WO2022024908A1 - 重合性不飽和基を有するシクロデキストリン誘導体 - Google Patents

重合性不飽和基を有するシクロデキストリン誘導体 Download PDF

Info

Publication number
WO2022024908A1
WO2022024908A1 PCT/JP2021/027276 JP2021027276W WO2022024908A1 WO 2022024908 A1 WO2022024908 A1 WO 2022024908A1 JP 2021027276 W JP2021027276 W JP 2021027276W WO 2022024908 A1 WO2022024908 A1 WO 2022024908A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
cyclodextrin
general formula
meth
Prior art date
Application number
PCT/JP2021/027276
Other languages
English (en)
French (fr)
Inventor
佑弥 高橋
文章 久禮
剛 山口
直巳 竹中
義徳 ▲高▼島
明 原田
基史 大▲崎▼
Original Assignee
共栄社化学株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 共栄社化学株式会社, 国立大学法人大阪大学 filed Critical 共栄社化学株式会社
Priority to US18/006,926 priority Critical patent/US20240043573A1/en
Priority to JP2022500667A priority patent/JP7143002B2/ja
Priority to EP21850057.7A priority patent/EP4180464A4/en
Publication of WO2022024908A1 publication Critical patent/WO2022024908A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/16Cyclodextrin; Derivatives thereof

Definitions

  • the present invention relates to a cyclodextrin derivative having a polymerizable unsaturated group.
  • Patent Document 1 and Patent Documents a polymer material having self-repairing property and excellent elasticity and a host group-containing polymerizable monomer having a cyclodextrin derivative as a host group as a host group have been proposed (Patent Document 1 and Patent Documents). 2).
  • Patent Documents 1 and 2 cyclodextrin and acrylamide are reacted in dimethylformamide (DMF) in the presence of a p-toluenesulfonic acid catalyst, and the crude product obtained by acetone reprecipitation is purified by a column and collected.
  • DMF dimethylformamide
  • a p-toluenesulfonic acid catalyst a p-toluenesulfonic acid catalyst
  • Patent Document 3 describes a bioactive agent carrier in which cyclodextrin is grafted on polyethylene glycol.
  • Patent Document 4 Non-Patent Documents 1 and 2 report a monomer in which a methacrylic group is introduced into cyclodextrin having an ethylenediamine moiety. However, this monomer does not denature the hydroxyl group of cyclodextrin, and there is a problem in compatibility with other monomers to be copolymerized.
  • Non-Patent Document 3 reports a monomer in which a methacrylic group is introduced into a cyclodextrin having a diaminohexane moiety, but there is also a problem in compatibility.
  • the present invention It is a cyclodextrin derivative having a polymerizable unsaturated group represented by the following general formula (1).
  • R 1 is (A) The following general formula (2) -R 3 -NH-R 4 (2) (R 3 is an alkylene group having 3 to 20 carbon atoms, and may be linear or branched, and may have a substituent.
  • R4 represents a (meth) acryloyl group or a vinyl group-containing alkyl group having 3 to 50 carbon atoms.
  • B The following general formula (3) -R 5 -NHCONH-R 6 (3) (R 5 is an alkylene group having 3 to 20 carbon atoms, which may be linear or branched, and may have a substituent.
  • R 6 represents a (meth) acryloyloxyalkyl group having 4 to 50 carbon atoms or a vinyl group-containing alkyl group having 3 to 50 carbon atoms.
  • R5 and R6 are the same as above.
  • R2 represents a hydrogen atom, an acyl group having 2 to 50 carbon atoms, or an alkyl group having 1 to 30 carbon atoms.
  • R c represents a group represented by the following general formula (5).
  • R 7 is the same or different, hydrogen atom, acyl group having 2 to 50 carbon atoms, alkyl group having 1 to 30 carbon atoms or -CONHR 8 (R 8 is an alkyl group having 1 to 20 carbon atoms). 20% or more of R 7 is any one of an acyl group having 2 to 50 carbon atoms, an alkyl group having 1 to 30 carbon atoms, or -CONHR 8. x is an integer of 5 to 7).
  • the alkyl group is preferably a methyl group.
  • the acyl group is preferably an acetyl group.
  • the present invention (1) A step of reacting a mono-6-tosyl-cyclodextrin with a diaminoalkyl compound (3 to 20 carbon atoms) to obtain a monoamino compound. (2) A step of reacting the obtained monoamino compound with (meth) acrylic acid anhydride to obtain a cyclodextrin having a (meth) acrylamide group. (3) A step of reacting the obtained cyclodextrin having a (meth) acrylamide group with an acid anhydride to obtain an acylated product is included.
  • R 2 represents a hydrogen atom or an acyl group having 2 to 50 carbon atoms.
  • R 3 is an alkylene group having 3 to 20 carbon atoms, and may be linear or branched, and may have a substituent.
  • R 8 represents a hydrogen group or a methyl group.
  • RC1 represents a group represented by the following general formula (5a).
  • the present invention (A) A step of reacting mono-6-tosyl-cyclodextrin with an alkyl halide (1 to 30 carbon atoms) to obtain an alkylated product. (B) A step of reacting the obtained alkylated product with a diaminoalkyl compound (3 to 20 carbon atoms) to obtain a monoamino compound. (C) The step of reacting the obtained monoamino compound with (meth) acrylic acid anhydride to obtain a cyclodextrin having a (meth) acrylamide group.
  • R 3 is an alkylene group having 3 to 20 carbon atoms, and may be linear or branched, and may have a substituent.
  • R 8 represents a hydrogen group or a methyl group.
  • RC2 represents a group represented by the following general formula (5b).
  • R 7b represents a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, which is the same or different.
  • X is 5 to 7). It is also a method for producing a cyclodextrin derivative having a polymerizable unsaturated group represented by.
  • the present invention (A) A step of reacting mono-6-tosyl-cyclodextrin with an alkyl halide to obtain an alkylated product. (A) A step of reacting the obtained alkylated product with a diaminoalkyl compound (3 to 20 carbon atoms) to obtain an amino compound. (C) A step of reacting the obtained amino compound with (meth) acryloyloxyalkyl isocyanate to obtain a cyclodextrin having a (meth) acryloyloxyalkyl group.
  • R 5 is an alkylene group having 3 to 20 carbon atoms, which may be linear or branched, and may have a substituent.
  • R 6 represents a (meth) acryloyloxyalkyl group.
  • RC2 represents a group represented by the following general formula (5b).
  • R 7b represents a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, which is the same or different.
  • X is 5 to 7). It is also a method for producing a cyclodextrin derivative having a polymerizable unsaturated group represented by.
  • the cyclodextrin derivative having a polymerizable unsaturated group of the present invention is represented by the following general formula (1).
  • the "cyclodextrin derivative having a polymerizable unsaturated group” may be referred to as “cyclodextrin derivative” for convenience.
  • R 1 is (A) The following general formula (2) -R 3 -NH-R 4 (2) (R 3 is an alkylene group having 3 to 20 carbon atoms, and may be linear or branched, and may have a substituent.
  • R4 represents a (meth) acryloyl group or a vinyl group-containing alkyl group having 3 to 50 carbon atoms.
  • B The following general formula (3) -R 5 -NHCONH-R 6 (3) (R 5 is an alkylene group having 3 to 20 carbon atoms, which may be linear or branched, and may have a substituent.
  • R 6 represents a (meth) acryloyloxyalkyl group having 4 to 50 carbon atoms or a vinyl group-containing alkyl group having 3 to 50 carbon atoms.
  • R5 and R6 are the same as above.
  • R2 represents a hydrogen atom, an acyl group having 2 to 50 carbon atoms, or an alkyl group having 1 to 30 carbon atoms.
  • R c represents a group represented by the following general formula (5).
  • the RC is a monovalent group in which one hydroxyl group is removed from a molecule having a structure in which cyclodextrin is substituted with another organic group, which can exert a function as a host group.
  • Cyclodextrin is at least one selected from the group consisting of ⁇ -cyclodextrin, ⁇ -cyclodextrin and ⁇ -cyclodextrin.
  • ⁇ -cyclodextrin is preferable in terms of synthetic surface, choice of guest molecule, and the like.
  • "a molecule having a structure in which cyclodextrin is substituted with another organic group” may be referred to as "cyclodextrins" for convenience.
  • the one hydroxyl group to be removed is preferably a primary hydroxyl group from the viewpoint of easiness of synthesis due to reactivity.
  • the above RC has a structure in which 20% or more of the hydrogen atom (R 7 ) of the hydroxyl group of cyclodextrin is substituted with at least one group selected from the group consisting of an acyl group, an alkyl group and -CONHR 8 .
  • the hydrogen atom of a specific amount of the hydroxyl group of cyclodextrin may be substituted only with an acyl group, may be substituted only with an alkyl group, or may be substituted only with -CONHR 8 . May be good.
  • acyl group or the like at least one group selected from the group consisting of an acyl group, an alkyl group and -CONHR 8 " may be referred to as "acyl group or the like" for convenience.
  • acyl group examples include an acetyl group, propionyl, butyroyl, and formyl group.
  • the acyl group may further have a substituent.
  • Acyl groups are acetyl groups in view of the fact that cyclodextrin derivatives show higher affinity for both hydrophilic and hydrophobic polymerizable monomers, and that polymers are more likely to form host-guest interactions. Is preferable.
  • the number of carbon atoms of the alkyl group is not particularly limited.
  • the alkyl group may have 1 to 4 carbon atoms from the viewpoint that it is easily dissolved in other polymerizable monomers used in combination with the cyclodextrin derivative and that the cyclodextrin derivative easily forms a host-guest interaction. preferable.
  • the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group and a butyl group.
  • the hydrocarbon group is a propyl group or a butyl group, it may be linear or branched.
  • the alkyl group may have a substituent as long as the effect of the present invention is not impaired.
  • the number of carbon atoms can be appropriately selected or a plurality of types can be combined. Of these, a methyl group is preferable from the viewpoint of synthesis and design due to compatibility with other polymerizable monomers.
  • -CONHR 8 is preferably a methylcarbamate group or an ethylcarbamate group.
  • -CONHR 8 is an ethylcarbamate group from the viewpoint that the cyclodextrin derivative is easily dissolved in other polymerizable monomers used in combination, and the polymer composed of the cyclodextrin derivative is likely to form a host-guest interaction. Is preferable.
  • cyclodextrin hydrogen atoms of up to N-1 hydroxyl groups per molecule can be substituted with acyl groups or the like.
  • the R c has a structure in which the hydrogen atom of 20% or more of the hydroxyl groups of the total number N-1 of the hydroxyl groups present in one molecule of the cyclodextrins is substituted with the acyl group or the like.
  • the cyclodextrin derivative is easily dissolved in other polymerizable monomers used in combination.
  • the hydrogen atom of 50% or more of the hydroxyl groups of the total number N-1 of the hydroxyl groups present in one molecule of the cyclodextrins is substituted with the acyl group or the like in the R c .
  • the hydrogen atom of 80% or more of the hydroxyl groups in the total number N-1 is substituted with the above acyl group or the like.
  • the R c has a structure in which the hydrogen atoms of four or more hydroxyl groups out of the total number of hydroxyl groups N-1 present in one molecule of ⁇ -cyclodextrins are substituted with the acyl group or the like. In this case, it is easily dissolved in other polymerizable monomers used in combination with the cyclodextrin derivative.
  • R c it is more preferable that the hydrogen atoms of 10 or more hydroxyl groups out of the total number of hydroxyl groups N-1 existing in one molecule of ⁇ -cyclodextrins are substituted with the acyl group or the like. It is particularly preferable that the hydrogen atoms of 16 or more hydroxyl groups out of the total number N-1 of the above are substituted with the above acyl groups or the like.
  • the R c has a structure in which the hydrogen atoms of 5 or more hydroxyl groups out of the total number of hydroxyl groups N-1 existing in one molecule of ⁇ -cyclodextrins are substituted with the acyl group or the like. In this case, it is easily dissolved in other polymerizable monomers used in combination with the cyclodextrin derivative.
  • R c it is more preferable that the hydrogen atoms of 12 or more hydroxyl groups out of the total number of hydroxyl groups N-1 existing in one molecule of the ⁇ -cyclodextrin derivative are substituted with the acyl group or the like. It is particularly preferable that the hydrogen atoms of 19 or more hydroxyl groups out of the total number N-1 of the above are substituted with the above acyl groups or the like.
  • R 1 and RC having a polymerizable unsaturated group are linked via a nitrogen atom derived from an amino group. There is.
  • R 1 is one of them.
  • R 3 is an alkylene group having 3 to 20 carbon atoms, and may be linear or branched, and may have a substituent.
  • R4 represents a (meth) acryloyl group or a vinyl group-containing alkyl group having 3 to 50 carbon atoms.
  • It is represented by.
  • the cyclodextrin derivative having the structure represented by the general formula (2) has a structure derived from a diaminoalkyl compound called R2 - N-R3 - NH-.
  • the diaminoalkyl compound used for producing a cyclodextrin derivative is not preferable in terms of toxicity if the alkyl group has too few carbon atoms. Further, if the main chain of the cyclodextrin derivative of the present invention is too close to the cyclodextrin during polymerization, the degree of freedom of the molecule including steric hindrance is reduced, which is not preferable in terms of functional expression. On the other hand, if the number of carbon atoms is too large, the distance between the main chain and cyclodextrin during polymerization will be too large when considering the synthetic surface (particularly the purification process by reprecipitation or recrystallization), raw material procurement, etc.
  • R 1 is (a) the following general formula (3).
  • -R 5 -NHCONH-R 6 (3) (R 5 is an alkylene group having 2 to 20 carbon atoms, which may be linear or branched, and may have a substituent.
  • R 6 represents a (meth) acryloyloxyalkyl group having 4 to 50 carbon atoms or a vinyl group-containing alkyl group having 3 to 50 carbon atoms. ) May be.
  • the cyclodextrin derivative has a functional group exhibiting radical polymerizable via a urea bond, and contains a (meth) acryloyloxyalkyl group or a vinyl group-containing alkyl group. It is a structure to have.
  • the alkyl group of the (meth) acryloyloxyalkyl group preferably has 1 to 10 carbon atoms, and specific examples thereof include structures derived from isocyanates such as 2-methacryloyloxyethyl isocyanate and 2-acryloyloxyethyl isocyanate.
  • the number of carbon atoms R5 of the diaminoalkyl group is preferably 3 to 20 for the same reason as R3 above. More preferably, it is 3 to 10.
  • R 1 is (c) the following general formula (4). -R 5 -OCONH-R 6 (4) ( R5 and R6 are the same as above.).
  • the cyclodextrin derivative has a functional group exhibiting radical polymerizable via a urethane bond, and has a (meth) acryloyloxyalkyl group or a vinyl group-containing alkyl group. It is a structure to have.
  • the cyclodextrin derivative of the present invention is not limited in its production method, and can be appropriately produced based on each structure of the cyclodextrin derivative of the present invention.
  • a method for producing based on the reaction formula shown below can be mentioned.
  • ⁇ -CD-Ts mono-6-tosyl- ⁇ -cyclodextrin
  • ⁇ -CD-Ts mono-6-tosyl- ⁇ -cyclodextrin
  • a diaminoalkyl compound tosylated by a known method
  • the mono-6-tosyl- ⁇ -cyclodextrin obtained by tosylating one primary hydroxyl group of the cyclodextrin used in the present invention can be obtained by a known method. That is, it can be obtained by reprecipitation or recrystallization after reacting with paratoluenesulfonic acid chloride and cyclodextrin under predetermined conditions. Further, it can be similarly obtained by using paratoluenesulfonic acid anhydride instead of paratoluenesulfonic acid chloride. Further, it can be expected that ⁇ and ⁇ -cyclodextrin can be similarly obtained by examining the conditions of recrystallization and reprecipitation.
  • step (2) the monoamino compound is reacted with (meth) acrylic acid anhydride to obtain cyclodextrin having a (meth) acrylamide group (step (2)).
  • This reaction is preferably carried out using an aprotic polar solvent such as N, N-dimethylformamide (DMF) in the presence of a base such as triethylamine.
  • DMF N, N-dimethylformamide
  • the hydrogen atom of the hydroxyl group or the amino group present in the cyclodextrin having a (meth) acrylamide group is replaced with an acyl group to obtain an acylated product (step (3)).
  • an acylated product for example, in the presence of acid anhydride, N, N-dimethyl-4-aminopyridine (DMAP) or the like is used as a catalyst, triethylamine or the like is used as a base, and a solvent capable of dissolving all of these, DMF or the like, is used. Then, the method of acylating the cyclodextrin having the above-mentioned (meth) acrylamide group can be mentioned.
  • DMAP N, N-dimethyl-4-aminopyridine
  • acetic anhydride may be used, and acetic anhydride or the like may be used instead of acetic anhydride.
  • a base such as pyridine and a catalyst may be used instead of the above DMAP and triethylamine.
  • n in the above reaction formula represents an integer of 20% or more of the total number N-1 of the total number of hydroxyl groups of one cyclodextrin molecule.
  • substitution with an acetyl group can be performed with sodium hydride. It can be carried out by a method of reacting acetyl halide in the presence of the above-mentioned cyclodextrin having a (meth) acrylamide group or the like. In this case, a method of dropping a solution of cyclodextrin having a halogenated acetyl and a (meth) acrylamide group onto a suspension of sodium hydride can be adopted.
  • acetyl halide examples include acetyl bromide and acetyl iodide.
  • the cyclodextrin derivative obtained as described above can be efficiently produced with higher yield and higher purity by reprecipitation or recrystallization.
  • cyclodextrin derivative of the present invention can be produced, for example, based on the reaction formula shown below when producing the cyclodextrin derivative represented by the general formula (7).
  • R 3 and R 8 are the same as above.
  • R 10 represents an alkyl group having 1 to 30 carbon atoms, and X represents a halogen atom.
  • a mono-6-tosyl- ⁇ -cyclodextrin obtained by tosylating a primary hydroxyl group of cyclodextrin by the above method is reacted with an alkyl halide in the presence of sodium hydride or sodium hydroxide.
  • an alkyl halide in the presence of sodium hydride or sodium hydroxide.
  • m in the above reaction formula represents an integer of 20% or more of the total number N-1 of the total number of hydroxyl groups of one cyclodextrin molecule.
  • an alkyl group for a hydrogen atom of a hydroxyl group existing in the tosylated cyclodextrin
  • a known alkylation reaction can be widely adopted.
  • the substitution with an alkyl group can be carried out by a method of reacting an alkyl halide with the above-mentioned tosylated cyclodextrin in the presence of sodium hydride or sodium hydroxide.
  • sodium hydroxide a method of dropping a solution of an alkyl halide and a tosylated cyclodextrin onto a suspension of sodium hydroxide can be adopted.
  • alkyl halide examples include methyl iodide, ethyl iodide, and propyl iodide.
  • step (b) it is reacted with a diaminealkyl compound to replace the tosyl group to obtain a monoamino compound (step (b)). Further, the (meth) acrylic acid anhydride is reacted to obtain a cyclodextrin derivative having a (meth) acrylamide group (step (c)).
  • This reaction is preferably carried out using an aprotic polar solvent such as N, N-dimethylformamide (DMF) in the presence of a base such as triethylamine.
  • DMF N, N-dimethylformamide
  • the obtained cyclodextrin derivative can be efficiently produced with higher yield and higher purity by reprecipitation or recrystallization.
  • cyclodextrin derivative of the present invention can be produced, for example, based on the reaction formula shown below when producing the cyclodextrin derivative represented by the general formula (8).
  • R 5 is an alkylene group having 3 to 20 carbon atoms, which may be linear or branched, and may have a substituent.
  • R 6 represents a (meth) acryloyloxyalkyl group having 4 to 50 carbon atoms.
  • R 10 is the same as above.
  • an alkyl group for a hydrogen atom of a hydroxyl group existing in the tosylated cyclodextrin
  • a known alkylation reaction can be widely adopted.
  • the substitution with an alkyl group can be carried out by a method of reacting an alkyl halide with the above-mentioned tosylated cyclodextrin in the presence of sodium hydride or sodium hydroxide.
  • sodium hydroxide a method of dropping a solution of an alkyl halide and a tosylated cyclodextrin onto a suspension of sodium hydroxide can be adopted.
  • step (a) it is reacted with a diaminealkyl compound to replace the tosyl group to obtain a monoamino compound (step (a)). Further, the isocyanate is reacted to obtain a cyclodextrin derivative having a (meth) acloyloxyalkyl group (step (c)). Examples of the isocyanate include 2-methacryloyloxyethyl isocyanate and 2-acryloyloxyethyl isocyanate.
  • the obtained cyclodextrin derivative can be efficiently produced with higher yield and higher purity by reprecipitation or recrystallization.
  • R 1 of the general formula (1) is represented by the general formula (4)
  • R 1 of the general formula (1) is represented by the general formula (4)
  • the hydrogen atom of the hydroxyl group of the tosylated cyclodextrin is replaced with an alkyl group, and then reacted with an amino alcohol compound to replace the tosyl group.
  • An alcohol compound is further reacted with the above isocyanate to obtain a cyclodextrin derivative having a (meth) acloyloxyalkyl group.
  • the cyclodextrin derivative of the present invention can be a raw material for obtaining a polymer contained in a polymer material.
  • Polymers obtained using cyclodextrin derivatives can have a structure in which molecules are crosslinked, for example, by a reversible host-guest interaction.
  • the polymer obtained by using the cyclodextrin derivative can be, for example, a mobile crosslinked polymer described later.
  • the mobile crosslinked polymer has a structure formed by the main chain of another polymer penetrating the inside of the ring of the host group (cyclic molecule having a cyclodextrin structure) of the polymer side chain. Coalescence is exemplified.
  • the cyclodextrin derivative of the present invention can exhibit high affinity for both a hydrophilic polymerizable monomer and a hydrophobic polymerizable monomer, and the cyclodextrin derivative can be used for various polymerizations. Copolymerization with a sex monomer is possible. In particular, the cyclodextrin derivative of the present invention exhibits high solubility in a hydrophobic polymerizable monomer, so that it is a hydrophobic single with a host group-containing polymerizable monomer, which has been considered difficult in the past. Copolymerization with a weight can be performed in a wide range of composition ratios, and the degree of freedom in designing the target polymer material can be increased.
  • the cyclodextrin derivative of the present invention can be used as a radiation (ultraviolet) curable resin composition by using it in combination with other radiation (ultraviolet) polymerizable compounds.
  • Synthesis example 1 400 g of water, 44.78 g of ⁇ -cyclodextrin, and 18.86 g of p-toluenesulfonic acid anhydride were placed in a flask with a cooling tube and a stirring rod, and the mixture was stirred at 30 ° C. for 2 hours. 40.00 g of a 48% aqueous sodium hydroxide solution was added thereto, and the mixture was further stirred for 10 minutes. Then, the mixture was filtered through 400 mesh, the filtrate was neutralized with hydrochloric acid to pH 7, and left overnight. This was filtered and washed thoroughly with water to obtain 12.77 g of monotosylated ⁇ -cyclodextrin (Compound A).
  • Synthesis example 4 60 g of N, N-dimethylformamide and 2.4 g of caustic soda (powder) were mixed and stirred in a flask with a stirring rod, and 3.0 g of the compound A obtained in Synthesis Example 1 was added thereto. While cooling with ice, 35 g of methyl iodide was added in several portions, and the mixture was stirred for 1 to 3 hours. 400 g of water was added thereto and the mixture was allowed to stand overnight. Then, by filtration, 0.9 g of methyl etherified monotosylated ⁇ -cyclodextrin (Compound D) was obtained. The 1 H-NMR chart at this time is shown in FIG.
  • Synthesis example 5 3.16 g of the compound D and 11.99 g of 1,3-propanediamine obtained in Synthesis Example 4 were charged in a flask with a cooling tube and a stirring rod, and the mixture was heated and stirred at 70 ° C. for 2 hours. This was cooled, 320 ml of toluene was added, and the mixture was washed with water. The organic layer was dried over sodium sulfate, and toluene was distilled off and dried to obtain 2.29 g of 6-deoxy-6- (3-aminopropylamino) - ⁇ -cyclodextrin (compound E) methyl etherified. rice field. The 1 H-NMR chart at this time is shown in FIG.
  • Synthesis example 6 1.74 g of the compound E, 0.13 g of triethylamine and 4 g of toluene obtained in Synthesis Example 5 were charged in a flask with a stirring rod and stirred. 0.18 g of methacrylic anhydride was added dropwise thereto, and the mixture was further stirred for 1 hour. The obtained solution was washed 3 times with water, dried over sodium sulfate, and then toluene was distilled off and dried to obtain 1.51 g of ⁇ -cyclodextrin (Compound F) having a methyl etherified methacrylic amide group. rice field. The 1 H-NMR chart at this time is shown in FIG.
  • Synthesis example 7 A flask with a stirring rod was charged with 0.54 g of the compound E obtained in Synthesis Example 5, 57 mg of Calends MOI (manufactured by Kyoeisha Chemical Co., Ltd.), and 2 g of toluene, and stirred for 1 hour. The obtained solution was washed with water three times, dried over sodium sulfate, and then toluene was distilled off and dried to obtain 0.60 g of ⁇ -cyclodextrin (compound G) having a methyl etherified methacrylic group. The 1 H-NMR chart at this time is shown in FIG.
  • the cyclodextrin derivative of the present invention can be a raw material for obtaining a polymer contained in a polymer material. Further, the polymer obtained by using the cyclodextrin derivative of the present invention may have a structure in which molecules are crosslinked by, for example, a host-guest interaction having reversibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

より高収率かつ高純度で、効率良く製造することができる、大量生産可能な、重合性不飽和基を有するシクロデキストリン誘導体を提供する。 下記一般式(1)で示される重合性不飽和基を有するシクロデキストリン誘導体。 (式(1)中、Rは、 (ア)下記一般式(2) -R-NH-R (2) (Rは、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。 Rは、(メタ)アクリロイル基又は炭素数3~50のビニル基含有アルキル基を表す。)、 (イ)下記一般式(3) -R-NHCONH-R (3) (Rは、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。 Rは、炭素数4~50の(メタ)アクリロイルオキシアルキル基又は炭素数3~50のビニル基含有アルキル基を表す。) 又は(ウ)下記一般式(4) -R-OCONH-R (4) (R及びRは上記と同じ。) のいずれか1つを表す。 Rは、水素原子、炭素数2~50のアシル基又は炭素数1~30のアルキル基を表す。 Rは、下記一般式(5)で示される基を表す。 (式(5)中、Rは、同一又は異なって、水素原子、炭素数2~50のアシル基、炭素数1~30のアルキル基又は-CONHR(Rは炭素数1~20のアルキル基)を表すものであり、Rの20%以上は炭素数2~50のアシル基、炭素数1~30のアルキル基又は-CONHRいずれか1つである。xは、5~7の整数))

Description

重合性不飽和基を有するシクロデキストリン誘導体
本発明は、重合性不飽和基を有するシクロデキストリン誘導体に関するものである。
近年、シクロデキストリン誘導体を用い、ホスト-ゲスト相互作用に代表される非共有結合的相互作用を巧みに利用して、様々な機能性を付与した超分子材料の開発が盛んに行われている。例えば、自己修復性を有し、伸縮性に優れる高分子材料や、その原料となるシクロデキストリン誘導体をホスト基とするホスト基含有重合性単量体が提案されている(特許文献1及び特許文献2)。
特許文献1及び2には、シクロデキストリンとアクリルアミドをパラトルエンスルホン酸触媒存在下にてジメチルホルムアミド(DMF)中で反応させ、アセトン再沈殿で得られた粗体をカラムで精製して収集し、そのモノマーをアセチル化して、アセチル変性体を得る方法が記載されている。しかしながら、このような製造工程では、コストがかりすぎるうえに大量生産が難しい面がある。
また、特許文献3には、ポリエチレングリコールにシクロデキストリンをグラフトした生物活性剤担体が記載されている。
特許文献4、非特許文献1及び2には、エチレンジアミン部位を有するシクロデキストリンにメタクリル基を導入したモノマーが報告されている。しかし、このモノマーはシクロデキストリンの水酸基を変性しておらず、共重合させる他のモノマーとの相溶性に問題がある。
非特許文献3には、ジアミノヘキサン部位を有するシクロデキストリンにメタクリル基を導入したモノマーが報告されているが、同様に相溶性に問題がある。
特許第6624660号公報 国際公開第2018/159791号 特表2005-517048号公報 米国特許第8569451号明細書
Lin Yuanjing et. al、Journal of Separation Science、 2017年、第40巻、第19号、P.3754-3762 Song Meng-Menget.al、ACS Applied Materials&Interfaces、2018年 第10巻、第17号、P.15021-15029 Kaya Ethem et. al、Journal of Polymer Science: part A、2010年、第48巻、P.581-592
本発明は、より高収率かつ高純度で、効率良く製造することができる、大量生産可能な、重合性不飽和基を有するシクロデキストリン誘導体を提供することを目的とするものである。
本発明は、
下記一般式(1)で示される重合性不飽和基を有するシクロデキストリン誘導体である。
Figure JPOXMLDOC01-appb-C000009
(式中、Rは、
(ア)下記一般式(2)
-R-NH-R  (2)
(Rは、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
は、(メタ)アクリロイル基又は炭素数3~50のビニル基含有アルキル基を表す。)、
(イ)下記一般式(3)
-R-NHCONH-R  (3)
(Rは、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
は、炭素数4~50の(メタ)アクリロイルオキシアルキル基又は炭素数3~50のビニル基含有アルキル基を表す。)
又は(ウ)下記一般式(4)
-R-OCONH-R  (4)
(R及びRは上記と同じ。)
のいずれか1つを表す。
は、水素原子、炭素数2~50のアシル基又は炭素数1~30のアルキル基を表す。
は、下記一般式(5)で示される基を表す。
Figure JPOXMLDOC01-appb-C000010
(式中、Rは、同一又は異なって、水素原子、炭素数2~50のアシル基、炭素数1~30のアルキル基又は-CONHR(Rは炭素数1~20のアルキル基)を表すものであり、Rの20%以上は炭素数2~50のアシル基、炭素数1~30のアルキル基又は-CONHRいずれか1つである。xは、5~7の整数))
本発明において、上記アルキル基は、メチル基であることが好ましい。
本発明において、上記アシル基は、アセチル基であることが好ましい。
また、本発明は、
(1)モノ-6-トシル-シクロデキストリンを、ジアミノアルキル化合物(炭素数3~20)と反応させて、モノアミノ化合物を得る工程、
(2)得られたモノアミノ化合物を、(メタ)アクリル酸無水物と反応させて、(メタ)アクリルアミド基を有するシクロデキストリンを得る工程、
(3)得られた(メタ)アクリルアミド基を有するシクロデキストリンを、酸無水物と反応させて、アシル化物を得る工程を含む、
下記一般式(6)
Figure JPOXMLDOC01-appb-C000011
(式中、Rは、水素原子又は炭素数2~50のアシル基を表す。
は、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
は、水素基又はメチル基を表す。
C1は、下記一般式(5a)で示される基を表す。
Figure JPOXMLDOC01-appb-C000012
(式中、R7aは、同一又は異なって、水素原子又は炭素数2~50のアシル基を表す。xは、5~7である。))
で示される重合性不飽和基を有するシクロデキストリン誘導体の製造方法である。
また、本発明は、
(a)モノ-6-トシル-シクロデキストリンを、ハロゲン化アルキル(炭素数1~30)と反応させて、アルキル化物を得る工程、
(b)得られたアルキル化物を、ジアミノアルキル化合物(炭素数3~20)と反応させて、モノアミノ化合物を得る工程、
(c)得られたモノアミノ化合物を、(メタ)アクリル酸無水物と反応させて、(メタ)アクリルアミド基を有するシクロデキストリンを得る工程を含む、
下記一般式(7)
Figure JPOXMLDOC01-appb-C000013
(式中、Rは、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
は、水素基又はメチル基を表す。
C2は、下記一般式(5b)で示される基を表す。
Figure JPOXMLDOC01-appb-C000014
(式中、R7bは、同一又は異なって、水素原子又は炭素数1~30のアルキル基を表す。xは、5~7である。))
で示される重合性不飽和基を有するシクロデキストリン誘導体の製造方法でもある。
また、本発明は、
(ア)モノ-6-トシル-シクロデキストリンを、ハロゲン化アルキルと反応させて、アルキル化物を得る工程、
(イ)得られたアルキル化物を、ジアミノアルキル化合物(炭素数3~20)と反応させて、アミノ化合物を得る工程、
(ウ)得られたアミノ化合物を、(メタ)アクリロイルオキシアルキルイソシアネートと反応させて、(メタ)アクリロイルオキシアルキル基を有するシクロデキストリンを得る工程を含む、
下記一般式(8)
Figure JPOXMLDOC01-appb-C000015
(式中、Rは、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
は、(メタ)アクリロイルオキシアルキル基を表す。
C2は、下記一般式(5b)で示される基を表す。
Figure JPOXMLDOC01-appb-C000016
(式中、R7bは、同一又は異なって、水素原子又は炭素数1~30のアルキル基を表す。xは、5~7である。))
で示される重合性不飽和基を有するシクロデキストリン誘導体の製造方法でもある。
本発明により、より高収率かつ高純度で、効率良く製造することができる、大量生産可能な、重合性不飽和基を有するシクロデキストリン誘導体を提供することができる。
合成例1で得られた化合物Aに関するH-NMRチャートを示す図。 合成例2で得られた化合物Bに関するH-NMRチャートを示す図。 合成例3で得られた化合物Cに関するH-NMRチャートを示す図。 合成例4で得られた化合物Dに関するH-NMRチャートを示す図。 合成例5で得られた化合物Eに関するH-NMRチャートを示す図。 合成例6で得られた化合物Fに関するH-NMRチャートを示す図。 合成例7で得られた化合物Gに関するH-NMRチャートを示す図。
本発明の重合性不飽和基を有するシクロデキストリン誘導体は、下記一般式(1)で示されるものである。なお、本明細書において、「重合性不飽和基を有するシクロデキストリン誘導体」を、便宜上、「シクロデキストリン誘導体」と表記することがある。
Figure JPOXMLDOC01-appb-C000017
(式中、Rは、
(ア)下記一般式(2)
-R-NH-R  (2)
(Rは、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
は、(メタ)アクリロイル基又は炭素数3~50のビニル基含有アルキル基を表す。)、
(イ)下記一般式(3)
-R-NHCONH-R  (3)
(Rは、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
は、炭素数4~50の(メタ)アクリロイルオキシアルキル基又は炭素数3~50のビニル基含有アルキル基を表す。)
又は(ウ)下記一般式(4)
-R-OCONH-R  (4)
(R及びRは上記と同じ。)
のいずれか1つを表す。
は、水素原子、炭素数2~50のアシル基又は炭素数1~30のアルキル基を表す。
は、下記一般式(5)で示される基を表す。
Figure JPOXMLDOC01-appb-C000018
(式中、Rは、同一又は異なって、水素原子、炭素数2~50のアシル基、炭素数1~30のアルキル基又は-CONHR(Rは炭素数1~20のアルキル基)を表すものであり、Rの20%以上は炭素数2~50のアシル基、炭素数1~30のアルキル基又は-CONHRいずれか1つである。xは、5~7の整数))
本発明のシクロデキストリン誘導体は、重合性不飽和基と上記一般式(5)で示されるRとを有する化合物である。
本発明により、安価に収率良く、純度の高いシクロデキストリン誘導体が得られるものである。
上記Rは、ホスト基としての機能を発揮し得るものであり、シクロデキストリンが他の有機基で置換された構造を有する分子から、1個の水酸基が除された1価の基である。シクロデキストリンは、α-シクロデキストリン、β-シクロデキストリン及びγ-シクロデキストリンからなる群より選ばれる少なくとも1種である。本発明においては、合成面、ゲスト分子の選択肢などの点で、β-シクロデキストリンであることが好適である。
なお、本明細書において、「シクロデキストリンが他の有機基で置換された構造を有する分子」を、便宜上、「シクロデキストリン類」と表記することがある。
また、除される1個の水酸基は、反応性による合成のし易さという観点から、1級の水酸基であることが好ましい。
上記Rは、シクロデキストリンの水酸基の水素原子(R)の20%以上がアシル基、アルキル基及び-CONHRからなる群より選ばれる少なくとも1種の基で置換された構造を有する。上記Rは、シクロデキストリンが有する特定量の水酸基の水素原子がアシル基のみで置換されていてもよいし、アルキル基のみで置換されていてもよいし、-CONHRのみで置換されていてもよい。
なお、本明細書において、「アシル基、アルキル基及び-CONHRからなる群より選ばれる少なくとも1種の基」を便宜上、「アシル基等」と表記することがある。
上記アシル基は、アセチル基、プロピオニル、ブチロイル、ホルミル基等を例示することができる。アシル基は、さらに置換基を有していてもよい。シクロデキストリン誘導体が親水性及び疎水性の重合性単量体の両方に対してより高い親和性を示し、かつ、重合体がホスト-ゲスト相互作用を形成しやすいという観点から、アシル基はアセチル基であることが好ましい。
上記アルキル基の炭素原子の数は特に限定されない。シクロデキストリン誘導体が併用するその他の重合性単量体に溶解しやすく、かつ、シクロデキストリン誘導体がホスト-ゲスト相互作用を形成しやすいという観点から、アルキル基の炭素数は1~4であることが好ましい。
炭素数が1~4であるアルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基を挙げることができる。炭化水素基がプロピル基及びブチル基である場合は、直鎖状及び分岐鎖状のいずれであってもよい。アルキル基は、本発明の効果が阻害されない限りは、置換基を有していてもよい。重合体設計上、親水性から疎水性の間で最適な極性に制御するために、適宜炭素数の選択、または複数種組合せることができる。
中でも、合成面、他の重合性単量体との相溶性による設計面の観点から、メチル基であることが好ましい。
-CONHRは、メチルカルバメート基又はエチルカルバメート基であることが好ましい。シクロデキストリン誘導体が、併用するその他の重合性単量体に溶解しやすく、かつ、シクロデキストリン誘導体からなる重合体がホスト-ゲスト相互作用を形成しやすいという観点から、-CONHRは、エチルカルバメート基であることが好ましい。
ここで、シクロデキストリン1分子が有する水酸基の全個数をNとした場合、α-シクロデキストリンはN=18、β-シクロデキストリンはN=21、γ-シクロデキストリンはN=24である。
シクロデキストリンは、1分子あたり最大N-1個の水酸基の水素原子がアシル基等で置換され得る。
上記Rは、上記シクロデキストリン類1分子中に存在する水酸基の全個数N-1のうちの20%以上の水酸基の水素原子が上記アシル基等で置換された構造を有することが好ましい。この場合、シクロデキストリン誘導体が、併用するその他の重合性単量体に溶解しやすい。上記Rは、上記シクロデキストリン類1分子中に存在する水酸基の全個数N-1のうちの50%以上の水酸基の水素原子が上記アシル基等で置換されていることがより好ましく、水酸基の全個数N-1のうちの80%以上の水酸基の水素原子が上記アシル基等で置換されていることが特に好ましい。 
上記Rは、α-シクロデキストリン類1分子中に存在する水酸基の全個数N-1のうちの4個以上の水酸基の水素原子が上記アシル基等で置換された構造を有することが好ましい。この場合、シクロデキストリン誘導体が併用するその他の重合性単量体に溶解しやすい。上記Rは、α-シクロデキストリン類1分子中に存在する水酸基の全個数N-1のうちの9個以上の水酸基の水素原子が上記アシル基等で置換されていることがより好ましく、水酸基の全個数N-1のうちの14個の水酸基の水素原子が上記アシル基等で置換されていることが特に好ましい。 
上記Rは、β-シクロデキストリン類1分子中に存在する水酸基の全個数N-1のうちの4個以上の水酸基の水素原子が上記アシル基等で置換された構造を有することが好ましい。この場合、シクロデキストリン誘導体が併用するその他の重合性単量体に溶解しやすい。上記Rは、β-シクロデキストリン類1分子中に存在する水酸基の全個数N-1のうちの10個以上の水酸基の水素原子が上記アシル基等で置換されていることがより好ましく、水酸基の全個数N-1のうちの16個以上の水酸基の水素原子が上記アシル基等で置換されていることが特に好ましい。 
上記Rは、γ-シクロデキストリン類1分子中に存在する水酸基の全個数N-1のうちの5個以上の水酸基の水素原子が上記アシル基等で置換された構造を有することが好ましい。この場合、シクロデキストリン誘導体が併用するその他の重合性単量体に溶解しやすい。上記Rは、γ-シクロデキストリン誘導体1分子中に存在する水酸基の全個数N-1のうちの12個以上の水酸基の水素原子が上記アシル基等で置換されていることがより好ましく、水酸基の全個数N-1のうちの19個以上の水酸基の水素原子が上記アシル基等で置換されていることが特に好ましい。
次に、本発明のシクロデキストリン誘導体において、上記一般式(1)に示すように、上記重合性不飽和基を有するRとRとは、アミノ基由来の窒素原子を介して連結している。
上記一般式(1)において、Rは、その1つとして、
(ア)下記一般式(2)
-R-NH-R   (2)
(Rは、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
は、(メタ)アクリロイル基又は炭素数3~50のビニル基含有アルキル基を表す。)
で表される。
このように、一般式(2)に示される構造を有するシクロデキストリン誘導体は、R-N-R-NH―という、ジアミノアルキル化合物に由来する構造を有するものである。
本発明において、シクロデキストリン誘導体の製造に使用するジアミノアルキル化合物は、アルキル基の炭素数が少なすぎると毒性面で好ましくない。また、本発明のシクロデキストリン誘導体の重合時の主鎖とシクロデキストリンとの距離が近すぎると、立体障害も含めた分子の自由度が低下するため、機能発現面でも好ましくない。一方、炭素数が多すぎると、合成面(特に再沈殿や再結晶等による精製工程)、原料調達面等を考慮した場合や、重合時の主鎖とシクロデキストリンとの距離が離れすぎてしまうことによる機能発現や物性低下の懸念により、好ましくない。以上のことから、ジアミノアルキル基の炭素数Rは、3~20が好ましい。より好ましくは3~10であり、更に好ましくは3~5である。
上記Rは、ラジカル重合性を示す官能基であり、アクリロイル基(CH=CH(CO)-)又はメタクリロイル基(CH=CCH(CO)-)を挙げることができる。この場合、これらの炭素-炭素二重結合を含む基は、ラジカル重合性が阻害されない程度であればさらに置換基を有していてもよい。
また、Rは、炭素数3~50のビニル基含有アルキル基であってもよい。
また、上記一般式(1)において、Rは、(イ)下記一般式(3)
-R-NHCONH-R  (3)
(Rは、炭素数2~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
は、炭素数4~50の(メタ)アクリロイルオキシアルキル基又は炭素数3~50のビニル基含有アルキル基を表す。)であってもよい。
上記一般式(3)に示すように、当該シクロデキストリン誘導体は、尿素結合を介して、ラジカル重合性を示す官能基を有するものであり、(メタ)アクリロイルオキシアルキル基又はビニル基含有アルキル基を有する構造である。
(メタ)アクリロイルオキシアルキル基のアルキル基の炭素数は、1~10が好ましく、具体的には、2-メタクリロイルオキシエチルイソシアネート、2-アクリロイルオキシエチルイソシアネート等のイソシアネートに由来する構造が挙げられる。
ジアミノアルキル基の炭素数Rは、上記Rと同様の理由により、3~20が好ましい。更に好ましくは、3~10である。
また、上記一般式(1)において、Rは、(ウ)下記一般式(4)
-R-OCONH-R  (4)
(R及びRは上記と同じ。)であってもよい。
上記一般式(4)に示すように、当該シクロデキストリン誘導体は、ウレタン結合を介して、ラジカル重合性を示す官能基を有するものであり、(メタ)アクリロイルオキシアルキル基又はビニル基含有アルキル基を有する構造である。
本発明のシクロデキストリン誘導体は、その製造方法を限定されるものではなく、本発明のシクロデキストリン誘導体の各構造に基づき適宜製造することができる。
例えば、上記一般式(6)に示すシクロデキストリン誘導体を製造するにあたっては、下記に示す反応式に基づき製造する方法が挙げられる。
Figure JPOXMLDOC01-appb-C000019
(式中、Rは、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
は、水素基又はメチル基を表す。
は、炭素数1~49のアルキレン基を表す。)
例えば、まず、シクロデキストリンの1つの1級水酸基を公知の方法によりトシル化した、モノ-6-トシル-β-シクロデキストリン(β-CD-Ts)を、ジアミノアルキル化合物と反応させて、トシル基を置換し、モノアミノ化合物を得る(工程(1))。
本発明に使用するシクロデキストリンの1つの1級水酸基をトシル化した、モノ-6-トシル-β-シクロデキストリンは、公知の方法により得ることができる。すなわち、パラトルエンスルホン酸クロリドとシクロデキストリンを用いて所定の条件にて反応した後、再沈殿や再結晶により得ることができる。また、パラトルエンスルホン酸クロリドの代わりに、パラトルエンスルホン酸無水物を用いることにより、同様に得ることができる。
また、α、γ-シクロデキストリンにおいても、再結晶や再沈殿の条件検討により、同様に得ることが期待できる。
次に、モノアミノ化合物に、(メタ)アクリル酸無水物を反応させ、(メタ)アクリルアミド基を有するシクロデキストリンを得る(工程(2))。この反応は、N,N-ジメチルホルムアミド(DMF)等の非プロトン性極性溶媒を使用し、トリエチルアミン等の塩基の存在下で行うことが好ましい。
更に、(メタ)アクリルアミド基を有するシクロデキストリンに存在する水酸基又はアミノ基の水素原子を、アシル基に置換し、アシル化物を得る(工程(3))。その方法としては、例えば、酸無水物の存在下、触媒としてN,N-ジメチル-4-アミノピリジン(DMAP)等を、塩基としてトリエチルアミン等を、これらを全て溶解可能な溶媒、DMF等を使用して、上記(メタ)アクリルアミド基を有するシクロデキストリンをアシル化する方法が挙げられる。
具体的に、例えば、アセチル化する場合には、無水酢酸を用いればよく、また、無水酢酸に代えて、酢酸クロリド等を用いてもよい。
また、上記DMAPおよびトリエチルアミンに代えて、ピリジン等の塩基かつ触媒を用いてもよい。
なお、上記反応式中のnは、シクロデキストリン1分子が有する水酸基の全個数N-1の20%以上の整数を表すものである。
シクロデキストリンに存在する水酸基の水素原子をアセチル基等のアシル基に置換する他の方法は、公知のアシル化反応を広く採用することができ、例えば、アセチル基への置換は、水素化ナトリウムの存在下でハロゲン化アセチルを、上記(メタ)アクリルアミド基を有するシクロデキストリンに反応させる方法等により行うことができる。この場合、ハロゲン化アセチルと(メタ)アクリルアミド基を有するシクロデキストリンの溶液を水素化ナトリウムの懸濁液に滴下する方法を採用することができる。あるいは、ハロゲン化アセチル、上記(メタ)アクリルアミド基を有するシクロデキストリン及び水素化ナトリウムを一括で混合する方法を採用することもできる。ハロゲン化アセチルとしては、臭化アセチル、ヨウ化アセチル等が例示される。 
上記のようにして得られるシクロデキストリン誘導体は、再沈殿や再結晶により、より高収率かつ高純度で、効率良く製造することができる。
また、シクロデキストリンに存在する水酸基の水素原子を、-CONHRに置換する方法は、例えば、公知のアルキルカルバメート化反応を広く採用することができる。例えば、上記重合性単量体をアルキルイソシアネートの存在下 、有機溶媒(例えば、DMSO)中で反応することで、ホスト基に存在する水酸基の水素原子を、-CONHRに置換できる。アルキルイソシアネートとしては、メチルイソシアネート、エチルイソシアネートを例示できる。
また、本発明のシクロデキストリン誘導体は、例えば、上記一般式(7)示すシクロデキストリン誘導体を製造するにあたっては、下記に示す反応式に基づき製造することもできる。
Figure JPOXMLDOC01-appb-C000020
(式中、R、Rは、上記に同じ。
10は、炭素数1~30のアルキル基、Xは、ハロゲン原子を表す。)
例えば、まず、シクロデキストリンの1級水酸基を上記の方法によりトシル化した、モノ-6-トシル-β-シクロデキストリンを、水素化ナトリウムまたは水酸化ナトリウムの存在下、ハロゲン化アルキルと反応させる方法で、トシル化されたシクロデキストリンの水酸基の水素原子がアルキル基で置換された化合物を得る(工程(a))。
なお、上記反応式中のmは、シクロデキストリン1分子が有する水酸基の全個数N-1の20%以上の整数を表すものである。
上記トシル化されたシクロデキストリンに存在する水酸基の水素原子を、アルキル基に置換する方法は、公知のアルキル化反応を広く採用することができる。例えば、アルキル基への置換は、水素化ナトリウム又は水酸化ナトリウムの存在下で、ハロゲン化アルキルを、上記トシル化されたシクロデキストリンに反応させる方法等により行うことができる。水酸化ナトリウムを用いる場合、ハロゲン化アルキルとトシル化されたシクロデキストリンの溶液を水酸化ナトリウムの懸濁液に滴下する方法を採用することができる。 又は、ハロゲン化アルキル、上記トシル化されたシクロデキストリン及び水酸化ナトリウムを一括で混合する方法を採用することもできる。ハロゲン化アルキルとしては、ヨウ化メチル、ヨウ化エチル、ヨウ化プロピル等が例示される。 
次に、ジアミンアルキル化合物と反応させてトシル基を置換し、モノアミノ化合物を得る(工程(b))。
更に、(メタ)アクリル酸無水物を反応させ、(メタ)アクリルアミド基を有するシクロデキストリン誘導体を得る(工程(c))。この反応は、N,N-ジメチルホルムアミド(DMF)等の非プロトン性極性溶媒を使用し、トリエチルアミン等の塩基の存在下で行うことが好ましい。
得られるシクロデキストリン誘導体は、再沈殿や再結晶により、より高収率かつ高純度で、効率良く製造することができる。
また、本発明のシクロデキストリン誘導体は、例えば、上記一般式(8)に示すシクロデキストリン誘導体を製造するにあたっては、下記に示す反応式に基づき製造することもできる。
Figure JPOXMLDOC01-appb-C000021
(式中、Rは、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
は、炭素数4~50の(メタ)アクリロイルオキシアルキル基を表す。
10は、上記に同じ。)
例えば、まず、シクロデキストリンの1級水酸基を上記の方法によりトシル化した、モノ-6-トシル-シクロデキストリンを、水素化ナトリウムまたは水酸化ナトリウムの存在下、ハロゲン化アルキルと反応させる方法で、トシル化されたシクロデキストリンの水酸基の水素原子がアルキル基で置換された化合物を得る(工程(ア))。
なお、上記反応式中のmは、シクロデキストリン1分子が有する水酸基の全個数N-1の20%以上の整数を表すものである。
上記トシル化されたシクロデキストリンに存在する水酸基の水素原子を、アルキル基に置換する方法は、公知のアルキル化反応を広く採用することができる。例えば、アルキル基への置換は、水素化ナトリウム又は水酸化ナトリウムの存在下で、ハロゲン化アルキルを、上記トシル化されたシクロデキストリンに反応させる方法等により行うことができる。水酸化ナトリウムを用いる場合、ハロゲン化アルキルとトシル化されたシクロデキストリンの溶液を水酸化ナトリウムの懸濁液に滴下する方法を採用することができる。 又は、ハロゲン化アルキル、上記トシル化されたシクロデキストリン及び水酸化ナトリウムを一括で混合する方法を採用することもできる。ハロゲン化アルキルとしては、ヨウ化メチル、ヨウ化エチル、ヨウ化プロピル等が例示される。 
次に、ジアミンアルキル化合物と反応させてトシル基を置換し、モノアミノ化合物を得る(工程(イ))。
更に、イソシアネートを反応させ、(メタ)アクロイルオキシアルキル基を有するシクロデキストリン誘導体を得る(工程(ウ))。
イソシアネートとしては、2-メタクリロイルオキシエチルイソシアネート、2-アクリロイルオキシエチルイソシアネート等が挙げられる。
得られるシクロデキストリン誘導体は、再沈殿や再結晶により、より高収率かつ高純度で、効率良く製造することができる。
その他、上記一般式(1)のRが、上記一般式(4)で示すものである、ウレタン結合を介して、重合性不飽和基を有するシクロデキストリン誘導体を製造する方法としては、例えば、上記シクロデキストリンの水酸基の水素原子をアルキル化する方法と同様にして、トシル化されたシクロデキストリンの水酸基の水素原子をアルキル基で置換した後、アミノアルコール化合物と反応させてトシル基を置換して、アルコール化合物を得、更に、上記イソシアネートを反応させ、(メタ)アクロイルオキシアルキル基を有するシクロデキストリン誘導体を得る方法が考えられる。
発明のシクロデキストリン誘導体は、高分子材料に含まれる重合体を得るための原料となり得る。シクロデキストリン誘導体を使用して得られる重合体は、例えば、可逆性を有するホスト-ゲスト相互作用によって、分子どうしが架橋された構造を有し得る。
もしくは、シクロデキストリン誘導体を使用して得られる重合体は、例えば、後記する可動性架橋重合体となり得る。後記するように可動性架橋重合体は、重合体側鎖のホスト基(シクロデキストリン構造を有する環状分子)の環内を、他の重合体の主鎖が貫通することで 形成される構造を有する重合体が例示される。
本発明のシクロデキストリン誘導体は、例えば、親水性の重合性単量体及び疎水性の重合性単量体のいずれに対しても高い親和性を示すことができ、シクロデキストリン誘導体は、種々の重合性単量体との共重合が可能となる。
特に、本発明のシクロデキストリン誘導体は、疎水性の重合性単量体に対して高い溶解性を示すことから、従来難しいとされていたホスト基含有重合性単量体と疎水性の重合性単量体との共重合が、幅広い組成割合で可能となり、目的とする高分子材料の設計の自由度を高くすることが可能となる。
本発明のシクロデキストリン誘導体は、他の放射線(紫外線)重合性化合物と併用することにより、放射線(紫外線)硬化型樹脂組成物として使用することができる。
以下、実施例に基づいて、本発明を具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
合成例1
冷却管、攪拌棒つきフラスコに、水400g、β-シクロデキストリン44.78g、パラトルエンスルホン酸無水物18.86gを仕込み、30℃で2時間間攪拌した。ここへ48%水酸化ナトリウム水溶液40.00gを加え、さらに10分攪拌した。その後、400メッシュにて濾過し、ろ液を塩酸にてpH7迄中和し、一晩放置した。これをろ過し、水で十分洗浄し、モノトシル化β-シクロデキストリン(化合物A)を12.77g得た。
このときのH-NMRチャートを図1に示した(H NMR (DMSO-d):2.43 (s, 3H), 3.22-3.65 (m, overlaps with HOD), 4.16-4.53 (m, 6H), 4.76-4.85 (m, 7H), 5.64-5.85 (m, 14H), 7.43 (d, J = 8.00 Hz, 2H), 7.75 (d, J = 8.00 Hz, 2H))。
H NMRの積分値より、純度は>99%であることを確認した。
合成例2
冷却管、攪拌棒付きフラスコに、合成例1で得た化合物A40g、1,3-プロパンジアミン184g(80当量)を仕込み、70℃で4時間加熱攪拌した。その後、メタノール:アセトン=1:3の混合溶剤1700g中に、この反応物を投入し一晩放置した。これをろ過し、メタノール:アセトン=1:3の混合溶剤で洗浄し、モノアミノ化β-シクロデキストリン(化合物B)を11.4g得た。
このときのH-NMRチャートを図2に示した(特徴的なピーク H NMR (DMSO-d): 1.12‐1.14 (m, 2H), 1.23‐1.29 (m, 1H), 1.44‐1.46 (m, 2H), 2.56‐2.81 (m, 4H), 3.14-3.38 (m, 16H), 3.59‐3.65 (m, 26H), 4.51 (br, 6H), 4.82 (s, 7H), 5.72 (br, 14H))。
H NMRの積分値より、純度は98.6%であることを確認した。
合成例3
冷却管、攪拌棒付きフラスコに、合成例2で得た化合物B11.4g、N,N-ジメチルホルムアミド16g、トリエチルアミン1gを仕込み溶解させ、ここにN,N-ジメチルホルムアミド1gと無水メタクリル酸1.5gの混合物を添加し、室温(25℃)で3時間攪拌した。
ここに、トリエチルアミン35gを加えたのち、無水酢酸27gとDMAP0.2gを加え、
60℃で3時間攪拌した。これを冷却し、水190gに投入し一晩放置した。その後、濾過して、アセチル化されたメタクリルアミド基を有するβシクロデキストリン(化合物C)を18g得た。
このときのH-NMRチャートを図3に示した(特徴的なピーク H NMR (DMSO-d): 1.06‐1.56 (m, 1H), 1.61‐2.01 (m, 69H), 2.80‐2.94 (m, 2H),3.65-3.72 (m, 8H), 3.82‐4.03 (m, 5H), 4.04‐4.02 (m, 15H), 4.55‐4.58 (m, 7H), 4.89‐4.91 (m, 7H), 4.92‐5.05 (m, 8H), 5.45 (s, 1H), 7.63 (t, J = 6.0 Hz, 1H))。
H NMRの積分値より、純度は98.6%であることを確認した。
また、2級水酸基のH NMRのピーク(5.72 (br, 14H))が消失していることから、水酸基の変性率は、90%以上である。
合成例4
攪拌棒付きフラスコに、N,N-ジメチルホルムアミド60g、苛性ソーダ(粉末)2.4gを混合攪拌し、ここに合成例1で得た化合物Aを3.0g投入した。氷冷しながらヨウ化メチル35gを数回に分けて添加し、1~3時間攪拌した。これに水400gを投入し一晩静置した。その後、濾過することにより、メチルエーテル化されたモノトシル化β-シクロデキストリン(化合物D)を0.9g得た。
このときのH-NMRチャートを図4に示した(特徴的なピークH NMR (DMSO-d):2.98―3.11 (m, 19H), 3.19―3.28 (m, 28H), 3.30‐3.59 (m, 42H), 3.61‐3.77 (m, 14H), 4.34 (s, 2H), 4.94‐5.15 (m, 7H), 7.48 (d, J = 7.6 Hz, 2H), 7.75 (d, J = 7.6 Hz, 2H))。
H NMRの積分値より、純度は97.7%であることを確認した。
また、2級水酸基のH NMRのピーク(5.64-5.85 (m, 14H))が消失していることから、水酸基の変性率は、90%以上である。
合成例5
冷却管、攪拌棒付きフラスコに、合成例4で得た化合物D3.16g、1,3-プロパンジアミン11.99gを仕込み、70℃で2時間加熱攪拌した。これを冷却しトルエン320mlを加え、水で洗浄した。有機層を硫酸ナトリウムで乾燥し、トルエンを留去・乾燥することによりメチルエーテル化された6-デオキシ-6-(3-アミノプロピルアミノ)-β-シクロデキストリン(化合物E)を2.29g得た。
このときのH-NMRチャートを図5に示した(特徴的なピークH NMR (DMSO-d): 1.49‐1.42 (m, 2H), 2.60‐2.52 (m, 2H), 2.87‐2.83 (m, 2H), 3.06‐3.73 (m, 102H), 5.04‐5.32m, 7H)。
H NMRの積分値より、純度は>99%であることを確認した。
合成例6
攪拌棒付きフラスコに、合成例5で得た化合物E1.74g、トリエチルアミン0.13g、トルエン4gを仕込み、攪拌した。ここへ無水メタクリル酸0.18gを滴下し、1時間さらに攪拌した。得られた溶液を水で3回洗浄し、硫酸ナトリウムで乾燥後、トルエンを留去・乾燥することによりメチルエーテル化されたメタクリルアミド基を有するβ-シクロデキストリン(化合物F)を1.51g得た。
このときのH-NMRチャートを図6に示した(特徴的なピークH NMR (DMSO-d): 1.58-1.55 (m, 2H), 1.83 (s, 3H), 2.90‐2.67 (m, 4H), 3.71‐3.02 (m, 102H), 5.31‐5.04 (m, 7H), 5.29 (m, 1H), 5.60 (m, 1H), 7.90 (t, J = 5.2 Hz, 1H)。
H NMRの積分値より、純度は>99%であることを確認した。
合成例7
攪拌棒付きフラスコに、合成例5で得た化合物E0.54g、カレンズMOI(共栄社化学社製)57mg、トルエン2gを仕込み、1時間攪拌した。得られた溶液を水で3回洗浄し、硫酸ナトリウムで乾燥後トルエンを留去・乾燥することによりメチルエーテル化されたメタクリル基を有するβ-シクロデキストリン(化合物G)を0.60g得た。
このときのH-NMRチャートを図7に示した(特徴的なピークH NMR (DMSO-d): δ1.51‐1.46 (m, 2H), 1.90 (s, 3H), 2.03‐1.86 (m, 4H), 4.05‐3.05 (m, 106H), 5.32‐5.00 (m, 7H), 5.68 (m, 1H), 5.89 (t, J = 5.2 Hz, 1H), 5.93 (t, J = 5.6 Hz, 1H), 6.05 (m, 1H)。
H NMRの積分値より、純度は>99%であることを確認した。
本発明のシクロデキストリン誘導体は、高分子材料に含まれる重合体を得るための原料となり得る。また、本発明のシクロデキストリン誘導体を使用して得られる重合体は、例えば、可逆性を有するホスト-ゲスト相互作用によって、分子どうしが架橋された構造を有し得る。

 

Claims (6)

  1. 下記一般式(1)で示される重合性不飽和基を有するシクロデキストリン誘導体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、
    (ア)下記一般式(2)
    -R-NH-R  (2)
    (Rは、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
    は、(メタ)アクリロイル基又は炭素数3~50のビニル基含有アルキル基を表す。)、
    (イ)下記一般式(3)
    -R-NHCONH-R  (3)
    (Rは、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
    は、炭素数4~50の(メタ)アクリロイルオキシアルキル基又は炭素数3~50のビニル基含有アルキル基を表す。)
    又は(ウ)下記一般式(4)
    -R-OCONH-R  (4)
    (R及びRは上記と同じ。)
    のいずれか1つを表す。
    は、水素原子、炭素数2~50のアシル基又は炭素数1~30のアルキル基を表す。
    は、下記一般式(5)で示される基を表す。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは、同一又は異なって、水素原子、炭素数2~50のアシル基、炭素数1~30のアルキル基又は-CONHR(Rは炭素数1~20のアルキル基)を表すものであり、Rの20%以上は炭素数2~50のアシル基、炭素数1~30のアルキル基又は-CONHRいずれか1つである。xは、5~7の整数))
  2. 上記アシル基は、アセチル基である請求項1記載の重合性不飽和基を有するシクロデキストリン誘導体。
  3. 上記アルキル基は、メチル基である請求項1記載の重合性不飽和基を有するシクロデキストリン誘導体。
  4. (1)モノ-6-トシル-シクロデキストリンを、ジアミノアルキル化合物(炭素数3~20)と反応させて、モノアミノ化合物を得る工程、
    (2)得られたモノアミノ化合物を、(メタ)アクリル酸無水物と反応させて、(メタ)アクリルアミド基を有するシクロデキストリンを得る工程、
    (3)得られた(メタ)アクリルアミド基を有するシクロデキストリンを、酸無水物と反応させて、アシル化物を得る工程を含む、
    下記一般式(6)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは、水素原子又は炭素数2~50のアシル基を表す。
    は、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
    は、水素基又はメチル基を表す。
    C1は、下記一般式(5a)で示される基を表す。
    Figure JPOXMLDOC01-appb-C000004
    (式中、R7aは、同一又は異なって、水素原子又は炭素数2~50のアシル基を表す。xは、5~7である。))
    で示される重合性不飽和基を有するシクロデキストリン誘導体の製造方法。
  5. (a)モノ-6-トシル-シクロデキストリンを、ハロゲン化アルキル(炭素数1~30)と反応させて、アルキル化物を得る工程、
    (b)得られたアルキル化物を、ジアミノアルキル化合物(炭素数3~20)と反応させて、モノアミノ化合物を得る工程、
    (c)得られたモノアミノ化合物を、(メタ)アクリル酸無水物と反応させて、(メタ)アクリルアミド基を有するシクロデキストリンを得る工程を含む、
    下記一般式(7)
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rは、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
    は、水素基又はメチル基を表す。
    C2は、下記一般式(5b)で示される基を表す。
    Figure JPOXMLDOC01-appb-C000006
    (式中、R7bは、同一又は異なって、水素原子又は炭素数1~30のアルキル基を表す。xは、5~7である。))
    で示される重合性不飽和基を有するシクロデキストリン誘導体の製造方法。
  6. (ア)モノ-6-トシル-シクロデキストリンを、ハロゲン化アルキルと反応させて、アルキル化物を得る工程、
    (イ)得られたアルキル化物を、ジアミノアルキル化合物(炭素数3~20)と反応させて、モノアミノ化合物を得る工程、
    (ウ)得られたモノアミノ化合物を、(メタ)アクリロイルオキシアルキルイソシアネートと反応させて、(メタ)アクリロイルオキシアルキル基を有するシクロデキストリンを得る工程を含む、
    下記一般式(8)
    Figure JPOXMLDOC01-appb-C000007
    (式中、Rは、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
    は、(メタ)アクリロイルオキシアルキル基を表す。
    C2は、下記一般式(5b)で示される基を表す。
    Figure JPOXMLDOC01-appb-C000008
    (式中、R7bは、同一又は異なって、水素原子又は炭素数1~30のアルキル基を表す。xは、5~7である。))
    で示される重合性不飽和基を有するシクロデキストリン誘導体の製造方法。
PCT/JP2021/027276 2020-07-29 2021-07-21 重合性不飽和基を有するシクロデキストリン誘導体 WO2022024908A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/006,926 US20240043573A1 (en) 2020-07-29 2021-07-21 Polymerizable unsaturated group-containing cyclodextrin derivative
JP2022500667A JP7143002B2 (ja) 2020-07-29 2021-07-21 重合性不飽和基を有するシクロデキストリン誘導体
EP21850057.7A EP4180464A4 (en) 2020-07-29 2021-07-21 CYCLODEXTRIN DERIVATIVE WITH POLYMERIZABLE UNSATURATED GROUP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-128269 2020-07-29
JP2020128269 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022024908A1 true WO2022024908A1 (ja) 2022-02-03

Family

ID=80036879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027276 WO2022024908A1 (ja) 2020-07-29 2021-07-21 重合性不飽和基を有するシクロデキストリン誘導体

Country Status (4)

Country Link
US (1) US20240043573A1 (ja)
EP (1) EP4180464A4 (ja)
JP (1) JP7143002B2 (ja)
WO (1) WO2022024908A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005517048A (ja) * 2001-11-30 2005-06-09 ジェンタ・サルース・リミテッド・ライアビリティ・カンパニー シクロデキストリングラフト生体適合性両親媒性ポリマーおよびその製造および使用方法
US8569451B2 (en) * 2009-04-15 2013-10-29 Biotage Ab Affinity material
WO2018159791A1 (ja) * 2017-03-02 2018-09-07 国立大学法人大阪大学 ホスト基含有重合性単量体、高分子材料及びその製造方法、並びに、包接化合物及びその製造方法
JP6624660B1 (ja) * 2019-03-06 2019-12-25 国立大学法人大阪大学 高分子材料及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013162019A1 (ja) * 2012-04-27 2013-10-31 国立大学法人大阪大学 自己修復性及び形状記憶性を有するゲル、及びその製造方法
US10064954B2 (en) * 2015-06-23 2018-09-04 Nian Wu Polymer-cyclodextrin-lipid conjugates
WO2019168128A1 (ja) * 2018-03-01 2019-09-06 国立大学法人大阪大学 高分子材料及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005517048A (ja) * 2001-11-30 2005-06-09 ジェンタ・サルース・リミテッド・ライアビリティ・カンパニー シクロデキストリングラフト生体適合性両親媒性ポリマーおよびその製造および使用方法
US8569451B2 (en) * 2009-04-15 2013-10-29 Biotage Ab Affinity material
WO2018159791A1 (ja) * 2017-03-02 2018-09-07 国立大学法人大阪大学 ホスト基含有重合性単量体、高分子材料及びその製造方法、並びに、包接化合物及びその製造方法
JP6624660B1 (ja) * 2019-03-06 2019-12-25 国立大学法人大阪大学 高分子材料及びその製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
KAYA ETHEM, JOURNAL OF POLYMER SCIENCE: PART A, vol. 48, 2010, pages 581 - 592
KAYA, E. ET AL.: "Synthesis and characterization of physical crosslinking systems based on cyclodextrin inclusion/host-guest complexation", JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY, vol. 48, no. 3, 2010, pages 581 - 592, XP055903283 *
LIN YUANJING, JOURNAL OF SEPARATION SCIENCE, vol. 40, no. 19, 2017, pages 3754 - 3762
PU, W. F. ET AL.: "Synthesis and evaluation of beta- cyclodextrin-functionalized hydrophobically associating polyacrylamide", RSC ADVANCES, vol. 6, no. 98, 2016, pages 96006 - 96014, XP055903286 *
See also references of EP4180464A4
SONG MENG-MENG, ACS APPLIED MATERIALS & INTERFACES, vol. 10, no. 17, 2018, pages 15021 - 15029

Also Published As

Publication number Publication date
EP4180464A4 (en) 2024-06-05
EP4180464A1 (en) 2023-05-17
US20240043573A1 (en) 2024-02-08
JPWO2022024908A1 (ja) 2022-02-03
JP7143002B2 (ja) 2022-09-28

Similar Documents

Publication Publication Date Title
JP6950984B2 (ja) ホスト基含有重合性単量体、高分子材料及びその製造方法、並びに、包接化合物及びその製造方法
WO2020179908A1 (ja) 高分子材料及びその製造方法
US5608015A (en) Processes for producing cyclodextrin derivatives and polymers containing immobilized cyclodextrin therein
US10464882B2 (en) Y-type discrete polyethylene glycol derivative and preparation method thereof
JP6784932B2 (ja) 生体機能性分子または薬物キャリアの化学修飾用生分解性ポリエチレングリコール誘導体
JP2002167368A (ja) アルキル置換デンドリマーおよびその製造法
WO2022024908A1 (ja) 重合性不飽和基を有するシクロデキストリン誘導体
JP5204409B2 (ja) 擬ポリロタキサンおよびポリロタキサン
CN111801355B (zh) 高分子材料及其制造方法
WO2023171709A1 (ja) 樹脂組成物及びその製造方法
Aravind et al. Single step syntheses of lactosylated clusters by telomerizations
US11021547B2 (en) Method of synthesising 6-deoxy-6-amino-β-D-glucopyranoside-containing polymers and their precursors
JP6731381B2 (ja) ポリエチレングリコール鎖が導入された化合物の製造方法
JP5140294B2 (ja) アクリル(メタクリル)基含有糖誘導体、及びそのアクリル(メタクリル)基含有糖誘導体の製造方法
JP2011038093A (ja) ポリビニルエーテル樹脂
KR101456526B1 (ko) 사이클로덱스트린 유도체 및 이를 포함하는 저굴절률 소재
WO2024128306A1 (ja) 複合ポリマー材料及びその製造方法並びに光学材料
WO2023003043A1 (ja) シリコーン系高分子化合物及びシリコーン系高分子材料
JP2005105215A (ja) メチルチオメチル基で修飾されたエチレングリコールポリマー、その合成方法及びその利用
JP5334484B2 (ja) ラムノシドエステル誘導体およびその製造方法
JP3475434B2 (ja) アゾ基の導入方法
JP2002167370A (ja) アルキルアゾベンゼン置換デンドリマーおよびその製造法
JP4381002B2 (ja) ガラクトース二硫酸誘導体
JP5334437B2 (ja) キシロシドエステル誘導体およびその製造方法
MXPA06007751A (en) Colorant compatible synthetic thickener for paint

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022500667

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850057

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18006926

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021850057

Country of ref document: EP

Effective date: 20230213

NENP Non-entry into the national phase

Ref country code: DE