmは同時に0となることはなく、
     nは、前記式(1)中のNと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
     p~pは、前記式(1)中のrと同義である。)
  5.  前記化合物が、下記式(3)で表される化合物及び/又は樹脂を含むことを特徴とする
    請求項1に記載のリソグラフィー用下層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000003
     
    (式(3)中、
     Pは、各々独立して、ハロゲン原子、ニトロ基、炭素原子数1~30のアルキル基、炭素原子数2~30のアルケニル基、炭素原子数2~30のアルキニル基、炭素原子数6~40のアリール基、水酸基、アミノ基、水酸基の水素原子が保護基で置換された基、アミノ基の水素原子が保護基で置換された基、及びこれらの組み合わせからなる官能基よりなる群から選択され、ここで、少なくとも1つのPは、水酸基の水素原子が保護基で置換された基、或いはアミノ基の水素原子が保護基で置換された基であり、前記保護基は脱離性の保護基であってもよく、
     Arは、各々独立して、フェニレン基、ナフチレン基、アントリレン基、フェナンスリレン基、ピリレン基、フルオリレン基、ビフェニレン基、ジフェニルメチレン基又はターフェニレン基を表し、
     Rは、Arの置換基であり、各々独立に、同一の基でも異なる基でもよく、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数1~30のアシル基、置換基を有していてもよい炭素原子数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素原子数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
     Xは、直鎖或いは分岐のアルキレン基、又は酸素原子を表し、
     nは、0~500の整数を示し、
     rは、各々独立して、1~3の整数を示し、
     rは、0~2の整数を示し、
     pは、各々独立して、正の整数を表し、
     qは、正の整数を表す。)
  6.  前記式(3)で表される化合物及び/又は樹脂が、下記式(3-1A)或いは下記式(3-1B)で表される
    請求項5に記載のリソグラフィー用下層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000004
     
    Figure JPOXMLDOC01-appb-C000005
     
    (式(3-1A)及び(3-1B)中、Ar、R、p、q、r、r、nは前記式(3)中の定義と同義であり、
     Pは、各々独立して、水素原子、又は保護基であり、ここで少なくとも1つのPは、前記保護基であり、前記保護基は脱離性の保護基であってもよい。)
  7.  前記式(3-1A)或いは下記式(3-1B)で表される化合物及び/又は樹脂が、下記式(3-2A)或いは下記式(3-2B)で表される
    請求項6に記載のリソグラフィー用下層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000006
     
    Figure JPOXMLDOC01-appb-C000007
     
    (式(3-2A)及び(3-2B)中、Ar、P、R、p、q、r、nは前記式(3-1A)或いは式(3-1B)中の定義と同義である。)
  8.  前記式(3)で表される化合物及び/又は樹脂が、下記式(3-10A)或いは下記式(3-10B)で表される
    請求項5に記載のリソグラフィー用下層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000008
     
    Figure JPOXMLDOC01-appb-C000009
     
    (式(3-10A)及び(3-10B)中、Ar、R、p、q、r、nは前記式(3)中の定義と同義であり、
     Pは、各々独立して、水素原子、又は保護基であり、ここで少なくとも1つのPは、前記保護基であり、前記保護基は脱離性の保護基であってもよい。)
  9.  前記式(3)で表される化合物及び/又は樹脂が、下記式(3-11A)或いは下記式(3-11B)で表される
    請求項5に記載のリソグラフィー用下層膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000010
     
    Figure JPOXMLDOC01-appb-C000011
     
    (式(3-11A)及び(3-11B)中、Ar、R、p、q、r、nは前記式(3)中の定義と同義であり、
     Pは、各々独立して、水素原子、又は保護基であり、ここで少なくとも1つのPは、前記保護基であり、前記保護基は脱離性の保護基であってもよい。)
  10.  前記保護基が、誘起効果或いは共鳴効果によって分子の特定の位置の電子密度を下げる電子吸引性保護基であり、
     電子吸引性保護基が、カルボニル系保護基、スルホニル系保護基、及びアシル系保護基よりなる群から選択される1以上であることを特徴とする
    請求項1~9のいずれか一項に記載のリソグラフィー用下層膜形成用組成物。
  11.  前記電子吸引性保護基が、置換若しくは無置換の炭素原子数2~20のアルキルカルボニル基、置換若しくは無置換の炭素原子数6~20のアリールカルボニル基、置換若しくは無置換の炭素原子数2~20のアルコキシカルボニル基、置換若しくは無置換の炭素原子数1~10のアルキルスルホニル基、置換若しくは無置換の炭素原子数6~20のアリールスルホニル基、及び置換若しくは無置換の炭素原子数2~13のアシル基よりなる群から選択される1以上であることを特徴とする
    請求項10に記載のリソグラフィー用下層膜形成用組成物。
  12.  前記電子吸引性保護基が、アセチル基、トリフルオロアセチル基、ベンゾイル基、メシル基、ノシル基、及びトリフラート基よりなる群から選択される1以上であることを特徴とする
    請求項10に記載のリソグラフィー用下層膜形成用組成物。
  13.  前記保護基が、誘起効果或いは共鳴効果によって分子の特定の位置の電子密度を高める電子供与性保護基であり、
     前記電子供与性保護基が、アルキル系保護基、ベンジル系保護基、アセタール系保護基、トリチル系保護基、シリル系保護基、及びグリシジル基よりなる群から選択される1以上であることを特徴とする
    請求項1~9のいずれか一項に記載のリソグラフィー用下層膜形成用組成物。
  14.  前記電子供与性保護基が、置換若しくは無置換の炭素原子数1~20のアルキル基、置換若しくは無置換の炭素原子数7~20のベンジル基、置換若しくは無置換の炭素原子数2~20のアルコキシアルキル基、置換若しくは無置換の炭素原子数2~20のテトラヒドロピラニル基、置換若しくは無置換の炭素原子数2~20のアルキルチオアルキル基、置換若しくは無置換の炭素原子数19~30のトリチル基、置換若しくは無置換の炭素原子数3~20のシリル基、及びグリシジル基よりなる群から選択される1以上であることを特徴とする
    請求項13に記載のリソグラフィー用下層膜形成用組成物。
  15.  前記電子供与性保護基が、メチル基、ターシャリブチル基、ノルマルヘキシル基、オクチル基、エトキシエチル基、エトキシプロピル基、及びグリシジル基よりなる群から選択される1以上であることを特徴とする
    請求項13に記載のリソグラフィー用下層膜形成用組成物。
  16.  前記化合物が、500~10,000の重量平均分子量を有する
    請求項1~15のいずれか一項に記載のリソグラフィー用下層膜形成用組成物。
  17.  前記化合物において、分子量が500未満である低分子量成分の重量比率が1%未満である
    請求項1~16のいずれか一項に記載のリソグラフィー用下層膜形成用組成物。
  18.  酸発生剤をさらに含有する
    請求項1~17のいずれか一項に記載のリソグラフィー用下層膜形成用組成物。
  19.  架橋剤をさらに含有する
    請求項1~18のいずれか一項に記載のリソグラフィー用下層膜形成用組成物。
  20.  請求項1~19のいずれか一項に記載のリソグラフィー用下層膜形成用組成物で使用される前記化合物及び/又は樹脂。
  21.  請求項1~19のいずれか一項に記載のリソグラフィー用下層膜形成用組成物を用いて得られるリソグラフィー用下層膜。
  22.  基板上に、請求項1~19のいずれか一項に記載のリソグラフィー用下層膜形成用組成物を用いて下層膜を形成する工程、
     前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程、及び
     前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程、
    を含む、レジストパターン形成方法。
  23.  基板上に、請求項1~19のいずれか一項に記載のリソグラフィー用下層膜形成用組成物を用いて下層膜を形成する工程、
     前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程、
     前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程、
     前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程、
     前記レジストパターンをマスクとして前記中間層膜をエッチングする工程、
     得られた前記中間層膜パターンをエッチングマスクとして前記下層膜をエッチングする工程、及び
     得られた前記下層膜パターンをエッチングマスクとして前記基板をエッチングすることで前記基板にパターンを形成する工程、
    を含む、回路パターン形成方法。
  24.  請求項1~19のいずれか一項に記載のリソグラフィー用下層膜形成用組成物を、段差を有する基板に適用することを含む、リソグラフィー用下層膜の形成方法。
  25.  前記リソグラフィー用下層膜形成用組成物の粘度が、0.01~1.00Pa・sである、請求項24に記載の形成方法。
  26.  前記リソグラフィー用下層膜形成用組成物の軟化点が、-50~100℃である、請求項24に又は25記載の形成方法。
     
PCT/JP2021/028785 2020-08-14 2021-08-03 リソグラフィー用下層膜形成用組成物、下層膜及びパターン形成方法 WO2022034831A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/021,160 US20230324801A1 (en) 2020-08-14 2021-08-03 Underlayer film forming composition for lithography, underlayer film, and pattern formation method
KR1020227042349A KR20230051123A (ko) 2020-08-14 2021-08-03 리소그래피용 하층막형성용 조성물, 하층막 및 패턴 형성방법
CN202180055739.0A CN116157436A (zh) 2020-08-14 2021-08-03 光刻用下层膜形成用组合物、下层膜和图案形成方法
JP2022542814A JPWO2022034831A1 (ja) 2020-08-14 2021-08-03

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020137095 2020-08-14
JP2020-137095 2020-08-14
JP2020204846 2020-12-10
JP2020-204846 2020-12-10
JP2020204895 2020-12-10
JP2020-204895 2020-12-10

Publications (1)

Publication Number Publication Date
WO2022034831A1 true WO2022034831A1 (ja) 2022-02-17

Family

ID=80247878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028785 WO2022034831A1 (ja) 2020-08-14 2021-08-03 リソグラフィー用下層膜形成用組成物、下層膜及びパターン形成方法

Country Status (6)

Country Link
US (1) US20230324801A1 (ja)
JP (1) JPWO2022034831A1 (ja)
KR (1) KR20230051123A (ja)
CN (1) CN116157436A (ja)
TW (1) TW202219642A (ja)
WO (1) WO2022034831A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186254A1 (ja) * 2021-03-02 2022-09-09 三菱瓦斯化学株式会社 リソグラフィー用膜形成材料、組成物、リソグラフィー用下層膜、及びパターン形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041626A1 (ja) * 2008-10-10 2010-04-15 日産化学工業株式会社 フルオレンを含有する樹脂を含むリソグラフィー用レジスト下層膜形成組成物
JP2010271654A (ja) * 2009-05-25 2010-12-02 Shin-Etsu Chemical Co Ltd レジスト下層膜材料及びこれを用いたパターン形成方法
JP2015018220A (ja) * 2013-06-11 2015-01-29 信越化学工業株式会社 下層膜材料及びパターン形成方法
JP2020184067A (ja) * 2019-04-30 2020-11-12 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC レジスト下層組成物及び当該組成物を用いたパターン形成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3981030B2 (ja) 2003-03-07 2007-09-26 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法
JP4388429B2 (ja) 2004-02-04 2009-12-24 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法
KR101907481B1 (ko) 2011-08-12 2018-10-12 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 리소그래피용 하층막 형성재료, 리소그래피용 하층막 및 패턴형성방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041626A1 (ja) * 2008-10-10 2010-04-15 日産化学工業株式会社 フルオレンを含有する樹脂を含むリソグラフィー用レジスト下層膜形成組成物
JP2010271654A (ja) * 2009-05-25 2010-12-02 Shin-Etsu Chemical Co Ltd レジスト下層膜材料及びこれを用いたパターン形成方法
JP2015018220A (ja) * 2013-06-11 2015-01-29 信越化学工業株式会社 下層膜材料及びパターン形成方法
JP2020184067A (ja) * 2019-04-30 2020-11-12 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC レジスト下層組成物及び当該組成物を用いたパターン形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186254A1 (ja) * 2021-03-02 2022-09-09 三菱瓦斯化学株式会社 リソグラフィー用膜形成材料、組成物、リソグラフィー用下層膜、及びパターン形成方法

Also Published As

Publication number Publication date
CN116157436A (zh) 2023-05-23
KR20230051123A (ko) 2023-04-17
JPWO2022034831A1 (ja) 2022-02-17
TW202219642A (zh) 2022-05-16
US20230324801A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
US10444628B2 (en) Compound for forming organic film, composition for forming organic film, method for forming organic film, and patterning process
US9372404B2 (en) Organic film composition, method for forming organic film and patterning process using this, and heat-decomposable polymer
US7981594B2 (en) Hardmask composition having antirelective properties and method of patterning material on susbstrate using the same
US11036134B2 (en) High etch resistance spin-on carbon hard mask composition and patterning method using same
KR20120073819A (ko) 하드마스크 조성물, 이를 사용한 패턴 형성 방법 및 반도체 집적회로 디바이스의 제조 방법
TWI826475B (zh) 微影用膜形成材料、微影用膜形成用組成物、微影用下層膜及圖型形成方法
JP7406590B2 (ja) 重合体
KR20060046143A (ko) 반사방지막 형성용 조성물, 그 반사방지막 형성용 조성물로이루어지는 반사방지막, 및 그 반사방지막 형성용조성물을 사용한 레지스트 패턴 형성방법
KR100819162B1 (ko) 반사방지성을 갖는 하드마스크 조성물 및 이를 이용한재료의 패턴화 방법
JPWO2020039966A1 (ja) リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
WO2022034831A1 (ja) リソグラフィー用下層膜形成用組成物、下層膜及びパターン形成方法
JP6889873B2 (ja) リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
WO2021112194A1 (ja) リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、レジストパターン形成方法及び、回路パターン形成方法、オリゴマー、及び、精製方法
EP3923074B1 (en) Resist underlayer film material, patterning process, and method for forming resist underlayer film
WO2020241576A1 (ja) リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法および精製方法
EP3879341B1 (en) Material for forming organic film, method for forming organic film, patterning process, and compound
KR101693612B1 (ko) 하드마스크 조성물용 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
US20230161258A1 (en) Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, and patterning process
EP4191336A1 (en) Resist underlayer film material, patterning process, and method for forming resist underlayer film
JPWO2018155377A1 (ja) レジストプロセス用膜形成材料、パターン形成方法及びポリシロキサン
JP7258279B2 (ja) リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
KR101482997B1 (ko) 하드마스크용 덴드리머 화합물 및 이를 포함하는 하드마스크 조성물
WO2024005194A1 (ja) ポリフェノール化合物、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜、及びパターン形成方法
TW202411187A (zh) 多酚化合物、微影用膜形成用組成物、微影用下層膜及圖型形成方法
TW202328287A (zh) 旋塗碳膜形成用組成物、旋塗碳膜形成用組成物之製造方法、微影用下層膜、阻劑圖型形成方法,及電路圖型形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022542814

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855910

Country of ref document: EP

Kind code of ref document: A1