JP6889873B2 - リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法 - Google Patents

リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法 Download PDF

Info

Publication number
JP6889873B2
JP6889873B2 JP2020517233A JP2020517233A JP6889873B2 JP 6889873 B2 JP6889873 B2 JP 6889873B2 JP 2020517233 A JP2020517233 A JP 2020517233A JP 2020517233 A JP2020517233 A JP 2020517233A JP 6889873 B2 JP6889873 B2 JP 6889873B2
Authority
JP
Japan
Prior art keywords
lithography
film
mass
group
forming material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020517233A
Other languages
English (en)
Other versions
JPWO2020105694A1 (ja
Inventor
正大 山根
正大 山根
山田 弘一
弘一 山田
淳矢 堀内
淳矢 堀内
牧野嶋 高史
高史 牧野嶋
越後 雅敏
雅敏 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of JPWO2020105694A1 publication Critical patent/JPWO2020105694A1/ja
Application granted granted Critical
Publication of JP6889873B2 publication Critical patent/JP6889873B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/44Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members
    • C07D207/444Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5
    • C07D207/448Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide
    • C07D207/452Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide with hydrocarbon radicals, substituted by hetero atoms, directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0233Polyamines derived from (poly)oxazolines, (poly)oxazines or having pendant acyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/123Unsaturated polyimide precursors the unsaturated precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/126Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/126Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic
    • C08G73/127Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08L79/085Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C09D179/085Unsaturated polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0752Silicon-containing compounds in non photosensitive layers or as additives, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials For Photolithography (AREA)
  • Pyrrole Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

本発明は、リソグラフィー用膜形成材料、該材料を含有するリソグラフィー用膜形成用組成物、該組成物を用いて形成されるリソグラフィー用下層膜及び該組成物を用いるパターン形成方法(例えば、レジストパターン方法又は回路パターン方法)に関する。
半導体デバイスの製造において、フォトレジスト材料を用いたリソグラフィーによる微細加工が行われている。近年、LSIの高集積化と高速度化に伴い、パターンルールによる更なる微細化が求められている。そして、現在汎用技術として用いられている光露光を用いたリソグラフィーにおいては、光源の波長に由来する本質的な解像度の限界に近づきつつある。
レジストパターン形成の際に使用するリソグラフィー用の光源は、KrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化されている。しかしながら、レジストパターンの微細化が進むと、解像度の問題若しくは現像後にレジストパターンが倒れるといった問題が生じてくるため、レジストの薄膜化が望まれるようになる。ところが、単にレジストの薄膜化を行うと、基板加工に十分なレジストパターンの膜厚を得ることが難しくなる。そのため、レジストパターンだけではなく、レジストと加工する半導体基板との間にレジスト下層膜を作製し、このレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になってきている。
現在、このようなプロセス用のレジスト下層膜として、種々のものが知られている。例えば、従来のエッチング速度の速いレジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、所定のエネルギーが印加されることにより末端基が脱離してスルホン酸残基を生じる置換基を少なくとも有する樹脂成分と溶媒とを含有する多層レジストプロセス用下層膜形成材料が提案されている(特許文献1参照。)。また、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、特定の繰り返し単位を有する重合体を含むレジスト下層膜材料が提案されている(特許文献2参照。)。さらに、半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、アセナフチレン類の繰り返し単位と、置換又は非置換のヒドロキシ基を有する繰り返し単位とを共重合してなる重合体を含むレジスト下層膜材料が提案されている(特許文献3参照。)。
一方、この種のレジスト下層膜において高いエッチング耐性を持つ材料としては、メタンガス、エタンガス、アセチレンガス等を原料に用いたCVDによって形成されたアモルファスカーボン下層膜がよく知られている。
また、本発明者らは、光学特性及びエッチング耐性に優れるとともに、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構成単位を含むナフタレンホルムアルデヒド重合体及び有機溶媒を含有するリソグラフィー用下層膜形成組成物(特許文献4及び5参照。)を提案している。
なお、3層プロセスにおけるレジスト下層膜の形成において用いられる中間層の形成方法に関しては、例えば、シリコン窒化膜の形成方法(特許文献6参照。)や、シリコン窒化膜のCVD形成方法(特許文献7参照。)が知られている。また、3層プロセス用の中間層材料としては、シルセスキオキサンベースの珪素化合物を含む材料が知られている(特許文献8及び9参照。)。
特許文献10には、(A)アルカリ可溶性バインダーポリマー、(B)光重合性化合物、(C)光重合開始剤、(D)マレイン酸誘導体を含む感光性樹脂組成が開示されており、(D)マレイン酸誘導体の一つとして、式(5a)で表されるポリマレイミドが挙げられている。上記感光性樹脂組成物は、感度、解像性及び基板との密着性の全ての特性に優れているとされている。
Figure 0006889873
[式中、R51は単結合、アルキレン基、アリーレン基、オキシ基、カルボニル基、エステル基、カーボネート基及びウレタン基からなる群より選ばれる少なくとも1つの基から構成される2価の有機基を示し、R91及びR92はそれぞれ独立に、水素原子、炭素数1〜10のアルキル基、炭素数3〜10のシクロアルキル基、アリール基、アルコキシ基又はハロゲン原子を示し、qは1〜(R51の結合可能な結合手の数)の整数、また、R91とR92とは一緒になってイミド基の3位及び4位の炭素と共に5員環又は6員環構造を構成する2価の基を形成してもよい。]
特許文献11には、シアン酸エステル化合物(A)及び下記式(1)で表されるビスマレイミド化合物(B)を含有する樹脂組成物が開示されており、当該樹脂組成物は、耐熱性、ピール強度及び熱膨張係数に優れるプリント配線板を実現し得るとされている。
Figure 0006889873
特許文献12には、カルボキシル基含有変性エステル樹脂(A)、エポキシ基含有化合物、イソシアネート基含有化合物、およびブロック化イソシアネート基含有化合物からなる群より選ばれる少なくとも一種である化合物(B)、および熱硬化助剤(C)を含む熱硬化性樹脂組成物が開示されている。また、上記熱硬化助剤(C)の例として、マレイミド化合物、シトラコンイミド化合物が挙げられている。上記感光性樹脂組成物は、接着性、耐熱性、可撓性、屈曲性、密着性、電気絶縁性、耐湿熱性等、とりわけ接着性と電気絶縁性の両立、屈曲性と耐熱性の両立という点で非常に優れているとされている。
特開2004−177668号公報 特開2004−271838号公報 特開2005−250434号公報 国際公開第2009/072465号 国際公開第2011/034062号 特開2002−334869号公報 国際公開第2004/066377号 特開2007−226170号公報 特開2007−226204号公報 特開2005−141084号公報 特開2017−071738号公報 特開2012−131967号公報
上述したように、従来数多くのリソグラフィー用膜形成材料が提案されている。しかしながら、スピンコート法やスクリーン印刷等の湿式プロセスが適用可能な高い溶媒溶解性に加えて、耐熱性、エッチング耐性、段差基板への埋め込み特性及び膜の平坦性を高い次元で両立させたものはなく、新たな材料の開発が求められている。
特許文献10には式(5a)で表されるポリマレイミドを用いること、特許文献11には式(1)で表されるビスマレイミド化合物を用いること、及び、特許文献12にはマレイミド化合物、シトラコンイミド化合物を用いることが開示されているが、いずれの文献にも、湿式プロセスが適用可能であり、耐熱性、エッチング耐性、段差基板への埋め込み特性及び膜の平坦性に優れるフォトレジスト下層膜を形成するために有用なリソグラフィー用膜形成材料を得るための指針は示されていない。
本発明は、上述の課題を鑑みてなされたものであり、その目的は、湿式プロセスが適用可能であり、耐熱性、エッチング耐性、段差基板への埋め込み特性及び膜の平坦性に優れるフォトレジスト下層膜を形成するために有用な、リソグラフィー用膜形成材料、該材料を含有するリソグラフィー用膜形成用組成物、並びに、該組成物を用いたリソグラフィー用下層膜及びパターン形成方法を提供することにある。
本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、特定構造を有する化合物を用いることにより、前記課題を解決できることを見出し、本発明を完成するに到った。すなわち、本発明は次のとおりである。
[1]
式(0A)の基:
Figure 0006889873
及び
式(0B)の基:
Figure 0006889873
(式(0B)中、
Rは、それぞれ独立して、水素原子及び炭素数1〜4のアルキル基からなる群より選ばれる。ただし、少なくとも一つのRは、炭素数1〜4のアルキル基である。)を有する化合物
を含むリソグラフィー用膜形成材料。
[2]
前記化合物が、式(1A0)で表される、[1]に記載のリソグラフィー用膜形成材料。
Figure 0006889873
(式(1A0)中、
Rは、それぞれ独立して、水素原子及び炭素数1〜4のアルキル基からなる群より選ばれる。ただし、少なくとも一つのRは、炭素数1〜4のアルキル基である。
Zは、ヘテロ原子を含んでいてもよい炭素数1〜100の2価の基である)
[3]
前記化合物が、式(1A)で表される、[1]又は[2]に記載のリソグラフィー用膜形成材料。
Figure 0006889873
(式(1A)中、
Rは、それぞれ独立して、水素原子及び炭素数1〜4のアルキル基からなる群より選ばれる。ただし、少なくとも一つのRは、炭素数1〜4のアルキル基である。
Xは、それぞれ独立して、単結合、−O−、−CH2−、−C(CH32−、−CO−、−C(CF32−、−CONH−及び−COO−からなる群より選ばれ、
Aは、単結合、酸素原子、及びヘテロ原子を含んでいてもよい炭素数1〜80の二価の基からなる群より選ばれ、
1は、それぞれ独立して、ヘテロ原子を含んでいてもよい炭素数0〜30の基であり、
m1は、それぞれ独立して、0〜4の整数である)
[4]
Aが、単結合、酸素原子、−(CH2p−、−CH2C(CH32CH2−、−(C(CH32p−、−(O(CH2qp−、−(О(C64))p−、又は以下の構造のいずれかであり、
Figure 0006889873
Yが、単結合、−O−、−CH2−、−C(CH32−、−C(CF32−、
Figure 0006889873
であり、
pは0〜20の整数であり、
qは0〜4の整数である、
[3]に記載のリソグラフィー用膜形成材料。
[5]
Xが、それぞれ独立に、単結合、−O−、−C(CH32−、−CO−、又は−COO−であり、
Aが、単結合、酸素原子、又は以下の構造であり、
Figure 0006889873
Yが、−C(CH32−又は−C(CF32−である、
[3]又は[4]に記載のリソグラフィー用膜形成材料。
[6]
前記化合物が、式(2A)で表される、[1]又は[2]に記載のリソグラフィー用膜形成材料。
Figure 0006889873
(式(2A)中、
R’は、それぞれ独立して、水素原子及び炭素数1〜4のアルキル基からなる群より選ばれ、
2は、それぞれ独立して、ヘテロ原子を含んでいてもよい炭素数0〜10の基であり、
m2は、それぞれ独立して、0〜3の整数であり、
m2’は、それぞれ独立して、0〜4の整数であり、
nは、0〜4の整数である。
複数の
Figure 0006889873
で表される基は、少なくとも式(0A)の基及び式(0B)の基を含む。)
[7]
前記化合物が、式(3A)で表される、[1]又は[2]に記載のリソグラフィー用膜形成材料。
Figure 0006889873
(式(3A)中、
R’は、それぞれ独立して、水素原子及び炭素数1〜4のアルキル基からなる群より選ばれ、
3及びR4は、それぞれ独立して、ヘテロ原子を含んでいてもよい炭素数0〜10の基であり、
m3は、それぞれ独立して、0〜4の整数であり、
m4は、それぞれ独立して、0〜4の整数であり、
nは、1〜4の整数である。
複数の
Figure 0006889873
で表される基は、少なくとも式(0A)の基及び式(0B)の基を含む。)
[8]
ヘテロ原子が、酸素、フッ素、及びケイ素からなる群より選ばれる、[2]〜[5]のいずれかに記載のリソグラフィー用膜形成材料。
[9]
架橋剤をさらに含有する、[1]〜[8]のいずれかに記載のリソグラフィー用膜形成材料。
[10]
前記架橋剤が、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物及びアジド化合物からなる群より選ばれる少なくとも1種である、[9]に記載のリソグラフィー用膜形成材料。
[11]
前記架橋剤が、少なくとも1つのアリル基を有する、[9]又は[10]に記載のリソグラフィー用膜形成材料。
[12]
前記架橋剤の含有割合が、前記化合物の質量を100質量部とした場合に、0.1〜100質量部である、[9]〜[11]のいずれかに記載のリソグラフィー用膜形成材料。
[13]
架橋促進剤をさらに含有する、[1]〜[12]のいずれかに記載のリソグラフィー用膜形成材料。
[14]
前記架橋促進剤が、アミン類、イミダゾール類、有機ホスフィン類、及びルイス酸からなる群より選ばれる少なくとも1種を含む、[13]に記載のリソグラフィー用膜形成材料。
[15]
前記架橋促進剤の含有割合が、前記化合物の質量を100質量部とした場合に、0.1〜5質量部である、[13]又は[14]に記載のリソグラフィー用膜形成材料。
[16]
ラジカル重合開始剤をさらに含有する、[1]〜[15]のいずれかに記載のリソグラフィー用膜形成材料。
[17]
前記ラジカル重合開始剤が、ケトン系光重合開始剤、有機過酸化物系重合開始剤及びアゾ系重合開始剤からなる群より選ばれる少なくとも1種を含む、[16]に記載のリソグラフィー用膜形成材料。
[18]
前記ラジカル重合開始剤の含有割合が、前記化合物の質量を100質量部とした場合に、0.05〜25質量部である、[16]又は[17]に記載のリソグラフィー用膜形成材料。
[19]
[1]〜[18]のいずれかに記載のリソグラフィー用膜形成材料と溶媒とを含有する、リソグラフィー用膜形成用組成物。
[20]
酸発生剤をさらに含有する、[19]に記載のリソグラフィー用膜形成用組成物。
[21]
塩基性化合物をさらに含有する、[19]又は[20]に記載のリソグラフィー用膜形成用組成物。
[22]
前記リソグラフィー用膜がリソグラフィー用下層膜である、[19]〜[21]のいずれかに記載のリソグラフィー用膜形成用組成物。
[23]
[22]に記載のリソグラフィー用膜形成用組成物を用いて形成される、リソグラフィー用下層膜。
[24]
基板上に、[22]に記載のリソグラフィー用膜形成用組成物を用いて下層膜を形成する工程、
該下層膜上に、少なくとも1層のフォトレジスト層を形成する工程、及び
該フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程、
を含む、レジストパターン形成方法。
[25]
基板上に、[22]に記載のリソグラフィー用膜形成用組成物を用いて下層膜を形成する工程、
該下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程、
該中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程、
該フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程、
該レジストパターンをマスクとして前記中間層膜をエッチングする工程、
得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングする工程、及び、
得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程、
を含む、パターン形成方法。
[26]
[1]〜[18]のいずれかに記載のリソグラフィー用膜形成材料を、溶媒に溶解させて有機相を得る工程と、
前記有機相と酸性の水溶液とを接触させて、前記リソグラフィー用膜形成材料中の不純物を抽出する第一抽出工程と、
を含み、
前記有機相を得る工程で用いる溶媒が、水と任意に混和しない溶媒を含む、精製方法。
[27]
前記酸性の水溶液が、鉱酸水溶液又は有機酸水溶液であり、
前記鉱酸水溶液が、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上を含み、
前記有機酸水溶液が、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p−トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上を含む、[26]に記載の精製方法。
[28]
前記水と任意に混和しない溶媒が、トルエン、2−ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート及び酢酸エチルからなる群より選ばれる1種以上の溶媒である、[26]又は[27]に記載の精製方法。
[29]
前記第一抽出工程後、前記有機相を、水に接触させて、前記リソグラフィー用膜形成材料中の不純物を抽出する第二抽出工程をさらに含む、[26]〜[28]のいずれかに記載の精製方法。
本発明によれば、湿式プロセスが適用可能であり、耐熱性、エッチング耐性、段差基板への埋め込み特性及び膜の平坦性に優れ、フォトレジスト下層膜を形成するために有用な、リソグラフィー用膜形成材料、該材料を含有するリソグラフィー用膜形成用組成物、並びに、該組成物を用いたリソグラフィー用下層膜及びパターン形成方法を提供することができる。
以下、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
[リソグラフィー用膜形成材料]
本実施形態の一つは、
式(0A)の基:
Figure 0006889873
及び
式(0B)の基:
Figure 0006889873
(式(0B)中、
Rは、それぞれ独立して、水素原子及び炭素数1〜4のアルキル基からなる群より選ばれる。ただし、少なくとも一つのRは、炭素数1〜4のアルキル基である。)を有する化合物
を含むリソグラフィー用膜形成材料である。
式(0A)の基及び式(0B)の基を有する化合物(以下、本明細書において「シトラマレイミド化合物」ということがある。)は、1以上の式(0A)の基及び1以上の式(0B)の基を有することが好ましい。シトラマレイミド化合物は、例えば、分子内に1個以上の第1級アミノ基を有する化合物と、無水マレイン酸及び無水シトラコン酸との脱水閉環反応により得ることができる。シトラマレイミド化合物としては、例えば、ポリシトラマレイミド化合物及びシトラマレイミド樹脂を挙げることができる。
また、本発明のリソグラフィー用膜形成材料は、少なくとも、式(0A)の基及び式(0B)の基を有する化合物を含んでいればよく、その他の、式(0A)の基を有する化合物、及び/又は式(0B)の基を有する化合物を含んでいてもよい。
式(0A)の基を有する化合物としては、分子内に式(0A)の基を2つ有する化合物が挙げられ、式(0B)の基を有する化合物としては、分子内に式(0B)の基を2つ有する化合物が挙げられる。
本実施形態のリソグラフィー用膜形成材料中の、シトラマレイミド化合物の含有量は、耐熱性及びエッチング耐性の観点から、51〜100質量%であることが好ましく、60〜100質量%であることがより好ましく、70〜100質量%であることがさらに好ましく、80〜100質量%であることがよりさらに好ましい。
本実施形態のリソグラフィー用膜形成材料中のシトラマレイミド化合物は従来の下層膜形成組成物の耐熱性を向上させるために添加剤として使用することもできる。その場合のシトラマレイミド化合物の含有量としては、1〜50質量%が好ましく、1〜30質量%がより好ましい。
本実施形態のリソグラフィー用膜形成材料中のシトラマレイミド化合物はリソグラフィー用膜形成用の酸発生剤あるいは塩基性化合物としての機能以外を有することを特徴とする。
本実施形態におけるシトラマレイミド化合物の分子量は450以上であることが好ましい。分子量が450以上であることにより、薄膜形成時における高温ベークによっても昇華物あるいは分解物の生成が抑制される。分子量は、より好ましくは500以上であり、さらに好ましくは550以上であり、よりさらに好ましくは600以上である。分子量の上限は特に限定されないが、例えば、2000、1750、1500、1250、1000等としてもよい。
本実施形態におけるシトラマレイミド化合物は、下記式(1A0)で表される化合物であることがより好ましい。
Figure 0006889873
(式(1A0)中、
Rは、それぞれ独立して、水素原子及び炭素数1〜4のアルキル基からなる群より選ばれる。ただし、少なくとも一つのRは、炭素数1〜4のアルキル基である。
Zは、ヘテロ原子を含んでいてもよい炭素数1〜100の2価の炭化水素基である。)
本発明のリソグラフィー用膜形成材料は、上述したように、シトラマレイミド化合物に加えて、その他の、式(0A)の基を有する化合物、及び/又は式(0B)の基を有する化合物を含んでいてもよい。
式(0A)の基を有する化合物、式(0B)の基を有する化合物としては、例えば、それぞれ、以下の構造で表されるビスマレイミド及びビスシトラコンイミドである。
Figure 0006889873
(上記構造中、Zは、式(1A0)におけるZと同義であり、後述する式(1A)中のヘテロ原子を含んでいてもよい炭素数1〜100の2価の炭化水素基部分に対応する。)
炭化水素基の炭素数は、1〜80、1〜60、1〜40、1〜20等であってもよい。ヘテロ原子としては、酸素、窒素、硫黄、フッ素、ケイ素等を挙げることができ、これらの中でも、酸素、フッ素、及びケイ素が好ましい。
本実施形態におけるシトラマレイミド化合物は、下記式(1A)で表される化合物であることがより好ましい。
Figure 0006889873
式(1A)中、
Rは、それぞれ独立して、水素原子及び炭素数1〜4のアルキル基からなる群より選ばれる。ただし、少なくとも一つのRは、炭素数1〜4のアルキル基である。
Xは、それぞれ独立に、単結合、−O−、−CH2−、−C(CH32−、−CO−、−C(CF32−、−CONH−及び−COO−からなる群より選ばれ、
Aは、単結合、酸素原子、及びヘテロ原子(例えば、酸素、窒素、硫黄、フッ素)を含んでいてもよい炭素数1〜80の二価の炭化水素基からなる群より選ばれ、
1は、それぞれ独立して、ヘテロ原子(例えば、酸素、窒素、硫黄、フッ素、塩素、臭素、ヨウ素)を含んでいてもよい炭素数0〜30の基であり、
m1は、それぞれ独立して、0〜4の整数である。
より好ましくは、耐熱性向上の観点から、式(1A)中、Aは、単結合、酸素原子、−(CH2p−、−CH2C(CH32CH2−、−(C(CH32p−、−(O(CH2qp−、−(О(C64))p−、又は以下の構造のいずれかであり、
Figure 0006889873
Yは、単結合、−O−、−CH2−、−C(CH32−、−C(CF32−、
Figure 0006889873
であり、
pは0〜20の整数であり、
qは0〜4の整数である。
さらに好ましくは、式(1A)中、
Xは、それぞれ独立に、単結合、−O−、−C(CH32−、−CO−、又は−COO−であり、
Aは、単結合、酸素原子、又は以下の構造であり、
Figure 0006889873
Yは、−C(CH32−又は−C(CF32−である。
Xは、耐熱性の観点から、単結合であることが好ましく、溶解性の観点から、−COO−であることが好ましい。
Yは、耐熱性向上の観点から、単結合であることが好ましい。
1は、ヘテロ原子(例えば、酸素、窒素、硫黄、フッ素、塩素、臭素、ヨウ素)を含んでいてもよい炭素数0〜20又は0〜10の基であることが好ましい。R1は、有機溶媒への溶解性向上の観点から、炭化水素基であることが好ましい。例えば、R1として、アルキル基(例えば、炭素数1〜6又は1〜3のアルキル基)等が挙げられ、具体的にはメチル基、エチル基等が挙げられる。
m1は、0〜2の整数であることが好ましく、原料入手性及び溶解性向上の観点から、1又は2であることがより好ましい。
耐熱性向上の観点から、本実施形態におけるシトラマレイミド化合物は、下記式(2A)又は下記式(3A)で表される化合物であることが好ましい。また、下記式(2A)又は下記式(3A)で表される化合物は、少なくとも1個の下記式(0B’)の基:
Figure 0006889873
を有することがより好ましい。
Figure 0006889873
前記式(2)中、
R’は、それぞれ独立して、水素原子及び炭素数1〜4のアルキル基からなる群より選ばれ、
2は、それぞれ独立して、ヘテロ原子(例えば、酸素、窒素、硫黄、フッ素、塩素、臭素、ヨウ素)を含んでいてもよい炭素数0〜10の基である。また、R2は、有機溶媒への溶解性向上の観点から、炭化水素基であることが好ましい。例えば、R2として、アルキル基(例えば、炭素数1〜6又は1〜3のアルキル基)等が挙げられ、具体的にはメチル基、エチル基等が挙げられる。
m2は、それぞれ独立して、0〜3の整数である。また、m2は、0又は1であることが好ましく、原料入手性の観点から、0であることがより好ましい。
m2’はそれぞれ独立に、0〜4の整数である。また、m2’は、0又は1であることが好ましく、原料入手性の観点から、0であることがより好ましい。
nは、0〜4の整数である。また、nは、1〜4の整数であることが好ましく、耐熱性向上の観点から、1〜3の整数であることがより好ましい。
また、nが1以上であることにより、昇華物の原因となりうる単量体が除去され、平坦性と耐熱性の両立が期待でき、nが1であることがより好ましい。
複数の
Figure 0006889873
で表される基は、少なくとも式(0A)の基及び式(0B)の基を含む。
Figure 0006889873
前記式(3A)中、
R’は、それぞれ独立して、水素原子及び炭素数1〜4のアルキル基からなる群より選ばれ、
3及びR4は、それぞれ独立して、ヘテロ原子(例えば、酸素、窒素、硫黄、フッ素、塩素、臭素、ヨウ素)を含んでいてもよい炭素数0〜10の基である。また、R3及びR4は、有機溶媒への溶解性向上の観点から、炭化水素基であることが好ましい。例えば、R3及びR4として、アルキル基(例えば、炭素数1〜6又は1〜3のアルキル基)等が挙げられ、具体的にはメチル基、エチル基等が挙げられる。
m3はそれぞれ独立に0〜4の整数である。また、m3は、0〜2の整数であることが好ましく、原料入手性の観点から、0であることがより好ましい。
m4はそれぞれ独立に、0〜4の整数である。また、m4は、0〜2の整数であることが好ましく、原料入手性の観点から、0であることがより好ましい。
nは、1〜4の整数である。また、nは、原料入手性の観点から、1〜2の整数であることが好ましい。さらに、nは、耐熱性向上の観点から、2〜4の整数であることが好ましい。
また、nが2以上であることにより、昇華物の原因となりうる単量体が除去され、平坦性と耐熱性の両立が期待でき、nが2であることがより好ましい。
本実施形態のリソグラフィー用膜形成材料は、湿式プロセスへの適用が可能である。また、本実施形態のリソグラフィー用膜形成材料は、芳香族構造を有しており、また剛直なマレイミド骨格及びシトラコンイミド骨格を有しており、単独でも高温ベークによって、そのマレイミド基及びシトラコンイミド基が架橋反応を起こし、高い耐熱性を発現する。その結果、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性に優れた下層膜を形成することができる。さらに、本実施形態のリソグラフィー用膜形成材料は、芳香族構造を有しているにも関わらず、有機溶媒に対する溶解性が高く、安全溶媒に対する溶解性が高い。さらに、後述する本実施形態のリソグラフィー用膜形成用組成物からなるリソグラフィー用下層膜は段差基板への埋め込み特性及び膜の平坦性に優れ、製品品質の安定性が良好であるだけでなく、レジスト層やレジスト中間層膜材料との密着性にも優れるので、優れたレジストパターンを得ることができる。
本実施形態で使用されるにおけるシトラマレイミド化合物としては、具体的には、m−フェニレンジアミン、4−メチル−1,3−フェニレンジアミン、4,4−ジアミノジフェニルメタン、4,4−ジアミノジフェニルスルホン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン等のフェニレン骨格含有ビスアミンから得られるシトラマレイミド;
ビス(3−エチル−5−メチル−4−アミノフェニル)メタン、1,1−ビス(3−エチル−5−メチル−4−アミノフェニル)エタン、2,2−ビス(3−エチル−5−メチル−4−アミノフェニル)プロパン、N,N'−4,4'−ジアミノ3,3'−ジメチル−ジフェニルメタン、N,N'−4,4'−ジアミノ3,3'−ジメチル−1,1−ジフェニルエタン、N,N'−4,4'−ジアミノ3,3'−ジメチル−1,1−ジフェニルプロパン、N,N'−4,4'−ジアミノ−3,3'−ジエチル−ジフェニルメタン、N,N'−4,4'−ジアミノ3,3'−ジn−プロピル−ジフェニルメタン、N,N'−4,4'−ジアミノ3,3'−ジn−ブチル−ジフェニルメタン等のジフェニルアルカン骨格含有ビスアミンから得られるシトラマレイミド;
N,N'−4,4'−ジアミノ3,3'−ジメチル−ビフェニレン、N,N'−4,4'−ジアミノ3,3'−ジエチル−ビフェニレン等のビフェニル骨格含有ビスアミンから得られるシトラマレイミド;
1,6−ヘキサンジアミン、1,6-ビスアミノ(2,2,4−トリメチル)ヘキサン、1,3−ジメチレンシクロヘキサンジアミン、1,4−ジメチレンシクロヘキサンジアミン等の脂肪族骨格ビスアミンから得られるシトラマレイミド;
1,3−ビス(3−アミノプロピル)−1,1,2,2−テトラメチルジシロキサン、1,3−ビス(3−アミノブチル)−1,1,2,2−テトラメチルジシロキサン、ビス(4−アミノフェノキシ)ジメチルシラン、1,3−ビス(4−アミノフェノキシ)テトラメチルジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(4−アミノフェニル)ジシロキサン、1,1,3,3−テトラフェノキシ−1,3−ビス(2−アミノエチル)ジシロキサン、1,1,3,3−テトラフェニル−1,3−ビス(2−アミノエチル)ジシロキサン、1,1,3,3−テトラフェニル−1,3−ビス(3−アミノプロピル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(2−アミノエチル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(3−アミノプロピル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(4−アミノブチル)ジシロキサン、1,3−ジメチル−1,3−ジメトキシ−1,3−ビス(4−アミノブチル)ジシロキサン、1,1,3,3,5,5−ヘキサメチル−1,5−ビス(4−アミノフェニル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメトキシ−1,5−ビス(4−アミノブチル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメトキシ−1,5−ビス(5−アミノペンチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(2−アミノエチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(4−アミノブチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(5−アミノペンチル)トリシロキサン、1,1,3,3,5,5−ヘキサメチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,3,3,5,5−ヘキサエチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,3,3,5,5−ヘキサプロピル−1,5−ビス(3−アミノプロピル)トリシロキサン等のジアミノシロキサンから得られるシトラマレイミド;等が挙げられる。
上記シトラマレイミド化合物の中でも特にビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、N,N'−4,4'−[3,3'−ジメチル−ジフェニルメタン]シトラコンイミドマレイミド、N,N'−4,4'−[3,3'−ジエチルジフェニルメタン]シトラコンイミドマレイミドが、硬化性や耐熱性にも優れるため、好ましい。
上記ビスシトラコンイミド化合物の中でも特にビス(3−エチル−5−メチル−4−シトラコンイミドフェニル)メタン、N,N'−4,4'−[3,3'−ジメチル−ジフェニルメタン]シトラコンイミドマレイミド、N,N'−4,4'−[3,3'−ジエチルジフェニルメタン]シトラコンイミドマレイミドが、溶剤溶解性に優れるため、好ましい。
<架橋剤>
本実施形態のリソグラフィー用膜形成材料は、式(0A)の基及び式(0B)の基を有する化合物に加え、硬化温度の低下やインターミキシングを抑制する等の観点から、必要に応じて架橋剤を含有していてもよい。
架橋剤としてはマレイミド基及びシトラコンイミド基と架橋反応すれば特に限定されず、公知のいずれの架橋システムを適用できる。本実施形態で使用可能な架橋剤としては、特に限定されず、例えば、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、アクリレート化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物、アジド化合物等が挙げられる。これらの架橋剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。これらの中でもベンゾオキサジン化合物、エポキシ化合物又はシアネート化合物が好ましく、エッチング耐性向上の観点から、ベンゾオキサジン化合物がより好ましい。
マレイミド基及びシトラコンイミド基と、架橋剤との架橋反応では、例えば、これらの架橋剤が有する活性基(フェノール性水酸基、エポキシ基、シアネート基、アミノ基、又はベンゾオキサジンの脂環部位が開環してなるフェノール性水酸基)が、マレイミド基及びシトラコンイミド基を構成する炭素−炭素二重結合と付加反応して架橋する他、本実施形態における化合物が有する2つの炭素−炭素二重結合が重合して架橋する。
前記フェノール化合物としては、公知のものが使用できる。例えば、国際公開2018−016614号に記載のものが挙げられる。好ましくは、耐熱性及び溶解性の点から、アラルキル型フェノール樹脂が望ましい。
前記エポキシ化合物としては、公知のものが使用でき、1分子中にエポキシ基を2個以上有するものの中から選択される。例えば、国際公開2018−016614号に記載のものが挙げられる。エポキシ樹脂は、単独でもよいし、2種以上を併用してもよい。好ましくは、耐熱性と溶解性という点から、フェノールアラルキル樹脂類、ビフェニルアラルキル樹脂類から得られるエポキシ樹脂等の常温で固体状エポキシ樹脂である。
前記シアネート化合物としては、1分子中に2個以上のシアネート基を有する化合物であれば特に制限なく、公知のものを使用することができる。例えば、国際公開2011−108524に記載されているものが挙げられるが、本実施形態において、好ましいシアネート化合物としては、1分子中に2個以上の水酸基を有する化合物の水酸基をシアネート基に置換した構造のものが挙げられる。また、シアネート化合物は、芳香族基を有するものが好ましく、シアネート基が芳香族基に直結した構造のものを好適に使用することができる。このようなシアネート化合物としては、例えば、国際公開2018−016614号に記載のものが挙げられる。シアネート化合物は、単独で又は2種以上を適宜組み合わせて使用してもよい。また、シアネート化合物は、モノマー、オリゴマー及び樹脂のいずれの形態であってもよい。
前記アミノ化合物としては、例えば、国際公開2018−016614号に記載のものが挙げられる。
前記ベンゾオキサジン化合物のオキサジンの構造は特に限定されず、ベンゾオキサジンやナフトオキサジン等の、縮合多環芳香族基を含む芳香族基を有するオキサジンの構造が挙げられる。
ベンゾオキサジン化合物としては、例えば下記一般式(a)〜(f)に示す化合物が挙げられる。なお下記一般式において、環の中心に向けて表示されている結合は、環を構成しかつ置換基の結合が可能ないずれかの炭素に結合していることを示す。
Figure 0006889873
一般式(a)〜(c)中、R及びRは独立して炭素数1〜30の有機基を表す。また一般式(a)〜(f)中、R乃至Rは独立して水素又は炭素数1〜6の炭化水素基を表す。また前記一般式(c)、(d)及び(f)中、Xは独立して、単結合、−O−、−S−、−S−S−、−SO2−、−CO−、−CONH−、−NHCO−、−C(CH32−、−C(CF32−、−(CH2)m−、−O−(CH2)m−O−、−S−(CH2)m−S−を表す。ここでmは1〜6の整数である。また一般式(e)及び(f)中、Yは独立して、単結合、−O−、−S−、−CO−、−C(CH32−、−C(CF32−又は炭素数1〜3のアルキレンを表す。
また、ベンゾオキサジン化合物には、オキサジン構造を側鎖に有するオリゴマーやポリマー、ベンゾオキサジン構造を主鎖中に有するオリゴマーやポリマーが含まれる。
ベンゾオキサジン化合物は、国際公開2004/009708号パンフレット、特開平11−12258号公報、特開2004−352670号公報に記載の方法と同様の方法で製造することができる。
前記メラミン化合物としては、例えば、国際公開2018−016614号に記載のものが挙げられる。
前記グアナミン化合物としては、例えば、国際公開2018−016614号に記載のものが挙げられる。
前記グリコールウリル化合物としては、例えば、国際公開2018−016614号に記載のものが挙げられる。
前記ウレア化合物としては、例えば、国際公開2018−016614号に記載のものが挙げられる。
また、本実施形態において、架橋性向上の観点から、少なくとも1つのアリル基を有する架橋剤を用いてもよい。少なくとも1つのアリル基を有する架橋剤としては、例えば、国際公開2018−016614号に記載のものが挙げられる。少なくとも1つのアリル基を有する架橋剤は単独でも、2種類以上の混合物であってもよい。化合物0A及び化合物0Bとの相溶性に優れるという観点から、2,2−ビス(3−アリル−4−ヒドロキシフェニル)プロパン、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(3−アリル−4−ヒドロキシフェニル)プロパン、ビス(3−アリル−4−ヒドロキシフェニル)スルホン、ビス(3−アリル−4−ヒドロキシフェニル)スルフィド、ビス(3−アリル−4−ヒドロキシフェニル)エ−テル等のアリルフェノール類が好ましい。
本実施形態のリソグラフィー用膜形成材料は単独で、あるいは前記架橋剤を配合させた後、公知の方法で架橋、硬化させて、本実施形態のリソグラフィー用膜を形成することができる。架橋方法としては、熱硬化、光硬化等の手法が挙げられる。
前記架橋剤の含有割合は、通常、前記シトラマレイミド化合物の質量を100質量部とした場合に、0.1〜10000質量部の範囲であり、好ましくは耐熱性及び溶解性の観点から0.1〜1000質量部の範囲であり、より好ましくは0.1〜100質量部の範囲であり、さらに好ましくは1〜50質量部の範囲であり、よりさらに好ましくは1〜30質量部の範囲である。
本実施形態のリソグラフィー用膜形成材料には、必要に応じて架橋反応、硬化反応を促進させるための架橋促進剤を用いることができる。
前記架橋促進剤としては、架橋、硬化反応を促進させるものであれば、特に限定されないが、例えば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等が挙げられる。これらの架橋促進剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。これらの中でもイミダゾール類又は有機ホスフィン類が好ましく、架橋温度の低温化の観点から、イミダゾール類がより好ましい。
前記架橋促進剤としては、例えば、国際公開2018−016614号に記載のものが挙げられる。
架橋促進剤の配合量としては、通常、式(0A)の基及び式(0B)の基を有する化合物の質量を100質量部とした場合に、好ましくは0.01〜10質量部の範囲であり、より好ましくは、制御のし易さ及び経済性の観点から、0.01〜5質量部の範囲であり、さらに好ましくは0.01〜3質量部の範囲である。
本実施形態のリソグラフィー用膜形成材料には、必要に応じて架橋反応、硬化反応を促進させるための潜在型の塩基発生剤を用いることができる。潜在型塩基発生剤とは、通常の保管条件では活性を示さないが、外部刺激(例えば、熱、光等)に応答して活性を示す硬化促進剤である。塩基発生剤としては、熱分解によって塩基を発生するもの、光照射によって塩基を発生するもの(光塩基発生剤)等が知られており、いずれも使用することができる。
光塩基発生剤は、電磁波に露光することによって塩基を生成する中性化合物である。アミンが発生するものとしては、例えば、ベンジルカルバメート類、ベンゾインカルバメート類、0−カルバモイルヒドロキシアミン類、O−カルバモイルオキシム類等、及び、RR’−N−CO−OR”(ここで、R、R’は、それぞれ独立して水素または低級アルキルであり、R”はニトロベンジルまたはαメチル・ニトロベンジルである。)が挙げられる。特に、溶液に添加した際の保存安定性を確保し、低い蒸気圧に起因したベーク時の揮発を抑制するため、三級アミンを発生するボレート化合物または、ジチオカルバメートをアニオンとして含む四級アンモニウム塩(C.E.Hoyle,et.al.,Macromolucules,32,2793(1999))等が好ましい。
前記、潜在型塩基発生剤の具体例としては、例えば、以下のものをあげることができるが、本発明は、何らこれらに限定されるものではない。
(ヘキサアンミンルテニウム(III)トリフェニルアルキルボレートの例)
ヘキサアンミンルテニウム(III)トリス(トリフェニルメチルボレート)、ヘキサアンミンルテニウム(III)トリス(トリフェニルエチルボレート)、ヘキサアンミンルテニウム(III)トリス(トリフェニルプロピルボレート)、ヘキサアンミンルテニウム(III)トリス(トリフェニルブチルボレート)、ヘキサアンミンルテニウム(III)トリス(トリフェニルヘキシルボレート)、ヘキサアンミンルテニウム(III)トリス(トリフェニルオクチルボレート)、ヘキサアンミンルテニウム(III)トリス(トリフェニルオクタデシルボレート)、ヘキサアンミンルテニウム(III)トリス(トリフェニルイソプロピルボレート)、ヘキサアンミンルテニウム(III)トリス(トリフェニルイソブチルボレート)、ヘキサアンミンルテニウム(III)トリス(トリフェニル−sec−ブチルボレート)、ヘキサアンミンルテニウム(III)トリス(トリフェニル−tert−ブチルボレート)、ヘキサアンミンルテニウム(III)トリス(トリフェニルネオペンチルボレート)等。
(ヘキサアンミンルテニウム(III)トリフェニルボレートの例)
ヘキサアンミンルテニウム(III)トリス(トリフェニルシクロペンチルボレート)、ヘキサアンミンルテニウム(III)トリス(トリフェニルシクロヘキシルボレート)、ヘキサアンミンルテニウム(III)トリス[トリフェニル(4−デシルシクロヘキシル)ボレート]、ヘキサアンミンルテニウム(III)トリス[トリフェニル(フルオロメチル)ボレート]、ヘキサアンミンルテニウム(III)トリス[トリフェニル(クロロメチル)ボレート]、ヘキサアンミンルテニウム(III)トリス[トリフェニル(ブロモメチル)ボレート]、ヘキサアンミンルテニウム(III)トリス[トリフェニル(トリフルオロメチル)ボレート]、ヘキサアンミンルテニウム(III)トリス[トリフェニル(トリクロロメチル)ボレート]、ヘキサアンミンルテニウム(III)トリス[トリフェニル(ヒドロキシメチル)ボレート]、ヘキサアンミンルテニウム(III)トリス[トリフェニル(カルボキシメチル)ボレート]、ヘキサアンミンルテニウム(III)トリス[トリフェニル(シアノメチル)ボレート]、ヘキサアンミンルテニウム(III)トリス[トリフェニル(ニトロメチル)ボレート]、ヘキサアンミンルテニウム(III)トリス[トリフェニル(アジドメチル)ボレート]等。
(ヘキサアンミンルテニウム(III)トリアリールブチルボレートの例)
ヘキサアンミンルテニウム(III)トリス[トリス(1−ナフチル)ブチルボレート]、ヘキサアンミンルテニウム(III)トリス[トリス(2−ナフチル)ブチルボレート]、ヘキサアンミンルテニウム(III)トリス[トリス(o−トリル)ブチルボレート]、ヘキサアンミンルテニウム(III)トリス[トリス(m−トリル)ブチルボレート]、ヘキサアンミンルテニウム(III)トリス[トリス(p−トリル)ブチルボレート]、ヘキサアンミンルテニウム(III)トリス[トリス(2,3−キシリル)ブチルボレート]、ヘキサアンミンルテニウム(III)トリス[トリス(2,5−キシリル)ブチルボレート]等。
(ルテニウム(III)トリス(トリフェニルブチルボレート)の例)
トリス(エチレンジアミン)ルテニウム(III)トリス(トリフェニルブチルボレート)、cis−ジアンミンビス(エチレンジアミン)ルテニウム(III)トリス(トリフェニルブチルボレート)、trans−ジアンミンビス(エチレンジアミン)ルテニウム(III)トリス(トリフェニルブチルボレート)、トリス(トリメチレンジアミン)ルテニウム(III)トリス(トリフェニルブチルボレート)、トリス(プロピレンジアミン)ルテニウム(III)トリス(トリフェニルブチルボレート)、テトラアンミン{(−)(プロピレンジアミン)}ルテニウム(III)トリス(トリフェニルブチルボレート)、トリス(trans−1,2−シクロヘキサンジアミン)ルテニウム(III)トリス(トリフェニルブチルボレート)、ビス(ジエチレントリアミン)ルテニウム(III)トリス(トリフェニルブチルボレート)、ビス(ピリジン)ビス(エチレンジアミン)ルテニウム(III)トリス(トリフェニルブチルボレート)、ビス(イミダゾール)ビス(エチレンジアミン)ルテニウム(III)トリス(トリフェニルブチルボレート)等。
上記潜在型塩基発生剤は、各々の錯イオンのハロゲン塩、硫酸塩、硝酸塩、酢酸塩等と、アルカリ金属ボレート塩とを、水、アルコールもしくは含水有機溶剤等の適当な溶媒中で、混和することで容易に製造可能である。これら原料となる各々の錯イオンのハロゲン塩、硫酸塩、硝酸塩、酢酸塩等は、市販品として容易に入手可能である他、例えば、日本化学会編、新実験化学講座8(無機化合物の合成III)、丸善(1977年)等に、その合成法が記載されている。
潜在型の塩基発生剤の含有量としては、前記マレイミド化合物の質量に対して化学量論的に必要な量であればよいが、前記マレイミド化合物の質量を100質量部とした場合に0.01〜25質量部であることが好ましく、0.01〜10質量部であることがより好ましい。潜在型の塩基発生剤の含有量が0.01質量部以上である場合には、マレイミド化合物の硬化が不十分となることを防ぐことができる傾向にあり、他方、潜在型の塩基発生剤開始剤の含有量が25質量部以下である場合には、リソグラフィー用膜形成材料の室温での長期保存安定性が損なわれることを防ぐことができる傾向にある。
<ラジカル重合開始剤>
本実施形態のリソグラフィー用膜形成材料には、必要に応じてラジカル重合開始剤を配合することができる。ラジカル重合開始剤としては、光によりラジカル重合を開始させる光重合開始剤であってもよいし、熱によりラジカル重合を開始させる熱重合開始剤であってもよい。
このようなラジカル重合開始剤としては、例えば、国際公開2018−016614号に記載のものが挙げられる。ラジカル重合開始剤としては、例えば、ケトン系光重合開始剤、有機過酸化物系重合開始剤及びアゾ系重合開始剤等が挙げられる。本実施形態におけるラジカル重合開始剤としては、1種を単独で用いても2種以上を組み合わせて用いてもよい。
前記ラジカル重合開始剤の含有量としては、前記シトラマレイミド化合物の質量に対して化学量論的に必要な量であればよいが、前記マレイミド化合物の質量を100質量部とした場合に0.05〜25質量部であることが好ましく、0.1〜10質量部であることがより好ましい。ラジカル重合開始剤の含有量が0.05質量部以上である場合には、マレイミド化合物の硬化が不十分となることを防ぐことができる傾向にあり、他方、ラジカル重合開始剤の含有量が25質量部以下である場合には、リソグラフィー用膜形成材料の室温での長期保存安定性が損なわれることを防ぐことができる傾向にある。
[リソグラフィー用膜形成材料の精製方法]
本実施形態のリソグラフィー用膜形成材料は酸性水溶液で洗浄して精製することが可能である。前記精製方法は、リソグラフィー用膜形成材料を水と任意に混和しない有機溶媒に溶解させて有機相を得て、その有機相を酸性水溶液と接触させ抽出処理(第一抽出工程)を行うことにより、リソグラフィー用膜形成材料と有機溶媒とを含む有機相に含まれる金属分を水相に移行させたのち、有機相と水相とを分離する工程を含む。該精製により本実施形態のリソグラフィー用膜形成材料の種々の金属の含有量を著しく低減させることができる。
水と任意に混和しない前記有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。使用する有機溶媒の量は、使用する該化合物に対して、通常1〜100質量倍程度使用される。
使用される有機溶媒の具体例としては、例えば、国際公開2015/080240に記載のものが挙げられる。これらの中でも、トルエン、2−ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等が好ましく、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートがより好ましい。これらの有機溶媒はそれぞれ単独で用いることもでき、また2種以上を混合して用いることもできる。
前記酸性の水溶液としては、一般に知られる有機、無機系化合物を水に溶解させた水溶液の中から適宜選択され、例えば、国際公開2015/080240に記載のものが挙げられる。これら酸性の水溶液は、それぞれ単独で用いることもでき、また2種以上を組み合わせて用いることもできる。酸性の水溶液としては、例えば、鉱酸水溶液及び有機酸水溶液を挙げることができる。鉱酸水溶液としては、例えば、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上を含む水溶液を挙げることができる。有機酸水溶液としては、例えば、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p−トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上を含む水溶液を挙げることができる。また、酸性の水溶液としては、硫酸、硝酸、及び酢酸、蓚酸、酒石酸、クエン酸等のカルボン酸の水溶液が好ましく、硫酸、蓚酸、酒石酸、クエン酸の水溶液がより好ましく、蓚酸の水溶液がさらに好ましい。蓚酸、酒石酸、クエン酸等の多価カルボン酸は金属イオンに配位し、キレート効果が生じるために、より金属を除去できると考えられる。また、ここで用いる水は、本発明の目的に沿って、金属含有量の少ないもの、例えばイオン交換水等が好ましい。
前記酸性の水溶液のpHは特に制限されないが、水溶液の酸性度があまり大きくなると、使用する化合物又は樹脂に悪影響を及ぼすため、通常pH0〜5程度であり、より好ましくはpH0〜3程度である。
前記酸性の水溶液の使用量は特に制限されないが、その量があまりに少ないと、金属除去のための抽出回数多くする必要があり、逆に水溶液の量があまりに多いと全体の液量が多くなり操作上の問題を生ずることがある。水溶液の使用量は、通常、リソグラフィー用膜形成材料の溶液に対して10〜200質量部であり、好ましくは20〜100質量部である。
前記酸性の水溶液と、リソグラフィー用膜形成材料及び水と任意に混和しない有機溶媒を含む溶液(B)とを接触させることにより金属分を抽出することができる。
前記抽出処理を行う際の温度は通常、20〜90℃であり、好ましくは30〜80℃の範囲である。抽出操作は、例えば、撹拌等により、よく混合させたあと、静置することにより行われる。これにより、使用する該化合物と有機溶媒を含む溶液に含まれていた金属分が水相に移行する。また本操作により、溶液の酸性度が低下し、使用する該化合物の変質を抑制することができる。
抽出処理後、使用する該化合物及び有機溶媒を含む溶液相と、水相とに分離させ、デカンテーション等により有機溶媒を含む溶液を回収する。静置する時間は特に制限されないが、静置する時間があまりに短いと有機溶媒を含む溶液相と水相との分離が悪くなり好ましくない。通常、静置する時間は1分間以上であり、より好ましくは10分間以上であり、さらに好ましくは30分間以上である。また、抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。
酸性の水溶液を用いてこのような抽出処理を行った場合は、処理を行ったあとに、該水溶液から抽出し、回収した有機溶媒を含む有機相は、さらに水との抽出処理(第二抽出工程)を行うことが好ましい。抽出操作は、撹拌等により、よく混合させたあと、静置することにより行われる。そして得られる溶液は、化合物と有機溶媒とを含む溶液相と、水相とに分離するのでデカンテーション等により溶液相を回収する。また、ここで用いる水は、本発明の目的に沿って、金属含有量の少ないもの、例えばイオン交換水等が好ましい。抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に制限されないが、先の酸性の水溶液との接触処理の場合と同様で構わない。
こうして得られた、リソグラフィー用膜形成材料と有機溶媒とを含む溶液に混入する水分は減圧蒸留等の操作を施すことにより容易に除去できる。また、必要により有機溶媒を加え、化合物の濃度を任意の濃度に調整することができる。
得られた有機溶媒を含む溶液から、リソグラフィー用膜形成材料のみを得る方法は、減圧除去、再沈殿による分離、及びそれらの組み合わせ等、公知の方法で行うことができる。必要に応じて、濃縮操作、ろ過操作、遠心分離操作、乾燥操作等の公知の処理を行うことができる。
[リソグラフィー用膜形成用組成物]
本実施形態のリソグラフィー用膜形成用組成物は、前記リソグラフィー用膜形成材料と溶媒とを含有する。リソグラフィー用膜は、例えば、リソグラフィー用下層膜である。
本実施形態のリソグラフィー用膜形成用組成物は、基材に塗布し、その後、必要に応じて加熱して溶媒を蒸発させた後、加熱又は光照射して所望の硬化膜を形成することができる。本実施形態のリソグラフィー用膜形成用組成物の塗布方法は任意であり、例えば、スピンコート法、ディップ法、フローコート法、インクジェット法、スプレー法、バーコート法、グラビアコート法、スリットコート法、ロールコート法、転写印刷法、刷毛塗り、ブレードコート法、エアーナイフコート法等の方法を適宜採用できる。
前記膜の加熱温度は、溶媒を蒸発させる目的では特に限定されず、例えば、40〜400℃で行うことができる。加熱方法としては、特に限定されるものではなく、例えば、ホットプレートやオーブンを用いて、大気、窒素等の不活性ガス、真空中等の適切な雰囲気下で蒸発させればよい。加熱温度及び加熱時間は、目的とする電子デバイスのプロセス工程に適合した条件を選択すればよく、得られる膜の物性値が電子デバイスの要求特性に適合するような加熱条件を選択すればよい。光照射する場合の条件も特に限定されるものではなく、用いるリソグラフィー用膜形成材料に応じて、適宜な照射エネルギー及び照射時間を採用すればよい。
<溶媒>
本実施形態のリソグラフィー用膜形成用組成物に用いる溶媒としては、前記シトラマレイミド化合物が少なくとも溶解するものであれば、特に限定されず、公知のものを適宜用いることができる。
溶媒の具体例としては、例えば、国際公開2013/024779に記載のものが挙げられる。これらの溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
前記溶媒の中で、安全性の点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、ヒドロキシイソ酪酸メチル、アニソールが特に好ましい。
前記溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、リソグラフィー用膜形成用材料中のマレイミド化合物の質量を100質量部とした場合に、25〜9,900質量部であることが好ましく、400〜7,900質量部であることがより好ましく、900〜4,900質量部であることがさらに好ましい。
<酸発生剤>
本実施形態のリソグラフィー用膜形成用組成物は、架橋反応をさらに促進させる等の観点から、必要に応じて酸発生剤を含有していてもよい。酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するもの等が知られているが、いずれのものも使用することができる。
酸発生剤としては、例えば、国際公開2013/024779に記載のものが挙げられる。これらのなかでも、特に、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、1,2'−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩;ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体;ビス−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−(n−ブタンスルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体、ビスナフチルスルホニルメタン等のビススルホン誘導体;N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体等が好ましく用いられる。
本実施形態のリソグラフィー用膜形成用組成物において、酸発生剤の含有量は、特に限定されないが、リソグラフィー用膜形成材料中のマレイミド化合物の質量を100質量部とした場合に、0〜50質量部であることが好ましく、より好ましくは0〜40質量部である。上述の好ましい範囲にすることで、架橋反応が高められる傾向にあり、また、レジスト層とのミキシング現象の発生が抑制される傾向にある。
<塩基性化合物>
さらに、本実施形態のリソグラフィー用下層膜形成用組成物は、保存安定性を向上させる等の観点から、塩基性化合物を含有していてもよい。
前記塩基性化合物は、酸発生剤より微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、以下に限定されないが、例えば、国際公開2013−024779に記載されている、第一級、第二級又は第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体又はイミド誘導体等が挙げられる。
本実施形態のリソグラフィー用膜形成用組成物において、塩基性化合物の含有量は、特に限定されないが、リソグラフィー用膜形成材料中のマレイミド化合物の質量を100質量部とした場合に、0〜2質量部であることが好ましく、より好ましくは0〜1質量部である。上述の好ましい範囲にすることで、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。
さらに、本実施形態のリソグラフィー用膜形成用組成物は、公知の添加剤を含有していてもよい。公知の添加剤としては、以下に限定されないが、例えば、紫外線吸収剤、消泡剤、着色剤、顔料、ノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤等が挙げられる。
[リソグラフィー用下層膜及びレジストパターンの形成方法]
本実施形態のリソグラフィー用下層膜は、本実施形態のリソグラフィー用膜形成用組成物を用いて形成される。
また、本実施形態のレジストパターン形成方法は、基板上に、本実施形態のリソグラフィー用膜形成用組成物を用いて下層膜を形成する工程(A−1)と、前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A−2)と、前記工程(A−2)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程(A−3)と、を含む。
さらに、本実施形態の一つはパターン形成方法であり、当該パターン形成方法は、基板上に、本実施形態のリソグラフィー用膜形成用組成物を用いて下層膜を形成する工程(B−1)と、前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程(B−2)と、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B−3)と、前記工程(B−3)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B−4)と、前記工程(B−4)の後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B−5)と、を含む。
本実施形態のリソグラフィー用下層膜は、本実施形態のリソグラフィー用膜形成用組成物から形成されるものであれば、その形成方法は特に限定されず、公知の手法を適用することができる。例えば、本実施形態のリソグラフィー用膜形成用組成物をスピンコートやスクリーン印刷等の公知の塗布法或いは印刷法等で基板上に付与した後、有機溶媒を揮発させる等して除去することで、下層膜を形成することができる。
下層膜の形成時には、上層レジストとのミキシング現象の発生を抑制するとともに架橋反応を促進させるために、ベークをすることが好ましい。この場合、ベーク温度は、特に限定されないが、80〜450℃の範囲内であることが好ましく、より好ましくは200〜400℃である。また、ベーク時間も、特に限定されないが、10〜300秒間の範囲内であることが好ましい。なお、下層膜の厚さは、要求性能に応じて適宜選定することができ、特に限定されないが、通常、30〜20,000nmであることが好ましく、より好ましくは50〜15,000nmであり、さらに好ましくは50〜1000nmである。
基板上に下層膜を作製した後、2層プロセスの場合はその上に珪素含有レジスト層、或いは通常の炭化水素からなる単層レジスト、3層プロセスの場合はその上に珪素含有中間層、さらにその上に珪素を含まない単層レジスト層を作製することが好ましい。この場合、このレジスト層を形成するためのフォトレジスト材料としては公知のものを使用することができる。
2層プロセス用の珪素含有レジスト材料としては、酸素ガスエッチング耐性の観点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、さらに有機溶媒、酸発生剤、必要により塩基性化合物等を含むポジ型のフォトレジスト材料が好ましく用いられる。ここで珪素原子含有ポリマーとしては、この種のレジスト材料において用いられている公知のポリマーを使用することができる。
3層プロセス用の珪素含有中間層としてはポリシルセスキオキサンベースの中間層が好ましく用いられる。中間層に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。例えば、193nm露光用プロセスにおいて、下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなる傾向にあるが、中間層で反射を抑えることによって、基板反射を0.5%以下にすることができる。このような反射防止効果がある中間層としては、以下に限定されないが、193nm露光用としてはフェニル基又は珪素−珪素結合を有する吸光基を導入された、酸或いは熱で架橋するポリシルセスキオキサンが好ましく用いられる。
また、Chemical Vapour Deposition(CVD)法で形成した中間層を用いることもできる。CVD法で作製した反射防止膜としての効果が高い中間層としては、以下に限定されないが、例えば、SiON膜が知られている。一般的には、CVD法よりスピンコート法やスクリーン印刷等の湿式プロセスによる中間層の形成の方が、簡便でコスト的なメリットがある。なお、3層プロセスにおける上層レジストは、ポジ型でもネガ型でもどちらでもよく、また、通常用いられている単層レジストと同じものを用いることができる。
さらに、本実施形態の下層膜は、通常の単層レジスト用の反射防止膜或いはパターン倒れ抑制のための下地材として用いることもできる。本実施形態の下層膜は、下地加工のためのエッチング耐性に優れるため、下地加工のためのハードマスクとしての機能も期待できる。
前記フォトレジスト材料によりレジスト層を形成する場合においては、前記下層膜を形成する場合と同様に、スピンコート法やスクリーン印刷等の湿式プロセスが好ましく用いられる。また、レジスト材料をスピンコート法等で塗布した後、通常、プリベークが行われるが、このプリベークは、80〜180℃で10〜300秒の範囲で行うことが好ましい。その後、常法にしたがい、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行うことで、レジストパターンを得ることができる。なお、レジスト膜の厚さは特に制限されないが、一般的には、30〜500nmが好ましく、より好ましくは50〜400nmである。
また、露光光は、使用するフォトレジスト材料に応じて適宜選択して用いればよい。一般的には、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3〜20nmの軟X線、電子ビーム、X線等を挙げることができる。
上述の方法により形成されるレジストパターンは、本実施形態の下層膜によってパターン倒れが抑制されたものとなる。そのため、本実施形態の下層膜を用いることで、より微細なパターンを得ることができ、また、そのレジストパターンを得るために必要な露光量を低下させ得る。
次に、得られたレジストパターンをマスクにしてエッチングを行う。2層プロセスにおける下層膜のエッチングとしては、ガスエッチングが好ましく用いられる。ガスエッチングとしては、酸素ガスを用いたエッチングが好適である。酸素ガスに加えて、He、Ar等の不活性ガスや、CO、CO2、NH3、SO2、N2、NO2、H2ガスを加えることも可能である。また、酸素ガスを用いずに、CO、CO2、NH3、N2、NO2、H2ガスだけでガスエッチングを行うこともできる。特に後者のガスは、パターン側壁のアンダーカット防止のための側壁保護のために好ましく用いられる。
一方、3層プロセスにおける中間層のエッチングにおいても、ガスエッチングが好ましく用いられる。ガスエッチングとしては、上述の2層プロセスにおいて説明したものと同様のものが適用可能である。とりわけ、3層プロセスにおける中間層の加工は、フロン系のガスを用いてレジストパターンをマスクにして行うことが好ましい。その後、上述したように中間層パターンをマスクにして、例えば酸素ガスエッチングを行うことで、下層膜の加工を行うことができる。
ここで、中間層として無機ハードマスク中間層膜を形成する場合は、CVD法やALD法等で、珪素酸化膜、珪素窒化膜、珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、以下に限定されないが、例えば、特開2002−334869号公報(特許文献6)、WO2004/066377(特許文献7)に記載された方法を用いることができる。このような中間層膜の上に直接フォトレジスト膜を形成することができるが、中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。
中間層として、ポリシルセスキオキサンベースの中間層も好ましく用いられる。レジスト中間層膜に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。ポリシルセスキオキサンベースの中間層の具体的な材料については、以下に限定されないが、例えば、特開2007−226170号(特許文献8)、特開2007−226204号(特許文献9)に記載されたものを用いることができる。
また、次の基板のエッチングも、常法によって行うことができ、例えば、基板がSiO2、SiNであればフロン系ガスを主体としたエッチング、p−SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行うことができる。基板をフロン系ガスでエッチングする場合、2層レジストプロセスの珪素含有レジストと3層プロセスの珪素含有中間層は、基板加工と同時に剥離される。一方、塩素系或いは臭素系ガスで基板をエッチングした場合は、珪素含有レジスト層又は珪素含有中間層の剥離が別途行われ、一般的には、基板加工後にフロン系ガスによるドライエッチング剥離が行われる。
本実施形態の下層膜は、これら基板のエッチング耐性に優れる特徴がある。なお、基板は、公知のものを適宜選択して使用することができ、特に限定されないが、Si、α−Si、p−Si、SiO2、SiN、SiON、W、TiN、Al等が挙げられる。また、基板は、基材(支持体)上に被加工膜(被加工基板)を有する積層体であってもよい。このような被加工膜としては、Si、SiO2、SiON、SiN、p−Si、α−Si、W、W−Si、Al、Cu、Al−Si等種々のLow−k膜及びそのストッパー膜等が挙げられ、通常、基材(支持体)とは異なる材質のものが用いられる。なお、加工対象となる基板或いは被加工膜の厚さは、特に限定されないが、通常、50〜1,000,000nm程度であることが好ましく、より好ましくは75〜500,000nmである。
以下、本発明を、合成実施例、実施例、製造例、及び比較例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
[分子量]
合成した化合物の分子量は、Water社製Acquity UPLC/MALDI−Synapt HDMSを用いて、LC−MS分析により測定した。
[耐熱性の評価]
エスアイアイ・ナノテクノロジー社製EXSTAR6000TG−DTA装置を使用し、試料約5mgをアルミニウム製非密封容器に入れ、窒素ガス(100ml/min)気流中昇温速度10℃/minで500℃まで昇温することにより熱重量減少量を測定した。実用的観点からは、下記A又はB評価が好ましい。A又はB評価であれば、高い耐熱性を有し、高温ベークへの適用が可能である。
<評価基準>
A:400℃での熱重量減少量が、10%未満
B:400℃での熱重量減少量が、10%〜25%
C:400℃での熱重量減少量が、25%超
[溶解性の評価]
50mlのスクリュー瓶にプロピレングリコールモノメチルエーテルアセテート(PGMEA)と化合物及び/又は樹脂を仕込み、23℃にてマグネチックスターラーで1時間撹拌後に、化合物及び/又は樹脂のPGMEAに対する溶解量を測定し、その結果を以下の基準で評価した。実用的観点からは、下記S、A又はB評価が好ましい。S、A又はB評価であれば、溶液状態で高い保存安定性を有し、半導体微細加工プロセスで広く用いられるエッジビートリンス液(PGME/PGMEA混合液)にも十分に適用が可能である。
<評価基準>
S:15質量%以上35質量%未満
A:5質量%以上15質量%未満
B:5質量%未満
(合成実施例1) BAPPシトラマレイミドの合成
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器を準備した。この容器に、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(製品名:BAPP、和歌山精化工業(株)製)4.10g(10.0mmol)、無水シトラコン酸(関東化学(株)製)2.07g(20.0mmol)、無水マレイン酸(関東化学(株)製)2.07g(20.0mmol)、ジメチルフォルムアミド30ml及びトルエン60mlを仕込み、p-トルエンスルホン酸0.4g(2.3mmol)、重合禁止剤BHT0.1gを加えて、反応液を調製した。この反応液を120℃で5時間撹拌して反応を行い、共沸脱水にて生成水をディーンスタークトラップにて回収した。次に、反応液を40℃に冷却した後、蒸留水300mlを入れたビーカーに滴下し、生成物を析出させた。得られたスラリー溶液をろ過後、残渣をアセトンで洗浄し、カラムクロマトによる分離精製を行うことにより、下記式で示される目的化合物シトラマレイミド3.8gを得た。
Figure 0006889873
なお、400MHz−1H−NMRにより以下のピークが見出され、シトラマレイミドが、上記式の化学構造を有することを確認した。
1H−NMR:(d−DMSO、内部標準TMS) δ(ppm)7.0〜7.3(18.0H,Ph−H,=CH−)、6.8(1.0H,=CH−)、2.0(3.0H,−CH(シトラコンイミド環))、1.7(6H,−CH)。
また、反応後に得られた生成物について、前記方法により分子量を測定した結果、584(シトラマレイミド)、570(ビスマレイミド)、及び598(ビスシトラコンイミド)の3つの化合物の混合物であった。また、組成比(584(シトラマレイミド)/570(ビスマレイミド)/598(ビスシトラコンイミド))は、50/25/25であった。
なお、以下の実施例においては、シトラマレイミドの単一化合物を用いて、リソグラフィー用膜形成材料を調製した。
また、以降の合成実施例2〜4においても、シトラマレイミド/ビスマレイミド/ビスシトラコンイミドが50/25/25の比の混合物で得られたが、実施例ではシトラマレイミドの単一化合物を用いて、リソグラフィー用膜形成材料を調製した。
(合成実施例2) APB−Nシトラマレイミドの合成
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器を準備した。この容器に、3,3’−(1,3−フェニレンビス)オキシジアニリン(製品名:APB−N、三井化学ファイン(株)製)2.92g(10.0mmol)、無水シトラコン酸(関東化学(株)製)2.07g(20.0mmol)、無水マレイン酸(関東化学(株)製)2.07g(20.0mmol)、ジメチルフォルムアミド30ml及びトルエン60mlを仕込み、p-トルエンスルホン酸0.4g(2.3mmol)、重合禁止剤BHT0.1gを加えて、反応液を調製した。この反応液を110℃で5時間撹拌して反応を行い、共沸脱水にて生成水をディーンスタークトラップにて回収した。次に、反応液を40℃に冷却した後、蒸留水300mlを入れたビーカーに滴下し、生成物を析出させた。得られたスラリー溶液をろ過後、残渣をメタノールで洗浄し、カラムクロマトによる分離精製を行うことにより、下記式で示される目的化合物(APB−Nシトラマレイミド)3.52gを得た。
Figure 0006889873
なお、400MHz−1H−NMRにより以下のピークが見出され、上記式の化学構造を有することを確認した。
1H−NMR:(d−DMSO、内部標準TMS)δ(ppm)6.8〜7.3(12H,Ph−H)、7.0(3H,−CH=C)、2.1(3H,C−CH)。得られた化合物について、前記方法により分子量を測定した結果、466であった。
(合成実施例3) HFBAPPシトラマレイミドの合成
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器を準備した。この容器に、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン(製品名:HFBAPP、和歌山精化工業(株)製)5.18g(10.0mmol)、無水シトラコン酸(関東化学(株)製)2.27g(22.0mmol)、無水マレイン酸(関東化学(株)製)2.27g(22.0mmol)、ジメチルフォルムアミド30ml及びトルエン60mlを仕込み、p-トルエンスルホン酸0.4g(2.3mmol)、重合禁止剤BHT0.1gを加えて、反応液を調製した。この反応液を110℃で5.0時間撹拌して反応を行い、共沸脱水にて生成水をディーンスタークトラップにて回収した。次に、反応液を40℃に冷却した後、蒸留水300mlを入れたビーカーに滴下し、生成物を析出させた。得られたスラリー溶液をろ過後、残渣をメタノールで洗浄し、カラムクロマトによる分離精製を行うことにより、下記式で示される目的化合物(HFBAPPシトラマレイミド)3.9gを得た。
Figure 0006889873
なお、400MHz−1H−NMRにより以下のピークが見出され、上記式の化学構造を有することを確認した。
1H−NMR:(d−DMSO、内部標準TMS) δ(ppm)6.6〜7.35(16H,Ph−H)、2.1(3H,C−CH)、6.4(3H,−CH=CH−)。
得られた化合物について、前記方法により分子量を測定した結果、691であった。
(合成実施例4) BisAPシトラマレイミドの合成
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器を準備した。この容器に、1,4−ビス[2−(4−アミノフェニル)−2−プロピル]ベンゼン(製品名:ビスアニリンP、三井化学ファイン(株)製)5.18g(10.0mmol)、無水シトラコン酸(関東化学(株)製)2.27g(22.0mmol)、無水マレイン酸(関東化学(株)製)2.27g(22.0mmol)、ジメチルフォルムアミド30ml及びトルエン60mlを仕込み、p-トルエンスルホン酸0.4g(2.3mmol)、重合禁止剤BHT0.1gを加えて、反応液を調製した。この反応液を110℃で6.0時間撹拌して反応を行い、共沸脱水にて生成水をディーンスタークトラップにて回収した。次に、反応液を40℃に冷却した後、蒸留水300mlを入れたビーカーに滴下し、生成物を析出させた。得られたスラリー溶液をろ過後、残渣をメタノールで洗浄し、カラムクロマトによる分離精製を行うことにより、下記式で示される目的化合物(BisAPシトラマレイミド)4.2gを得た。
Figure 0006889873
なお、400MHz−1H−NMRにより以下のピークが見出され、上記式の化学構造を有することを確認した。
1H−NMR:(d−DMSO、内部標準TMS) δ(ppm)6.8〜7.35(12H,Ph−H)、6.7(3H,−CH=C)、2.1(3H,C−CH)、1.6〜1.7(12H,−C(CH)。
得られた化合物について、前記方法により分子量を測定した結果、517であった。
(合成実施例5) BMIシトラマレイミド樹脂の合成
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器を準備した。この容器に、特開2001−26571号公報の合成例1を追試することで得られたジアミノジフェニルメタンオリゴマー2.4g、無水シトラコン酸と無水マレイン酸の混合物(22.0mmol/22.0mmol)、ジメチルフォルムアミド40ml及びトルエン60mlを仕込み、p-トルエンスルホン酸0.4g(2.3mmol)及び重合禁止剤BHT0.1gを加えて、反応液を調製した。この反応液を110℃で8.0時間撹拌して反応を行い、共沸脱水にて生成水をディーンスタークトラップにて回収した。次に、反応液を40℃に冷却した後、蒸留水300mlを入れたビーカーに滴下し、生成物を析出させた。得られたスラリー溶液をろ過後、残渣をメタノールで洗浄し、BMIシトラマレイミド樹脂4.6gを得た。
(合成実施例6) BANシトラマレイミド樹脂の合成
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器を準備した。この容器に、ビフェニルアラルキル型ポリアニリン樹脂(製品名:BAN、日本化薬(株)製)6.30g、無水シトラコン酸と無水マレイン酸の混合物(22.0mmol/22.0mmol)、ジメチルフォルムアミド40ml及びトルエン60mlを仕込み、p-トルエンスルホン酸0.4g(2.3mmol)、重合禁止剤BHT0.1gを加えて、反応液を調製した。この反応液を110℃で6.0時間撹拌して反応を行い、共沸脱水にて生成水をディーンスタークトラップにて回収した。次に、反応液を40℃に冷却した後、蒸留水300mlを入れたビーカーに滴下し、生成物を析出させた。得られたスラリー溶液をろ過後、残渣をメタノールで洗浄し、カラムクロマトによる分離精製を行うことにより、BANシトラマレイミド樹脂4.6gを得た。
(合成実施例7) BMIシトラマレイミド高分子量体の合成
300mLフラスコ容器に、特開2001−26571号公報の合成例1を追試することで得られたジアミノジフェニルメタンオリゴマー(DDMO)30gを仕込み、溶媒として、メチルエチルケトン60gを加え、60℃に加温溶解させることにより溶液を得た。上記溶液を中性のシリカゲル(関東化学(株)製)に吸着させ、シリカゲルカラムクロマトグラフィーを用いて、酢酸エチル20質量%/ヘキサン80質量%の混合溶媒を展開させることにより、下記式で表される繰り返し単位の成分のみを分取し、濃縮後に真空乾燥を行い、溶媒を除去することで、DDMO高分子量体を9.6g得た。
Figure 0006889873
(DDMO高分子量体;式中、nは1〜4の整数を示す)
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に前記ジアミノジフェニルメタンオリゴマー高分子量体を4.0g、無水シトラコン酸と無水マレイン酸との混合物(22.0mmol/22.0mmol)、ジメチルフォルムアミド40ml及びトルエン60mlを仕込み、p−トルエンスルホン酸0.4g(2.3mmol)及び重合禁止剤BHT0.1gを加えて、反応液を調製した。この反応液を110℃で8.0時間撹拌して反応を行い、共沸脱水にて生成水をディーンスタークトラップにて回収した。次に、反応液を40℃に冷却した後、蒸留水300mlを入れたビーカーに滴下し、生成物を析出させた。得られたスラリー溶液をろ過後、残渣をメタノールで洗浄し、BMIシトラマレイミド高分子量体5.5gを得た。
(合成実施例8) BANシトラマレイミド高分子量体の合成
300mLフラスコ容器に、ビフェニルアラルキル型ポリアニリン樹脂(製品名:BAN、日本化薬(株)製)40gを仕込み、溶媒として、メチルエチルケトン60gを加え、60℃に加温溶解させることにより溶液を得た。上記溶液を中性のシリカゲル(関東化学(株)製)に吸着させ、シリカゲルカラムクロマトグラフィーを用いて、酢酸エチル20質量%/ヘキサン80質量%の混合溶媒を展開させることにより、下記式で表される繰り返し単位の成分のみを分取し、濃縮後に真空乾燥を行い、溶媒を除去することで、BAN高分子量体を11.6g得た。
Figure 0006889873
(BAN高分子量体;式中、nは2〜4の整数を示す)
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に前記BAN高分子量体を5.0g、無水シトラコン酸と無水マレイン酸との混合物(22.0mmol/22.0mmol)、ジメチルフォルムアミド40ml及びトルエン60mlを仕込み、p−トルエンスルホン酸0.4g(2.3mmol)及び重合禁止剤BHT0.1gを加えて、反応液を調製した。この反応液を110℃で8.0時間撹拌して反応を行い、共沸脱水にて生成水をディーンスタークトラップにて回収した。次に、反応液を40℃に冷却した後、蒸留水300mlを入れたビーカーに滴下し、生成物を析出させた。得られたスラリー溶液をろ過後、残渣をメタノールで洗浄し、BANシトラマレイミド高分子量体6.6gを得た。
<実施例1>
合成実施例1で得られたBAPPシトラマレイミドを用いて、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
合成実施例1で得られたBAPPシトラマレイミド5質量部、すなわち、上記リソグラフィー用膜形成材料5質量部を用いて、溶媒としてプロピレングリコールモノメチルエーテルアセテート(PGMEA)を95質量部加え、室温化、スターラーで少なくとも3時間以上攪拌させることにより、リソグラフィー用膜形成用組成物を調製した。
<実施例2>
合成実施例2で得られたAPB−Nシトラマレイミドを用いて、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例3>
合成実施例3で得られたHFBAPPシトラマレイミドを用いて、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例4>
合成実施例4で得られたBisAPシトラマレイミドを用いて、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例5>
合成実施例5で得られたBMIシトラマレイミド樹脂を用いて、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例5A>
合成実施例7で得られたBMIシトラマレイミド高分子量体を用いて、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例6>
合成実施例6で得られたBANシトラマレイミド樹脂を用いて、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例6A>
合成実施例8で得られたBANシトラマレイミド高分子量体を用いて、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例7>
BAPPシトラマレイミド5質量部、架橋促進剤としてTPIZを0.1質量部配合し、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
上記リソグラフィー用膜形成材料を用いたこと以外は、前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例8>
APB−Nシトラマレイミド5質量部、架橋促進剤としてTPIZを0.1質量部配合し、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
上記リソグラフィー用膜形成材料を用いたこと以外は、前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例9>
HFBAPPシトラマレイミド5質量部、架橋促進剤としてTPIZを0.1質量部配合し、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
上記リソグラフィー用膜形成材料を用いたこと以外は、前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例10>
BisAPシトラマレイミド5質量部、架橋促進剤としてTPIZを0.1質量部配合し、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
上記リソグラフィー用膜形成材料を用いたこと以外は、前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例11>
BMIシトラマレイミド樹脂5質量部、架橋促進剤としてTPIZを0.1質量部配合し、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
上記リソグラフィー用膜形成材料を用いたこと以外は、前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例11A>
BMIシトラマレイミド高分子量体を5質量部、架橋促進剤としてTPIZを0.1質量部配合し、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
上記リソグラフィー用膜形成材料を用いたこと以外は、前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例12>
BANシトラマレイミド樹脂5質量部、架橋促進剤としてTPIZを0.1質量部配合し、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
上記リソグラフィー用膜形成材料を用いたこと以外は、前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例12A>
BANシトラマレイミド高分子量体を5質量部、架橋促進剤としてTPIZを0.1質量部配合し、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
上記リソグラフィー用膜形成材料を用いたこと以外は、前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例13>
BAPPシトラマレイミドを5質量部、また、架橋剤として、下記式で表されるベンゾオキサジン(BF−BXZ;小西化学工業株式会社製)2質量部を使用し、架橋促進剤として2,4,5−トリフェニルイミダゾール(TPIZ)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
Figure 0006889873
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分溶解性を有するものと評価された。
上記リソグラフィー用膜形成材料を用いたこと以外は、前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例14>
BAPPシトラマレイミドを5質量部、また、架橋剤として、下記式で表されるビフェニルアラルキル型エポキシ樹脂(NC−3000−L;日本化薬株式会社製)2質量部を使用し、架橋促進剤としてTPIZを0.1質量部配合し、リソグラフィー用膜形成材料とした。
Figure 0006889873
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分溶解性を有するものと評価された。
上記リソグラフィー用膜形成材料を用いたこと以外は、前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例15>
BAPPシトラマレイミドを5質量部、また、架橋剤として、下記式で表されるジアリルビスフェノールA型シアネート(DABPA−CN;三菱ガス化学製)2質量部を使用し、架橋促進剤として2,4,5−トリフェニルイミダゾール(TPIZ)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
Figure 0006889873
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分溶解性を有するものと評価された。
上記リソグラフィー用膜形成材料を用いたこと以外は、前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例16>
BAPPシトラマレイミドを5質量部、また、架橋剤として、下記式で表されるジアリルビスフェノールA(BPA−CA;小西化学製)2質量部を使用し、架橋促進剤として2,4,5−トリフェニルイミダゾール(TPIZ)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
Figure 0006889873
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分溶解性を有するものと評価された。
上記リソグラフィー用膜形成材料を用いたこと以外は、前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例17>
BAPPシトラマレイミドを5質量部、また、架橋剤として、下記式で表されるジフェニルメタン型アリルフェノール樹脂(APG−1;群栄化学工業製)2質量部を使用し、リソグラフィー用膜形成材料とした。
Figure 0006889873
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分溶解性を有するものと評価された。
上記リソグラフィー用膜形成材料を用いたこと以外は、前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例18>
BAPPシトラマレイミドを5質量部、また、架橋剤として、下記式で表されるジフェニルメタン型プロペニルフェノール樹脂(APG−2;群栄化学工業製)2質量部を使用し、リソグラフィー用膜形成材料とした。
Figure 0006889873
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分溶解性を有するものと評価された。
上記リソグラフィー用膜形成材料を用いたこと以外は、前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例19>
BAPPシトラマレイミドを5質量部、また、架橋剤として、下記式で表される4,4’−ジアミノジフェニルメタン(DDM;東京化成製)2質量部を使用し、リソグラフィー用膜形成材料とした。
Figure 0006889873
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分溶解性を有するものと評価された。
上記リソグラフィー用膜形成材料を用いたこと以外は、前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<製造例1>
ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5−ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mlを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製、試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5−ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。
得られたジメチルナフタレンホルムアルデヒド樹脂の分子量は、数平均分子量(Mn):562、重量平均分子量(Mw):1168、分散度(Mw/Mn):2.08であった。
続いて、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流下で、上述のようにして得られたジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とパラトルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後さらに、1−ナフトール52.0g(0.36mol)を加え、さらに220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の変性樹脂(CR−1)126.1gを得た。
得られた樹脂(CR−1)は、Mn:885、Mw:2220、Mw/Mn:2.51であった。
熱重量測定(TG)の結果、得られた樹脂の400℃での熱重量減少量は25%超(評価C)であった。そのため、高温ベークへの適用が困難であるものと評価された。
PGMEAへの溶解性を評価した結果、10質量%以上(評価A)であり、十分な溶解性を有するものと評価された。
なお、上記のMn、Mw及びMw/Mnについては、以下の条件にてゲル浸透クロマトグラフィー(GPC)分析を行い、ポリスチレン換算の分子量を求めることにより測定した。
装置:Shodex GPC−101型(昭和電工(株)製)
カラム:KF−80M×3
溶離液:THF 1mL/min
温度:40℃
(製造例2) BAPPシトラコンイミドの合成
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器を準備した。この容器に、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(製品名:BAPP、和歌山精化工業(株)製)4.10g(10.0mmol)、無水シトラコン酸(関東化学(株)製)4.15g(40.0mmol)、ジメチルフォルムアミド30mlおよびトルエン60mlを仕込み、p-トルエンスルホン酸0.4g(2.3mmol)、重合禁止剤BHT0.1gを加えて、反応液を調製した。この反応液を120℃で5時間撹拌して反応を行い、共沸脱水にて生成水をディーンスタークトラップにて回収した。次に、反応液を40℃に冷却した後、蒸留水300mlを入れたビーカーに滴下し、生成物を析出させた。得られたスラリー溶液をろ過後、残渣をアセトンで洗浄し、カラムクロマトによる分離精製を行うことにより、下記式で示される目的化合物(BAPPシトラコンイミド)3.76gを得た。
Figure 0006889873
なお、400MHz−1H−NMRにより以下のピークが見出され、上記式の化学構造を有することを確認した。
1H−NMR:(d−DMSO、内部標準TMS) δ(ppm)6.8〜7.4(16H,Ph−H)、6.7(2H,−CH=C)、2.1(6H,C−CH)、1.6(6H,−C(CH)。得られた化合物について、前記方法により分子量を測定した結果、598であった。
(製造例3) APB−Nシトラコンイミドの合成
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器を準備した。この容器に、3,3’−(1,3−フェニレンビス)オキシジアニリン(製品名:APB−N、三井化学ファイン(株)製)2.92g(10.0mmol)、無水シトラコン酸(関東化学(株)製)4.15g(40.0mmol)、ジメチルフォルムアミド30mlおよびトルエン60mlを仕込み、p-トルエンスルホン酸0.4g(2.3mmol)、重合禁止剤BHT0.1gを加えて、反応液を調製した。この反応液を110℃で5時間撹拌して反応を行い、共沸脱水にて生成水をディーンスタークトラップにて回収した。次に、反応液を40℃に冷却した後、蒸留水300mlを入れたビーカーに滴下し、生成物を析出させた。得られたスラリー溶液をろ過後、残渣をメタノールで洗浄し、カラムクロマトによる分離精製を行うことにより、下記式で示される目的化合物(APB−Nシトラコンイミド)3.52gを得た。
Figure 0006889873
なお、400MHz−1H−NMRにより以下のピークが見出され、上記式の化学構造を有することを確認した。
1H−NMR:(d−DMSO、内部標準TMS) δ(ppm)6.7〜7.4(12H,Ph−H)、6.4(2H,−CH=C)、2.2(6H,C−CH)。得られた化合物について、前記方法により分子量を測定した結果、480であった。
(製造例4) HFBAPPシトラコンイミドの合成
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器を準備した。この容器に、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン(製品名:HFBAPP、和歌山精化工業(株)製)5.18g(10.0mmol)、無水シトラコン酸(関東化学(株)製)4.56g(44.0mmol)、ジメチルフォルムアミド30mlおよびトルエン60mlを仕込み、p-トルエンスルホン酸0.4g(2.3mmol)、重合禁止剤BHT0.1gを加えて、反応液を調製した。この反応液を110℃で5.0時間撹拌して反応を行い、共沸脱水にて生成水をディーンスタークトラップにて回収した。次に、反応液を40℃に冷却した後、蒸留水300mlを入れたビーカーに滴下し、生成物を析出させた。得られたスラリー溶液をろ過後、残渣をメタノールで洗浄し、カラムクロマトによる分離精製を行うことにより、下記式で示される目的化合物(HFBAPPシトラコンイミド)3.9gを得た。
Figure 0006889873
なお、400MHz−1H−NMRにより以下のピークが見出され、上記式の化学構造を有することを確認した。
1H−NMR:(d−DMSO、内部標準TMS) δ(ppm)6.6〜7.3(16H,Ph−H)、6.4(2H,−CH=C)、2.2(6H,C−CH)。
得られた化合物について、前記方法により分子量を測定した結果、706であった。
(製造例5) BisAPシトラコンイミドの合成
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器を準備した。この容器に、1,4−ビス[2−(4−アミノフェニル)−2−プロピル]ベンゼン(製品名:ビスアニリンP、三井化学ファイン(株)製)5.18g(10.0mmol)、無水シトラコン酸(関東化学(株)製)4.56g(44.0mmol)、ジメチルフォルムアミド30mlおよびトルエン60mlを仕込み、p-トルエンスルホン酸0.4g(2.3mmol)、重合禁止剤BHT0.1gを加えて、反応液を調製した。この反応液を110℃で6.0時間撹拌して反応を行い、共沸脱水にて生成水をディーンスタークトラップにて回収した。次に、反応液を40℃に冷却した後、蒸留水300mlを入れたビーカーに滴下し、生成物を析出させた。得られたスラリー溶液をろ過後、残渣をメタノールで洗浄し、カラムクロマトによる分離精製を行うことにより、下記式で示される目的化合物(BisAPシトラコンイミド)4.2gを得た。
Figure 0006889873
なお、400MHz−1H−NMRにより以下のピークが見出され、上記式の化学構造を有することを確認した。
1H−NMR:(d−DMSO、内部標準TMS) δ(ppm)6.8〜7.4(12H,Ph−H)、6.7(2H,−CH=C)、2.1(6H,C−CH)、1.6〜1.7(12H,−C(CH)。得られた化合物について、前記方法により分子量を測定した結果、532であった。
(製造例6) BMIシトラコンイミド樹脂の合成
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器を準備した。この容器に、特開2001−26571号公報の合成例1を追試することで得られたジアミノジフェニルメタンオリゴマー2.4g、無水シトラコン酸(関東化学(株)製)4.56g(44.0mmol)、ジメチルフォルムアミド40ml及びトルエン60mlを仕込み、p-トルエンスルホン酸0.4g(2.3mmol)及び重合禁止剤BHT0.1gを加えて、反応液を調製した。この反応液を110℃で8.0時間撹拌して反応を行い、共沸脱水にて生成水をディーンスタークトラップにて回収した。次に、反応液を40℃に冷却した後、蒸留水300mlを入れたビーカーに滴下し、生成物を析出させた。得られたスラリー溶液をろ過後、残渣をメタノールで洗浄し、下記式で示されるシトラコンイミド樹脂(BMIシトラコンイミド樹脂)4.7gを得た。
Figure 0006889873
なお、前記方法により分子量を測定した結果、446であった。
(製造例7) BANシトラコンイミド樹脂の合成
攪拌機、冷却管及びビュレットを備えた内容積100mlの容器を準備した。この容器に、ビフェニルアラルキル型ポリアニリン樹脂(製品名:BAN、日本化薬(株)製)6.30g、無水シトラコン酸(関東化学(株)製)4.56g(44.0mmol)、ジメチルフォルムアミド40ml及びトルエン60mlを仕込み、p-トルエンスルホン酸0.4g(2.3mmol)、重合禁止剤BHT0.1gを加えて、反応液を調製した。この反応液を110℃で6.0時間撹拌して反応を行い、共沸脱水にて生成水をディーンスタークトラップにて回収した。次に、反応液を40℃に冷却した後、蒸留水300mlを入れたビーカーに滴下し、生成物を析出させた。得られたスラリー溶液をろ過後、残渣をメタノールで洗浄し、カラムクロマトによる分離精製を行うことにより、下記式で示される目的化合物(BANシトラコンイミド樹脂)5.5gを得た。
Figure 0006889873
<比較例1>
CR−1を5質量部、また、架橋剤として、下記式で表されるビフェニルアラルキル型エポキシ樹脂(NC−3000−L;日本化薬株式会社製)2質量部を使用し、架橋促進剤としてTPIZを0.1質量部配合し、リソグラフィー用膜形成材料とした。
上記リソグラフィー用膜形成材料を用いたこと以外は、前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<比較例2>
CR−1を使用して、リソグラフィー用膜形成材料とした。
上記リソグラフィー用膜形成材料を用いたこと以外は、前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<比較例3>
BAPPシトラコンイミドを用いて、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、15質量%以上35質量%未満(評価S)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<比較例4>
APB−Nシトラコンイミドを用いて、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、15質量%以上35質量%未満(評価S)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<比較例5>
HFBAPPシトラコンイミドを用いて、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、15質量%以上35質量%未満(評価S)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<比較例6>
BisAPシトラコンイミドを用いて、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、15質量%以上35質量%未満(評価S)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<比較例7>
BMIシトラコンイミド樹脂を用いて、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<比較例8>
BAMシトラコンイミド樹脂を用いて、リソグラフィー用膜形成材料とした。
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<比較例9>
下記式で表されるフェニルメタンマレイミドオリゴマー(BMIオリゴマー;BMI−2300、大和化成工業製)を用いて、リソグラフィー用膜形成材料とした。
Figure 0006889873
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<比較例10>
ビスマレイミド化合物として、下記式で表されるビスマレイミド(BMI−80;ケイアイ化成製)を用いて、リソグラフィー用膜形成材料とした。
Figure 0006889873
熱重量測定の結果、得られたリソグラフィー用膜形成材料の400℃での熱重量減少量は10%未満(評価A)であった。また、PGMEAへの溶解性を評価した結果、5質量%以上15質量%未満(評価A)であり、得られたリソグラフィー用膜形成材料は十分な溶解性を有するものと評価された。
前記実施例1と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例20>
BAPPシトラマレイミドを5質量部、また、光重合開始剤として下記式で表されるイルガキュア184(BASF社製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記リソグラフィー用膜形成材料5質量部に対し、溶媒としてPGMEAを95質量部加え、室温下、スターラーで少なくとも3時間以上攪拌させることにより、リソグラフィー用膜形成用組成物を調製した。
Figure 0006889873
<実施例21>
APB−Nシトラマレイミド5質量部、また、光重合開始剤としてイルガキュア184(BASF社製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例22>
HFBAPPシトラマレイミド5質量部、また、光重合開始剤としてイルガキュア184(BASF社製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例23>
BisAPシトラマレイミドを5質量部、また、光重合開始剤としてイルガキュア184(BASF社製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例24>
BMIシトラマレイミド樹脂を5質量部、また、光重合開始剤としてイルガキュア184(BASF社製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例24A>
BMIシトラマレイミド高分子量体を5質量部、また、光重合開始剤としてイルガキュア184(BASF社製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例25>
BANシトラマレイミド樹脂を5質量部、また、光重合開始剤としてイルガキュア184(BASF社製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例25A>
BANシトラマレイミド高分子量体を5質量部、また、光重合開始剤としてイルガキュア184(BASF社製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例26>
BAPPシトラマレイミドを5質量部、また、架橋剤として、BF−BXZを2質量部使用し、光ラジカル重合開始剤として、イルガキュア184(BASF社製)0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例27>
BAPPシトラマレイミドを5質量部、また、架橋剤として、NC−3000−Lを2質量部使用し、光ラジカル重合開始剤として、イルガキュア184(BASF社製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例28>
BAPPシトラマレイミドを5質量部、また、架橋剤として、DABPA−CNを2質量部使用し、光ラジカル重合開始剤として、イルガキュア184(BASF社製)を0.1質量部配合し、リソグラフィー用膜形成用材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例29>
BAPPシトラマレイミドを5質量部、また、架橋剤として、BPA−CAを2質量部使用し、光ラジカル重合開始剤として、イルガキュア184(BASF社製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例30>
BAPPシトラマレイミドを5質量部、また、架橋剤として、APG−1を2質量部使用し、光ラジカル重合開始剤として、イルガキュア184(BASF社製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例31>
BAPPシトラマレイミドを5質量部、また、架橋剤として、APG−2を2質量部使用し、光ラジカル重合開始剤として、イルガキュア184(BASF社製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例32>
BAPPシトラマレイミドを5質量部、また、架橋剤として、DDMを2質量部使用し、光ラジカル重合開始剤として、イルガキュア184(BASF社製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例20−2>
BAPPシトラマレイミドを5質量部、また、光塩基発生剤として下記式で表されるWPBG−300(富士フィルム和光純薬(株)製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記リソグラフィー用膜形成材料5質量部に対し、溶媒としてPGMEAを95質量部加え、室温下、スターラーで少なくとも3時間以上攪拌させることにより、リソグラフィー用膜形成用組成物を調製した。
Figure 0006889873
<実施例21−2>
APB−Nシトラマレイミド5質量部、また、光塩基発生剤としてWPBG−300(富士フィルム和光純薬(株)製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例22−2>
HFBAPPシトラマレイミド5質量部、また、光塩基発生剤としてWPBG−300(富士フィルム和光純薬(株)製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例23−2>
BisAPシトラマレイミドを5質量部、また、光塩基発生剤としてWPBG−300(富士フィルム和光純薬(株)製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例24−2>
BMIシトラマレイミド樹脂を5質量部、また、光塩基発生剤としてWPBG−300(富士フィルム和光純薬(株)製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例24A−2>
BMIシトラマレイミド高分子量体を5質量部、また、光塩基発生剤としてWPBG−300(富士フィルム和光純薬(株)製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例25−2>
BANシトラマレイミド樹脂を5質量部、また、光塩基発生剤としてWPBG−300(富士フィルム和光純薬(株)製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例25A−2>
BANシトラマレイミド高分子量体を5質量部、また、光塩基発生剤としてWPBG−300(富士フィルム和光純薬(株)製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例26−2>
BAPPシトラマレイミドを5質量部、また、架橋剤として、BF−BXZを2質量部使用し、光塩基発生剤としてWPBG−300(富士フィルム和光純薬(株)製)0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例27−2>
BAPPシトラマレイミドを5質量部、また、架橋剤として、NC−3000−Lを2質量部使用し、光塩基発生剤として、WPBG−300(富士フィルム和光純薬(株)製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例28−2>
BAPPシトラマレイミドを5質量部、また、架橋剤として、DABPA−CNを2質量部使用し、光塩基発生剤として、WPBG−300(富士フィルム和光純薬(株)製)を0.1質量部配合し、リソグラフィー用膜形成用材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例29−2>
BAPPシトラマレイミドを5質量部、また、架橋剤として、BPA−CAを2質量部使用し、光ラジカル重合開始剤として、イルガキュア184(BASF社製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例30−2>
BAPPシトラマレイミドを5質量部、また、架橋剤として、APG−1を2質量部使用し、光塩基発生剤としてWPBG−300(富士フィルム和光純薬(株)製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例31−2>
BAPPシトラマレイミドを5質量部、また、架橋剤として、APG−2を2質量部使用し、光塩基発生剤として、WPBG−300(富士フィルム和光純薬(株)製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例32−2>
BAPPシトラマレイミドを5質量部、また、架橋剤として、DDMを2質量部使用し、光塩基発生剤として、WPBG−300(富士フィルム和光純薬(株)製)を0.1質量部配合し、リソグラフィー用膜形成材料とした。
前記実施例20と同様の操作にてリソグラフィー用膜形成用組成物を調製した。
<実施例1〜19、比較例1〜10のリソグラフィー用膜形成用組成物からの下層膜の調製>
表1に示す組成を有する実施例1〜19、比較例1〜10のリソグラフィー用膜形成用組成物をシリコン基板上に回転塗布し、その後、240℃で60秒間ベークして、塗布膜の膜厚を測定した。その後、該シリコン基板をPGMEA70%/PGME30%の混合溶媒に60秒間浸漬し、エアロダスターで付着溶媒を除去後、110℃で溶媒乾燥を行った。浸漬前後の膜厚差から膜厚減少率(%)を算出して、下記に示す評価基準にて各下層膜の硬化性を評価した。
240℃で硬化ベーク後の下層膜をさらに400℃で120秒間ベークし、ベーク前後の膜厚差から膜厚減少率(%)を算出して、下記に示す評価基準にて各下層膜の膜耐熱性を評価した。そして、下記に示す条件にてエッチング耐性を評価した。
また、下記に示す条件にて、段差基板への埋め込み性、及び平坦性を評価した。
<実施例20〜32、実施例20−2〜32−2のリソグラフィー用膜形成用組成物からの下層膜の調製>
表2に示す組成を有する実施例26〜38のリソグラフィー用膜形成用組成物をシリコン基板上に回転塗布し、その後、150℃で60秒間ベークして塗膜の溶媒を除去した後、高圧水銀ランプにより、積算露光量1500mJ/cm2、照射時間60秒で硬化させた後、塗布膜の膜厚を測定した。その後、該シリコン基板をPGMEA70%/PGME30%の混合溶媒に60秒間浸漬し、エアロダスターで付着溶媒を除去後、110℃で溶媒乾燥を行った。浸漬前後の膜厚差から膜厚減少率(%)を算出して、下記に示す評価基準にて各下層膜の硬化性を評価した。
さらに400℃で120秒間ベークし、ベーク前後の膜厚差から膜厚減少率(%)を算出して、下記に示す評価基準にて各下層膜の膜耐熱性を評価した。そして、下記に示す条件にてエッチング耐性を評価した。
また、下記に示す条件にて、段差基板への埋め込み性、及び平坦性を評価した。
[硬化性の評価]
<評価基準>
S:溶媒浸漬前後の膜厚減少率≦1%
A:1%<溶媒浸漬前後の膜厚減少率≦5%
B:溶媒浸漬前後の膜厚減少率>5%
[膜耐熱性の評価]
<評価基準>
S:400℃ベーク前後の膜厚減少率≦10%
A:10%<400℃ベーク前後の膜厚減少率≦15%
B:15%<400℃ベーク前後の膜厚減少率≦20%
C:400℃ベーク前後の膜厚減少率>20%
[エッチング試験]
エッチング装置:サムコインターナショナル社製 RIE−10NR
出力:50W
圧力:4Pa
時間:2min
エッチングガス
CF4ガス流量:O2ガス流量=5:15(sccm)
[エッチング耐性の評価]
エッチング耐性の評価は、以下の手順で行った。
まず、実施例1におけるリソグラフィー用膜形成材料に代えてノボラック(群栄化学社製PSM4357)を用い、乾燥温度を110℃にすること以外は、実施例1と同様の条件で、ノボラックの下層膜を作製した。そして、このノボラックの下層膜を対象として、上述のエッチング試験を行い、そのときのエッチングレートを測定した。
次に、実施例1〜19及び比較例1〜10の下層膜を対象として、前記エッチング試験を同様に行い、そのときのエッチングレートを測定した。
そして、ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。実用的観点からは、下記S評価が特に好ましく、A評価及びB評価が好ましい。
<評価基準>
S:ノボラックの下層膜に比べてエッチングレートが、−30%未満
A:ノボラックの下層膜に比べてエッチングレートが、−30%以上〜−20%未満
B:ノボラックの下層膜に比べてエッチングレートが、−20%以上〜−10%未満
C:ノボラックの下層膜に比べてエッチングレートが、−10%以上0%以下
[段差基板埋め込み性の評価]
段差基板への埋め込み性の評価は、以下の手順で行った。
リソグラフィー用下層膜形成用組成物を膜厚80nmの60nmラインアンドスペースのSiO2基板上に塗布して、240℃で60秒間ベークすることにより90nm下層膜を形成した。得られた膜の断面を切り出し、電子線顕微鏡にて観察し、段差基板への埋め込み性を評価した。
<評価基準>
A:60nmラインアンドスペースのSiO2基板の凹凸部分に欠陥無く下層膜が埋め込まれている。
C:60nmラインアンドスペースのSiO2基板の凹凸部分に欠陥があり下層膜が埋め込まれていない。
[平坦性の評価]
幅100nm、ピッチ150nm、深さ150nmのトレンチ(アスペクト比:1.5)及び幅5μm、深さ180nmのトレンチ(オープンスペース)が混在するSiO2段差基板上に、上記得られた膜形成用組成物をそれぞれ塗布した。その後、大気雰囲気下にて、240℃で120秒間焼成して、膜厚200nmのレジスト下層膜を形成した。このレジスト下層膜の形状を走査型電子顕微鏡(日立ハイテクノロジーズ社の「S−4800」)にて観察し、トレンチ又はスペース上におけるレジスト下層膜の膜厚の最大値と最小値の差(ΔFT)を測定した。
<評価基準>
S:ΔFT<10nm(平坦性最良)
A:10nm≦ΔFT<20nm(平坦性良好)
B:20nm≦ΔFT<40nm(平坦性やや良好)
C:40nm≦ΔFT(平坦性不良)
Figure 0006889873
Figure 0006889873
表1から明らかなように、シトラマレイミド及びシトラマレイミド樹脂を含む本実施形態のリソグラフィー用膜形成用組成物を用いた実施例1〜19は、比較例3〜8のシトラコンイミドと比較して、硬化性、膜耐熱性、エッチング耐性に優れ、比較例9〜10のマレイミドと比較して平坦性に優れることが確認された。特にBMIシトラマレイミド高分子量体あるいはBANシトラマレイミド高分子量体を用いることにより、高い膜耐熱性と優れた平坦性を両立することが確認された。
また、実施例1〜6、比較例3〜10の組成物を室温25℃において一か月間の保存安定性試験を行い目視で析出物の有無を確認した。その結果、実施例1〜6の組成物は析出が無い事を確認したが、比較例3〜10の組成物は目視で析出物を確認した。
従って、シトラマレイミド及びシトラマレイミド樹脂を含む本実施形態のリソグラフィー用膜形成用組成物は、比較例3〜8のシトラコンイミド、比較例9〜10のマレイミドと比較して、溶媒溶解性及び保存安定性に優れることが確認された。
Figure 0006889873
Figure 0006889873
<実施例33>
実施例1におけるリソグラフィー用膜形成用組成物を膜厚300nmのSiO2基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚70nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。ArF用レジスト溶液としては、下記式(22)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
なお、下記式(22)の化合物は、次のように調製した。すなわち、2−メチル−2−メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ−γ−ブチロラクトン3.00g、3−ヒドロキシ−1−アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn−ヘキサン中に滴下した。このようにして得られる生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて下記式で表される化合物を得た。
Figure 0006889873
前記式(22)中、40、40、20とあるのは各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。
次いで、電子線描画装置(エリオニクス社製;ELS−7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。評価結果を表3に示す。
<実施例34>
前記実施例1におけるリソグラフィー用下層膜形成用組成物の代わりに実施例2におけるリソグラフィー用下層膜形成用組成物を用いたこと以外は、実施例33と同様にして、ポジ型のレジストパターンを得た。評価結果を表3に示す。
<実施例35>
前記実施例1におけるリソグラフィー用下層膜形成用組成物の代わりに実施例3におけるリソグラフィー用下層膜形成用組成物を用いたこと以外は、実施例33と同様にして、ポジ型のレジストパターンを得た。評価結果を表3に示す。
<実施例36>
前記実施例1におけるリソグラフィー用下層膜形成用組成物の代わりに実施例4におけるリソグラフィー用下層膜形成用組成物を用いたこと以外は、実施例33と同様にして、ポジ型のレジストパターンを得た。評価結果を表3に示す。
<比較例11>
下層膜の形成を行わなかったこと以外は、実施例33と同様にして、フォトレジスト層をSiO2基板上に直接形成し、ポジ型のレジストパターンを得た。評価結果を表3に示す。
[評価]
実施例33〜36、及び比較例11のそれぞれについて、得られた55nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの形状を(株)日立製作所製の電子顕微鏡(S−4800)を用いて観察した。現像後のレジストパターンの形状については、パターン倒れがなく、矩形性が良好なものを良好とし、そうでないものを不良として評価した。また、当該観察の結果、パターン倒れが無く、矩形性が良好な最小の線幅を解像性として評価の指標とした。さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を感度として、評価の指標とした。
Figure 0006889873
表3から明らかなように、シトラマレイミド及びシトラマレイミド樹脂を含む本実施形態のリソグラフィー用膜形成用組成物を用いた実施例33〜36は、比較例11と比較して、解像性及び感度ともに有意に優れていることが確認された。また、現像後のレジストパターン形状もパターン倒れがなく、矩形性が良好であることが確認された。さらに、現像後のレジストパターン形状の相違から、実施例1、2、3、4のリソグラフィー用膜形成用組成物から得られる実施例33〜36の下層膜は、レジスト材料との密着性が良いことが示された。
本出願は、2018年11月21日出願の日本特許出願(特願2018−218042号)に基づくものであり、それらの内容はここに参照として取り込まれる。
本実施形態のリソグラフィー用膜形成材料は、耐熱性が比較的に高く、溶媒溶解性も比較的に高く、段差基板への埋め込み特性及び膜の平坦性に優れ、湿式プロセスが適用可能である。そのため、リソグラフィー用膜形成材料を含むリソグラフィー用膜形成用組成物はこれらの性能が要求される各種用途において、広く且つ有効に利用可能である。とりわけ、本発明は、リソグラフィー用下層膜及び多層レジスト用下層膜の分野において、特に有効に利用可能である。

Claims (23)

  1. 式(0A)の基:
    Figure 0006889873
    及び
    式(0B)の基:
    Figure 0006889873
    (式(0B)中、
    Rは、それぞれ独立して、水素原子及び炭素数1〜4のアルキル基からなる群より選ばれる。ただし、少なくとも一つのRは、炭素数1〜4のアルキル基である。)を有する化合物であって、
    前記化合物が、下記式(1A)、式(2A)又は式(3A)で表される化合物を含むリソグラフィー用下層膜形成材料。
    Figure 0006889873
    (式(1A)中、
    Rは、それぞれ独立して、水素原子及び炭素数1〜4のアルキル基からなる群より選ばれる。ただし、少なくとも一つのRは、炭素数1〜4のアルキル基である。
    Xは、それぞれ独立して、単結合、−O−、−CH 2 −、−C(CH 3 2 −、−CO−、−C(CF 3 2 −、−CONH−及び−COO−からなる群より選ばれ、
    Aが、単結合、酸素原子、又は以下の構造であり、
    Figure 0006889873
    Yが、−C(CH 3 2 −又は−C(CF 3 2 −であり、
    1 は、それぞれ独立して、ヘテロ原子を含んでいてもよい炭素数0〜30の基であり、
    m1は、それぞれ独立して、0〜4の整数である)
    Figure 0006889873
    (式(2A)中、
    R’は、それぞれ独立して、水素原子及び炭素数1〜4のアルキル基からなる群より選ばれ、
    2 は、それぞれ独立して、ヘテロ原子を含んでいてもよい炭素数0〜10の基であり、
    m2は、それぞれ0であり、
    m2’は、それぞれ0であり、
    nは、0〜4の整数である。
    複数の
    Figure 0006889873
    で表される基は、少なくとも式(0A)の基及び式(0B)の基を含む。)
    Figure 0006889873
    (式(3A)中、
    R’は、それぞれ独立して、水素原子及び炭素数1〜4のアルキル基からなる群より選ばれ、
    3 及びR 4 は、それぞれ独立して、ヘテロ原子を含んでいてもよい炭素数0〜10の基であり、
    m3は、それぞれ0であり、
    m4は、それぞれ0であり、
    nは、1〜4の整数である。
    複数の
    Figure 0006889873
    で表される基は、少なくとも式(0A)の基及び式(0B)の基を含む。)
  2. Xが、それぞれ独立に、単結合、−O−、−C(CH32−、−CO−、又は−COO−である、
    請求項に記載のリソグラフィー用下層膜形成材料。
  3. ヘテロ原子が、酸素、フッ素、及びケイ素からなる群より選ばれる、請求項1又は2に記載のリソグラフィー用下層膜形成材料。
  4. 架橋剤をさらに含有する、請求項1〜のいずれか一項に記載のリソグラフィー用下層膜形成材料。
  5. 前記架橋剤が、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物及びアジド化合物からなる群より選ばれる少なくとも1種である、請求項に記載のリソグラフィー用下層膜形成材料。
  6. 前記架橋剤が、少なくとも1つのアリル基を有する、請求項4又は5に記載のリソグラフィー用下層膜形成材料。
  7. 前記架橋剤の含有割合が、前記化合物の質量を100質量部とした場合に、0.1〜100質量部である、請求項4〜6のいずれか一項に記載のリソグラフィー用下層膜形成材料。
  8. 架橋促進剤をさらに含有する、請求項1〜のいずれか一項に記載のリソグラフィー用下層膜形成材料。
  9. 前記架橋促進剤が、アミン類、イミダゾール類、有機ホスフィン類、及びルイス酸からなる群より選ばれる少なくとも1種を含む、請求項に記載のリソグラフィー用下層膜形成材料。
  10. 前記架橋促進剤の含有割合が、前記化合物の質量を100質量部とした場合に、0.1〜5質量部である、請求項又はに記載のリソグラフィー用下層膜形成材料。
  11. ラジカル重合開始剤をさらに含有する、請求項1〜10のいずれか一項に記載のリソグラフィー用下層膜形成材料。
  12. 前記ラジカル重合開始剤が、ケトン系光重合開始剤、有機過酸化物系重合開始剤及びアゾ系重合開始剤からなる群より選ばれる少なくとも1種を含む、請求項11に記載のリソグラフィー用下層膜形成材料。
  13. 前記ラジカル重合開始剤の含有割合が、前記化合物の質量を100質量部とした場合に、0.05〜25質量部である、請求項11又は12に記載のリソグラフィー用下層膜形成材料。
  14. 請求項1〜13のいずれか一項に記載のリソグラフィー用下層膜形成材料と溶媒とを含有する、リソグラフィー用下層膜形成用組成物。
  15. 酸発生剤をさらに含有する、請求項14に記載のリソグラフィー用下層膜形成用組成物。
  16. 塩基性化合物をさらに含有する、請求項14又は15に記載のリソグラフィー用下層膜形成用組成物。
  17. 請求項14〜16のいずれか一項に記載のリソグラフィー用下層膜形成用組成物を用いて形成される、リソグラフィー用下層膜。
  18. 基板上に、請求項14〜16のいずれか一項に記載のリソグラフィー用下層膜形成用組成物を用いて下層膜を形成する工程、
    該下層膜上に、少なくとも1層のフォトレジスト層を形成する工程、及び
    該フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程、
    を含む、レジストパターン形成方法。
  19. 基板上に、請求項14〜16のいずれか一項に記載のリソグラフィー用下層膜形成用組成物を用いて下層膜を形成する工程、
    該下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程、
    該中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程、
    該フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程、
    該レジストパターンをマスクとして前記中間層膜をエッチングする工程、
    得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングする工程、及び、
    得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程、
    を含む、パターン形成方法。
  20. 請求項1〜13のいずれか一項に記載のリソグラフィー用下層膜形成材料を、溶媒に溶解させて有機相を得る工程と、
    前記有機相と酸性の水溶液とを接触させて、前記リソグラフィー用下層膜形成材料中の不純物を抽出する第一抽出工程と、
    を含み、
    前記有機相を得る工程で用いる溶媒が、水と任意に混和しない溶媒を含む、精製方法。
  21. 前記酸性の水溶液が、鉱酸水溶液又は有機酸水溶液であり、
    前記鉱酸水溶液が、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上を含み、
    前記有機酸水溶液が、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p−トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上を含む、請求項20に記載の精製方法。
  22. 前記水と任意に混和しない溶媒が、トルエン、2−ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート及び酢酸エチルからなる群より選ばれる1種以上の溶媒である、請求項20又は21に記載の精製方法。
  23. 前記第一抽出工程後、前記有機相を、水に接触させて、前記リソグラフィー用下層膜形成材料中の不純物を抽出する第二抽出工程をさらに含む、請求項2022のいずれか一項に記載の精製方法。
JP2020517233A 2018-11-21 2019-11-21 リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法 Active JP6889873B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018218042 2018-11-21
JP2018218042 2018-11-21
PCT/JP2019/045544 WO2020105694A1 (ja) 2018-11-21 2019-11-21 リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法

Publications (2)

Publication Number Publication Date
JPWO2020105694A1 JPWO2020105694A1 (ja) 2021-02-15
JP6889873B2 true JP6889873B2 (ja) 2021-06-18

Family

ID=70773821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020517233A Active JP6889873B2 (ja) 2018-11-21 2019-11-21 リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法

Country Status (6)

Country Link
US (1) US20220019146A1 (ja)
JP (1) JP6889873B2 (ja)
KR (1) KR20210093904A (ja)
CN (1) CN113039177A (ja)
TW (1) TW202030227A (ja)
WO (1) WO2020105694A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202302522A (zh) * 2021-03-02 2023-01-16 日商三菱瓦斯化學股份有限公司 微影術用膜形成材料、組成物、微影術用下層膜,及圖型形成方法
JP2023021515A (ja) * 2021-08-02 2023-02-14 信越化学工業株式会社 熱硬化性樹脂組成物

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2626795A1 (de) * 1975-06-18 1976-12-30 Ciba Geigy Ag Imidylverbindungen
NL9101750A (nl) * 1991-10-21 1993-05-17 Dsm Nv Polymeersamenstelling.
JPH10221852A (ja) * 1997-02-06 1998-08-21 Fuji Photo Film Co Ltd ポジ型感光性組成物
JP3774668B2 (ja) 2001-02-07 2006-05-17 東京エレクトロン株式会社 シリコン窒化膜形成装置の洗浄前処理方法
JP3914493B2 (ja) 2002-11-27 2007-05-16 東京応化工業株式会社 多層レジストプロセス用下層膜形成材料およびこれを用いた配線形成方法
JP4382750B2 (ja) 2003-01-24 2009-12-16 東京エレクトロン株式会社 被処理基板上にシリコン窒化膜を形成するcvd方法
JP3981030B2 (ja) 2003-03-07 2007-09-26 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法
JP2005141084A (ja) 2003-11-07 2005-06-02 Hitachi Chem Co Ltd 感光性樹脂組成物、これを用いた感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法
JP4388429B2 (ja) 2004-02-04 2009-12-24 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法
JP4781280B2 (ja) 2006-01-25 2011-09-28 信越化学工業株式会社 反射防止膜材料、基板、及びパターン形成方法
JP4638380B2 (ja) 2006-01-27 2011-02-23 信越化学工業株式会社 反射防止膜材料、反射防止膜を有する基板及びパターン形成方法
KR101397354B1 (ko) 2007-12-07 2014-05-19 미츠비시 가스 가가쿠 가부시키가이샤 리소그라피용 하층막 형성 조성물 및 다층 레지스트 패턴 형성 방법
WO2011034062A1 (ja) 2009-09-15 2011-03-24 三菱瓦斯化学株式会社 芳香族炭化水素樹脂及びリソグラフィー用下層膜形成組成物
JP4911252B1 (ja) 2010-11-30 2012-04-04 東洋インキScホールディングス株式会社 カルボキシル基含有変性エステル樹脂を含む熱硬化性樹脂組成物
US8697336B2 (en) * 2011-12-15 2014-04-15 Az Electronic Materials Usa Corp. Composition for forming a developable bottom antireflective coating
TWI627217B (zh) * 2013-09-16 2018-06-21 日商住友電木股份有限公司 經胺處理之順丁烯二酸酐聚合物、組成物及其應用
WO2015048575A1 (en) * 2013-09-26 2015-04-02 Designer Molecules, Inc. Low dielectric constant, low dielectric dissipation factor coatings, films and adhesives
EP3118183B1 (en) * 2014-03-13 2021-07-21 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and method for purifying the compound or resin
JP6509009B2 (ja) * 2014-03-28 2019-05-08 日鉄ケミカル&マテリアル株式会社 ビスマレイミド化合物、それを含む組成物、及び硬化物
EP3141959B1 (en) * 2014-05-08 2019-01-30 Mitsubishi Gas Chemical Company, Inc. Lithographic film formation material, composition for lithographic film formation, lithographic film, pattern formation method, and purification method
CN107148452B (zh) * 2014-11-06 2018-10-09 三菱瓦斯化学株式会社 树脂组合物、预浸料、覆金属箔层叠板、树脂复合片及印刷电路板
WO2016117584A1 (ja) * 2015-01-21 2016-07-28 日本化薬株式会社 芳香族アミン樹脂、エポキシ樹脂組成物及びその硬化物
JP6531910B2 (ja) 2015-10-09 2019-06-19 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
TWI744302B (zh) * 2016-05-19 2021-11-01 日商捷恩智股份有限公司 聚合性組成物、液晶複合體、光學各向異性體、液晶顯示元件及其用途
FR3063081A1 (fr) * 2017-02-20 2018-08-24 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc presentant des proprietes ameliorees a cru et a cuit

Also Published As

Publication number Publication date
TW202030227A (zh) 2020-08-16
KR20210093904A (ko) 2021-07-28
JPWO2020105694A1 (ja) 2021-02-15
CN113039177A (zh) 2021-06-25
WO2020105694A1 (ja) 2020-05-28
US20220019146A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
JP7054459B2 (ja) リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
JP7336078B2 (ja) リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
WO2015146523A1 (ja) パターン形成方法、樹脂及びレジスト下層膜形成組成物
JP7438483B2 (ja) リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
JP7256482B2 (ja) リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
JP6889873B2 (ja) リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
JP7258279B2 (ja) リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
JP7415310B2 (ja) リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
WO2021029320A1 (ja) リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法
WO2022186254A1 (ja) リソグラフィー用膜形成材料、組成物、リソグラフィー用下層膜、及びパターン形成方法
WO2023032998A1 (ja) スピンオンカーボン膜形成用組成物、スピンオンカーボン膜形成用組成物の製造方法、リソグラフィー用下層膜、レジストパターン形成方法、及び回路パターン形成方法
TW202411187A (zh) 多酚化合物、微影用膜形成用組成物、微影用下層膜及圖型形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200324

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200324

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210322

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210322

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210330

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210506

R151 Written notification of patent or utility model registration

Ref document number: 6889873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151