WO2022025234A1 - 2液型接着剤 - Google Patents

2液型接着剤 Download PDF

Info

Publication number
WO2022025234A1
WO2022025234A1 PCT/JP2021/028285 JP2021028285W WO2022025234A1 WO 2022025234 A1 WO2022025234 A1 WO 2022025234A1 JP 2021028285 W JP2021028285 W JP 2021028285W WO 2022025234 A1 WO2022025234 A1 WO 2022025234A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
adhesive
agent
epoxy resin
polymer
Prior art date
Application number
PCT/JP2021/028285
Other languages
English (en)
French (fr)
Inventor
慎吾 矢野
遊 時田
敦彦 鈴木
秀治 橋向
Original Assignee
セメダイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セメダイン株式会社 filed Critical セメダイン株式会社
Priority to CN202180058208.7A priority Critical patent/CN116096831A/zh
Priority to KR1020237004369A priority patent/KR20230044430A/ko
Priority to US18/006,712 priority patent/US20230313002A1/en
Priority to JP2022539593A priority patent/JPWO2022025234A1/ja
Priority to EP21849849.1A priority patent/EP4190876A4/en
Publication of WO2022025234A1 publication Critical patent/WO2022025234A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4085Curing agents not provided for by the groups C08G59/42 - C08G59/66 silicon containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4246Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
    • C08G59/4253Rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4246Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
    • C08G59/4261Macromolecular compounds obtained by reactions involving only unsaturated carbon-to-carbon bindings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4284Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • C08G59/623Aminophenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Definitions

  • the present invention relates to a two-component adhesive useful for structurally adhering various members and parts to manufacture an article.
  • a method of using a structural adhesive when manufacturing a structure by joining various parts / members made of different materials is known.
  • the conventional structural adhesive has excellent adhesive strength (storage elastic modulus) after curing, the cured adhesive is hard and is not satisfactory in terms of extensibility.
  • the structure is subjected to a thermal itinerary in which the structure is placed in a cold or high temperature state, there is a possibility that peeling may occur due to a difference in the coefficient of linear expansion between the parts and the members.
  • Patent Document 1 describes an agent A containing (A) a polyoxyalkylene polymer containing a reactive silicon group, (C) an epoxy resin curing agent, and (D) a silane coupling agent, and (E) an epoxy resin. It is described that a two-component curable composition comprising (F) a condensation catalyst and (G) a water-containing agent B is used as an adhesive. This two-component curable composition is said to have improved storage stability and good internal curability, but its properties and usefulness as a structural adhesive are not described.
  • Patent Document 2 describes an epoxy resin composition comprising an epoxy resin, a core-shell type rubber particle, and a hollow polymer.
  • Patent Document 3 describes a thermosetting resin composition containing an epoxy resin, rubber particles having a core-shell structure, an epoxysilane coupling agent, and polybutadiene having an alkoxysilyl group at both ends.
  • This thermosetting resin composition is said to be useful as a structural adhesive because the decrease in adhesive strength (storage elastic modulus) after curing is small even when it is placed under high temperature and high humidity conditions after being applied.
  • the elongation rate and the elastic modulus are sufficient.
  • An object of the present invention is to obtain an adhesive having excellent adhesive strength (storage elastic modulus) after curing, excellent elongation after curing, and less likely to peel off due to thermal itinerary.
  • Agent A containing epoxy resin and B agent containing a polymer having a crosslinkable silicon group and an epoxy resin curing agent, and It is a two-component adhesive having A two-component adhesive containing core-shell type rubber particles in Agent A and / or Agent B, and a crosslinkable silicon group condensation catalyst in Agent A and / or Agent B.
  • the two-component adhesive according to [1] which contains a (meth) acrylic polymer in the agent B.
  • Epoxy resin, core-shell type rubber particles, a polymer having a crosslinkable silicon group, an epoxy resin curing agent, and a condensation catalyst of a crosslinkable silicon group are included.
  • the breaking strength (tensile strength at cutting) of the adhesive cured product measured according to JIS K 6251 after 7 days curing in a 23 ° C 50% RH environment is 5 MPa or more, and the fracture breaks.
  • Time elongation (elongation at cutting) is 30% or more
  • an adhesive having excellent adhesive strength (storage elastic modulus) after curing, excellent elongation after curing, and less likely to peel off due to thermal itinerary.
  • the first adhesive according to the present invention is a two-component adhesive having an agent A containing an epoxy resin, an agent B containing a polymer having a crosslinkable silicon group, and an epoxy resin curing agent.
  • This is a two-component adhesive containing core-shell type rubber particles in the agent A and / or the agent B, and a crosslinkable silicon group condensation catalyst in the agent A and / or the agent B.
  • the agent B may contain a (meth) acrylic polymer.
  • the epoxy resin is not particularly limited as long as it is a compound having two or more epoxy groups in the molecule.
  • Examples of such an epoxy resin include biphenyl type epoxy resin; bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethyl bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, and bisphenol AD type.
  • Epoxy resin bisphenol M type epoxy resin (4,4'-(1,3-phenylenediisopropylidene) bisphenol type epoxy resin), bisphenol P type epoxy resin (4,4'-(1,4-phenylenediisopropylidene) ) Bisphenol type epoxy resin), bisphenol Z type epoxy resin (4,4'-cyclohexidiene bisphenol type epoxy resin), bisphenol type epoxy resin hydrogenated with these, bisphenol obtained by halogenating (brominating, chlorinating) these Bisphenol type epoxy resin such as type epoxy resin; Stilben type epoxy resin; phenol novolac type epoxy resin, brominated phenol novolac type epoxy resin, cresol novolak type epoxy resin, novolak type epoxy resin having condensed ring aromatic hydrocarbon structure, etc.
  • Novorak type epoxy resin Polyfunctional epoxy resin such as trihydroxyphenylmethane type epoxy resin, alkyl-modified trihydroxyphenylmethane type epoxy resin, tetraphenylol ethane type epoxy resin; phenylene skeleton-containing phenol aralkyl type epoxy resin, biphenylene skeleton-containing phenol Biphenolal kill type epoxy resin such as aralkyl type epoxy resin; bifunctional to tetrafunctional naphthalene 2 obtained by glycidyl etherification of dimers of dihydroxynaphthalene type epoxy resin, naphthalenediol type epoxy resin, hydroxynaphthalene and / or dihydroxynaphthalene.
  • Polyfunctional epoxy resin such as trihydroxyphenylmethane type epoxy resin, alkyl-modified trihydroxyphenylmethane type epoxy resin, tetraphenylol ethane type epoxy resin
  • Epoxy resin having a naphthalene skeleton such as weight type epoxy resin, naphthylene ether type epoxy resin, binaphthyl type epoxy resin, naphthol aralkyl type epoxy resin; anthracene type epoxy resin; phenoxy type epoxy resin; dicyclopentadiene modified phenol type epoxy resin, etc.
  • a modified epoxy resin having a siloxane bond which is obtained by modifying these epoxy resins with alkoxysilane, silsesquioxane, or the like, can also be used.
  • the modified epoxy resin having a siloxane bond include an epoxy resin composition modified with an alkoxysilane disclosed in Japanese Patent Application Laid-Open No. 2010-275411, and a silsesquioxane-modified epoxy resin disclosed in Japanese Patent No. 5569703. can give.
  • Examples of commercially available products include one or more selected from the group consisting of the composelan E series manufactured by Arakawa Chemical Industry Co., Ltd., the composelan SQ series, and the like.
  • bisphenol type epoxy resin novolak type epoxy resin, epoxy resin having a naphthalene skeleton, rubber-modified epoxy from the viewpoints of curability, adhesiveness, water resistance, durability, workability, availability, versatility, etc. It is preferable to use one or more selected from the group consisting of resins and the like. In the present invention, it is more preferable to use a bisphenol type epoxy resin.
  • the epoxy resin one type may be used alone or two or more types of epoxy resins may be used in combination.
  • the epoxy resin can be blended in an amount of 20 to 80 parts by mass, preferably 25 to 70 parts by mass, and more preferably 30 to 60 parts by mass with respect to 100 parts by mass of the agent A. Further, it can be blended in an amount of 10 to 60 parts by mass, preferably 15 to 50 parts by mass, and more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the total of the agent A and the agent B.
  • the blending amount of the epoxy resin is less than 10 parts by mass with respect to 100 parts by mass in total of the agents A and B, the curability of the adhesive is lowered, and the breaking strength (tensile strength at cutting) and the storage elastic modulus are lowered. There is a risk of Further, when the compounding amount of the epoxy resin exceeds 60 parts by mass with respect to 100 parts by mass in total of the agents A and B, the compounding amount of the polymer having a crosslinkable silicon group relatively decreases, and the breaking strength (break strength ( Tensile strength at the time of cutting) and storage elastic modulus may decrease.
  • the core-shell type rubber particles are included in the agent A and / or the agent B.
  • the core-shell type rubber particles include a core that is a rubber particle formed of a polymer containing an elastomer or a rubber-like polymer, and a polymer shell layer that covers at least a part of the core surface, and the core and shell are required. It is a particle which may have an intermediate layer between the layers.
  • the core, intermediate layer and shell layer can be composed of a single layer or multiple layers, respectively. When any of the layers has a multi-layer structure, each layer may be composed of different components.
  • the core and / or shell layer may be crosslinked by ionic bonds, covalent bonds, or the like, if necessary.
  • the shell layer may be formed by graft polymerization on the core.
  • the shell layer may have a reactive functional group such as an epoxy group or a carboxyl group.
  • the volume average particle diameter of the core-shell type rubber particles is not particularly limited. By setting the volume average particle diameter to 30 ⁇ m or less, the stress relaxation characteristics can be significantly improved.
  • the volume average particle diameter of the core-shell type rubber particles is, for example, 0.01 ⁇ m or more, preferably 0.02 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less. More preferably, it is 2 ⁇ m or less.
  • the core constituting the core-shell type rubber particles is a diene-based rubber obtained from a monomer component containing a conjugated diene-based monomer as a main component and, if necessary, a copolymerizable monomer, from the viewpoint of improving the toughness of the cured adhesive.
  • a diene-based rubber obtained from a monomer component containing a conjugated diene-based monomer as a main component and, if necessary, a copolymerizable monomer, from the viewpoint of improving the toughness of the cured adhesive.
  • natural rubber organosiloxane rubber
  • (meth) acrylic acid alkyl ester as the main component, if necessary. It is composed of one kind selected from the group consisting of acrylic rubber and the like obtained from a mono
  • Examples of the conjugated diene-based monomer include one or more selected from the group consisting of butadiene, isoprene, chloroprene and the like. Butadiene is preferred in the present invention.
  • Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • One or more types selected from the group consisting of. Butyl (meth) acrylates are preferred in the present invention.
  • Examples of the monomer copolymerizable with these include aromatic vinyl such as styrene, vinyltoluene and ⁇ -methylstyrene, vinyl cyanide such as aromatic vinylidene, acrylonitrile and methacrylonitrile, vinylidene cyanide, methylmethacrylate and butyl.
  • Examples thereof include alkyl methacrylate such as methacrylate, benzyl acrylate, phenoxyethyl acrylate, and aromatic (meth) acrylate such as benzyl methacrylate.
  • a monomer having a functional group such as an epoxy group, a carboxyl group, a hydroxyl group and an amino group can be copolymerized.
  • one or more selected from the group consisting of glycidyl (meth) acrylate, methacrylic acid, acrylic acid, maleic acid, itaconic acid, 2-hydroxymethacrylate, 2-hydroxyacrylate and the like can be mentioned.
  • the glass transition temperature (Tg) of the polymer constituting the core is 0 ° C. or lower, preferably -20 ° C. or lower, more preferably -30 ° C. or lower, in order to increase the toughness of the cured adhesive and enhance the stress relaxation characteristics. More preferably, it is ⁇ 60 ° C. or lower, and ⁇ 200 ° C. or higher.
  • the glass transition temperature of at least one layer is preferably 0 ° C. or lower.
  • the core-shell type rubber particles may have an intermediate layer between the core and the shell layer.
  • the components forming the intermediate layer are not particularly limited.
  • conjugated diene, the (meth) acrylic acid alkyl ester, and the monomer copolymerizable with these one or more kinds selected from the group consisting of those used in the formation of the core can be mentioned.
  • the glass transition temperature of the intermediate layer is 0 ° C. or lower, preferably ⁇ 30 ° C. or lower.
  • the shell layer constituting the core-shell type rubber particles contains (meth) acrylic acid alkyl ester as a main component in consideration of compatibility with the adhesive constituents and dispersibility in the adhesive, and is copolymerized as necessary. It is composed of monomer components containing possible monomers.
  • Examples of the (meth) acrylic acid alkyl ester forming the shell layer and the monomer copolymerizable therewith include one or more selected from the group consisting of those used in the formation of the core.
  • the shell layer may contain an epoxy group, a hydroxy group, an oxetane group, an amino group, an imide group, a carboxylic acid group, a carboxylic acid anhydride group, a cyclic ester, a cyclic amide, or a benz as a monomer component forming the shell layer, if necessary.
  • a monomer containing at least one selected from the group consisting of an oxadin group and a cyanate ester group even if it has a group having a reactivity or an affinity with other adhesive constituents. good.
  • the amount of (meth) acrylic acid alkyl ester in the monomer component forming the shell layer is 10 to 95% by mass, preferably 30 to 92% by mass, more preferably 30% by mass, based on 100% by mass of the total amount of the monomers for forming the shell layer. It is 50 to 90% by mass.
  • the glass transition temperature of the polymer constituting the shell layer is 40 ° C. or higher, preferably 50 ° C. or higher.
  • composition of each layer of core-shell type rubber particles there is no limitation on the composition ratio of the core, the intermediate layer and the shell layer.
  • the core is 20 to 95% by mass, preferably 50 to 95% by mass, and more preferably 60 to 90% by mass with respect to 100% by mass of the entire core-shell type rubber particles.
  • the intermediate layer is 0 to 50% by mass, preferably 0 to 30% by mass, and more preferably 0 to 20% by mass with respect to 100% by mass of the entire core-shell type rubber particles.
  • the shell layer is 5 to 80% by mass, preferably 5 to 50% by mass, and more preferably 10 to 40% by mass with respect to 100% by mass of the entire core-shell type rubber particles.
  • the method for producing the core-shell type rubber particles is not particularly limited, and can be produced by a method known in the art such as emulsion polymerization, suspension polymerization, and microsuspension polymerization.
  • the core can be formed by, for example, emulsion polymerization, suspension polymerization, microsuspension polymerization, or the like using the monomer component forming the core.
  • the intermediate layer can be formed by polymerizing by a known radical polymerization (emulsion polymerization or the like) using a monomer forming the intermediate layer.
  • the shell layer can be formed by polymerizing by a known radical polymerization (emulsion polymerization) using a monomer forming the shell layer.
  • the shell layer is preferably formed by graft-polymerizing a monomer forming the shell layer on the core and / or the intermediate layer. Further, the polymerization of the monomers forming each layer may be carried out in one stage or in two or more stages.
  • the core-shell type rubber particles can be blended with the liquid A and / or the liquid B by using, for example, powdery ones. Further, for example, an epoxy resin composition in the form of being dispersed in an epoxy resin in advance may be used and blended in the liquid A.
  • the blending amount of the core-shell type rubber particles in the epoxy resin composition is not particularly limited.
  • the total amount of the epoxy resin and the core-shell type rubber particles is 1 to 80% by mass, preferably 5 to 70% by mass, more preferably 10 to 60% by mass, and further preferably 20 to 50% by mass with respect to 100% by mass. be.
  • core-shell type rubber particles various commercially available ones may be used. These commercially available core-shell type rubber particles may be used alone or in combination of two or more. For example, one or more types selected from the following groups can be mentioned, but the present invention is not limited thereto.
  • Stafyroid series, Zefiac series, Ganzpearl series, etc. manufactured by Aica Kogyo Co., Ltd. for example, F351, IM-101, IM-203, IM-301, IM-401, IM-601, AC-3355, AC -3364, AC-3816, AC-3832, AC-4030, etc.).
  • C GENIOPERL series manufactured by Wacker Chemie (for example, P22, P23, P52, P53, etc.).
  • various epoxy resin-core-shell type rubber particle compositions commercially available in the form of being dispersed in the epoxy resin in advance may be used. These various commercially available epoxy resin-core-shell type rubber particle compositions may be used alone or in combination of two or more. For example, one or more types selected from the following groups can be mentioned, but the present invention is not limited thereto.
  • G Kaneka series manufactured by Kaneka Corporation (for example, MX120, MX125, MX130, MX136, MX154, MX551, MX960, etc.).
  • H GENIOPERL series manufactured by Wacker Chemie (for example, M23A, etc.).
  • the core-shell type rubber particles As the core-shell type rubber particles, one type may be used alone, or two or more types of core-shell type rubber particles may be used in combination.
  • the core-shell type rubber particles are blended in an amount of 3 to 35 parts by mass, preferably 5 to 30 parts by mass, and more preferably 5 to 20 parts by mass with respect to a total of 100 parts by mass of the agents A and B. Can be done.
  • the amount is 5 to 50 parts by mass, preferably 10 to 45 parts by mass, and more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the agent A. Can be blended.
  • the blending amount of the core-shell type rubber particles is less than 3 parts by mass with respect to 100 parts by mass in total of the agents A and B, the toughness of the obtained cured adhesive is lowered, and the breaking strength (tensile strength at cutting), Elongation at break (elongation at cutting) and storage elastic modulus may decrease. Further, when the blending amount of the core-shell type rubber particles exceeds 35 parts by mass with respect to 100 parts by mass in total of the agents A and B, the curing reactivity of the adhesive is lowered and the breaking strength (tensile strength at the time of cutting). And the storage elastic modulus may decrease. When the core-shell type rubber particles dispersed in the epoxy resin are used, the content of the core-shell type rubber particles and the content of the epoxy resin are obtained, respectively, and the blending amount of each component is used.
  • the crosslinkable silicon group condensation catalyst is contained in the agent A and / or the agent B.
  • the crosslinkable silicon group condensation catalyst is contained in the liquid B, it is preferable to store the liquid B in a container capable of shielding moisture and moisture.
  • the condensation catalyst of the crosslinkable silicon group the crosslinkable silicon group which has a hydroxyl group or a hydrolyzable group bonded to a silicon atom and can be crosslinked by forming a siloxane bond is hydrated in the presence of water. Any compound that exerts a catalytic action when it is decomposed and cured can be used without limitation.
  • the crosslinkable silicon group is, for example, a group represented by the following formula (1); -SiR 1 3-a X a ... (1)
  • R 1 represents an organic group.
  • X is a hydroxyl group or a hydrolyzable group.
  • A is either an integer of 1, 2 or 3). Can be given.
  • crosslinkable silicon group condensation catalyst examples include organic metal compounds (organic tin compounds, organic iron compounds, organic aluminum compounds, organic titanium compounds, etc.), amines, fatty acids (organic acid bismuth, etc.), and organic acidic phosphoric acid.
  • examples thereof include one or more selected from the group consisting of an ester compound, a silicon compound having a Si—F bond, and the like.
  • R4 represents a divalent alkylene group having 1 to 6 carbon atoms, and may be the same or different from each other when there are two or more in one molecule.
  • R 5 represents an alkyl group having 1 to 10 carbon atoms, and when there are two or more in one molecule, they may be the same or different from each other.
  • One or more selected from the group consisting of an organic tin-based compound or an organic iron-based compound represented by is used.
  • R 2 one kind selected from the group consisting of, for example, -CH 3 , -C 2 H 5 , -C 4 H 9 , -C 8 H 17 , -C 17 H 35 , a naphthyl group and the like.
  • R 3 include one or more selected from the group consisting of -CH 3 , -C 2 H 5 , -C 4 H 9 , -C 8 H 17 , -C 17 H 35 , and the like. Be done.
  • R 4 include one or more selected from the group consisting of -CH 2- , -C 2 H 4- , -C 3 H 6- , -C 4 H 8- , and the like.
  • R 5 include one or more selected from the group consisting of -CH 3 , -C 2 H 5 , -C 4 H 9 , and -C 8 H 17 .
  • organic tin-based compound or the organic iron-based compound include Sn (OCOC 7 H 15 ) 2 , Sn (OCOC 17 H 35 ) 2 , (C 4 H 9 ) 2 Sn (OCOCCH 3 ) 2 , (C).
  • the silicon compound having a Si—F bond various compounds including a silicon group having a Si—F bond (hereinafter, may be referred to as a fluorosilyl group) can be used. Both an inorganic compound and an organic compound can be used as the silicon compound having a Si—F bond.
  • a silicon compound having a Si—F bond an organic compound having a fluorosilyl group is preferable, and an organic polymer having a fluorosilyl group is more suitable because of its high safety. Further, a small molecule organosilicon compound having a fluorosilyl group is preferable because the composition has a low viscosity.
  • Examples of the silicon compound having a Si—F bond include, for example, fluorosilane, a compound having a fluorosilyl group, an organic polymer having a fluorosilyl group, and the like described in International Publication No. 2015/088021.
  • fluorosilane a compound having a fluorosilyl group
  • organic polymer having a fluorosilyl group an organic polymer having a fluorosilyl group
  • the crosslinkable silicon group condensation catalyst may be used alone or in combination of two or more.
  • the condensation catalyst of the crosslinkable silicon group is, for example, 0.05 to 10 parts by mass, preferably 0.1 to 5 parts by mass, and more preferably 0.2 to 0 parts by mass with respect to 100 parts by mass of the polymer having a crosslinkable silicon group. It can be blended in an amount of 3 parts by mass. If the blending amount of the crosslinkable silicon group condensation catalyst is less than 0.05 parts by mass with respect to 100 parts by mass of the polymer having a crosslinkable silicon group, the polymer having a crosslinkable silicon group is insufficiently cured and the curability becomes poor. There is a risk that the breaking strength (tensile strength at the time of cutting) and the storage elasticity will decrease.
  • the crosslinkable silicon group condensation catalyst exceeds 10 parts by mass with respect to 100 parts by mass of the polymer having a crosslinkable silicon group
  • the crosslinkable silicon is affected by the influence of the excessive crosslinkable silicon group condensation catalyst.
  • the reactivity of the polymer having a group or the epoxy resin may decrease, and the breaking strength (tensile strength at the time of cutting) and the storage elasticity may decrease.
  • ⁇ Polymer having a crosslinkable silicon group As the polymer having a crosslinkable silicon group contained in the agent B, a crosslinkable silicon group which has a hydroxyl group or a hydrolyzable group bonded to a silicon atom and can be crosslinked by forming a siloxane bond is used.
  • the polymer is not particularly limited as long as it is a polymer having a terminal and / or a side chain.
  • Crosslinkable silicon group As the crosslinkable silicon group, as described above, for example, the group represented by the following formula (1); -SiR 1 3-a X a ... (1) (In the formula (1), R 1 represents an organic group. When two or more R 1s are present, a plurality of R 1s may be the same or different. X is a hydroxyl group or a hydrolyzable group. When two or more Xs are present, the plurality of Xs may be the same or different. A is either an integer of 1, 2 or 3). Can be given.
  • the organic group of R 1 in the formula (1) is not particularly limited as long as it is a group that does not exhibit hydrolyzability.
  • a hydrocarbon group which may have a substituent having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms can be mentioned.
  • the hydrolyzable group of X in the formula (1) is not particularly limited as long as it is a group other than a hydroxyl group that is hydrolyzed by water.
  • a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, a mercapto group, an aminooxy group, an alkenyloxy group and the like can be mentioned.
  • an alkoxy group is preferable from the viewpoint of mild hydrolysis and easy handling, an alkoxy group having 1 to 6 carbon atoms having high reactivity is preferable, and a methoxy group, an ethoxy group and a butoxy group are particularly preferable.
  • the a in the formula (1) is preferably 2 or more, and more preferably 3. When a is 2 or more, an adhesive having sufficient flexibility can be obtained.
  • the crosslinkable silicon group is, for example, one or more selected from the group consisting of a trialkoxysilyl group such as a trimethoxysilyl group and a triethoxysilyl group, and a dialkoxysilyl group such as a methyldimethoxysilyl group and a methyldiethoxysilyl group. Can be given.
  • the crosslinkable silicon group contained in the polymer may be one kind or two or more kinds.
  • the crosslinkable silicon group may be attached to the terminal and / or side chain of the polymer. From the viewpoint of excellent physical properties of the cured product such as the tensile properties of the cured product of the adhesive, it is preferable that the crosslinkable silicon group is present at the end of the molecular chain.
  • the number of crosslinkable silicon groups is 1.0 to 5.0, preferably 1.1 to 3.0 on average in one molecule of the polymer. If the number of crosslinkable silicon groups contained in one molecule of the polymer is less than one, the curability becomes insufficient, and if it is too large, the network structure becomes too dense and good mechanical properties are not exhibited.
  • polymer main clavicle examples of the main chain skeleton of the polymer having a crosslinkable silicon group include a polyoxyalkylene polymer, a (meth) acrylic polymer, an isobutylene polymer, a butadiene polymer, an olefin polymer, and a styrene weight.
  • a polyoxyalkylene polymer a (meth) acrylic polymer, an isobutylene polymer, a butadiene polymer, an olefin polymer, and a styrene weight.
  • a coalescence a vinyl halide polymer, a vinyl acetate polymer, a vinyl alcohol polymer, a vinyl acetal polymer, a copolymer thereof, and the like can be mentioned.
  • a polyoxyalkylene polymer having a crosslinkable silicon group a (meth) acrylic polymer having a crosslinkable silicon group
  • an isobutylene polymer having a crosslinkable silicon group is particularly preferable.
  • the main chain skeleton of the polyoxyalkylene polymer having a crosslinkable silicon group is the following formula (2); -R 6 -O -... (2) (In the formula, R 6 is a divalent organic group having 1 to 20 carbon atoms.) It is a polymer having a repeating unit represented by.
  • R 6 in the formula (2) is, for example, a linear or branched alkylene group having 2 to 20 carbon atoms, preferably a linear or branched alkylene group having 2 to 14 carbon atoms, and more preferably 2 carbon atoms.
  • the repeating units represented by the equation (2) include -CH 2 CH 2 O-, -CH (CH 3 ) CH 2 O-, -CH 2 CH (CH 3 ) O-, and -CH 2 CH (C 2 ).
  • the main clavicle of the polyoxyalkylene polymer may be composed of only one type of repeating unit, or may be composed of two or more types of repeating units.
  • the main chain skeleton of the polyoxyalkylene polymer having a crosslinkable silicon group is a polyoxyethylene polymer, a polyoxypropylene polymer, a polyoxytetramethylene polymer, or a polyoxyethylene-polyoxypropylene co-weight.
  • One or more selected from the group consisting of coalescing is preferable, and a (co) polymer containing a polyoxypropylene repeating unit as a main component is particularly preferable.
  • the main chain skeleton may have a branched structure.
  • the polyoxyalkylene polymer having a crosslinkable silicon group may be used alone or in combination of two or more.
  • the molecular weight of the polyoxyalkylene polymer having a crosslinkable silicon group is not particularly limited. From the viewpoint of workability when the adhesive is formed, the number average molecular weight is 500 or more, preferably 1,000 or more, and the number average molecular weight is 100,000 or less, preferably 70,000 or less. From the viewpoint of imparting an appropriate viscosity to the adhesive, it is preferable to contain a polymer having a number average molecular weight of 20,000 or more.
  • the number average molecular weight of the present invention is a polystyrene-equivalent molecular weight obtained by gel permeation chromatography.
  • a polyoxyalkylene polymer having a crosslinkable silicon group becomes a more flexible cured product at the initial stage because the crosslink density in the cured product decreases when the content of the crosslinkable silicon group is appropriately lowered, and the modulus property becomes modular. As the value becomes smaller, the elongation at break (elongation at cutting) characteristics can be increased.
  • the number of crosslinkable silicon groups present in one molecule of the polymer is 1.0 to 5.0 on average, preferably 1.2 to 2.8. The number is more preferably 1.3 to 2.6, still more preferably 1.4 to 2.4.
  • the main chain skeleton of the polyoxyalkylene polymer can be synthesized, for example, by ring-opening polymerization of a monoepoxide in the presence of an initiator and a catalyst.
  • the initiator include ethylene glycol, propylene glycol, butanediol, hexamethylene glycol, methallyl alcohol, bisphenol A, hydride bisphenol A, neopentyl glycol, polybutadienediol, diethylene glycol, triethylene glycol, polyethylene glycol and polypropylene glycol.
  • dihydric alcohols such as polypropylene triol, polypropylene tetraol, dipropylene glycol, glycerin, trimethylolmethane, trimethylolpropane, pentaerythritol, polyhydric alcohols, and various oligomers having hydroxyl groups. Can be given.
  • Examples of monoepoxides include alkylene oxides such as ethylene oxide, propylene oxide, ⁇ -butylene oxide, ⁇ -butylene oxide, hexene oxide, cyclohexene oxide, styrene oxide and ⁇ -methylstyrene oxide, and methylglycidyl ether and ethylglycidyl.
  • alkylene oxides such as ethylene oxide, propylene oxide, ⁇ -butylene oxide, ⁇ -butylene oxide, hexene oxide, cyclohexene oxide, styrene oxide and ⁇ -methylstyrene oxide, and methylglycidyl ether and ethylglycidyl.
  • Examples thereof include one or more selected from the group consisting of alkyl glycidyl ethers such as ether, isopropyl glycidyl ether and butyl glycidyl ether, and allyl gly
  • the catalyst includes, for example, an alkaline catalyst such as KOH and NaOH, an acidic catalyst such as trifluoroboran-etherate, and a complex metal cyanide complex catalyst such as an aluminoporphyllin metal complex and a cyanide cobalt zinc-glime complex catalyst.
  • an alkaline catalyst such as KOH and NaOH
  • an acidic catalyst such as trifluoroboran-etherate
  • a complex metal cyanide complex catalyst such as an aluminoporphyllin metal complex and a cyanide cobalt zinc-glime complex catalyst.
  • a complex metal cyanide complex catalyst such as an aluminoporphyllin metal complex and a cyanide cobalt zinc-glime complex catalyst.
  • the polyoxyalkylene polymer can be obtained by, for example, an alkali-catalyzed polymerization method such as KOH, for example, a composite metal cyanide complex-catalyzed polymerization method, but is not particularly limited.
  • an alkali-catalyzed polymerization method such as KOH
  • a composite metal cyanide complex-catalyzed polymerization method but is not particularly limited.
  • the number average molecular weight is 6,000 or more
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the main chain skeleton of the polyoxyalkylene polymer is a hydroxyl group-terminated polyoxyalkylene polymer in the presence of a basic compound such as KOH, NaOH, KOCH 3 , NaOCH 3 , etc., and a bifunctional or higher functional alkyl halide such as CH. It can also be obtained by chain extension with 2 Cl 2 , CH 2 Br 2 , etc. Further, the hydroxyl group-terminated polyoxyalkylene polymer can be chain-extended with a bifunctional or trifunctional isocyanate compound.
  • the method for introducing the crosslinkable silicon group into the polyoxyalkylene polymer is not particularly limited, and various methods can be used.
  • a polyoxyalkylene polymer having a functional group such as an unsaturated group, a hydroxyl group, an epoxy group or an isocyanate group in the molecule, and a compound having a functional group reactive with this functional group and a crosslinkable silicon group.
  • a method of reacting the contained compound with the group VIII transition metal catalyst is preferable.
  • R 7 is a divalent organic group having 1 to 20 carbon atoms
  • R 8 is a hydrocarbon group having 10 or less carbon atoms.
  • R 9 and R 10 are represented by the same or different alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, or (R') 3 SiO-.
  • R 9 or R 10 indicates a triorganosyloxy group and there are two or more R 9 or R 10 , they may be the same or different.
  • R' is a monovalent hydrocarbon group with 1 to 20 carbon atoms. The three R's may be the same or different.
  • X represents a hydroxyl group or a hydrolyzable group, and when two or more Xs are present, they may be the same or different.
  • a indicates 0, 1, 2 or 3
  • b indicates 0, 1, or 2, respectively, and a + ⁇ b ⁇ 2. is satisfied.
  • M- [Si (R 9 ) 2-b (X) b -O "- B in the group may be the same or different.
  • M indicates an integer from 0 to 19.)
  • crosslinkable silicon group-containing isocyanate compound to hydroxyl group-terminated polyoxyalkylene polymer
  • a reaction with a crosslinkable silicon group-containing mercaptan compound or the like can also be used.
  • the polyoxyalkylene polymer may contain other skeletons such as a polyurethane skeleton.
  • the polyurethane skeleton includes, for example, one or more selected from the group consisting of aromatic polyisocyanates such as toluene diisocyanate and diphenylmethane diisocyanate; polyisocyanates such as aliphatic polyisocyanates such as isophorone diisocyanate and hexamethylene diisocyanate, and hydroxyl groups. It can be formed by reacting with a polyoxyalkylene polymer having.
  • the method for producing a polyoxyalkylene polymer having an unsaturated group represented by the formula (3) or the formula (4) at the terminal is, for example, a functional group having a hydroxyl group reactivity with the hydroxyl group-terminated polyoxyalkylene polymer.
  • a method of introducing an unsaturated group into a polyoxyalkylene polymer via an ether bond, an ester bond, a urethane bond, or a carbonate bond by reacting a compound having an unsaturated group with an unsaturated group can be mentioned.
  • One or more types selected from the group consisting of CH 2 Br and the like can be mentioned.
  • Group VIII transition metal catalyst examples include one or more types of metal complex catalysts selected from the group consisting of Group VIII transition metal elements such as platinum, rhodium, cobalt, palladium, and nickel.
  • Group VIII transition metal elements such as platinum, rhodium, cobalt, palladium, and nickel.
  • RhCl (PPh 3 ) 3 platinum-vinylsiloxane complex
  • platinum-olefin complex platinum-olefin complex
  • Pt metal RhCl (PPh 3 ) 3 , RhCl 3 , Rh / Al 2
  • the main chain skeleton of the (meth) acrylic polymer having a crosslinkable silicon group is the following formula (8). -CH 2 -C (R 11 ) (COOR 12 ) -... (8) (In the formula, R 11 is an H or methyl group, and R 12 is a divalent organic group having 1 to 30 carbon atoms.) It is a polymer having a repeating unit represented by.
  • the main chain structure of the (meth) acrylic polymer may be composed of only one kind of repeating unit, or may be composed of two or more kinds of repeating units.
  • any of a random polymer, a block polymer, and a graft polymer may be used, but a random polymer is preferable.
  • (meth) acrylic means acrylic type and / or methacrylic type.
  • the (meth) acrylic polymer constituting the main chain skeleton of the (meth) acrylic polymer having a crosslinkable silicon group has a glass transition temperature (Tg) of 0 ° C. or higher, preferably 20 ° C. or higher, more preferably 40 ° C. or higher. ° C. or higher, 120 ° C. or lower, preferably 100 ° C. or lower, more preferably 80 ° C. or lower. If the glass transition temperature is less than 0 ° C., the adhesive strength (storage elastic modulus) immediately after adhesion tends to be inferior. When the glass transition temperature exceeds 120 ° C., the viscosity becomes high, and it tends to be difficult to apply the adhesive to the adherend.
  • Tg glass transition temperature
  • the glass transition temperature (Tg) is a value obtained by converting the glass transition temperature Tga at the absolute temperature obtained by the following formula (a) into the temperature in degrees Celsius.
  • 1 / Tg a ⁇ ( Wi / Tg i ) ⁇ ⁇ ⁇ (a)
  • Tga is the glass transition temperature (unit is absolute temperature) of the polymer composed of only the monofunctional (meth) acrylic monomer (C1). Wi is each (meth) acrylic monomer i . It is the mass ratio in the (meth) acrylic polymer.
  • Tg i is the glass transition temperature (unit is absolute temperature) of the homopolymer formed only from each (meth) acrylic monomer i.)
  • the formula (a) is a formula called a Fox formula, and for each monomer constituting the polymer, the glass transition temperature Tg of the polymer is based on the glass transition temperature Tg i of the homopolymer of the monomer. It is an equation for calculating a . Details can be found in the Bulletin of the American Physical Society, Series 2, Volume 1, Issue 3, page 123 (1956). .. Further, the glass transition temperature (Tgi) of homopolymers of various monomers for calculation by the Fox formula is described in, for example, paints and paints (Paints Publishing Co., Ltd., 10 (No. 358), 1982). It is possible to adopt the numerical value etc.
  • the weight average molecular weight of the (meth) acrylic polymer constituting the main chain skeleton of the (meth) acrylic polymer having a crosslinkable silicon group is 1,000 or more, preferably 2,000 or more, more preferably 3,. It is 000 or more, and the weight average molecular weight is 20,000 or less, preferably 10,000 or less, and more preferably 6,000 or less. If the weight average molecular weight is less than 1,000, the initial adhesive strength (storage elastic modulus) after coating is low, and if it exceeds 20,000, the viscosity during coating work becomes too high and workability deteriorates.
  • the weight average molecular weight of the present invention is a polystyrene-equivalent molecular weight obtained by gel permeation chromatography. Further, the (meth) acrylic polymer is preferably solid at room temperature (20 ° C.) or has a ring-ball method softening point of 80 ° C. or higher.
  • the number of crosslinkable silicon groups is 1.0 to 5.0, preferably 1.1 to 3.0 on average in one molecule of the polymer.
  • the number is more preferably 1.3 to 2.6, still more preferably 1.4 to 2.4.
  • the main chain structure of the (meth) acrylic polymer can be synthesized by radical polymerization of the monomer components containing the (meth) acrylic monomer.
  • a usual solution polymerization method or bulk polymerization method using a peroxide such as benzoyl peroxide or a thermal polymerization initiator such as an azo compound such as azobisisobutyronitrile can be used.
  • a known polymerization method such as a method of irradiating light or radiation to polymerize using a photopolymerization initiator and a living radical polymerization method is used.
  • radical polymerization method using a thermal polymerization initiator is preferable because a polymer of a (meth) acrylic acid ester polymer can be easily obtained.
  • a chain transfer agent such as lauryl mercaptan or ⁇ -mercaptopropyltrimethoxysilane may be used to adjust the molecular weight.
  • R 13 is an H or methyl group
  • R 14 is a divalent organic group having 1 to 30 carbon atoms.
  • the (meth) acrylic monomer represented by the formula (9) is preferably a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 30 carbon atoms, and the alkyl group having a substituent having 1 to 30 carbon atoms. No (meth) acrylic acid alkyl esters are particularly preferred.
  • Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, and stearyl (meth).
  • One or more types selected from the group consisting of acrylates and the like can be mentioned.
  • methyl methacrylate as an essential monomer component.
  • alkyl (meth) acrylate having an ester group having 8 or more carbon atoms such as 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, and stearyl (meth) acrylate. It is preferable to contain at least one selected from the group consisting of esters.
  • n-butyl acrylate -55 ° C
  • Tg glass transition temperature
  • the hydrocarbon group such as the alkyl group of the (meth) acrylic acid ester may have a substituent such as a hydroxyl group, an alkoxy group, a halogen atom or an epoxy group.
  • a substituent such as a hydroxyl group, an alkoxy group, a halogen atom or an epoxy group.
  • examples of such compounds include (meth) acrylic acid ester having a hydroxyl group such as hydroxyethyl (meth) acrylate, (meth) acrylic acid ester having an alkoxy group such as methoxyethyl (meth) acrylate, and glycidyl (meth).
  • One or more selected from the group consisting of a (meth) acrylic acid ester having an epoxy group such as acrylate and a (meth) acrylic acid ester having an amino group such as diethylaminoethyl (meth) acrylate can be mentioned.
  • an unsaturated compound (macromonomer or macromer) having a polymer chain such as an acrylic acid ester having a polystyrene chain can also be used.
  • the monomer component constituting the main chain structure of the (meth) acrylic polymer may contain a monomer copolymerizable with the (meth) acrylic monomer represented by the formula (9).
  • unsaturated carboxylic acids such as (meth) acrylic acid; (meth) acrylamide compounds such as (meth) acrylamide, vinyl ether compounds such as alkyl vinyl ethers; aromatics such as (meth) acrylonitrile compounds, styrene, ⁇ -methylstyrene and the like.
  • group vinyl compounds, vinyl halide compounds such as vinyl chloride
  • carboxylic acid vinyl ester compounds such as vinyl acetate
  • the content of methyl methacrylate with respect to a total of 100 parts by mass of the monomer components constituting the main chain structure of the (meth) acrylic polymer is 20 parts by mass or more, preferably 30 parts by mass or more, more preferably 40 parts by mass. It is preferably parts by mass or more, and is preferably 90 parts by mass or less, preferably 80 parts by mass or less.
  • the content of the monomer copolymerizable with the (meth) acrylic monomer represented by the formula (9) is 20 with respect to a total of 100 parts by mass of the monomer components constituting the main chain structure of the (meth) acrylic polymer. It is not less than parts by mass, preferably 10 parts by mass or less, and more preferably 5 parts by mass or less.
  • a total of 100 parts by mass of the monomer components constituting the main chain structure of the (meth) acrylic polymer is used.
  • the content of the macromonomer with respect to the above is 10 parts by mass or less, preferably 5 parts by mass or less, and more preferably 3 parts by mass or less.
  • the method for introducing the crosslinkable silicon group into the (meth) acrylic polymer is not particularly limited, and various methods can be used. For example, the following methods, (1) copolymerize an unsaturated compound having a crosslinkable silicon group, (2) polymerize using an initiator or a chain transfer agent having a crosslinkable silicon group, (3) in a molecule.
  • a crosslinkable silicon group can be introduced into the (meth) acrylic polymer.
  • a (meth) acrylic acid ester having a crosslinkable silicon group and an unsaturated olefin compound having a crosslinkable silicon group are preferable.
  • an unsaturated olefin compound having a crosslinkable silicon group such as vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, and allyltriethoxysilane.
  • the initiator and chain transfer agent having a crosslinkable silicon group include ⁇ -mercaptopropyltrimethoxysilane and ⁇ -mercaptopropyltriethoxysilane.
  • a (meth) acrylic polymer having a crosslinkable silicon group can be obtained by a method according to Synthesis Example 4 of International Publication No. 2015/08821 using a polymerization terminator).
  • the method (3) when the method (3) is used, it can be the same method as the method for introducing a crosslinkable silicon group into the polyoxyalkylene polymer.
  • a (meth) acrylic polymer having an unsaturated group represented by the above formula (3) and / or the above formula (4) at the end and a crosslinkable silicon group-containing compound represented by the above formula (5) are used.
  • a method of reacting in the presence of a Group VIII transition metal catalyst is preferred.
  • modified silicone resins / modified silicone resins may be used as the polymer having a crosslinkable silicon group contained in the agent B.
  • modified silicone resin / modified silicone resin may be used alone or in combination of two or more.
  • one or more types selected from the following groups can be mentioned, but the present invention is not limited thereto.
  • SAX530 SAX575, SAX580, SAX710, SAX720, SAX725, SAX770, S203, S303, S203H, S303H, S943S, S903, S911S, MA430, MA440, MA447, MA451, MA903, MA903M, MA904, S943 EP100S, EP103S, EP303S, EP505S, FCS-1, FCS-2, FCS-5, FCS-7, FCS-8, FCSA-1, FCSA-2, SA100S, SA310S, SA410S, SB802S, OR100S, etc.).
  • AGC Exester series for example, ES-S3620, ES-S3430, ES-S2420, ES-S2410).
  • C Actflow series manufactured by Soken Chemical Co., Ltd., STP E-30 manufactured by Wacker Chemie, etc.
  • the polymer having a crosslinkable silicon group may be blended in an amount of 70 to 98 parts by mass, preferably 75 to 95 parts by mass, and more preferably 80 to 95 parts by mass with respect to 100 parts by mass of the B agent. can. Further, it can be blended in an amount of 30 to 65 parts by mass, preferably 30 to 60 parts by mass, and more preferably 35 to 60 parts by mass with respect to 100 parts by mass of the total of the agent A and the agent B.
  • the blending amount of the polymer having a crosslinkable silicon group is less than 30 parts by mass with respect to 100 parts by mass in total of the agents A and B, the curability of the adhesive is lowered and the breaking strength (tensile strength at cutting). And the storage elastic modulus may decrease.
  • the blending amount of the polymer having a crosslinkable silicon group exceeds 65 parts by mass with respect to the total of 100 parts by mass of the agents A and B, the blending amount of the epoxy resin is relatively lowered, and the breaking strength (break strength ( Tensile strength at the time of cutting) and storage elastic modulus may decrease.
  • the epoxy resin curing agent contained in the agent B is not particularly limited as long as it is a compound that acts as a curing agent for the epoxy resin.
  • aliphatic amines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, diethylaminopropylamine, hexamethylenediamine, methylpentamethylenediamine, trimethylhexamethylenediamine, guanidine, oleylamine; mensendiamine, isophoronediamine, Norbornan diamine, piperidine, N, N'-dimethylpiperazine, N-aminoethyl piperazine, 1,2-diaminocyclohexane, bis (4-amino-3-methylcyclohexyl) methane, bis (4-aminocyclohexyl) methane, polycyclohexyl Alicyclic amines such as polyamines, 1,
  • Aromatic amines such as m-xylylene diamine, benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol; 3,9-bis (3-Aminopropyl) -2,4,8,10-Tetraoxaspiro [5,5] Undecane (ATU), morpholine, N-methylmorpholine, polyoxypropylenediamine, polyoxypropylenetriamine, polyoxyethylenediamine, etc.
  • Amines having an ether bond hydroxyl group-containing amines such as diethanolamine and triethanolamine; acid anhydrides such as tetrahydrophthalic anhydride, methyltetrahydroanophthalic acid, methylnadic acid anhydride, hexahydrophthalic anhydride, and succinic acid anhydride.
  • Polyamides obtained by the reaction of dimer acid and polyamines polyamide amines obtained by the reaction of polycarboxylic acids and polyamines; imidazoles such as 2-ethyl-4-methylimidazole; dicyandiamides; phenols; polyamines and epoxys.
  • Epoxy-modified amines obtained by reaction with compounds, modified amines such as Mannig-modified amines, Michael-added-modified amines, and ketimines obtained by reacting polyamines with aldehydes and phenolic compounds; 2,4,6-tris (dimethyl).
  • Aminomethyl One or more selected from the group consisting of amine salts such as 2-ethylhexanoate of phenol, amidins and the like can be mentioned.
  • tertiary amine compounds and amines having an ether bond are preferable from the viewpoint of curability and physical property balance.
  • a tertiary amine compound examples include alicyclic amines such as N, N'-dimethylpiperazine; benzyldimethylamine, 2- (dimethylaminomethyl) phenol, and 2,4,6-tris (dimethylaminomethyl) phenol.
  • Fat aromatic amines such as; amines having ether bonds such as morpholin and N-methylmorpholin; hydroxyl group-containing amines such as triethanolamine; epoxy-modified amines and amines obtained by reacting amines with an epoxy compound.
  • Modified amines such as Mannig-modified amines, Michael-added modified amines, and ketimines obtained by reacting formalin and phenols with amines; amines such as 2-ethylhexanate of 2,4,6-tris (dimethylaminomethyl) phenol.
  • Imidazoles such as salts, imidazoles and 2-ethyl-4-methylimidazoles; imidazolines such as 2-methylimidazolin and 2-phenylimidazolin; 1,8-diazabicyclo [5,4,0] undecene-7 (DBU), Cyclic amidines such as 6- (dibutylamino) -1,8-diazabicyclo [5,4,0] undecene-7 (DBA-DBU), 1,5-diazabicyclo [4,3,0] nonen-5 (DBN) Kind: One or more selected from the group consisting of amidin salts such as DBU-phenol salt, DBU-octylate, DBU-p-toluenesulfonate, and DBU-phenol novolak resin salt.
  • amidin salts such as DBU-phenol salt, DBU-octylate, DBU-p-toluenesulfonate, and DBU-phenol novolak resin salt.
  • a tertiary amine compound having active hydrogen examples include 2- (dimethylaminomethyl) phenol and 2,4,6-tris (dimethylaminomethyl) phenol.
  • the epoxy resin curing agent may be used alone or in combination of two or more.
  • the epoxy resin curing agent can be blended in an amount of 0.5 to 100 parts by mass, preferably 1 to 70 parts by mass, more preferably 5 parts by mass or more and 50 parts by mass with respect to 100 parts by mass of the epoxy resin. .. If the blending amount of the epoxy curing agent is less than 0.5 parts by mass with respect to 100 parts by mass of the epoxy resin, the curing of the epoxy resin may be insufficient, and the breaking strength (tensile strength at cutting) and the storage elastic modulus may decrease. be.
  • the blending amount of the epoxy curing agent exceeds 100 parts by mass with respect to 100 parts by mass of the epoxy resin, the reactivity of the polymer having a crosslinkable silicon group is lowered due to the influence of the excess epoxy resin curing agent, and the breaking strength is reduced. (Tensile strength at cutting) and storage elastic modulus may decrease.
  • the agent B may contain a (meth) acrylic polymer.
  • the (meth) acrylic polymer may be the (meth) acrylic polymer having the crosslinkable silicon group.
  • the polymer having a crosslinkable silicon group can be composed of a (meth) acrylic polymer having one or more kinds of crosslinkable silicon groups. Further, it can be composed of a (meth) acrylic polymer having one or more kinds of crosslinkable silicon groups and a polymer having one or more kinds of other crosslinkable silicon groups.
  • the (meth) acrylic polymer may not have a crosslinkable silicon group.
  • the crosslinkable silicon group is introduced into the (meth) acrylic polymer in the (meth) acrylic polymer having the crosslinkable silicon group. Some can be obtained by not using the method.
  • the (meth) acrylic polymer may be used alone or in combination of two or more.
  • the (meth) acrylic polymer can be blended in an amount of 0 to 98 parts by mass, preferably 0 to 60 parts by mass, and more preferably 0 to 45 parts by mass with respect to 100 parts by mass of the B agent, for example. ..
  • the adhesive of the present invention includes water, a silane coupling agent, a tackifier, a filler, a plasticizer, an antioxidant, an antioxidant, and a pigment, as necessary, as long as the characteristics of the adhesive are not impaired.
  • These "other components” can be added to the agent A and / or the agent B in consideration of the reactivity with the components constituting the agent A or the agent B.
  • Water is necessary for the hydrolysis condensation reaction of a polymer having a crosslinkable silicon group. Water is preferably contained in the agent A from the viewpoints of improving the curability of the adhesive, improving the adhesive strength (storage elastic modulus) after curing, ensuring the thickness of the adhesive coating film, and storing stability.
  • the water is not particularly limited, but general tap water, industrial water, pure water and the like can be used, and water vapor in the atmosphere can also be used.
  • the blending amount of water is not particularly limited, but can be, for example, 0.01 to 5 parts by mass, preferably 0.05 to 2 parts by mass with respect to 100 parts by mass in total of the agent A and the agent B.
  • the silane coupling agent has various functions such as improvement of the curability of the adhesive, improvement of the adhesive strength (storage elastic modulus) after the curing of the adhesive, and a function as an auxiliary catalyst for the hydrolysis condensation reaction of the polymer having a crosslinkable silicon group. From the viewpoint of improving the wettability with respect to the adherend, it may be contained in any of the agents A and B.
  • the silane coupling agent has active hydrogen such as aminosilane, it can also react with an epoxy resin, so that the curability of the adhesive is improved and the adhesive strength (storage elastic modulus) after curing of the adhesive is improved. It is useful for improvement, and is preferably contained in Agent B from the viewpoint of storage stability and the like.
  • the silane coupling agent is not particularly limited, and for example, amino group-containing silanes such as ⁇ -aminopropyltrimethoxysilane and N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane; ⁇ -mercaptopropyl.
  • Mercapto group-containing silanes such as trimethoxysilane; epoxy group-containing silanes such as ⁇ -glycidoxypropyltrimethoxysilane and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane; N- (1,3-) Ketimine-type silanes such as dimethylbutylidene) -3- (triethoxysilyl) -1-propaneamine; vinyl-type unsaturated group-containing silanes such as vinyltrimethoxysilane and ⁇ -methacryloyloxypropyltrimethoxysilane; ⁇ - From chlorine atom-containing silanes such as chloropropyltrimethoxysilane; isocyanate-containing silanes such as ⁇ -isocyanatepropyltriethoxysilane; alkylsilanes such as decyltrimethoxysilane; phenyl group-containing silanes such as
  • modified amino group-containing silanes obtained by reacting amino group-containing silanes with the above-mentioned silane-containing epoxy group-containing compound, isocyanate group-containing compound, and (meth) acryloyl group-containing compound to modify the amino group. You may use it.
  • These silane coupling agents may be used alone or in combination of two or more.
  • a silane coupling agent having active hydrogen is preferable, and amino group-containing silanes, mercapto group-containing silanes, and modified amino group-containing silanes are preferable.
  • the blending amount of the silane coupling agent is not particularly limited, but for example, it may be 0.1 to 10 parts by mass, preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the total of the A agent and the B agent. can.
  • tackifier examples include terpene resin, phenol resin, terpene-phenol resin, rosin resin, xylene resin and the like. These tackifiers may be used alone or in combination of two or more.
  • Fillers include reinforcing fillers such as fumed silica, settling silica, fused silica, silicic acid anhydride, and carbon black; calcium carbonate, magnesium carbonate, aluminum hydroxide, aluminum oxide, titanium oxide, silica soil, and calcined. Fillers such as clay, clay, talc, titanium oxide, bentnite, organic bentonite, ferric oxide, zinc oxide, active zinc flower, silas balloon, etc .; using fibrous fillers such as asbestos, glass fiber, and filament. Can be done. These fillers may be used alone or in combination of two or more.
  • plasticizer examples include phthalates such as dioctylphthalate; aliphatic dibasic acid esters such as dioctyl adipate; glycol esters; aliphatic esters; phosphoric acid esters; polyester plasticizers; polypropylene glycol and Examples thereof include polyethers such as derivatives; hydrocarbon plasticizers; chlorinated paraffins; low molecular weight acrylic acid ester polymers and the like. These plasticizers may be used alone or in combination of two or more.
  • sagging preventive agent As the sagging preventive agent, a known sagging preventive agent can be widely used, and there is no particular limitation.
  • polyamide wax hydrogenated castor oil derivative
  • metal soap such as calcium stearate, aluminum stearate, barium stearate, organic bentnite, silica, modified polyester polyol, inorganic shaker such as asbestos powder, fatty acid amide and the like.
  • organic rocking agents and the like can be mentioned.
  • antioxidant examples include compounds such as hindered phenols, butylhydroxytoluene, and butylhydroxyanisole. These antioxidants may be used alone or in combination of two or more.
  • pigments examples include inorganic pigments such as carbon black, titanium oxide, zinc oxide, ultramarine blue, red iron oxide, lithopone, lead, cadmium, iron, cobalt, aluminum, hydrochlorides and sulfates, and organic pigments such as azo pigments and copper phthalocyanine pigments. Pigments and the like can be mentioned. These pigments may be used alone or in combination of two or more.
  • filler one or more kinds selected from the group consisting of a resin filler (resin fine powder), an inorganic filler, and a functional filler can be used.
  • the filler may be surface-treated with a silane coupling agent, a titanium chelating agent, an aluminum coupling agent, a fatty acid, a fatty acid ester, rosin or the like.
  • resin filler a particulate filler made of an organic resin or the like can be used.
  • the resin filler is selected from the group consisting of organic fine particles such as polyacrylic acid ester resin, polyurethane resin, polyethylene resin, polypropylene resin, urea resin, melamine resin, benzoguanamine resin, phenol resin, acrylic resin, and styrene resin. More than one kind can be used.
  • the adhesive of the present invention may also contain a diluent.
  • a solvent having a flash point (open type) of 50 ° C. or higher is used as the diluent.
  • a diluent By containing a diluent, physical properties such as viscosity can be adjusted.
  • various diluents can be used as the diluent.
  • the diluent include saturated hydrocarbon solvents such as normal paraffin and isoparaffin, ⁇ -olefin derivatives such as linearene dimer (trade name of Idemitsu Kosan Co., Ltd.), aromatic hydrocarbon solvents, alcohol solvents, and ester solvents. Examples thereof include one or more kinds of solvents selected from the group consisting of a solvent, a citrate ester solvent such as acetyltriethyl citrate, and a ketone solvent.
  • the adhesive of the present invention may contain a porous additive.
  • the porous additive include an inorganic compound having pores (mesopores) and a compound having oil absorption.
  • the porous additive include an inorganic compound having pores (mesopores) and a compound having oil absorption.
  • the shape of the porous additive is not particularly limited, and may be, for example, a spherical shape, a crushed shape, a disk shape, a rod shape, a fibrous shape, or the like.
  • the surface of the porous additive may be physically or chemically hydrophilized or hydrophobized.
  • the surface is hydrophobized, it is preferably a chemically hydrophobized compound having an oil absorption amount (specified amount according to JIS K 5101) of 50 ml / 100 g or more.
  • an oil absorption amount obtained amount according to JIS K 5101
  • the adhesiveness to the polymer having a crosslinkable silicon group and / or the epoxy resin is increased, and the mechanical strength and other properties of the cured product are improved.
  • a porous additive having a surface hydrophobized with an oil absorption amount of 50 ml / 100 g or more the adhesiveness with the epoxy resin can be improved and coloring at the time of thermosetting can be suppressed.
  • the porous additive for example, porous silica can be preferably used.
  • the apparent density of the porous additive is not particularly limited, but is 0.4 g / cm 3 or more, preferably 0.4 g / cm 3 to 2.0 g / cm 3 , from the viewpoint of ensuring the mechanical strength of the porous additive.
  • the apparent density refers to the density in consideration of the density occupied by the raw material of the porous additive and the space occupied by the micropores (that is, the pore volume).
  • the average particle size of the porous additive is not particularly limited, but is preferably 0.1 to 100 ⁇ m from the viewpoint of maintaining good fluidity of the adhesive.
  • the specific surface area of the porous additive is 100 m 2 / g to 1000 m 2 / g, preferably 300 m 2 / g to 700 m 2 / g. If it is less than 100 m 2 / g, it becomes difficult to maintain an appropriate amount of lubrication of the porous additive, and if it exceeds 1000 m 2 / g, it becomes difficult to maintain good fluidity of the porous additive. ..
  • the porous additive may be blended with either agent A or agent B.
  • the blending amount of the porous additive is not particularly limited, but for example, the amount of the porous additive is preferably 1 part by mass or more with respect to 100 parts by mass of the polymer having a crosslinkable silicon group, and 2 parts by mass or more. It is more preferably 50 parts by mass or less, and more preferably 30 parts by mass or less from the viewpoint of workability.
  • the second adhesive according to the present invention includes an epoxy resin, a core-shell type rubber particle, a polymer having a crosslinkable silicon group, an epoxy resin curing agent, and a condensation catalyst of the crosslinkable silicon group.
  • the breaking strength (tensile strength at cutting) of the adhesive cured product measured according to JIS K 6251 after 7 days curing in a 23 ° C 50% RH environment is 5 MPa or more, and the fracture breaks.
  • Time elongation (elongation at cutting) is 30% or more
  • the epoxy resin, the core-shell type rubber particles, the polymer having a crosslinkable silicon group, the epoxy resin curing agent, and the condensation catalyst of the crosslinkable silicon group contained in the second adhesive according to the present invention are the first of the present invention.
  • the same adhesive contained in Agent A or Agent B of 1 can be used.
  • the second adhesive according to the present invention may contain any one or more of "other components" which may be contained in the first adhesive according to the present invention.
  • the blending amount of each component contained in the second adhesive according to the present invention is the blending amount of each component with respect to the total amount of the A agent and the B agent specified in the first adhesive of the present invention, or a specific blending amount. It is the same as the blending amount of each component with respect to the component.
  • the breaking strength (tensile strength at the time of cutting) of the cured adhesive of the second adhesive according to the present invention can be obtained by the following method. After mixing and stirring at least an epoxy resin, a core-shell type rubber particle, a polymer having a crosslinkable silicon group, an epoxy resin curing agent, and a condensation catalyst of the crosslinkable silicon group to prepare an adhesive, the depth is 2 mm. The mold is uniformly filled, heat-cured at 80 ° C. for 30 minutes, and then cured in a 23 ° C. and 50% RH environment for 7 days to prepare an adhesive cured product sheet.
  • a dumbbell-shaped No. 3 test piece specified in JIS K6251 is die-cut and collected.
  • the tensile speed was set to 10 mm / min, and the breaking strength (tensile strength at cutting) (MPa) and the breaking time when the test piece was applied with force until the test piece broke. It can be obtained by measuring the elongation (elongation at the time of cutting) (%).
  • the second adhesive according to the present invention has a breaking strength of an adhesive cured product measured according to JIS K 6251 after being heat-cured at 80 ° C. for 30 minutes and then cured at 23 ° C. for 50% RH for 7 days.
  • the tensile strength at the time of cutting is 5 MPa or more. It is preferably 5 to 30 MPa, more preferably 7 to 25 MPa, and even more preferably 10 to 20 MPa. If the breaking strength (tensile strength at the time of cutting) is less than 5 MPa, the adhesive strength (storage elastic modulus) after curing may be insufficient and it may be difficult to use it as a structural adhesive.
  • the second adhesive according to the present invention is the elongation at break of the cured adhesive, which is measured according to JIS K 6251 after being heat-cured at 80 ° C. for 30 minutes and then cured at 23 ° C. for 50% RH for 7 days.
  • (Elongation at the time of cutting) is 30% or more. It is preferably 50% or more, more preferably 50 to 400%, still more preferably 55 to 300%. If the elongation at break (elongation at cutting) is less than 30%, the cured adhesive may become brittle, and the adhesive strength (storage elastic modulus) after curing may be insufficient, making it difficult to use as a structural adhesive.
  • the second adhesive according to the present invention was heat-cured at 80 ° C. for 30 minutes and then cured at 23 ° C. for 50% RH for 7 days.
  • the cured adhesive product was replaced with JIS K 7198 (abolished and replaced with JIS K 7244-4).
  • the tensile mode measured in accordance with (1) and the storage elastic coefficient (20 ° C. and 80 ° C.) at 1 Hz can be obtained by the following method. After mixing and stirring at least an epoxy resin, a core-shell type rubber particle, a polymer having a crosslinkable silicon group, an epoxy resin curing agent, and a condensation catalyst of the crosslinkable silicon group to prepare an adhesive, the depth is 2 mm.
  • the mold is uniformly filled, heat-cured at 80 ° C. for 30 minutes, and then cured in a 23 ° C. and 50% RH environment for 7 days to prepare an adhesive cured product sheet.
  • a 10 mm ⁇ 40 mm test piece is collected from the obtained cured adhesive sheet.
  • the stored elastic modulus (E'(MPa)) of the obtained test piece is measured under the following conditions using a dynamic viscoelasticity measuring (DMA) device (DMS6100 manufactured by Seiko Instruments Inc.). (Conditions for DMA measurement) Measurement frequency: 1Hz, measurement mode: tension, temperature rise rate: 5 ° C / min, measurement temperature: -100 ° C to 200 ° C
  • the second adhesive according to the present invention was JIS K 7198 (discontinued and replaced with JIS K 7244-4) after being heat-cured at 80 ° C. for 30 minutes and then cured at 23 ° C. for 50% RH for 7 days.
  • the storage elastic modulus at 1 Hz in the tensile mode measured in accordance with the above is 100 to 1000 MPa at 20 ° C. It is preferably 100 to 700 MPa, more preferably 100 to 650 MPa, and even more preferably 100 to 600 MPa. If the storage elastic modulus at 20 ° C. is less than 100 MPa, the adhesive strength (storage elastic modulus) after curing may be insufficient, making it difficult to use as a structural adhesive. If the storage elastic modulus at 20 ° C. exceeds 1000 MPa, the material constituting the adhesive may become expensive, and the elongation at break (elongation at cutting) of the cured adhesive may decrease. ..
  • the second adhesive according to the present invention was JIS K 7198 (discontinued and replaced with JIS K 7244-4) after being heat-cured at 80 ° C. for 30 minutes and then cured at 23 ° C. for 50% RH for 7 days.
  • the storage elastic modulus at 1 Hz in the tensile mode measured in accordance with the above is 50 to 1000 MPa at 80 ° C. It is preferably 50 to 700 MPa, more preferably 50 to 200 MPa, and even more preferably 45 to 180 MPa. If the storage elastic modulus at 80 ° C. is less than 50 MPa, the adhesive strength (storage elastic modulus) after curing may be insufficient, making it difficult to use as a structural adhesive. If the storage elastic modulus at 80 ° C. exceeds 1000 MPa, the material constituting the adhesive may become expensive, and the elongation at break (elongation at cutting) of the cured adhesive may decrease. ..
  • Agent A containing an epoxy resin, a core-shell type rubber particle, and a condensation catalyst of a crosslinkable silicon group, which are the first adhesives according to the present invention, a polymer having a crosslinkable silicon group, and epoxy resin curing.
  • the method for producing a two-component adhesive having the agent B and the agent B is not particularly limited.
  • the epoxy resin constituting the agent A, the core-shell type rubber particles, and the condensation catalyst of the crosslinkable silicon group are blended in a predetermined amount, and if necessary, other components are blended, and the agent A is degassed and stirred. To manufacture. At that time, the blending order of each component is not particularly limited.
  • the polymer having a crosslinkable silicon group constituting the agent B and the epoxy resin curing agent are blended in a predetermined amount, and if necessary, other components are blended, and the agent B is degassed and stirred. To manufacture. At that time, the blending order of each component is not particularly limited. By combining the obtained A agent and B agent as a set, a two-component adhesive can be obtained.
  • the second adhesive according to the present invention includes an epoxy resin, a core-shell type rubber particle, a polymer having a crosslinkable silicon group, an epoxy resin curing agent, and a condensation catalyst of the crosslinkable silicon group, and has a breaking strength (break strength).
  • breaking strength break strength
  • a two-component adhesive can be obtained in the same manner as the first adhesive according to the present invention.
  • an epoxy resin, a core-shell type rubber particle, a crosslinkable silicon group condensation catalyst, a polymer having a crosslinkable silicon group, and an epoxy resin curing agent are blended in a predetermined amount, and other components are blended as necessary.
  • the adhesive composition can be obtained by degassing and stirring. At that time, the blending order of each component is not particularly limited.
  • an adhesive is applied to at least one of two adherends, and the adhesive is sandwiched between the two adherends.
  • Examples thereof include a method in which the adhesive is bonded in such a manner, heat-treated as necessary, cooled as necessary, and the adhesive is cured and bonded.
  • the adhesive When the adhesive is applied to the adherend, the adhesive may be applied to the entire adherend surface, partially, or a predetermined pattern. Further, for the two-component adhesive which is the first adhesive according to the present invention, the agent A is applied to one of the adherend surfaces of the adherend, and the agent B is applied to the adherend surface of the other adherend. Then, the method of pasting may be used. Further, after the agent A and the agent B are separately mixed, the mixture may be applied to the adherend.
  • the second adhesive according to the present invention can also be applied to the adherend in the same manner as the first adhesive according to the present invention.
  • the method of applying the adhesive is not particularly limited, and a conventionally known application method can be selected.
  • a method of discharging an adhesive from a predetermined dispenser can be mentioned.
  • the atmosphere, temperature, and humidity in the coating process are not particularly limited, and the adhesive can be applied in the atmosphere or at room temperature.
  • the coating amount and coating thickness when applying the adhesive are not particularly limited.
  • an adhesive layer having an arbitrary thickness (for example, 0.1 mm or more) is formed after bonding.
  • an adhesive layer having an arbitrary thickness it is possible to more preferably follow the thermal strain.
  • a method of forming an adhesive layer of an arbitrary thickness after bonding a method of adding a filler having a desired particle size to the adhesive, a method of using an adherend having a shape capable of maintaining the thickness, and the like are used. can give. Further, it is also possible to adjust the thickness of the adhesive layer between the adherends by applying pressure to the adherends after superimposing the adherends on each other.
  • the heat treatment performed as needed can accelerate the curing of the adhesive.
  • the heating temperature, heating time, heating atmosphere, heating pressure, and the like can be appropriately determined according to the curing temperature of the adhesive, the manufacturing process of the product, and the like.
  • the heating temperature can be 50 ° C. or higher, preferably 80 ° C. or higher, 120 ° C. or lower, and preferably 100 ° C. or lower.
  • the heating temperature is 120 ° C. or lower, preferably 100 ° C. or lower from the viewpoint of preventing foaming in the adhesive.
  • the heating method is not particularly limited. Examples include a method using a heating furnace, a hot plate, a hot air generator, and the like.
  • the cooling treatment performed as necessary is a treatment for cooling the adherend to room temperature after heating.
  • the curing treatment can be performed by curing at room temperature.
  • the adhesive according to the present invention exhibits sufficient adhesiveness and has flexibility. Therefore, when the adhesive is cooled after the heat treatment, the hardness (storage elastic modulus) of the adhesive is gradually increased, and the thermal strain generated between the adherends can be alleviated. Further, by curing in a room temperature environment, the adhesiveness can be maintained and improved, the strain can be alleviated, and the hardness can be improved.
  • the first adhesive and the second adhesive according to the present invention can be used when two or more adherends are adhered to form a structure.
  • the adherend include metal materials such as aluminum, iron, titanium and stainless steel, various resins, resin materials such as carbon fiber reinforced plastics, paper, cloth, wood, glass and various ceramics.
  • the two or more adherends may be made of the same material or different materials.
  • the shape of the two or more adherends is not particularly limited, and may be a shape corresponding to various parts such as electric / electronic parts, mechanical parts, and automobile parts.
  • the first adhesive and the second adhesive according to the present invention can be suitably used for applications in which two or more adherends having different linear expansion coefficients are bonded to form a structure.
  • the first adhesive according to the present invention is excellent in elongation, toughness, and adhesive strength (storage elastic modulus) after curing, and is caused by the difference in linear expansion coefficient of the adherend when subjected to cold heat treatment. It is possible to absorb the heat strain, warpage, etc. that occur as a result, and peeling between the adherends is unlikely to occur.
  • the cured product according to the present invention is obtained by curing the first adhesive or the second adhesive according to the present invention.
  • the cured product can be obtained by curing the adhesive by the method described in the above [How to use the adhesive].
  • the article according to the present invention is obtained by being bonded with the first adhesive or the second adhesive according to the present invention.
  • the various adherends described in the above [Use of Adhesive] are used in the first adhesive or the second adhesive according to the present invention, and the method described in the above [Adhesive Usage]. It is composed by adhering with.
  • Examples of the article include electric / electronic devices, electric / electronic parts, mechanical parts, vehicle parts, vehicle interior members, and the like.
  • DMA Dynamic Viscoelasticity
  • each component in Tables 1 and 2 is "part by mass”.
  • Each component of the adhesive (agent A and agent B) in Tables 1 and 2 is as follows.
  • Epoxy resin 1 Bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, jER828)
  • Epoxy resin 2 Carboxyl group-terminated butadiene nitrile rubber (CTBN) modified epoxy resin (Huntsman, HyPox RA840)
  • CTBN Carboxyl group-terminated butadiene nitrile rubber
  • DOTL Dioctyl tin dilaurate-Core shell type rubber particles 1: Bisphenol A type epoxy resin and core shell type rubber particles whose core is butadiene rubber particles and shell layer is acrylic resin
  • epoxy resin: core shell type rubber particles 6: Epoxy resin-core-shell type rubber particle composition contained in 4 (manufactured by Kaneka, MX154)
  • -Core-shell type rubber particles 2 Core-shell type rubber particles whose core is butad
  • the cured adhesives of Examples 1 to 10 have a large value (MPa) of breaking strength (tensile strength at cutting) and a value (%) of elongation at breaking (elongation at cutting), and further, at 20 ° C. Since the storage elastic modulus (MPa) and the storage elastic modulus at 80 ° C. (MPa) are also large, this adhesive has excellent adhesive strength (storage elastic modulus) after elongation and curing, and is peeled off due to thermal itinerary. It turns out that it is unlikely to occur. Since the cured adhesive of Comparative Example 1 containing no core-shell type rubber particles has a low storage elastic modulus value (MPa) at 20 ° C.
  • the cured adhesive of Comparative Example 2 containing no epoxy resin has a breaking strength (tensile strength at cutting) value (MPa), a storage elastic modulus value at 20 ° C. (MPa), and a storage elastic modulus value at 80 ° C. Since (MPa) is small, it can be seen that this adhesive has a problem in adhesive strength (storage elastic modulus) after elongation and curing.
  • the adhesive cured product of Comparative Example 3 using a carboxyl group-terminated butadiene nitrile rubber (CTBN) -modified epoxy resin and containing no core-shell type rubber particles had a breaking strength (tensile strength at cutting) value (MPa) of 20 ° C. Since both the storage elastic modulus value (MPa) and the storage elastic modulus value (MPa) at 80 ° C. are small, it can be seen that this adhesive has a problem in the adhesive strength (storage elastic modulus) after elongation and curing. .. Since the cured adhesive of Comparative Example 4 containing no polymer having a crosslinkable silicon group was hard and brittle, it was not possible to prepare a test piece having a predetermined shape.
  • CBN carboxyl group-terminated butadiene nitrile rubber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

硬化後の接着強度(貯蔵弾性率)に優れ、さらに、硬化後の伸び率に優れ、熱遍歴によりはく離が生じにくい接着剤を得ることを課題とする。解決手段の(1)として、(1)エポキシ樹脂を含むA剤と、架橋性ケイ素基を有する重合体、及び、エポキシ樹脂硬化剤、を含むB剤と、を有する2液型接着剤であって、コアシェル型ゴム粒子をA剤及び/又はB剤に含み、架橋性ケイ素基の縮合触媒をA剤及び/又はB剤に含む、2液型接着剤を提供する。また、解決手段の(2)として、(2)エポキシ樹脂、コアシェル型ゴム粒子、架橋性ケイ素基を有する重合体、エポキシ樹脂硬化剤、及び、架橋性ケイ素基の縮合触媒、を含み、80℃30分間加熱硬化後、23℃50%RH環境下で7日養生後のJIS K 6251に準拠して測定される接着剤硬化物の破断強度(切断時引張強さ)が5MPa以上、破断時伸び(切断時伸び)が30%以上、80℃30分間加熱硬化後、23℃50%RH環境下で7日養生後のJIS K 7198(廃止され、JIS K 7244-4に置き換えられた。)に準拠して測定される引張モード、1Hz時の貯蔵弾性率が、20℃で100~1000MPa、80℃で50~1000MPa、である接着剤を提供する。

Description

2液型接着剤
 本発明は、各種の部材や部品等を構造接着して物品を製造するのに有用な2液型接着剤に関する。
 異種材料からなる各種の部品・部材を接合して構造体を製造する際に、構造用接着剤を用いる方法が知られている。従来の構造用接着剤は、硬化後の接着強度(貯蔵弾性率)は優れているものの、接着剤硬化物が硬く、伸び性の点で満足できるものではなかった。このため、構造体が冷温や高温の状態に置かれる熱遍歴を受けた際には、部品・部材間の線膨張係数の差等に起因して、剥がれが生じるおそれがあった。
 接着剤硬化物に伸び性を持たすためには、変性シリコーン樹脂等を配合することも考えられるが、構造用接着剤として満足のいく強度を得ることができなかった。
 特許文献1には、(A)反応性ケイ素基含有ポリオキシアルキレン系重合体、(C)エポキシ樹脂硬化剤、及び(D)シランカップリング剤を含有するA剤と、(E)エポキシ樹脂、(F)縮合触媒、及び(G)水を含有するB剤とからなる2液型硬化性組成物を接着剤として用いることが記載されている。この2液型硬化性組成物は、貯蔵安定性が改善され、内部硬化性が良好であるとされているが、構造用接着剤としての特性や有用性等について記載されていない。
 特許文献2には、エポキシ樹脂と、コアシェル型ゴム粒子と、中空ポリマーとからなるエポキシ樹脂組成物が記載されている。このエポキシ樹脂組成物は、広い温度範囲において良好な接着強さを得ることができ、接着に信頼性がある、異種材料の接合に用いる構造用接着剤組成物として有用であるとされているが、伸び率及び弾性率が十分とはいえない。
 特許文献3には、エポキシ樹脂、コアシェル構造を有するゴム粒子、エポキシシランカップリング剤、両末端にアルコキシシリル基を有するポリブタジエンを含む熱硬化性樹脂組成物が記載されている。この熱硬化性樹脂組成物は、塗布された後に高温多湿条件下に置かれても、硬化後の接着強度(貯蔵弾性率)の低下が小さく、構造用接着剤に有用であるとされているが、伸び率及び弾性率が十分とはいえない。
特開2002-309077号公報 特開2010-270198号公報 特開2019-199606号公報
 本発明は、硬化後の接着強度(貯蔵弾性率)に優れ、さらに、硬化後の伸び率に優れ、熱遍歴によりはく離が生じにくい接着剤を得ることを課題とする。
 本発明者等は、上記課題を解決するために鋭意検討した結果、下記の接着剤、接着剤を硬化して得られる硬化物及び接着剤により接着されて得られる物品により、上記課題を解決できることを見出し、本発明を完成するに至った。具体的には、以下の[1]~[4]で表されるものである。
[1]エポキシ樹脂を含むA剤と、
 架橋性ケイ素基を有する重合体、及び、エポキシ樹脂硬化剤、を含むB剤と、
を有する2液型接着剤であって、
 コアシェル型ゴム粒子をA剤及び/又はB剤に含み、架橋性ケイ素基の縮合触媒をA剤及び/又はB剤に含む、2液型接着剤。
[2](メタ)アクリル系重合体をB剤に含む、[1]に記載の2液型接着剤。
[3]エポキシ樹脂、コアシェル型ゴム粒子、架橋性ケイ素基を有する重合体、エポキシ樹脂硬化剤、及び、架橋性ケイ素基の縮合触媒、を含み、
 80℃30分間加熱硬化後、23℃50%RH環境下で7日養生後のJIS K 6251に準拠して測定される接着剤硬化物の破断強度(切断時引張強さ)が5MPa以上、破断時伸び(切断時伸び)が30%以上、
 80℃30分間加熱硬化後、23℃50%RH環境下で7日養生後のJIS K 7198(廃止され、JIS K 7244-4に置き換えられた。)に準拠して測定される引張モード、1Hz時の貯蔵弾性率が、20℃で100~1000MPa、80℃で50~1000MPa、である接着剤。
[4][1]~[3]のいずれか1つに記載の接着剤を硬化して得られる硬化物。
[5][1]~[3]のいずれか1つに記載の接着剤により接着されて得られる物品。
 本発明によれば、硬化後の接着強度(貯蔵弾性率)に優れ、さらに、硬化後の伸び率に優れ、熱遍歴によりはく離が生じにくい接着剤を得ることができる。
[第1の接着剤]
 本発明に係る第1の接着剤は、エポキシ樹脂を含むA剤と、架橋性ケイ素基を有する重合体、及び、エポキシ樹脂硬化剤、を含むB剤と、を有する2液型接着剤であって、コアシェル型ゴム粒子をA剤及び/又はB剤に含み、架橋性ケイ素基の縮合触媒をA剤及び/又はB剤に含む、2液型接着剤である。
 また、B剤は、(メタ)アクリル系重合体を含んでいてもよい。
<エポキシ樹脂>
 エポキシ樹脂は、分子中にエポキシ基を2個以上有する化合物であれば、特に限定されない。
 このようなエポキシ樹脂としては、例えば、ビフェニル型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールM型エポキシ樹脂(4,4’-(1,3-フェニレンジイソプロピリデン)ビスフェノール型エポキシ樹脂)、ビスフェノールP型エポキシ樹脂(4,4’-(1,4-フェニレンジイソプロピリデン)ビスフェノール型エポキシ樹脂)、ビスフェノールZ型エポキシ樹脂(4,4’-シクロヘキシジエンビスフェノール型エポキシ樹脂)、これらを水添したビスフェノール型エポキシ樹脂、これらをハロゲン化(臭素化、塩素化)したビスフェノール型エポキシ樹脂等のビスフェノール型エポキシ樹脂;スチルベン型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリヒドロキシフェニルメタン型エポキシ樹脂、アルキル変性トリヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格含有フェノールアラルキル型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、ヒドロキシナフタレン及び/又はジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られる2官能ないし4官能のナフタレン2量体型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビナフチル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂等のナフタレン骨格を有するエポキシ樹脂;アントラセン型エポキシ樹脂;フェノキシ型エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂;ノルボルネン型エポキシ樹脂;アダマンタン型エポキシ樹脂;フルオレン型エポキシ樹脂、リン含有エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールAレゾール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等の複素環式エポキシ樹脂;N,N,N’,N’-テトラグリシジルメタキシレンジアミン、N,N,N’,N’-テトラグリシジルビスアミノメチルシクロヘキサン、N,N-ジグリシジルアニリン等のグリシジルアミン類;グリシジル(メタ)アクリレートとエチレン性不飽和二重結合を有する化合物との共重合物;ポリブタジエンあるいはNBRを含有するゴム変性エポキシ樹脂等からなる群より選ばれる1種類以上があげられる。
 また、これらのエポキシ樹脂をアルコキシシランやシルセスキオキサン等で変性した、シロキサン結合を有する変性エポキシ樹脂を用いることもできる。シロキサン結合を有する変性エポキシ樹脂としては、例えば、特開2010-275411号公報に開示のアルコキシシランで変性したエポキシ樹脂組成物や、特許第5569703号公報に開示のシルセスキオキサン変性エポキシ樹脂等があげられる。市販品としては、荒川化学工業社製のコンポセランEシリーズや、コンポセランSQシリーズ等からなる群より選ばれる1種類以上があげられる。
 これらの中でも、硬化性、接着性、耐水性、耐久性、作業性、入手容易性、汎用性等の観点から、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、ゴム変性エポキシ樹脂等からなる群より選ばれる1種類以上を用いることが好ましい。本発明においては、ビスフェノール型エポキシ樹脂を用いることがより好ましい。
 エポキシ樹脂は、1種類を単独で用いても2種類以上のエポキシ樹脂を組み合わせて用いてもよい。
 エポキシ樹脂は、例えば、A剤100質量部に対して、20~80質量部、好ましくは25~70質量部、より好ましくは30~60質量部となる量配合することができる。また、A剤及びB剤の合計100質量部に対して、10~60質量部、好ましくは15~50質量部、より好ましくは20~50質量部となる量配合することができる。
 エポキシ樹脂の配合量が、A剤及びB剤の合計100質量部に対して10質量部未満では、接着剤の硬化性が低下し、破断強度(切断時引張強さ)及び貯蔵弾性率が低下するおそれがある。また、エポキシ樹脂の配合量が、A剤及びB剤の合計100質量部に対して60質量部を超えると、架橋性ケイ素基を有する重合体の配合量が相対的に低下し、破断強度(切断時引張強さ)及び貯蔵弾性率が低下するおそれがある。
<コアシェル型ゴム粒子>
 コアシェル型ゴム粒子は、A剤及び/又はB剤に含まれる。
 コアシェル型ゴム粒子としては、エラストマー系又はゴム状ポリマーを含むポリマーによって形成されるゴム粒子であるコアと、コア表面の少なくとも一部を覆うポリマーシェル層とを有し、必要に応じてコアとシェル層との間に中間層を有していてもよい粒子である。
 コア、中間層及びシェル層は、それぞれ単層又は多層で構成することができる。いずれかの層が多層構造である場合、各層がそれぞれ相違する成分からなるものであってもよい。
 コア及び/又はシェル層は、必要に応じてイオン結合又は共有結合等により架橋されていてもよい。
 シェル層は、コアにグラフト重合することで形成されたものでもよい。シェル層は、エポキシ基やカルボキシル基等の反応性官能基を有していてもよい。
 コアシェル型ゴム粒子の体積平均粒子径は、特に限定されない。体積平均粒子径を30μm以下とすることで、応力緩和特性を著しく向上させることができる。
 本発明において、コアシェル型ゴム粒子の体積平均粒子径は、例えば、0.01μm以上、好ましくは0.02μm以上、より好ましくは0.05μm以上であり、好ましくは10μm以下、より好ましくは5μm以下、さらに好ましくは2μm以下である。
(コア)
 コアシェル型ゴム粒子を構成するコアは、接着剤硬化物の靱性改良の観点から、共役ジエン系モノマーを主成分とし、必要に応じて共重合可能なモノマーを含むモノマー成分から得られるジエン系ゴム(例えば、ブタジエンゴム、ブタジエン-スチレンゴム、ブタジエンブチルアクリレートゴム、イソプレンゴム、クロロプレンゴム、ブチルアクリレートゴム等)、天然ゴム、オルガノシロキサンゴム、(メタ)アクリル酸アルキルエステルを主成分とし、必要に応じて共重合可能なモノマーを含むモノマー成分から得られるアクリルゴム等からなる群より選ばれる1種類から構成される。
 共役ジエン系モノマーとしては、例えば、ブタジエン、イソプレン、クロロプレン等からなる群より選ばれる1種類以上があげられる。本発明においては、ブタジエンが好ましい。
 (メタ)アクリル酸アルキルエステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等からなる群より選ばれる1種類以上があげられる。本発明においては、ブチル(メタ)アクリレートが好ましい。
 これらと共重合可能なモノマーとしては、例えば、スチレン、ビニルトルエン、α-メチルスチレン等の芳香族ビニル、芳香族ビニリデン、アクリロニトリル、メタクリロニトリル等のシアン化ビニル、シアン化ビニリデン、メチルメタクリレート、ブチルメタクリレート等のアルキルメタクリレート、ベンジルアクリレート、フェノキシエチルアクリレート、ベンジルメタクリレート等の芳香族(メタ)アクリレートがあげられる。また、エポキシ基、カルボキシル基、水酸基、アミノ基などの官能基を持ったモノマーを共重合させることができる。例えば、グリシジル(メタ)アクリレート、メタクリル酸、アクリル酸、マレイン酸、イタコン酸、2-ヒドロキシメタクリレート、2-ヒドロキシアクリレート等からなる群より選ばれる1種類以上があげられる。本発明においては、接着剤硬化物の靱性改良効果と、エポキシ樹脂との親和性、経時安定性、汎用性等の観点から、コアをジエン系ゴム及びアクリルゴムからなる群より選ばれる1種類以上とすることが好ましい。
 コアを構成する重合体のガラス転移温度(Tg)は、接着剤硬化物の靱性を高め応力緩和特性を高めるために、0℃以下、好ましくは-20℃以下、より好ましくは-30℃以下、さらに好ましくは-60℃以下であり、-200℃以上である。コアが2以上の層からなる場合、少なくとも1つの層のガラス転移温度が0℃以下であることが好ましい。
(中間層)
 コアシェル型ゴム粒子は、コアとシェル層との間に中間層を有していてもよい。
 中間層を形成する成分は特に限定されない。例えば、共役ジエン及び/又は(メタ)アクリル酸アルキルエステルの(共)重合体、又はこれらと共重合可能なモノマーとが共重合した重合体を含むことが好ましい。
 ここで、共役ジエン、(メタ)アクリル酸アルキルエステル及びこれらと共重合可能なモノマーとしては、コアの形成に際して用いられたものからなる群より選ばれる1種類以上があげられる。
 中間層のガラス転移温度は、0℃以下、好ましくは-30℃以下である。
(シェル層)
 コアシェル型ゴム粒子を構成するシェル層は、接着剤構成成分との相溶性、接着剤中への分散性を考慮して、(メタ)アクリル酸アルキルエステルを主成分とし、必要に応じて共重合可能なモノマーを含むモノマー成分から構成される。
 シェル層を形成する(メタ)アクリル酸アルキルエステル及びこれと共重合可能なモノマーとしては、コアの形成に際して用いられたものからなる群より選ばれる1種類以上があげられる。
 シェル層は、必要に応じて、シェル層を形成するモノマー成分として、エポキシ基、ヒドロキシ基、オキセタン基、アミノ基、イミド基、カルボン酸基、カルボン酸無水物基、環状エステル、環状アミド、ベンズオキサジン基、及びシアン酸エステル基からなる群から選ばれる1種類以上を含有するモノマーを用いることで、他の接着剤構成成分と反応性を有する基又は親和性を有する基を有していてもよい。
 シェル層を形成するモノマー成分中の(メタ)アクリル酸アルキルエステルの量は、シェル層形成用モノマー全量100質量%に対して、10~95質量%、好ましくは30~92質量%、より好ましくは50~90質量%である。
 シェル層を構成する重合体のガラス転移温度は、40℃以上、好ましくは50℃以上である。
(コアシェル型ゴム粒子の各層の組成)
 コアシェル型ゴム粒子において、コア、中間層及びシェル層の組成比に制限はない。
 コアは、コアシェル型ゴム粒子全体100質量%に対して20~95質量%、好ましくは50~95質量%、より好ましくは60~90質量%である。
 中間層は、コアシェル型ゴム粒子全体100質量%に対して0~50質量%、好ましくは0~30質量%、より好ましくは0~20質量%である。
 シェル層は、コアシェル型ゴム粒子全体100質量%に対して、5~80質量%、好ましくは5~50質量%、より好ましくは10~40質量%である。
(コアシェル型ゴム粒子の製造方法)
 コアシェル型ゴム粒子の製造方法は特に制限はなく、乳化重合、懸濁重合、マイクロ懸濁重合等の当該分野で公知の方法によって製造することができる。
 コアは、コアを形成するモノマー成分を用いて、例えば、乳化重合、懸濁重合及びマイクロサスペンジョン重合などによって形成することができる。
 中間層は、中間層を形成するモノマーを用いて、公知のラジカル重合(乳化重合等)により重合することによって形成することができる。
 シェル層は、シェル層を形成するモノマーを用い、公知のラジカル重合(乳化重合)により重合することによって形成することができる。
 シェル層は、コア及び/又は中間層にシェル層を形成するモノマーをグラフト重合することで形成されることが好ましい。
 また、各層を形成するモノマーの重合は、1段で行ってもよく、2段以上で行ってもよい。
(コアシェル型ゴム粒子の形態等)
 コアシェル型ゴム粒子は、例えば、パウダー状のものを用いることで、A液及び/又はB液に配合することができる。
 また、例えば、予めエポキシ樹脂中に分散された形のエポキシ樹脂組成物の形態のものを用いることでA液に配合してもよい。エポキシ樹脂組成物中のコアシェル型ゴム粒子の配合量は、特に限定されない。例えば、エポキシ樹脂とコアシェル型ゴム粒子の合計が100質量%に対して1~80質量%、好ましくは5~70質量%、より好ましくは10~60質量%、さらに好ましくは20~50質量%である。
(コアシェル型ゴム粒子の市販品)
 コアシェル型ゴム粒子は、市販されている各種のものを用いてもよい。これら市販のコアシェル型ゴム粒子は、単独で用いてもよく2種類以上を併用してもよい。
 例えば、以下の群より選ばれる1種類以上があげられるが、これらに限定されるものではない。
(a)アイカ工業社製のスタフィロイドシリーズ、ゼフィアックシリーズ、ガンツパールシリーズ等(例えば、F351、IM-101、IM-203、IM-301、IM-401、IM-601、AC-3355、AC-3364、AC-3816、AC-3832、AC-4030等)。
(b)三菱ケミカル社製のメタブレンシリーズ等(例えば、C-140A、C-201A、C-215A、C-223A、C-303A、C-323A、C-102、C-132、C-202、E-901、W-341、W-300A、W-450A、S-2001、SX-005、SX-006、SRK200E、W-5500、J-5800等)。
(c)Wacker Chemie社製のGENIOPERLシリーズ(例えば、P22、P23、P52、P53等)。
(d)The Dow Chemical社製のPARALOIDシリーズ(例えば、EXL 230、EXL 2311、EXL 2335、EXL 2650A、EXL 2655、EXL 3330、EXL 2300G、EXL 2300、2691A等)。
(e)Roehm社製のDEGALANシリーズ(例えば、4899F等)。
(f)General Electric社製のBLENDEXシリーズ。
 コアシェル型ゴム粒子は、予めエポキシ樹脂中に分散された形で市販されている各種のエポキシ樹脂-コアシェル型ゴム粒子組成物を用いてもよい。これら市販の各種のエポキシ樹脂-コアシェル型ゴム粒子組成物は、単独で用いてもよく2種類以上を併用してもよい。
 例えば、以下の群より選ばれる1種類以上があげられるが、これらに限定されるものではない。
(g)カネカ社製のカネエースシリーズ(例えば、MX120、MX125、MX130、MX136、MX154、MX551、MX960等)。
(h)Wacker Chemie社製のGENIOPERLシリーズ(例えば、M23A等)。
(コアシェル型ゴム粒子の配合量)
 コアシェル型ゴム粒子は、1種類を単独で用いても2種類以上のコアシェル型ゴム粒子を組み合わせて用いてもよい。
 コアシェル型ゴム粒子は、例えば、A剤及びB剤の合計100質量部に対して、3~35質量部、好ましくは5~30質量部、より好ましくは5~20質量部となる量配合することができる。また、コアシェル型ゴム粒子がA剤に含まれる場合には、A剤100質量部に対して、5~50質量部、好ましくは10~45質量部、より好ましくは10~40質量部となる量配合することができる。
 コアシェル型ゴム粒子の配合量が、A剤及びB剤の合計100質量部に対して3質量部未満では、得られる接着剤硬化物の靭性が低下し、破断強度(切断時引張強さ)、破断時伸び(切断時伸び)及び貯蔵弾性率が低下するおそれがある。また、コアシェル型ゴム粒子の配合量が、A剤及びB剤の合計100質量部に対して35質量部を超えると、接着剤の硬化反応性が低下し、破断強度(切断時引張強さ)及び貯蔵弾性率が低下するおそれがある。
 なお、コアシェル型ゴム粒子がエポキシ樹脂中に分散したものを用いる場合は、コアシェル型ゴム粒子の含有量とエポキシ樹脂の含有量をそれぞれ求め、それぞれの成分の配合量とする。
<架橋性ケイ素基の縮合触媒>
 架橋性ケイ素基の縮合触媒は、A剤及び/又はB剤に含まれる。架橋性ケイ素基の縮合触媒がB液に含まれる場合には、湿気、水分を遮蔽できる容器にB液を収容することが好ましい。
 架橋性ケイ素基の縮合触媒としては、ケイ素原子に結合した水酸基又は加水分解性基を有し、シロキサン結合を形成することにより架橋し得る基である架橋性ケイ素基が、水の存在下で加水分解反応して硬化する際に、触媒作用を発揮する化合物であれば制限なく用いることができる。
 ここで、架橋性ケイ素基としては、例えば、下記式(1)で示される基;
 -SiR 3-a  ・・・(1)
(式(1)中、Rは、有機基を示す。Rが2個以上存在する場合、複数のRは同一であっても異なっていてもよい。Xは水酸基又は加水分解性基を示し、Xが2個以上存在する場合、複数のXは同一であっても異なっていてもよい。aは1、2又は3の整数のいずれかである。)
があげられる。
 架橋性ケイ素基の縮合触媒としては、例えば、有機金属化合物(有機錫化合物、有機鉄化合物、有機アルミニウム化合物、有機チタン化合物等)、アミン類、脂肪酸類(有機酸ビスマス等)、有機酸性リン酸エステル化合物、Si-F結合を有するケイ素化合物等からなる群より選ばれる1種類以上があげられる。
 これらのうち、シラノール縮合触媒である有機金属化合物、脂肪酸類、有機酸性リン酸エステル化合物からなる群より選ばれる1種類以上を用いることが好ましい。
 特に好ましくは、次の式;
Sn(OCOR、Sn(OCOR、R Sn(OCOR、[R Sn(OCOR)]O、R Sn(OCOCH=CHCOOR、R Sn(OCOCH=CHCOO)、R Sn(SRCOOR、[R Sn(SRCOOR)]O、R Sn[OSi(OR、[R SnOSi(ORO、Fe(OCOR
(式中、R、Rは、それぞれ独立に、炭素数1~20のアルキル基を表し、1分子中に2つ以上ある場合互いに同一であっても異なっていてもよい。
 Rは、炭素数1~6の2価のアルキレン基を表し、1分子中に2つ以上ある場合互いに同一であっても異なっていてもよい。
 Rは炭素数1~10のアルキル基を表し、1分子中に2つ以上ある場合互いに同一であっても異なっていてもよい。)
で表される有機錫系化合物又は有機鉄系化合物からなる群より選ばれる1種類以上が用いられる。
 前記Rの具体例としては、例えば、-CH、-C、-C、-C17、-C1735、ナフチル基等からなる群より選ばれる1種類以上があげられる。
 前記Rの具体例としては、例えば、-CH、-C、-C、-C17、-C1735等からなる群より選ばれる1種類以上があげられる。
 前記Rの具体例としては、例えば、-CH-、-C-、-C-、-C-等からなる群より選ばれる1種類以上があげられる。
 前記Rの具体例としては、例えば、-CH、-C、-C、-C17等からなる群より選ばれる1種類以上があげられる。
 有機錫系化合物又は有機鉄系化合物の好ましい具体例としては、Sn(OCOC15、Sn(OCOC1735、(CSn(OCOCH、(CSn(OCOC15、(CSn(OCOC1123、[(CSn(OCOC1123)]O、(C17Sn(OCOC1123、(CSn(OCOC1735、(C17Sn(OCOC1735、(CSn(OCOCH=CHCOOC、(CSn(OCOCH=CHCOOC、(CSn(OCOCH=CHCOOCH、(CSn(OCOCH=CHCOO)、(CSn(SCCOOC19、(CSn(SCHCOOC17、[(CSn(SCCOOC19)]O、(CSn[OSi(OCH、(CSn[OSi(OC、[(CSnOSi(OCO、Fe(OCOC15、Fe(OCOC1735、Fe(OCOCH)2、Fe(OCOC、Fe(OCOC1017等からなる群より選ばれる1種類以上をあげることができる。
 Si-F結合を有するケイ素化合物としては、Si-F結合を有するケイ素基(以下、フルオロシリル基と称することがある)を含む様々な化合物を用いることができる。Si-F結合を有するケイ素化合物として無機化合物及び有機化合物のいずれも用いることができる。Si-F結合を有するケイ素化合物としてはフルオロシリル基を有する有機化合物が好ましく、フルオロシリル基を有する有機重合体が、安全性が高くより好適である。また、組成物が低粘度となる点からフルオロシリル基を有する低分子有機ケイ素化合物が好ましい。Si-F結合を有するケイ素化合物の例としては、例えば、いずれも国際公開第2015/088021号に記載されている、フルオロシラン、フルオロシリル基を有する化合物及びフルオロシリル基を有する有機重合体等からなる群より選ばれる1種類以上があげられる。
 架橋性ケイ素基の縮合触媒は、単独で用いてもよく2種類以上を併用してもよい。
 架橋性ケイ素基の縮合触媒は、例えば、架橋性ケイ素基を有する重合体100質量部に対し、0.05~10質量部、好ましくは0.1~5質量部、より好ましくは0.2~3質量部となる量配合することができる。
 架橋性ケイ素基の縮合触媒の配合量が、架橋性ケイ素基を有する重合体100質量部に対し0.05質量部未満では、架橋性ケイ素基を有する重合体の硬化が不十分となり硬化性が低下し、破断強度(切断時引張強さ)及び貯蔵弾性率が低下するおそれがある。また、架橋性ケイ素基の縮合触媒の配合量が、架橋性ケイ素基を有する重合体100質量部に対し10質量部を超えると、過剰な架橋性ケイ素基の縮合触媒の影響で、架橋性ケイ素基を有する重合体やエポキシ樹脂の反応性が低下し、破断強度(切断時引張強さ)及び貯蔵弾性率が低下するおそれがある。
<架橋性ケイ素基を有する重合体>
 B剤に含まれる架橋性ケイ素基を有する重合体としては、ケイ素原子に結合した水酸基又は加水分解性基を有し、シロキサン結合を形成することにより架橋し得る基である架橋性ケイ素基を、末端及び/又は側鎖に有する重合体であれば特に限定されない。
(架橋性ケイ素基)
 架橋性ケイ素基としては、前記のとおり、例えば、下記式(1)で示される基;
 -SiR 3-a  ・・・(1)
(式(1)中、Rは、有機基を示す。Rが2個以上存在する場合、複数のRは同一であっても異なっていてもよい。Xは水酸基又は加水分解性基を示し、Xが2個以上存在する場合、複数のXは同一であっても異なっていてもよい。aは1、2又は3の整数のいずれかである。)
があげられる。
 式(1)中のRの有機基としては、加水分解性を示さない基であれば特に限定されない。例えば、炭素数1~20の置換基を有していてもよい炭化水素基、好ましくは炭素数1~6のアルキル基があげられる。
 式(1)中のXの加水分解性基としては、水により加水分解を起こす水酸基以外の基であれば特に限定されない。例えば、水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、メルカプト基、アミノオキシ基、アルケニルオキシ基等があげられる。これらの中では、加水分解性が穏やかで取扱いが容易という観点からアルコキシ基が好ましく、反応性が高い炭素数1~6のアルコキシ基が好ましく、特に、メトキシ基、エトキシ基、ブトキシ基が好ましい。
 式(1)中のaは2以上が好ましく、3がより好ましい。aが2以上であれば、十分な柔軟性を有する接着剤を得ることができる。
 架橋性ケイ素基としては、例えば、トリメトキシシリル基、トリエトキシシリル基等のトリアルコキシシリル基、メチルジメトキシシリル基、メチルジエトキシシリル基等のジアルコキシシリル基からなる群より選ばれる1種類以上があげられる。
 重合体が有する架橋性ケイ素基は、1種類であっても2種類以上であってもよい。
 架橋性ケイ素基は、重合体の末端及び/又は側鎖に結合していてもよい。接着剤の硬化物の引張特性等の硬化物の物性が優れる観点からは、架橋性ケイ素基が分子鎖末端に存在することが好ましい。
 架橋性ケイ素基を有する重合体において、架橋性ケイ素基は、重合体1分子中に平均して1.0~5.0個、好ましくは1.1~3.0個存在する。
 重合体1分子中に含まれる架橋性ケイ素基の数が1個未満になると、硬化性が不十分になり、また多すぎると網目構造があまりに密になるため良好な機械特性を示さなくなる。
(重合体主鎖骨格)
 架橋性ケイ素基を有する重合体の主鎖骨格としては、例えば、ポリオキシアルキレン系重合体、(メタ)アクリル系重合体、イソブチレン系重合体、ブタジエン系重合体、オレフィン系重合体、スチレン系重合体、ハロゲン化ビニル系重合体、酢酸ビニル系重合体、ビニルアルコール系重合体、ビニルアセタール系重合体、これらの共重合体等からなる群より選ばれる1種類以上があげられる。
 本発明においては、架橋性ケイ素基を有するポリオキシアルキレン系重合体、架橋性ケイ素基を有する(メタ)アクリル系重合体及び架橋性ケイ素基を有するイソブチレン系重合体からなる群より選ばれる1種類以上が好ましい。架橋性ケイ素基を有するポリオキシアルキレン系重合体及び架橋性ケイ素基を有する(メタ)アクリル系重合体からなる群より選ばれる1種類以上が特に好ましい。
(架橋性ケイ素基を有するポリオキシアルキレン系重合体)
 架橋性ケイ素基を有するポリオキシアルキレン系重合体の主鎖骨格は、下記式(2);
 -R-O-  ・・・(2)
(式中、Rは、炭素数1~20の2価の有機基である。)
で表される繰返し単位を有する重合体である。
 式(2)中のRは、例えば、炭素数2~20の直鎖状若しくは分岐アルキレン基、好ましくは炭素数が2~14の直鎖状若しくは分岐アルキレン基、より好ましくは炭素数が2~6の直鎖状若しくは分岐アルキレン基からなる群より選ばれる1種類以上である。
 式(2)で表される繰返し単位としては、-CHCHO-、-CH(CH)CHO-、-CHCH(CH)O-、-CHCH(C)O-、-CH(C)CHO-、-CHC(CHO-、-CHCHCHO-、-CHCHCHCHO-等からなる群より選ばれる1種類以上があげられる。
 ポリオキシアルキレン系重合体の主鎖骨格は、1種類だけの繰返し単位から構成されていてもよく、2種類以上の繰返し単位から構成されていてもよい。
 本発明において、架橋性ケイ素基を有するポリオキシアルキレン系重合体の主鎖骨格は、ポリオキシエチレン重合体、ポリオキシプロピレン重合体、ポリオキシテトラメチレン重合体、ポリオキシエチレン-ポリオキシプロピレン共重合体からなる群より選ばれる1種類以上が好ましく、特に好ましくはポリオキシプロピレン繰り返し単位を主成分とする(共)重合体である。なお、主鎖骨格中に分岐構造を有していてもよい。
 架橋性ケイ素基を有するポリオキシアルキレン系重合体は、単独で用いても、2種類以上を併用してもよい。
 架橋性ケイ素基を有するポリオキシアルキレン系重合体の分子量は、特に制限されない。接着剤を構成した際の作業性等の観点から、数平均分子量が500以上、好ましくは1,000以上であり、数平均分子量が100,000以下、好ましくは70,000以下である。
 接着剤に適度な粘度を付与する観点から、数平均分子量20,000以上の重合体を含むことが好ましい。
 なお、本発明の数平均分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算分子量である。
 架橋性ケイ素基を有するポリオキシアルキレン系重合体は、架橋性ケイ素基の含有量を適度に低下させると、硬化物における架橋密度が低下するので、初期においてより柔軟な硬化物になり、モジュラス特性が小さくなるとともに破断時伸び(切断時伸び)特性を大きくすることができる。
 架橋性ケイ素基を有するポリオキシアルキレン系重合体において、架橋性ケイ素基の存在個数は、重合体1分子中に平均して1.0~5.0個、好ましくは1.2~2.8個、より好ましくは1.3~2.6個、さらに好ましくは1.4~2.4個である。
 ポリオキシアルキレン系重合体の主鎖骨格は、例えば、開始剤と触媒との存在下、モノエポキシドを開環重合することによって合成できる。
 開始剤としては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサメチレングリコール、メタリルアルコール、ビスフェノールA、水素化ビスフェノールA、ネオペンチルグリコール、ポリブタジエンジオール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリプロピレントリオール、ポリプロピレンテトラオール、ジプロピレングリコール、グリセリン、トリメチロールメタン、トリメチロールプロパン、ペンタエリスリトール等の2価アルコールや多価アルコール、水酸基を有する各種のオリゴマー等からなる群より選ばれる1種類以上があげられる。
 モノエポキシドとしては、例えば、エチレンオキサイド、プロピレンオキサイド、α-ブチレンオキサイド、β-ブチレンオキサイド、ヘキセンオキサイド、シクロヘキセンオキサイド、スチレンオキサイド、α-メチルスチレンオキサイド等のアルキレンオキサイド類や、メチルグリシジルエーテル、エチルグリシジルエーテル、イソプロピルグリシジルエーテル、ブチルグリシジルエーテル等のアルキルグリシジルエーテル類、アリルグリシジルエーテル類等からなる群より選ばれる1種類以上があげられる。
 触媒としては、例えば、KOH、NaOH等のアルカリ触媒、トリフルオロボラン-エーテラート等の酸性触媒、アルミノポルフィリン金属錯体やシアン化コバルト亜鉛-グライム錯体触媒等の複合金属シアン化物錯体触媒等からなる群より選ばれる1種類以上を用いることができる。
 ポリオキシアルキレン系重合体は、例えば、KOHのようなアルカリ触媒による重合方法、例えば、複合金属シアン化物錯体触媒による重合方法等により得られるが、特に限定されない。
 複合金属シアン化物錯体触媒による重合方法によれば、副反応が少なく、数平均分子量6,000以上、重量平均分子量(Mw)/数平均分子量(Mn)が1.6以下の高分子量で分子量分布が狭いポリオキシアルキレン系重合体を得ることができる。
 ポリオキシアルキレン系重合体の主鎖骨格は、水酸基末端ポリオキシアルキレン系重合体を塩基性化合物、例えばKOH、NaOH、KOCH、NaOCH等の存在下、2官能以上のハロゲン化アルキル、例えばCHCl、CHBr等による鎖延長等によっても得ることができる。
 また、2官能や3官能のイソシアネート化合物によって水酸基末端ポリオキシアルキレン系重合体を鎖延長することもできる。
 架橋性ケイ素基をポリオキシアルキレン系重合体中に導入する方法としては、特に限定されず、各種の方法を用いることができる。例えば、分子中に不飽和基、水酸基、エポキシ基又はイソシアネート基等の官能基を有するポリオキシアルキレン系重合体に、この官能基に対して反応性を有する官能基及び架橋性ケイ素基を有する化合物を反応させて、ポリオキシアルキレン系重合体へ架橋性ケイ素基を導入できる。
 本発明においては、1分子中に下記式(3)及び/又は式(4)で示される不飽和基を末端に有するポリオキシアルキレン系重合体と、式(5)で示される架橋性ケイ素基含有化合物とを、VIII族遷移金属触媒の存在下で反応させる方法が好ましい。
 CH=CH-R-O-  ・・・(3)
 CH=C(R)-R-O-  ・・・(4)
(式中、Rはそれぞれ独立に炭素数1~20の2価の有機基、Rは炭素数10以下の炭化水素基である。)
 H-[Si(R2-b(X)O]-Si(R103-a ・・・(5)
(式中、R及びR10は同一又は異なる炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基又は(R’)SiO-で示されるトリオルガノシロキシ基を示し、R又はR10が2個以上存在する場合、それらは同一であっても異なっていてもよい。R’は炭素数1~20の1価の炭化水素基であり3個のR’は同一であっても異なっていてもよい。Xは水酸基又は加水分解性基を示し、Xが2個以上存在する時、それらは同一であっても異なっていてもよい。aは0、1、2又は3を、bは0、1、又は2をそれぞれ示し、a+Σb≧2を満たす。m個の-[Si(R2-b(X)-O」-基におけるbは同一であっても、異なっていてもよい。mは0~19の整数を示す。)
 水酸基末端ポリオキシアルキレン系重合体への架橋性ケイ素基含有イソシアネート化合物の添加、イソシアネート基末端ポリオキシアルキレン系重合体と架橋性ケイ素基含有アミン化合物との反応、イソシアネート基末端ポリオキシアルキレン系重合体と架橋性ケイ素基含有メルカプタン化合物との反応等を用いることもできる。
 ポリオキシアルキレン系重合体は、ポリウレタン骨格等の他の骨格を含んでいてもよい。ポリウレタン骨格は、例えば、トルエンジイソシアネート、ジフェニルメタンジイソシアネート等の芳香族系ポリイソシアネート;イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネート等のポリイソシアネートからなる群より選ばれる1種類以上と、水酸基を有するポリオキシアルキレン系重合体との反応により形成することができる。
 末端に式(3)又は式(4)で示される不飽和基を有するポリオキシアルキレン系重合体の製造方法は、例えば、水酸基末端ポリオキシアルキレン系重合体に、水酸基と反応性を有する官能基と不飽和基とを有する化合物を反応させて、エーテル結合、エステル結合、ウレタン結合、カーボネート結合を介してポリオキシアルキレン系重合体に不飽和基を導入する方法があげられる。
 エーテル結合により不飽和基を導入する場合、例えば、ポリオキシアルキレン系重合体の水酸基末端のメタルオキシ化により-OM(MはLi、Na又はK)を生成した後、式(6)又は式(7)で表される不飽和基含有化合物を反応させる方法があげられる。
 CH=CH-R-X  ・・・(6)
 CH=C(R)-R-X  ・・・(7)
(式中R、Rは前記に同じ。Xはハロゲン原子である。)
 式(6)又は(7)で表される不飽和基含有化合物としては、例えば、CH=CHCHCl、CH=CHCHBr、CH=CHCCl、CH=CHCBr、CH=CHCCl、CH=CHCBr、CH=C(CH)CHCl、CH=C(CH)CHBr、CH=C(CHCH)CHCl、CH=C(CHCH)CHBr、CH=C(CHCH(CH)CHCl、CH=C(CHCH(CH)CHBr等からなる群より選ばれる1種類以上があげられる。特に反応性の観点から、CH=CHCHCl及び/又はCH=C(CH)CHClが好ましい。
 不飽和基の導入方法としては、他にも、CH=CHCH-基やCH=C(CH)CH-基等の不飽和基を有するイソシアネート化合物、カルボン酸、エポキシ化合物等を用いることもできる。
 VIII族遷移金属触媒としては、白金、ロジウム、コバルト、パラジウム、及びニッケル等のVIII族遷移金属元素からなる群から選択される1種類以上の金属錯体触媒等があげられる。
 例えば、HPtCl・6HO、白金-ビニルシロキサン錯体、白金-オレフィン錯体、Ptメタル、RhCl(PPh、RhCl、Rh/Al、RuCl、IrCl、FeCl、PdCl・2HO、NiCl等からなる群より選ばれる1種類以上があげられる。中でも、ヒドロシリル化の反応性の観点から、HPtCl・6HO、白金-ビニルシロキサン錯体、白金-オレフィン錯体のいずれか1種類以上を用いることが好ましい。
(架橋性ケイ素基を有する(メタ)アクリル系重合体)
 架橋性ケイ素基を有する(メタ)アクリル系重合体の主鎖骨格は、下記式(8)
 -CH-C(R11)(COOR12)-  ・・・(8)
(式中、R11はH又はメチル基、R12は炭素数1~30の2価の有機基である。)
で表される繰返し単位を有する重合体である。
 (メタ)アクリル系重合体の主鎖構造は、1種類だけの繰返し単位から構成されていてもよく、2種類以上の繰返し単位から構成されていてもよい。また、共重合体である場合には、ランダム重合体、ブロック重合体、グラフト重合体のいずれでもよいが、ランダム重合体が好ましい。
 なお、「(メタ)アクリル」は、アクリル系及び/又はメタクリル系を意味する。
 架橋性ケイ素基を有する(メタ)アクリル系重合体の主鎖骨格を構成する(メタ)アクリル系重合体は、ガラス転移温度(Tg)が0℃以上、好ましくは20℃以上、より好ましくは40℃以上であり、120℃以下、好ましくは100℃以下、より好ましくは80℃以下である。
 ガラス転移温度が0℃未満であると接着直後の接着強度(貯蔵弾性率)が劣る傾向にある。ガラス転移温度が120℃を超えると粘度が高くなり、接着剤の被着材への塗布が困難になる傾向にある。
 本発明において、ガラス転移温度(Tg)は、下記式(a)により求められる絶対温度でのガラス転移温度Tgを摂氏温度に換算して求められる値である。
 1/Tg=Σ(W/Tg)  ・・・(a)
(式(a)中、Tgは単官能(メタ)アクリル系モノマー(C1)のみからなる重合体のガラス転移温度(単位は絶対温度)である。Wは各(メタ)アクリル系モノマーiの、(メタ)アクリル系重合体中の質量割合である。Tgは各(メタ)アクリル系モノマーiのみから形成される単独重合体のガラス転移温度(単位は絶対温度)である。)
 式(a)はFox式と呼ばれる式であり、重合体を構成する個々の単量体について、その単量体の単独重合体のガラス移転温度Tgに基づいて、重合体のガラス転移温度Tgを算出するための式である。
 その詳細は、ブレティン・オブ・ジ・アメリカン・フィジカル・ソサエティ・シリーズ 2(Bulletin of the American Physical Society,Series 2)、第1巻、第3号、第123ページ(1956年)に記載されている。また、Fox式で計算するための様々な単量体の単独重合体のガラス転移温度(Tgi)は、例えば、塗装と塗料(塗料出版社、10(No.358)、1982)に記載されている数値等を採用することができる。
 架橋性ケイ素基を有する(メタ)アクリル系重合体の主鎖骨格を構成する(メタ)アクリル系重合体の重量平均分子量は、1,000以上、好ましくは2,000以上、より好ましくは3,000以上であり、重量平均分子量が20,000以下、好ましくは10,000以下、より好ましくは6,000以下である。重量平均分子量が1,000未満では、塗布後の初期接着強度(貯蔵弾性率)が低く、20,000を超えると、塗布作業時の粘度が高くなり過ぎ、作業性が低下する。
 なお、本発明の重量平均分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算分子量である。
 また、(メタ)アクリル系重合体は、室温(20℃)で固体であるか、環球法軟化点が80℃以上であることが好ましい。
 架橋性ケイ素基を有する(メタ)アクリル系重合体において、架橋性ケイ素基は、重合体1分子中に平均して1.0~5.0個、好ましくは1.1~3.0個、より好ましくは1.3~2.6個、さらに好ましくは1.4~2.4個である。
 (メタ)アクリル系重合体の主鎖構造は、(メタ)アクリル系モノマーを含むモノマー成分をラジカル重合することによって合成できる。
 例えば、ベンゾイルパーオキサイド等の過酸化物やアゾビスイソブチロニトリル等のアゾ化合物等の熱重合開始剤を用いる通常の溶液重合方法や塊状重合方法を用いることができる。また、光重合開始剤を用い、光又は放射線を照射して重合する方法や、リビングラジカル重合方法等、公知の重合方法が用いられる。
 これらのうち、熱重合開始剤を用いるラジカル重合方法は、(メタ)アクリル酸エステル重合体の重合体を容易に得ることができるので好ましい。
 ラジカル共重合に際し、分子量を調節するために、例えば、ラウリルメルカプタンやγ-メルカプトプロピルトリメトキシシラン等の連鎖移動剤を用いてもよい。
 (メタ)アクリル系重合体の主鎖構造を構成するモノマー成分に含まれる(メタ)アクリル系モノマーは、式(9);
 CH=C(R13)(COOR14)  ・・・(9)
(式中、R13はH又はメチル基、R14は炭素数1~30の2価の有機基である。)
で表される1種類以上を用いることができる。
 式(9)で表される(メタ)アクリル系モノマーは、アルキル基の炭素数が1~30の(メタ)アクリル酸アルキルエステルが好ましく、アルキル基の炭素数が1~30で置換基を有しない(メタ)アクリル酸アルキルエステルが特に好ましい。
 (メタ)アクリル酸アルキルエステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等からなる群より選ばれる1種類以上があげられる。
 本発明においては、メチルメタクリレートを必須のモノマー成分として含むことが好ましい。
 また、優れた接着性を発現する観点からは、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等の炭素数が8以上のエステル基を有する(メタ)アクリル酸アルキルエステルからなる群より選ばれる1種類以上を含むことが好ましい。
 (メタ)アクリル酸エステル重合体に可撓性を与える観点から、n-ブチルアクリレート(Tg=-55℃)、2-エチルヘキシルアクリレート(Tg=-70℃)、ラウリルアクリレート(Tg=-3℃)等のガラス転移温度(Tg)が0℃以下の(メタ)アクリル酸アルキルエステルからなる群より選ばれる1種類以上を用いることが好ましい。なお、ガラス転移温度は、ホモポリマーのガラス転移温度を示す。
 (メタ)アクリル酸エステルのアルキル基等の炭化水素基は、水酸基、アルコキシ基、ハロゲン原子、エポキシ基等の置換基を有していてもよい。このような化合物の例としては、ヒドロキシエチル(メタ)アクリレート等の水酸基を有する(メタ)アクリル酸エステル、メトキシエチル(メタ)アクリレート等のアルコキシ基を有する(メタ)アクリル酸エステル、グリシジル(メタ)アクリレート等のエポキシ基を有する(メタ)アクリル酸エステル、ジエチルアミノエチル(メタ)アクリレート等のアミノ基を有する(メタ)アクリル酸エステルからなる群より選ばれる1種類以上があげられる。また、ポリスチレン鎖を有するアクリル酸エステル等の高分子鎖を有する不飽和化合物(マクロモノマー若しくはマクロマー)を用いることもできる。
 (メタ)アクリル系重合体の主鎖構造を構成するモノマー成分には、式(9)で表される(メタ)アクリル系モノマーと共重合可能なモノマーを含んでいてもよい。例えば、(メタ)アクリル酸等の不飽和カルボン酸;(メタ)アクリルアミド等の(メタ)アクリルアミド系化合物、アルキルビニルエーテル等のビニルエーテル化合物;(メタ)アクリロニトリル系化合物、スチレン、α-メチルスチレン等の芳香族ビニル系化合物、塩化ビニル等のハロゲン化ビニル系化合物、酢酸ビニル等のカルボン酸ビニルエステル系化合物等からなる群より選ばれる1種類以上があげられる。
 本発明において、(メタ)アクリル系重合体の主鎖構造を構成するモノマー成分の合計100質量部に対するメタクリル酸メチルの含有量は、20質量部以上、好ましくは30質量部以上、より好ましくは40質量部以上であり、90質量部以下、好ましくは80質量部以下であることが好ましい。
 また、(メタ)アクリル系重合体の主鎖構造を構成するモノマー成分の合計100質量部に対する式(9)で表される(メタ)アクリル系モノマーと共重合可能なモノマーの含有量は、20質量部以下、好ましくは10質量部以下、より好ましくは5質量部以下である。 なお、式(9)で表される(メタ)アクリル系モノマーと共重合可能なモノマーとしてマクロモノマーを用いる場合、(メタ)アクリル系重合体の主鎖構造を構成するモノマー成分の合計100質量部に対するマクロモノマーの含有量は、10質量部以下、好ましくは5質量部以下、より好ましくは3質量部以下である。
 架橋性ケイ素基を(メタ)アクリル系重合体中に導入する方法としては、特に限定されず、各種の方法を用いることができる。
 例えば、以下の方法、(1)架橋性ケイ素基を有する不飽和化合物を共重合する、(2)架橋性ケイ素基を有する開始剤や連鎖移動剤を用いて重合する、(3)分子中に不飽和基、水酸基、エポキシ基又はイソシアネート基等の官能基を有する(メタ)アクリル系重合体に、この官能基に対し反応性を有する官能基及び架橋性ケイ素基を有する化合物を反応させる、方法等により、(メタ)アクリル系重合体へ架橋性ケイ素基を導入できる。
 本発明においては、架橋性ケイ素基を容易に導入できる観点から、(1)架橋性ケイ素基を有する不飽和化合物を共重合する方法、又は、(1)と(2)を併用する方法を用いることが好ましい。
 共重合に用いる架橋性ケイ素基を有する不飽和化合物としては、架橋性ケイ素基を有する(メタ)アクリル酸エステル、架橋性ケイ素基を有する不飽和オレフィン化合物が好ましい。例えば、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-(メタ)アクリロキシプロピルトリエトキシシラン、γ-(メタ)アクリロキシプロピルメチルジメトキシシラン、γ-(メタ)アクリロキシプロピルメチルジエトキシシラン等の架橋性ケイ素基を有する(メタ)アクリル酸エステル、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン等の架橋性ケイ素基を有する不飽和オレフィン化合物等からなる群より選ばれる1種類以上があげられる。
 架橋性ケイ素基を有する開始剤や連鎖移動剤としては、例えば、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン等があげられる。
 本発明においては、例えば、メチルメタクリレート、2-エチルヘキシルメタクリレート、γ-メタクリロキシプロピルトリメトキシシラン、チタノセンジクロリド(金属触媒)、γ-メルカプトプロピルトリメトキシシラン(開始剤及び連鎖移動剤)及びベンゾキノン溶液(重合停止剤)を用い、国際公開第2015/088021号の合成例4に準じた方法により、架橋性ケイ素基を有する(メタ)アクリル系重合体を得ることができる。
 本発明において、(3)の方法を用いる場合は、前記ポリオキシアルキレン系重合体に架橋性ケイ素基を導入する方法と同様の方法とすることができる。
 例えば、前記の式(3)及び/又は式(4)で示される不飽和基を末端に有する(メタ)アクリル系重合体と、前記式(5)で示される架橋性ケイ素基含有化合物とを、VIII族遷移金属触媒の存在下で反応させる方法が好ましい。
(架橋性ケイ素基を有する重合体の市販品)
 B剤に含まれる架橋性ケイ素基を有する重合体としては、変成シリコーン樹脂/変性シリコーン樹脂として市販されている各種のものを用いてもよい。これら、市販の架橋性ケイ素基を有する重合体(変成シリコーン樹脂/変性シリコーン樹脂)は、単独で用いてもよく2種類以上を併用してもよい。
 例えば、以下の群より選ばれる1種類以上があげられるが、これらに限定されるものではない。
(a)カネカ社製のカネカMSポリマーシリーズ、サイリルシリーズ、FCSポリマーシリーズ、テレケリックポリアクリレートXMAPシリーズ等(例えば、SAT010、SAX115、SAT030、SAT200、SAT220、SAT350、SAT400,SAX220、SAX260、SAX510、SAX530、SAX575、SAX580、SAX710、SAX720、SAX725、SAX770、S203、S303,S203H、S303H、S943S、S903、S911S、MA430、MA440、MA447、MA451、MA903、MA903M、MA904、S943、MAX923、MAX951、SAX520、EP100S、EP103S、EP303S、EP505S、FCS-1、FCS-2、FCS-5、FCS-7、FCS-8、FCSA-1、FCSA-2、SA100S、SA310S、SA410S、SB802S、OR100S等)。
(b)AGC社製のエクセスターシリーズ(例えば、ES-S3620、ES-S3430、ES-S2420、ES-S2410)。
(c)綜研化学社製のアクトフローシリーズ、Wacker Chemie社製のSTP E-30等。
 架橋性ケイ素基を有する重合体は、例えば、B剤100質量部に対して、70~98質量部、好ましくは75~95質量部、より好ましくは80~95質量部となる量配合することができる。また、A剤及びB剤の合計100質量部に対して、30~65質量部、好ましくは30~60質量部、より好ましくは35~60質量部となる量配合することができる。
 架橋性ケイ素基を有する重合体の配合量が、A剤及びB剤の合計100質量部に対して30質量部未満では、接着剤の硬化性が低下し、破断強度(切断時引張強さ)及び貯蔵弾性率が低下するおそれがある。また、架橋性ケイ素基を有する重合体の配合量が、A剤及びB剤の合計100質量部に対して65質量部を超えると、エポキシ樹脂の配合量が相対的に低下し、破断強度(切断時引張強さ)及び貯蔵弾性率が低下するおそれがある。
<エポキシ樹脂硬化剤>
 B剤に含まれるエポキシ樹脂硬化剤としては、エポキシ樹脂の硬化剤として作用する化合物であれば特に限定されない。
 例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン、ヘキサメチレンジアミン、メチルペンタメチレンジアミン、トリメチルヘキサメチレンジアミン、グアニジン、オレイルアミン等の脂肪族アミン類;メンセンジアミン、イソホロンジアミン、ノルボルナンジアミン、ピペリジン、N,N’-ジメチルピペラジン、N-アミノエチルピペラジン、1,2-ジアミノシクロヘキサン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)メタン、ポリシクロヘキシルポリアミン、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)等の脂環族アミン類;メタフェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン等の芳香族アミン類;m-キシリレンジアミン、ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール等の脂肪芳香族アミン類;3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン(ATU)、モルホリン、N-メチルモルホリン、ポリオキシプロピレンジアミン、ポリオキシプロピレントリアミン、ポリオキシエチレンジアミン等のエーテル結合を有するアミン類;ジエタノールアミン、トリエタノールアミン等の水酸基含有アミン類;テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、ドデシル無水コハク酸等の酸無水物類;ダイマー酸とポリアミンとの反応により得られるポリアミド、ポリカルボン酸とポリアミンとの反応により得られるポリアミドアミン類;2-エチル-4-メチルイミダゾール等のイミダゾール類;ジシアンジアミド類;フェノール類;ポリアミンとエポキシ化合物との反応により得られるエポキシ変性アミン、ポリアミンとアルデヒドとフェノール系化合物とを反応させて得られるマンニッヒ変性アミン、マイケル付加変性アミン、ケチミン等の変性アミン類;2,4,6-トリス(ジメチルアミノメチル)フェノールの2-エチルヘキサン酸塩等のアミン塩、アミジン類等からなる群より選ばれる1種類以上があげられる。
 これらエポキシ樹脂硬化剤の中では、硬化性や物性バランスの点から、3級アミン化合物、エーテル結合を有するアミン類からなる群より選ばれる1種類以上が好ましい。本発明では、特に3級アミン化合物を用いることが好ましい。
 3級アミン化合物としては、例えば、N,N’-ジメチルピペラジン等の脂環族アミン類;ベンジルジメチルアミン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール等の脂肪芳香族アミン類;モルホリン、N-メチルモルホリン等のエーテル結合を有するアミン類;トリエタノールアミン等の水酸基含有アミン類;アミン類にエポキシ化合物を反応させて得られるエポキシ変性アミン、アミン類にホルマリン、フェノール類を反応させて得られるマンニッヒ変性アミン、マイケル付加変性アミン、ケチミン等の変性アミン類;2,4,6-トリス(ジメチルアミノメチル)フェノールの2-エチルヘキサン酸塩等のアミン塩、イミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類;2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾリン類;1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)、6-(ジブチルアミノ)-1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBA-DBU)、1,5-ジアザビシクロ[4,3,0]ノネン-5(DBN)等の環状アミジン類;DBU-フェノール塩、DBU-オクチル酸塩、DBU-p-トルエンスルホン酸塩、及びDBU-フェノールノボラック樹脂塩等のアミジン塩類等からなる群より選ばれる1種類以上があげられる。
 本発明においては、活性水素を有する3級アミン化合物を用いることが好ましい。活性水素を有する3級アミン化合物としては、例えば、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノールがあげられる。
 エポキシ樹脂硬化剤は、単独で用いてもよく2種類以上を併用してもよい。
 エポキシ樹脂硬化剤は、例えば、エポキシ樹脂100質量部に対し、0.5~100質量部、好ましくは1~70質量部、より好ましくは5質量部以上50質量部となる量配合することができる。
 エポキシ硬化剤の配合量が、エポキシ樹脂100質量部に対し0.5質量部未満では、エポキシ樹脂の硬化が不十分となり、破断強度(切断時引張強さ)及び貯蔵弾性率が低下するおそれがある。また、エポキシ硬化剤の配合量が、エポキシ樹脂100質量部に対し100質量部を超えると、過剰なエポキシ樹脂硬化剤の影響で架橋性ケイ素基を有する重合体の反応性が低下し、破断強度(切断時引張強さ)及び貯蔵弾性率が低下するおそれがある。
 B剤は、(メタ)アクリル系重合体を含んでいてもよい。
 (メタ)アクリル系重合体は、前記架橋性ケイ素基を有する(メタ)アクリル系重合体であってもよい。この場合、架橋性ケイ素基を有する重合体は、1種類以上の架橋性ケイ素基を有する(メタ)アクリル系重合体から構成できる。また、1種類以上の架橋性ケイ素基を有する(メタ)アクリル系重合体と、それ以外の1種類以上の架橋性ケイ素基を有する重合体から構成できる。
 (メタ)アクリル系重合体は、架橋性ケイ素基を有しないものであってもよい。架橋性ケイ素基を有しない(メタ)アクリル系重合体としては、前記架橋性ケイ素基を有する(メタ)アクリル系重合体において、前記架橋性ケイ素基を(メタ)アクリル系重合体中に導入する方法を用いないことで得られるものがあげられる。
 (メタ)アクリル系重合体は、単独で用いてもよく2種類以上を併用してもよい。
 (メタ)アクリル系重合体は、例えば、B剤100質量部に対して、0~98質量部、好ましくは0~60質量部、より好ましくは0~45質量部となる量配合することができる。
<その他の成分>
 本発明の接着剤には、接着剤の特性等を損なわない範囲において、必要に応じて、水、シランカップリング剤、粘着付与剤、充填剤、可塑剤、タレ防止剤、酸化防止剤、顔料、フィラー、希釈剤、多孔質添加剤、老化防止剤、紫外線吸収剤、香料、染料、補強剤、着色剤、難燃剤等からなる群より選ばれる1種類以上の「その他の成分」を加えてもよい。
 これらの「その他の成分」は、A剤又はB剤を構成する成分との反応性等を考慮して、A剤及び/又はB剤に加えることができる。
(水)
 水は、架橋性ケイ素基を有する重合体の加水分解縮合反応に必要なものである。
 水は、接着剤の硬化性向上、硬化後の接着強度(貯蔵弾性率)向上、接着剤塗膜の厚みの確保、保存安定性等の観点から、A剤に含まれることが好ましい。
 水は、特に限定されないが、一般的な水道水、工業用水、純水等を用いることができ、大気中の水蒸気を用いることもできる。
 水の配合量は特に限定されないが、例えば、A剤とB剤の合計100質量部に対して、0.01~5質量部、好ましくは0.05~2質量部とすることができる。
(シランカップリング剤)
 シランカップリング剤は、接着剤の硬化性向上、接着剤の硬化後の接着強度(貯蔵弾性率)の向上、架橋性ケイ素基を有する重合体の加水分解縮合反応の助触媒としての機能、各種被着材に対する濡れ性の向上等の観点から、A剤、B剤のいずれに含まれていてもよい。なお、シランカップリング剤がアミノシラン等の活性水素を有する場合、エポキシ樹脂とも反応することが可能であることから、接着剤の硬化性向上、接着剤の硬化後の接着強度(貯蔵弾性率)の向上に有用であり、保存安定性等の観点から、B剤に含まれることが好ましい。
 シランカップリング剤としては、特に限定されないが、例えば、γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン等のアミノ基含有シラン類;γ-メルカプトプロピルトリメトキシシラン等のメルカプト基含有シラン類;γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シラン類;N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン等のケチミン型シラン類;ビニルトリメトキシシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン等のビニル型不飽和基含有シラン類;γ-クロロプロピルトリメトキシシラン等の塩素原子含有シラン類;γ-イソシアネートプロピルトリエトキシシラン等のイソシアネート含有シラン類;デシルトリメトキシシラン等のアルキルシラン類;フェニルトリメトキシシラン等のフェニル基含有シラン類等からなる群より選ばれる1種類以上があげられる。また、アミノ基含有シラン類と上記のシラン類を含むエポキシ基含有化合物、イソシアネート基含有化合物、(メタ)アクリロイル基含有化合物とを反応させて、アミノ基を変性させた変性アミノ基含有シラン類を用いてもよい。これらのシランカップリング剤は単独で用いても、2種類以上を併用してもよい。
 本発明においては、エポキシ樹脂との反応性を考慮して、活性水素を有するシランカップリング剤が好ましく、アミノ基含有シラン類、メルカプト基含有シラン類、変性アミノ基含有シラン類が好ましい。
 シランカップリング剤の配合量は特に限定されないが、例えば、A剤とB剤の合計100質量部に対して、0.1~10質量部、好ましくは0.5~5質量部とすることができる。
(粘着付与剤)
 粘着付与剤としては、例えば、テルペン樹脂、フェノール樹脂、テルペン-フェノール樹脂、ロジン樹脂、キシレン樹脂等があげられる。これらの粘着付与剤は単独で用いても、2種類以上を併用してもよい。
(充填剤)
 充填剤としては、フュームドシリカ、沈降性シリカ、溶融シリカ、無水ケイ酸、及びカーボンブラック等の補強性充填剤;炭酸カルシウム、炭酸マグネシウム、水酸化アルミニウム、酸化アルミニウム、酸化チタン、ケイソウ土、焼成クレー、クレー、タルク、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、酸化亜鉛、活性亜鉛華、シラスバルーン等の充填剤;石綿、ガラス繊維、及びフィラメント等の繊維状充填剤等を用いることができる。これらの充填剤は単独で用いても、2種類以上を併用してもよい。
(可塑剤)
 可塑剤としては、ジオクチルフタレート等のフタル酸エステル類;アジピン酸ジオクチル等の脂肪族二塩基酸エステル類;グリコールエステル類;脂肪族エステル類;リン酸エステル類;ポリエステル系可塑剤類;ポリプロピレングリコールやその誘導体等のポリエーテル類;炭化水素系可塑剤類;塩素化パラフィン類;低分子量のアクリル酸エステル重合体等があげられる。これらの可塑剤は単独で用いても、2種類以上を併用してもよい。
(タレ防止剤)
 タレ防止剤としては、公知のタレ防止剤を広く用いることができ、特に制限はない。例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類、有機ベントナイト、シリカ、変性ポリエステルポリオール、石綿粉等の無機揺変剤、脂肪酸アマイド等の有機揺変剤等からなる群より選ばれる1種類以上があげられる。
(酸化防止剤)
 酸化防止剤としては、例えば、ヒンダードフェノール系等の化合物、ブチルヒドロキシトルエン、ブチルヒドロキシアニソール等があげられる。これらの酸化防止剤は単独で用いても、2種類以上を併用してもよい。
(顔料)
 顔料としては、例えば、カーボンブラック、酸化チタン、酸化亜鉛、群青、ベンガラ、リトポン、鉛、カドミウム、鉄、コバルト、アルミニウム、塩酸塩、硫酸塩等の無機顔料、アゾ顔料、銅フタロシアニン顔料等の有機顔料等があげられる。これらの顔料は単独で用いても、2種類以上を併用してもよい。
(フィラー)
 フィラーとしては樹脂フィラー(樹脂微粉末)や無機フィラー、及び機能性フィラーからなる群より選ばれる1種類以上を用いることができる。フィラーに、シランカップリング剤、チタンキレート剤、アルミカップリング剤、脂肪酸、脂肪酸エステル、ロジン等で表面処理を施してもよい。樹脂フィラーとしては、有機樹脂等からなる粒子状のフィラーを用いることができる。例えば、樹脂フィラーとして、ポリアクリル酸エステル樹脂、ポリウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、尿素樹脂、メラミン樹脂系、ベンゾグアナミン樹脂、フェノール樹脂、アクリル樹脂、スチレン樹脂等の有機質微粒子からなる群より選ばれる1種類以上を用いることができる。
(希釈剤)
 本発明の接着剤は、希釈剤を含有することもできる。ここでは、引火点(開放式)が50℃以上の溶剤を希釈剤とする。希釈剤を含有することにより、粘度等の物性を調整できる。希釈剤としては、様々な希釈剤を用いることができる。希釈剤としては、例えば、ノルマルパラフィン、イソパラフィン等の飽和炭化水素系溶剤、リニアレンダイマー(出光興産株式会社商品名)等のα-オレフィン誘導体、芳香族炭化水素系溶剤、アルコール系溶剤、エステル系溶剤、クエン酸アセチルトリエチル等のクエン酸エステル系溶剤、ケトン系溶剤等からなる群より選ばれる1種類以上の各種溶剤があげられる。
(多孔質添加剤)
 本発明の接着剤は、多孔質添加剤を含んでいてもよい。多孔質添加剤としては、細孔(メソ孔)を有する無機化合物や吸油性を有する化合物があげられる。例えば、多孔質構造及び/又は吸油性を有する、シリカ、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム及び炭酸バリウム等からなる群から選ばれる少なくとも1種類の化合物を用いることができる。多孔質添加剤の形状としては、特に限定されず、例えば、真球状、破砕状、円盤状、棒状、繊維状等であってよい。
 多孔質添加剤は、その表面が物理的又は化学的に親水化処理若しくは疎水化処理されていてもよい。表面が疎水化処理されている場合、吸油量(JIS K 5101に準ずる規定量)が50ml/100g以上である化学的に疎水化処理された化合物であることが好ましい。表面が疎水化処理された多孔質添加剤を用いることで、架橋性ケイ素基を有する重合体及び/又はエポキシ樹脂との接着性が増加し、硬化物の機械強度等の特性が向上する。また、吸油量50ml/100g以上である表面が疎水化処理された多孔質添加剤を用いることで、エポキシ樹脂との接着性が向上すると共に熱硬化時における着色を抑制することもできる。多孔質添加剤としては、例えば、多孔質シリカを好適に用いることができる。
 多孔質添加剤の見掛け密度は、特に限定されないが、多孔質添加剤の機械強度を確保する観点から0.4g/cm以上、好ましくは0.4g/cm~2.0g/cmである。ここで、見掛け密度は、多孔質添加剤の素原料が占める密度と微細孔の占める空間(すなわち、細孔容積)とを考慮した密度を指す。
 多孔質添加剤の平均粒径は、特に限定されないが、接着剤の流動性を良好に保つ観点から、0.1~100μmであることが好ましい。
 多孔質添加剤の比表面積は、100m/g~1000m/g、好ましくは300m/g~700m/gである。100m/g未満であると、多孔質添加剤の給油量を適切な量に保つことが難しくなり、1000m/gを超えると、多孔質添加剤の流動性を良好に保つことが難しくなる。
 多孔質添加剤は、A剤、B剤のいずれに配合してもよい。
 多孔質添加剤の配合量は、特に限定されないが、例えば、架橋性ケイ素基を有する重合体100質量部に対し、多孔質添加剤が1質量部以上であることが好ましく、2質量部以上であることがより好ましく、50質量部以下であることが好ましく、作業性の観点から30質量部以下であることがより好ましい。
[第2の接着剤]
 本発明に係る第2の接着剤は、エポキシ樹脂、コアシェル型ゴム粒子、架橋性ケイ素基を有する重合体、エポキシ樹脂硬化剤、及び、架橋性ケイ素基の縮合触媒、を含み、
 80℃30分間加熱硬化後、23℃50%RH環境下で7日養生後のJIS K 6251に準拠して測定される接着剤硬化物の破断強度(切断時引張強さ)が5MPa以上、破断時伸び(切断時伸び)が30%以上、
 80℃30分間加熱硬化後、23℃50%RH環境下で7日養生後のJIS K 7198(廃止され、JIS K 7244-4に置き換えられた。)に準拠して測定される引張モード、1Hz時の貯蔵弾性率が、20℃で100~1000MPa、80℃で50~1000MPa、の接着剤である。
<第2の接着剤の構成成分>
 本発明に係る第2の接着剤に含まれるエポキシ樹脂、コアシェル型ゴム粒子、架橋性ケイ素基を有する重合体、エポキシ樹脂硬化剤、及び、架橋性ケイ素基の縮合触媒は、本発明に係る第1の接着剤のA剤又はB剤に含まれるものと同じものを用いることができる。
 また、本発明に係る第2の接着剤には、本発明に係る第1の接着剤が含んでいてもよい「その他の成分」のいずれか1種類以上を含んでいてもよい。
 本発明に係る第2の接着剤に含まれる各成分の配合量は、本発明の第1の接着剤において規定した、A剤及びB剤の合計量に対する各成分の配合量、又は、特定の成分に対する各成分の配合量と同様である。
<破断強度(切断時引張強さ)及び破断時伸び(切断時伸び)>
 本発明に係る第2の接着剤の接着剤硬化物の破断強度(切断時引張強さ)は、以下の方法で得ることができる。
 少なくとも、エポキシ樹脂、コアシェル型ゴム粒子、架橋性ケイ素基を有する重合体、エポキシ樹脂硬化剤、及び、架橋性ケイ素基の縮合触媒を混合し撹拌して接着剤を作製した後に、深さ2mmの型枠に均一に充填し、80℃で30分間加熱硬化後、更に23℃50%RH環境下で7日養生することで接着剤硬化物シートを作製する。
 得られた接着剤硬化物シートから、JIS K 6251に規定するダンベル状3号形試験片を型抜き、採取する。これにより得られた試験片を用い、引張速度を10mm/minに設定し、試験片が破断するまで当該試験片に加力した場合における破断強度(切断時引張強さ)(MPa)及び破断時伸び(切断時伸び)(%)を測定して得ることができる。なお、破断時伸び(切断時伸び)(%)の算出方法は以下のとおりである。
 破断時伸び(切断時伸び)(%)=((破断時(切断時)における試験片の長さ)-(試験前の試験片の長さ))/(試験前の試験片の長さ)×100
 本発明に係る第2の接着剤は、80℃30分間加熱硬化後、23℃50%RH環境下で7日養生後のJIS K 6251に準拠して測定される接着剤硬化物の破断強度(切断時引張強さ)が5MPa以上である。好ましくは5~30MPa、より好ましくは7~25MPa、さらに好ましくは10~20MPaである。
 破断強度(切断時引張強さ)が5MPa未満では、硬化後の接着強度(貯蔵弾性率)が不足し構造用接着剤として用いることが困難となるおそれがある。
 本発明に係る第2の接着剤は、80℃30分間加熱硬化後、23℃50%RH環境下で7日養生後のJIS K 6251に準拠して測定される接着剤硬化物の破断時伸び(切断時伸び)が30%以上である。好ましくは50%以上、より好ましくは50~400%、さらに好ましくは55~300%である。
 破断時伸び(切断時伸び)30%未満では、接着剤硬化物が脆くなり、硬化後の接着強度(貯蔵弾性率)が不足し構造用接着剤として用いることが困難となるおそれがある。
<貯蔵弾性率>
 本発明に係る第2の接着剤を80℃30分間加熱硬化後、23℃50%RH環境下で7日養生後の接着剤硬化物のJIS K 7198(廃止され、JIS K 7244-4に置き換えられた。)に準拠して測定される引張モード、1Hz時の貯蔵弾性率(20℃及び80℃)は、以下の方法で得ることができる。
 少なくとも、エポキシ樹脂、コアシェル型ゴム粒子、架橋性ケイ素基を有する重合体、エポキシ樹脂硬化剤、及び、架橋性ケイ素基の縮合触媒を混合し撹拌して接着剤を作製した後に、深さ2mmの型枠に均一に充填し、80℃で30分間加熱硬化後、更に23℃50%RH環境下で7日養生することで接着剤硬化物シートを作製する。
 得られた接着剤硬化物シートから10mm×40mmの試験片を採取する。得られた試験片について、動的粘弾性測定(DMA)装置(セイコーインスツル社製DMS6100)を用いて下記条件で貯蔵弾性率(E’(MPa))を測定する。
(DMA測定の条件)
 測定周波数:1Hz、測定モード:引張り、昇温速度:5℃/min、測定温度:-100℃~200℃
 本発明に係る第2の接着剤は、80℃30分間加熱硬化後、23℃50%RH環境下で7日養生後のJIS K 7198(廃止され、JIS K 7244-4に置き換えられた。)に準拠して測定される引張モード、1Hz時の貯蔵弾性率が、20℃で100~1000MPaである。好ましくは100~700MPa、より好ましくは100~650MPa、さらに好ましくは100~600MPaである。
 前記20℃での貯蔵弾性率が100MPa未満では、硬化後の接着強度(貯蔵弾性率)が不足し構造用接着剤として用いることが困難となるおそれがある。前記20℃での貯蔵弾性率が1000MPaを超えるものは、接着剤を構成する材料が高価となるおそれがあり、また、接着剤硬化物の破断時伸び(切断時伸び)が低下するおそれがある。
 本発明に係る第2の接着剤は、80℃30分間加熱硬化後、23℃50%RH環境下で7日養生後のJIS K 7198(廃止され、JIS K 7244-4に置き換えられた。)に準拠して測定される引張モード、1Hz時の貯蔵弾性率が、80℃で50~1000MPaである。好ましくは50~700MPa、より好ましくは50~200MPa、さらに好ましくは45~180MPaである。
 前記80℃での貯蔵弾性率が50MPa未満では、硬化後の接着強度(貯蔵弾性率)が不足し構造用接着剤として用いることが困難となるおそれがある。前記80℃での貯蔵弾性率が1000MPaを超えるものは、接着剤を構成する材料が高価となるおそれがあり、また、接着剤硬化物の破断時伸び(切断時伸び)が低下するおそれがある。
[接着剤の製造方法]
 本発明に係る第1の接着剤である、エポキシ樹脂、コアシェル型ゴム粒子、及び、架橋性ケイ素基の縮合触媒、を含むA剤と、架橋性ケイ素基を有する重合体、及び、エポキシ樹脂硬化剤、を含むB剤と、を有する、2液型接着剤の製造方法は、特に制限はない。
 例えば、A剤を構成するエポキシ樹脂、コアシェル型ゴム粒子、及び、架橋性ケイ素基の縮合触媒を所定量配合し、必要に応じてその他の成分を配合し、脱気撹拌することでA剤を製造する。その際、各成分の配合順序等は特に制限されない。
 同様にして、B剤を構成する架橋性ケイ素基を有する重合体、及び、エポキシ樹脂硬化剤を所定量配合し、必要に応じてその他の成分を配合し、脱気撹拌することでB剤を製造する。その際、各成分の配合順序等は特に制限されない。
 得られたA剤とB剤とをセットにすることで、2液型接着剤とすることができる。
 本発明に係る第2の接着剤である、エポキシ樹脂、コアシェル型ゴム粒子、架橋性ケイ素基を有する重合体、エポキシ樹脂硬化剤、及び、架橋性ケイ素基の縮合触媒、を含み、破断強度(切断時引張強さ)、破断時伸び(切断時伸び)及び貯蔵弾性率がそれぞれ特定の数値範囲にある接着剤の製造方法は、特に制限はない。
 例えば、本発明に係る第1の接着剤と同様にして、2液型接着剤とすることができる。
 また、例えば、エポキシ樹脂、コアシェル型ゴム粒子、架橋性ケイ素基の縮合触媒、架橋性ケイ素基を有する重合体、及び、エポキシ樹脂硬化剤を所定量配合し、必要に応じてその他の成分を配合し、脱気撹拌することで接着剤組成物とすることができる。その際、各成分の配合順序等は特に制限されない。
[接着剤の使用方法]
 本発明に係る第1の接着剤及び第2の接着剤の使用方法としては、例えば、2つの被着材の少なくとも1つに接着剤を塗布し、2つの被着材間に接着剤が挟まれるようにして貼り合わせ、必要に応じて加熱処理し、必要に応じて冷却処理し、接着剤を硬化させて接着する方法があげられる。
 接着剤を被着材に塗布する際、接着剤は、被着面全体に塗布してもよく、部分的に塗布してもよく、所定のパターンを塗布してもよい。
 また、本発明に係る第1の接着剤である2液型接着剤については、被着材の一方の被着面にA剤を、もう一方の被着材の被着面にB剤を塗布して、貼り合わせる方法を用いてもよい。また、A剤及びB剤を別途混合した後に、混合物を被着材に塗布してもよい。
 本発明に係る第2の接着剤についても、本発明に係る第1の接着剤と同様の方法で被着材に塗布することができる。
 接着剤の塗布方法は特に限定されず、従来公知の塗布方法を選択することができる。例えば、所定のディスペンサーから接着剤を吐出する方法等があげられる。
 塗布工程における雰囲気、温度、及び湿度に特に限定はなく、大気中、室温下で接着剤を塗布することができる。
 接着剤を塗布する際の塗布量や塗布厚は、特に限定されない。
 本発明においては、貼り合わせ後に任意の厚さ(例えば、0.1mm以上)の接着剤層が形成されることが好ましい。任意の厚さの接着剤層が形成されることで、より好適に熱歪みに追従することができる。貼り合わせ後に任意の厚さの接着剤層を形成する方法としては、接着剤に所期の粒径の充填剤を添加することや、厚みを保持できる形状を有する被着材を用いる方法等があげられる。また、被着材同士を重ね合わせた後、被着材を加圧することで被着材間の接着剤層の厚さを調整することもできる。
 必要に応じて行われる加熱処理は、接着剤の硬化を促進させることができる。加熱温度、加熱時間、加熱雰囲気、加熱時圧力等は、接着剤の硬化温度、製品の製造工程等に応じて、適宜決定できる。
 例えば、加熱温度は、50℃以上、好ましくは80℃以上、120℃以下、好ましくは100℃以下とすることができる。また、接着剤に水が含まれている場合、加熱温度は120℃以下、好ましくは、接着剤に発泡を生じさせない観点から100℃以下である。
 加熱方法は、特に限定されない。加熱炉、ホットプレート、熱風発生器等を用いる方法があげられる。
 必要に応じて行われる冷却処理は、加熱後に被着材を室温まで冷却する処理である。この際、室温下で養生する養生処理を行うことができる。冷却処理を行うことで、被着材間の接着剤層の硬化を進行させることができる。
 本発明に係る接着剤は、十分な接着性を発揮するとともに柔軟性を兼ね備えたものである。このため、加熱処理後に冷却処理すると、接着剤は徐々に硬度(貯蔵弾性率)を増すこととなり、被着材間に生じる熱歪みを緩和することができる。さらに、室温環境下において養生することで、接着性が維持・向上されるとともに歪みを緩和することができ、硬度も向上させることができる。
[接着剤の用途]
 本発明に係る第1の接着剤及び第2の接着剤は、2つ以上の被着材を接着して構造体を作製する際に用いることができる。
 被着材としては、例えば、アルミニウム、鉄、チタン、ステンレス等の金属材料、各種樹脂、炭素繊維強化プラスチック等の樹脂材料、紙、布、木材、ガラス、各種セラミック等があげられる。
 2つ以上の被着材は、互いに同一の材料から構成されていてもよく、互いに異なる材料から構成されていてもよい。
 また、2つ以上の被着材の形状には特に制限はなく、例えば、電気・電子部品、機械部品、自動車用部品等の各種の部品に応じた形状とすることができる。
 本発明に係る第1の接着剤及び第2の接着剤は、線膨張係数が異なる2つ以上の被着材を接着して構造体を作製する用途に好適に用いることができる。本発明に係る第1の接着剤は、伸び、靭性、硬化後の接着強度(貯蔵弾性率)に優れるものであり、冷熱処理を行った際に、被着材の線膨張係数の差に起因して生じる熱歪み・反り等を吸収することが可能であり、被着材間の剥がれが生じにくい。
[硬化物]
 本発明に係る硬化物は、本発明に係る第1の接着剤又は第2の接着剤を硬化して得られる。
 硬化物は、前記[接着剤の使用方法]に記載した方法により接着剤を硬化して得ることができる。
[物品]
 本発明に係る物品は、本発明に係る第1の接着剤又は第2の接着剤により接着されて得られる。
 物品は、前記[接着剤の用途]に記載した各種の被着材を、本発明に係る第1の接着剤又は第2の接着剤を用い、前記[接着剤の使用方法]に記載した方法により接着して、構成される。
 物品としては、例えば、電気・電子機器、電気・電子部品、機械部品、車両部品、車両内装部材等があげられる。
 以下に実施例及び比較例をあげて、本発明をさらに具体的に説明する。なお、これらの実施例は例示であって、これらの実施例により本発明を限定的に解釈するべきでなく、本発明の技術思想及び均等範囲内において、多種多様な変形や修正を行うことが可能である。
 なお、各例中において、特に断りのない場合、「部」は「質量部」を、「%」は「質量%」を表す。
[2液型接着剤の作製]
<実施例1~10、比較例1~4>
 表1及び表2に示す成分を、それぞれ表1及び表2に示す配合割合(質量部)で配合して、A剤及びB剤を調製した。
 得られたA剤及びB剤を用いて、実施例1~10、比較例1~4に係る2液型接着剤を作製した。
[試験方法]
<接着剤硬化物シートの作製>
 実施例1~10及び比較例1~3に係る2液型接着剤について、A剤とB剤とを混合し撹拌した後に、深さ2mmの型枠に均一に充填し、80℃で30分間養生し、更に23℃50%RH環境下で7日養生することで接着剤硬化物シートを作製した。
<破断強度(切断時引張強さ)及び破断時伸び(切断時伸び)の測定>
 得られた接着剤硬化物シートから、JIS K 6251に規定するダンベル状3号形試験片を型抜き、採取した。これにより得られた試験片を用い、引張速度を10mm/minに設定し、試験片が破断するまで当該試験片に加力した場合における破断強度(切断時引張強さ)(MPa)及び破断時伸び(切断時伸び)(%)を測定した。破断時伸び(切断時伸び)(%)の算出方法は以下のとおりである。表1及び表2に結果を併せて示す。
 破断時伸び(切断時伸び)(%)=((破断時伸び(切断時伸び)における試験片の長さ)-(試験前の試験片の長さ))/(試験前の試験片の長さ)×100
<動的粘弾性(DMA)測定>
 得られた接着剤硬化物シートから10mm×40mmの試験片を採取し、DMA測定用の試験片とした。
 得られた試験片について、動的粘弾性測定(DMA)装置(セイコーインスツル社製DMS6100)を用いて下記条件で貯蔵弾性率(E’(MPa))を測定した。
 表1及び表2に、20℃の貯蔵弾性率(MPa)及び80℃の貯蔵弾性率(MPa)を併せて示す。
(DMA測定の条件)
 測定周波数:1Hz、測定モード:引張り、昇温速度:5℃/min、測定温度:-100℃~200℃
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2中の各成分の配合量は「質量部」である。
 表1及び表2中の接着剤(A剤及びB剤)の各構成成分は、それぞれ以下のとおりである。
・エポキシ樹脂1:ビスフェノールA型エポキシ樹脂(三菱化学社製、jER828)
・エポキシ樹脂2:カルボキシル基末端ブタジエンニトリルゴム(CTBN)変性エポキシ樹脂(Huntsman社製、HyPox RA840)
・DOTL:ジオクチル錫ジラウレート
・コアシェル型ゴム粒子1:ビスフェノールA型エポキシ樹脂と、コアがブタジエンゴム粒子でシェル層がアクリル樹脂であるコアシェル型ゴム粒子とを、エポキシ樹脂:コアシェル型ゴム粒子=6:4で含むエポキシ樹脂-コアシェル型ゴム粒子組成物(カネカ社製、MX154)
・コアシェル型ゴム粒子2:コアがブタジエンゴム粒子でシェル層がアクリル樹脂であるコアシェル型ゴム粒子(アイカ工業社製、ゼフィアック F351)
・架橋性ケイ素基を有する重合体1:架橋性ケイ素基を有するポリオキシアルキレン系重合体(カネカ社製、SAX575)
・架橋性ケイ素基を有する重合体2:架橋性ケイ素基を有する(メタ)アクリル系重合体(綜研化学社製、アクトフローSAS-08)
・エポキシ硬化剤:2,4,6-トリス(ジメチルアミノメチル)フェノール・アミノシラン:[3-(2-アミノエチル)アミノプロピル]トリメトキシシラン
 表1及び表2から、以下のことがわかる。
 実施例1~10の接着剤硬化物は、破断強度(切断時引張強さ)の値(MPa)及び破断時伸び(切断時伸び)の値(%)がいずれも大きく、さらに、20℃の貯蔵弾性率の値(MPa)及び80℃の貯蔵弾性率の値(MPa)も大きいことから、この接着剤は、伸び及び硬化後の接着強度(貯蔵弾性率)に優れ、熱遍歴によりはく離が生じにくいものであることがわかる。
 コアシェル型ゴム粒子を含まない比較例1の接着剤硬化物は、20℃の貯蔵弾性率の値(MPa)及び80℃の貯蔵弾性率の値(MPa)が低いことから、この接着剤は硬化後の接着強度(貯蔵弾性率)に問題があることがわかる。
 エポキシ樹脂を含まない比較例2の接着剤硬化物は、破断強度(切断時引張強さ)の値(MPa)、20℃の貯蔵弾性率の値(MPa)及び80℃の貯蔵弾性率の値(MPa)がいずれも小さいことから、この接着剤は伸び及び硬化後の接着強度(貯蔵弾性率)に問題があることがわかる。
 カルボキシル基末端ブタジエンニトリルゴム(CTBN)変性エポキシ樹脂を用い、コアシェル型ゴム粒子を含まない比較例3の接着剤硬化物は、破断強度(切断時引張強さ)の値(MPa)、20℃の貯蔵弾性率の値(MPa)及び80℃の貯蔵弾性率の値(MPa)がいずれも小さいことから、この接着剤は伸び及び硬化後の接着強度(貯蔵弾性率)に問題があることがわかる。
 架橋性ケイ素基を有する重合体を含まない比較例4の接着剤硬化物は、硬く脆いことから、所定の形状の試験片を作製することができなかった。
 以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せのすべてが発明の課題を解決するための手段に必須であるとは限らない点、及び本発明の技術思想から逸脱しない限り種々の変形が可能である点に留意すべきである。 

Claims (5)

  1.  エポキシ樹脂を含むA剤と、
     架橋性ケイ素基を有する重合体、及び、エポキシ樹脂硬化剤、を含むB剤と、
    を有する2液型接着剤であって、
     コアシェル型ゴム粒子をA剤及び/又はB剤に含み、架橋性ケイ素基の縮合触媒をA剤及び/又はB剤に含む、2液型接着剤。
  2.  (メタ)アクリル系重合体をB剤に含む、請求項1に記載の2液型接着剤。
  3.  エポキシ樹脂、コアシェル型ゴム粒子、架橋性ケイ素基を有する重合体、エポキシ樹脂硬化剤、及び、架橋性ケイ素基の縮合触媒、を含み、
     80℃30分間加熱硬化後、23℃50%RH環境下で7日養生後のJIS K 6251に準拠して測定される接着剤硬化物の破断強度(切断時引張強さ)が5MPa以上、破断時伸び(切断時伸び)が30%以上、
     80℃30分間加熱硬化後、23℃50%RH環境下で7日養生後のJIS K 7198(廃止され、JIS K 7244-4に置き換えられた。)に準拠して測定される引張モード、1Hz時の貯蔵弾性率が、20℃で100~1000MPa、80℃で50~1000MPa、
    である接着剤。
  4.  請求項1~3のいずれか1項に記載の接着剤を硬化して得られる硬化物。
  5.  請求項1~3のいずれか1項に記載の接着剤により接着されて得られる物品。 
PCT/JP2021/028285 2020-07-31 2021-07-30 2液型接着剤 WO2022025234A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180058208.7A CN116096831A (zh) 2020-07-31 2021-07-30 2液型粘接剂
KR1020237004369A KR20230044430A (ko) 2020-07-31 2021-07-30 2액형 접착제
US18/006,712 US20230313002A1 (en) 2020-07-31 2021-07-30 Two-component adhesive
JP2022539593A JPWO2022025234A1 (ja) 2020-07-31 2021-07-30
EP21849849.1A EP4190876A4 (en) 2020-07-31 2021-07-30 TWO-COMPONENT ADHESIVE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020130624 2020-07-31
JP2020-130624 2020-07-31

Publications (1)

Publication Number Publication Date
WO2022025234A1 true WO2022025234A1 (ja) 2022-02-03

Family

ID=80035811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028285 WO2022025234A1 (ja) 2020-07-31 2021-07-30 2液型接着剤

Country Status (6)

Country Link
US (1) US20230313002A1 (ja)
EP (1) EP4190876A4 (ja)
JP (1) JPWO2022025234A1 (ja)
KR (1) KR20230044430A (ja)
CN (1) CN116096831A (ja)
WO (1) WO2022025234A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309077A (ja) 2001-04-16 2002-10-23 Kanegafuchi Chem Ind Co Ltd 2液型硬化性組成物
JP2010270198A (ja) 2009-05-20 2010-12-02 Yokohama Rubber Co Ltd:The エポキシ樹脂組成物
JP2010275411A (ja) 2009-05-28 2010-12-09 Nitto Shinko Kk エポキシ樹脂組成物
JP2013241479A (ja) * 2010-09-10 2013-12-05 Kaneka Corp 硬化性樹脂組成物
JP5569703B2 (ja) 2012-02-02 2014-08-13 荒川化学工業株式会社 エポキシ基含有シルセスキオキサン変性エポキシ樹脂、硬化性樹脂組成物、硬化物およびコーティング剤
WO2015088021A1 (ja) 2013-12-13 2015-06-18 セメダイン株式会社 接着性を有する光硬化性組成物
JP2018053026A (ja) * 2016-09-27 2018-04-05 株式会社カネカ 機械的強度に優れるポリマー微粒子含有硬化性組成物
WO2019123934A1 (ja) * 2017-12-22 2019-06-27 株式会社カネカ エポキシ樹脂組成物
JP2019199606A (ja) 2018-05-15 2019-11-21 ヘンケルジャパン株式会社 熱硬化性樹脂組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309077A (ja) 2001-04-16 2002-10-23 Kanegafuchi Chem Ind Co Ltd 2液型硬化性組成物
JP2010270198A (ja) 2009-05-20 2010-12-02 Yokohama Rubber Co Ltd:The エポキシ樹脂組成物
JP2010275411A (ja) 2009-05-28 2010-12-09 Nitto Shinko Kk エポキシ樹脂組成物
JP2013241479A (ja) * 2010-09-10 2013-12-05 Kaneka Corp 硬化性樹脂組成物
JP5569703B2 (ja) 2012-02-02 2014-08-13 荒川化学工業株式会社 エポキシ基含有シルセスキオキサン変性エポキシ樹脂、硬化性樹脂組成物、硬化物およびコーティング剤
WO2015088021A1 (ja) 2013-12-13 2015-06-18 セメダイン株式会社 接着性を有する光硬化性組成物
JP2018053026A (ja) * 2016-09-27 2018-04-05 株式会社カネカ 機械的強度に優れるポリマー微粒子含有硬化性組成物
WO2019123934A1 (ja) * 2017-12-22 2019-06-27 株式会社カネカ エポキシ樹脂組成物
JP2019199606A (ja) 2018-05-15 2019-11-21 ヘンケルジャパン株式会社 熱硬化性樹脂組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"The Finish & Paint", vol. 10, 1982, TORYO PUBLISHING CO., LTD.
BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, vol. 1, no. 3, 1956, pages 123
See also references of EP4190876A4

Also Published As

Publication number Publication date
JPWO2022025234A1 (ja) 2022-02-03
EP4190876A1 (en) 2023-06-07
EP4190876A4 (en) 2024-07-31
KR20230044430A (ko) 2023-04-04
US20230313002A1 (en) 2023-10-05
CN116096831A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
EP0186191B1 (en) Curable resinous composition comprising epoxy resin and silicon-containing elastomeric polymer
JP6560617B2 (ja) 貯蔵安定性の改善されたポリマー微粒子含有硬化性樹脂組成物
JP5036320B2 (ja) 硬化性組成物
JP4520003B2 (ja) 硬化性組成物
WO2005108500A1 (ja) 接着性の改善された硬化性組成物
CN108699321B (zh) 强韧化环氧树脂组合物
WO1998047939A1 (fr) Compositions durcissant a la temperature ambiante
WO2005121255A1 (ja) 硬化性組成物
JPH02140220A (ja) 硬化性樹脂組成物
JP6767758B2 (ja) 貯蔵安定性および接着性の改善されたポリマー微粒子含有硬化性樹脂組成物
TW201241841A (en) Electroconductive adhesive
JPWO2006006512A1 (ja) 硬化性組成物
JP2000109676A (ja) 硬化性組成物
WO2017179536A1 (ja) 硬化性組成物及び接着剤
JP6807692B2 (ja) 機械的強度に優れるポリマー微粒子含有硬化性組成物
JP3572613B2 (ja) 硬化性組成物
JP2013241479A (ja) 硬化性樹脂組成物
JP4287071B2 (ja) 2液型硬化性組成物
JP7198775B2 (ja) エポキシ樹脂組成物
WO2022138807A1 (ja) 硬化性樹脂組成物及び接着剤
JP6722477B2 (ja) 剥離接着性および耐衝撃剥離接着性の改善されたポリマー微粒子含有硬化性樹脂組成物
WO2022025234A1 (ja) 2液型接着剤
JP7421713B2 (ja) 接着方法、及び接着剤
JP2006328351A (ja) 制電性樹脂組成物および成形品
JP2023146870A (ja) 硬化性樹脂組成物、その硬化物、接着剤および積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539593

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237004369

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021849849

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021849849

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE