WO2022024908A1 - 重合性不飽和基を有するシクロデキストリン誘導体 - Google Patents
重合性不飽和基を有するシクロデキストリン誘導体 Download PDFInfo
- Publication number
- WO2022024908A1 WO2022024908A1 PCT/JP2021/027276 JP2021027276W WO2022024908A1 WO 2022024908 A1 WO2022024908 A1 WO 2022024908A1 JP 2021027276 W JP2021027276 W JP 2021027276W WO 2022024908 A1 WO2022024908 A1 WO 2022024908A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- carbon atoms
- cyclodextrin
- general formula
- meth
- Prior art date
Links
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical class O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 title claims abstract description 112
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 90
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 52
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 46
- 125000002252 acyl group Chemical group 0.000 claims abstract description 40
- 125000001424 substituent group Chemical group 0.000 claims abstract description 21
- 125000002947 alkylene group Chemical group 0.000 claims abstract description 19
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims abstract description 13
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 claims abstract description 6
- 229920000858 Cyclodextrin Polymers 0.000 claims description 81
- 150000001875 compounds Chemical class 0.000 claims description 39
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 14
- 150000001350 alkyl halides Chemical class 0.000 claims description 14
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000012948 isocyanate Substances 0.000 claims description 8
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims description 7
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 6
- 150000002513 isocyanates Chemical class 0.000 claims description 6
- 150000008065 acid anhydrides Chemical class 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 49
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 36
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 30
- 230000015572 biosynthetic process Effects 0.000 description 22
- 238000003786 synthesis reaction Methods 0.000 description 22
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 21
- 238000000034 method Methods 0.000 description 21
- 239000000178 monomer Substances 0.000 description 20
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 238000005160 1H NMR spectroscopy Methods 0.000 description 16
- 238000005481 NMR spectroscopy Methods 0.000 description 14
- 239000001116 FEMA 4028 Substances 0.000 description 13
- -1 amino compound Chemical class 0.000 description 13
- 229960004853 betadex Drugs 0.000 description 13
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 12
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 235000011121 sodium hydroxide Nutrition 0.000 description 12
- 235000011175 beta-cyclodextrine Nutrition 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 8
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000001226 reprecipitation Methods 0.000 description 7
- 239000012312 sodium hydride Substances 0.000 description 7
- 229910000104 sodium hydride Inorganic materials 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000001953 recrystallisation Methods 0.000 description 6
- 229920001450 Alpha-Cyclodextrin Polymers 0.000 description 5
- 229940126062 Compound A Drugs 0.000 description 5
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 5
- 125000002088 tosyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C([H])([H])[H])S(*)(=O)=O 0.000 description 5
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 4
- GDSRMADSINPKSL-HSEONFRVSA-N gamma-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO GDSRMADSINPKSL-HSEONFRVSA-N 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- HFHDHCJBZVLPGP-RWMJIURBSA-N alpha-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO HFHDHCJBZVLPGP-RWMJIURBSA-N 0.000 description 3
- 229940043377 alpha-cyclodextrin Drugs 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 229940097362 cyclodextrins Drugs 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 229940080345 gamma-cyclodextrin Drugs 0.000 description 3
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 3
- 125000005395 methacrylic acid group Chemical group 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- DPNXHTDWGGVXID-UHFFFAOYSA-N 2-isocyanatoethyl prop-2-enoate Chemical compound C=CC(=O)OCCN=C=O DPNXHTDWGGVXID-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- KWBIXTIBYFUAGV-UHFFFAOYSA-N ethylcarbamic acid Chemical group CCNC(O)=O KWBIXTIBYFUAGV-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- HVTICUPFWKNHNG-UHFFFAOYSA-N iodoethane Chemical compound CCI HVTICUPFWKNHNG-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical group CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 2
- DCUFMVPCXCSVNP-UHFFFAOYSA-N methacrylic anhydride Chemical compound CC(=C)C(=O)OC(=O)C(C)=C DCUFMVPCXCSVNP-UHFFFAOYSA-N 0.000 description 2
- RBQRWNWVPQDTJJ-UHFFFAOYSA-N methacryloyloxyethyl isocyanate Chemical compound CC(=C)C(=O)OCCN=C=O RBQRWNWVPQDTJJ-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- PVWOIHVRPOBWPI-UHFFFAOYSA-N n-propyl iodide Chemical compound CCCI PVWOIHVRPOBWPI-UHFFFAOYSA-N 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- PDVFSPNIEOYOQL-UHFFFAOYSA-N (4-methylphenyl)sulfonyl 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)OS(=O)(=O)C1=CC=C(C)C=C1 PDVFSPNIEOYOQL-UHFFFAOYSA-N 0.000 description 1
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- FXXACINHVKSMDR-UHFFFAOYSA-N acetyl bromide Chemical compound CC(Br)=O FXXACINHVKSMDR-UHFFFAOYSA-N 0.000 description 1
- LEKJTGQWLAUGQA-UHFFFAOYSA-N acetyl iodide Chemical compound CC(I)=O LEKJTGQWLAUGQA-UHFFFAOYSA-N 0.000 description 1
- 230000000397 acetylating effect Effects 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- 239000012867 bioactive agent Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- WUDNUHPRLBTKOJ-UHFFFAOYSA-N ethyl isocyanate Chemical compound CCN=C=O WUDNUHPRLBTKOJ-UHFFFAOYSA-N 0.000 description 1
- 125000003916 ethylene diamine group Chemical group 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- SYECJBOWSGTPLU-UHFFFAOYSA-N hexane-1,1-diamine Chemical group CCCCCC(N)N SYECJBOWSGTPLU-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- HAMGRBXTJNITHG-UHFFFAOYSA-N methyl isocyanate Chemical compound CN=C=O HAMGRBXTJNITHG-UHFFFAOYSA-N 0.000 description 1
- UFEJKYYYVXYMMS-UHFFFAOYSA-N methylcarbamic acid Chemical group CNC(O)=O UFEJKYYYVXYMMS-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/0006—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
- C08B37/0009—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
- C08B37/0012—Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
- C08L5/16—Cyclodextrin; Derivatives thereof
Definitions
- the present invention relates to a cyclodextrin derivative having a polymerizable unsaturated group.
- Patent Document 1 and Patent Documents a polymer material having self-repairing property and excellent elasticity and a host group-containing polymerizable monomer having a cyclodextrin derivative as a host group as a host group have been proposed (Patent Document 1 and Patent Documents). 2).
- Patent Documents 1 and 2 cyclodextrin and acrylamide are reacted in dimethylformamide (DMF) in the presence of a p-toluenesulfonic acid catalyst, and the crude product obtained by acetone reprecipitation is purified by a column and collected.
- DMF dimethylformamide
- a p-toluenesulfonic acid catalyst a p-toluenesulfonic acid catalyst
- Patent Document 3 describes a bioactive agent carrier in which cyclodextrin is grafted on polyethylene glycol.
- Patent Document 4 Non-Patent Documents 1 and 2 report a monomer in which a methacrylic group is introduced into cyclodextrin having an ethylenediamine moiety. However, this monomer does not denature the hydroxyl group of cyclodextrin, and there is a problem in compatibility with other monomers to be copolymerized.
- Non-Patent Document 3 reports a monomer in which a methacrylic group is introduced into a cyclodextrin having a diaminohexane moiety, but there is also a problem in compatibility.
- the present invention It is a cyclodextrin derivative having a polymerizable unsaturated group represented by the following general formula (1).
- R 1 is (A) The following general formula (2) -R 3 -NH-R 4 (2) (R 3 is an alkylene group having 3 to 20 carbon atoms, and may be linear or branched, and may have a substituent.
- R4 represents a (meth) acryloyl group or a vinyl group-containing alkyl group having 3 to 50 carbon atoms.
- B The following general formula (3) -R 5 -NHCONH-R 6 (3) (R 5 is an alkylene group having 3 to 20 carbon atoms, which may be linear or branched, and may have a substituent.
- R 6 represents a (meth) acryloyloxyalkyl group having 4 to 50 carbon atoms or a vinyl group-containing alkyl group having 3 to 50 carbon atoms.
- R5 and R6 are the same as above.
- R2 represents a hydrogen atom, an acyl group having 2 to 50 carbon atoms, or an alkyl group having 1 to 30 carbon atoms.
- R c represents a group represented by the following general formula (5).
- R 7 is the same or different, hydrogen atom, acyl group having 2 to 50 carbon atoms, alkyl group having 1 to 30 carbon atoms or -CONHR 8 (R 8 is an alkyl group having 1 to 20 carbon atoms). 20% or more of R 7 is any one of an acyl group having 2 to 50 carbon atoms, an alkyl group having 1 to 30 carbon atoms, or -CONHR 8. x is an integer of 5 to 7).
- the alkyl group is preferably a methyl group.
- the acyl group is preferably an acetyl group.
- the present invention (1) A step of reacting a mono-6-tosyl-cyclodextrin with a diaminoalkyl compound (3 to 20 carbon atoms) to obtain a monoamino compound. (2) A step of reacting the obtained monoamino compound with (meth) acrylic acid anhydride to obtain a cyclodextrin having a (meth) acrylamide group. (3) A step of reacting the obtained cyclodextrin having a (meth) acrylamide group with an acid anhydride to obtain an acylated product is included.
- R 2 represents a hydrogen atom or an acyl group having 2 to 50 carbon atoms.
- R 3 is an alkylene group having 3 to 20 carbon atoms, and may be linear or branched, and may have a substituent.
- R 8 represents a hydrogen group or a methyl group.
- RC1 represents a group represented by the following general formula (5a).
- the present invention (A) A step of reacting mono-6-tosyl-cyclodextrin with an alkyl halide (1 to 30 carbon atoms) to obtain an alkylated product. (B) A step of reacting the obtained alkylated product with a diaminoalkyl compound (3 to 20 carbon atoms) to obtain a monoamino compound. (C) The step of reacting the obtained monoamino compound with (meth) acrylic acid anhydride to obtain a cyclodextrin having a (meth) acrylamide group.
- R 3 is an alkylene group having 3 to 20 carbon atoms, and may be linear or branched, and may have a substituent.
- R 8 represents a hydrogen group or a methyl group.
- RC2 represents a group represented by the following general formula (5b).
- R 7b represents a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, which is the same or different.
- X is 5 to 7). It is also a method for producing a cyclodextrin derivative having a polymerizable unsaturated group represented by.
- the present invention (A) A step of reacting mono-6-tosyl-cyclodextrin with an alkyl halide to obtain an alkylated product. (A) A step of reacting the obtained alkylated product with a diaminoalkyl compound (3 to 20 carbon atoms) to obtain an amino compound. (C) A step of reacting the obtained amino compound with (meth) acryloyloxyalkyl isocyanate to obtain a cyclodextrin having a (meth) acryloyloxyalkyl group.
- R 5 is an alkylene group having 3 to 20 carbon atoms, which may be linear or branched, and may have a substituent.
- R 6 represents a (meth) acryloyloxyalkyl group.
- RC2 represents a group represented by the following general formula (5b).
- R 7b represents a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, which is the same or different.
- X is 5 to 7). It is also a method for producing a cyclodextrin derivative having a polymerizable unsaturated group represented by.
- the cyclodextrin derivative having a polymerizable unsaturated group of the present invention is represented by the following general formula (1).
- the "cyclodextrin derivative having a polymerizable unsaturated group” may be referred to as “cyclodextrin derivative” for convenience.
- R 1 is (A) The following general formula (2) -R 3 -NH-R 4 (2) (R 3 is an alkylene group having 3 to 20 carbon atoms, and may be linear or branched, and may have a substituent.
- R4 represents a (meth) acryloyl group or a vinyl group-containing alkyl group having 3 to 50 carbon atoms.
- B The following general formula (3) -R 5 -NHCONH-R 6 (3) (R 5 is an alkylene group having 3 to 20 carbon atoms, which may be linear or branched, and may have a substituent.
- R 6 represents a (meth) acryloyloxyalkyl group having 4 to 50 carbon atoms or a vinyl group-containing alkyl group having 3 to 50 carbon atoms.
- R5 and R6 are the same as above.
- R2 represents a hydrogen atom, an acyl group having 2 to 50 carbon atoms, or an alkyl group having 1 to 30 carbon atoms.
- R c represents a group represented by the following general formula (5).
- the RC is a monovalent group in which one hydroxyl group is removed from a molecule having a structure in which cyclodextrin is substituted with another organic group, which can exert a function as a host group.
- Cyclodextrin is at least one selected from the group consisting of ⁇ -cyclodextrin, ⁇ -cyclodextrin and ⁇ -cyclodextrin.
- ⁇ -cyclodextrin is preferable in terms of synthetic surface, choice of guest molecule, and the like.
- "a molecule having a structure in which cyclodextrin is substituted with another organic group” may be referred to as "cyclodextrins" for convenience.
- the one hydroxyl group to be removed is preferably a primary hydroxyl group from the viewpoint of easiness of synthesis due to reactivity.
- the above RC has a structure in which 20% or more of the hydrogen atom (R 7 ) of the hydroxyl group of cyclodextrin is substituted with at least one group selected from the group consisting of an acyl group, an alkyl group and -CONHR 8 .
- the hydrogen atom of a specific amount of the hydroxyl group of cyclodextrin may be substituted only with an acyl group, may be substituted only with an alkyl group, or may be substituted only with -CONHR 8 . May be good.
- acyl group or the like at least one group selected from the group consisting of an acyl group, an alkyl group and -CONHR 8 " may be referred to as "acyl group or the like" for convenience.
- acyl group examples include an acetyl group, propionyl, butyroyl, and formyl group.
- the acyl group may further have a substituent.
- Acyl groups are acetyl groups in view of the fact that cyclodextrin derivatives show higher affinity for both hydrophilic and hydrophobic polymerizable monomers, and that polymers are more likely to form host-guest interactions. Is preferable.
- the number of carbon atoms of the alkyl group is not particularly limited.
- the alkyl group may have 1 to 4 carbon atoms from the viewpoint that it is easily dissolved in other polymerizable monomers used in combination with the cyclodextrin derivative and that the cyclodextrin derivative easily forms a host-guest interaction. preferable.
- the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group and a butyl group.
- the hydrocarbon group is a propyl group or a butyl group, it may be linear or branched.
- the alkyl group may have a substituent as long as the effect of the present invention is not impaired.
- the number of carbon atoms can be appropriately selected or a plurality of types can be combined. Of these, a methyl group is preferable from the viewpoint of synthesis and design due to compatibility with other polymerizable monomers.
- -CONHR 8 is preferably a methylcarbamate group or an ethylcarbamate group.
- -CONHR 8 is an ethylcarbamate group from the viewpoint that the cyclodextrin derivative is easily dissolved in other polymerizable monomers used in combination, and the polymer composed of the cyclodextrin derivative is likely to form a host-guest interaction. Is preferable.
- cyclodextrin hydrogen atoms of up to N-1 hydroxyl groups per molecule can be substituted with acyl groups or the like.
- the R c has a structure in which the hydrogen atom of 20% or more of the hydroxyl groups of the total number N-1 of the hydroxyl groups present in one molecule of the cyclodextrins is substituted with the acyl group or the like.
- the cyclodextrin derivative is easily dissolved in other polymerizable monomers used in combination.
- the hydrogen atom of 50% or more of the hydroxyl groups of the total number N-1 of the hydroxyl groups present in one molecule of the cyclodextrins is substituted with the acyl group or the like in the R c .
- the hydrogen atom of 80% or more of the hydroxyl groups in the total number N-1 is substituted with the above acyl group or the like.
- the R c has a structure in which the hydrogen atoms of four or more hydroxyl groups out of the total number of hydroxyl groups N-1 present in one molecule of ⁇ -cyclodextrins are substituted with the acyl group or the like. In this case, it is easily dissolved in other polymerizable monomers used in combination with the cyclodextrin derivative.
- R c it is more preferable that the hydrogen atoms of 10 or more hydroxyl groups out of the total number of hydroxyl groups N-1 existing in one molecule of ⁇ -cyclodextrins are substituted with the acyl group or the like. It is particularly preferable that the hydrogen atoms of 16 or more hydroxyl groups out of the total number N-1 of the above are substituted with the above acyl groups or the like.
- the R c has a structure in which the hydrogen atoms of 5 or more hydroxyl groups out of the total number of hydroxyl groups N-1 existing in one molecule of ⁇ -cyclodextrins are substituted with the acyl group or the like. In this case, it is easily dissolved in other polymerizable monomers used in combination with the cyclodextrin derivative.
- R c it is more preferable that the hydrogen atoms of 12 or more hydroxyl groups out of the total number of hydroxyl groups N-1 existing in one molecule of the ⁇ -cyclodextrin derivative are substituted with the acyl group or the like. It is particularly preferable that the hydrogen atoms of 19 or more hydroxyl groups out of the total number N-1 of the above are substituted with the above acyl groups or the like.
- R 1 and RC having a polymerizable unsaturated group are linked via a nitrogen atom derived from an amino group. There is.
- R 1 is one of them.
- R 3 is an alkylene group having 3 to 20 carbon atoms, and may be linear or branched, and may have a substituent.
- R4 represents a (meth) acryloyl group or a vinyl group-containing alkyl group having 3 to 50 carbon atoms.
- It is represented by.
- the cyclodextrin derivative having the structure represented by the general formula (2) has a structure derived from a diaminoalkyl compound called R2 - N-R3 - NH-.
- the diaminoalkyl compound used for producing a cyclodextrin derivative is not preferable in terms of toxicity if the alkyl group has too few carbon atoms. Further, if the main chain of the cyclodextrin derivative of the present invention is too close to the cyclodextrin during polymerization, the degree of freedom of the molecule including steric hindrance is reduced, which is not preferable in terms of functional expression. On the other hand, if the number of carbon atoms is too large, the distance between the main chain and cyclodextrin during polymerization will be too large when considering the synthetic surface (particularly the purification process by reprecipitation or recrystallization), raw material procurement, etc.
- R 1 is (a) the following general formula (3).
- -R 5 -NHCONH-R 6 (3) (R 5 is an alkylene group having 2 to 20 carbon atoms, which may be linear or branched, and may have a substituent.
- R 6 represents a (meth) acryloyloxyalkyl group having 4 to 50 carbon atoms or a vinyl group-containing alkyl group having 3 to 50 carbon atoms. ) May be.
- the cyclodextrin derivative has a functional group exhibiting radical polymerizable via a urea bond, and contains a (meth) acryloyloxyalkyl group or a vinyl group-containing alkyl group. It is a structure to have.
- the alkyl group of the (meth) acryloyloxyalkyl group preferably has 1 to 10 carbon atoms, and specific examples thereof include structures derived from isocyanates such as 2-methacryloyloxyethyl isocyanate and 2-acryloyloxyethyl isocyanate.
- the number of carbon atoms R5 of the diaminoalkyl group is preferably 3 to 20 for the same reason as R3 above. More preferably, it is 3 to 10.
- R 1 is (c) the following general formula (4). -R 5 -OCONH-R 6 (4) ( R5 and R6 are the same as above.).
- the cyclodextrin derivative has a functional group exhibiting radical polymerizable via a urethane bond, and has a (meth) acryloyloxyalkyl group or a vinyl group-containing alkyl group. It is a structure to have.
- the cyclodextrin derivative of the present invention is not limited in its production method, and can be appropriately produced based on each structure of the cyclodextrin derivative of the present invention.
- a method for producing based on the reaction formula shown below can be mentioned.
- ⁇ -CD-Ts mono-6-tosyl- ⁇ -cyclodextrin
- ⁇ -CD-Ts mono-6-tosyl- ⁇ -cyclodextrin
- a diaminoalkyl compound tosylated by a known method
- the mono-6-tosyl- ⁇ -cyclodextrin obtained by tosylating one primary hydroxyl group of the cyclodextrin used in the present invention can be obtained by a known method. That is, it can be obtained by reprecipitation or recrystallization after reacting with paratoluenesulfonic acid chloride and cyclodextrin under predetermined conditions. Further, it can be similarly obtained by using paratoluenesulfonic acid anhydride instead of paratoluenesulfonic acid chloride. Further, it can be expected that ⁇ and ⁇ -cyclodextrin can be similarly obtained by examining the conditions of recrystallization and reprecipitation.
- step (2) the monoamino compound is reacted with (meth) acrylic acid anhydride to obtain cyclodextrin having a (meth) acrylamide group (step (2)).
- This reaction is preferably carried out using an aprotic polar solvent such as N, N-dimethylformamide (DMF) in the presence of a base such as triethylamine.
- DMF N, N-dimethylformamide
- the hydrogen atom of the hydroxyl group or the amino group present in the cyclodextrin having a (meth) acrylamide group is replaced with an acyl group to obtain an acylated product (step (3)).
- an acylated product for example, in the presence of acid anhydride, N, N-dimethyl-4-aminopyridine (DMAP) or the like is used as a catalyst, triethylamine or the like is used as a base, and a solvent capable of dissolving all of these, DMF or the like, is used. Then, the method of acylating the cyclodextrin having the above-mentioned (meth) acrylamide group can be mentioned.
- DMAP N, N-dimethyl-4-aminopyridine
- acetic anhydride may be used, and acetic anhydride or the like may be used instead of acetic anhydride.
- a base such as pyridine and a catalyst may be used instead of the above DMAP and triethylamine.
- n in the above reaction formula represents an integer of 20% or more of the total number N-1 of the total number of hydroxyl groups of one cyclodextrin molecule.
- substitution with an acetyl group can be performed with sodium hydride. It can be carried out by a method of reacting acetyl halide in the presence of the above-mentioned cyclodextrin having a (meth) acrylamide group or the like. In this case, a method of dropping a solution of cyclodextrin having a halogenated acetyl and a (meth) acrylamide group onto a suspension of sodium hydride can be adopted.
- acetyl halide examples include acetyl bromide and acetyl iodide.
- the cyclodextrin derivative obtained as described above can be efficiently produced with higher yield and higher purity by reprecipitation or recrystallization.
- cyclodextrin derivative of the present invention can be produced, for example, based on the reaction formula shown below when producing the cyclodextrin derivative represented by the general formula (7).
- R 3 and R 8 are the same as above.
- R 10 represents an alkyl group having 1 to 30 carbon atoms, and X represents a halogen atom.
- a mono-6-tosyl- ⁇ -cyclodextrin obtained by tosylating a primary hydroxyl group of cyclodextrin by the above method is reacted with an alkyl halide in the presence of sodium hydride or sodium hydroxide.
- an alkyl halide in the presence of sodium hydride or sodium hydroxide.
- m in the above reaction formula represents an integer of 20% or more of the total number N-1 of the total number of hydroxyl groups of one cyclodextrin molecule.
- an alkyl group for a hydrogen atom of a hydroxyl group existing in the tosylated cyclodextrin
- a known alkylation reaction can be widely adopted.
- the substitution with an alkyl group can be carried out by a method of reacting an alkyl halide with the above-mentioned tosylated cyclodextrin in the presence of sodium hydride or sodium hydroxide.
- sodium hydroxide a method of dropping a solution of an alkyl halide and a tosylated cyclodextrin onto a suspension of sodium hydroxide can be adopted.
- alkyl halide examples include methyl iodide, ethyl iodide, and propyl iodide.
- step (b) it is reacted with a diaminealkyl compound to replace the tosyl group to obtain a monoamino compound (step (b)). Further, the (meth) acrylic acid anhydride is reacted to obtain a cyclodextrin derivative having a (meth) acrylamide group (step (c)).
- This reaction is preferably carried out using an aprotic polar solvent such as N, N-dimethylformamide (DMF) in the presence of a base such as triethylamine.
- DMF N, N-dimethylformamide
- the obtained cyclodextrin derivative can be efficiently produced with higher yield and higher purity by reprecipitation or recrystallization.
- cyclodextrin derivative of the present invention can be produced, for example, based on the reaction formula shown below when producing the cyclodextrin derivative represented by the general formula (8).
- R 5 is an alkylene group having 3 to 20 carbon atoms, which may be linear or branched, and may have a substituent.
- R 6 represents a (meth) acryloyloxyalkyl group having 4 to 50 carbon atoms.
- R 10 is the same as above.
- an alkyl group for a hydrogen atom of a hydroxyl group existing in the tosylated cyclodextrin
- a known alkylation reaction can be widely adopted.
- the substitution with an alkyl group can be carried out by a method of reacting an alkyl halide with the above-mentioned tosylated cyclodextrin in the presence of sodium hydride or sodium hydroxide.
- sodium hydroxide a method of dropping a solution of an alkyl halide and a tosylated cyclodextrin onto a suspension of sodium hydroxide can be adopted.
- step (a) it is reacted with a diaminealkyl compound to replace the tosyl group to obtain a monoamino compound (step (a)). Further, the isocyanate is reacted to obtain a cyclodextrin derivative having a (meth) acloyloxyalkyl group (step (c)). Examples of the isocyanate include 2-methacryloyloxyethyl isocyanate and 2-acryloyloxyethyl isocyanate.
- the obtained cyclodextrin derivative can be efficiently produced with higher yield and higher purity by reprecipitation or recrystallization.
- R 1 of the general formula (1) is represented by the general formula (4)
- R 1 of the general formula (1) is represented by the general formula (4)
- the hydrogen atom of the hydroxyl group of the tosylated cyclodextrin is replaced with an alkyl group, and then reacted with an amino alcohol compound to replace the tosyl group.
- An alcohol compound is further reacted with the above isocyanate to obtain a cyclodextrin derivative having a (meth) acloyloxyalkyl group.
- the cyclodextrin derivative of the present invention can be a raw material for obtaining a polymer contained in a polymer material.
- Polymers obtained using cyclodextrin derivatives can have a structure in which molecules are crosslinked, for example, by a reversible host-guest interaction.
- the polymer obtained by using the cyclodextrin derivative can be, for example, a mobile crosslinked polymer described later.
- the mobile crosslinked polymer has a structure formed by the main chain of another polymer penetrating the inside of the ring of the host group (cyclic molecule having a cyclodextrin structure) of the polymer side chain. Coalescence is exemplified.
- the cyclodextrin derivative of the present invention can exhibit high affinity for both a hydrophilic polymerizable monomer and a hydrophobic polymerizable monomer, and the cyclodextrin derivative can be used for various polymerizations. Copolymerization with a sex monomer is possible. In particular, the cyclodextrin derivative of the present invention exhibits high solubility in a hydrophobic polymerizable monomer, so that it is a hydrophobic single with a host group-containing polymerizable monomer, which has been considered difficult in the past. Copolymerization with a weight can be performed in a wide range of composition ratios, and the degree of freedom in designing the target polymer material can be increased.
- the cyclodextrin derivative of the present invention can be used as a radiation (ultraviolet) curable resin composition by using it in combination with other radiation (ultraviolet) polymerizable compounds.
- Synthesis example 1 400 g of water, 44.78 g of ⁇ -cyclodextrin, and 18.86 g of p-toluenesulfonic acid anhydride were placed in a flask with a cooling tube and a stirring rod, and the mixture was stirred at 30 ° C. for 2 hours. 40.00 g of a 48% aqueous sodium hydroxide solution was added thereto, and the mixture was further stirred for 10 minutes. Then, the mixture was filtered through 400 mesh, the filtrate was neutralized with hydrochloric acid to pH 7, and left overnight. This was filtered and washed thoroughly with water to obtain 12.77 g of monotosylated ⁇ -cyclodextrin (Compound A).
- Synthesis example 4 60 g of N, N-dimethylformamide and 2.4 g of caustic soda (powder) were mixed and stirred in a flask with a stirring rod, and 3.0 g of the compound A obtained in Synthesis Example 1 was added thereto. While cooling with ice, 35 g of methyl iodide was added in several portions, and the mixture was stirred for 1 to 3 hours. 400 g of water was added thereto and the mixture was allowed to stand overnight. Then, by filtration, 0.9 g of methyl etherified monotosylated ⁇ -cyclodextrin (Compound D) was obtained. The 1 H-NMR chart at this time is shown in FIG.
- Synthesis example 5 3.16 g of the compound D and 11.99 g of 1,3-propanediamine obtained in Synthesis Example 4 were charged in a flask with a cooling tube and a stirring rod, and the mixture was heated and stirred at 70 ° C. for 2 hours. This was cooled, 320 ml of toluene was added, and the mixture was washed with water. The organic layer was dried over sodium sulfate, and toluene was distilled off and dried to obtain 2.29 g of 6-deoxy-6- (3-aminopropylamino) - ⁇ -cyclodextrin (compound E) methyl etherified. rice field. The 1 H-NMR chart at this time is shown in FIG.
- Synthesis example 6 1.74 g of the compound E, 0.13 g of triethylamine and 4 g of toluene obtained in Synthesis Example 5 were charged in a flask with a stirring rod and stirred. 0.18 g of methacrylic anhydride was added dropwise thereto, and the mixture was further stirred for 1 hour. The obtained solution was washed 3 times with water, dried over sodium sulfate, and then toluene was distilled off and dried to obtain 1.51 g of ⁇ -cyclodextrin (Compound F) having a methyl etherified methacrylic amide group. rice field. The 1 H-NMR chart at this time is shown in FIG.
- Synthesis example 7 A flask with a stirring rod was charged with 0.54 g of the compound E obtained in Synthesis Example 5, 57 mg of Calends MOI (manufactured by Kyoeisha Chemical Co., Ltd.), and 2 g of toluene, and stirred for 1 hour. The obtained solution was washed with water three times, dried over sodium sulfate, and then toluene was distilled off and dried to obtain 0.60 g of ⁇ -cyclodextrin (compound G) having a methyl etherified methacrylic group. The 1 H-NMR chart at this time is shown in FIG.
- the cyclodextrin derivative of the present invention can be a raw material for obtaining a polymer contained in a polymer material. Further, the polymer obtained by using the cyclodextrin derivative of the present invention may have a structure in which molecules are crosslinked by, for example, a host-guest interaction having reversibility.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
Description
特許文献1及び2には、シクロデキストリンとアクリルアミドをパラトルエンスルホン酸触媒存在下にてジメチルホルムアミド(DMF)中で反応させ、アセトン再沈殿で得られた粗体をカラムで精製して収集し、そのモノマーをアセチル化して、アセチル変性体を得る方法が記載されている。しかしながら、このような製造工程では、コストがかりすぎるうえに大量生産が難しい面がある。
特許文献4、非特許文献1及び2には、エチレンジアミン部位を有するシクロデキストリンにメタクリル基を導入したモノマーが報告されている。しかし、このモノマーはシクロデキストリンの水酸基を変性しておらず、共重合させる他のモノマーとの相溶性に問題がある。
非特許文献3には、ジアミノヘキサン部位を有するシクロデキストリンにメタクリル基を導入したモノマーが報告されているが、同様に相溶性に問題がある。
下記一般式(1)で示される重合性不飽和基を有するシクロデキストリン誘導体である。
(ア)下記一般式(2)
-R3-NH-R4 (2)
(R3は、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
R4は、(メタ)アクリロイル基又は炭素数3~50のビニル基含有アルキル基を表す。)、
(イ)下記一般式(3)
-R5-NHCONH-R6 (3)
(R5は、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
R6は、炭素数4~50の(メタ)アクリロイルオキシアルキル基又は炭素数3~50のビニル基含有アルキル基を表す。)
又は(ウ)下記一般式(4)
-R5-OCONH-R6 (4)
(R5及びR6は上記と同じ。)
のいずれか1つを表す。
R2は、水素原子、炭素数2~50のアシル基又は炭素数1~30のアルキル基を表す。
Rcは、下記一般式(5)で示される基を表す。
(1)モノ-6-トシル-シクロデキストリンを、ジアミノアルキル化合物(炭素数3~20)と反応させて、モノアミノ化合物を得る工程、
(2)得られたモノアミノ化合物を、(メタ)アクリル酸無水物と反応させて、(メタ)アクリルアミド基を有するシクロデキストリンを得る工程、
(3)得られた(メタ)アクリルアミド基を有するシクロデキストリンを、酸無水物と反応させて、アシル化物を得る工程を含む、
下記一般式(6)
R3は、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
R8は、水素基又はメチル基を表す。
RC1は、下記一般式(5a)で示される基を表す。
(a)モノ-6-トシル-シクロデキストリンを、ハロゲン化アルキル(炭素数1~30)と反応させて、アルキル化物を得る工程、
(b)得られたアルキル化物を、ジアミノアルキル化合物(炭素数3~20)と反応させて、モノアミノ化合物を得る工程、
(c)得られたモノアミノ化合物を、(メタ)アクリル酸無水物と反応させて、(メタ)アクリルアミド基を有するシクロデキストリンを得る工程を含む、
下記一般式(7)
(ア)モノ-6-トシル-シクロデキストリンを、ハロゲン化アルキルと反応させて、アルキル化物を得る工程、
(イ)得られたアルキル化物を、ジアミノアルキル化合物(炭素数3~20)と反応させて、アミノ化合物を得る工程、
(ウ)得られたアミノ化合物を、(メタ)アクリロイルオキシアルキルイソシアネートと反応させて、(メタ)アクリロイルオキシアルキル基を有するシクロデキストリンを得る工程を含む、
下記一般式(8)
R6は、(メタ)アクリロイルオキシアルキル基を表す。
RC2は、下記一般式(5b)で示される基を表す。
(ア)下記一般式(2)
-R3-NH-R4 (2)
(R3は、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
R4は、(メタ)アクリロイル基又は炭素数3~50のビニル基含有アルキル基を表す。)、
(イ)下記一般式(3)
-R5-NHCONH-R6 (3)
(R5は、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
R6は、炭素数4~50の(メタ)アクリロイルオキシアルキル基又は炭素数3~50のビニル基含有アルキル基を表す。)
又は(ウ)下記一般式(4)
-R5-OCONH-R6 (4)
(R5及びR6は上記と同じ。)
のいずれか1つを表す。
R2は、水素原子、炭素数2~50のアシル基又は炭素数1~30のアルキル基を表す。
Rcは、下記一般式(5)で示される基を表す。
本発明により、安価に収率良く、純度の高いシクロデキストリン誘導体が得られるものである。
なお、本明細書において、「シクロデキストリンが他の有機基で置換された構造を有する分子」を、便宜上、「シクロデキストリン類」と表記することがある。
中でも、合成面、他の重合性単量体との相溶性による設計面の観点から、メチル基であることが好ましい。
(ア)下記一般式(2)
-R3-NH-R4 (2)
(R3は、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
R4は、(メタ)アクリロイル基又は炭素数3~50のビニル基含有アルキル基を表す。)
で表される。
このように、一般式(2)に示される構造を有するシクロデキストリン誘導体は、R2-N-R3-NH―という、ジアミノアルキル化合物に由来する構造を有するものである。
また、R4は、炭素数3~50のビニル基含有アルキル基であってもよい。
-R5-NHCONH-R6 (3)
(R5は、炭素数2~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
R6は、炭素数4~50の(メタ)アクリロイルオキシアルキル基又は炭素数3~50のビニル基含有アルキル基を表す。)であってもよい。
-R5-OCONH-R6 (4)
(R5及びR6は上記と同じ。)であってもよい。
例えば、上記一般式(6)に示すシクロデキストリン誘導体を製造するにあたっては、下記に示す反応式に基づき製造する方法が挙げられる。
また、α、γ-シクロデキストリンにおいても、再結晶や再沈殿の条件検討により、同様に得ることが期待できる。
具体的に、例えば、アセチル化する場合には、無水酢酸を用いればよく、また、無水酢酸に代えて、酢酸クロリド等を用いてもよい。
また、上記DMAPおよびトリエチルアミンに代えて、ピリジン等の塩基かつ触媒を用いてもよい。
なお、上記反応式中のnは、シクロデキストリン1分子が有する水酸基の全個数N-1の20%以上の整数を表すものである。
なお、上記反応式中のmは、シクロデキストリン1分子が有する水酸基の全個数N-1の20%以上の整数を表すものである。
更に、(メタ)アクリル酸無水物を反応させ、(メタ)アクリルアミド基を有するシクロデキストリン誘導体を得る(工程(c))。この反応は、N,N-ジメチルホルムアミド(DMF)等の非プロトン性極性溶媒を使用し、トリエチルアミン等の塩基の存在下で行うことが好ましい。
得られるシクロデキストリン誘導体は、再沈殿や再結晶により、より高収率かつ高純度で、効率良く製造することができる。
なお、上記反応式中のmは、シクロデキストリン1分子が有する水酸基の全個数N-1の20%以上の整数を表すものである。
更に、イソシアネートを反応させ、(メタ)アクロイルオキシアルキル基を有するシクロデキストリン誘導体を得る(工程(ウ))。
イソシアネートとしては、2-メタクリロイルオキシエチルイソシアネート、2-アクリロイルオキシエチルイソシアネート等が挙げられる。
得られるシクロデキストリン誘導体は、再沈殿や再結晶により、より高収率かつ高純度で、効率良く製造することができる。
もしくは、シクロデキストリン誘導体を使用して得られる重合体は、例えば、後記する可動性架橋重合体となり得る。後記するように可動性架橋重合体は、重合体側鎖のホスト基(シクロデキストリン構造を有する環状分子)の環内を、他の重合体の主鎖が貫通することで 形成される構造を有する重合体が例示される。
特に、本発明のシクロデキストリン誘導体は、疎水性の重合性単量体に対して高い溶解性を示すことから、従来難しいとされていたホスト基含有重合性単量体と疎水性の重合性単量体との共重合が、幅広い組成割合で可能となり、目的とする高分子材料の設計の自由度を高くすることが可能となる。
冷却管、攪拌棒つきフラスコに、水400g、β-シクロデキストリン44.78g、パラトルエンスルホン酸無水物18.86gを仕込み、30℃で2時間間攪拌した。ここへ48%水酸化ナトリウム水溶液40.00gを加え、さらに10分攪拌した。その後、400メッシュにて濾過し、ろ液を塩酸にてpH7迄中和し、一晩放置した。これをろ過し、水で十分洗浄し、モノトシル化β-シクロデキストリン(化合物A)を12.77g得た。
このときの1H-NMRチャートを図1に示した(1H NMR (DMSO-d6):2.43 (s, 3H), 3.22-3.65 (m, overlaps with HOD), 4.16-4.53 (m, 6H), 4.76-4.85 (m, 7H), 5.64-5.85 (m, 14H), 7.43 (d, J = 8.00 Hz, 2H), 7.75 (d, J = 8.00 Hz, 2H))。
1H NMRの積分値より、純度は>99%であることを確認した。
冷却管、攪拌棒付きフラスコに、合成例1で得た化合物A40g、1,3-プロパンジアミン184g(80当量)を仕込み、70℃で4時間加熱攪拌した。その後、メタノール:アセトン=1:3の混合溶剤1700g中に、この反応物を投入し一晩放置した。これをろ過し、メタノール:アセトン=1:3の混合溶剤で洗浄し、モノアミノ化β-シクロデキストリン(化合物B)を11.4g得た。
このときの1H-NMRチャートを図2に示した(特徴的なピーク 1H NMR (DMSO-d6): 1.12‐1.14 (m, 2H), 1.23‐1.29 (m, 1H), 1.44‐1.46 (m, 2H), 2.56‐2.81 (m, 4H), 3.14-3.38 (m, 16H), 3.59‐3.65 (m, 26H), 4.51 (br, 6H), 4.82 (s, 7H), 5.72 (br, 14H))。
1H NMRの積分値より、純度は98.6%であることを確認した。
冷却管、攪拌棒付きフラスコに、合成例2で得た化合物B11.4g、N,N-ジメチルホルムアミド16g、トリエチルアミン1gを仕込み溶解させ、ここにN,N-ジメチルホルムアミド1gと無水メタクリル酸1.5gの混合物を添加し、室温(25℃)で3時間攪拌した。
ここに、トリエチルアミン35gを加えたのち、無水酢酸27gとDMAP0.2gを加え、
60℃で3時間攪拌した。これを冷却し、水190gに投入し一晩放置した。その後、濾過して、アセチル化されたメタクリルアミド基を有するβシクロデキストリン(化合物C)を18g得た。
このときの1H-NMRチャートを図3に示した(特徴的なピーク 1H NMR (DMSO-d6): 1.06‐1.56 (m, 1H), 1.61‐2.01 (m, 69H), 2.80‐2.94 (m, 2H),3.65-3.72 (m, 8H), 3.82‐4.03 (m, 5H), 4.04‐4.02 (m, 15H), 4.55‐4.58 (m, 7H), 4.89‐4.91 (m, 7H), 4.92‐5.05 (m, 8H), 5.45 (s, 1H), 7.63 (t, J = 6.0 Hz, 1H))。
1H NMRの積分値より、純度は98.6%であることを確認した。
また、2級水酸基の1H NMRのピーク(5.72 (br, 14H))が消失していることから、水酸基の変性率は、90%以上である。
攪拌棒付きフラスコに、N,N-ジメチルホルムアミド60g、苛性ソーダ(粉末)2.4gを混合攪拌し、ここに合成例1で得た化合物Aを3.0g投入した。氷冷しながらヨウ化メチル35gを数回に分けて添加し、1~3時間攪拌した。これに水400gを投入し一晩静置した。その後、濾過することにより、メチルエーテル化されたモノトシル化β-シクロデキストリン(化合物D)を0.9g得た。
このときの1H-NMRチャートを図4に示した(特徴的なピーク1H NMR (DMSO-d6):2.98―3.11 (m, 19H), 3.19―3.28 (m, 28H), 3.30‐3.59 (m, 42H), 3.61‐3.77 (m, 14H), 4.34 (s, 2H), 4.94‐5.15 (m, 7H), 7.48 (d, J = 7.6 Hz, 2H), 7.75 (d, J = 7.6 Hz, 2H))。
1H NMRの積分値より、純度は97.7%であることを確認した。
また、2級水酸基の1H NMRのピーク(5.64-5.85 (m, 14H))が消失していることから、水酸基の変性率は、90%以上である。
冷却管、攪拌棒付きフラスコに、合成例4で得た化合物D3.16g、1,3-プロパンジアミン11.99gを仕込み、70℃で2時間加熱攪拌した。これを冷却しトルエン320mlを加え、水で洗浄した。有機層を硫酸ナトリウムで乾燥し、トルエンを留去・乾燥することによりメチルエーテル化された6-デオキシ-6-(3-アミノプロピルアミノ)-β-シクロデキストリン(化合物E)を2.29g得た。
このときの1H-NMRチャートを図5に示した(特徴的なピーク1H NMR (DMSO-d6): 1.49‐1.42 (m, 2H), 2.60‐2.52 (m, 2H), 2.87‐2.83 (m, 2H), 3.06‐3.73 (m, 102H), 5.04‐5.32m, 7H)。
1H NMRの積分値より、純度は>99%であることを確認した。
攪拌棒付きフラスコに、合成例5で得た化合物E1.74g、トリエチルアミン0.13g、トルエン4gを仕込み、攪拌した。ここへ無水メタクリル酸0.18gを滴下し、1時間さらに攪拌した。得られた溶液を水で3回洗浄し、硫酸ナトリウムで乾燥後、トルエンを留去・乾燥することによりメチルエーテル化されたメタクリルアミド基を有するβ-シクロデキストリン(化合物F)を1.51g得た。
このときの1H-NMRチャートを図6に示した(特徴的なピーク1H NMR (DMSO-d6): 1.58-1.55 (m, 2H), 1.83 (s, 3H), 2.90‐2.67 (m, 4H), 3.71‐3.02 (m, 102H), 5.31‐5.04 (m, 7H), 5.29 (m, 1H), 5.60 (m, 1H), 7.90 (t, J = 5.2 Hz, 1H)。
1H NMRの積分値より、純度は>99%であることを確認した。
攪拌棒付きフラスコに、合成例5で得た化合物E0.54g、カレンズMOI(共栄社化学社製)57mg、トルエン2gを仕込み、1時間攪拌した。得られた溶液を水で3回洗浄し、硫酸ナトリウムで乾燥後トルエンを留去・乾燥することによりメチルエーテル化されたメタクリル基を有するβ-シクロデキストリン(化合物G)を0.60g得た。
このときの1H-NMRチャートを図7に示した(特徴的なピーク1H NMR (DMSO-d6): δ1.51‐1.46 (m, 2H), 1.90 (s, 3H), 2.03‐1.86 (m, 4H), 4.05‐3.05 (m, 106H), 5.32‐5.00 (m, 7H), 5.68 (m, 1H), 5.89 (t, J = 5.2 Hz, 1H), 5.93 (t, J = 5.6 Hz, 1H), 6.05 (m, 1H)。
1H NMRの積分値より、純度は>99%であることを確認した。
Claims (6)
- 下記一般式(1)で示される重合性不飽和基を有するシクロデキストリン誘導体。
(ア)下記一般式(2)
-R3-NH-R4 (2)
(R3は、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
R4は、(メタ)アクリロイル基又は炭素数3~50のビニル基含有アルキル基を表す。)、
(イ)下記一般式(3)
-R5-NHCONH-R6 (3)
(R5は、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
R6は、炭素数4~50の(メタ)アクリロイルオキシアルキル基又は炭素数3~50のビニル基含有アルキル基を表す。)
又は(ウ)下記一般式(4)
-R5-OCONH-R6 (4)
(R5及びR6は上記と同じ。)
のいずれか1つを表す。
R2は、水素原子、炭素数2~50のアシル基又は炭素数1~30のアルキル基を表す。
Rcは、下記一般式(5)で示される基を表す。
- 上記アシル基は、アセチル基である請求項1記載の重合性不飽和基を有するシクロデキストリン誘導体。
- 上記アルキル基は、メチル基である請求項1記載の重合性不飽和基を有するシクロデキストリン誘導体。
- (1)モノ-6-トシル-シクロデキストリンを、ジアミノアルキル化合物(炭素数3~20)と反応させて、モノアミノ化合物を得る工程、
(2)得られたモノアミノ化合物を、(メタ)アクリル酸無水物と反応させて、(メタ)アクリルアミド基を有するシクロデキストリンを得る工程、
(3)得られた(メタ)アクリルアミド基を有するシクロデキストリンを、酸無水物と反応させて、アシル化物を得る工程を含む、
下記一般式(6)
R3は、炭素数3~20のアルキレン基であり、直鎖でも分岐していても良く、置換基があっても良い。
R8は、水素基又はメチル基を表す。
RC1は、下記一般式(5a)で示される基を表す。
で示される重合性不飽和基を有するシクロデキストリン誘導体の製造方法。 - (a)モノ-6-トシル-シクロデキストリンを、ハロゲン化アルキル(炭素数1~30)と反応させて、アルキル化物を得る工程、
(b)得られたアルキル化物を、ジアミノアルキル化合物(炭素数3~20)と反応させて、モノアミノ化合物を得る工程、
(c)得られたモノアミノ化合物を、(メタ)アクリル酸無水物と反応させて、(メタ)アクリルアミド基を有するシクロデキストリンを得る工程を含む、
下記一般式(7)
R8は、水素基又はメチル基を表す。
RC2は、下記一般式(5b)で示される基を表す。
で示される重合性不飽和基を有するシクロデキストリン誘導体の製造方法。 - (ア)モノ-6-トシル-シクロデキストリンを、ハロゲン化アルキルと反応させて、アルキル化物を得る工程、
(イ)得られたアルキル化物を、ジアミノアルキル化合物(炭素数3~20)と反応させて、モノアミノ化合物を得る工程、
(ウ)得られたモノアミノ化合物を、(メタ)アクリロイルオキシアルキルイソシアネートと反応させて、(メタ)アクリロイルオキシアルキル基を有するシクロデキストリンを得る工程を含む、
下記一般式(8)
R6は、(メタ)アクリロイルオキシアルキル基を表す。
RC2は、下記一般式(5b)で示される基を表す。
で示される重合性不飽和基を有するシクロデキストリン誘導体の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/006,926 US20240043573A1 (en) | 2020-07-29 | 2021-07-21 | Polymerizable unsaturated group-containing cyclodextrin derivative |
JP2022500667A JP7143002B2 (ja) | 2020-07-29 | 2021-07-21 | 重合性不飽和基を有するシクロデキストリン誘導体 |
EP21850057.7A EP4180464A4 (en) | 2020-07-29 | 2021-07-21 | CYCLODEXTRIN DERIVATIVE WITH POLYMERIZABLE UNSATURATED GROUP |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-128269 | 2020-07-29 | ||
JP2020128269 | 2020-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022024908A1 true WO2022024908A1 (ja) | 2022-02-03 |
Family
ID=80036879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/027276 WO2022024908A1 (ja) | 2020-07-29 | 2021-07-21 | 重合性不飽和基を有するシクロデキストリン誘導体 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240043573A1 (ja) |
EP (1) | EP4180464A4 (ja) |
JP (1) | JP7143002B2 (ja) |
WO (1) | WO2022024908A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005517048A (ja) * | 2001-11-30 | 2005-06-09 | ジェンタ・サルース・リミテッド・ライアビリティ・カンパニー | シクロデキストリングラフト生体適合性両親媒性ポリマーおよびその製造および使用方法 |
US8569451B2 (en) * | 2009-04-15 | 2013-10-29 | Biotage Ab | Affinity material |
WO2018159791A1 (ja) * | 2017-03-02 | 2018-09-07 | 国立大学法人大阪大学 | ホスト基含有重合性単量体、高分子材料及びその製造方法、並びに、包接化合物及びその製造方法 |
JP6624660B1 (ja) * | 2019-03-06 | 2019-12-25 | 国立大学法人大阪大学 | 高分子材料及びその製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013162019A1 (ja) * | 2012-04-27 | 2013-10-31 | 国立大学法人大阪大学 | 自己修復性及び形状記憶性を有するゲル、及びその製造方法 |
US10064954B2 (en) * | 2015-06-23 | 2018-09-04 | Nian Wu | Polymer-cyclodextrin-lipid conjugates |
WO2019168128A1 (ja) * | 2018-03-01 | 2019-09-06 | 国立大学法人大阪大学 | 高分子材料及びその製造方法 |
-
2021
- 2021-07-21 EP EP21850057.7A patent/EP4180464A4/en active Pending
- 2021-07-21 JP JP2022500667A patent/JP7143002B2/ja active Active
- 2021-07-21 US US18/006,926 patent/US20240043573A1/en active Pending
- 2021-07-21 WO PCT/JP2021/027276 patent/WO2022024908A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005517048A (ja) * | 2001-11-30 | 2005-06-09 | ジェンタ・サルース・リミテッド・ライアビリティ・カンパニー | シクロデキストリングラフト生体適合性両親媒性ポリマーおよびその製造および使用方法 |
US8569451B2 (en) * | 2009-04-15 | 2013-10-29 | Biotage Ab | Affinity material |
WO2018159791A1 (ja) * | 2017-03-02 | 2018-09-07 | 国立大学法人大阪大学 | ホスト基含有重合性単量体、高分子材料及びその製造方法、並びに、包接化合物及びその製造方法 |
JP6624660B1 (ja) * | 2019-03-06 | 2019-12-25 | 国立大学法人大阪大学 | 高分子材料及びその製造方法 |
Non-Patent Citations (6)
Title |
---|
KAYA ETHEM, JOURNAL OF POLYMER SCIENCE: PART A, vol. 48, 2010, pages 581 - 592 |
KAYA, E. ET AL.: "Synthesis and characterization of physical crosslinking systems based on cyclodextrin inclusion/host-guest complexation", JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY, vol. 48, no. 3, 2010, pages 581 - 592, XP055903283 * |
LIN YUANJING, JOURNAL OF SEPARATION SCIENCE, vol. 40, no. 19, 2017, pages 3754 - 3762 |
PU, W. F. ET AL.: "Synthesis and evaluation of beta- cyclodextrin-functionalized hydrophobically associating polyacrylamide", RSC ADVANCES, vol. 6, no. 98, 2016, pages 96006 - 96014, XP055903286 * |
See also references of EP4180464A4 |
SONG MENG-MENG, ACS APPLIED MATERIALS & INTERFACES, vol. 10, no. 17, 2018, pages 15021 - 15029 |
Also Published As
Publication number | Publication date |
---|---|
EP4180464A4 (en) | 2024-06-05 |
EP4180464A1 (en) | 2023-05-17 |
US20240043573A1 (en) | 2024-02-08 |
JPWO2022024908A1 (ja) | 2022-02-03 |
JP7143002B2 (ja) | 2022-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6950984B2 (ja) | ホスト基含有重合性単量体、高分子材料及びその製造方法、並びに、包接化合物及びその製造方法 | |
WO2020179908A1 (ja) | 高分子材料及びその製造方法 | |
US5608015A (en) | Processes for producing cyclodextrin derivatives and polymers containing immobilized cyclodextrin therein | |
US10464882B2 (en) | Y-type discrete polyethylene glycol derivative and preparation method thereof | |
JP6784932B2 (ja) | 生体機能性分子または薬物キャリアの化学修飾用生分解性ポリエチレングリコール誘導体 | |
JP2002167368A (ja) | アルキル置換デンドリマーおよびその製造法 | |
WO2022024908A1 (ja) | 重合性不飽和基を有するシクロデキストリン誘導体 | |
JP5204409B2 (ja) | 擬ポリロタキサンおよびポリロタキサン | |
CN111801355B (zh) | 高分子材料及其制造方法 | |
WO2023171709A1 (ja) | 樹脂組成物及びその製造方法 | |
Aravind et al. | Single step syntheses of lactosylated clusters by telomerizations | |
US11021547B2 (en) | Method of synthesising 6-deoxy-6-amino-β-D-glucopyranoside-containing polymers and their precursors | |
JP6731381B2 (ja) | ポリエチレングリコール鎖が導入された化合物の製造方法 | |
JP5140294B2 (ja) | アクリル(メタクリル)基含有糖誘導体、及びそのアクリル(メタクリル)基含有糖誘導体の製造方法 | |
JP2011038093A (ja) | ポリビニルエーテル樹脂 | |
KR101456526B1 (ko) | 사이클로덱스트린 유도체 및 이를 포함하는 저굴절률 소재 | |
WO2024128306A1 (ja) | 複合ポリマー材料及びその製造方法並びに光学材料 | |
WO2023003043A1 (ja) | シリコーン系高分子化合物及びシリコーン系高分子材料 | |
JP2005105215A (ja) | メチルチオメチル基で修飾されたエチレングリコールポリマー、その合成方法及びその利用 | |
JP5334484B2 (ja) | ラムノシドエステル誘導体およびその製造方法 | |
JP3475434B2 (ja) | アゾ基の導入方法 | |
JP2002167370A (ja) | アルキルアゾベンゼン置換デンドリマーおよびその製造法 | |
JP4381002B2 (ja) | ガラクトース二硫酸誘導体 | |
JP5334437B2 (ja) | キシロシドエステル誘導体およびその製造方法 | |
MXPA06007751A (en) | Colorant compatible synthetic thickener for paint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022500667 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21850057 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18006926 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2021850057 Country of ref document: EP Effective date: 20230213 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |