WO2016117584A1 - 芳香族アミン樹脂、エポキシ樹脂組成物及びその硬化物 - Google Patents

芳香族アミン樹脂、エポキシ樹脂組成物及びその硬化物 Download PDF

Info

Publication number
WO2016117584A1
WO2016117584A1 PCT/JP2016/051516 JP2016051516W WO2016117584A1 WO 2016117584 A1 WO2016117584 A1 WO 2016117584A1 JP 2016051516 W JP2016051516 W JP 2016051516W WO 2016117584 A1 WO2016117584 A1 WO 2016117584A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
epoxy resin
aromatic amine
carbon atoms
integer
Prior art date
Application number
PCT/JP2016/051516
Other languages
English (en)
French (fr)
Inventor
窪木 健一
政隆 中西
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to US15/544,706 priority Critical patent/US20170369636A1/en
Priority to EP16740191.8A priority patent/EP3248996A4/en
Priority to JP2016570670A priority patent/JP6660890B2/ja
Publication of WO2016117584A1 publication Critical patent/WO2016117584A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/49Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton
    • C07C211/50Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton with at least two amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols

Definitions

  • the present invention relates to an aromatic amine resin, an epoxy resin composition, a prepreg impregnated with a reinforced fiber, and a fiber reinforced composite material containing a cured product of the epoxy resin composition as a constituent component.
  • various composite materials such as insulating materials for electrical and electronic parts including those for highly reliable semiconductor encapsulation, and laminated plates (printed wiring glass fiber reinforced composite materials) and CFRP (carbon fiber reinforced composite materials).
  • the present invention relates to an epoxy resin composition useful for use in various applications, various adhesives, various paints, structural members, and the like.
  • amine-based curing agents are used in epoxy resin compositions used for fiber-reinforced composite materials, and aromatic amine-based curing agents are often used for carbon fiber-reinforced composite materials.
  • Diaminodiphenylmethane (DDM) and diaminodiphenylsulfone (DDS) are mainly used as the aromatic amine curing agent.
  • DDM diaminodiphenylmethane
  • DDS diaminodiphenylsulfone
  • dicyandiamide (DICY) is often used in glass fiber reinforced composite materials for electric and electronic materials.
  • diaminodiphenylmethane (DDM) and diaminodiphenyl sulfone (DDS) are mainly used as aromatic amine curing agents for epoxy resins.
  • Diaminodiphenylmethane is provided in the form of crystals with a melting point of about 90 ° C and is easily soluble in solvents, so it can be easily mixed with an epoxy resin.
  • it since it has good reactivity with epoxy groups, it can be used as an epoxy resin composition. There is a problem that usage time is short.
  • Diaminodiphenyl sulfone is provided in the form of crystals having a melting point of about 175 ° C.
  • diaminodiphenylmethane which is frequently used in glass fiber reinforced composite materials for electric and electronic materials, is excellent in curing potential, but it cannot be said that it has good solubility in solvents and epoxy resins.
  • Diaminodiphenylmethane and diaminodiphenylsulfone are often used for structural materials such as aircraft and automobiles. Especially, diaminodiphenylsulfone is used to obtain high heat resistance, but the hygroscopicity is increased. Later deterioration of physical properties becomes a problem.
  • Dicyandiamide is often used in electronic parts that require high reliability (for in-vehicle use, CPU, etc.), and the hygroscopic property is also high, so that there is a problem of deterioration in mechanical properties and electrical characteristics after moisture absorption.
  • a cured product having high heat resistance and impact resistance is obtained, but a decrease in electrical characteristics after moisture absorption is sufficiently required. It cannot be said that Moreover, in patent document 2, although the fall of the electrical property after moisture absorption is improved, it is not enough with respect to a request
  • R 1 s each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, except when all R 1 s are hydrogen atoms.
  • M is 1 to 4
  • n is an integer
  • an average value (A) of n represents 1 ⁇ A ⁇ 5.
  • R 1 in the formula (1) independently represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms
  • [3] The aromatic amine resin according to [1] or [2], wherein the average value (A) of n in the formula (1) represents 1 ⁇ A ⁇ 2.
  • R 1 in the above formula (1) is an alkyl group, and the substitution positions thereof are present at the 2-position and 6-position, or the 2-position and 3-position, or the 2-position and 5-position with respect to the amino group.
  • the epoxy resin composition according to the above item [6] which contains an epoxy resin represented by the following formula (2) and / or the following formula (3):
  • R 4 s each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, a glycidyl ether group or a phenyl group.
  • M represents an integer of 1 to 4
  • n represents an integer.
  • N represents 1 ⁇ n ⁇ 10.
  • the epoxy resin composition of the present invention which uses the aromatic amine resin of the present invention, has a wide range of usable time adjustment, low curing shrinkage, and excellent properties such as high heat resistance and low moisture absorption in the cured product.
  • Various composite materials such as laminates (printed wiring glass fiber reinforced composite materials) and CFRP (carbon fiber reinforced composite materials), as well as electrical and electronic component insulating materials including highly reliable semiconductor encapsulating materials It is useful for various adhesives, various adhesives, various paints, structural members and the like.
  • the aromatic amine resin of the present invention contains a compound represented by the following formula (1).
  • R 1 s each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, except when all R 1 are hydrogen atoms.
  • M represents an integer of 1 to 4)
  • N is an integer
  • the average value (A) of n represents 1 ⁇ A ⁇ 5.
  • Each R 1 is independently hydrogen or an alkyl group having 1 to 4 carbon atoms, preferably hydrogen or an alkyl group having 1 to 2 carbon atoms. However, the case where all of R 1 are hydrogen atoms is excluded. This is because the heat resistance may be lowered.
  • m is 1 to 4, preferably 1 to 2. Any substitution position may be present, but when m is 2, the substitution position should be at the 2-position and 6-position, or 2-position and 3-position, or 2-position and 5-position with respect to the amino group. Is preferred.
  • alkyl group having 1 to 4 carbon atoms examples include a linear alkyl group having 1 to 4 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • R 1 is preferably a methyl group or an ethyl group.
  • n is 1 ⁇ A ⁇ 5 as an average value (A), preferably 1 ⁇ A ⁇ 2, and more preferably 1.1 ⁇ A ⁇ 2.
  • the aromatic amine resin of the present invention can be obtained by reacting an aniline derivative having an alkyl group with bishalogenomethylbiphenyls or bisalkoxymethylbiphenyls if necessary in the presence of an acidic catalyst.
  • aniline derivatives having an alkyl group used for the production of the compound of formula (1) include 2-methylaniline, 3-methylaniline, 4-methylaniline, 2-ethylaniline, 3-ethylaniline, 4-ethylaniline.
  • a cured product having more excellent heat resistance and low hygroscopicity can be obtained, so that 2,3-dimethylaniline, 2,4-dimethylaniline, 2,5-dimethylaniline, 2, 6-dimethylaniline, 2,3-diethylaniline, 2,4-diethylaniline, 2,5-diethylaniline, and 2,6-diethylaniline are preferable, and 2,6-dimethylaniline and 2,6-diethyl are particularly preferable.
  • bishalogenomethyl biphenyls or bisalkoxymethyl biphenyls used examples include 4,4′-bis (chloromethyl) biphenyl, 4,4′-bis (bromomethyl) biphenyl, and 4,4′-bis (fluoromethyl).
  • Biphenyl 4,4'-bis (iodomethyl) biphenyl, 4,4'-dimethoxymethylbiphenyl, 4,4'-diethoxymethylbiphenyl, 4,4'-dipropoxymethylbiphenyl, 4,4'-diisopropoxy
  • Examples include methylbiphenyl, 4,4′-diisobutoxymethylbiphenyl, 4,4′-dibutoxymethylbiphenyl, 4,4′-di-tert-butoxymethylbiphenyl, and the like. These may be used alone or in combination of two or more.
  • 4,4′-bis (chloromethyl) biphenyl, 4,4′-dimethoxymethylbiphenyl, and 4,4′-diethoxymethylbiphenyl are preferable, and 4,4′-bis (chloromethyl) biphenyl is particularly preferable.
  • the amount of bishalogenomethylbiphenyls or bisalkoxymethylbiphenyls to be used is usually 0.05 to 0.8 mol, preferably 0.1 to 0.6 mol, per 1 mol of anilines used. .
  • the acidic catalyst examples include hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, zinc chloride, ferric chloride, aluminum chloride, p-toluenesulfonic acid, methanesulfonic acid and the like. These may be used alone or in combination of two or more.
  • the amount of the catalyst used is 0.1 to 0.8 mol, preferably 0.5 to 0.7 mol, based on 1 mol of the aniline used. If the amount is too large, the viscosity of the reaction solution is too high and stirring is performed. If the amount is too small, the progress of the reaction may be slow.
  • the reaction may be carried out using an organic solvent such as toluene or xylene, if necessary, or without a solvent.
  • an organic solvent such as toluene or xylene
  • the reaction may be carried out using an organic solvent such as toluene or xylene, if necessary, or without a solvent.
  • an organic solvent such as toluene or xylene
  • the water is removed from the system by azeotropic distillation.
  • bishalogenomethylbiphenyls or bisalkoxymethylbiphenyls are usually added at 40 to 100 ° C., preferably 50 to 80 ° C. over 1 to 5 hours, preferably 2 to 4 hours, and then the solvent is removed from the system.
  • the reaction is carried out at 180 to 240 ° C., preferably 190 to 220 ° C. for 5 to 30 hours, preferably 10 to 20 hours.
  • the amine equivalent of the aromatic amine resin of the present invention is 200 to 300 g / eq. Is preferable, and 200 to 240 g / eq. Is particularly preferred.
  • the softening point of the aromatic amine resin of the present invention is preferably 180 ° C. or lower, and more preferably 150 ° C. or lower.
  • the melt viscosity is preferably 0.01 to 0.5 Pa ⁇ s, particularly preferably 0.01 to 0.15 Pa ⁇ s.
  • epoxy resin composition of the present invention will be described.
  • Specific examples of the epoxy resin that can be used in the epoxy resin composition of the present invention include phenols (phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene.
  • Examples of the hydrocarbon group having 5 to 20 carbon atoms in X 1 include arylene groups such as a phenylene group, a phenylenebis (methylene) group, a methylphenylene group, a naphthalenediyl group, and an anthracenediyl group.
  • Examples of the heterocyclic ring in the hydrocarbon group having a heterocyclic ring having 5 to 20 carbon atoms in X 1 include a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, a triazine ring, an indole ring, a quinoline ring, an acridine ring, and a pyrrolidine.
  • Examples of the alkyl group having 1 to 10 carbon atoms in R 2 include a linear or branched alkyl group having 1 to 10 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group. , Isobutyl group, pentyl group, isopentyl group, neopentyl group, hexyl group, isohexyl group, heptyl group, isoheptyl group, octyl group, nonyl group and decyl group.
  • a methyl group, an ethyl group, a propyl group, a butyl group or an isobutyl group is preferable, and a methyl group is more preferable.
  • X 2 are each independently a single bond, a hydrocarbon group having 1 to 9 carbon atoms, a sulfur atom, an oxygen atom, —SO—, —SO 2 —, —CO—, —CO 2) — Or —Si (CH 3 ) 2 —, each R 3 independently represents hydrogen, an alkyl group having 1 to 10 carbon atoms, a glycidyl ether group or a phenyl group, m represents an integer of 1 to 4, n is an integer, and the average value of n represents 1 ⁇ n ⁇ 10.
  • Examples of the hydrocarbon group having 1 to 9 carbon atoms in X 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a vinyl group, and a phenyl group.
  • Examples of the alkyl group having 1 to 10 carbon atoms in R 3 include a linear or branched alkyl group having 1 to 10 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, An isobutyl group, a pentyl group, an isopentyl group, a neopentyl group, a hexyl group, an isohexyl group, a heptyl group, an isoheptyl group, an octyl group, a nonyl group, and a decyl group.
  • R 4 s each independently represent hydrogen, an alkyl group having 1 to 10 carbon atoms, a glycidyl ether group or a phenyl group.
  • M represents an integer of 1 to 4
  • n represents an integer.
  • N represents 1 ⁇ n ⁇ 10.
  • Examples of the alkyl group having 1 to 10 carbon atoms in R 4 include a linear or branched alkyl group having 1 to 10 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group. , Isobutyl group, pentyl group, isopentyl group, neopentyl group, hexyl group, isohexyl group, heptyl group, isoheptyl group, octyl group, nonyl group and decyl group.
  • a methyl group, an ethyl group, a propyl group, a butyl group or an isobutyl group is preferable, and a methyl group is more preferable.
  • the epoxy resins of the above formulas (2) to (4) can be used alone or in combination with other epoxy resins.
  • the proportion of the epoxy resin of formula (2) and / or formula (3) and / or formula (4) in the total epoxy resin is preferably 30% by weight or more, particularly preferably 40% by weight or more.
  • an aromatic amine resin containing the compound represented by the formula (1) as a curing agent can be used alone or in combination with another curing agent for epoxy resin.
  • the proportion of the aromatic amine resin containing the compound represented by the formula (1) in the total curing agent is preferably 30% by weight or more, particularly preferably 40% by weight or more.
  • Examples of the curing agent that can be used in combination with the aromatic amine resin containing the compound represented by the formula (1) include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and the like.
  • Specific examples of the curing agent that can be used include phenylenediamine, diaminodiphenylmethane, diaminodicyclohexylmethane, diaminodiphenyl ether, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, bisaniline M (made by Mitsui Chemicals), bisaniline P (made by Mitsui Chemicals), and Kayahard.
  • AA Kayaku
  • Kayabond C series Nippon Kayaku
  • isophoronediamine norbornanediamine
  • dicyandiamide polyamide resin synthesized from linolenic acid and ethylenediamine
  • phthalic anhydride tri Mellitic acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydro Phthalic acid, phenol - novolac, and modified products thereof, imidazo - Le, BF3-amine complex, but such guanidine derivatives are not limited thereto. These may be used alone or in combination of two or more.
  • the amount of the curing agent used is preferably 0.7 to 1.2 equivalents relative to 1 equivalent of the epoxy group of the epoxy resin.
  • the amount of the curing agent used is preferably 0.7 to 1.2 equivalents relative to 1 equivalent of the epoxy group of the epoxy resin.
  • gelatinization time can also be adjusted by using a hardening accelerator.
  • curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo (5 , 4, 0) tertiary amines such as undecene-7, phosphines such as triphenylphosphine, and metal compounds such as tin octylate.
  • the curing accelerator is used in an amount of 0.02 to 5.0 parts by weight based on 100 parts by weight of the epoxy resin.
  • additives can be blended in the epoxy resin composition of the present invention as necessary.
  • additives include polybutadiene and modified products thereof, modified products of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, maleimide compounds, cyanate ester compounds, silicone gel, and silicone oil.
  • inorganic fillers such as silica, alumina, calcium carbonate, quartz powder, aluminum powder, graphite, talc, clay, iron oxide, titanium oxide, aluminum nitride, asbestos, mica, glass powder, and filling such as silane coupling agents
  • Coloring agents such as surface treatment agents, release agents, carbon black, phthalocyanine blue, and phthalocyanine green can be used.
  • maleimide type compound can be mix
  • specific examples of maleimide compounds that can be used include 4,4′-diphenylmethane bismaleimide, polyphenylmethane maleimide, m-phenylene bismaleimide, 2,2′-bis [4- (4-maleimidophenoxy) phenyl] propane, 3 , 3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenylsulfone Examples thereof include, but are not limited to, bismaleimide, 1,3-bis (3-maleimidophenoxy) benzene, and 1,3-bis (4-maleimidophenoxy) benzene.
  • a curing accelerator is blended if necessary, and examples thereof include the above-described epoxy resin curing accelerators, radical polymerization initiators such as organic peroxides and azo compounds.
  • the epoxy resin composition of the present invention can be obtained by uniformly mixing each component.
  • the epoxy resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method.
  • the epoxy resin composition of the present invention is mixed thoroughly with an epoxy resin, a curing agent and, if necessary, a curing accelerator, an inorganic filler, and a compounding agent as necessary, using an extruder, kneader, roll, etc. until uniform.
  • a cured product can be obtained by melting the epoxy resin composition after melting and molding using a casting or transfer molding machine and further heating at 80 to 220 ° C. for 2 to 10 hours.
  • varnish-like composition An organic solvent can be added to the epoxy resin composition of the present invention to obtain a varnish-like composition (hereinafter simply referred to as varnish).
  • the solvent used include amide solvents such as ⁇ -butyrolactone, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylimidazolidinone, and tetramethylene sulfone.
  • ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, propylene glycol monobutyl ether, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone
  • Aromatic solvents such as solvent, toluene, xylene and the like can be mentioned.
  • the solvent is used in the range where the solid content concentration excluding the solvent in the obtained varnish is usually 10 to 80% by weight, preferably 20 to 70% by weight.
  • the prepreg of the present invention can be obtained by heating and melting the epoxy resin composition of the present invention to lower the viscosity and impregnating it with reinforcing fibers such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, and alumina fiber. .
  • the prepreg of the present invention can also be obtained by impregnating a varnish-like epoxy resin composition into a reinforcing fiber and drying it by heating.
  • a fiber-reinforced composite material is obtained by heating and curing the epoxy resin composition while applying pressure to the laminate by a press molding method, autoclave molding method, sheet winding molding method, etc. be able to.
  • a copper foil and an organic film can also be laminated
  • amine equivalent Measured by a method based on the method described in JIS K-7236 Appendix A, the unit is g / eq. It is.
  • -Softening point Measured by a method according to JIS K-7234, the unit is ° C.
  • -ICI melt viscosity Measured by a method according to JIS K 7117-2, and the unit is Pa.s.
  • Example 1 A flask equipped with a thermometer, a condenser, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 428 parts of o-toluidine and 240 parts of toluene, and 63 parts of 35% hydrochloric acid was added dropwise at room temperature over 1 hour. After completion of the dropwise addition, the mixture was heated to cool and separate azeotropic water and toluene, and then only the organic layer of toluene was returned to the system for dehydration.
  • Example 2 A flask equipped with a thermometer, condenser, Dean-Stark azeotropic distillation trap and stirrer was charged with 484 parts of 2,6-dimethylaniline and 240 parts of toluene, and then 126 parts of 4,4′-bis (chloromethyl) biphenyl. The mixture was added over 1 hour while maintaining at 55 to 60 ° C., and further reacted at 80 to 85 ° C. for 1 hour and at 120 ° C. for 1 hour. After completion of the reaction, toluene was distilled off while raising the temperature to bring the system to 207-210 ° C., and the reaction was carried out at this temperature for 5 hours.
  • Example 3 A flask equipped with a thermometer, condenser, Dean-Stark azeotropic distillation trap and stirrer was charged with 242 parts of 2,3-dimethylaniline and 120 parts of toluene, and then 63 parts of 4,4'-bis (chloromethyl) biphenyl. The mixture was added over 1 hour while maintaining at 55 to 60 ° C., and further reacted at 80 to 85 ° C. for 2 hours and at 120 ° C. for 1 hour. After completion of the reaction, toluene was distilled off while raising the temperature to bring the system to 205-210 ° C., and the reaction was carried out at this temperature for 24 hours.
  • Example 4 A flask equipped with a thermometer, condenser, Dean-Stark azeotropic distillation trap and stirrer was charged with 485 parts of 2,5-dimethylaniline and 240 parts of toluene, and then 126 parts of 4,4′-bis (chloromethyl) biphenyl. The mixture was added over 1 hour while maintaining at 55 to 60 ° C., and further reacted at 80 to 85 ° C. for 1 hour and at 120 ° C. for 1 hour. After completion of the reaction, toluene was distilled off while raising the temperature to bring the system to 207-210 ° C., and the reaction was carried out at this temperature for 30 hours.
  • Example 5 A flask equipped with a thermometer, condenser, Dean-Stark azeotropic distillation trap and stirrer was charged with 478 parts of 2,6-dimethylaniline and 200 parts of toluene, and then 100 parts of 4,4′-bis (chloromethyl) biphenyl. The mixture was added over 1 hour while maintaining at 55 to 60 ° C., and further reacted at 80 to 85 ° C. for 1 hour and at 120 ° C. for 1 hour. After completion of the reaction, toluene was distilled off while raising the temperature to bring the inside of the system to 207 to 210 ° C., and the reaction was carried out at this temperature for 14 hours.
  • Examples 6 to 10 The aromatic amine resin and epoxy resin obtained in Examples 1 to 5 were blended in the proportions (parts by weight) shown in Table 1, heated and melted and mixed in a metal container, and poured into a mold as it was, at 160 ° C. for 2 hours. Further, it was cured at 180 ° C. for 8 hours.
  • the results of measuring the physical properties of the cured product thus obtained for the following items are shown in Table 1.
  • Glass transition temperature Measured with a TMA method (thermomechanical measuring device: Q400EM manufactured by TA-instruments) at a heating rate of 2 ° C./min.
  • Moisture absorption Weight increase rate after 24 hours at 121 ° C./100%.
  • the test piece is a disk having a diameter of 50 mm and a thickness of 4 mm.
  • Shrinkage rate measured by a method based on JIS K-6911 (molding shrinkage rate).
  • Examples 11 to 14 and Comparative Examples 3 to 4 Using the aromatic amine resins obtained in Examples 1 to 5 and Comparative Synthesis Example 1, various epoxy resins and curing accelerators were blended in the proportions (parts by weight) shown in Table 2, and kneaded and mixed into a mixing roll. Thereafter, a resin molded body was prepared by transfer molding and cured at 160 ° C. for 2 hours and further at 180 ° C. for 6 hours. Table 2 shows the results of measuring the physical properties of the cured product thus obtained with respect to the following items.
  • the cured product of the epoxy resin composition using the aromatic amine resin of the present invention is an epoxy resin using a comparative aromatic amine resin or a diaminodiphenylmethane generally used as a curing agent. It can be confirmed that the heat resistance is improved as compared with the cured product of the composition, and the hygroscopicity and shrinkage are also improved.
  • a cured product of an epoxy resin composition having high heat resistance and low hygroscopicity can be obtained, and can be used for a fiber-reinforced composite material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Epoxy Resins (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

高信頼性半導体や高性能繊維強化複合材などに利用可能な、下記式(1)で表される芳香族アミン樹脂、これを含有したエポキシ樹脂組成物、これを硬化することにより得られる高耐熱性、低吸湿性に優れた特性を持つエポキシ樹脂硬化物、を提供する。(式中、複数存在するRはそれぞれ独立して水素原子、炭素数1~4のアルキル基を表し、全てのRが水素原子である場合を除く。mは1~4の整数を表し、nは整数であり、nの平均値(A)が1≦A≦5を表す。)

Description

芳香族アミン樹脂、エポキシ樹脂組成物及びその硬化物
 本発明は、芳香族アミン樹脂、エポキシ樹脂組成物、それを強化繊維に含浸させたプリプレグ、エポキシ樹脂組成物の硬化物を構成成分として含む繊維強化複合材料に関する。詳しくは、高信頼性半導体封止用を始めとする電気・電子部品絶縁材料用、及び積層板(プリント配線ガラス繊維強化複合材料)やCFRP(炭素繊維強化複合材料)を始めとする各種複合材料用、各種接着剤用、各種塗料用、構造用部材等に有用なエポキシ樹脂組成物に関する。
 一般に繊維強化複合材料に用いられるエポキシ樹脂組成物においてはアミン系の硬化剤が使用されていて、特に炭素繊維強化複合材には芳香族アミン系硬化剤が用いられることが多い。芳香族アミン系硬化剤としてはジアミノジフェニルメタン(DDM)やジアミノジフェニルスルホン(DDS)が主に用いられている。他方電気・電子材料用のガラス繊維強化複合材においてはジシアンジアミド(DICY)が用いられることが多い。これらの硬化剤はそれぞれの複合材の製造法および複合材の性能の要求に幅広く答え、また様々な使用法、変性等が加えられて長年使用されてきた。しかしながら、近年繊維強化複合材の使用範囲、使用環境が急速に広がってきているため、従来品よりも電気特性、機械特性、耐水性などにおいて高度な性能が要求されるようになっている。
日本国特公平1-259024号公報 日本国特許第5019585号公報
 上述のように一般にエポキシ樹脂の芳香族アミン系硬化剤としてはジアミノジフェニルメタン(DDM)やジアミノジフェニルスルホン(DDS)が主に用いられている。ジアミノジフェニルメタンは融点が約90℃程度の結晶で供されていて、溶剤にも溶けやすいためエポキシ樹脂との混合も容易であるが、エポキシ基との反応性が良い為、エポキシ樹脂組成物の可使時間が短いという問題がある。ジアミノジフェニルスルホンは融点が約175℃の結晶で供されていて、ジアミノジフェニルメタンよりも反応性が劣るので可使時間は長くできるが、高融点かつ溶剤に溶け難い性質により、エポキシ樹脂との混合が困難である。また、電気・電子材料用ガラス繊維強化複合材に多用されるジシアンジアミドは硬化の潜在性において優れているが、溶剤・エポキシ樹脂への溶解性は良いとはいえない。
 航空機や自動車などの構造材用にはジアミノジフェニルメタンやジアミノジフェニルスルホンを使用することが多く、特に高耐熱性を得るためにジアミノジフェニルスルホンが用いられてはいるが、一方吸湿性が高くなり、吸湿後の物性の低下が問題となる。高信頼性を必要とする電子部品(車載用、CPUなど)などにおいてはジシアンジアミドを使用することが多く、やはり吸湿性が高いため、吸湿後の機械物性・電気特性低下が問題となる。特許文献1に示される芳香族アミン樹脂を用いたエポキシ樹脂組成物においても、高耐熱性、耐衝撃性に優れた硬化物が得られているが、吸湿後の電気特性の低下は十分に要求を満たしているとは言えない。また、特許文献2においては吸湿後の電気特性の低下は改善されてはいるが、要求に対して十分ではない。
 本発明者らはこうした実状に鑑み、高耐熱性、低吸湿性を有するエポキシ樹脂組成物の硬化物を得ることのできる芳香族アミン樹脂およびエポキシ樹脂組成物を求めて鋭意研究した結果、本発明を完成させるに到った。
 すなわち本発明は、
[1]下記式(1)で表される化合物を含有する芳香族アミン樹脂、
Figure JPOXMLDOC01-appb-C000005
(式中、複数存在するRはそれぞれ独立して、水素原子又は炭素数1~4のアルキル基を表す。但し、全てのRが水素原子である場合を除く。mは1~4の整数を表し、nは整数であり、nの平均値(A)が1≦A≦5を表す。)
[2]前記式(1)におけるRはそれぞれ独立して水素原子又は炭素数1~2のアルキル基を表す前項[1]に記載の芳香族アミン樹脂、
[3]前記式(1)におけるnの平均値(A)が1≦A≦2を表す前項[1]又は[2]に記載の芳香族アミン樹脂、
[4]前記式(1)におけるRがアルキル基であり、その置換位置がアミノ基に対して2位と6位、あるいは2位と3位、あるいは2位と5位に存在する前項[1]~[3]のいずれかに記載の芳香族アミン樹脂、
[5]前記式(1)で表される化合物のうち、n=1体を75%以上含有する前項[1]~[4]のいずれかに記載の芳香族アミン樹脂、
[6]前項[1]~[5]のいずれかに記載の芳香族アミン樹脂を含有するエポキシ樹脂組成物、
[7]下記式(2)および/または下記式(3)で表されるエポキシ樹脂を含有する前項[6]に記載のエポキシ樹脂組成物、
Figure JPOXMLDOC01-appb-C000006
(式中、複数存在するXはそれぞれ独立して、炭素数5~20の炭化水素基又は炭素数が5~20の複素環を有する炭化水素基を表す。式中、複数存在するRはそれぞれ独立して水素、炭素数1~10のアルキル基、グリシジルエーテル基又はフェニル基を表す。mは1~4の整数を表し、nは整数であり、nの平均値は1<n≦10を表す。)
Figure JPOXMLDOC01-appb-C000007
(式中、複数存在するXはそれぞれ独立して、単結合、炭素数1~9の炭化水素基、硫黄原子、酸素原子、-SO-、-SO-、-CO-、-CO-または-Si(CH-を表す。Rはそれぞれ独立して水素、炭素数1~10のアルキル基、グリシジルエーテル基又はフェニル基を表す。mは1~4の整数を表し、nは整数であり、nの平均値は1<n≦10を表す。)
[8]下記式(4)で表されるエポキシ樹脂を含有する前項[6]に記載のエポキシ樹脂組成物、
Figure JPOXMLDOC01-appb-C000008
(式中、複数存在するRはそれぞれ独立して、水素、炭素数1~10のアルキル基、グリシジルエーテル基又はフェニル基を表す。mは1~4の整数を表し、nは整数であり、nの平均値は1<n≦10を表す。)
[9]前項[6]~[8]のいずれかに記載のエポキシ樹脂組成物を強化繊維に含浸してなるプリプレグ、
[10]前項[6]~[8]のいずれかに記載のエポキシ樹脂組成物を硬化してなる硬化物、
を、提供するものである。
 本発明の芳香族アミン樹脂を使用した、本発明のエポキシ樹脂組成物は可使時間の調整幅が広くて、硬化収縮が低く、その硬化物において高耐熱性、低吸湿性に優れた特性を併せ持ち、高信頼性半導体封止材料用を始めとする電気・電子部品絶縁材料用、及び積層板(プリント配線ガラス繊維強化複合材料)やCFRP(炭素繊維強化複合材料)を始めとする各種複合材料用、各種接着剤用、各種塗料用、構造用部材等に有用である。
 以下、本発明の芳香族アミン樹脂について説明する。
 本発明の芳香族アミン樹脂は、下記式(1)で表される化合物を含有する。
Figure JPOXMLDOC01-appb-C000009
(式中、複数存在するRはそれぞれ独立して水素原子又は炭素数1~4のアルキル基を表し、全てのRが水素原子である場合を除く。mは1~4の整数を表し、nは整数であり、nの平均値(A)が1≦A≦5を表す。)
 Rはそれぞれ独立して水素又は炭素数1~4のアルキル基であり、好ましくは水素又は炭素数1~2のアルキル基である。但し、Rのすべてが水素原子である場合を除く。耐熱性の低下の恐れがあるためである。
 mは1~4であり、好ましくは1~2である。置換位置はいずれに存在してもよいが、mが2の場合、その置換位置はアミノ基に対して2位と6位、あるいは2位と3位、あるいは2位と5位に存在することが好ましい。
 炭素数1~4のアルキル基としては、例えば、炭素数1~4の直鎖状のアルキル基が挙げられ、具体例は、メチル基、エチル基、プロピル基及びブチル基である。Rはメチル基、エチル基が好ましい。
 nは平均値(A)として1≦A≦5であり、好ましくは1≦A≦2であり、より好ましくは1.1≦A≦2である。
 次に本発明の芳香族アミン樹脂の製造方法について説明する。
 本発明の芳香族アミン樹脂は必要により酸性触媒の存在下において、アルキル基を有するアニリン誘導体とビスハロゲノメチルビフェニル類またはビスアルコキシメチルビフェニル類とを反応させることにより得られる。
 式(1)の化合物の製造に使用されるアルキル基を有するアニリン誘導体としては、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、2-エチルアニリン、3-エチルアニリン、4-エチルアニリン、2,3-ジメチルアニリン、2,4-ジメチルアニリン、2,5-ジメチルアニリン、2,6-ジメチルアニリン、3,4-ジメチルアニリン、3,5-ジメチルアニリン、2-プロピルアニリン、3-プロピルアニリン、4-プロピルアニリン、2-イソプロピルアニリン、3-イソプロピルアニリン、4-イソプロピルアニリン、2-エチル-6-メチルアニリン、2-sec-ブチルアニリン、2-tert-ブチルアニリン、4-ブチルアニリン、4-sec-ブチルアニリン、4-tert-ブチルアニリン、2,3-ジエチルアニリン、2,4-ジエチルアニリン、2,5-ジエチルアニリン、2,6-ジエチルアニリン、2-イソプロピル-6-メチルアニリン、4-アミノビフェニルなどが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。
 また、エポキシ樹脂組成物として、より耐熱性、低吸湿性に優れる硬化物を得ることができる点から、2,3-ジメチルアニリン、2,4-ジメチルアニリン、2,5-ジメチルアニリン、2,6-ジメチルアニリン、2,3-ジエチルアニリン、2,4-ジエチルアニリン、2,5-ジエチルアニリン、2,6-ジエチルアニリンが好ましく、特に好ましくは2,6-ジメチルアニリン、2,6-ジエチルアニリンなどの、2位と6位に置換基を有するアニリン誘導体である。
 使用されるビスハロゲノメチルビフェニル類またはビスアルコキシメチルビフェニル類としては、4,4’-ビス(クロロメチル)ビフェニル、4,4’-ビス(ブロモメチル)ビフェニル、4,4’-ビス(フルオロメチル)ビフェニル、4,4’-ビス(ヨードメチル)ビフェニル、4,4’-ジメトキシメチルビフェニル、4,4’-ジエトキシメチルビフェニル、4,4’-ジプロポキシメチルビフェニル、4,4’-ジイソプロポキシメチルビフェニル、4,4’-ジイソブトキシメチルビフェニル、4,4’-ジブトキシメチルビフェニル、4,4’-ジ-tert-ブトキシメチルビフェニルなどが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。4,4’-ビス(クロロメチル)ビフェニル、4,4’-ジメトキシメチルビフェニル、4,4’-ジエトキシメチルビフェニル、が好ましく、特に好ましくは4,4’-ビス(クロロメチル)ビフェニルである。
 ビスハロゲノメチルビフェニル類またはビスアルコキシメチルビフェニル類の使用量は、使用されるアニリン類1モルに対して通常0.05~0.8モルであり、好ましくは0.1~0.6モルである。
 必要により使用することができる酸性触媒としては、例えば塩酸、燐酸、硫酸、蟻酸、塩化亜鉛、塩化第二鉄、塩化アルミニウム、p-トルエンスルホン酸、メタンスルホン酸等が挙げられる。これらは単独でも二種以上併用しても良い。
 触媒の使用量は、使用されるアニリン類1モルに対して0.1~0.8モル、好ましくは0.5~0.7モルであり、多すぎると反応溶液の粘度が高すぎて攪拌が困難になり、少なすぎると反応の進行が遅くなるおそれがある。
 反応は必要によりトルエン、キシレンなどの有機溶剤を使用しても、無溶剤で行っても良い。例えば、アニリン誘導体と溶剤の混合溶液に酸性触媒を添加した後、触媒が水を含む場合は共沸により水を系内から除く。しかる後に通常40~100℃、好ましくは50~80℃でビスハロゲノメチルビフェニル類またはビスアルコキシメチルビフェニル類を1~5時間、好ましくは2~4時間かけて添加し、その後溶剤を系内から除きながら昇温して180~240℃、好ましくは190~220℃で5~30時間、好ましくは10~20時間反応を行う。反応終了後、アルカリ水溶液で酸性触媒を中和後、油層に非水溶性有機溶剤を加えて廃水が中性になるまで水洗を繰り返し、加熱減圧下で過剰のアニリン誘導体や有機溶剤を留去することにより前記式(1)の芳香族アミン樹脂が得られる。
 本発明の芳香族アミン樹脂のアミン当量は、200~300g/eq.が好ましく、200~240g/eq.が特に好ましい。
 本発明の芳香族アミン樹脂の軟化点は180℃以下が好ましく、150℃以下がより好ましい。また、溶融粘度は0.01~0.5Pa・sが好ましく0.01~0.15Pa・sが特に好ましい。
 次に本発明のエポキシ樹脂組成物について説明する。
 本発明のエポキシ樹脂組成物で使用することができるエポキシ樹脂としては、その具体例としてはフェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物、フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物、フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン、フルオレノン等)との重縮合物、フェノール類とビスハロゲノメチルベンゼン類、ビスハロゲノメチルビフェニル類との重縮合物、ビスフェノール類と各種アルデヒドの重縮合物、アルコール類、等をグリシジル化したグリシジルエーテル系エポキシ樹脂、4-ビニル-1-シクロヘキセンジエポキシドや3,4-エポキシシクロヘキシルメチル-3,4’-エポキシシクロヘキサンカルボキシラートなどを代表とする脂環式エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン(TGDDM)やトリグリシジル-p-アミノフェノールなどを代表とするグリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるが、通常用いられるエポキシ樹脂であればこれらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。好ましくは、下記式(2)~(4)で表されるエポキシ樹脂である。しかし、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000010
(式中、複数存在するXはそれぞれ独立して、炭素数5~20の炭化水素基又は炭素数が5~20の複素環を有する炭化水素基を表す。式中、複数存在するRはそれぞれ独立して水素、炭素数1~10のアルキル基、グリシジルエーテル基又はフェニル基を表す。mは1~4の整数を表し、nは整数であり、nの平均値は1<n≦10を表す。)
 Xにおける炭素数5~20の炭化水素基としては、フェニレン基、フェニレンビス(メチレン)基、メチルフェニレン基、ナフタレンジイル基、アントラセンジイル基などのアリーレン基が挙げられる。
 Xにおける炭素数5~20の複素環を有する炭化水素基中の複素環としては、例えば、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環、インドール環、キノリン環、アクリジン環、ピロリジン環、ジオキサン環、ピペリジン環、モルフォリン環、ピペラジン環、カルバゾール環、フラン環、チオフェン環、オキサゾール環、オキサジアゾール環、ベンゾオキサゾール環、チアゾール環、チアジアゾール環、ベンゾチアゾール環、トリアゾール環、イミダゾール環、ベンゾイミダゾール環、ピラン環、ジベンゾフラン環から形成される基等が挙げられる。
 Rにおける炭素数1~10のアルキル基としては、例えば炭素数1~10の直鎖状又は分鎖状のアルキル基が挙げられ、具体例は、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、ヘプチル基、イソヘプチル基、オクチル基、ノニル基及びデシル基である。好ましくは、メチル基、エチル基、プロピル基、ブチル基又はイソブチル基であり、より好ましくは、メチル基である。
Figure JPOXMLDOC01-appb-C000011
(式中、複数存在するXはそれぞれ独立して、単結合、炭素数1~9の炭化水素基、硫黄原子、酸素原子、-SO-、-SO-、-CO-、-CO-または-Si(CH-を表す。Rはそれぞれ独立して水素、炭素数1~10のアルキル基、グリシジルエーテル基又はフェニル基を表す。mは1~4の整数を表し、nは整数であり、nの平均値は1<n≦10を表す。)
 Xにおける炭素数1~9の炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ビニル基、フェニル基が挙げられる。
 Rにおける炭素数1~10のアルキル基として、例えば炭素数1~10の直鎖状又は分鎖状のアルキル基が挙げられ、具体例は、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、ヘプチル基、イソヘプチル基、オクチル基、ノニル基及びデシル基である。好ましくは、メチル基、エチル基、プロピル基、ブチル基又はイソブチル基であり、より好ましくは、メチル基である。
Figure JPOXMLDOC01-appb-C000012
(式中、複数存在するRはそれぞれ独立して、水素、炭素数1~10のアルキル基、グリシジルエーテル基又はフェニル基を表す。mは1~4の整数を表し、nは整数であり、nの平均値は1<n≦10を表す。)
 Rにおける炭素数1~10のアルキル基としては、例えば炭素数1~10の直鎖状又は分鎖状のアルキル基が挙げられ、具体例は、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、ヘプチル基、イソヘプチル基、オクチル基、ノニル基及びデシル基である。好ましくは、メチル基、エチル基、プロピル基、ブチル基又はイソブチル基であり、より好ましくは、メチル基である。
 本発明のエポキシ樹脂組成物において、前記式(2)~(4)のエポキシ樹脂は単独で、または他のエポキシ樹脂と併用して用いることが出来る。併用する場合、式(2)及び/または式(3)及び/または式(4)のエポキシ樹脂の全エポキシ樹脂中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。
 本発明のエポキシ樹脂組成物において、硬化剤として前記式(1)で表される化合物を含有する芳香族アミン樹脂を単独で、または他のエポキシ樹脂用硬化剤と併用して用いることが出来る。併用する場合、前記式(1)で表される化合物を含有する芳香族アミン樹脂の全硬化剤中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。
 前記式(1)で表される化合物を含有する芳香族アミン樹脂と併用し得る硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノ-ル系化合物などが挙げられる。使用できる硬化剤の具体例としては、フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジシクロヘキシルメタン、ジアミノジフェニルエーテル、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、ビスアニリンM(三井化学製)、ビスアニリンP(三井化学製)、カヤハードA-A(日本化薬製)、カヤボンドCシリーズ(日本化薬製)、イソホロンジアミン、ノルボルナンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、フェノ-ルノボラック、及びこれらの変性物、イミダゾ-ル、BF3-アミン錯体、グアニジン誘導体などが挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。
 本発明のエポキシ樹脂組成物において硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して0.7~1.2当量が好ましい。エポキシ基1当量に対して0.7当量に満たない場合、或いは1.2当量を越える場合、いずれも硬化が不完全になり、良好な硬化物性が得られないことがある。
 また本発明のエポキシ樹脂組成物において、硬化剤として前記式(1)で表される化合物を含有する芳香族アミン樹脂を用いる場合、硬化促進剤を使用することによりゲル化時間を調整することも出来る。
 使用できる硬化促進剤の例としては2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾールなどのイミダゾール類、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等の第3級アミン類、トリフェニルホスフィンなどのホスフィン類、オクチル酸スズ等の金属化合物が挙げられる。硬化促進剤はエポキシ樹脂100重量部に対して0.02~5.0重量部が必要に応じ用いられる。
 更に本発明のエポキシ樹脂組成物には、必要に応じて公知の添加剤を配合することが出来る。
 用いうる添加剤の具体例としては、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、マレイミド系化合物、シアネートエステル系化合物、シリコーンゲル、シリコーンオイル、並びにシリカ、アルミナ、炭酸カルシウム、石英粉、アルミニウム粉末、グラファイト、タルク、クレー、酸化鉄、酸化チタン、窒化アルミニウム、アスベスト、マイカ、ガラス粉末等の無機充填材、シランカップリング剤のような充填材の表面処理剤、離型剤、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤が挙げられる。
 また本発明のエポキシ樹脂組成物には、必要に応じて公知のマレイミド系化合物を配合することができる。
 用いうるマレイミド化合物の具体例としては、4,4’-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、m-フェニレンビスマレイミド、2,2’-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼンなどが挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。
 マレイミド系化合物を配合する際は、必要により硬化促進剤を配合するが、前記のエポキシ樹脂の硬化促進剤や、有機過酸化物、アゾ化合物などのラジカル重合開始剤などが挙げられる。
 本発明のエポキシ樹脂組成物は、各成分を均一に混合することにより得られる。本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることが出来る。例えば本発明のエポキシ樹脂と硬化剤ならびに必要により硬化促進剤、無機充填材及び配合剤とを必要に応じて押出機、ニーダ、ロールなどを用いて均一になるまで十分に混合してエポキシ樹脂組成物を得、そのエポキシ樹脂組成物を溶融後注型あるいはトランスファー成型機などを用いて成型し、更に80~220℃で2~10時間加熱することにより硬化物を得ることが出来る。
 本発明のエポキシ樹脂組成物に有機溶剤を添加しワニス状の組成物(以下、単にワニスという)とすることができる。
 用いられる溶剤としては、例えばγ-ブチロラクトン類、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイミダゾリジノン等のアミド系溶剤、テトラメチレンスルフォン等のスルフォン類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノブチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤、トルエン、キシレンなどの芳香族系溶剤が挙げられる。溶剤は、得られたワニス中の溶剤を除く固形分濃度が通常10~80重量%、好ましくは20~70重量%となる範囲で使用する。
 本発明のエポキシ樹脂組成物を加熱溶融して低粘度化してガラス繊維、カ-ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維などの強化繊維に含浸させることにより本発明のプリプレグを得ることができる。
 また、ワニス状のエポキシ樹脂組成物を、強化繊維に含浸させて加熱乾燥させることにより本発明のプリプレグを得ることもできる。
 上記のプリプレグを所望の形に裁断、積層後、積層物にプレス成形法やオートクレーブ成形法、シートワインディング成形法などで圧力をかけながらエポキシ樹脂組成物を加熱硬化させることにより繊維強化複合材料を得ることができる。
 また、プリプレグの積層時に銅箔や有機フィルムを積層することもできる。
 以下、実施例、比較例により本発明を具体的に説明する。本発明はこれら実施例に限定されるものではない。合成例、実施例、比較例において部は質量部を意味する。
 なお、アミン当量、軟化点、ICI溶融粘度は以下の条件で測定した。
 ・アミン当量
  JIS K-7236 付属書Aに記載された方法に準拠した方法で測定し、単位はg/eq.である。
 ・軟化点
  JIS K-7234に準拠した方法で測定し、単位は℃である。
 ・ICI溶融粘度
  JIS K 7117-2に準拠した方法で測定し、単位はPa・sである。
実施例1
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにo-トルイジン428部とトルエン240部を仕込み、室温で35%塩酸63部を1時間で滴下した。滴下終了後加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次いで4,4’-ビス(クロロメチル)ビフェニル126部を60~70℃に保ちながら1時間かけて添加し、更に同温度で2時間反応を行った。反応終了後、昇温をしながらトルエンを留去して系内を205~210℃とし、この温度で12時間反応を行った。その後冷却しながら30%水酸化ナトリウム水溶液223部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下で留去したトルエンを系内に戻し、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いで油層から加熱減圧下において過剰のo-トルイジンとトルエンを留去することにより本発明の芳香族アミン樹脂182部(A1)を得た。芳香族アミン樹脂(A1)の軟化点は59℃、溶融粘度は0.04Pa・s、アミン当量は203g/eqであった。
実施例2
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに2,6-ジメチルアニリン484部とトルエン240部を仕込み、次いで4,4’-ビス(クロロメチル)ビフェニル126部を55~60℃に保ちながら1時間かけて添加し、更に80~85℃で1時間、120℃で1時間反応を行った。反応終了後、昇温をしながらトルエンを留去して系内を207~210℃とし、この温度で5時間反応を行った。その後冷却しながら30%水酸化ナトリウム水溶液139部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下で留去したトルエンを系内に戻し、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いで油層から加熱減圧下において過剰の2,6-ジメチルアニリンとトルエンを留去することにより本発明の芳香族アミン樹脂182部(A2)を得た。芳香族アミン樹脂(A2)の軟化点は136℃、溶融粘度は0.04Pa・s、アミン当量は211g/eqであった。
実施例3
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに2,3-ジメチルアニリン242部とトルエン120部を仕込み、次いで4,4’-ビス(クロロメチル)ビフェニル63部を55~60℃に保ちながら1時間かけて添加し、更に80~85℃で2時間、120℃で1時間反応を行った。反応終了後、昇温をしながらトルエンを留去して系内を205~210℃とし、この温度で24時間反応を行った。その後冷却しながら30%水酸化ナトリウム水溶液72部を滴下し、80℃以下で留去したトルエンを系内に戻し、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いで油層から加熱減圧下において過剰の2,3-ジメチルアニリンとトルエンを留去することにより本発明の芳香族アミン樹脂97部(A3)を得た。芳香族アミン樹脂(A3)の軟化点は75℃、溶融粘度は0.09Pa・s、アミン当量は217g/eqであった。
実施例4
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに2,5-ジメチルアニリン485部とトルエン240部を仕込み、次いで4,4’-ビス(クロロメチル)ビフェニル126部を55~60℃に保ちながら1時間かけて添加し、更に80~85℃で1時間、120℃で1時間反応を行った。反応終了後、昇温をしながらトルエンを留去して系内を207~210℃とし、この温度で30時間反応を行った。その後冷却しながら30%水酸化ナトリウム水溶液143部を滴下し、80℃以下で留去したトルエンを系内に戻し、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いで油層から加熱減圧下において過剰の2,5-ジメチルアニリンとトルエンを留去することにより本発明の芳香族アミン樹脂202部(A4)を得た。芳香族アミン樹脂(A4)の軟化点は79℃、溶融粘度は0.14Pa・s、アミン当量は217g/eqであった。
実施例5
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに2,6-ジメチルアニリン478部とトルエン200部を仕込み、次いで4,4’-ビス(クロロメチル)ビフェニル100部を55~60℃に保ちながら1時間かけて添加し、更に80~85℃で1時間、120℃で1時間反応を行った。反応終了後、昇温をしながらトルエンを留去して系内を207~210℃とし、この温度で14時間反応を行った。その後冷却しながら30%水酸化ナトリウム水溶液119部を滴下し、80℃以下で留去したトルエンを系内に戻し、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いで油層から加熱減圧下において過剰の2,6-ジエチルアニリンとトルエンを留去することにより本発明の芳香族アミン樹脂182部(A5)を得た。芳香族アミン樹脂(A5)の軟化点は115℃、溶融粘度は0.03Pa・s、アミン当量は236g/eqであった。
比較合成例1
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン559部とトルエン500部を仕込み、室温で35%塩酸167部を1時間で滴下した。滴下終了後加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次いで4,4’-ビス(クロロメチル)ビフェニル251部を60~70℃に保ちながら1時間かけて添加し、更に同温度で2時間反応を行った。反応終了後、昇温をしながらトルエンを留去して系内を190~200℃とし、この温度で15時間反応をした。その後冷却しながら30%水酸化ナトリウム水溶液500部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下で留去したトルエンを系内に戻し、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いで油層から加熱減圧下において過剰のアニリンとトルエンを留去することにより芳香族アミン樹脂335部(C1)を得た。芳香族アミン樹脂(C1)の軟化点は59℃、溶融粘度は0.05Pa・s、アミン当量は196g/eqであった。
実施例6~10
 実施例1~5で得られた芳香族アミン樹脂とエポキシ樹脂を表1の割合(重量部)で配合し、金属容器中で加熱溶融混合してそのまま金型に流し込み、160℃で2時間、更に180℃で8時間硬化させた。このようにして得られた硬化物の物性を以下の項目について測定した結果を表1に示す。
  ・ ガラス転移温度:TMA法(熱機械測定装置:TA-insturuments製 Q400EM)で昇温速度2℃/minで測定。
  ・ 吸湿率:121℃/100%で24時間後の重量増加率。試験片は直径50mm×厚み4mmの円盤。
  ・ 収縮率:JIS K-6911(成形収縮率)に準拠した方法で測定した。
比較例1~2
 比較合成例1で得られた芳香族アミン樹脂(C1)およびジアミノジフェニルメタン(DDM)とエポキシ樹脂を用い、実施例と同様に樹脂成形体を調製し、硬化物の物性を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000013
注)
(E1):RE-310S(日本化薬(株)製 エポキシ当量184g/eq)
(A1):実施例1で合成した芳香族アミン樹脂
(A2):実施例2で合成した芳香族アミン樹脂
(A3):実施例3で合成した芳香族アミン樹脂
(A4):実施例4で合成した芳香族アミン樹脂
(A5):実施例5で合成した芳香族アミン樹脂
(C1):比較合成例1で合成した芳香族アミン樹脂
(DDM):ジアミノジフェニルメタン
実施例11~14、比較例3~4
 実施例1~5、比較合成例1で得られた芳香族アミン樹脂を使用し、各種のエポキシ樹脂、硬化促進剤を表2の割合(重量部)で配合し、ミキシングロールで混練、タブレット化後、トランスファー成形で樹脂成形体を調製し、160℃で2時間、更に180℃で6時間硬化させた。このようにして得られた硬化物の物性を以下の項目について測定した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000014
注)
(E2):EOCN-1020-70(日本化薬(株)製 エポキシ当量198g/eq)
(E3):NC-3000(日本化薬(株)製 エポキシ当量277g/eq)
 表1、表2より、本発明の芳香族アミン樹脂を用いたエポキシ樹脂組成物の硬化物は、比較用の芳香族アミン樹脂や一般的に硬化剤として使用されるジアミノジフェニルメタンを用いたエポキシ樹脂組成物の硬化物と比較して耐熱性が向上し、吸湿性、収縮性も向上することが確認できる。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本願は、2015年1月21日付で出願された日本国特許出願(2015-009036)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 本発明の芳香族アミン樹脂およびエポキシ樹脂組成物によれば、高耐熱性、低吸湿性を有するエポキシ樹脂組成物の硬化物を得ることができ、繊維強化複合材に利用することが可能である。

Claims (10)

  1.  下記式(1)で表される化合物を含有する芳香族アミン樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式中、複数存在するRはそれぞれ独立して水素原子又は炭素数1~4のアルキル基を表す。但し、全てのRが水素原子である場合を除く。mは1~4の整数を表し、nは整数であり、nの平均値(A)が1≦A≦5を表す。)
  2.  前記式(1)におけるRはそれぞれ独立して水素原子又は炭素数1~2のアルキル基を表す請求項1に記載の芳香族アミン樹脂。
  3.  前記式(1)におけるnの平均値(A)が1≦A≦2を表す請求項1又は請求項2に記載の芳香族アミン樹脂。
  4.  前記式(1)におけるRがアルキル基であり、その置換位置がアミノ基に対して2位と6位、あるいは2位と3位、あるいは2位と5位に存在する請求項1~3のいずれか一項に記載の芳香族アミン樹脂。
  5.  前記式(1)で表される化合物のうち、n=1体を75%以上含有する請求項1~4のいずれか一項に記載の芳香族アミン樹脂。
  6.  請求項1~5のいずれか一項に記載の芳香族アミン樹脂を含有するエポキシ樹脂組成物。
  7.  下記式(2)および/または下記式(3)で表されるエポキシ樹脂を含有する請求項6に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、複数存在するXはそれぞれ独立して、炭素数5~20の炭化水素基又は炭素数が5~20の複素環を有する炭化水素基を表す。式中、複数存在するRはそれぞれ独立して水素、炭素数1~10のアルキル基、グリシジルエーテル基又はフェニル基を表す。mは1~4の整数を表し、nは整数であり、nの平均値は1<n≦10を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、複数存在するXはそれぞれ独立して、単結合、炭素数1~9の炭化水素基、硫黄原子、酸素原子、-SO-、-SO-、-CO-、-CO-または-Si(CH-を表す。Rはそれぞれ独立して水素、炭素数1~10のアルキル基、グリシジルエーテル基又はフェニル基を表す。mは1~4の整数を表し、nは整数であり、nの平均値は1<n≦10を表す。)
  8.  下記式(4)で表されるエポキシ樹脂を含有する請求項6に記載のエポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、複数存在するRはそれぞれ独立して、水素、炭素数1~10のアルキル基、グリシジルエーテル基又はフェニル基を表す。mは1~4の整数を表し、nは整数であり、nの平均値は1<n≦10を表す。)
  9.  請求項6~8のいずれか一項に記載のエポキシ樹脂組成物を強化繊維に含浸してなるプリプレグ。
  10.  請求項6~8のいずれか一項に記載のエポキシ樹脂組成物を硬化してなる硬化物。
PCT/JP2016/051516 2015-01-21 2016-01-20 芳香族アミン樹脂、エポキシ樹脂組成物及びその硬化物 WO2016117584A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/544,706 US20170369636A1 (en) 2015-01-21 2016-01-20 Aromatic Amine Resin, Epoxy Resin Composition And Cured Product Thereof
EP16740191.8A EP3248996A4 (en) 2015-01-21 2016-01-20 Aromatic amine resin, and epoxy resin composition and cured product thereof
JP2016570670A JP6660890B2 (ja) 2015-01-21 2016-01-20 芳香族アミン樹脂、エポキシ樹脂組成物及びその硬化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015009036 2015-01-21
JP2015-009036 2015-01-21

Publications (1)

Publication Number Publication Date
WO2016117584A1 true WO2016117584A1 (ja) 2016-07-28

Family

ID=56417125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051516 WO2016117584A1 (ja) 2015-01-21 2016-01-20 芳香族アミン樹脂、エポキシ樹脂組成物及びその硬化物

Country Status (5)

Country Link
US (1) US20170369636A1 (ja)
EP (1) EP3248996A4 (ja)
JP (1) JP6660890B2 (ja)
TW (1) TW201634510A (ja)
WO (1) WO2016117584A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176191A (ja) * 2019-04-17 2020-10-29 日本化薬株式会社 芳香族アミン樹脂、マレイミド樹脂、硬化性樹脂組成物およびその硬化物
JP2020176190A (ja) * 2019-04-17 2020-10-29 日本化薬株式会社 マレイミド樹脂、硬化性樹脂組成物およびその硬化物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210045357A (ko) * 2018-08-20 2021-04-26 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 리소그래피용 막형성재료, 리소그래피용 막형성용 조성물, 리소그래피용 하층막 및 패턴 형성방법
KR20210093904A (ko) * 2018-11-21 2021-07-28 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 리소그래피용 막형성재료, 리소그래피용 막형성용 조성물, 리소그래피용 하층막 및 패턴 형성방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208201A (ja) * 2007-02-26 2008-09-11 Nippon Kayaku Co Ltd エポキシ樹脂組成物及びその硬化物、繊維強化複合材料
JP2009001783A (ja) * 2007-05-18 2009-01-08 Nippon Kayaku Co Ltd 積層板用樹脂組成物、プリプレグ及び積層板
JP2010235826A (ja) * 2009-03-31 2010-10-21 Nippon Steel Chem Co Ltd 多価ヒドロキシ樹脂、それらの製造方法並びにエポキシ樹脂組成物及びその硬化物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208313A (ja) * 1989-02-07 1990-08-17 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208201A (ja) * 2007-02-26 2008-09-11 Nippon Kayaku Co Ltd エポキシ樹脂組成物及びその硬化物、繊維強化複合材料
JP2009001783A (ja) * 2007-05-18 2009-01-08 Nippon Kayaku Co Ltd 積層板用樹脂組成物、プリプレグ及び積層板
JP2010235826A (ja) * 2009-03-31 2010-10-21 Nippon Steel Chem Co Ltd 多価ヒドロキシ樹脂、それらの製造方法並びにエポキシ樹脂組成物及びその硬化物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3248996A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176191A (ja) * 2019-04-17 2020-10-29 日本化薬株式会社 芳香族アミン樹脂、マレイミド樹脂、硬化性樹脂組成物およびその硬化物
JP2020176190A (ja) * 2019-04-17 2020-10-29 日本化薬株式会社 マレイミド樹脂、硬化性樹脂組成物およびその硬化物

Also Published As

Publication number Publication date
EP3248996A4 (en) 2018-08-22
TW201634510A (zh) 2016-10-01
JPWO2016117584A1 (ja) 2017-10-26
US20170369636A1 (en) 2017-12-28
JP6660890B2 (ja) 2020-03-11
EP3248996A1 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP5019585B2 (ja) エポキシ樹脂組成物及びその硬化物、繊維強化複合材料
JP5030297B2 (ja) 積層板用樹脂組成物、プリプレグ及び積層板
TWI820204B (zh) 馬來醯亞胺樹脂、硬化性樹脂組成物及其硬化物
JP6429862B2 (ja) 芳香族アミン樹脂、マレイミド樹脂、硬化性樹脂組成物およびその硬化物
TWI814899B (zh) 馬來醯亞胺樹脂、硬化性樹脂組成物及其硬化物
JP6789936B2 (ja) エポキシ樹脂組成物およびその硬化物
JP6764470B2 (ja) マレイミド樹脂、硬化性樹脂組成物およびその硬化物
JP6660890B2 (ja) 芳香族アミン樹脂、エポキシ樹脂組成物及びその硬化物
WO2018123806A1 (ja) アルケニル基含有樹脂、硬化性樹脂組成物およびその硬化物
WO2022209642A1 (ja) エポキシ樹脂及びその製造方法、硬化性樹脂組成物、およびその硬化物
JP6837354B2 (ja) アリル基含有樹脂、樹脂ワニスおよび積層板の製造方法
JP6783121B2 (ja) アリル基含有樹脂、その製造方法、樹脂ワニスおよび積層板の製造方法
JP5448137B2 (ja) 多価フェノール樹脂、エポキシ樹脂組成物、およびその硬化物
KR20190137106A (ko) 말레이미드 수지 조성물, 프리프레그 및 그 경화물
JPWO2018199156A1 (ja) メタリル基含有樹脂、硬化性樹脂組成物およびその硬化物
JP7394634B2 (ja) 芳香族ケトン型重合体及びその製造方法、並びに当該芳香族ケトン重合体を含有した樹脂組成物及び樹脂成型物
WO2022107678A1 (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
TW201815946A (zh) 順丁烯二醯亞胺樹脂組成物、預浸體、其硬化物及半導體裝置
KR20240021736A (ko) 에폭시 수지, 경화성 수지 조성물 및 그 경화물
JP2022025527A (ja) マレイミド樹脂、硬化性樹脂組成物およびその硬化物
JP2022147099A (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570670

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016740191

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15544706

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE