WO2022009966A1 - 膜形成用組成物、レジスト組成物、感放射線性組成物、アモルファス膜の製造方法、レジストパターン形成方法、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法及び回路パターン形成方法、光学部材形成用組成物、膜形成用樹脂、レジスト樹脂、感放射線性樹脂、リソグラフィー用下層膜形成用樹脂 - Google Patents

膜形成用組成物、レジスト組成物、感放射線性組成物、アモルファス膜の製造方法、レジストパターン形成方法、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法及び回路パターン形成方法、光学部材形成用組成物、膜形成用樹脂、レジスト樹脂、感放射線性樹脂、リソグラフィー用下層膜形成用樹脂 Download PDF

Info

Publication number
WO2022009966A1
WO2022009966A1 PCT/JP2021/025867 JP2021025867W WO2022009966A1 WO 2022009966 A1 WO2022009966 A1 WO 2022009966A1 JP 2021025867 W JP2021025867 W JP 2021025867W WO 2022009966 A1 WO2022009966 A1 WO 2022009966A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
carbon atoms
film
forming
Prior art date
Application number
PCT/JP2021/025867
Other languages
English (en)
French (fr)
Inventor
拓央 山本
耕大 松浦
淳矢 堀内
敦子 岩崎
高史 牧野嶋
雅敏 越後
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020227041052A priority Critical patent/KR20230035520A/ko
Priority to CN202180048505.3A priority patent/CN115968391B/zh
Priority to JP2022535394A priority patent/JPWO2022009966A1/ja
Priority to US18/013,870 priority patent/US20240117101A1/en
Publication of WO2022009966A1 publication Critical patent/WO2022009966A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/34Condensation polymers of aldehydes or ketones with monomers covered by at least two of the groups C08L61/04, C08L61/18 and C08L61/20
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/016Diazonium salts or compounds
    • G03F7/0166Diazonium salts or compounds characterised by the non-macromolecular additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0752Silicon-containing compounds in non photosensitive layers or as additives, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1414Unsaturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1422Side-chains containing oxygen containing OH groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1426Side-chains containing oxygen containing carboxy groups (COOH) and/or -C(=O)O-moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/228Polymers, i.e. more than 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3242Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more oxygen atoms as the only heteroatom, e.g. benzofuran
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/42Non-organometallic coupling reactions, e.g. Gilch-type or Wessling-Zimmermann type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials

Definitions

  • the present invention relates to a film-forming composition, a resist composition, a radiation-sensitive composition, a method for producing an amorphous film, a resist pattern forming method, a composition for forming an underlayer film for lithography, a method for producing an underlayer film for lithography, and a circuit pattern.
  • the present invention relates to a forming method, an optical member forming composition, a film forming resin, a resist resin, a radiation sensitive resin, and a lower layer film forming resin for lithography.
  • the light source for lithography used for forming the resist pattern has a shorter wavelength from a KrF excimer laser (248 nm) to an ArF excimer laser (193 nm).
  • a problem of resolution or a problem that the resist pattern collapses after development so that it is desired to reduce the thickness of the resist.
  • a resist underlayer film for lithography having a selection ratio of a dry etching rate close to that of a resist, unlike a conventional resist underlayer film having a high etching rate, can be mentioned.
  • a material for forming such a resist underlayer film for lithography it contains a resin component having at least a substituent having at least a substituent that desorbs a terminal group to form a sulfonic acid residue when a predetermined energy is applied, and a solvent.
  • a lower layer film forming material for a multilayer resist process has been proposed (see, for example, Patent Document 1).
  • a resist underlayer film for lithography having a selection ratio of a dry etching rate smaller than that of a resist can also be mentioned.
  • a material for forming such a resist underlayer film for lithography a resist underlayer film material containing a polymer having a specific repeating unit has been proposed (see, for example, Patent Document 2).
  • a resist underlayer film for lithography having a selection ratio of a dry etching rate smaller than that of a semiconductor substrate can be mentioned.
  • a resist underlayer film material containing a polymer obtained by copolymerizing a repeating unit of acenaphthylene and a repeating unit having a substituted or unsubstituted hydroxy group is used. It has been proposed (see, for example, Patent Document 3).
  • a chemical vapor deposition thin film deposition method (Chemical Vapor Deposition, hereinafter also referred to as “CVD”) using methane gas, ethane gas, acetylene gas or the like as raw materials is used.
  • CVD Chemical Vapor Deposition
  • methane gas, ethane gas, acetylene gas or the like is used as raw materials.
  • the formed amorphous carbon underlayer film is well known.
  • a resist underlayer film material capable of forming a resist underlayer film by a wet process such as a spin coating method or screen printing.
  • Patent Document 4 a method of forming a silicon nitride film (see, for example, Patent Document 4) and a method of forming a CVD of a silicon nitride film (for example, see Patent Document 4).
  • Patent Document 5 a method of forming a CVD of a silicon nitride film (for example, see Patent Document 4).
  • Patent Document 5 a material containing a silicon compound based on silsesquioxane is known (see, for example, Patent Documents 6 and 7).
  • the present inventors have proposed an underlayer film forming composition for lithography containing a specific compound or resin (see, for example, Patent Document 8).
  • Japanese Unexamined Patent Publication No. 2004-177668 Japanese Unexamined Patent Publication No. 2004-271883 Japanese Unexamined Patent Publication No. 2005-250434 Japanese Unexamined Patent Publication No. 2002-334869 International Publication No. 2004/06637 Japanese Unexamined Patent Publication No. 2007-226170 Japanese Unexamined Patent Publication No. 2007-226204 International Publication No. 2013/024779 Japanese Unexamined Patent Publication No. 2010-138393 Japanese Unexamined Patent Publication No. 2015-174877 International Publication No. 2014/123005
  • compositions for optical members have been proposed in the past, none of them have both heat resistance, transparency and refractive index at a high level, and development of a new material is required.
  • an object of the present invention is a film-forming composition, a resist composition, a radiation-sensitive composition, a lower layer film-forming composition for lithography, and these, which can exhibit excellent heat resistance and etching resistance. It is an object of the present invention to provide a method for producing an amorphous film, a method for forming a resist pattern, a method for producing an underlayer film for lithography, and a method for forming a circuit pattern.
  • Ar 0 represents a phenylene group, a naphthylene group, an anthrylene group, a phenanthrylene group, a pyrylene group, a fluorylene group, a biphenylene group, a diphenylmethylene group or a terphenylene group
  • R 0 is a substituent of Ar 0 and is independently and the same.
  • a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent may be used.
  • Each of P independently has a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 40 carbon atoms which may have a substituent, and a substituent. It is an alkenyl group having 2 to 30 carbon atoms which may be used, or an alkynyl group having 2 to 30 carbon atoms which may have a substituent.
  • X represents a linear or branched alkylene group, n represents an integer from 1 to 500, and n represents an integer of 1 to 500.
  • r indicates an integer of 1 to 3 and represents p represents a positive integer q represents a positive integer.
  • X is an oxygen atom, a sulfur atom, a single bond or no crosslink
  • Y is a 2n-valent group or a single bond having 1 to 60 carbon atoms.
  • Each of R0 independently contains a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 40 carbon atoms which may have a substituent, and a substituent.
  • R 01 is an aryl group having 6 to 40 carbon atoms, which may independently have a substituent.
  • m is an independent integer from 1 to 9, respectively.
  • m 01 is 0 or 1 and is n is an integer from 1 to 4 and p is an integer of 0 to 3 independently.
  • A is a benzene ring or a condensed aromatic ring, and is Each of R0 has a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 40 carbon atoms which may have a substituent, and a substituent.
  • m is an integer from 1 to 9.
  • Ar 2 represents a phenylene group, a naphthylene group or a biphenylene group.
  • Ar 1 represents a naphthylene group or a biphenylene group.
  • Ar 2 is a naphthylene group or a biphenylene group
  • Ar 1 represents a phenylene group, a naphthylene group or a biphenylene group.
  • Ra is a substituent of Ar 1 , and each group may be the same group or a different group independently.
  • Ra may have a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. It has a good alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a substituent. It may have an acyl group having 1 to 30 carbon atoms, a group containing a carboxyl group having 1 to 30 carbon atoms which may have a substituent, and a group having 0 to 30 carbon atoms which may have a substituent.
  • R b is a substituent of Ar 2 , and each of them may be independently the same group or a different group.
  • R b may have a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • It has a good alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a substituent. It may have an acyl group having 1 to 30 carbon atoms, a group containing a carboxyl group having 1 to 30 carbon atoms which may have a substituent, and a group having 0 to 30 carbon atoms which may have a substituent. Represents an amino group, a halogen atom, a cyano group, a nitro group, a thiol group, or a heterocyclic group.
  • Ar 2 represents a phenylene group, a naphthylene group or a biphenylene group.
  • Ar 1 represents a biphenylene group.
  • Ar 2 is a naphthylene group or a biphenylene group
  • Ar 1 represents a phenylene group, a naphthylene group or a biphenylene group.
  • R a represents an alkyl group having 1 to 30 carbon atoms which may have a hydrogen atom or a substituent
  • R b is an alkyl group having 1 to 30 carbon atoms which may have a hydrogen atom or a substituent.
  • An acyl group having 1 to 30 carbon atoms which may have a substituent a group containing a carboxyl group having 1 to 30 carbon atoms which may have a substituent, and a carbon which may have a substituent.
  • m 2 indicates an integer of 1 to 2 and represents n represents an integer from 1 to 50.
  • R 3 independently has a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • An acyl group having 1 to 30 carbon atoms which may have a substituent a group containing a carboxyl group having 1 to 30 carbon atoms which may have a substituent, and a carbon which may have a substituent.
  • m 3 indicates an integer from 1 to 4 and represents n represents an integer from 1 to 50.
  • R 4 are each independently a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group which may having 6 to 30 carbon atoms which may have a substituent, a substituent An alkenyl group having 2 to 30 carbon atoms which may have a substituent, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, and an alkoxy group having 1 to 30 carbon atoms which may have a substituent.
  • An acyl group having 1 to 30 carbon atoms which may have a substituent a group containing a carboxyl group having 1 to 30 carbon atoms which may have a substituent, and a carbon which may have a substituent.
  • m 4 indicates an integer from 1 to 4 and represents n represents an integer from 1 to 50.
  • R 5 and R 6 have the same meaning as R 0 in the above formula (1A).
  • m 5 and m 6 are independently integers from 0 to 5, but m 5 and m 6 are not 0 at the same time.
  • R 1 , R 5 , R 6 and n are as described above.
  • [17] The film-forming composition according to the above [16], wherein the aromatic hydroxy compound represented by the formula (2-1) is an aromatic hydroxy compound represented by the following formula (2-2).
  • R 1 is as described above.
  • R 7 , R 8 and R 9 have the same meaning as R 0 in the above formula (1A).
  • m 9 is an integer of 0 to 3 independently.
  • R 1 is a group represented by R A -R B, wherein the R A is a methine group, aryl of the R B is 1-6 carbon atoms which may have a substituent 30
  • a in the formula (1B) is a condensed aromatic ring.
  • the polycyclic polyphenol resin is a polycyclic polyphenol resin containing a repeating unit derived from at least one monomer selected from the group consisting of aromatic hydroxy compounds represented by the following formula (0A).
  • R 1 is a 2n-valent group or a single bond having 1 to 60 carbon atoms
  • R 2 is an alkyl having 1 to 40 carbon atoms which may independently have a substituent.
  • a method for producing a polycyclic polyphenol resin which comprises a step of polymerizing one or more of the aromatic hydroxy compounds in the presence of an oxidizing agent.
  • the oxidizing agent is a metal salt or metal complex containing at least one selected from the group consisting of copper, manganese, iron, cobalt, ruthenium, chromium, nickel, tin, lead, silver and palladium [33]. ].
  • the method for producing a polycyclic polyphenol resin [35]
  • a resist composition comprising the film-forming composition according to any one of the above [1] to [32].
  • the resist composition according to the above [35] further containing at least one selected from the group consisting of a solvent, an acid generator and an acid diffusion control agent.
  • the content of the solvent is 20 to 99% by mass with respect to 100% by mass of the total amount of the radiation-sensitive composition.
  • the content ratio of the polycyclic polyphenol resin, the diazonaphthoquinone photoactive compound, and other optional components to 100% by mass of the solid content is the polycyclic polyphenol resin / diazonaphthoquinone photoactive compound / other optional.
  • a method for producing an amorphous film which comprises a step of forming an amorphous film on a substrate by using the radiation-sensitive composition according to any one of [38] to [40] above.
  • a method for forming a resist pattern including.
  • a composition for forming a lower layer film for lithography which comprises the composition for forming a film according to any one of the above [1] to [32].
  • composition for forming an underlayer film for lithography according to the above [43] which further contains at least one selected from the group consisting of a solvent, an acid generator and a cross-linking agent.
  • a method for producing an underlayer film for lithography which comprises a step of forming an underlayer film on a substrate by using the composition for forming an underlayer film for lithography according to the above [43] or [44].
  • a resist pattern forming method. [47] A step of forming an underlayer film on a substrate by using the composition for forming an underlayer film for lithography according to the above [43] or [44]. A step of forming an intermediate layer film on the lower layer film using a resist intermediate layer film material containing a silicon atom, and a step of forming the intermediate layer film.
  • a film-forming composition, a resist composition, a radiation-sensitive composition, a composition for forming an underlayer film for lithography which are excellent in heat resistance and / or etching resistance and / or optical properties, and these are used. It is possible to provide a method for producing an amorphous film, a method for forming a resist pattern, a method for producing an underlayer film for lithography, and a method for forming a circuit pattern.
  • the present embodiment will be described in detail, but the present invention is not limited thereto, and various modifications are made without departing from the gist thereof. Is possible.
  • film as used herein means a film that can be applied to, for example, a lithographic film, an optical component, and the like (but not limited to these), and the size and shape thereof are not particularly limited. Typically, it has a general form as a lithographic film or an optical component. That is, the "film-forming composition” is a precursor of such a film, and is clearly distinguished from the “film” in its form and / or composition. Further, the “membrane for lithography” is a concept that broadly includes films for lithography such as permanent films for resists and underlayer films for lithography.
  • the polycyclic polyphenol resin in the present embodiment is not limited to the following, but typically has the following characteristics (1) to (4).
  • the polycyclic polyphenol resin in the present embodiment has excellent solubility in an organic solvent (particularly a safe solvent). Therefore, for example, when the polycyclic polyphenol resin in the present embodiment is used as a film forming material for lithography, a film for lithography can be formed by a wet process such as a spin coating method or screen printing.
  • the polycyclic polyphenol resin in the present embodiment has a relatively high carbon concentration and a relatively low oxygen concentration.
  • the molecule has a phenolic hydroxyl group, it is useful for forming a cured product by reaction with a curing agent, but the cured product can be formed by the cross-linking reaction of the phenolic hydroxyl group at high temperature baking alone. Due to these factors, the polycyclic polyphenol resin in the present embodiment can exhibit high heat resistance, and when used as a film forming material for lithography, deterioration of the film during high temperature baking is suppressed, and etching resistance to oxygen plasma etching and the like is suppressed. It is possible to form an excellent lithography film.
  • the polycyclic polyphenol resin in the present embodiment can exhibit high heat resistance and etching resistance, and is excellent in adhesion to the resist layer and the resist intermediate layer film material. Therefore, when it is used as a film forming material for lithography, it is possible to form a film for lithography having excellent resist pattern forming properties.
  • resist pattern formability means a property in which no major defects are found in the resist pattern shape and both resolution and sensitivity are excellent.
  • the polycyclic polyphenol resin in the present embodiment has a high refractive index due to its high aromatic ring density, and is suppressed in coloring even by a wide range of heat treatment from low temperature to high temperature, and is excellent in transparency. Therefore, various optics are used. It is also useful as a component forming material.
  • the polycyclic polyphenol resin in the present embodiment can be preferably applied as a film-forming material for lithography due to such properties, and therefore the film-forming composition of the present embodiment is imparted with the above-mentioned desired properties.
  • the film-forming composition of the present embodiment contains the above-mentioned polycyclic polyphenol resin, the rest of the composition is not particularly limited. That is, any arbitrary component may be contained in any blending ratio, and can be appropriately adjusted according to the specific use of the film-forming composition.
  • composition for film formation is a repeating unit derived from at least one monomer selected from the group consisting of aromatic hydroxy compounds represented by the formulas (1-0), (1A), and (1B).
  • a polycyclic polyphenol resin comprising a polycyclic polyphenol resin in which the repeating units are linked by direct bonds between aromatic rings.
  • Ar 0 represents a phenylene group, a naphthylene group, an anthrylene group, a phenanthrylene group, a pyrylene group, a fluorylene group, a biphenylene group, a diphenylmethylene group or a terphenylene group
  • R 0 is a substituent of Ar 0 and is the same independently.
  • a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent may be used.
  • Each of P independently has a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 40 carbon atoms which may have a substituent, and a substituent. It is an alkenyl group having 2 to 30 carbon atoms which may be used, or an alkynyl group having 2 to 30 carbon atoms which may have a substituent.
  • X represents a linear or branched alkylene group, n represents an integer from 1 to 500, and n represents an integer of 1 to 500.
  • r indicates an integer of 1 to 3 and represents p represents a positive integer q represents a positive integer.
  • X is an oxygen atom, a sulfur atom, a single bond or no crosslink
  • Y is a 2n-valent group or a single bond having 1 to 60 carbon atoms.
  • Each of R0 independently contains a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 40 carbon atoms which may have a substituent, and a substituent.
  • R 01 is an aryl group having 6 to 40 carbon atoms, which may independently have a substituent.
  • m is an independent integer from 1 to 9, respectively.
  • m 01 is 0 or 1 and is n is an integer from 1 to 4 and p is an integer of 0 to 3 independently.
  • A is a benzene ring or a condensed aromatic ring, and is Each of R0 has a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 40 carbon atoms which may have a substituent, and a substituent.
  • m is an integer from 1 to 9.
  • the above-mentioned aromatic hydroxy compound represented by the formula (1-0) and the compound described as a suitable compound thereof are referred to as "Compound Group 1" and are represented by the formulas (1A) and (1B).
  • the aromatic hydroxy compound and the compound described as a suitable compound thereof are referred to as "Compound Group 2”
  • the aromatic hydroxy compound represented by the formula (0A) and the compound described as a suitable compound thereof are referred to as "Compound Group 3”.
  • the formula numbers given to each of the following compounds are individual formula numbers for each compound group. That is, for example, the compound represented by the formula (2) described as suitable for the aromatic hydroxy compound represented by the formula (1-0) is suitable for the aromatic hydroxy compound represented by the formula (1A). It shall be distinguished as a compound different from the compound represented by the same formula (2) described as a compound.
  • the aromatic hydroxy compound represented by any of the above formulas (1-0), (1A) and (1B) can be used alone, or two or more kinds may be used together. You can also do it.
  • the number and ratio of each repeating unit are not particularly limited, but it is preferable to appropriately adjust them in consideration of the intended use and the following molecular weight values.
  • the polycyclic polyphenol resin of the present embodiment can be composed of only repeating units (1-0), (1A) and / or (1B), but other than that, as long as the performance according to the application is not impaired. It may include the repeating unit of.
  • Other repeating units include, for example, a repeating unit having an ether bond formed by condensing a group derived from a phenolic hydroxyl group, a repeating unit having a ketone structure, and the like.
  • repeating units may also be directly bonded to the repeating units (1-0), (1A) and / or (1B) at the aromatic rings.
  • the molar ratio [Y / X] of the total amount (Y) of the repeating unit (1-0), (1A) and / or (1B) to the total amount (X) of the polycyclic polyphenol resin of the present embodiment is 0. It can be 05 to 1.00, preferably 0.45 to 1.00.
  • the binding order of the repeating units of the polycyclic polyphenol resin in the present embodiment in the resin is not particularly limited.
  • the unit derived from the aromatic hydroxy compound represented by the formula (1-0), the formula (1A) or the formula (1B) may be contained as a repeating unit in an amount of 2 or more, or the unit may be contained in the formula (1).
  • a unit and two or more may be included as one repeating unit.
  • the formulas (1-0) and (1A) linked by the direct bond between the aromatic rings are connected.
  • the total of the units derived from the aromatic hydroxy compound represented by the formula (1B) is preferably 50 to 100 mol%, more preferably 70 to 100 mol%, still more preferably 90. It is ⁇ 100 mol%, and particularly preferably 100 mol%.
  • the film-forming composition of the present embodiment is any one of P in the above formula (1-0) and R 0 in the formula (1A) and (1B) from the viewpoint of heat resistance and solubility in an organic solvent. It is preferable to contain a polycyclic polyphenol resin having a repeating unit derived from at least one monomer selected from the group consisting of an aromatic hydroxy compound in which one or more is a hydrogen atom.
  • Ar 0 is a phenylene group, a naphthylene group, an anthrylene group, a phenanthrylene group, a pyrylene group, a fluorylene group, a biphenylene group, a diphenylmethylene group or a terphenylene group.
  • R 0 is a substituent of Ar 0 , and each independently has a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, or a substituent, which may be the same group or a different group.
  • P may independently have a hydrogen atom and an alkyl group having 1 to 30 carbon atoms and a substituent. It represents an aryl group having 6 to 40 carbon atoms, an alkenyl group having 2 to 30 carbon atoms which may have a substituent, or an alkynyl group having 2 to 30 carbon atoms which may have a substituent, preferably.
  • Hydrogen atom methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, isobutyl group, tertiarybutyl group, pentyl group, hexyl group, heptyl group, octyl group, benzyl group, methoxybenzyl group, dimethoxybenzyl group , Methylbenzyl group, Fluorobenzyl group, Chlorobenzyl group, Tasharibtoxicarbonyl group, Methyltarshalibtoxicarbonyl group, Trichloroethoxycarbonyl group, trimethylsilylethoxycarbonyl group, methoxymethyl group, ethoxyethyl group, ethoxypropyl group, tetrahydropyran Group, methylthiomethyl group, benzyloxymethyl group, methoxyethoxymethyl group, mesyl group, tosyl group, nosyl group,
  • P is more preferably a hydrogen atom, a methyl group, a tertiary butyl group, a normal hexyl group, an octyl group, a tertiary ribtoxycarbonyl group, an ethoxyethyl group, an ethoxypropyl group, a benzyl group, a methoxybenzyl group, a mesyl group, or an acetyl group.
  • Groups, tertiary butyl groups, tertiary ribtoxycarbonyl groups, ethoxypropyl groups, mesyl groups and acetyl groups are particularly preferred.
  • X represents a linear or branched alkylene group. Specifically, it is a methylene group, an ethylene group, an n-propylene group, an i-propylene group, an n-butylene group, an i-butylene group, a tert-butylene group, preferably a methylene group, an ethylene group, an n-propylene group, It is an n-butylene group, more preferably a methylene group, an n-propylene group, and most preferably a methylene group.
  • n represents an integer from 1 to 500, preferably an integer from 1 to 50.
  • r represents an integer from 1 to 3.
  • p represents a positive integer. p appropriately changes depending on the type of Ar 0.
  • q represents a positive integer. q appropriately changes depending on the type of Ar 0.
  • the oligomer represented by the general formula (1-0) is preferably an oligomer represented by the following general formula (1-1).
  • Ar 0 represents a phenylene group, a naphthylene group, an anthrylene group, a phenanthrylene group, a pyrylene group, a fluorylene group, a biphenylene group, a diphenylmethylene group, or a terphenylene group, and is preferable.
  • R 0 is a substituent of Ar 0 , and each independently has a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, or a substituent, which may be the same group or a different group.
  • n represents an integer from 1 to 500, preferably an integer from 1 to 50.
  • r represents an integer from 1 to 3.
  • p represents a positive integer. p appropriately changes depending on the type of Ar 0.
  • q represents a positive integer. q appropriately changes depending on the type of Ar 0.
  • the oligomer represented by the general formula (1-1) is preferably an oligomer represented by the following general formula (1-2).
  • Ar 2 represents a phenylene group, a naphthylene group or a biphenylene group, but when Ar 2 is a phenylene group, Ar 1 is a naphthylene group or a biphenylene group (preferably a biphenylene group). When Ar 2 is a naphthylene group or a biphenylene group, Ar 1 represents a phenylene group, a naphthylene group or a biphenylene group.
  • 1,4-phenylene group 1,3-phenylene group, 4,4'-biphenylene group, 2,4'-biphenylene group, 2,2'-biphenylene group, 2 , 3'-biphenylene group, 3,3'-biphenylene group, 3,4'-biphenylene group, 2,6-naphthylene group, 1,5-naphthylene group, 1,6-naphthylene group, 1,8-naphthylene group , 1,3-naphthylene group, 1,4-naphthylene group and the like.
  • Ra is a substituent of Ar 1 , and each of them may be independently the same group or a different group.
  • R a is hydrogen, an alkyl group having 1 to 30 carbon atoms which may have a substituent, or an aryl group which may having 6 to 30 carbon atoms which may have a substituent, may have a substituent It has a good alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a substituent.
  • acyl group having 1 to 30 carbon atoms may have an acyl group having 1 to 30 carbon atoms, a group containing a carboxyl group having 1 to 30 carbon atoms which may have a substituent, and a group having 0 to 30 carbon atoms which may have a substituent. It represents an amino group, a halogen atom, a cyano group, a nitro group, a thiol group, a heterocyclic group, preferably a hydrogen atom, or an alkyl group having 1 to 30 carbon atoms which may have a substituent.
  • Ra include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, tert-butyl group, isomer pentyl group, and isomer hexyl as alkyl groups.
  • the aryl group include a phenyl group, an alkylphenyl group, a naphthyl group, an alkylnaphthyl group, a biphenyl group, an alkylbiphenyl group and the like, such as a group, an isomer hexyl group, an isomer octyl group and an isomer nonyl group.
  • -It is an octyl group.
  • R b is a substituent of Ar 2 , and each of them may be independently the same group or a different group.
  • R b may have hydrogen, an alkyl group having 1 to 30 carbon atoms which may have a substituent, or an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent. It has a good alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, an alkoxy group having 1 to 30 carbon atoms which may have a substituent, and a substituent.
  • acyl group having 1 to 30 carbon atoms may have an acyl group having 1 to 30 carbon atoms, a group containing a carboxyl group having 1 to 30 carbon atoms which may have a substituent, and a group having 0 to 30 carbon atoms which may have a substituent. It represents an amino group, a halogen atom, a cyano group, a nitro group, a thiol group, a heterocyclic group, preferably a hydrogen atom, or an alkyl group having 1 to 30 carbon atoms which may have a substituent.
  • R b examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, i-butyl group, tert-butyl group, isomer pentyl group and isomer hexyl group as alkyl groups.
  • the aryl group include a phenyl group, an alkylphenyl group, a naphthyl group, an alkylnaphthyl group, a biphenyl group, an alkylbiphenyl group and the like, such as an isomer hexyl group, an isomer octyl group and an isomer nonyl group.
  • -It is an octyl group.
  • n represents an integer from 1 to 500, preferably an integer from 1 to 50.
  • r represents an integer from 1 to 3.
  • p represents a positive integer. p changes as appropriate depending on the type of Ar a.
  • q represents a positive integer. q appropriately changes depending on the type of Ar b.
  • the compounds represented by the formula (2) or (3) are preferable, and the compounds represented by the formulas (4) to (7) are more preferable.
  • R 1 independently has a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, or an aryl group and a substituent having 6 to 30 carbon atoms which may have a substituent.
  • an acyl group having 1 to 30 carbon atoms which may have a substituent may have a substituent, a group containing a carboxyl group having 1 to 30 carbon atoms which may have a substituent, and a substituent.
  • m 1 indicates an integer of 1 to 2 and represents n represents an integer from 1 to 50.
  • Each of R 2 independently has a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, or an aryl group and a substituent having 6 to 30 carbon atoms which may have a substituent.
  • an acyl group having 1 to 30 carbon atoms which may have a substituent may have a substituent, a group containing a carboxyl group having 1 to 30 carbon atoms which may have a substituent, and a substituent.
  • m 2 indicates an integer of 1 to 2 and represents n represents an integer from 1 to 50.
  • Each of R 3 independently has a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, or an aryl group and a substituent having 6 to 30 carbon atoms which may have a substituent.
  • an acyl group having 1 to 30 carbon atoms which may have a substituent may have a substituent, a group containing a carboxyl group having 1 to 30 carbon atoms which may have a substituent, and a substituent.
  • m 3 indicates an integer from 1 to 4 and represents n represents an integer from 1 to 50.
  • R 4 are each independently a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, or a substituent having optionally also a good carbon number of 6 to 30 aryl group, a substituted group
  • an acyl group having 1 to 30 carbon atoms which may have a substituent may have a substituent, a group containing a carboxyl group having 1 to 30 carbon atoms which may have a substituent, and a substituent.
  • m 4 indicates an integer from 1 to 4 and represents n represents an integer from 1 to 50.
  • the substituent of the aromatic ring can be substituted at any position of the aromatic ring.
  • Formula (4), (5), (6), in the oligomerization represented by (7), in R 1, R 2, R 3 , R 4 are each independently, may be either the same group different groups.
  • R 1, R 2, R 3, and R 4 are hydrogen, an alkyl group having 1 to 30 carbon atoms which may have a substituent, or an aryl group having 6 to 30 carbon atoms which may have a substituent.
  • an acyl group having 1 to 30 carbon atoms which may have a substituent a group containing a carboxyl group having 1 to 30 carbon atoms which may have a substituent, and a substituent. It represents an amino group having 0 to 30 carbon atoms, a halogen atom, a cyano group, a nitro group, a thiol group and a heterocyclic group, and preferably has a hydrogen atom or a substituent and may have 1 to 30 carbon atoms. Represents the alkyl group of.
  • R 1, R 2, R 3, and R 4 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, i-butyl group, tert-butyl group, and isomers as alkyl groups.
  • aryl groups include phenyl group, alkylphenyl group, naphthyl group, alkylnaphthyl group, biphenyl group, alkylbiphenyl group, etc. Can be mentioned.
  • -It is an octyl group.
  • substitution means that one or more hydrogen atoms in a functional group are substituted with a substituent unless otherwise defined.
  • the "substituent” is not particularly limited, and is, for example, a halogen atom, a hydroxyl group, a cyano group, a nitro group, a thiol group, a heterocyclic group, an alkyl group having 1 to 30 carbon atoms, an aryl group having 6 to 20 carbon atoms, and the like.
  • Examples thereof include an alkoxyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, an acyl group having 1 to 30 carbon atoms, and an amino group having 0 to 30 carbon atoms.
  • the alkyl group may be any of a linear aliphatic hydrocarbon group, a branched aliphatic hydrocarbon group, and a cyclic aliphatic hydrocarbon group.
  • X indicates an oxygen atom, a sulfur atom, a single bond or no crosslink.
  • X an oxygen atom is preferable from the viewpoint of heat resistance.
  • Y is a 2n-valent group or a single bond having 1 to 60 carbon atoms, and when X is non-crosslinked, Y is preferably the 2n-valent group.
  • the 2n-valent group having 1 to 60 carbon atoms is, for example, a 2n-valent hydrocarbon group, and the hydrocarbon group may have various functional groups described later as a substituent.
  • Examples of the 2n-valent hydrocarbon group include a group in which a 2n + 1-valent hydrocarbon group is bonded to a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group.
  • the alicyclic hydrocarbon group the Aribashi alicyclic hydrocarbon group is also included.
  • Examples of the 2n + 1-valent hydrocarbon group include, but are not limited to, a trivalent methine group and an ethine group.
  • the 2n-valent hydrocarbon group may have a double bond, a heteroatom and / or an aryl group having 6 to 59 carbon atoms.
  • Y may contain a group derived from a compound having a fluorene skeleton such as fluorene or benzofluorene, but in the present specification, the term "aryl group” refers to a fluorene skeleton such as fluorene or benzofluorene. It is used as a compound that does not contain a group derived from the compound.
  • the 2n-valent group may contain a halogen group, a nitro group, an amino group, a hydroxyl group, an alkoxy group, a thiol group or an aryl group having 6 to 40 carbon atoms. Further, the 2n-valent group may contain an ether bond, a ketone bond, an ester bond or a double bond.
  • the 2n-valent group preferably contains a branched hydrocarbon group or an alicyclic hydrocarbon group rather than a linear hydrocarbon group from the viewpoint of heat resistance, and may contain an alicyclic hydrocarbon group. More preferred. Further, in the present embodiment, it is particularly preferable that the 2n-valent group has an aryl group having 6 to 60 carbon atoms.
  • the substituent which can be contained in the 2n-valent group and is not particularly limited as an alicyclic hydrocarbon group and an aromatic group having 6 to 60 carbon atoms is, for example, an unsubstituted phenyl group, a naphthalene group and a biphenyl.
  • anthracyl group pyrenyl group, cyclohexyl group, cyclododecyl group, dicyclopentyl group, tricyclodecyl group, adamantyl group, phenylene group, naphthalenediyl group, biphenyldiyl group, anthracendiyl group, pyrenedyl group, cyclohexanediyl group, cyclo Dodecandyl group, dicyclopentanediyl group, tricyclodecandyl group, adamantandiyl group, benzenetriyl group, naphthalentryyl group, biphenyltriyl group, anthracentlyyl group, pyrentryyl group, cyclohexanetriyl group, cyclododecane Triyl group, dicyclopentanetriyl group, tricyclodecantryyl group, adamantan
  • Each of R0 independently contains a hydrogen atom, an alkyl group having 1 to 40 carbon atoms which may have a substituent, an aryl group having 6 to 40 carbon atoms which may have a substituent, and a substituent. It is an alkenyl group having 2 to 40 carbon atoms which may have a substituent and an alkynyl group having 2 to 40 carbon atoms which may have a substituent.
  • the alkyl group may be linear, branched or cyclic.
  • the alkyl group having 1 to 40 carbon atoms is not limited to the following, but for example, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, and the like. Examples thereof include an n-pentyl group, an n-hexyl group, an n-dodecyl group and a barrel group.
  • Examples of the aryl group having 6 to 40 carbon atoms include, but are not limited to, a phenyl group, a naphthalene group, a biphenyl group, an anthracyl group, a pyrenyl group, a perylene group and the like.
  • Examples of the alkenyl group having 2 to 40 carbon atoms include, but are not limited to, an ethynyl group, a propenyl group, a butynyl group, a pentynyl group and the like.
  • Examples of the alkynyl group having 2 to 40 carbon atoms include, but are not limited to, an acetylene group and an ethynyl group.
  • M is an integer of 1 to 8 independently. From the viewpoint of solubility, 1 to 6 are preferable, 1 to 4 are more preferable, and 1 is further preferable from the viewpoint of raw material availability.
  • N is an integer from 1 to 4. From the viewpoint of solubility, 1 to 2 is preferable, and from the viewpoint of raw material availability, 1 is more preferable.
  • P is an integer of 0 to 3 independently. From the viewpoint of heat resistance, 1 to 2 is preferable, and from the viewpoint of raw material availability, 1 is more preferable.
  • the aromatic hydroxy compound represented by the above formula (1A) is preferably the compound represented by the following formula (1) from the viewpoint of ease of production.
  • R 1 is synonymous with Y in the formula (1A)
  • R 2 is synonymous with R 0 in the formula (1A).
  • the aromatic hydroxy compound represented by the formula (1) is preferably an aromatic hydroxy compound represented by the following formula (1-1) from the viewpoint of heat resistance.
  • Z is an oxygen atom or a sulfur atom
  • R 1 , R 2 , m, p and n are as described above.
  • the aromatic hydroxy compound represented by the formula (1-1) is preferably an aromatic hydroxy compound represented by the following formula (1-2) from the viewpoint of raw material availability.
  • R 1 , R 2 , m, p and n are as described above.
  • aromatic hydroxy compound represented by the formula (1-2) is preferably an aromatic hydroxy compound represented by the following formula (1-3) from the viewpoint of improving solubility.
  • R 1 is as described above, R 3 is synonymous with R 0 in the above formula (1A), and m 3 is an integer of 1 to 6 independently. .
  • the aromatic hydroxy compound represented by the formula (1A) is preferably an aromatic hydroxy compound represented by the following formula (2) from the viewpoint of dissolution stability.
  • R 1 is synonymous with Y in the formula (1A)
  • n and p are as described above
  • R 5 and R 6 are synonymous with R 0 in the formula (1A).
  • M 5 and m 6 are independently integers from 0 to 5, but m 5 and m 6 are not 0 at the same time.
  • the aromatic hydroxy compound represented by the above formula (2) is preferably an aromatic hydroxy compound represented by the following formula (2-1) from the viewpoint of dissolution stability.
  • R 1, R 5, R 6 and n are the are as, m 5 'are each independently an integer of 1 ⁇ 4, m 6' are each independently It is an integer from 1 to 5.
  • the aromatic hydroxy compound represented by the above formula (2-1) is preferably an aromatic hydroxy compound represented by the following formula (2-2) from the viewpoint of raw material availability.
  • R 1 is as described above, R 7, R 8 and R 9 are synonymous with R 0 in the formula (1A), and m 9 is independently 0 to 0 to It is an integer of 3.
  • the R 1 is a group represented by R a -R B, wherein the R a is a methine group, the R B is have a substituent It is preferably an aryl group having 6 to 30 carbon atoms which may be used.
  • the aryl group having 6 to 30 carbon atoms is not limited to the following, and examples thereof include a phenyl group, a naphthalene group, a biphenyl group, an anthracyl group, and a pyrenyl group.
  • the group derived from a compound having a fluorene skeleton such as fluorene or benzofluorene is not included in the "aryl group having 6 to 30 carbon atoms".
  • R 2 and X have the same meaning as those described in the above formula (1).
  • m ' is an integer of 1 to 7.
  • specific examples of the aromatic hydroxy compound in the present embodiment will be shown, but not limited to those listed here.
  • R 2 and X have the same meaning as those described in the above formula (1).
  • m ' is an integer of 1 to 7
  • m'' is an integer of 1-5.
  • specific examples of the aromatic hydroxy compound in the present embodiment will be shown, but not limited to those listed here.
  • R 2, X and m have the same meanings as those described above.
  • specific examples of the aromatic hydroxy compound in the present embodiment will be shown, but not limited to those listed here.
  • R 2 and X have the same meaning as those described in the above formula (1).
  • m ' is an integer of 1 to 7.
  • m'' is an integer of 1 to 5.
  • R 2 and X have the same meaning as those described in the above formula (1).
  • m ' is an integer of 1 to 7.
  • specific examples of the aromatic hydroxy compound in the present embodiment will be shown, but not limited to those listed here.
  • R 2 and X have the same meaning as those described in the above formula (1).
  • m ' is an integer of 1 to 7.
  • m'' is an integer of 1 to 5.
  • R 2 and X have the same meaning as those described in the above formula (1).
  • m ' is an integer of 1 to 7.
  • specific examples of the aromatic hydroxy compound in the present embodiment will be shown, but not limited to those listed here.
  • R 2 and X have the same meaning as those described in the above formula (1).
  • m ' is an integer of 1 to 7.
  • m'' is an integer of 1 to 5.
  • R 5 and R 6 have the same meanings as those described for the formula (2).
  • m 11 is an integer of 0 to 6
  • m 12 is an integer of 0 to 7, and not all m 11 and m 12 are 0 at the same time.
  • specific examples of the aromatic hydroxy compound in the present embodiment will be shown, but not limited to those listed here.
  • R 5 and R 6 have the same meanings as those described for the formula (2).
  • m 5 ' are each independently an integer of 0 to 4
  • m 6' are each independently an integer of 0 to 5
  • every m 5 'and m 6' are not 0 simultaneously.
  • specific examples of the aromatic hydroxy compound in the present embodiment will be shown, but not limited to those listed here.
  • R 5 and R 6 have the same meanings as those described for the formula (2).
  • m 11 is an integer of 0 to 6
  • m 12 is an integer of 0 to 7, and not all m 11 and m 12 are 0 at the same time.
  • specific examples of the aromatic hydroxy compound in the present embodiment will be shown, but not limited to those listed here.
  • R 5 and R 6 have the same meanings as those described for the formula (2).
  • m 5 ' is an integer of 0 to 4
  • m 6' is an integer of 0 to 5
  • every m 5 'and m 6' are not 0 simultaneously.
  • the A in the formula (1B) is not particularly limited, but may be, for example, a benzene ring, naphthalene, anthracene, naphthalene, pentacene, benzopyrene, chrysene, pyrene, triphenylene, corannulene, coronene and ovalene. It may be various known fused rings such as.
  • A is various fused rings such as naphthalene, anthracene, naphthalene, pentacene, benzopyrene, chrysene, pyrene, triphenylene, corannulene, coronene and ovalene from the viewpoint of heat resistance. Further, it is preferable that A is naphthalene or anthracene because the n-value and k-value at a wavelength of 193 nm used in ArF exposure tend to be low and the pattern transferability tends to be excellent.
  • the above-mentioned A includes heterocycles such as pyridine, pyrrole, pyridazine, thiophene, imidazole, furan, pyrazole, oxazole, triazole, thiazol, or benzo-condensated rings thereof. Be done.
  • the A is preferably an aromatic hydrocarbon ring or a heterocycle, and more preferably an aromatic hydrocarbon ring.
  • the A in the formula (1B) is not particularly limited, but may be, for example, a benzene ring, naphthalene, anthracene, naphthalene, pentacene, benzopyrene, chrysene, pyrene, triphenylene, corannulene, coronene and ovalene. It may be various known fused rings such as.
  • preferred examples of the aromatic hydroxy compound represented by the formula (1B) include aromatic hydroxy compounds represented by the following formulas (1B') and (1B'').
  • R 0 and m are synonymous with those in the equation (1B), p is an integer of 1 to 3, and in the equation (1B''), R 0 is the equation (1B''). ), And m 0 is an integer from 0 to 4, but not all m 0s become 0 at the same time.
  • n 0 is an integer of 0 to 4
  • n 0 is an integer of 0 to 6
  • n 0 is an integer from 0 to 8. In equations (B-1) to (B-4), not all n 0s become 0 at the same time.
  • aromatic hydroxy compounds represented by the formulas (B-1) to (B-4) those represented by (B-3) to (B-4) are preferable from the viewpoint of improving the etching resistance. Further, from the viewpoint of optical characteristics, those represented by (B-2) to (B-3) are preferable. Further, from the viewpoint of flatness, those represented by (B-1) to (B-2) and (B-4) are preferable, and those represented by (B-4) are more preferable. From the viewpoint of heat resistance, it is preferable that any one carbon atom of the aromatic ring having a derivative of the phenolic hydroxyl group participates in the direct bond between the aromatic rings.
  • an aromatic hydroxy compound represented by the following B-5 can also be used as a specific example of the formula (1B) from the viewpoint of further improving the etching resistance.
  • R is synonymous with R 0 in the equation (1B'')
  • n 1 is an integer of 0 to 8.
  • the position where the repeating units in the polycyclic polyphenol resin in the present embodiment are directly bonded to each other is not particularly limited, and when the repeating unit is represented by the general formula (1A), a derivative of a phenolic hydroxyl group. And any one carbon atom to which no other substituent is attached participates in the direct bond between the monomers. From the viewpoint of heat resistance, it is preferable that any one carbon atom of the aromatic ring having a derivative of the phenolic hydroxyl group participates in the direct bond between the aromatic rings.
  • the polycyclic polyphenol resin contained in the film-forming composition of the present embodiment is a polycyclic containing a repeating unit derived from at least one monomer selected from the group consisting of aromatic hydroxy compounds represented by the following formula (0A).
  • the polyphenol resin may be one in which the repeating units are linked by direct bonds between aromatic rings.
  • “repeating units are linked by direct bonds between aromatic rings” means that the constituent units (0A) in the polycyclic polyphenol resin are in parentheses in one of the constituent units (0A).
  • R 1 is a 2n-valent group or a single bond having 1 to 60 carbon atoms
  • R 2 is an alkyl having 1 to 40 carbon atoms which may independently have a substituent.
  • It has carbon atoms that may 1 be ⁇ 40 alkoxy group, a halogen atom, a thiol group, an amino group, a nitro group, a cyano group, a nitro group, a heterocyclic group, a carboxyl group or a hydroxyl group, wherein the R 2 At least one is a hydroxyl group, m is an independently integer of 0 to 5, and n is an independently of an integer of 1 to 4.
  • R 1 is a 2n-valent group or single bond having 1 to 60 carbon atoms.
  • the 2n-valent group having 1 to 60 carbon atoms is, for example, a 2n-valent hydrocarbon group, and the hydrocarbon group may have various functional groups described later as a substituent.
  • Examples of the 2n-valent hydrocarbon group include a group in which a 2n + 1-valent hydrocarbon group is bonded to a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group.
  • the alicyclic hydrocarbon group the Aribashi alicyclic hydrocarbon group is also included.
  • Examples of the 2n + 1-valent hydrocarbon group include, but are not limited to, a trivalent methine group and an ethine group.
  • the 2n-valent hydrocarbon group may have a double bond, a heteroatom and / or an aryl group having 6 to 59 carbon atoms.
  • R 1 may contain a group derived from a compound having a fluorene skeleton such as fluorene and benzofluorene.
  • the 2n-valent group may contain a halogen group, a nitro group, an amino group, a hydroxyl group, an alkoxy group, a thiol group or an aryl group having 6 to 40 carbon atoms. Further, the 2n-valent group may contain an ether bond, a ketone bond, an ester bond or a double bond.
  • the 2n-valent group preferably contains a branched hydrocarbon group or an alicyclic hydrocarbon group, and more preferably contains an alicyclic hydrocarbon group from the viewpoint of heat resistance. Further, in the present embodiment, it is particularly preferable that the 2n-valent group has an aryl group having 6 to 60 carbon atoms.
  • the substituent which can be contained in the 2n-valent group and is not particularly limited as an alicyclic hydrocarbon group and an aromatic group having 6 to 60 carbon atoms is, for example, an unsubstituted phenyl group, a naphthalene group and a biphenyl.
  • anthracyl group pyrenyl group, cyclohexyl group, cyclododecyl group, dicyclopentyl group, tricyclodecyl group, adamantyl group, phenylene group, naphthalenediyl group, biphenyldiyl group, anthracendiyl group, pyrenedyl group, cyclohexanediyl group, cyclo Dodecandyl group, dicyclopentanediyl group, tricyclodecandyl group, adamantandiyl group, benzenetriyl group, naphthalentryyl group, biphenyltriyl group, anthracentlyyl group, pyrentryyl group, cyclohexanetriyl group, cyclododecane Triyl group, dicyclopentanetriyl group, tricyclodecantryyl group, adamantan
  • Each of R 2 independently has an alkyl group having 1 to 40 carbon atoms which may have a substituent, an aryl group having 6 to 40 carbon atoms which may have a substituent, and a substituent.
  • An alkenyl group having 2 to 40 carbon atoms may be used, an alkynyl group having 2 to 40 carbon atoms may have a substituent, an alkoxy group having 1 to 40 carbon atoms may have a substituent, and a halogen atom.
  • the alkyl group may be linear, branched or cyclic.
  • at least one of R 2 is a hydroxyl group.
  • the alkyl group having 1 to 40 carbon atoms is not limited to the following, but for example, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, and the like. Examples thereof include an n-pentyl group, an n-hexyl group, an n-dodecyl group and a barrel group.
  • Examples of the aryl group having 6 to 40 carbon atoms include, but are not limited to, a phenyl group, a naphthalene group, a biphenyl group, an anthracyl group, a pyrenyl group, a perylene group and the like.
  • Examples of the alkenyl group having 2 to 40 carbon atoms include, but are not limited to, an ethynyl group, a propenyl group, a butynyl group, a pentynyl group and the like.
  • Examples of the alkynyl group having 2 to 40 carbon atoms include, but are not limited to, an acetylene group and an ethynyl group.
  • the alkoxy group having 1 to 40 carbon atoms is not limited to the following, and examples thereof include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a pentoxy group.
  • M is an integer of 0 to 5 independently.
  • m 0 to 3 is preferable from the viewpoint of solubility, 0 to 1 is more preferable, and 0 is further preferable from the viewpoint of raw material availability.
  • N is an integer of 1 to 4 independently.
  • n from the viewpoint of solubility, 1 to 3 is preferable, 1 to 2 is more preferable, and 1 is further preferable.
  • 2 to 4 is preferable, 3 to 4 is more preferable, and 4 is further preferable.
  • the aromatic hydroxy compound represented by the above formula (0A) can be used alone or in combination of two or more.
  • the aromatic hydroxy compound represented by the above formula (0A) is preferably a compound represented by the following formula (1-0A) from the viewpoint of ease of production.
  • R 1, R 2, m have the same meanings as those described for the formula (0A).
  • the aromatic hydroxy compound represented by the above formula (1-0A) is preferably a compound represented by the following formula (1) from the viewpoint of ease of production.
  • R 1 has the same meaning as that described in the above formula (1-0A).
  • the R 1 may have a substituent and has 6 carbon atoms. It preferably contains ⁇ 40 aryl groups.
  • the aryl group having 6 to 40 carbon atoms is not limited to the following, but may be, for example, a benzene ring, naphthalene, anthracene, naphthalene, pentacene, benzopyrene, chrysene, pyrene, triphenylene, and the like.
  • R 1 is a condensed ring of various fused rings such as naphthalene, anthracene, naphthalene, pentacene, benzopyrene, chrysene, pyrene, triphenylene, corannulene, coronene, ovalene, fluorene, benzofluorene and dibenzofluorene. It is preferable from the viewpoint of sex.
  • R 1 is naphthalene or anthracene because the n-value and k-value at a wavelength of 193 nm used in ArF exposure tend to be low and the pattern transferability tends to be excellent.
  • the above-mentioned R 1 has a heterocycle such as pyridine, pyrrole, pyridazine, thiophene, imidazole, furan, pyrazole, oxazole, triazole, thiazol or benzo-condensate thereof. Can be mentioned.
  • the R 1 is an aromatic hydrocarbon ring, to be heterocyclic and is preferably, more preferably an aromatic hydrocarbon ring.
  • the R 1 is a group represented by R A -R B There, wherein the R a is a methine group, the R B is more preferably an aryl group which has carbon atoms, which may have 6 to 40 have a substituent.
  • aromatic hydroxy compounds represented by the formulas (0A), (1-0A), and (1) are shown below, but the aromatic hydroxy compounds in the present embodiment are the compounds listed below. Not limited.
  • each of R 3 independently has a hydrogen atom, an alkyl group having 1 to 40 carbon atoms which may have a substituent, and an aryl group having 6 to 40 carbon atoms which may have a substituent.
  • "repeating units are linked by direct bonds between aromatic rings” is, for example, one of the repeating units (0A) in the polycyclic polyphenol resin.
  • An embodiment in which an atom is directly bonded by a single bond, that is, without interposing other atoms such as a carbon atom, an oxygen atom, and a sulfur atom can be mentioned.
  • the present embodiment may include the following aspects.
  • the position where the repeating units are directly bonded to each other in the polycyclic polyphenol resin of the present embodiment is not particularly limited, and when the repeating unit is represented by the general formula (1-0A), a phenolic hydroxyl group is used. And any one carbon atom to which no other substituent is attached participates in the direct bond between the monomers. From the viewpoint of heat resistance, it is preferable that any one carbon atom of the aromatic ring having a phenolic hydroxyl group participates in the direct bond between the aromatic rings.
  • the polycyclic polyphenol resin of the present embodiment may contain a repeating unit having an ether bond formed by condensation of phenolic hydroxyl groups as long as the performance according to the application is not impaired. It may also contain a ketone structure.
  • the polyphenol resin of the present embodiment is used for a composition described later, a method for producing a polyphenol resin, a film forming composition, a resist composition, a resist pattern forming method, a radiation-sensitive composition, and a lower layer film forming for lithography. Assuming application to all uses such as compositions, methods for producing underlayer films for lithography, methods for forming circuit patterns, and compositions for forming optical members, many of the present embodiments are used from the viewpoint of further enhancing heat resistance and etching resistance. It is particularly preferable that the ring polyphenol resin is at least one selected from the group consisting of RBisN-1, RBisN-2, RBisN-3, RBisN-4, and RBisN-5 described in Examples described later.
  • the film-forming composition of the present embodiment is repeatedly derived from at least one monomer selected from the group consisting of aromatic hydroxy compounds represented by the above formulas (1-0), (1A), and (1B). Contains polycyclic polyphenolic resins with units.
  • the number and ratio of each repeating unit are not particularly limited, but it is preferable to appropriately adjust them in consideration of the intended use and the following molecular weight values.
  • the weight average molecular weight of the polycyclic polyphenol resin in the present embodiment is not particularly limited, but is preferably in the range of 400 to 100,000, more preferably 500 to 15,000, and even more preferably 3200 to 12000.
  • the range of the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is not particularly limited because the ratio required depending on the application is different, but it is more uniform.
  • Examples of those having a high molecular weight include those having a preferable molecular weight in the range of 3.0 or less, more preferable ones in the range of 1.05 or more and 3.0 or less, and particularly preferable ones in the range of 1. Those of 05 or more and less than 2.0 are mentioned, and those of 1.05 or more and less than 1.5 are more preferable from the viewpoint of heat resistance.
  • the position where the repeating units in the polycyclic polyphenol resin in the present embodiment are directly bonded to each other is not particularly limited, and when the repeating unit is represented by the general formula (1-0), a phenolic hydroxyl group is used. And any one carbon atom to which no other substituent is attached participates in the direct bond between the monomers. From the viewpoint of heat resistance, it is preferable that any one carbon atom of the aromatic ring having a phenolic hydroxyl group participates in the direct bond between the aromatic rings.
  • the polycyclic polyphenol resin in the present embodiment may contain a repeating unit having an ether bond formed by condensation of phenolic hydroxyl groups as long as the performance according to the application is not impaired. It may also contain a ketone structure.
  • the polycyclic polyphenol resin in the present embodiment is preferably highly soluble in a solvent from the viewpoint of facilitating the application of a wet process. More specifically, when the polycyclic polyphenol resin in the present embodiment uses propylene glycol monomethyl ether (PGME) and / or propylene glycol monomethyl ether acetate (PGMEA) as a solvent, the solubility in the solvent at a temperature of 23 ° C. Is preferably 1% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more.
  • the solubility in PGME and / or PGMEA is defined as "mass of resin ⁇ (mass of resin + mass of solvent) ⁇ 100 (mass%)".
  • 10 g of the polycyclic polyphenol resin is evaluated to be soluble in 90 g of PGMEA when the solubility of the polycyclic polyphenol resin in PGMEA is "10% by mass or more", and it is evaluated that it is not soluble. This is the case where the solubility is "less than 10% by mass”.
  • the method for producing the polycyclic polyphenol resin in the present embodiment is not limited to the following, but may include, for example, a step of polymerizing one or more of the aromatic hydroxy compounds in the presence of an oxidizing agent. ..
  • an oxidizing agent ..
  • the contents of K. Matsumoto, Y. Shibasaki, S. Ando and M. Ueda, Polymer, 47, 3043 (2006) can be referred to as appropriate. That is, in the oxidative polymerization of ⁇ -naphthol type monomer, the ⁇ -position CC coupling is selectively generated by the oxidation coupling reaction in which radicals oxidized by one electron due to the monomer are coupled.
  • the oxidizing agent in the present embodiment is not particularly limited as long as it causes an oxidation coupling reaction, but is a metal containing copper, manganese, iron, cobalt, ruthenium, lead, nickel, silver, tin, chromium, palladium and the like.
  • Peroxides such as salts, hydrogen peroxide or perchloric acids, and organic peroxides are used.
  • metal salts or metal complexes containing copper, manganese, iron or cobalt can be preferably used.
  • Metals such as copper, manganese, iron, cobalt, ruthenium, lead, nickel, silver, tin, chromium or palladium can also be used as an oxidant by reduction in the reaction system. These are included in metal salts.
  • the aromatic hydroxy compounds represented by the general formulas (1-0), (1A), and (1B) are dissolved in an organic solvent, and metal salts containing copper, manganese, or cobalt are further added, for example, oxygen.
  • a desired polycyclic polyphenol resin can be obtained by reacting with an oxygen-containing gas and performing oxidative polymerization.
  • metal salts halides such as copper, manganese, cobalt, ruthenium, chromium and palladium, carbonates, acetates, nitrates and phosphates can be used.
  • the metal complex is not particularly limited, and known ones can be used. Specific examples thereof include, but are not limited to, the catalysts described in JP-A-36-18692, JP-A-40-13423, JP-A-49-490 and the like, as examples of the complex catalyst containing copper.
  • Manganese-containing complex catalysts such as Japanese Patent Publication No. 40-30354, 47-5111, Japanese Patent Application Laid-Open No. 56-32523, No. 57-44625, No. 58-19329, No. 60-83185, etc.
  • the catalyst described in the above is mentioned, and as the complex catalyst containing cobalt, the catalyst described in Japanese Patent Publication No. 45-23555 can be mentioned.
  • organic peroxides include, but are not limited to, t-butyl hydroperoxide, di-t-butyl peroxide, cumene hydroperoxide, dicumyl peroxide, peracetic acid, perbenzoic acid and the like. Can be done.
  • the above oxidizing agent can be used alone or in combination.
  • the amount of these used is not particularly limited, but is preferably 0.002 to 10 mol, more preferably 0.003 to 3 mol, still more preferably 0. It is 005 to 0.3 mol. That is, the oxidizing agent in the present embodiment can be used at a low concentration with respect to the monomer.
  • a base in addition to the oxidizing agent used in the oxidative polymerization step.
  • the base is not particularly limited, and known ones can be used, and specific examples thereof include inorganic bases such as alkali metal hydroxides, alkaline earth metal hydroxides, and alkali metal alcoxides. It may be an organic base such as a primary to tertiary monoamine compound or a diamine. Each can be used alone or in combination.
  • the method of oxidation is not particularly limited, and there is a method of directly using oxygen gas or air, but air oxidation is preferable from the viewpoint of safety and cost.
  • air oxidation is preferable from the viewpoint of safety and cost.
  • a method of introducing air by bubbling into a liquid in a reaction solvent is preferable from the viewpoint of improving the rate of oxidative polymerization and increasing the molecular weight of the resin.
  • the oxidation reaction of this embodiment can also be a reaction under pressure, preferably 2kg / cm 2 ⁇ 15kg / cm 2 from the viewpoint of reaction promotion, 3 kg / cm in terms of safety and controllability 2 to 10 kg / cm 2 is more preferable.
  • the oxidation reaction of the aromatic hydroxy compound can be carried out even in the absence of a reaction solvent, but it is generally preferable to carry out the reaction in the presence of a solvent.
  • a solvent various known solvents can be used as long as they dissolve the catalyst to some extent as long as there is no problem in obtaining the polycyclic polyphenol resin in the present embodiment.
  • alcohols such as methanol, ethanol, propanol and butanol
  • ethers such as dioxane, tetrahydrofuran or ethylene glycol dimethyl ether
  • solvents such as amides or nitriles
  • acetone methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone.
  • Ketones such as; or mixed with water.
  • the reaction can be carried out with hydrocarbons such as benzene, toluene or hexane which are immiscible with water, or a two-phase system between them and water.
  • the reaction conditions may be appropriately adjusted according to the substrate concentration, the type and concentration of the oxidizing agent, but the reaction temperature can be set to a relatively low temperature, preferably 5 to 150 ° C, and 20 to 20 to. More preferably, it is 120 ° C.
  • the reaction time is preferably 30 minutes to 24 hours, more preferably 1 hour to 20 hours.
  • the stirring method at the time of reaction is not particularly limited, and any of shaking, stirring using a rotor or a stirring blade may be used. This step may be performed in a solvent or in an air stream as long as the stirring conditions satisfy the above conditions.
  • the polycyclic polyphenol resin in the present embodiment is obtained as a crude product by the above-mentioned oxidation reaction, and then further purified to remove the residual oxidizing agent. That is, from the viewpoint of preventing deterioration of the resin over time and storage stability, residual metal salts or metal complexes containing copper, manganese, iron or cobalt, which are mainly used as metal oxidizing agents derived from oxidizing agents. It is preferable to avoid.
  • the residual amount of the metal derived from the oxidizing agent in the film-forming composition is preferably less than 10 ppm, more preferably less than 1 ppm, and even more preferably less than 500 ppb.
  • 10 ppm or more it tends to be possible to prevent a decrease in the solubility of the resin in the solution due to deterioration of the resin, and it is also possible to prevent an increase in the turbidity (haze) of the solution.
  • 500 ppb when it is less than 500 ppb, it tends to be usable even in the solution form without impairing the storage stability.
  • the content of the impurity metal in the film-forming composition is particularly preferably less than 500 ppb for each metal species, further preferably 10 ppb or less, and further preferably 1 ppb or less. Is particularly preferable.
  • the impurity metal is not particularly limited, and examples thereof include at least one selected from the group consisting of copper, manganese, iron, cobalt, ruthenium, chromium, nickel, tin, lead, silver and palladium.
  • the purification method is not particularly limited, but the step of dissolving a polycyclic polyphenol resin in a solvent to obtain a solution (S) and the obtained solution (S) and an acidic aqueous solution are brought into contact with each other to obtain the resin.
  • the solvent used in the step of obtaining the solution (S) includes an organic solvent which is optionally immiscible with water, including a step of extracting the impurities in the solution (first extraction step). According to the purification method, the content of various metals that may be contained as impurities in the resin can be reduced.
  • the resin can be dissolved in an organic solvent that is not miscible with water to obtain a solution (S), and the solution (S) can be further contacted with an acidic aqueous solution to perform an extraction treatment.
  • the organic phase and the aqueous phase can be separated to obtain a resin having a reduced metal content.
  • the solvent that is not arbitrarily miscible with the water used in the above purification method is not particularly limited, but an organic solvent that can be safely applied to the semiconductor manufacturing process is preferable, and specifically, the solubility in water at room temperature is 30%. It is an organic solvent which is less than, more preferably less than 20%, and particularly preferably less than 10%.
  • the amount of the organic solvent used is preferably 1 to 100 times by mass with respect to the total amount of the resins used.
  • solvent immiscible with water are not limited to the following, but for example, ethers such as diethyl ether and diisopropyl ether, esters such as ethyl acetate, n-butyl acetate and isoamyl acetate, methyl ethyl ketone and methyl isobutyl.
  • ethers such as diethyl ether and diisopropyl ether
  • esters such as ethyl acetate, n-butyl acetate and isoamyl acetate, methyl ethyl ketone and methyl isobutyl.
  • Ketones such as ketone, ethyl isobutyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 2-pentanone; ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl Glycol ether acetates such as ether acetate; aliphatic hydrocarbons such as n-hexane and n-heptane; aromatic hydrocarbons such as toluene and xylene; halogenated hydrocarbons such as methylene chloride and chloroform. ..
  • toluene, 2-heptanone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, ethyl acetate and the like are preferable, and methyl isobutyl ketone, ethyl acetate, cyclohexanone and propylene glycol monomethyl ether acetate are more preferable.
  • Methyl isobutyl ketone and ethyl acetate are even more preferable.
  • the acidic aqueous solution used in the above purification method is appropriately selected from a generally known organic compound or an aqueous solution obtained by dissolving an inorganic compound in water.
  • aqueous mineral acid solution in which a mineral acid such as hydrochloric acid, sulfuric acid, nitrate, or phosphoric acid is dissolved in water, or acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, and maleic acid.
  • Tartrate acid citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluenesulfonic acid, trifluoroacetic acid and other organic acids dissolved in water.
  • acidic aqueous solutions can be used alone or in combination of two or more.
  • one or more mineral acid aqueous solutions selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, or acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid
  • An aqueous solution of a carboxylic acid such as tartaric acid or citric acid is more preferable, an aqueous solution of sulfuric acid, oxalic acid, tartaric acid or citric acid is more preferable, and an aqueous solution of oxalic acid is even more preferable.
  • polyvalent carboxylic acids such as oxalic acid, tartaric acid, and citric acid are coordinated to metal ions and have a chelating effect, so that the metal can be removed more effectively.
  • water used here it is preferable to use water having a low metal content, for example, ion-exchanged water, etc., in line with the purpose of the purification method in the present embodiment.
  • the pH of the acidic aqueous solution used in the purification method is not particularly limited, but it is preferable to adjust the acidity of the aqueous solution in consideration of the influence on the resin.
  • the pH range is about 0 to 5, preferably about 0 to 3.
  • the amount of the acidic aqueous solution used in the above purification method is not particularly limited, but the amount used may be used from the viewpoint of reducing the number of extractions for removing the metal and ensuring operability in consideration of the total amount of the liquid. It is preferable to adjust. From the above viewpoint, the amount of the acidic aqueous solution used is preferably 10 to 200% by mass, more preferably 20 to 100% by mass, based on 100% by mass of the solution (S).
  • the metal component can be extracted from the resin in the solution (S) by contacting the acidic aqueous solution with the solution (S).
  • the solution (S) may further contain an organic solvent that is optionally miscible with water.
  • an organic solvent that is arbitrarily miscible with water is contained, the amount of the resin charged can be increased, the liquid separation property is improved, and purification can be performed with high pot efficiency.
  • the method of adding an organic solvent that is arbitrarily miscible with water is not particularly limited. For example, any of a method of adding to a solution containing an organic solvent in advance, a method of adding to water or an acidic aqueous solution in advance, and a method of adding after contacting a solution containing an organic solvent with water or an acidic aqueous solution may be used. Among these, the method of adding to a solution containing an organic solvent in advance is preferable in terms of workability of operation and ease of control of the amount of charge.
  • the organic solvent that is arbitrarily miscible with the water used in the above purification method is not particularly limited, but an organic solvent that can be safely applied to the semiconductor manufacturing process is preferable.
  • the amount of the organic solvent that is arbitrarily miscible with water is not particularly limited as long as the solution phase and the aqueous phase are separated, but is 0.1 to 100 times by mass with respect to the total amount of the resin used. It is preferably 0.1 to 50 times by mass, more preferably 0.1 to 20 times by mass.
  • ethers such as tetrahydrofuran and 1,3-dioxolane
  • alcohols such as methanol, ethanol and isopropanol
  • acetone ethylpyrrolidone and other ketones
  • examples thereof include aliphatic hydrocarbons such as ethylene glycol monoethyl ether, ethylene glyco
  • N-methylpyrrolidone, propylene glycol monomethyl ether and the like are preferable, and N-methylpyrrolidone and propylene glycol monomethyl ether are more preferable.
  • Each of these solvents can be used alone, or two or more of them can be mixed and used.
  • the temperature at which the extraction process is performed is usually 20 to 90 ° C, preferably 30 to 80 ° C.
  • the extraction operation is performed by, for example, stirring well and then allowing the mixture to stand still. As a result, the metal content contained in the solution (S) is transferred to the aqueous phase. Further, by this operation, the acidity of the solution is lowered, and the deterioration of the resin can be suppressed.
  • the solution phase is recovered by decantation or the like.
  • the standing time is not particularly limited, but it is preferable to adjust the standing time from the viewpoint of improving the separation between the solution phase containing the solvent and the aqueous phase.
  • the standing time is 1 minute or more, preferably 10 minutes or more, and more preferably 30 minutes or more.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separating a plurality of times.
  • the purification method it is preferable to include a step (second extraction step) of extracting impurities in the resin by further contacting the solution phase containing the resin with water after the first extraction step.
  • a step (second extraction step) of extracting impurities in the resin by further contacting the solution phase containing the resin with water after the first extraction step.
  • the solution phase containing the resin and the solvent extracted and recovered from the aqueous solution is further subjected to the extraction treatment with water after the above extraction treatment is performed using an acidic aqueous solution.
  • the above-mentioned extraction treatment with water is not particularly limited, but can be carried out, for example, by mixing the above-mentioned solution phase and water well by stirring or the like, and then allowing the obtained mixed solution to stand still.
  • the solution phase can be recovered by decantation or the like.
  • the water used here is preferably water having a low metal content, for example, ion-exchanged water, for the purpose of the present embodiment.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separating a plurality of times.
  • the conditions such as the ratio of use of both in the extraction treatment, the temperature, and the time are not particularly limited, but the same as in the case of the contact treatment with the acidic aqueous solution described above may be used.
  • Moisture that can be mixed in the solution containing the resin and the solvent thus obtained can be easily removed by performing an operation such as vacuum distillation. Further, if necessary, a solvent can be added to the above solution to adjust the concentration of the resin to an arbitrary concentration.
  • the method for purifying a polycyclic polyphenol resin according to the present embodiment can also be purified by passing a solution of the resin in a solvent through a filter.
  • the content of various metals in the resin can be effectively and significantly reduced.
  • the amounts of these metal components can be measured by the method described in Examples described later.
  • the term "passing liquid" in the present embodiment means that the solution passes from the outside of the filter through the inside of the filter and moves to the outside of the filter again. For example, the solution is simply transferred to the surface of the filter.
  • the mode of contacting with the above solution and the mode of moving the solution outside the ion exchange resin while contacting it on the surface that is, the mode of simply contacting the solution) are excluded.
  • the filter used for removing the metal component in the solution containing the resin and the solvent can usually be a commercially available filter for liquid filtration.
  • the filtration accuracy of the filter is not particularly limited, but the nominal pore size of the filter is preferably 0.2 ⁇ m or less, more preferably less than 0.2 ⁇ m, still more preferably 0.1 ⁇ m or less, still more preferably 0. It is less than .1 ⁇ m, more preferably 0.05 ⁇ m or less.
  • the lower limit of the nominal pore diameter of the filter is not particularly limited, but is usually 0.005 ⁇ m.
  • the nominal pore size referred to here is a nominal pore size indicating the separation performance of the filter, and is determined by a test method determined by the filter manufacturer, such as a bubble point test, a mercury intrusion method test, and a standard particle capture test.
  • the hole diameter When a commercially available product is used, it is a value described in the manufacturer's catalog data.
  • the filter passing step may be performed twice or more.
  • a hollow fiber membrane filter As the form of the filter, a hollow fiber membrane filter, a membrane filter, a pleated membrane filter, and a filter filled with a filter medium such as non-woven fabric, cellulose, and diatom soil can be used.
  • the filter is one or more selected from the group consisting of a hollow fiber membrane filter, a membrane filter and a pleated membrane filter.
  • the material of the filter includes polyolefins such as polyethylene and polypropylene, polyethylene resins having a functional group capable of ion exchange by graft polymerization, polar group-containing resins such as polyamide, polyester and polyacrylonitrile, polyethylene fluoride (PTFE) and the like. Fluorohydrate-containing resin can be mentioned.
  • the filter medium of the filter is at least one selected from the group consisting of polyamide, poreolefin resin and fluororesin.
  • polyamide is particularly preferable from the viewpoint of reducing heavy metals such as chromium. From the viewpoint of avoiding metal elution from the filter medium, it is preferable to use a filter other than the sintered metal material.
  • the polyamide-based filter (hereinafter, trademark) is not limited to the following, but for example, the Polyfix Nylon Series manufactured by KITZ Micro Filter Co., Ltd., Uruchi Pleated P-Nylon 66 manufactured by Nippon Pole Co., Ltd., Ulchipore N66, and 3M. Life Asure PSN series, Life Asure EF series, etc. manufactured by KITZ Corporation can be mentioned.
  • the polyolefin-based filter is not limited to the following, but includes, for example, Uruchi Pleated PE Clean and Ion Clean manufactured by Nippon Pole Co., Ltd., Protego Series manufactured by Entegris Japan Co., Ltd., Microguard Plus HC10, Optimizer D, and the like. Can be mentioned.
  • polyester filter examples include, but are not limited to, Geraflow DFE manufactured by Central Filter Industry Co., Ltd., Breeze type PMC manufactured by Nippon Filter Co., Ltd., and the like.
  • polyacrylonitrile-based filter examples include, but are not limited to, ultrafilters AIP-0013D, ACP-0013D, and ACP-0053D manufactured by Advantech Toyo Co., Ltd.
  • fluororesin-based filter include, but are not limited to, Enflon HTPFR manufactured by Nippon Pole Co., Ltd., Lifesure FA series manufactured by 3M Co., Ltd., and the like. Each of these filters may be used alone or in combination of two or more.
  • the filter may contain an ion exchanger such as a cation exchange resin, a cation charge regulator that causes a zeta potential in the organic solvent solution to be filtered, and the like.
  • an ion exchanger such as a cation exchange resin, a cation charge regulator that causes a zeta potential in the organic solvent solution to be filtered, and the like.
  • the filter containing the ion exchanger include, but are not limited to, the Protego series manufactured by Entegris Japan Co., Ltd., the clan graft manufactured by Kurashiki Textile Manufacturing Co., Ltd., and the like.
  • the filter containing a substance having a positive zeta potential such as polyamide polyamine epichlorohydrin cation resin is not limited to the following, and for example, Zeta Plus 40QSH and Zeta Plus 020GN manufactured by 3M Co., Ltd. , Or Life Asure EF series and the like.
  • the method for isolating the resin from the obtained solution containing the resin and the solvent is not particularly limited, and can be carried out by a known method such as removal under reduced pressure, separation by reprecipitation, and a combination thereof. If necessary, known treatments such as concentration operation, filtration operation, centrifugation operation, and drying operation can be performed.
  • the polycyclic polyphenol resin in the present embodiment may further have a modified moiety derived from a crosslink-reactive compound. That is, the polycyclic polyphenol resin in the present embodiment having the above-mentioned structure may have a modified portion obtained by reaction with a compound having a cross-linking reactivity.
  • a (modified) polyphenol resin is also excellent in heat resistance and etching resistance, and can be used as a coating agent for semiconductors, a resist material, and a semiconductor underlayer film forming material.
  • the cross-linking reactive compound is not limited to the following, and is, for example, aldehydes, methylols, methyl halides, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanate compounds. , Unsaturated hydrocarbon group-containing compounds and the like. These can be used alone or in combination of two as appropriate.
  • the compound having a cross-linking reaction is preferably aldehydes, methylols or ketones.
  • the polycyclic polyphenol resin obtained by polycondensing the polycyclic polyphenol resin in the present embodiment having the above-mentioned structure with aldehydes, methylols or ketones in the presence of a catalyst Is preferable.
  • a novolak-type polyphenol resin is obtained by further polycondensing reaction with aldehydes, methylols or ketones corresponding to a desired structure under normal pressure and, if necessary, under pressure under a catalyst. Obtainable.
  • aldehydes examples include methylbenzaldehyde, dimethylbenzaldehyde, trimethylbenzaldehyde, ethylbenzaldehyde, propylbenzaldehyde, butylbenzaldehyde, pentabenzaldehyde, butylmethylbenzaldehyde, hydroxybenzaldehyde, dihydroxybenzaldehyde, fluoromethylbenzaldehyde and the like. Not particularly limited. These can be used alone or in combination of two or more.
  • methylbenzaldehyde dimethylbenzaldehyde, trimethylbenzaldehyde, ethylbenzaldehyde, propylbenzaldehyde, butylbenzaldehyde, pentabenzaldehyde, butylmethylbenzaldehyde and the like from the viewpoint of imparting high heat resistance.
  • ketones examples include acetylmethylbenzene, acetyldimethylbenzene, acetyltrimethylbenzene, acetylethylbenzene, acetylpropylbenzene, acetylbutylbenzene, acetylpentabenzene, acetylbutylmethylbenzene, acetylhydroxybenzene, acetyldihydroxybenzene, and acetylfluororo.
  • examples thereof include methylbenzene, but the present invention is not particularly limited thereto. These can be used alone or in combination of two or more.
  • acetylmethylbenzene acetyldimethylbenzene, acetyltrimethylbenzene, acetylethylbenzene, acetylpropylbenzene, acetylbutylbenzene, acetylpentabenzene, and acetylbutylmethylbenzene from the viewpoint of imparting high heat resistance.
  • the catalyst used in the reaction can be appropriately selected from known catalysts and is not particularly limited.
  • an acid catalyst or a base catalyst is preferably used.
  • Inorganic acids and organic acids are widely known as such acid catalysts.
  • Specific examples of the above acid catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, and hydrofluoric acid; Organic acids such as acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid; zinc chloride, aluminum chloride , Lewis acids such as iron chloride and boron trifluoride; solid acids such as silicate tung acid, phosphotung acid, silicate molybdic acid, phosphomolybdic acid and
  • organic acids and solid acids are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferably used from the viewpoint of production such as easy availability and handling.
  • base catalysts are pyridine and ethylenediamine as examples of amine-containing catalysts, and metal salts and particularly potassium or acetate are preferable as examples of non-amine basic catalysts, and suitable catalysts are limited.
  • examples thereof include potassium acetate, potassium carbonate, potassium hydroxide, sodium acetate, sodium carbonate, sodium hydroxide and magnesium oxide.
  • All of the non-amine base catalysts of the present invention are commercially available, for example, from EM Science or Aldrich.
  • the catalyst one type can be used alone or two or more types can be used in combination.
  • the amount of the catalyst used can be appropriately set according to the raw material to be used, the type of the catalyst to be used, the reaction conditions, and the like, and is not particularly limited, but is 0.001 to 100 mass with respect to 100 parts by mass of the reaction raw material. It is preferably a part.
  • a reaction solvent may be used in the reaction.
  • the reaction solvent is not particularly limited as long as the reaction between the aldehydes or methanol used and the polycyclic polyenol resin proceeds, and can be appropriately selected from known ones and used, for example, water. , Methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether or a mixed solvent thereof and the like are exemplified.
  • the solvent one type can be used alone, or two or more types can be used in combination. The amount of these solvents used can be appropriately set according to the raw materials used, the type of acid catalyst used, reaction conditions, and the like.
  • the amount of the solvent used is not particularly limited, but is preferably in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material.
  • the reaction temperature in the above reaction can be appropriately selected according to the reactivity of the reaction raw material.
  • the reaction temperature is not particularly limited, but is usually preferably in the range of 10 to 200 ° C.
  • the reaction method can be appropriately selected and used by a known method, and is not particularly limited, but is a method of collectively charging a polycyclic polyphenol resin, aldehydes or methylols, an acid catalyst in the present embodiment, or aldehydes. Alternatively, there is a method of dropping ketones in the presence of an acid catalyst.
  • isolation of the obtained compound can be carried out according to a conventional method and is not particularly limited.
  • a general method such as raising the temperature of the reaction kettle to 130 to 230 ° C. and removing volatile substances at about 1 to 50 mmHg is used. By taking it, the target compound can be obtained.
  • the polycyclic polyphenol resin in the present embodiment can be used as a composition assuming various uses. That is, the composition of the present embodiment contains the polycyclic polyphenol resin of the present embodiment.
  • the composition of the present embodiment preferably further contains a solvent from the viewpoint of facilitating film formation by applying a wet process. Specific examples of the solvent are not particularly limited, but for example, a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; a cellosolve solvent such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate; ethyl lactate and methyl acetate.
  • a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • a cellosolve solvent such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate
  • propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, cyclohexanone, cyclopentanone, ethyl lactate and methyl hydroxyisobutyrate are particularly preferable from the viewpoint of safety.
  • the content of the solvent is not particularly limited, but is preferably 100 to 10,000 parts by mass, preferably 100 to 10,000 parts by mass, based on 100 parts by mass of the polyphenol resin in the present embodiment from the viewpoint of solubility and film formation. It is more preferably to 5,000 parts by mass, and even more preferably 200 to 1,000 parts by mass.
  • the film-forming composition of the present embodiment contains the above-mentioned polycyclic polyphenol resin, but various compositions can be obtained depending on the specific use thereof, and the following can be made according to the use or composition. In some cases, it may be referred to as "resist composition”, “radiosensitive composition”, or "composition for forming an underlayer film for lithography”.
  • the resist composition of the present embodiment comprises the film-forming composition of the present embodiment. That is, the resist composition of the present embodiment contains the polycyclic polyphenol resin of the present embodiment as an essential component, and can further contain various arbitrary components in consideration of being used as a resist material. .. Specifically, the resist composition of the present embodiment preferably further contains at least one selected from the group consisting of a solvent, an acid generator and an acid diffusion control agent.
  • the solvent that can be contained in the resist composition of the present embodiment is not particularly limited, and various known organic solvents can be used. For example, those described in International Publication No. 2013/024778 can be used. These solvents can be used alone or in combination of two or more.
  • the solvent used in this embodiment is preferably a safe solvent, more preferably PGMEA (propylene glycol monomethyl ether acetate), PGME (propylene glycol monomethyl ether), CHN (cyclohexanone), CPN (cyclopentanone). , 2-Heptanone, anisole, butyl acetate, ethyl propionate and ethyl lactate, more preferably at least one selected from PGMEA, PGME and CHN.
  • the amount of the solid component (component other than the solvent in the resist composition of the present embodiment) and the amount of the solvent are not particularly limited, but with respect to the total mass of 100% by mass of the amount of the solid component and the solvent. , 1 to 80% by mass of the solid component and 20 to 99% by mass of the solvent, more preferably 1 to 50% by mass of the solid component and 50 to 99% by mass of the solvent, still more preferably 2 to 40% by mass of the solid component and
  • the solvent is 60 to 98% by mass, and particularly preferably 2 to 10% by mass of the solid component and 90 to 98% by mass of the solvent.
  • acid generator (C) In the resist composition of the present embodiment, acid is directly or indirectly generated by irradiation with any radiation selected from visible light, ultraviolet light, excimer laser, electron beam, extreme ultraviolet (EUV), X-ray and ion beam. It is preferable to contain one or more of the acid generator (C).
  • the acid generator (C) is not particularly limited, but for example, the acid generator (C) described in International Publication No. 2013/024778 can be used.
  • the acid generator (C) may be used alone or in combination of two or more.
  • the amount of the acid generator (C) used is preferably 0.001 to 49% by mass, more preferably 1 to 40% by mass, still more preferably 3 to 30% by mass, and 10 to 25% by mass based on the total weight of the solid component. Especially preferable. By using within the above range, a pattern profile with high sensitivity and low edge roughness can be obtained.
  • the method of generating the acid is not limited. Finer processing is possible by using an excimer laser instead of ultraviolet rays such as g-rays and i-rays, and further fine processing is possible by using electron beams, extreme ultraviolet rays, X-rays, and ion beams as high-energy rays. Is possible.
  • the acid cross-linking agent (G) is a compound capable of intramolecularly or intermolecularly cross-linking a polycyclic polyphenol resin in the presence of an acid generated from the acid generator (C).
  • Examples of such an acid cross-linking agent (G) include compounds having one or more groups (hereinafter, referred to as “cross-linking groups”) capable of cross-linking a polycyclic polyphenol resin.
  • Such a crosslinkable group is not particularly limited, but is, for example, (i) hydroxy (C1-C6 alkyl group), C1-C6 alkoxy (C1-C6 alkyl group), acetoxy (C1-C6 alkyl group) and the like.
  • the acid cross-linking agent (G) having a cross-linking group is not particularly limited, but for example, the one described in International Publication No. 2013/024778 can be used.
  • the acid cross-linking agent (G) can be used alone or in combination of two or more.
  • the amount of the acid cross-linking agent (G) used is preferably 0.5 to 49% by mass, more preferably 0.5 to 40% by mass, still more preferably 1 to 30% by mass, based on the total weight of the solid component. 2 to 20% by mass is particularly preferable.
  • the blending ratio of the acid cross-linking agent (G) is 0.5% by mass or more, the effect of suppressing the solubility of the resist film in the alkaline developer is improved, the residual film ratio is lowered, and the pattern is swollen or tortuous. It is preferable because it can suppress the occurrence, and on the other hand, when it is 50% by mass or less, it is preferable because the decrease in heat resistance as a resist can be suppressed.
  • the acid diffusion control agent (E) has an action of controlling the diffusion of the acid generated from the acid generator in the resist film by irradiation to prevent an unfavorable chemical reaction in an unexposed region. May be blended into the resist composition.
  • an acid diffusion control agent (E) By using such an acid diffusion control agent (E), the storage stability of the resist composition is improved. In addition, the resolution is improved, and changes in the line width of the resist pattern due to fluctuations in the leaving time before irradiation and the leaving time after irradiation can be suppressed, resulting in extremely excellent process stability.
  • the acid diffusion control agent (E) is not particularly limited, and examples thereof include radiolytic basic compounds such as nitrogen atom-containing basic compounds, basic sulfonium compounds, and basic iodonium compounds.
  • the acid diffusion control agent (E) is not particularly limited, but for example, the one described in International Publication No. 2013/024778 can be used.
  • the acid diffusion control agent (E) may be used alone or in combination of two or more.
  • the blending amount of the acid diffusion control agent (E) is preferably 0.001 to 49% by mass, more preferably 0.01 to 10% by mass, still more preferably 0.01 to 5% by mass, and 0. 0.01 to 3% by mass is particularly preferable. Within the above range, it is possible to prevent deterioration of resolution, pattern shape, dimensional fidelity, and the like. Further, even if the leaving time from the electron beam irradiation to the heating after the irradiation is long, the shape of the upper layer portion of the pattern does not deteriorate. Further, when the blending amount is 10% by mass or less, it is possible to prevent deterioration of sensitivity, developability of the unexposed portion and the like.
  • the storage stability of the resist composition is improved, the resolution is improved, and the retention time before irradiation and the retention time after irradiation fluctuate.
  • the change in the line width of the resist pattern can be suppressed, and the process stability is extremely excellent.
  • the low molecular weight dissolution accelerator When the solubility of the polycyclic polyphenol resin in the present embodiment is too low, the low molecular weight dissolution accelerator has an effect of increasing the solubility thereof and appropriately increasing the dissolution rate of the compound during development. It is an ingredient and can be used as needed.
  • the dissolution accelerator include low molecular weight phenolic compounds, and examples thereof include bisphenols and tris (hydroxyphenyl) methane. These dissolution accelerators can be used alone or in admixture of two or more.
  • the blending amount of the dissolution accelerator is appropriately adjusted according to the type of the above compound used, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, and 0 to 1% by mass of the total weight of the solid component. Is more preferable, and 0% by mass is particularly preferable.
  • the dissolution control agent is a component having an action of controlling the solubility of the polycyclic polyphenol resin in the present embodiment when the solubility in the developing solution is too high and appropriately reducing the dissolution rate at the time of development.
  • a dissolution control agent one that does not chemically change in steps such as firing of the resist film, irradiation, and development is preferable.
  • the dissolution control agent is not particularly limited, and for example, aromatic hydrocarbons such as phenanthrene, anthracene, and acenaphthene; ketones such as acetophenone, benzophenone, and phenylnaphthylketone; Sulfones and the like can be mentioned. These dissolution control agents may be used alone or in combination of two or more.
  • the blending amount of the dissolution control agent is appropriately adjusted according to the type of the above compound used, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, and 0 to 1% by mass of the total weight of the solid component. Is more preferable, and 0% by mass is particularly preferable.
  • the sensitizer has the effect of absorbing the energy of the irradiated radiation and transferring that energy to the acid generator (C), thereby increasing the amount of acid produced, improving the apparent sensitivity of the resist. It is an ingredient that causes.
  • a sensitizer include benzophenones, biacetyls, pyrenes, phenothiazines, fluorenes and the like, but are not particularly limited. These sensitizers can be used alone or in combination of two or more.
  • the blending amount of the sensitizer is appropriately adjusted according to the type of the above compound used, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, and 0 to 1% by mass of the total weight of the solid component. More preferably, 0% by mass is particularly preferable.
  • the surfactant is a component having an action of improving the coatability, striation, developability of the resist, etc. of the resist composition of the present embodiment.
  • a surfactant may be any of an anionic surfactant, a cationic surfactant, a nonionic surfactant or an amphoteric surfactant.
  • Preferred surfactants are nonionic surfactants.
  • the nonionic surfactant has a good affinity with the solvent used for producing the resist composition and is more effective. Examples of the nonionic surfactant include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkylphenyl ethers, polyethylene glycol higher fatty acid diesters, and the like, but are not particularly limited.
  • the commercial products are not particularly limited, but the following product names include, for example, Ftop (manufactured by Gemco), Megafuck (manufactured by Dainippon Ink and Chemicals), Florard (manufactured by Sumitomo 3M), Asahi Guard, and Surflon (manufactured by Sumitomo 3M).
  • Ftop manufactured by Gemco
  • Megafuck manufactured by Dainippon Ink and Chemicals
  • Florard manufactured by Sumitomo 3M
  • Asahi Guard Asahi Guard
  • Surflon manufactured by Sumitomo 3M
  • examples thereof include Asahi Glass Co., Ltd.), Pepole (Toho Chemical Industry Co., Ltd.), KP (Shin-Etsu Chemical Industry Co., Ltd.), Polyflow (Kyoei Co., Ltd. Oil and Fat Chemical Industry Co., Ltd.) and the like.
  • the blending amount of the surfactant is appropriately adjusted according to the type of the above compound used, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, and 0 to 1% by mass of the total weight of the solid component. Is more preferable, and 0% by mass is particularly preferable.
  • Organic carboxylic acid or phosphorus oxo acid or its derivative For the purpose of preventing deterioration of sensitivity or improving the shape of the resist pattern, retention stability, etc., an organic carboxylic acid or an oxo acid of phosphorus or a derivative thereof can be further contained as an arbitrary component.
  • the organic carboxylic acid or the oxo acid of phosphorus or a derivative thereof can be used in combination with an acid diffusion control agent, or may be used alone.
  • the organic carboxylic acid for example, malonic acid, citric acid, malic acid, succinic acid, benzoic acid, salicylic acid and the like are suitable.
  • Examples of the phosphorus oxo acid or its derivative include phosphoric acid such as phosphoric acid, phosphoric acid di-n-butyl ester, and phosphoric acid diphenyl ester, or derivatives such as those esters, phosphonic acid, phosphonic acid dimethyl ester, and phosphonic acid di-.
  • Examples thereof include phosphonic acids such as n-butyl ester, phenylphosphonic acid, phosphonic acid diphenyl ester and phosphonic acid dibenzyl ester or derivatives such as their esters, phosphinic acid such as phosphinic acid and phenylphosphinic acid and derivatives such as their esters. Of these, phosphonic acid is particularly preferable.
  • the organic carboxylic acid or phosphorus oxoacid or its derivative can be used alone or in combination of two or more.
  • the blending amount of the organic carboxylic acid or the oxo acid of phosphorus or a derivative thereof is appropriately adjusted according to the type of the above compound used, but is preferably 0 to 49% by mass, preferably 0 to 5% by mass, based on the total weight of the solid component. More preferably, 0 to 1% by mass is further preferable, and 0% by mass is particularly preferable.
  • a dissolution accelerator, a dissolution control agent, a sensitizer, a surfactant, and an additive other than the organic carboxylic acid or the oxo acid of phosphorus or a derivative thereof are added.
  • a dissolution accelerator, a dissolution control agent, a sensitizer, a surfactant, and an additive other than the organic carboxylic acid or the oxo acid of phosphorus or a derivative thereof are added.
  • Such additives include dyes, pigments, adhesive aids and the like.
  • a dye or a pigment because the latent image of the exposed portion can be visualized and the influence of halation during exposure can be alleviated.
  • an adhesive aid because the adhesiveness to the substrate can be improved.
  • the other additives are not particularly limited, and examples thereof include anti-halation agents, storage stabilizers, antifoaming agents, shape improvers, and the like, specifically, 4-hydroxy-4'-methylchalcone and the like. Can be done.
  • the total amount of the optional component (F) is 0 to 99% by mass, preferably 0 to 49% by mass, more preferably 0 to 10% by mass, and 0. It is more preferably from 5% by mass, still more preferably from 0 to 1% by mass, and particularly preferably from 0% by mass.
  • the content of the polycyclic polyphenol resin (component (A)) in the present embodiment is not particularly limited, but the total mass of the solid component (polycyclic polyphenol resin (A), acid generator).
  • the total is preferably 50 to 99.4% by mass, more preferably 55 to 90% by mass, still more preferably 60 to 80% by mass, and particularly preferably 60 to 70% by mass of the resist composition). Is.
  • the resolution tends to be further improved and the line edge roughness (LER) tends to be further reduced.
  • the polycyclic polyphenol resin (component (A)), the acid generator (C), the acid cross-linking agent (G), the acid diffusion control agent (E), and the optional component (F) in the present embodiment.
  • Content ratio (component (A) / acid generator (C) / acid cross-linking agent (G) / acid diffusion control agent (E) / optional component (F)) is 100% by mass of the solid content of the resist composition.
  • it is preferably 50 to 99.4% by mass / 0.001 to 49% by mass / 0.5 to 49% by mass / 0.001 to 49% by mass / 0 to 49% by mass, and more preferably 55.
  • the resist composition of the present embodiment is usually prepared by dissolving each component in a solvent at the time of use to form a uniform solution, and then, if necessary, filtering through a filter having a pore size of about 0.2 ⁇ m or the like, if necessary.
  • the resist composition of the present embodiment may contain a resin other than the polycyclic polyphenol resin of the present embodiment, if necessary.
  • the other resin is not particularly limited, and for example, novolak resin, polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resin, and acrylic acid, vinyl alcohol, or vinylphenol as a monomer unit. Examples thereof include polymers containing the same or derivatives thereof.
  • the content of the other resin is not particularly limited and is appropriately adjusted according to the type of the component (A) to be used, but is preferably 30 parts by mass or less with respect to 100 parts by mass of the component (A). It is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and particularly preferably 0 parts by mass.
  • the resist composition of the present embodiment can form an amorphous film by spin coating. It can also be applied to general semiconductor manufacturing processes. Depending on the type of developer used, either a positive resist pattern or a negative resist pattern can be produced separately.
  • the dissolution rate of the amorphous film formed by spin-coating the resist composition of the present embodiment in a developing solution at 23 ° C. is preferably 5 ⁇ / sec or less, more preferably 0.05 to 5 ⁇ / sec. It is preferably 0.0005 to 5 ⁇ / sec, more preferably 0.0005 to 5 ⁇ / sec.
  • the dissolution rate is 5 ⁇ / sec or less, it is insoluble in a developing solution and can be used as a resist. Further, if the dissolution rate is 0.0005 ⁇ / sec or more, the resolution may be improved.
  • the dissolution rate of the amorphous film formed by spin-coating the resist composition of the present embodiment in a developing solution at 23 ° C. is preferably 10 ⁇ / sec or more.
  • the dissolution rate is 10 ⁇ / sec or more, it is easily dissolved in a developing solution and is more suitable for a resist.
  • the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. It is presumed that this is because the micro surface portion of the component (A) is dissolved and the LER is reduced. It also has the effect of reducing defects.
  • the dissolution rate is determined by immersing the amorphous film in a developing solution at 23 ° C. for a predetermined time and measuring the film thickness before and after the immersion by a known method such as visual inspection, cross-sectional observation with an ellipsometer or a scanning electron microscope. can.
  • the dissolution rate is preferably 10 ⁇ / sec or more. When the dissolution rate is 10 ⁇ / sec or more, it is easily dissolved in a developing solution and is more suitable for a resist. Further, if the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. It is presumed that this is because the micro surface portion of the component (A) is dissolved and the LER is reduced. It also has the effect of reducing defects.
  • the dissolution rate is preferably 5 ⁇ / sec or less, more preferably 0.05 to 5 ⁇ / sec, still more preferably 0.0005 to 5 ⁇ / sec.
  • the dissolution rate is 5 ⁇ / sec or less, it is insoluble in a developing solution and can be used as a resist. Further, if the dissolution rate is 0.0005 ⁇ / sec or more, the resolution may be improved.
  • the radiation-sensitive composition of the present embodiment is a radiation-sensitive composition containing the film-forming composition of the present embodiment, a diazonaphthoquinone photoactive compound (B), and a solvent, and is a radiation-sensitive composition of the solvent.
  • the content is 20 to 99% by mass with respect to 100% by mass of the total amount of the radiation-sensitive composition, and the content of the components other than the solvent is 100% by mass with respect to the total amount of the radiation-sensitive composition. It is 1 to 80% by mass. That is, the radiation-sensitive composition of the present embodiment contains the polycyclic polyphenol resin, the diazonaphthoquinone photoactive compound (B), and the solvent as essential components, and is radiation-sensitive. In consideration of this, various arbitrary components can be further contained.
  • the radiation-sensitive composition of the present embodiment contains a polycyclic polyphenol resin (component (A)) and is used in combination with the diazonaphthoquinone photoactive compound (B), g-ray, h-ray, and i-line , KrF excimer laser, ArF excimer laser, extreme ultraviolet rays, electron beam or X-ray, which is useful as a base material for a positive resist which becomes a compound easily soluble in a developing solution.
  • component (A) polycyclic polyphenol resin
  • B diazonaphthoquinone photoactive compound
  • a resist pattern can be formed by the developing step.
  • the component (A) contained in the radiation-sensitive composition of the present embodiment is a compound having a relatively low molecular weight, so that the roughness of the obtained resist pattern is very small.
  • the glass transition temperature of the component (A) contained in the radiation-sensitive composition of the present embodiment is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 140 ° C. or higher, and particularly preferably 150 ° C. or higher. ..
  • the upper limit of the glass transition temperature of the component (A) is not particularly limited, but is, for example, 400 ° C. When the glass transition temperature of the component (A) is within the above range, it has heat resistance capable of maintaining the pattern shape in the semiconductor lithography process, and tends to improve performance such as high resolution.
  • the calorific value for crystallization determined by differential scanning calorimetry of the glass transition temperature of the component (A) contained in the radiation-sensitive composition of the present embodiment is preferably less than 20 J / g. Further, (crystallization temperature)-(glass transition temperature) is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, still more preferably 100 ° C. or higher, and particularly preferably 130 ° C. or higher. When the calorific value for crystallization is less than 20 J / g, or (crystallization temperature)-(glass transition temperature) is within the above range, an amorphous film can be easily formed by spin-coating the radiation-sensitive composition. The film-forming property required for the resist can be maintained for a long period of time, and the resolution tends to be improved.
  • the crystallization calorific value, the crystallization temperature, and the glass transition temperature can be obtained by differential scanning calorimetry using DSC / TA-50WS manufactured by Shimadzu Corporation.
  • About 10 mg of the sample is placed in an unsealed aluminum container, and the temperature is raised to the melting point or higher at a heating rate of 20 ° C./min in a nitrogen gas stream (50 mL / min). After quenching, the temperature is raised to the melting point or higher again in a nitrogen gas stream (30 mL / min) at a heating rate of 20 ° C./min. After further quenching, the temperature is raised to 400 ° C.
  • the temperature at the midpoint of the stepped baseline (where the specific heat has changed in half) is the glass transition temperature (Tg), and the temperature of the exothermic peak that appears after that is the crystallization temperature.
  • Tg glass transition temperature
  • the calorific value is calculated from the area of the area surrounded by the exothermic peak and the baseline, and is used as the crystallization calorific value.
  • the component (A) contained in the radiation-sensitive composition of the present embodiment is 100 ° C. or lower, preferably 120 ° C. or lower, more preferably 130 ° C. or lower, still more preferably 140 ° C. or lower, and particularly preferably 150 ° C. under normal pressure.
  • the sublimation property is low. Low sublimation means that in thermogravimetric analysis, the weight loss when held at a predetermined temperature for 10 minutes is 10% or less, preferably 5% or less, more preferably 3% or less, still more preferably 1% or less, particularly preferably. Indicates that it is 0.1% or less. Due to the low sublimation property, it is possible to prevent contamination of the exposure apparatus due to outgas during exposure. In addition, a good pattern shape can be obtained with low roughness.
  • the component (A) contained in the radiation-sensitive composition of the present embodiment is propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), cyclohexanone (CHN), cyclopentanone (CPN), 2-heptanone. , Anisol, butyl acetate, ethyl propionate and ethyl lactate, and in a solvent having the highest dissolving ability for the component (A) at 23 ° C., preferably 1% by mass or more, more preferably 5% by mass.
  • % Or more more preferably 10% by mass or more, and even more preferably, in a solvent selected from PGMEA, PGME, CHN and exhibiting the highest dissolving ability for the component (A) at 23 ° C., 20 It dissolves in an amount of 20% by mass or more, particularly preferably 20% by mass or more at 23 ° C. with PGMEA.
  • PGMEA PGMEA
  • the diazonaphthoquinone photoactive compound (B) contained in the radiation-sensitive composition of the present embodiment is a diazonaphthoquinone substance containing a polymeric and non-polymeric diazonaphthoquinone photoactive compound, and is generally used in a positive resist composition. It is not particularly limited as long as it is used as a photosensitive component (photosensitive agent), and one type or two or more types can be arbitrarily selected and used.
  • Such a photosensitizer was obtained by reacting naphthoquinone diazide sulfonic acid chloride, benzoquinone diazido sulfonic acid chloride, or the like with a low molecular weight compound or a high molecular weight compound having a functional group capable of a condensation reaction with these acid chlorides.
  • Compounds are preferred.
  • the functional group capable of condensing with acid chloride is not particularly limited, and examples thereof include a hydroxyl group and an amino group, but a hydroxyl group is particularly preferable.
  • the compound capable of condensing with the acid chloride containing a hydroxyl group is not particularly limited, and is, for example, hydroquinone, resorcin, 2,4-dihydroxybenzophenone, 2,3,4-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, and the like.
  • 2,4,4'-Trihydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,2', 4,4'-tetrahydroxybenzophenone, 2,2', 3,4,6'- Hydroxybenzophenones such as pentahydroxybenzophenone, hydroxyphenyl alkanes such as bis (2,4-dihydroxyphenyl) methane, bis (2,3,4-trihydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) propane , 4,4', 3 ", 4" -Tetrahydroxy-3,5,3', 5'-Tetramethyltriphenylmethane, 4,4', 2 ", 3", 4 "-Pentahydroxy-3, Hydroxytriphenylmethanes such as 5,3', 5'-tetramethyltriphenylmethane and the like can be mentioned.
  • hydroxyphenyl alkanes such as bis (2,4-dihydroxyphenyl) methane, bis (2,3,4
  • acid chloride such as naphthoquinone diazide sulfonic acid chloride and benzoquinone diazido sulfonic acid chloride
  • 1,2-naphthoquinone diazide-5-sulfonyl chloride, 1,2-naphthoquinone diazido-4-sulfonyl chloride and the like are preferable.
  • the radiation-sensitive composition of the present embodiment is prepared, for example, by dissolving each component in a solvent at the time of use to form a uniform solution, and then, if necessary, filtering with a filter having a pore size of about 0.2 ⁇ m or the like. It is preferable to be done.
  • the solvent that can be used in the radiation-sensitive composition of the present embodiment is not particularly limited, and is, for example, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, cyclohexanone, cyclopentanone, 2-heptanone, anisole, and butyl acetate. , Ethyl propionate, and ethyl lactate. Of these, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, and cyclohexanone are preferable, and the solvent may be used alone or in combination of two or more.
  • the content of the solvent is 20 to 99% by mass, preferably 50 to 99% by mass, more preferably 60 to 98% by mass, particularly, with respect to 100% by mass of the total amount of the radiation-sensitive composition. It is preferably 90 to 98% by mass.
  • the content of the component (solid component) other than the solvent is 1 to 80% by mass, preferably 1 to 50% by mass, more preferably 1 to 50% by mass, based on 100% by mass of the total amount of the radiation-sensitive composition. It is 2 to 40% by mass, and particularly preferably 2 to 10% by mass.
  • the radiation-sensitive composition of the present embodiment can form an amorphous film by spin coating. It can also be applied to general semiconductor manufacturing processes. Depending on the type of developer used, either a positive resist pattern or a negative resist pattern can be produced separately.
  • the dissolution rate of the amorphous film formed by spin-coating the radiation-sensitive composition of the present embodiment in a developing solution at 23 ° C. is preferably 5 ⁇ / sec or less, preferably 0.05 to 5 ⁇ / sec. Is more preferable, and 0.0005 to 5 ⁇ / sec is even more preferable.
  • the dissolution rate is 5 ⁇ / sec or less, it is insoluble in a developing solution and can be used as a resist. Further, if the dissolution rate is 0.0005 ⁇ / sec or more, the resolution may be improved.
  • the dissolution rate of the amorphous film formed by spin-coating the radiation-sensitive composition of the present embodiment in a developing solution at 23 ° C. is preferably 10 ⁇ / sec or more.
  • the dissolution rate is 10 ⁇ / sec or more, it is easily dissolved in a developing solution and is more suitable for a resist.
  • the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. It is presumed that this is because the micro surface portion of the component (A) is dissolved and the LER is reduced. It also has the effect of reducing defects.
  • the dissolution rate can be determined by immersing the amorphous film in a developing solution at 23 ° C. and measuring the film thickness before and after the immersion by a known method such as visual inspection, ellipsometer or QCM method.
  • the dissolution rate of the exposed portion after heating at 500 ° C. in the developing solution at 23 ° C. is preferably 10 ⁇ / sec or more, more preferably 10 to 10000 ⁇ / sec, still more preferably 100 to 1000 ⁇ / sec.
  • the dissolution rate is 10 ⁇ / sec or more, it is easily dissolved in a developing solution and is more suitable for a resist. Further, if the dissolution rate is 10,000 ⁇ / sec or less, the resolution may be improved.
  • the micro surface portion of the component (A) is dissolved and the LER is reduced. It also has the effect of reducing defects.
  • a negative resist pattern after irradiating an amorphous film formed by spin-coating the radiation-sensitive composition of the present embodiment with radiation such as a KrF excimer laser, extreme ultraviolet rays, electron beams or X-rays, or from 20 to 20.
  • the dissolution rate of the exposed portion after heating at 500 ° C. in the developing solution at 23 ° C. is preferably 5 ⁇ / sec or less, more preferably 0.05 to 5 ⁇ / sec, still more preferably 0.0005 to 5 ⁇ / sec. ..
  • the dissolution rate When the dissolution rate is 5 ⁇ / sec or less, it is insoluble in a developing solution and can be used as a resist. Further, if the dissolution rate is 0.0005 ⁇ / sec or more, the resolution may be improved. It is presumed that this is because the contrast between the unexposed portion that dissolves in the developing solution and the exposed portion that does not dissolve in the developing solution increases due to the change in the solubility of the component (A) before and after exposure. It also has the effect of reducing LER and reducing defects.
  • the content of the component (A) is arbitrarily used such as the total weight of the solid component (component (A), diazonaphthoquinone photoactive compound (B) and other components (D)).
  • the total of the solid components to be formed and the radiation-sensitive composition are the same below), preferably 1 to 99% by weight, more preferably 5 to 95% by weight, still more preferably 10 to 90% by weight, particularly. It is preferably 25 to 75% by weight.
  • the content of the component (A) is within the above range, a pattern with high sensitivity and small roughness can be obtained.
  • the content of the diazonaphthoquinone photoactive compound (B) is preferably 1 to 99% by mass, more preferably 5 to 95% by mass, based on the total weight of the solid component. , More preferably 10 to 90% by mass, and particularly preferably 25 to 75% by mass.
  • the radiation-sensitive composition of the present embodiment can obtain a pattern with high sensitivity and small roughness.
  • the above-mentioned acid generator, acid cross-linking agent, and acid diffusion control may be used as components other than the solvent, the component (A) and the diazonaphthoquinone photoactive compound (B).
  • One or two or more kinds of additives such as an agent, a dissolution accelerator, a dissolution control agent, a sensitizer, a surfactant, an organic carboxylic acid or a phosphorus oxo acid or a derivative thereof can be added.
  • the other component (D) may be referred to as an optional component (D).
  • the content ratio ((A) / (B) / (D)) of the component (A), the diazonaphthoquinone photoactive compound (B), and the optional component (D) is the solid content of the radiation-sensitive composition. It is preferably 1 to 99% by mass / 99 to 1% by mass / 0 to 98% by mass, and more preferably 5 to 95% by mass / 95 to 5% by mass / 0 to 49% by mass with respect to 100% by mass. It is more preferably 10 to 90% by mass / 90 to 10% by mass / 0 to 10% by mass, particularly preferably 20 to 80% by mass / 80 to 20% by mass / 0 to 5% by mass, and most preferably. Is 25 to 75% by mass / 75 to 25% by mass / 0% by mass.
  • the blending ratio of each component is selected from each range so that the total sum is 100% by mass.
  • the radiation-sensitive composition of the present embodiment is excellent in performance such as sensitivity and resolution in addition to roughness when the blending ratio of each component is within the above range.
  • the radiation-sensitive composition of the present embodiment may contain a resin other than the polycyclic polyphenol resin of the present embodiment.
  • Such other resins include novolak resins, polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resin, and polymers containing acrylic acid, vinyl alcohol, or vinylphenol as a monomer unit. Examples thereof include these derivatives.
  • the blending amount of the other resin is appropriately adjusted according to the type of the component (A) to be used, but is preferably 30 parts by mass or less, more preferably 10 parts by mass or less with respect to 100 parts by mass of the component (A). It is more preferably 5 parts by mass or less, and particularly preferably 0 part by mass.
  • the method for producing an amorphous film of the present embodiment includes a step of forming an amorphous film on a substrate by using the above-mentioned radiation-sensitive composition.
  • the resist pattern can be formed by using the resist composition of the present embodiment or by using the radiation-sensitive composition of the present embodiment.
  • the method for forming a resist pattern using the resist composition of the present embodiment includes a step of forming a resist film on a substrate using the resist composition of the present embodiment described above, and at least a part of the formed resist film. It includes a step of exposing and a step of developing the exposed resist film to form a resist pattern.
  • the resist pattern in this embodiment can also be formed as an upper resist in a multilayer process.
  • the resist pattern forming method using the radiation-sensitive composition of the present embodiment includes a step of forming a resist film on a substrate using the above-mentioned radiation-sensitive composition and at least a part of the formed resist film. It includes a step of exposing and a step of developing the exposed resist film to form a resist pattern. In detail, the same operation as the following resist pattern forming method using a resist composition can be performed.
  • a resist film is formed by applying the resist composition of the present embodiment on a conventionally known substrate by a coating means such as rotary coating, cast coating, and roll coating.
  • the conventionally known substrate is not particularly limited, and examples thereof include a substrate for electronic components and a substrate on which a predetermined wiring pattern is formed.
  • the present invention is not particularly limited, and examples thereof include a silicon wafer, a metal substrate such as copper, chromium, iron, and aluminum, and a glass substrate.
  • the material of the wiring pattern is not particularly limited, and examples thereof include copper, aluminum, nickel, and gold. Further, if necessary, an inorganic and / or organic film may be provided on the above-mentioned substrate.
  • the inorganic film is not particularly limited, and examples thereof include an inorganic antireflection film (inorganic BARC).
  • the organic film is not particularly limited, and examples thereof include an organic antireflection film (organic BARC). Surface treatment with hexamethylene disilazane or the like may be performed.
  • the heating conditions vary depending on the composition of the resist composition and the like, but are preferably 20 to 250 ° C, more preferably 20 to 150 ° C. By heating, the adhesion of the resist to the substrate may be improved, which is preferable.
  • the resist film is then exposed to the desired pattern with any radiation selected from the group consisting of visible light, ultraviolet light, excimer lasers, electron beams, extreme ultraviolet rays (EUV), X-rays, and ion beams.
  • the exposure conditions and the like are appropriately selected according to the compounding composition and the like of the resist composition. In the present embodiment, it is preferable to heat after irradiation in order to stably form a high-precision fine pattern in exposure.
  • the exposed resist film is developed with a developing solution to form a predetermined resist pattern.
  • a developing solution it is preferable to select a solvent having a solubility parameter (SP value) close to that of the component (A) to be used, and a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent, and an ether solvent.
  • SP value solubility parameter
  • a polar solvent such as, a hydrocarbon solvent, or an alkaline aqueous solution can be used. Examples of the solvent and alkaline aqueous solution include those described in International Publication No. 2013/024778.
  • the water content of the developer as a whole is preferably less than 70% by mass, preferably less than 50% by mass, and more preferably less than 30% by mass. It is preferable that it is less than 10% by mass, and it is particularly preferable that it contains substantially no water. That is, the content of the organic solvent in the developing solution is preferably 30% by mass or more and 100% by mass or less, preferably 50% by mass or more and 100% by mass or less, and 70% by mass or more and 100% by mass, based on the total amount of the developing solution. It is more preferably 90% by mass or more, further preferably 90% by mass or more and 100% by mass or less, and particularly preferably 95% by mass or more and 100% by mass or less.
  • the developing solution contains at least one solvent selected from a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent and an ether solvent, and the developing solution contains the resolution and roughness of the resist pattern. It is preferable because it improves the resist performance of the solvent.
  • the surfactant is not particularly limited, and for example, an ionic or nonionic fluorine-based and / or silicon-based surfactant can be used.
  • fluorine and / or silicon-based surfactants include Japanese Patent Application Laid-Open No. 62-36663, Japanese Patent Application Laid-Open No. 61-226746, Japanese Patent Application Laid-Open No. 61-226745, and Japanese Patent Application Laid-Open No. 62-170950. , JP-A-63-34540, JP-A-7-230165, JP-A-8-62834, JP-A-9-54432, JP-A-9-5988, US Pat. No.
  • the surfactants described in the same 5360692, 5529881, 5296330, 5436098, 5576143, 5294511, and 5824451 can be mentioned. It can be, preferably a nonionic surfactant.
  • the nonionic surfactant is not particularly limited, but it is more preferable to use a fluorine-based surfactant or a silicon-based surfactant.
  • the amount of the surfactant used is usually 0.001 to 5% by mass, preferably 0.005 to 2% by mass, and more preferably 0.01 to 0.5% by mass with respect to the total amount of the developing solution.
  • the developing method is not particularly limited, but for example, a method of immersing the substrate in a tank filled with a developing solution for a certain period of time (dip method), or a method of raising the developing solution on the surface of the substrate by surface tension and allowing it to stand still for a certain period of time.
  • a method of developing paddle method
  • a method of spraying the developer on the surface of the substrate spray method
  • a method of spraying the developer on the substrate rotating at a constant speed while scanning the developer dispensing nozzle at a constant speed.
  • a method (dynamic dispense method) or the like can be applied.
  • the time for developing the pattern is not particularly limited, but is preferably 10 seconds to 90 seconds.
  • a step of stopping the development may be carried out while substituting with another solvent.
  • the rinsing solution used in the rinsing step after development is not particularly limited as long as the resist pattern cured by crosslinking is not dissolved, and a solution containing a general organic solvent or water can be used.
  • a rinsing solution it is preferable to use a rinsing solution containing at least one organic solvent selected from a hydrocarbon solvent, a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent and an ether solvent. .. More preferably, after the development, a washing step is performed using a rinsing solution containing at least one organic solvent selected from the group consisting of a ketone solvent, an ester solvent, an alcohol solvent, and an amide solvent.
  • a step of washing with a rinsing solution containing an alcohol-based solvent or an ester-based solvent is performed. Even more preferably, after development, a step of washing with a rinsing solution containing a monohydric alcohol is performed. Particularly preferably, after development, a step of washing with a rinsing solution containing a monohydric alcohol having 5 or more carbon atoms is performed.
  • the time for rinsing the pattern is not particularly limited, but is preferably 10 to 90 seconds.
  • examples of the monohydric alcohol used in the rinsing step after development include linear, branched, and cyclic monohydric alcohols, which are not particularly limited, but are described in, for example, International Publication No. 2013/024778. Things can be mentioned.
  • a particularly preferable monohydric alcohol having 5 or more carbon atoms 1-hexanol, 2-hexanol, 4-methyl-2-pentanol, 1-pentanol, 3-methyl-1-butanol and the like can be used.
  • Each of the above components may be mixed in a plurality or mixed with an organic solvent other than the above.
  • the water content in the rinse solution is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less. By setting the water content to 10% by mass or less, better development characteristics can be obtained.
  • An appropriate amount of surfactant can be added to the rinse solution before use.
  • the developed wafer is cleaned with a rinsing solution containing the above organic solvent.
  • the cleaning treatment method is not particularly limited, but for example, a method of continuously spraying the rinse liquid on a substrate rotating at a constant speed (rotational coating method), or immersing the substrate in a tank filled with the rinse liquid for a certain period of time.
  • a method (dip method), a method of spraying a rinse solution on the surface of the substrate (spray method), etc. can be applied.
  • the cleaning treatment is performed by the rotation coating method, and after cleaning, the substrate is rotated at a rotation speed of 2000 rpm to 4000 rpm. It is preferable to rotate and remove the rinse liquid from the substrate.
  • a pattern wiring board can be obtained by etching after forming a resist pattern.
  • the etching method can be a known method such as dry etching using plasma gas and wet etching with an alkaline solution, a ferric chloride solution, a ferric chloride solution or the like.
  • plating after forming a resist pattern.
  • Examples of the plating method include copper plating, solder plating, nickel plating, and gold plating.
  • the residual resist pattern after etching can be peeled off with an organic solvent.
  • the organic solvent is not particularly limited, and examples thereof include PGMEA (propylene glycol monomethyl ether acetate), PGME (propylene glycol monomethyl ether), and EL (ethyl lactate).
  • the peeling method is not particularly limited, and examples thereof include a dipping method and a spray method.
  • the wiring board on which the resist pattern is formed may be a multilayer wiring board or may have a small-diameter through hole.
  • the wiring board obtained in the present embodiment can also be formed by a method of forming a resist pattern, depositing a metal in a vacuum, and then dissolving the resist pattern with a solution, that is, a lift-off method.
  • the composition for forming a lower layer film for lithography of the present embodiment comprises a composition for forming a film. That is, the composition for forming a lower layer film for lithography of the present embodiment contains the polycyclic polyphenol resin of the present embodiment as an essential component, and various kinds are considered in consideration of being used as a material for forming a lower layer film for lithography. Any component can be further contained. Specifically, the composition for forming an underlayer film for lithography of the present embodiment preferably further contains at least one selected from the group consisting of a solvent, an acid generator and a cross-linking agent.
  • the content of the polycyclic polyphenol resin in the present embodiment is preferably 1 to 100% by mass, preferably 10 to 100% by mass, in the composition for forming an underlayer film for lithography from the viewpoint of coatability and quality stability. It is more preferably 50 to 100% by mass, and particularly preferably 100% by mass.
  • the content of the polycyclic polyphenol resin in the present embodiment is not particularly limited, but is 1 to 33 with respect to 100 parts by mass of the total amount containing the solvent. It is preferably parts by mass, more preferably 2 to 25 parts by mass, and even more preferably 3 to 20 parts by mass.
  • the underlayer film forming composition for lithography of the present embodiment can be applied to a wet process, and has excellent heat resistance and etching resistance. Further, since the underlayer film forming composition for lithography of the present embodiment contains the polycyclic polyphenol resin of the present embodiment, deterioration of the film during high temperature baking is suppressed, and the underlayer film having excellent etching resistance to oxygen plasma etching and the like is also excellent. Can be formed. Further, since the underlayer film forming composition for lithography of the present embodiment has excellent adhesion to the resist layer, an excellent resist pattern can be obtained.
  • the lithographic underlayer film forming composition of the present embodiment may contain already known lithographic underlayer film forming materials and the like as long as the desired effect of the present embodiment is not impaired.
  • solvent As the solvent used in the composition for forming a lower layer film for lithography of the present embodiment, a known solvent can be appropriately used as long as the above-mentioned component (A) is at least soluble.
  • solvents are not particularly limited, but examples thereof include those described in International Publication No. 2013/024779. These solvents may be used alone or in combination of two or more.
  • cyclohexanone propylene glycol monomethyl ether
  • propylene glycol monomethyl ether acetate propylene glycol monomethyl ether acetate
  • ethyl lactate propylene glycol monomethyl ether acetate
  • ethyl lactate propylene glycol monomethyl ether acetate
  • ethyl lactate propylene glycol monomethyl ether acetate
  • ethyl lactate propylene glycol monomethyl ether acetate
  • ethyl lactate methyl hydroxyisobutyrate
  • anisole anisole
  • the content of the solvent is not particularly limited, but is preferably 100 to 10,000 parts by mass, preferably 100 to 10,000 parts by mass, based on 100 parts by mass of the polyphenol resin in the present embodiment from the viewpoint of solubility and film formation. It is more preferably to 5,000 parts by mass, and even more preferably 200 to 1,000 parts by mass.
  • the composition for forming a lower layer film for lithography of the present embodiment may contain a cross-linking agent, if necessary, from the viewpoint of suppressing intermixing and the like.
  • the cross-linking agent that can be used in this embodiment is not particularly limited, and for example, those described in International Publication No. 2013/024779 and International Publication No. 2018/016614 can be used.
  • the cross-linking agent may be used alone or in combination of two or more.
  • cross-linking agent examples include a phenol compound (excluding the polycyclic polyphenol resin in this embodiment), an epoxy compound, a cyanate compound, an amino compound, a benzoxazine compound, an acrylate compound, and a melamine compound. , Guanamin compound, glycol uryl compound, urea compound, isocyanate compound, azido compound and the like, but are not particularly limited thereto.
  • These cross-linking agents may be used alone or in combination of two or more.
  • a benzoxazine compound, an epoxy compound or a cyanate compound is preferable, and a benzoxazine compound is more preferable from the viewpoint of improving etching resistance.
  • the phenol compound known ones can be used, and the phenol compound is not particularly limited, but an aralkyl type phenol resin is preferable from the viewpoint of heat resistance and solubility.
  • epoxy compound known ones can be used and are not particularly limited, but are preferably in a solid state at room temperature such as phenol aralkyl resins and epoxy resins obtained from biphenyl aralkyl resins from the viewpoint of heat resistance and solubility. It is an epoxy resin.
  • the cyanate compound is not particularly limited as long as it is a compound having two or more cyanate groups in one molecule, and known compounds can be used.
  • a preferable cyanate compound has a structure in which the hydroxyl group of a compound having two or more hydroxyl groups in one molecule is replaced with a cyanate group.
  • the cyanate compound preferably has an aromatic group, and a compound having a structure in which the cyanate group is directly linked to the aromatic group can be preferably used.
  • Such cyanate compounds are not particularly limited, but are, for example, bisphenol A, bisphenol F, bisphenol M, bisphenol P, bisphenol E, phenol novolak resin, cresol novolak resin, dicyclopentadiene novolak resin, tetramethylbisphenol F, bisphenol.
  • amino compound known compounds can be used, and the present invention is not particularly limited, but 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, and 4,4'-diaminodiphenyl ether have heat resistance and availability of raw materials. Preferred from the point of view.
  • benzoxazine compound known compounds can be used, and the compound is not particularly limited, but Pd-type benzoxazine obtained from bifunctional diamines and monofunctional phenols is preferable from the viewpoint of heat resistance.
  • the raw material is not particularly limited, but a compound in which 1 to 6 methylol groups of hexamethylol melamine, hexamethoxymethyl melamine, and hexamethylol melamine are methoxymethylated or a mixture thereof can be obtained as a raw material. It is preferable from the viewpoint of sex.
  • the guanamine compound known compounds can be used, and the compound is not particularly limited, but a compound in which 1 to 4 methylol groups of tetramethylol guanamine, tetramethoxymethyl guanamine, and tetramethylol guanamine are methoxymethylated or a mixture thereof is heat resistant. It is preferable from the viewpoint of.
  • glycol uryl compound known compounds can be used, and the present invention is not particularly limited, but tetramethylol glycol urilu and tetramethoxyglycol uryl are preferable from the viewpoint of heat resistance and etching resistance.
  • urea compound known compounds can be used, and the present invention is not particularly limited, but tetramethylurea and tetramethoxymethylurea are preferable from the viewpoint of heat resistance.
  • a cross-linking agent having at least one allyl group may be used from the viewpoint of improving the cross-linking property.
  • Bis (3-allyl-4-hydroxyphenyl) sulfone, bis (3-allyl-4-hydroxyphenyl) sulfide, bis (3-allyl-4-hydroxyphenyl) ether and other allylphenols are preferable.
  • the content of the cross-linking agent is not particularly limited, but may be 5 to 50 parts by mass with respect to 100 parts by mass of the polycyclic polyphenol resin in the present embodiment. It is preferable, more preferably 10 to 40 parts by mass.
  • Cross-linking accelerator for promoting a cross-linking and curing reaction
  • a cross-linking accelerator for promoting a cross-linking and curing reaction can be used, if necessary.
  • the cross-linking accelerator is not particularly limited as long as it promotes the cross-linking and curing reaction, and examples thereof include amines, imidazoles, organic phosphines, and Lewis acids. These cross-linking accelerators can be used alone or in combination of two or more. Among these, imidazoles or organic phosphines are preferable, and imidazoles are more preferable from the viewpoint of lowering the crosslinking temperature.
  • cross-linking accelerator known ones can be used, and the cross-linking accelerator is not particularly limited, and examples thereof include those described in International Publication No. 2018/016614. From the viewpoint of heat resistance and curing promotion, 2-methylimidazole, 2-phenylimidazole, and 2-ethyl-4-methylimidazole are particularly preferable.
  • the content of the cross-linking accelerator is usually preferably 0.1 to 10 parts by mass, more preferably controlled, when the total mass of the composition is 100 parts by mass and 100 parts by mass. From the viewpoint of ease and economy, it is 0.1 to 5 parts by mass, more preferably 0.1 to 3 parts by mass.
  • a radical polymerization initiator can be added to the composition for forming a lower layer film for lithography of the present embodiment, if necessary.
  • the radical polymerization initiator may be a photopolymerization initiator that initiates radical polymerization by light, or a thermal polymerization initiator that initiates radical polymerization by heat.
  • the radical polymerization initiator may be, for example, at least one selected from the group consisting of a ketone-based photopolymerization initiator, an organic peroxide-based polymerization initiator, and an azo-based polymerization initiator.
  • the radical polymerization initiator is not particularly limited, and conventionally used ones can be appropriately adopted. For example, those described in International Publication No. 2018/016614 can be mentioned. Of these, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, and t-butylcumyl peroxide are particularly preferable from the viewpoint of raw material availability and storage stability. ..
  • radical polymerization initiator used in the present embodiment one of these may be used alone, two or more thereof may be used in combination, or another known polymerization initiator may be further used in combination. ..
  • the composition for forming an underlayer film for lithography of the present embodiment may contain an acid generator, if necessary, from the viewpoint of further promoting the cross-linking reaction by heat.
  • an acid generator those that generate acid by thermal decomposition, those that generate acid by light irradiation, and the like are known, but any of them can be used.
  • the acid generator is not particularly limited, but for example, the acid generator described in International Publication No. 2013/024779 can be used. In this embodiment, the acid generator can be used alone or in combination of two or more.
  • the content of the acid generator is not particularly limited, but is 0.1 to 50 parts by mass with respect to 100 parts by mass of the polyphenol resin in the present embodiment. It is preferably, more preferably 0.5 to 40 parts by mass.
  • composition for forming an underlayer film for lithography of the present embodiment may contain a basic compound from the viewpoint of improving storage stability and the like.
  • the basic compound acts as a quencher for the acid to prevent the acid generated in a smaller amount than the acid generator from advancing the cross-linking reaction.
  • Examples of such basic compounds include primary, secondary or tertiary aliphatic amines, mixed amines, aromatic amines, heterocyclic amines, and nitrogen-containing compounds having a carboxy group. Examples thereof include a nitrogen-containing compound having a sulfonyl group, a nitrogen-containing compound having a hydroxyl group, a nitrogen-containing compound having a hydroxyphenyl group, an alcoholic nitrogen-containing compound, an amide derivative, an imide derivative and the like, but the present invention is not particularly limited thereto.
  • the basic compound used in this embodiment is not particularly limited, but for example, the compound described in International Publication No. 2013/024779 can be used. In this embodiment, the basic compound may be used alone or in combination of two or more.
  • the content of the basic compound is not particularly limited, but is 0.001 to 2 parts by mass with respect to 100 parts by mass of the polyphenol resin in the present embodiment. It is preferably 0.01 to 1 part by mass, more preferably 0.01 to 1 part by mass.
  • the composition for forming an underlayer film for lithography of the present embodiment may contain other resins and / or compounds for the purpose of imparting thermosetting property and controlling the absorbance.
  • other resins and / or compounds include naphthalene resin, xylene resin, naphthalene-modified resin, phenol-modified resin of naphthalene resin, polyhydroxystyrene, dicyclopentadiene resin, (meth) acrylate, dimethacrylate, and trimethacrylate.
  • composition for forming an underlayer film for lithography of the present embodiment may contain a known additive.
  • known additives include, but are not limited to, ultraviolet absorbers, surfactants, colorants, nonionic surfactants, and the like.
  • the method for forming a lower layer film for lithography of the present embodiment includes a step of forming a lower layer film on a substrate by using the composition for forming a lower layer film for lithography of the present embodiment.
  • the resist pattern forming method using the lithography underlayer film forming composition of the present embodiment is a step of forming an underlayer film on a substrate using the lithography underlayer film forming composition of the present embodiment (A-1). ), A step of forming at least one photoresist layer on the underlayer film (A-2), and a step of irradiating a predetermined region of the photoresist layer with radiation and developing to form a resist pattern. (A-3) and.
  • the circuit pattern forming method using the composition for forming a lower layer film for lithography of the present embodiment is a step of forming a lower layer film on a substrate using the composition for forming a lower layer film for lithography of the present embodiment (B-1). ), The step of forming an intermediate layer film using a resist intermediate layer film material containing a silicon atom on the lower layer film (B-2), and at least one photoresist layer on the intermediate layer film. (B-3), and after the step (B-3), a predetermined region of the photoresist layer is irradiated with radiation and developed to form a resist pattern (B-4).
  • the intermediate layer film is etched using the resist pattern as a mask to form the intermediate layer film pattern (B-5), and the obtained intermediate layer film pattern is etched.
  • the method for forming the underlayer film for lithography of the present embodiment is not particularly limited as long as it is formed from the composition for forming the underlayer film for lithography of the present embodiment, and a known method can be applied.
  • the composition for forming an underlayer film for lithography of the present embodiment is applied onto a substrate by a known coating method such as spin coating or screen printing or a printing method, and then removed by volatilizing an organic solvent. , An underlayer film can be formed.
  • the baking temperature is not particularly limited, but is preferably in the range of 80 to 450 ° C, more preferably 200 to 400 ° C.
  • the baking time is also not particularly limited, but is preferably in the range of 10 to 300 seconds.
  • the thickness of the underlayer film can be appropriately selected according to the required performance and is not particularly limited, but is usually preferably about 30 to 20,000 nm, more preferably 50 to 15,000 nm. Is preferable.
  • a silicon-containing resist layer is placed on top of it, or in the case of a three-layer process, a silicon-containing intermediate layer is placed on top of it, or a single-layer resist made of ordinary hydrocarbons. It is preferable to prepare a single-layer resist layer containing no silicon. In this case, a known photoresist material can be used to form the resist layer.
  • a silicon-containing resist layer or a single-layer resist made of ordinary hydrocarbon can be produced on the underlayer film.
  • a silicon-containing intermediate layer can be formed on the lower film thereof, and a silicon-free single-layer resist layer can be formed on the silicon-containing intermediate layer.
  • the photoresist material for forming the resist layer can be appropriately selected from known materials and used, and is not particularly limited.
  • a silicon atom-containing polymer such as a polysilsesquioxane derivative or a vinylsilane derivative is used as the base polymer from the viewpoint of oxygen gas etching resistance, and further, an organic solvent, an acid generator, and the like. If necessary, a positive photoresist material containing a basic compound or the like is preferably used.
  • the silicon atom-containing polymer a known polymer used in this type of resist material can be used.
  • a polysilsesquioxane-based intermediate layer is preferably used as the silicon-containing intermediate layer for the three-layer process.
  • the intermediate layer By giving the intermediate layer an effect as an antireflection film, it tends to be possible to effectively suppress reflection.
  • the substrate reflection can be reduced to 0.5% or less.
  • the intermediate layer having such an antireflection effect is not limited to the following, but for 193 nm exposure, a phenyl group or an absorbent group having a silicon-silicon bond is introduced, and the polysilse sesquioki is crosslinked with an acid or heat. Sun is preferably used.
  • an intermediate layer formed by the Chemical Vapor Deposition (CVD) method can also be used.
  • the intermediate layer having a high effect as an antireflection film produced by the CVD method is not limited to the following, and for example, a SiON film is known.
  • the formation of an intermediate layer by a wet process such as a spin coating method or screen printing is simpler and more cost effective than the CVD method.
  • the upper layer resist in the three-layer process may be either a positive type or a negative type, and the same single-layer resist as normally used can be used.
  • the underlayer film in the present embodiment can also be used as an antireflection film for a normal single-layer resist or a base material for suppressing pattern collapse. Since the underlayer film of the present embodiment has excellent etching resistance for base processing, it can be expected to function as a hard mask for base processing.
  • a wet process such as a spin coating method or screen printing is preferably used as in the case of forming the underlayer film.
  • prebaking is usually performed, and this prebaking is preferably performed at 80 to 180 ° C. for 10 to 300 seconds.
  • a resist pattern can be obtained by performing exposure, post-exposure baking (PEB), and development according to a conventional method.
  • the thickness of the resist film is not particularly limited, but is generally preferably 30 to 500 nm, more preferably 50 to 400 nm.
  • the exposure light may be appropriately selected and used according to the photoresist material used.
  • high-energy rays having a wavelength of 300 nm or less specifically, excimer lasers having a wavelength of 248 nm, 193 nm, and 157 nm, soft X-rays having a wavelength of 3 to 20 nm, electron beams, X-rays, and the like can be mentioned.
  • the resist pattern formed by the above method has the pattern collapse suppressed by the underlayer film in the present embodiment. Therefore, by using the underlayer film in the present embodiment, a finer pattern can be obtained, and the exposure amount required to obtain the resist pattern can be reduced.
  • gas etching is preferably used as the etching of the lower layer film in the two-layer process.
  • gas etching etching using oxygen gas is preferable.
  • oxygen gas it is also possible to add an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2, or H 2 gas.
  • an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2, or H 2 gas.
  • the latter gas is preferably used to protect the side wall to prevent undercutting of the side wall of the pattern.
  • gas etching is also preferably used for etching the intermediate layer in the three-layer process.
  • the gas etching the same ones as described in the above two-layer process can be applied.
  • the processing of the intermediate layer in the three-layer process is preferably performed by using a fluorocarbon-based gas and using the resist pattern as a mask.
  • the lower layer film can be processed by, for example, performing oxygen gas etching using the intermediate layer pattern as a mask as described above.
  • a silicon oxide film, a silicon nitride film, and a silicon oxide nitride film are formed by a CVD method, an atomic layer deposition (ALD) method, or the like.
  • ALD atomic layer deposition
  • the method for forming the nitride film is not limited to the following, and for example, the methods described in JP-A-2002-334869 (Patent Document 4) and International Publication No. 2004/06637 (Patent Document 5) can be used. can.
  • a photoresist film can be formed directly on such an intermediate layer film, but an organic antireflection film (BARC) is formed on the intermediate layer film by spin coating, and a photoresist film is formed on the organic antireflection film (BARC). You may.
  • BARC organic antireflection film
  • a polysilsesquioxane-based intermediate layer is also preferably used.
  • the resist intermediate layer film By giving the resist intermediate layer film an effect as an antireflection film, it tends to be possible to effectively suppress reflection.
  • Specific materials for the polysilsesquioxane-based intermediate layer are not limited to the following, and are, for example, in JP-A-2007-226170 (Patent Document 6) and JP-A-2007-226204 (Patent Document 7). The ones described can be used.
  • the next etching of the substrate can also be performed by a conventional method.
  • the etching is mainly composed of chlorofluorocarbons
  • the substrate is p-Si, Al or W
  • the etching is chlorine-based or bromine-based.
  • Etching mainly composed of gas can be performed.
  • the silicon-containing resist layer or the silicon-containing intermediate layer is separately peeled off, and generally, dry etching peeling is performed with a freon-based gas after the substrate is processed. ..
  • the underlayer film in the present embodiment is characterized by having excellent etching resistance of these substrates.
  • a known substrate can be appropriately selected and used, and examples thereof include Si, ⁇ -Si, p-Si, SiO 2 , SiN, SiON, W, TiN, and Al. ..
  • the substrate may be a laminated body having a film to be processed (substrate to be processed) on a base material (support).
  • various Low-k films such as Si, SiO 2 , SiON, SiN, p-Si, ⁇ -Si, W, W-Si, Al, Cu, Al-Si and their stopper films and stopper films thereof.
  • Etc. and usually, a material different from the base material (support) is used.
  • the thickness of the substrate or the film to be processed is not particularly limited, but is usually preferably about 50 to 1,000,000 nm, and more preferably 75 to 500,000 nm.
  • Specific examples of the permanent film are not particularly limited, but for example, in the case of semiconductor devices, a package adhesive layer such as a solder resist, a package material, an underfill material, or a circuit element, an adhesive layer between an integrated circuit element and a circuit board, and a thin display are used.
  • Related examples include a thin film transistor protective film, a liquid crystal color filter protective film, a black matrix, and a spacer.
  • the permanent film made of the film-forming composition of the present embodiment has excellent heat resistance and moisture resistance, and also has a very excellent advantage of being less contaminated by sublimation components.
  • the display material it is a material having high sensitivity, high heat resistance, and moisture absorption reliability with little deterioration of image quality due to important contamination.
  • the film-forming composition of the present embodiment is used for a permanent resist film, in addition to a curing agent, other resins, surfactants and dyes, fillers, cross-linking agents, dissolution accelerators, etc., if necessary, etc. By adding various additives of the above and dissolving in an organic solvent, a composition for a permanent resist film can be obtained.
  • the resist permanent film composition can be prepared by blending each of the above components and mixing them using a stirrer or the like.
  • the film-forming composition of the present embodiment contains a filler or a pigment
  • the composition for a resist permanent film is prepared by dispersing or mixing using a disperser such as a dissolver, a homogenizer, or a three-roll mill. can do.
  • composition for forming optical components The film-forming composition of the present embodiment can also be used for forming optical components. That is, the composition for forming an optical component of the present embodiment contains the composition for forming a film of the present embodiment. In other words, the composition for forming an optical component of the present embodiment contains the polycyclic polyphenol resin of the present embodiment as an essential component.
  • the "optical parts” include, in addition to film-shaped and sheet-shaped parts, plastic lenses (prism lenses, lenticular lenses, microlenses, frennel lenses, viewing angle control lenses, contrast-enhancing lenses, etc.), retardation films, and the like.
  • the composition for forming an optical component of the present embodiment can further contain various optional components in consideration of being used as an optical component forming material. Specifically, the composition for forming an optical component of the present embodiment preferably further contains at least one selected from the group consisting of a solvent, an acid generator and a cross-linking agent.
  • the components that can be used as the solvent, the acid generator, and the cross-linking agent can be the same as those of the components that can be contained in the composition for forming the underlayer film for lithography of the present embodiment described above, and the compounding ratio thereof is also the same. , Can be set as appropriate in consideration of specific applications.
  • Example group 1 the example according to the compound group 1
  • the example according to the compound group 2 is “Example group 2”
  • the example according to the compound group 3 is “Example group 3”.
  • the example numbers given to each of the following examples are individual example numbers for each example group. That is, for example, Example 1 of Example (Example Group 1) according to Compound Group 1 is distinguished from Example 1 of Example (Example Group 2) according to Compound Group 2. do.
  • the analysis and evaluation method of the polycyclic polyphenol resin in this embodiment is as follows.
  • the 1H-NMR measurement was carried out under the following conditions using an "Advance 600II spectrometer" manufactured by Bruker.
  • the film thickness of the resin film prepared using the polycyclic polyphenol resin was measured by an interference film thickness meter "OPTM-A1" (manufactured by Otsuka Electronics Co., Ltd.).
  • Example group 1 Synthesis of NAFP-AL Under nitrogen, 1,4-bis (chloromethyl) benzene (28.8 g, 0.148 mol, manufactured by Tokyo Chemical Industry Co., Ltd.), 1-naphthol (1-naphthol) in a 300 mL four-necked flask. 30.0 g, 0.1368 mol, manufactured by Tokyo Chemical Industry Co., Ltd., paratoluenesulfonic acid monohydrate (5.7 g, 0.029 mol, manufactured by Tokyo Chemical Industry Co., Ltd.) is added, and propylene glycol monomethyl ether is further added.
  • PGMEA acetate
  • PGMEA acetate
  • the obtained precipitate was filtered and dried in a vacuum drier at 60 ° C. for 16 hours to obtain 38.6 g of the desired oligomer having a structure represented by the following formula (NAFP-AL).
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 2020, and the dispersity was 1.86.
  • the viscosity was 0.12 Pa ⁇ s, and the softening point was 68 ° C.
  • the HCl produced in the reaction was volatilized to the outside of the system as it was, and trapped in alkaline water. At this stage, no unreacted 4,4'-dichloromethylbiphenyl remained, and it was confirmed by gas chromatography that all the reactions had occurred.
  • the pressure was reduced to remove HCl remaining in the system and unreacted phenol to the outside of the system. Finally, by reducing the pressure to 150 ° C. at 30 torr, residual phenol was not detected by gas chromatography. While maintaining the reaction product at 150 ° C., about 30 g thereof was slowly dropped from the lower outlet of the flask onto a stainless pad kept at room temperature by air cooling.
  • the HCl produced in the reaction was volatilized to the outside of the system as it was, and trapped in alkaline water. At this stage, no unreacted 4,4'-dichloromethylbiphenyl remained, and it was confirmed by gas chromatography that all the reactions had occurred.
  • the pressure was reduced to remove HCl remaining in the system and unreacted p-cresol to the outside of the system. Finally, the pressure was reduced to 150 ° C. at 30 torr, and the residual p-cresol was not detected by gas chromatography. While maintaining the reaction product at 150 ° C., about 30 g thereof was slowly dropped from the lower outlet of the flask onto a stainless pad kept at room temperature by air cooling.
  • the stainless pad was rapidly cooled to 30 ° C. to obtain a solidified polymer.
  • the solidified material was removed and the stainless pad was cooled by air cooling so that the surface temperature of the stainless pad would not rise due to the heat of the polymer.
  • This air cooling / solidification operation was repeated 9 times to obtain 223.1 g of an oligomer having a structure represented by the following formula (p-CBIF-AL).
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 2556, and the dispersity was 1.21.
  • the viscosity was 0.03 Pa ⁇ s, and the softening point was 35 ° C.
  • the HCl produced in the reaction was volatilized to the outside of the system as it was, and trapped in alkaline water. At this stage, no unreacted 4,4'-dichloromethylbiphenyl remained, and it was confirmed by gas chromatography that all the reactions had occurred.
  • the pressure was reduced to remove HCl remaining in the system and unreacted 4-butylphenol to the outside of the system. Finally, the residual 4-butylphenol was not detected by gas chromatography by the reduced pressure treatment at 30 torr to 150 ° C. While maintaining the reaction product at 150 ° C., about 30 g thereof was slowly dropped from the lower outlet of the flask onto a stainless pad kept at room temperature by air cooling.
  • Synthesis Example 4 Synthesis of n-BBIF-ALS The structure represented by the following formula was carried out in the same manner as in Synthesis Example 2 except that PBIF-AL in Synthesis Example 2 was changed to n-BBIF-AL. 25.8 g of the target resin n-BBIF-ALS having the above was obtained. As a result of measuring the polystyrene-equivalent molecular weight of the obtained resin by the above method, it was Mn: 2988, Mw: 3773, and Mw / Mn: 1.26.
  • the HCl produced in the reaction was volatilized to the outside of the system as it was, and trapped in alkaline water. At this stage, no unreacted 4,4'-dichloromethylbiphenyl remained, and it was confirmed by gas chromatography that all the reactions had occurred.
  • the pressure was reduced to remove HCl remaining in the system and unreacted 1-naphthol to the outside of the system. Finally, by reducing the pressure to 140 ° C. at 30 torr, the residual 1-naphthol was not detected by gas chromatography. While maintaining the reaction product at 150 ° C., about 30 g thereof was slowly dropped from the lower outlet of the flask onto a stainless pad kept at room temperature by air cooling.
  • the stainless pad was rapidly cooled to 30 ° C. to obtain a solidified polymer.
  • the solidified material was removed and the stainless pad was cooled by air cooling so that the surface temperature of the stainless pad would not rise due to the heat of the polymer.
  • This air cooling / solidification operation was repeated 9 times to obtain 288.3 g of an oligomer having a structural unit represented by the following formula (NAFBIF-AL).
  • the weight average molecular weight of the polymer measured by GPC in terms of polystyrene was 3450, and the dispersity was 1.40.
  • the viscosity was 0.15 Pa ⁇ s, and the softening point was 60 ° C.
  • an oligomer (M-PBIF-AL) having a structural unit represented by the following formula.
  • the weight average molecular weight of the obtained oligomer measured by GPC in terms of polystyrene was 2800, and the dispersity was 1.31.
  • the peak around 9.1-9.4 ppm showing a phenolic hydroxyl group was compared with the peak around 3.7-3.8 ppm showing a methyl group, and the chemical amount was It was confirmed that 60% of the hydroxyl groups before the reaction were protected by a methyl group.
  • the viscosity was 0.01 Pa ⁇ s, and the softening point was 25 ° C.
  • Synthesis Example 6 Synthesis of M-PBIF-ALS The same procedure as in Synthesis Example 2 was carried out except that PBIF-AL of Synthesis Example 2 was changed to M-PBIF-AL, and the structure represented by the following formula was carried out. 26.2 g of the target resin M-PBIF-ALS having the above was obtained. As a result of measuring the polystyrene-equivalent molecular weight of the obtained resin by the above method, it was Mn: 2773, Mw: 4021, and Mw / Mn: 1.45.
  • ethylbenzene (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added to the reaction solution as a diluting solvent, and after standing, the aqueous phase of the lower phase was removed. Further, the mixture was neutralized and washed with water, and ethylbenzene and unreacted 1,5-dimethylnaphthalene were distilled off under reduced pressure to obtain 1.25 kg of a light brown solid dimethylnaphthalene formaldehyde resin.
  • a four-necked flask with an internal volume of 0.5 L equipped with a Dimroth condenser, a thermometer and a stirring blade was prepared.
  • 100 g (0.51 mol) of dimethylnaphthalene formaldehyde resin obtained as described above and 0.05 g of p-toluenesulfonic acid were charged under a nitrogen stream, and the temperature was raised to 190 ° C. 2 After heating for hours, the mixture was stirred. After that, 52.0 g (0.36 mol) of 1-naphthol was further added, the temperature was further raised to 220 ° C., and the reaction was carried out for 2 hours. After diluting the solvent, it was neutralized and washed with water, and the solvent was removed under reduced pressure to obtain 126.1 g of a dark brown solid modified resin (CR-1).
  • CR-1 dark brown solid modified resin
  • the obtained solid substance was filtered and dried to obtain 7.2 g of a target resin (NBisN-2) having a structure represented by the following formula.
  • a target resin (NBisN-2) having a structure represented by the following formula.
  • Mn 778, Mw: 1793, Mw / Mn: 2.30.
  • the obtained resin was subjected to NMR measurement under the above measurement conditions, the following peaks were found, and it was confirmed that the resin had the chemical structure of the following formula. ⁇ (ppm) 9.7 (2H, O-H), 7.2-8.5 (17H, Ph-H), 6.6 (1H, CH), 4.1 (2H, -CH2)
  • Table 1 shows the results of evaluating the heat resistance by the evaluation methods shown below using the resins obtained in Synthesis Examples 1 to 6 and Comparative Synthesis Examples 1 and 2.
  • a resist composition was prepared according to the formulation shown in Table 2.
  • the following were used as the acid generator (C), the acid diffusion control agent (E), and the solvent.
  • Acid generator (C) P-1 Triphenylbenzene Sulfonium Trifluoromethanesulfonate (Midori Kagaku Co., Ltd.)
  • Acid diffusion control agent (E) Q-1 Trioctylamine (Tokyo Chemical Industry Co., Ltd.)
  • Solvent S-1 Propylene glycol monomethyl ether (Tokyo Chemical Industry Co., Ltd.)
  • a uniform resist composition was spin-coated on a clean silicon wafer and then pre-exposed baked (PB) in an oven at 110 ° C. to form a resist film with a thickness of 60 nm.
  • the obtained resist film was irradiated with an electron beam having a 1: 1 line and space setting at 50 nm intervals using an electron beam drawing apparatus (ELS-7500, manufactured by Elionix Inc.). After the irradiation, each resist film was heated at a predetermined temperature for 90 seconds and immersed in a 2.38% by mass alkaline developer of tetramethylammonium hydroxide (TMAH) for 60 seconds for development.
  • TMAH tetramethylammonium hydroxide
  • the resist film was washed with ultrapure water for 30 seconds and dried to form a positive resist pattern.
  • the line and space of the formed resist pattern was observed with a scanning electron microscope (S-4800 manufactured by Hitachi High-Technology Co., Ltd.), and the reactivity of the resist composition by electron beam irradiation was evaluated.
  • Examples 7 to 12 a good resist pattern was obtained by irradiating an electron beam with a 1: 1 line and space setting at 50 nm intervals. The line edge roughness was good when the unevenness of the pattern was less than 50 nm. On the other hand, in Comparative Example 3, a good resist pattern could not be obtained.
  • the heat resistance is higher than that of the resin (CR-1) of Comparative Example 3 which does not satisfy the requirements, and a good resist pattern shape can be imparted. ..
  • the same effect is exhibited with respect to the resins other than those described in the examples.
  • the radiation-sensitive composition obtained above was spin-coated on a clean silicon wafer and then pre-exposed baked (PB) in an oven at 110 ° C. to form a resist film having a thickness of 200 nm.
  • the resist film was exposed to ultraviolet rays using an ultraviolet exposure device (Mikasa Mask Aligner MA-10).
  • the resist film was heated at 110 ° C. for 90 seconds and immersed in TMAH 2.38 mass% alkaline developer for 60 seconds for development. Then, the resist film was washed with ultrapure water for 30 seconds and dried to form a 5 ⁇ m positive resist pattern.
  • the obtained line and space was observed with a scanning electron microscope (S-4800 manufactured by Hitachi High-Technology Co., Ltd.).
  • the line edge roughness was good when the unevenness of the pattern was less than 50 nm.
  • the radiation-sensitive compositions of Examples 13 to 18 can form a resist pattern having a smaller roughness and a better shape than the radiation-sensitive compositions of Comparative Example 4. I understand. As long as the above-mentioned requirements of the present embodiment are satisfied, radiation-sensitive compositions other than those described in the examples show the same effect.
  • the underlayer film forming material for lithography using the resin has relatively low embedding characteristics and flatness of the film surface. It was evaluated that it could be enhanced in favor of.
  • the pyrolysis temperature was 150 ° C. or higher (evaluation A), and since it had high heat resistance, it was evaluated that it could be used even under high temperature baking conditions. In order to confirm these points, the following evaluations were made assuming the use of the underlayer membrane.
  • composition for forming underlayer film for lithography was prepared so as to have the composition shown in Table 4. Next, these lithographic underlayer film forming compositions were rotationally coated on a silicon substrate, and then baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to prepare an underlayer film having a film thickness of 200 nm. .. The following were used as the acid generator, the cross-linking agent, the organic solvent and the novolak. Acid generator: Midori Kagaku Co., Ltd.
  • DTDPI Jitterly Butyl Diphenyliodonium Nonafluoromethane Sulfonate
  • Acid generator Pyridinium paratoluenesulfonic acid (PPTS)
  • Crosslinking agent Nikalac MX270 manufactured by Sanwa Chemical Co., Ltd.
  • Cross-linking agent Honshu Chemical Industry Co., Ltd. product "TMOM-BP" (TMOM)
  • PGMEA Propylene glycol monomethyl ether acetate
  • PGME 1-methoxy-2-propanol
  • Novolac PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.
  • Etching device RIE-10NR manufactured by SAMCO International Output: 50W Pressure: 20Pa Time: 2min Etching gas
  • Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate 50: 5: 5 (sccm)
  • etching resistance was evaluated by the following procedure. First, a novolak underlayer film was prepared in the same manner as described above except that novolak (PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.) was used. The above etching test was performed on the underlayer film of this novolak, and the etching rate at that time was measured.
  • novolak PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.
  • Examples 30 to 40, Comparative Example 9 the composition for forming an underlayer film for lithography used in Examples 19 to 29 and Comparative Example 5 was applied onto a 60 nm line-and-space SiO 2 substrate having a film thickness of 80 nm and baked at 240 ° C. for 60 seconds. By doing so, a 90 nm underlayer film was formed.
  • the embedding property was evaluated by the following procedure. A cross section of the membrane obtained under the above conditions was cut out and observed with an electron beam microscope to evaluate the implantability. The evaluation results are shown in Table 5.
  • Example 41 to 51 the composition for forming an underlayer film for lithography used in Examples 19 to 29 was applied onto a SiO 2 substrate having a film thickness of 300 nm, and baked at 240 ° C. for 60 seconds and then at 400 ° C. for 120 seconds. An underlayer film having a film thickness of 85 nm was formed. A resist solution for ArF was applied onto this underlayer film and baked at 130 ° C. for 60 seconds to form a photoresist layer having a film thickness of 140 nm.
  • the ArF resist solution contains 5 parts by mass of the compound of the following formula (16), 1 part by mass of triphenylsulfonium nonafluoromethanesulfonate, 2 parts by mass of tributylamine, and 92 parts by mass of PGMEA. The prepared one was used.
  • the compound of the following formula (16) was prepared as follows. That is, 2-methyl-2-methacryloyloxyadamantane 4.15 g, methacrylloyloxy- ⁇ -butyrolactone 3.00 g, 3-hydroxy-1-adamantyl methacrylate 2.08 g, azobisisobutyronitrile 0.38 g, and tetrahydrofuran. It was dissolved in 80 mL to prepare a reaction solution. The reaction solution was polymerized under a nitrogen atmosphere at a reaction temperature of 63 ° C. for 22 hours, and then the reaction solution was added dropwise to 400 mL of n-hexane. The produced resin thus obtained was coagulated and purified, the produced white powder was filtered, and dried under reduced pressure at 40 ° C. overnight to obtain a compound represented by the following formula (16).
  • the photoresist layer was then exposed using an electron beam lithography system (ELS-7500, 50 keV) and baked (PEB) at 115 ° C. for 90 seconds to obtain 2.38 mass% tetramethylammonium hydroxide (2.38 mass% tetramethylammonium hydroxide).
  • ELS-7500 electron beam lithography system
  • PEB baked
  • a positive resist pattern was obtained by developing with an aqueous solution of TMAH) for 60 seconds.
  • Example 52 The composition for forming a lower layer film for lithography used in Example 19 was applied onto a SiO 2 substrate having a film thickness of 300 nm, and baked at 240 ° C. for 60 seconds and then at 400 ° C. for 120 seconds to form a lower layer having a film thickness of 90 nm. A film was formed. A silicon-containing intermediate layer material was applied onto the lower layer film and baked at 200 ° C. for 60 seconds to form an intermediate layer film having a film thickness of 35 nm. Further, the resist solution for ArF was applied onto the intermediate layer film and baked at 130 ° C. for 60 seconds to form a photoresist layer having a film thickness of 150 nm. As the silicon-containing intermediate layer material, the silicon atom-containing polymer described in JP-A-2007-226170 ⁇ Synthesis Example 1> was used.
  • the photoresist layer was mask-exposed using an electron beam lithography system (ELS-7500, 50 keV) and baked (PEB) at 115 ° C. for 90 seconds to obtain 2.38 mass% tetramethylammonium hydroxide.
  • ELS-7500 electron beam lithography system
  • PEB baked
  • TMAH aqueous solution of
  • the silicon-containing intermediate layer film (SOG) is dry-etched using the obtained resist pattern as a mask, and then the obtained silicon-containing intermediate layer film pattern is obtained.
  • the dry etching process of the lower layer film used as a mask and the dry etching process of the SiO 2 film using the obtained lower layer film pattern as a mask were sequentially performed.
  • Etching condition output of resist underlayer film pattern to SiO 2 film: 50W Pressure: 20Pa Time: 2min Etching gas Ar gas flow rate: C 5 F 12 gas flow rate: C 2 F 6 gas flow rate: O 2 gas flow rate 50: 4: 3: 1 (sccm)
  • a substrate made by laminating a film made of the resin of Synthesis Example 1 was prepared by baking under the condition of 1 minute.
  • a cured resin film was obtained by baking the prepared substrate at 350 ° C. for 1 minute using a hot plate capable of further high temperature treatment.
  • the change in film thickness before and after immersing the obtained cured resin film in the PGMEA tank for 1 minute was 3% or less, it was determined that the film was cured.
  • the curing temperature was changed by 50 ° C. to investigate the curing temperature, and the baking treatment was performed under the condition of the lowest temperature in the curing temperature range.
  • the prepared resin film was evaluated for optical characteristic values (refractive index n and extinction coefficient k as optical constants) using spectroscopic ellipsometry VUV-VASE (manufactured by JA Woollam).
  • Example A02 to Example A06 and Comparative Example A01 A resin film was prepared in the same manner as in Example A01 except that the resin used was changed from NAFP-ALS to the resin shown in Table 7, and the optical characteristic values were evaluated.
  • the film-forming composition containing the polycyclic polyphenol resin in the present embodiment can form a resin film having a high n value and a low k value at a wavelength of 193 nm used in ArF exposure. ..
  • Example B01 The heat resistance of the resin film produced in Example A01 was evaluated using a lamp annealing furnace. As the heat-resistant treatment conditions, heating was continued at 400 ° C. under a nitrogen atmosphere, and the rate of change in film thickness during the elapsed time of 4 minutes and 10 minutes from the start of heating was determined. These film thickness change rates were evaluated as an index of the heat resistance of the cured film. The film thickness before and after the heat resistance test was measured with an interference film thickness meter, and the fluctuation value of the film thickness was obtained as the ratio of the film thickness to the film thickness before the heat resistance test treatment as the film thickness change rate (percentage%). [Evaluation criteria] A: Film thickness change rate is less than 10% B: Film thickness change rate is 10% to 15% C: Film thickness change rate exceeds 15%
  • Example B02 to Example B06 Comparative Example B01 to Comparative Example B02
  • the heat resistance evaluation was carried out in the same manner as in Example B01 except that the resin used was changed from NAFP-ALS to the resin shown in Table 8.
  • Example C01 ⁇ PE-CVD film formation evaluation> A 12-inch silicon wafer was subjected to thermal oxidation treatment, and a resin film having a thickness of 100 nm was prepared on a substrate having the obtained silicon oxide film by the same method as in Example A01 using the resin solution of Example A01. did. A silicon oxide film having a film thickness of 70 nm was formed on the resin film by using a film forming apparatus TELINDY (manufactured by Tokyo Electron Limited) and using TEOS (tetraethylsiloxane) as a raw material at a substrate temperature of 300 ° C.
  • TELINDY manufactured by Tokyo Electron Limited
  • TEOS tetraethylsiloxane
  • a wafer with a cured film on which the created silicon oxide film is laminated is further inspected for defects using KLA-Tencor SP-5, and the number of defects in the film-formed oxide film is evaluated using the number of defects having a diameter of 21 nm or more as an index.
  • ⁇ SiN film> A raw material using a film forming apparatus TELINDY (manufactured by Tokyo Electron) on a cured film prepared on a substrate having a silicon oxide film heat-oxidized to a thickness of 100 nm on a 12-inch silicon wafer by the same method as described above.
  • a SiN film having a film thickness of 40 nm, a refractive index of 1.94, and a film stress of ⁇ 54 MPa was formed at a substrate temperature of 350 ° C. using SiN (monosilane) and ammonia.
  • a wafer with a cured film on which the created SiN film is laminated is further inspected for defects using KLA-Tencor SP-5, and the number of defects in the formed oxide film is evaluated using the number of defects having a diameter of 21 nm or more as an index. gone.
  • Example C02 to Example C06 and Comparative Example C01 to Comparative Example C02 Defect evaluation was carried out in the same manner as in Example C01 except that the resin used was changed from NAFP-ALS to the resin shown in Table 9.
  • the silicon oxide film or SiN film formed on the resin films of Examples C01 to C06 has 50 or less defects (B evaluation or more) having a diameter of 21 nm or more, which is compared with the number of defects of Comparative Examples C01 or C02. , Was shown to be less.
  • Example D01 ⁇ Etching evaluation after high temperature treatment> A 12-inch silicon wafer was subjected to thermal oxidation treatment, and a resin film having a thickness of 100 nm was prepared on a substrate having the obtained silicon oxide film by the same method as in Example A01 using the resin solution of Example A01. did. The resin film was further annealed by heating under a hot plate capable of high temperature treatment in a nitrogen atmosphere at 600 ° C. for 4 minutes to prepare a wafer on which the annealed resin film was laminated. The prepared annealed resin film was carved out and the carbon content was evaluated by elemental analysis. [Evaluation criteria] A 90% or more and B less than 90%
  • a 12-inch silicon wafer was subjected to thermal oxidation treatment, and a resin film having a thickness of 100 nm was applied to a substrate having the obtained silicon oxide film by the same method as in Example A01 using the resin solution of Example A01.
  • a resin film having a thickness of 100 nm was applied to a substrate having the obtained silicon oxide film by the same method as in Example A01 using the resin solution of Example A01.
  • the substrate was subjected to CF 4 / as an etching gas using an etching apparatus TELIUS (manufactured by Tokyo Electron Limited).
  • the etching treatment was performed under the conditions using Ar and Cl 2 / Ar, and the etching rate was evaluated.
  • etching rate a resin film having a thickness of 200 nm prepared by annealing SU8 (manufactured by Nippon Kayaku Co., Ltd.) at 250 ° C. for 1 minute was used as a reference, and the rate ratio of the etching rate to SU8 was evaluated. [Evaluation criteria] A less than 0.8 B 0.8 or more
  • Example D02 to Example D06 Comparative Example D01 to Comparative Example D02
  • the heat resistance evaluation was carried out in the same manner as in Example D01 except that the resin used was changed from NAFP-ALS to the resin shown in Table 10.
  • the polycyclic polyphenol resin obtained in the synthesis example was evaluated for quality before and after the purification treatment. That is, the resin film formed on the wafer using the polycyclic polyphenol resin was transferred to the substrate side by etching, and then the defect was evaluated.
  • a 12-inch silicon wafer was subjected to thermal oxidation treatment to obtain a substrate having a silicon oxide film having a thickness of 100 nm. After forming a film on the substrate by adjusting the spin coating conditions so that the resin solution of the polyphenolic polyphenol resin has a thickness of 100 nm, the film is baked at 150 ° C. for 1 minute, and then baked at 350 ° C. for 1 minute.
  • a laminated substrate was prepared by laminating a polyphenol resin on silicon with a thermal oxide film.
  • TELIUS manufactured by Tokyo Electron Limited
  • the resin film was etched under the conditions of CF4 / O2 / Ar to expose the substrate on the surface of the oxide film. Further, an etching process was performed under the condition that the oxide film was etched at 100 nm with a gas composition ratio of CF4 / Ar to prepare an etched wafer.
  • the prepared etched wafer was measured for the number of defects of 19 nm or more with a defect inspection device SP5 (manufactured by KLA-tencor), and was carried out as a defect evaluation by etching treatment with a laminated film.
  • SP5 manufactured by KLA-tencor
  • Example E01 Purification of NAFP-ALS with acid
  • a solution (10% by mass) of NAFP-ALS obtained in Synthesis Example 1 dissolved in PGMEA was placed. 150 g was charged and heated to 80 ° C. with stirring. Then, 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, the mixture was stirred for 5 minutes, and then allowed to stand for 30 minutes. As a result, the oil phase and the aqueous phase were separated, and the aqueous phase was removed.
  • aqueous oxalic acid solution pH 1.3
  • Example E02 Purification of NAFP-ALS by passing through a filter 1
  • the concentration of the resin (NAFP-ALS) obtained in Synthesis Example 1 dissolved in propylene glycol monomethyl ether (PGME) in a 1000 mL volume four-necked flask (bottom punching type).
  • PGME propylene glycol monomethyl ether
  • nitrogen gas was introduced and returned to atmospheric pressure, and nitrogen gas was aerated at 100 mL / min to reduce the internal oxygen concentration to less than 1%. After adjusting to, the mixture was heated to 30 ° C. with stirring.
  • the above solution is withdrawn from the bottom punching valve, and a nylon hollow fiber membrane filter (manufactured by KITZ Micro Filter Co., Ltd.) with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 100 mL / min via a pressure resistant tube made of fluororesin is used.
  • the liquid was passed through the product name: Polyfix Nylon Series) by pressure filtration so that the filtration pressure was 0.5 MPa.
  • the filtered resin solution was diluted with EL grade PGMEA (reagent manufactured by Kanto Chemical Co., Inc.) and the concentration was adjusted to 10% by mass to obtain a PGMEA solution of NAFP-ALS having a reduced metal content.
  • Example E03 Purification of NAFP-ALS by passing through a filter 2
  • IONKLEEEN manufactured by Nippon Pole
  • nylon filter manufactured by Nippon Pole a nylon filter manufactured by Nippon Pole
  • UPE filter with a nominal pore size of 3 nm manufactured by Entegris Japan were connected in series in this order to construct a filter line.
  • the liquid was passed by pressure filtration so that the filtration pressure was 0.5 MPa in the same manner as in Example E02, except that the prepared filter line was used instead of the 0.1 ⁇ m nylon hollow fiber membrane filter. ..
  • Example E04 For the PBIF-ALS prepared in (Synthesis Example 2), a solution sample purified by the same method as in Example E01 was prepared, and then etching defect evaluation was performed on the laminated film.
  • Example E05 For the PBIF-ALS prepared in (Synthesis Example 2), a solution sample purified by the same method as in Example E02 was prepared, and then etching defect evaluation was performed on the laminated film.
  • Example E06 For the PBIF-ALS prepared in (Synthesis Example 2), a solution sample purified by the same method as in Example E03 was prepared, and then etching defect evaluation was performed on the laminated film.
  • Example E07 For the p-CBIF-ALS prepared in (Synthesis Example 3), a solution sample purified by the same method as in Example E01 was prepared, and then etching defect evaluation was performed on the laminated film.
  • Example E08 For the p-CBIF-ALS prepared in (Synthesis Example 3), a solution sample purified by the same method as in Example E02 was prepared, and then etching defect evaluation was performed on the laminated film.
  • Example E09 For the p-CBIF-ALS prepared in (Synthesis Example 3), a solution sample purified by the same method as in Example E03 was prepared, and then etching defect evaluation was performed on the laminated film.
  • Example E10 For the n-BBIF-ALS prepared in (Synthesis Example 4), a solution sample purified by the same method as in Example E01 was prepared, and then etching defect evaluation was performed on the laminated film.
  • Example E11 For the n-BBIF-ALS prepared in (Synthesis Example 4), a solution sample purified by the same method as in Example E02 was prepared, and then etching defect evaluation was performed on the laminated film.
  • Example E12 For the n-BBIF-ALS prepared in (Synthesis Example 4), a solution sample purified by the same method as in Example E03 was prepared, and then etching defect evaluation was performed on the laminated film.
  • Example E13 For NAFBIF-ALS prepared in (Synthesis Example 5), a solution sample purified by the same method as in Example E01 was prepared, and then etching defect evaluation was performed on the laminated film.
  • Example E14 For NAFBIF-ALS prepared in (Synthesis Example 5), a solution sample purified by the same method as in Example E02 was prepared, and then etching defect evaluation was performed on the laminated film.
  • Example E15 For NAFBIF-ALS prepared in (Synthesis Example 5), a solution sample purified by the same method as in Example E03 was prepared, and then etching defect evaluation was performed on the laminated film.
  • Example E16 For the M-PBIF-ALS prepared in (Synthesis Example 6), a solution sample purified by the same method as in Example E01 was prepared, and then etching defect evaluation was performed on the laminated film.
  • Example E17 For the M-PBIF-ALS prepared in (Synthesis Example 6), a solution sample purified by the same method as in Example E02 was prepared, and then etching defect evaluation was performed on the laminated film.
  • Example E18 For the M-PBIF-ALS prepared in (Synthesis Example 6), a solution sample purified by the same method as in Example E03 was prepared, and then etching defect evaluation was performed on the laminated film.
  • Example 53 to 58, Comparative Example 11 An optical component forming composition having the same composition as the solution of the underlayer film forming material for lithography prepared in each of the above Examples 19, 21, 23, 25, 27, 29 and Comparative Example 5 is placed on a SiO 2 substrate having a film thickness of 300 nm. By applying and baking at 260 ° C. for 300 seconds, a film for an optical component having a film thickness of 100 nm was formed. Next, a refractive index and transparency test at a wavelength of 633 nm were performed using a vacuum ultraviolet multi-incident angle spectroscopic ellipsometer (VUV-VASE) manufactured by JA Woolam Japan, and the refractive index and transparency were tested according to the following criteria. Gender was evaluated. The evaluation results are shown in Table 12.
  • VUV-VASE vacuum ultraviolet multi-incident angle spectroscopic ellipsometer
  • Refractive index evaluation criteria A: Refractive index is 1.65 or more C: Refractive index is less than 1.65
  • Example group 2 The structures of RDHN, RBiN, RBiP-1, RDB, and RBiP-2 used in the following synthesis examples are as follows.
  • the obtained solid substance was filtered, dried, and then separated and purified by column chromatography to obtain 2.4 g of the target compound (RDHN-Ac) represented by the following formula.
  • RHN-Ac the target compound represented by the following formula.
  • the reaction solution is dropped in pure water, the precipitated solid is filtered, dried, and then separated and purified by column chromatography, and the target resin represented by the following formula (RDHN-Ua) is obtained.
  • RHN-Ua the target resin represented by the following formula
  • the obtained solid substance was filtered, dried, and then separated and purified by column chromatography to obtain 2.0 g of the target resin (RDHN-Pr) represented by the following formula (RDHN-Pr).
  • RHN-Pr the target resin represented by the following formula (RDHN-Pr).
  • Mn 4608
  • Mw 6534
  • Mw / Mn 1.42.
  • the obtained resin (RDHN-Pr) was subjected to NMR measurement under the above-mentioned measurement conditions, the following peaks were found, and it was confirmed that the obtained resin (RDHN-Pr) had a chemical structure of the following formula (RDHN-Pr).
  • Table 1 shows the results of evaluating the heat resistance by the evaluation methods shown below using the resins obtained in Synthesis Examples 1 to 55 and Comparative Synthesis Examples 1 and 2.
  • a uniform resist composition was spin-coated on a clean silicon wafer and then pre-exposed baked (PB) in an oven at 110 ° C. to form a resist film with a thickness of 60 nm.
  • the obtained resist film was irradiated with an electron beam having a 1: 1 line and space setting at 50 nm intervals using an electron beam drawing apparatus (ELS-7500, manufactured by Elionix Inc.). After the irradiation, each resist film was heated at a predetermined temperature for 90 seconds and immersed in a 2.38% by mass alkaline developer of tetramethylammonium hydroxide (TMAH) for 60 seconds for development.
  • TMAH tetramethylammonium hydroxide
  • the resist film was washed with ultrapure water for 30 seconds and dried to form a positive resist pattern.
  • the line and space of the formed resist pattern was observed with a scanning electron microscope (S-4800 manufactured by Hitachi High-Technology Co., Ltd.), and the reactivity of the resist composition by electron beam irradiation was evaluated.
  • Examples 56 to 60 a good resist pattern was obtained by irradiating an electron beam with a 1: 1 line and space setting at intervals of 50 nm. The line edge roughness was good when the unevenness of the pattern was less than 5 nm. On the other hand, in Comparative Example 3, a good resist pattern could not be obtained.
  • the radiation-sensitive composition obtained above was spin-coated on a clean silicon wafer and then pre-exposed baked (PB) in an oven at 110 ° C. to form a resist film having a thickness of 200 nm.
  • the resist film was exposed to ultraviolet rays using an ultraviolet exposure device (Mikasa Mask Aligner MA-10).
  • the resist film was heated at 110 ° C. for 90 seconds and immersed in TMAH 2.38 mass% alkaline developer for 60 seconds for development. Then, the resist film was washed with ultrapure water for 30 seconds and dried to form a 5 ⁇ m positive resist pattern.
  • the obtained line and space was observed with a scanning electron microscope (S-4800 manufactured by Hitachi High-Technology Co., Ltd.).
  • the line edge roughness was good when the unevenness of the pattern was less than 5 nm.
  • the radiation-sensitive compositions of Examples 61 to 65 can form a resist pattern having a smaller roughness and a better shape than the radiation-sensitive compositions of Comparative Example 4. I understand. As long as the above-mentioned requirements of the present embodiment are satisfied, radiation-sensitive compositions other than those described in the examples show the same effect.
  • the underlayer film forming material for lithography using this has embedding characteristics and flatness of the film surface.
  • the pyrolysis temperature was 450 ° C. or higher (evaluation A), and since it had high heat resistance, it was evaluated that it could be used even under high temperature baking conditions. In order to confirm these points, the following evaluations were made assuming the use of the underlayer membrane.
  • composition for forming underlayer film for lithography was prepared so as to have the composition shown in Table 4. Next, these lithographic underlayer film forming compositions were rotationally coated on a silicon substrate, and then baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to prepare an underlayer film having a film thickness of 200 nm. ..
  • the following acid generators, cross-linking agents and organic solvents were used. Acid generator: Midori Kagaku Co., Ltd.
  • DTDPI Jitterly Butyl Diphenyliodonium Nonafluoromethane Sulfonate
  • Crosslinking agent Nikalac MX270 manufactured by Sanwa Chemical Co., Ltd.
  • Organic solvent Propylene glycol monomethyl ether acetate (PGMEA)
  • PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.
  • Etching device RIE-10NR manufactured by SAMCO International Output: 50W Pressure: 20Pa Time: 2min Etching gas
  • Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate 50: 5: 5 (sccm)
  • etching resistance was evaluated by the following procedure. First, a novolak underlayer film was prepared in the same manner as described above except that novolak (PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.) was used. The above etching test was performed on the underlayer film of this novolak, and the etching rate at that time was measured.
  • novolak PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.
  • the embedding property was evaluated by the following procedure. A cross section of the membrane obtained under the above conditions was cut out and observed with an electron beam microscope to evaluate the implantability. The evaluation results are shown in Table 4.
  • a cured resin film was obtained by baking the prepared substrate at 350 ° C. for 1 minute using a hot plate capable of further high temperature treatment. At this time, if the change in film thickness before and after immersing the obtained cured resin film in the PGMEA tank for 1 minute was 3% or less, it was determined that the film was cured. When it was judged that the curing was insufficient, the curing temperature was changed by 50 ° C. to investigate the curing temperature, and the baking treatment was performed under the condition of the lowest temperature in the curing temperature range.
  • Example B1 The heat resistance of the resin film produced in Example A1 was evaluated using a lamp annealing furnace. As the heat-resistant treatment conditions, heating was continued at 450 ° C. under a nitrogen atmosphere, and the rate of change in film thickness during the elapsed time of 4 minutes and 10 minutes from the start of heating was determined. Further, heating was continued at 550 ° C. under a nitrogen atmosphere, and the rate of change in film thickness between the elapsed time of 4 minutes from the start of heating and 10 minutes at 550 ° C. was determined. These film thickness change rates were evaluated as an index of the heat resistance of the cured film. The film thickness before and after the heat resistance test was measured with an interference film thickness meter, and the fluctuation value of the film thickness was obtained as the ratio of the film thickness to the film thickness before the heat resistance test treatment as the film thickness change rate (percentage%).
  • Example B2 to Example B55, and Comparative Example B1 to Comparative Example B2) The heat resistance evaluation was carried out in the same manner as in Example B01 except that the resin used was changed from RDHN-Ac to the resin shown in Table 5.
  • Example C1 ⁇ PE-CVD film formation evaluation> A 12-inch silicon wafer was subjected to thermal oxidation treatment, and a resin film having a thickness of 100 nm was prepared on a substrate having the obtained silicon oxide film by the same method as in Example A1 using the resin solution of Example A1. did. A silicon oxide film having a film thickness of 70 nm was formed on the resin film by using a film forming apparatus TELINDY (manufactured by Tokyo Electron Limited) and using TEOS (tetraethylsiloxane) as a raw material at a substrate temperature of 300 ° C.
  • TELINDY manufactured by Tokyo Electron Limited
  • TEOS tetraethylsiloxane
  • a wafer with a cured film on which the created silicon oxide film is laminated is further inspected for defects using KLA-Tencor SP-5, and the number of defects in the film-formed oxide film is evaluated using the number of defects having a diameter of 21 nm or more as an index.
  • ⁇ SiN film> A raw material using a film forming apparatus TELINDY (manufactured by Tokyo Electron) on a cured film prepared on a substrate having a silicon oxide film heat-oxidized to a thickness of 100 nm on a 12-inch silicon wafer by the same method as described above.
  • a SiN film having a film thickness of 40 nm, a refractive index of 1.94, and a film stress of ⁇ 54 MPa was formed at a substrate temperature of 350 ° C. using SiH4 (monosilane) and ammonia.
  • a wafer with a cured film on which the created SiN film is laminated is further inspected for defects using KLA-Tencor SP-5, and the number of defects in the formed oxide film is evaluated using the number of defects having a diameter of 21 nm or more as an index. gone.
  • Example C2 to C55 and Comparative Examples C1 to C2 The heat resistance evaluation was carried out in the same manner as in Example C1 except that the resin used was changed from RDHN-Ac to the resin shown in Table 6.
  • the silicon oxide film or SiN film formed on the resin films of Examples C1 to C55 has 50 or less defects (B evaluation or more) having a diameter of 21 nm or more, which is compared with the number of defects of Comparative Examples C1 or C2. , was shown to be less.
  • Example D1 ⁇ Etching evaluation after high temperature treatment> A 12-inch silicon wafer was subjected to thermal oxidation treatment, and a resin film having a thickness of 100 nm was prepared on a substrate having the obtained silicon oxide film by the same method as in Example A1 using the resin solution of Example A1. did. The resin film was further annealed by heating under a hot plate capable of high temperature treatment in a nitrogen atmosphere at 600 ° C. for 4 minutes to prepare a wafer on which the annealed resin film was laminated. The prepared annealed resin film was carved out, and the carbon content was determined by elemental analysis.
  • a 12-inch silicon wafer was subjected to thermal oxidation treatment, and a resin film having a thickness of 100 nm was applied to a substrate having the obtained silicon oxide film by the same method as in Example A1 using the resin solution of Example A1.
  • a resin film having a thickness of 100 nm was applied to a substrate having the obtained silicon oxide film by the same method as in Example A1 using the resin solution of Example A1.
  • the substrate was subjected to CF 4 / as an etching gas using an etching apparatus TELIUS (manufactured by Tokyo Electron Limited).
  • the etching treatment was performed under the conditions using Ar and Cl 2 / Ar, and the etching rate was evaluated.
  • the etching rate was evaluated by using a resin film with a thickness of 200 nm prepared by annealing SU8 (manufactured by Nippon Kayaku Co., Ltd.) at 250 ° C. for 1 minute as a reference, and obtaining the rate ratio of the etching rate to SU8 as a relative value. ..
  • Example D2 to Example D55 Comparative Example D1 to Comparative Example D2
  • the heat resistance evaluation was carried out in the same manner as in Example D1 except that the resin used was changed from RDHN-Ac to the resin shown in Table 7.
  • the polycyclic polyphenol resin obtained in the synthesis example was evaluated for quality before and after the purification treatment. That is, the resin film formed on the wafer using the polycyclic polyphenol resin was transferred to the substrate side by etching, and then the defect was evaluated.
  • a 12-inch silicon wafer was subjected to thermal oxidation treatment to obtain a substrate having a silicon oxide film having a thickness of 100 nm. After forming a film on the substrate by adjusting the spin coating conditions so that the resin solution of the polyphenolic polyphenol resin has a thickness of 100 nm, the film is baked at 150 ° C. for 1 minute, and then baked at 350 ° C. for 1 minute.
  • a laminated substrate was prepared by laminating a polyphenol resin on silicon with a thermal oxide film.
  • TELIUS manufactured by Tokyo Electron Limited
  • the resin film was etched under the conditions of CF4 / O2 / Ar to expose the substrate on the surface of the oxide film. Further, an etching process was performed under the condition that the oxide film was etched at 100 nm with a gas composition ratio of CF4 / Ar to prepare an etched wafer.
  • the prepared etched wafer was measured for the number of defects of 19 nm or more with a defect inspection device SP5 (manufactured by KLA-tencor), and was carried out as a defect evaluation by etching treatment with a laminated film.
  • SP5 manufactured by KLA-tencor
  • Example E1 Purification of RDHN-Ac with acid
  • a solution (10% by mass) of RDHN-Ac obtained in Synthesis Example 1 dissolved in PGMEA was placed.
  • 150 g was charged and heated to 80 ° C. with stirring.
  • 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, the mixture was stirred for 5 minutes, and then allowed to stand for 30 minutes.
  • the oil phase and the aqueous phase were separated, and the aqueous phase was removed.
  • Example E2 Purification of RBiN-Ac with acid
  • a solution (10% by mass) of RBiN-Ac obtained in Synthesis Example 12 dissolved in PGMEA was placed.
  • 140 g was charged and heated to 60 ° C. with stirring.
  • 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, the mixture was stirred for 5 minutes, and then allowed to stand for 30 minutes.
  • the oil phase and the aqueous phase were separated, and the aqueous phase was removed.
  • Example E3 Purification by passing through a filter In a class 1000 clean booth, the resin (RDHN-Ac) obtained in Synthesis Example 1 was put into propylene glycol in a 1000 mL capacity four-necked flask (bottom punching type). 500 g of a solution of 10% by mass dissolved in monomethyl ether (PGME) was charged, and then the air inside the flask was removed under reduced pressure, then nitrogen gas was introduced and returned to atmospheric pressure, and the nitrogen gas was aerated at 100 mL per minute. Below, after adjusting the internal oxygen concentration to less than 1%, the mixture was heated to 30 ° C. with stirring.
  • PGME monomethyl ether
  • the above solution is withdrawn from the bottom punching valve, and a nylon hollow fiber membrane filter (manufactured by KITZ Micro Filter Co., Ltd.) with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 100 mL per minute with a diaphragm pump via a pressure resistant tube made of fluororesin.
  • the liquid was passed through the product name: Polyfix Nylon Series) by pressure filtration so that the filtration pressure was 0.5 MPa.
  • the filtered resin solution was diluted with EL grade PGMEA (reagent manufactured by Kanto Chemical Co., Inc.) and the concentration was adjusted to 10% by mass to obtain a PGMEA solution of RDHN-Ac having a reduced metal content.
  • Example E4 As a purification process using a filter, IONKLEEEN manufactured by Nippon Pole, a nylon filter manufactured by Nippon Pole, and an UPE filter with a nominal pore size of 3 nm manufactured by Entegris Japan were connected in series in this order to construct a filter line. The liquid was passed by pressure filtration so that the filtration pressure was 0.5 MPa in the same manner as in Example E3, except that the prepared filter line was used instead of the 0.1 ⁇ m nylon hollow fiber membrane filter. .. By diluting with EL grade PGMEA (reagent manufactured by Kanto Chemical Co., Inc.) and adjusting the concentration to 10% by mass, a PGMEA solution of RDHN-Ac having a reduced metal content was obtained.
  • EL grade PGMEA reagent manufactured by Kanto Chemical Co., Inc.
  • Example E5 The solution sample prepared in Example E1 was further pressure-filtered using the filter line prepared in Example E4 so that the filtration pressure was 0.5 MPa, and then the solution sample was prepared in a laminated film. Etching defect evaluation was carried out.
  • Example E6 For the RBiN-Ac prepared in Synthesis Example 12, a solution sample purified by the same method as in Example E5 was prepared, and then etching defect evaluation was performed on the laminated film.
  • Example E7 For the RBiP-2-Ac prepared in Synthesis Example 45, a solution sample purified by the same method as in Example E5 was prepared, and then etching defect evaluation was performed on the laminated film.
  • Example 66 to 71 An optical component forming composition having the same composition as the solution of the underlayer film forming material for lithography prepared in each of the above Examples A1-1 to A5-1 and Comparative Example 5 is applied onto a SiO 2 substrate having a film thickness of 300 nm. By baking at 260 ° C. for 300 seconds, a film for an optical component having a film thickness of 100 nm was formed. Next, a refractive index and transparency test at a wavelength of 633 nm were performed using a vacuum ultraviolet multi-incident angle spectroscopic ellipsometer (VUV-VASE) manufactured by JA Woolam Japan, and the refractive index and transparency were tested according to the following criteria. Gender was evaluated. The evaluation results are shown in Table 7.
  • VUV-VASE vacuum ultraviolet multi-incident angle spectroscopic ellipsometer
  • Refractive index evaluation criteria A: Refractive index is 1.65 or more C: Refractive index is less than 1.65
  • reaction solution was neutralized with a 24% aqueous sodium hydroxide solution, 100 g of pure water was added to precipitate the reaction product, the mixture was cooled to room temperature, and then filtered and separated.
  • the obtained solid substance was dried and then separated and purified by column chromatography to obtain 25.5 g of the target compound (BisN-1) represented by the following formula.
  • the following peaks were found by 400 MHz- 1 1 H-NMR, and it was confirmed that the chemical structure had the following formula.
  • substitution position of 2,7-dihydroxynaphthol was at the 1-position because the signals of the protons at the 3-position and the 4-position were doublets.
  • Synthesis Examples 2 to 5 Synthesis of RBisN-2 to RBisN-5 BisN-2, BisN-3, BisN-4, and BisN-5 are used instead of BisN-1, and other than that, Synthesis Example 1
  • the same procedure was carried out to obtain the target compounds (RBisN-2), (RBisN-3), (RBisN-4) and (RBisN-5) represented by the following formulas, respectively.
  • the polystyrene-equivalent molecular weight of the obtained resin was measured by the above method to determine Mn, Mw, and Mw / Mn. Further, when NMR measurement was performed under the above measurement conditions, the following peaks were found, and it was confirmed that the chemical structure had the following formula.
  • the repeating unit having the number of repetitions n, the repeating unit having the number of repetitions m, and the repeating unit having the number of repetitions l represent a specific polymerization state such as block copolymerization. No.
  • Table 1 shows the results of evaluating the heat resistance by the evaluation methods shown below using the resins obtained in Synthesis Example 1 to Synthesis Example 6 and Synthesis Comparative Example 1.
  • Examples 7 to 12, Comparative Example 2 Preparation of composition for forming underlayer film for lithography
  • a composition for forming an underlayer film for lithography was prepared so as to have the composition shown in Table 2.
  • these lithographic underlayer film forming compositions were rotationally coated on a silicon substrate, and then baked at 240 ° C. for 60 seconds and then at 400 ° C. for 120 seconds in a nitrogen atmosphere to form a film thickness of 200 to 250 nm.
  • Underlayer membranes were prepared respectively.
  • Etching device RIE-10NR manufactured by SAMCO International Output: 50W Pressure: 20Pa Time: 2min Etching gas
  • Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate 50: 5: 5 (sccm)
  • etching resistance was evaluated by the following procedure. First, a novolak underlayer film was prepared in the same manner as described above except that novolak (PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.) was used. The above etching test was performed on the underlayer film of this novolak, and the etching rate at that time was measured.
  • novolak PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.
  • the metal content of the polycyclic polyphenol resin (containing the composition) before and after purification and the storage stability of the solution were evaluated by the following methods. (Measurement of various metal contents) Using ICP-MS, the metal content of various resins obtained by the following Examples and Comparative Examples in the propylene glycol monomethyl ether acetate (PGMEA) solution was measured under the following measurement conditions. Equipment: Agilent AG8900 Temperature: 25 ° C Environment: Class 100 clean room
  • turbidity (HAZE) of the solution after holding the PGMEA solution obtained in the following Examples and Comparative Examples at 23 ° C. for 240 hours was measured using a color difference / turbidity meter, and the solution was prepared according to the following criteria. Storage stability was evaluated.
  • Example 13 Purification of RBisN-1 with acid A solution (10% by mass) of RBisN-1 obtained in Synthesis Example 1 dissolved in PGMEA was placed in a 1000 mL volume four-necked flask (bottom punching type). 150 g was charged and heated to 80 ° C. with stirring. Then, 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, the mixture was stirred for 5 minutes, and then allowed to stand for 30 minutes. As a result, the oil phase and the aqueous phase were separated, and the aqueous phase was removed.
  • aqueous oxalic acid solution pH 1.3
  • Example 14 Purification of RBisN-2 with acid A solution (10% by mass) of RBisN-2 obtained in Synthesis Example 2 dissolved in PGMEA was placed in a 1000 mL volume four-necked flask (bottom punching type). 140 g was charged and heated to 60 ° C. with stirring. Then, 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, the mixture was stirred for 5 minutes, and then allowed to stand for 30 minutes. As a result, the oil phase and the aqueous phase were separated, and the aqueous phase was removed.
  • aqueous oxalic acid solution pH 1.3
  • Example 15 Purification by passing through a filter In a class 1000 clean booth, the resin (RBisN-1) obtained in Synthesis Example 1 was put into propylene glycol in a 1000 mL capacity four-necked flask (bottom punching type). 500 g of a solution of 10% by mass dissolved in monomethyl ether (PGME) was charged, and then the air inside the flask was removed under reduced pressure, then nitrogen gas was introduced and returned to atmospheric pressure, and the nitrogen gas was aerated at 100 mL per minute. Below, after adjusting the internal oxygen concentration to less than 1%, the mixture was heated to 30 ° C. with stirring.
  • PGME monomethyl ether
  • Example 16 A hollow fiber membrane filter made of polyethylene (PE) having a nominal pore size of 0.01 ⁇ m (manufactured by KITZ Micro Filter Co., Ltd., trade name: Polyfix) was used, but the solution was passed in the same manner as in Example 15 to obtain a solution.
  • Various metal contents of the solution of RBisN-1 were measured by ICP-MS. The measurement results are shown in Table 3.
  • Example 17 RBisN-1 obtained by passing liquid in the same manner as in Example 8 except that a nylon hollow fiber membrane filter having a nominal pore size of 0.04 ⁇ m (manufactured by KITZ Micro Filter Co., Ltd., trade name: Polyfix) was used. The various metal contents of KITZ were measured by ICP-MS. The measurement results are shown in Table 3.
  • Example 18 RBisN-1 solution obtained by passing liquid in the same manner as in Example 8 except that a Zeta Plus filter 40QSH (manufactured by 3M Co., Ltd., capable of ion exchange) having a nominal pore size of 0.2 ⁇ m was used.
  • a Zeta Plus filter 40QSH manufactured by 3M Co., Ltd., capable of ion exchange
  • Example 19 Same as in Example 8 except that a Zeta Plus filter 020GN (manufactured by 3M Co., Ltd., having an ion exchange capability and having a different filtration area and filter medium thickness from the Zeta Plus filter 40QSH) having a nominal pore diameter of 0.2 ⁇ m was used.
  • the solution was liquid, and the obtained RBisN-1 solution was analyzed under the following conditions. The measurement results are shown in Table 3.
  • Example 20 RBisN-2 obtained by passing the liquid in the same manner as in Example 15 except that the resin (RBisN-2) obtained in Synthesis Example 2 was used instead of the resin (RBisN-1) in Example 15.
  • the various metal contents of the solution were measured by ICP-MS. The measurement results are shown in Table 3.
  • Example 21 RBisN-2 obtained by passing the liquid in the same manner as in Example 16 except that the resin (RBisN-2) obtained in Synthesis Example 2 was used instead of the resin (RBisN-1) in Example 16.
  • the various metal contents of the solution were measured by ICP-MS. The measurement results are shown in Table 3.
  • Example 22 RBisN-2 obtained by passing the liquid in the same manner as in Example 17 except that the resin (RBisN-2) obtained in Synthesis Example 2 was used instead of the compound (RBisN-1) in Example 17.
  • Various metal contents of the solution were measured by ICP-MS. The measurement results are shown in Table 3.
  • Example 23 RBisN-2 obtained by passing the liquid in the same manner as in Example 18 except that the resin (RBisN-2) obtained in Synthesis Example 2 was used instead of the compound (RBisN-1) in Example 18.
  • Various metal contents of the solution were measured by ICP-MS. The measurement results are shown in Table 3.
  • Example 24 RBisN-2 obtained by passing the liquid in the same manner as in Example 19 except that the resin (RBisN-2) obtained in Synthesis Example 2 was used instead of the compound (RBisN-1) in Example 19.
  • Various metal contents of the solution were measured by ICP-MS. The measurement results are shown in Table 3.
  • Example 25 Combined use of acid cleaning and filter flow 1
  • a 300 mL volume four-necked flask (bottom punch) was charged with 140 g of a 10% by mass PGMEA solution of RBisN-1 with reduced metal content obtained in Example 13.
  • nitrogen gas was introduced and returned to atmospheric pressure, the nitrogen gas was aerated at 100 mL / min, the oxygen concentration inside was adjusted to less than 1%, and then 30 while stirring. Heated to ° C.
  • the above solution is withdrawn from the bottom punching valve, and an ion exchange filter with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 10 mL per minute with a diaphragm pump via a fluororesin pressure-resistant tube (manufactured by Nippon Pole Co., Ltd., trade name: Ion Clean Series) ). Then, the recovered solution was returned to the above-mentioned three-necked flask having a capacity of 300 mL, the filter was changed to a high-density PE filter (manufactured by Entegris Japan, Inc.) having a nominal diameter of 1 nm, and pumping was carried out in the same manner.
  • Various metal contents of the obtained solution of RBisN-1 were measured by ICP-MS.
  • the oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter). The measurement results are shown in Table 3.
  • Example 26 Combined use of acid cleaning and filter flow 2
  • a 300 mL volume four-necked flask (bottom punch) was charged with 140 g of a 10% by mass PGMEA solution of RBisN-1 with reduced metal content obtained in Example 13.
  • nitrogen gas was introduced and returned to atmospheric pressure, the nitrogen gas was aerated at 100 mL / min, the oxygen concentration inside was adjusted to less than 1%, and then 30 while stirring. Heated to ° C.
  • the above solution is withdrawn from the bottom punching valve, and a nylon hollow fiber membrane filter (manufactured by KITZ Micro Filter Co., Ltd.) with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 10 mL / min via a pressure resistant tube made of fluororesin is used.
  • Product name The solution was passed through Polyfix. After that, the recovered solution was returned to the above-mentioned 300 mL capacity four-necked flask, and the filter was changed to a high-density PE filter (manufactured by Nippon Integris) with a nominal diameter of 1 nm.
  • the various metal contents of the obtained solution of RBisN-1 were measured by ICP-MS.
  • the oxygen concentration was measured by an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Co., Ltd. (The same applies to the following). The measurement results are shown in Table 3.
  • Example 27 Combined use of acid cleaning and filter flow 3
  • the same operation as in Example 25 was performed except that the 10% by mass PGMEA solution of RBisN-1 used in Example 25 was changed to the 10% by mass PGMEA solution of RBisN-2 obtained in Example 14, and the amount of metal was increased.
  • a reduced 10% by weight PGMEA solution of RBisN-2 was recovered.
  • Various metal contents of the obtained solution were measured by ICP-MS.
  • the oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter). The measurement results are shown in Table 3.
  • Example 28 Combined use of acid cleaning and filter flow 4
  • the same operation as in Example 26 was performed except that the 10% by mass PGMEA solution of RBisN-1 used in Example 26 was changed to the 10% by mass PGMEA solution of RBisN-2 obtained in Example 14, and the amount of metal was increased.
  • a reduced 10% by weight PGMEA solution of RBisN-2 was recovered.
  • Various metal contents of the obtained solution were measured by ICP-MS.
  • the oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter). The measurement results are shown in Table 3.
  • a resist composition was prepared according to the formulation shown in Table 4.
  • the following acids were used as the acid generator (C), the acid cross-linking agent (G), the acid diffusion control agent (E), and the solvent.
  • Acid generator (C) P-1 Triphenylbenzene Sulfonium Trifluoromethanesulfonate (Midori Kagaku Co., Ltd.) Acid cross-linking agent (G) C-1: Nicarac MW-100LM (Sanwa Chemical Co., Ltd.) Acid diffusion control agent (E) Q-1: Trioctylamine (Tokyo Chemical Industry Co., Ltd.) Solvent S-1: Propylene glycol monomethyl ether (Tokyo Chemical Industry Co., Ltd.)
  • a uniform resist composition was spin-coated on a clean silicon wafer and then pre-exposed baked (PB) in an oven at 110 ° C. to form a resist film with a thickness of 60 nm.
  • the obtained resist film was irradiated with an electron beam having a 1: 1 line and space setting at 50 nm intervals using an electron beam drawing apparatus (ELS-7500, manufactured by Elionix Inc.). After the irradiation, each resist film was heated at a predetermined temperature for 90 seconds and immersed in a 2.38% by mass alkaline developer of tetramethylammonium hydroxide (TMAH) for 60 seconds for development.
  • TMAH tetramethylammonium hydroxide
  • the resist film was washed with ultrapure water for 30 seconds and dried to form a positive resist pattern.
  • the line and space of the formed resist pattern was observed with a scanning electron microscope (S-4800 manufactured by Hitachi High-Technology Co., Ltd.), and the reactivity of the resist composition by electron beam irradiation was evaluated.
  • Examples 29 to 35 a good resist pattern was obtained by irradiating an electron beam with a 1: 1 line and space setting at intervals of 50 nm. The line edge roughness was good when the unevenness of the pattern was less than 5 nm. On the other hand, in Comparative Example 3, a good resist pattern could not be obtained.
  • the heat resistance is higher than that of the resin (NBisN-1) of Comparative Example 3 which does not satisfy the requirements, and a good resist pattern shape can be imparted. ..
  • the same effect is exhibited with respect to the resins other than those described in the examples.
  • the radiation-sensitive composition obtained above was rotationally coated on a clean silicon wafer and then pre-exposed baked (PB) in an oven at 110 ° C. to form a resist film having a thickness of 200 nm.
  • the resist film was exposed to ultraviolet rays using an ultraviolet exposure device (Mikasa Mask Aligner MA-10).
  • the resist film was heated at 110 ° C. for 90 seconds and immersed in TMAH 2.38 mass% alkaline developer for 60 seconds for development. Then, the resist film was washed with ultrapure water for 30 seconds and dried to form a 5 ⁇ m positive resist pattern.
  • the obtained line and space was observed with a scanning electron microscope (S-4800 manufactured by Hitachi High-Technology Co., Ltd.).
  • the line edge roughness was good when the unevenness of the pattern was less than 5 nm.
  • the radiation-sensitive compositions of Examples 36 to 41 can form a resist pattern having a smaller roughness and a better shape than the radiation-sensitive compositions of Comparative Example 4. I understand. As long as the above-mentioned requirements of the present embodiment are satisfied, radiation-sensitive compositions other than those described in the examples show the same effect.
  • the underlayer film forming material for lithography using this has embedding characteristics and flatness of the film surface.
  • the pyrolysis temperature was 150 ° C. or higher (evaluation A), and since it had high heat resistance, it was evaluated that it could be used even under high temperature baking conditions. In order to confirm these points, the following evaluations were made assuming the use of the underlayer membrane.
  • composition for forming underlayer film for lithography was prepared so as to have the composition shown in Table 6. Next, these lithographic underlayer film forming compositions were rotationally coated on a silicon substrate, and then baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to prepare an underlayer film having a film thickness of 200 nm. ..
  • the following acid generators, cross-linking agents and organic solvents were used. Acid generator: Midori Kagaku Co., Ltd.
  • DTDPI Jitterly Butyl Diphenyliodonium Nonafluoromethane Sulfonate
  • Crosslinking agent Nikalac MX270 manufactured by Sanwa Chemical Co., Ltd.
  • Organic Solvent Cyclohexanone Propylene Glycol Monomethyl Ether Acetate (PGMEA)
  • PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.
  • Etching device RIE-10NR manufactured by SAMCO International Output: 50W Pressure: 20Pa Time: 2min Etching gas
  • Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate 50: 5: 5 (sccm)
  • etching resistance was evaluated by the following procedure. First, a novolak underlayer film was prepared in the same manner as described above except that novolak (PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.) was used. The above etching test was performed on the underlayer film of this novolak, and the etching rate at that time was measured.
  • novolak PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.
  • Examples 49 to 55, Comparative Example 7 the composition for forming an underlayer film for lithography used in Examples 42 to 48 and Comparative Example 5 was applied onto a 60 nm line-and-space SiO 2 substrate having a film thickness of 80 nm and baked at 240 ° C. for 60 seconds. By doing so, a 90 nm underlayer film was formed.
  • the embedding property was evaluated by the following procedure. A cross section of the membrane obtained under the above conditions was cut out and observed with an electron beam microscope to evaluate the implantability. The evaluation results are shown in Table 7.
  • Example 56 to 62 the composition for forming an underlayer film for lithography prepared in Examples 42 to 48 was applied onto a SiO 2 substrate having a film thickness of 300 nm, and baked at 240 ° C. for 60 seconds and then at 400 ° C. for 120 seconds. An underlayer film having a film thickness of 85 nm was formed. A resist solution for ArF was applied onto this underlayer film and baked at 130 ° C. for 60 seconds to form a photoresist layer having a film thickness of 140 nm.
  • the ArF resist solution contains 5 parts by mass of the compound of the following formula (16), 1 part by mass of triphenylsulfonium nonafluoromethanesulfonate, 2 parts by mass of tributylamine, and 92 parts by mass of PGMEA. The prepared one was used.
  • the compound of the following formula (16) was prepared as follows. That is, 2-methyl-2-methacryloyloxyadamantane 4.15 g, methacrylloyloxy- ⁇ -butyrolactone 3.00 g, 3-hydroxy-1-adamantyl methacrylate 2.08 g, azobisisobutyronitrile 0.38 g, and tetrahydrofuran. It was dissolved in 80 mL to prepare a reaction solution. The reaction solution was polymerized under a nitrogen atmosphere at a reaction temperature of 63 ° C. for 22 hours, and then the reaction solution was added dropwise to 400 mL of n-hexane. The produced resin thus obtained was coagulated and purified, the produced white powder was filtered, and dried under reduced pressure at 40 ° C. overnight to obtain a compound represented by the following formula (16).
  • the photoresist layer was then exposed using an electron beam lithography system (ELS-7500, 50 keV) and baked (PEB) at 115 ° C. for 90 seconds to obtain 2.38 mass% tetramethylammonium hydroxide (2.38 mass% tetramethylammonium hydroxide).
  • ELS-7500 electron beam lithography system
  • PEB baked
  • a positive resist pattern was obtained by developing with an aqueous solution of TMAH) for 60 seconds.
  • Example 63 The composition for forming a lower layer film for lithography prepared in Example 42 is applied onto a SiO 2 substrate having a film thickness of 300 nm and baked at 240 ° C. for 60 seconds and then at 400 ° C. for 120 seconds to form a lower layer having a film thickness of 90 nm. A film was formed. A silicon-containing intermediate layer material was applied onto the lower layer film and baked at 200 ° C. for 60 seconds to form an intermediate layer film having a film thickness of 35 nm. Further, the resist solution for ArF was applied onto the intermediate layer film and baked at 130 ° C. for 60 seconds to form a photoresist layer having a film thickness of 150 nm. As the silicon-containing intermediate layer material, the silicon atom-containing polymer described in JP-A-2007-226170 ⁇ Synthesis Example 1> was used.
  • the photoresist layer was mask-exposed using an electron beam lithography system (ELS-7500, 50 keV) and baked (PEB) at 115 ° C. for 90 seconds to obtain 2.38 mass% tetramethylammonium hydroxide.
  • ELS-7500 electron beam lithography system
  • PEB baked
  • TMAH aqueous solution of
  • the silicon-containing intermediate layer film (SOG) is dry-etched using the obtained resist pattern as a mask, and then the obtained silicon-containing intermediate layer film pattern is obtained.
  • the dry etching process of the lower layer film used as a mask and the dry etching process of the SiO 2 film using the obtained lower layer film pattern as a mask were sequentially performed.
  • a cured resin film was obtained by baking the produced substrate at 350 ° C. for 1 minute using a hot plate capable of further high temperature treatment. At this time, if the change in film thickness before and after immersing the obtained cured resin film in the PGMEA tank for 1 minute was 3% or less, it was determined that the film was cured. When it was judged that the curing was insufficient, the curing temperature was changed by 50 ° C. to investigate the curing temperature, and the baking treatment was performed under the condition of the lowest temperature in the curing temperature range.
  • the prepared resin film was evaluated for optical characteristic values (refractive index n and extinction coefficient k as optical constants) using spectroscopic ellipsometry VUV-VASE (manufactured by JA Woollam).
  • Example A02 to Example A06 and Comparative Example A01 A resin film was prepared in the same manner as in Example A01 except that the resin used was changed from RBisN-1 to the resin shown in Table 9, and the optical characteristic values were evaluated.
  • the film-forming composition containing the polycyclic polyphenol resin in the present embodiment can form a resin film having a high n value and a low k value at a wavelength of 193 nm used in ArF exposure.
  • Example B01 The heat resistance of the resin film produced in Example A01 was evaluated using a lamp annealing furnace. As the heat-resistant treatment conditions, heating was continued at 450 ° C. under a nitrogen atmosphere, and the rate of change in film thickness during the elapsed time of 4 minutes and 10 minutes from the start of heating was determined. Further, heating was continued at 550 ° C. under a nitrogen atmosphere, and the rate of change in film thickness between the elapsed time of 4 minutes from the start of heating and 10 minutes at 550 ° C. was determined. These film thickness change rates were evaluated as an index of the heat resistance of the cured film.
  • Example B02 to Example B06 and Comparative Example B01 to Comparative Example B02
  • the heat resistance evaluation was carried out in the same manner as in Example B01 except that the resin used was changed from RBisN-1 to the resin shown in Table 10.
  • the film-forming composition containing the polycyclic polyphenol resin of the present embodiment has high heat resistance with little change in film thickness even at a temperature of 550 ° C. It was found that a resin film could be formed.
  • Example C01 ⁇ PE-CVD film formation evaluation> A 12-inch silicon wafer was subjected to thermal oxidation treatment, and a resin film having a thickness of 100 nm was prepared on a substrate having the obtained silicon oxide film by the same method as in Example A01 using the resin solution of Example A01. did. A silicon oxide film having a film thickness of 70 nm was formed on the resin film by using a film forming apparatus TELINDY (manufactured by Tokyo Electron Limited) and using TEOS (tetraethylsiloxane) as a raw material at a substrate temperature of 300 ° C.
  • TELINDY manufactured by Tokyo Electron Limited
  • TEOS tetraethylsiloxane
  • a wafer with a cured film laminated with a silicon oxide film produced is further inspected for defects using a defect inspection device "SP5" (manufactured by KLA-Tencor), and the number of defects having a diameter of 21 nm or more is used as an index in accordance with the following criteria. , The number of defects in the formed oxide film was evaluated.
  • SP5" defect inspection device
  • ⁇ SiN film> A raw material using a film forming apparatus TELINDY (manufactured by Tokyo Electron) on a cured film prepared on a substrate having a silicon oxide film heat-oxidized to a thickness of 100 nm on a 12-inch silicon wafer by the same method as described above.
  • a SiN film having a film thickness of 40 nm, a refractive index of 1.94, and a film stress of ⁇ 54 MPa was formed at a substrate temperature of 350 ° C. using SiH 4 (monosilane) and ammonia.
  • a wafer with a cured film on which the manufactured SiN film is laminated is further inspected for defects using a defect inspection device "SP5" (manufactured by KLA-Tencor), and the number of defects having a diameter of 21 nm or more is used as an index according to the following criteria.
  • the number of defects in the formed oxide film was evaluated.
  • Example C02 to Example C06 and Comparative Example C01 to Comparative Example C02 Defect evaluation of the film was carried out in the same manner as in Example C01 except that the resin used was changed from RBisN-1 to the resin shown in Table 11.
  • the silicon oxide film or SiN film formed on the resin films of Examples C01 to C06 has 50 or less defects (B evaluation or more) having a diameter of 21 nm or more, which is compared with the number of defects of Comparative Examples C01 or C02. , Was shown to be less.
  • Example D01 ⁇ Etching evaluation after high temperature treatment> A 12-inch silicon wafer was subjected to thermal oxidation treatment, and a resin film having a thickness of 100 nm was prepared on a substrate having the obtained silicon oxide film by the same method as in Example A01 using the resin solution of Example A01. did.
  • the resin film was further annealed by heating under a hot plate capable of high temperature treatment in a nitrogen atmosphere at 600 ° C. for 4 minutes to prepare a wafer on which the annealed resin film was laminated.
  • the prepared annealed resin film was carved out, and the carbon content was determined by elemental analysis.
  • a 12-inch silicon wafer was subjected to thermal oxidation treatment, and a resin film having a thickness of 100 nm was applied to a substrate having the obtained silicon oxide film by the same method as in Example A01 using the resin solution of Example A01.
  • a resin film having a thickness of 100 nm was applied to a substrate having the obtained silicon oxide film by the same method as in Example A01 using the resin solution of Example A01.
  • the substrate was subjected to CF 4 / as an etching gas using an etching apparatus TELIUS (manufactured by Tokyo Electron Limited).
  • the etching treatment was performed under the conditions using Ar and Cl 2 / Ar, and the etching rate was evaluated.
  • etching rate a resin film with a thickness of 200 nm prepared by annealing SU8 (manufactured by Nippon Kayaku Co., Ltd.) at 250 ° C. for 1 minute was used as a reference, and the rate ratio of the etching rate to SU8 was obtained as a relative value and described below. Evaluated according to criteria.
  • C Etching rate is lower than SU8 resin film. Over + 0%
  • Example D02 to Example D06 Comparative Example D01 to Comparative Example D02
  • the heat resistance evaluation was carried out in the same manner as in Example D01 except that the resin used was changed from RBisN-1 to the resin shown in Table 12.
  • the polycyclic polyphenol resin obtained in the synthetic example was evaluated for quality before and after the purification treatment. That is, before and after the purification treatment described later, the resin film formed on the wafer using the polycyclic polyphenol resin was transferred to the substrate side by etching, and then the defect was evaluated.
  • a 12-inch silicon wafer was subjected to thermal oxidation treatment to obtain a substrate having a silicon oxide film having a thickness of 100 nm. After forming a film on the substrate by adjusting the spin coating conditions so that the resin solution of the polyphenolic polyphenol resin has a thickness of 100 nm, the film is baked at 150 ° C. for 1 minute, and then baked at 350 ° C. for 1 minute.
  • a laminated substrate was prepared by laminating a polyphenol resin on silicon with a thermal oxide film.
  • TELIUS manufactured by Tokyo Electron Limited
  • the resin film was etched under the conditions of CF4 / O2 / Ar to expose the substrate on the surface of the oxide film.
  • an etching treatment was performed under the condition that the oxide film was etched at 100 nm with a gas composition ratio of CF4 / Ar to prepare an etched wafer.
  • the produced etched wafer was measured for the number of defects of 19 nm or more with a defect inspection device SP5 (manufactured by KLA-tencor), and was carried out as a defect evaluation by etching treatment with a laminated film according to the following criteria.
  • Example E01 Purification of RBisN-1 with acid A solution (10% by mass) of RBisN-1 obtained in Synthesis Example 1 dissolved in PGMEA was placed in a 1000 mL volume four-necked flask (bottom punching type). 150 g was charged and heated to 80 ° C. with stirring. Then, 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, the mixture was stirred for 5 minutes, and then allowed to stand for 30 minutes. As a result, the oil phase and the aqueous phase were separated, and the aqueous phase was removed.
  • aqueous oxalic acid solution pH 1.3
  • a solution sample was prepared by filtering the prepared polycyclic polyphenol resin solution with a UPE filter having a nominal pore size of 3 nm manufactured by Entegris Japan, Inc. under the condition of 0.5 MPa.
  • a resin film was formed on the wafer as described above, the resin film was transferred to the substrate side by etching, and then an etching defect evaluation was performed on the laminated film.
  • Example E02 Purification of RBisN-2 with acid A solution (10% by mass) in which RBisN-2 obtained in Synthesis Example 4-1 was dissolved in PGMEA in a 1000 mL volume four-necked flask (bottom punching type). ) was charged and heated to 60 ° C. with stirring. Then, 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, the mixture was stirred for 5 minutes, and then allowed to stand for 30 minutes. As a result, the oil phase and the aqueous phase were separated, and the aqueous phase was removed.
  • aqueous oxalic acid solution pH 1.3
  • a solution sample was prepared by filtering the prepared polyphenolic polyphenol resin solution with a UPE filter having a nominal pore size of 3 nm manufactured by Entegris Japan, Inc. under the condition of 0.5 MPa, and then etching defects were evaluated on the laminated film.
  • Example E03 Purification by passing through a filter In a class 1000 clean booth, the resin (RBisN-1) obtained in Synthesis Example 1 was put into propylene glycol in a 1000 mL capacity four-necked flask (bottom punching type). 500 g of a solution of 10% by mass dissolved in monomethyl ether (PGME) was charged, and then the air inside the flask was removed under reduced pressure, then nitrogen gas was introduced and returned to atmospheric pressure, and the nitrogen gas was aerated at 100 mL per minute. Below, after adjusting the internal oxygen concentration to less than 1%, the mixture was heated to 30 ° C. with stirring.
  • PGME monomethyl ether
  • the above solution is withdrawn from the bottom punching valve, and a nylon hollow fiber membrane filter (manufactured by KITZ Micro Filter Co., Ltd.) with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 100 mL per minute with a diaphragm pump via a pressure resistant tube made of fluororesin.
  • the liquid was passed through the product name: Polyfix Nylon Series) by pressure filtration so that the filtration pressure was 0.5 MPa.
  • the filtered resin solution was diluted with EL grade PGMEA (reagent manufactured by Kanto Chemical Co., Inc.) and the concentration was adjusted to 10% by mass to obtain a PGMEA solution of RBisN-1 having a reduced metal content.
  • a solution sample was prepared by filtering the prepared polyphenolic polyphenol resin solution with a UPE filter having a nominal pore size of 3 nm manufactured by Entegris Japan, Inc. under the condition of 0.5 MPa, and then etching defects were evaluated on the laminated film.
  • the oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter).
  • Example E04 As a purification process using a filter, an IONKLEN manufactured by Nippon Pole, a nylon filter manufactured by Nippon Pole, and an UPE filter having a nominal pore size of 3 nm manufactured by Entegris Japan were connected in series in this order to construct a filter line. The liquid was passed by pressure filtration so that the filtration pressure was 0.5 MPa in the same manner as in Example E03, except that the prepared filter line was used instead of the 0.1 ⁇ m nylon hollow fiber membrane filter. .. By diluting with EL grade PGMEA (reagent manufactured by Kanto Chemical Co., Inc.) and adjusting the concentration to 10% by mass, a PGMEA solution of RBisN-1 having a reduced metal content was obtained.
  • EL grade PGMEA reagent manufactured by Kanto Chemical Co., Inc.
  • Example E05 The solution sample prepared in Example E01 was further pressure-filtered using the filter line prepared in Example E04 so that the filtration pressure was 0.5 MPa, and then the solution sample was prepared in a laminated film. Etching defect evaluation was carried out.
  • Example E06 For the RBisN-2 synthesized in (Synthesis Example 2), a solution sample purified by the same method as in Example E05 was prepared, and then an etching defect evaluation was performed on the laminated film.
  • Example E07 For the RBisN-3 synthesized in (Synthesis Example 3), a solution sample purified by the same method as in Example E05 was prepared, and then an etching defect evaluation was performed on the laminated film.
  • Examples 64 to 70 An optical member forming composition having the same composition as the solution of the underlayer film forming material for lithography prepared in Examples 42 to 48 and Comparative Example 5 above is applied onto a SiO 2 substrate having a film thickness of 300 nm, and 300 at 260 ° C. By baking for seconds, a film for an optical member having a film thickness of 100 nm was formed. Next, a refractive index and transparency test at a wavelength of 633 nm were performed using a vacuum ultraviolet multi-incident angle spectroscopic ellipsometer (VUV-VASE) manufactured by JA Woolam Japan, and the refractive index and transparency were tested according to the following criteria. Gender was evaluated. The evaluation results are shown in Table 14.
  • VUV-VASE vacuum ultraviolet multi-incident angle spectroscopic ellipsometer
  • Refractive index evaluation criteria A: Refractive index is 1.65 or more C: Refractive index is less than 1.65
  • the present invention provides a novel polycyclic polyphenol resin in which aromatic hydroxy compounds having a specific skeleton are linked without a cross-linking group, that is, aromatic rings are linked by direct bonding.
  • a polycyclic polyphenol resin is excellent in heat resistance, etching resistance, heat flow resistance, solvent solubility, etc., and in particular, is excellent in heat resistance and etching resistance, and is excellent in heat resistance, etching resistance, coating agent for semiconductors, resist material, semiconductor lower layer. It can be used as a film-forming material.
  • the present invention is used as a component of an optical member, a photoresist, a resin raw material of a material for electric / electronic parts, a curable resin raw material such as a photocurable resin, a resin raw material of a structural material, a resin curing agent, or the like.
  • a composition that can be used it has industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Materials For Photolithography (AREA)

Abstract

式(1-0)、(1A)、及び(1B)で表される芳香族ヒドロキシ化合物からなる群より選ばれる少なくとも1種のモノマーに由来する繰り返し単位を有する多環ポリフェノール樹脂であって、前記繰り返し単位同士が、芳香環同士の直接結合によって連結している多環ポリフェノール樹脂を含む、膜形成用組成物。

Description

膜形成用組成物、レジスト組成物、感放射線性組成物、アモルファス膜の製造方法、レジストパターン形成方法、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法及び回路パターン形成方法、光学部材形成用組成物、膜形成用樹脂、レジスト樹脂、感放射線性樹脂、リソグラフィー用下層膜形成用樹脂
 本発明は、膜形成用組成物、レジスト組成物、感放射線性組成物、アモルファス膜の製造方法、レジストパターン形成方法、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法及び回路パターン形成方法、光学部材形成用組成物、膜形成用樹脂、レジスト樹脂、感放射線性樹脂、リソグラフィー用下層膜形成用樹脂
に関する。
 半導体デバイスの製造において、フォトレジスト材料を用いたリソグラフィーによる微細加工が行われているが、近年、LSIの高集積化と高速度化に伴い、パターンルールによる更なる微細化が求められている。現在の汎用技術として用いられている光露光を用いたリソグラフィーにおいては、光源の波長に由来する本質的な解像度の限界に近づきつつある。
 レジストパターン形成の際に使用するリソグラフィー用の光源は、KrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化されている。しかしながら、レジストパターンの微細化が進むにつれ、解像度の問題又は現像後にレジストパターンが倒れるといった問題が生じてくるため、レジストの薄膜化が望まれるようになる。このような要望に対して、単にレジストの薄膜化を行うのみでは、基板加工に十分なレジストパターンの膜厚を得ることが難しくなる。そのため、レジストパターンだけではなく、レジストと加工する半導体基板との間にレジスト下層膜を作成し、このレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になってくる。
 現在、このようなプロセス用のレジスト下層膜として、種々のものが知られている。例えば、従来のエッチング速度の速いレジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を挙げることができる。このようなリソグラフィー用レジスト下層膜を形成するための材料として、所定のエネルギーが印加されることにより末端基が脱離してスルホン酸残基を生じる置換基を少なくとも有する樹脂成分と溶媒とを含有する多層レジストプロセス用下層膜形成材料が提案されている(例えば、特許文献1参照。)。また、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜も挙げることができる。このようなリソグラフィー用レジスト下層膜を形成するための材料として、特定の繰り返し単位を有する重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献2参照。)。さらに、半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜も挙げることができる。このようなリソグラフィー用レジスト下層膜を形成するための材料として、アセナフチレン類の繰り返し単位と、置換又は非置換のヒドロキシ基を有する繰り返し単位とを共重合してなる重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献3参照。)。
 一方、この種のレジスト下層膜において高いエッチング耐性を持つ材料としては、メタンガス、エタンガス、アセチレンガスなどを原料に用いた化学蒸着薄膜成膜法(Chemical Vapour Deposition、以下「CVD」とも記す。)により形成されたアモルファスカーボン下層膜がよく知られている。しかしながら、プロセス上の観点から、スピンコート法やスクリーン印刷等の湿式プロセスでレジスト下層膜を形成できるレジスト下層膜材料が求められている。
 また最近は複雑な形状の被加工層に対し、リソグラフィー用レジスト下層膜を形成する要求があり、埋め込み性や膜表面の平坦化性に優れた下層膜を形成できるレジスト下層膜材料が求められている。
 なお、3層プロセスにおけるレジスト下層膜の形成において用いられる中間層の形成方法に関しては、例えば、シリコン窒化膜の形成方法(例えば、特許文献4参照。)や、シリコン窒化膜のCVD形成方法(例えば、特許文献5参照。)が知られている。また、3層プロセス用の中間層材料としては、シルセスキオキサンベースの珪素化合物を含む材料が知られている(例えば、特許文献6及び7参照。)。
 本発明者らは、特定の化合物又は樹脂を含むリソグラフィー用下層膜形成組成物を提案している(例えば、特許文献8参照。)。
 光学部品形成組成物としても様々なものが提案されており、例えば、アクリル系樹脂(例えば、特許文献9~10参照。)や、アリル基で誘導された特定の構造を有するポリフェノール(例えば、特許文献11参照。)が提案されている。
特開2004-177668号公報 特開2004-271838号公報 特開2005-250434号公報 特開2002-334869号公報 国際公開第2004/066377号 特開2007-226170号公報 特開2007-226204号公報 国際公開第2013/024779号 特開2010-138393号公報 特開2015-174877号公報 国際公開第2014/123005号
 上述したように、従来数多くのリソグラフィー用膜形成材料が提案されているが、耐熱性及びエッチング耐性を高い水準で両立させたものはなく、新たな材料の開発が求められている。
 また、従来、数多くの光学部材向け組成物が提案されているが、耐熱性、透明性及び屈折率を高い次元で両立させたものはなく、新たな材料の開発が求められている。
 本発明は、上記の課題を鑑みてなされたものである。すなわち、本発明の目的は、優れた耐熱性及びエッチング耐性を発揮できる、膜形成用組成物、レジスト組成物、感放射線性組成物及びリソグラフィー用下層膜形成用組成物、並びに、これらを用いたアモルファス膜の製造方法、レジストパターン形成方法、リソグラフィー用下層膜の製造方法及び回路パターン形成方法を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、特定の構造を有する多環ポリフェノール樹脂を用いることにより、上記課題を解決できることを見出し、本発明を完成するに到った。
 すなわち、本発明は以下の態様を包含する。
[1]
 式(1-0)、(1A)、及び(1B)で表される芳香族ヒドロキシ化合物からなる群より選ばれる少なくとも1種のモノマーに由来する繰り返し単位を有する多環ポリフェノール樹脂であって、前記繰り返し単位同士が、芳香環同士の直接結合によって連結している多環ポリフェノール樹脂を含む、膜形成用組成物。
Figure JPOXMLDOC01-appb-C000021
(式中、
 Arはフェニレン基、ナフチレン基、アントリレン基、フェナンスリレン基、ピリレン基、フルオリレン基、ビフェニレン基、ジフェニルメチレン基又はターフェニレン基を表し、RはArの置換基であり、各々独立に、同一の基でも異なる基でもよく、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
 Pは各々独立して、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、又は置換基を有していてもよい炭素数2~30のアルキニル基であり、
 Xは直鎖あるいは分岐のアルキレン基を表し
 nは1~500の整数を示し、
 rは1~3の整数を示し、
 pは正の整数を表し、
 qは正の整数を表す。)
Figure JPOXMLDOC01-appb-C000022
(式(1A)中、
 Xは酸素原子、硫黄原子、単結合又は無架橋であり、
 Yは炭素数1~60の2n価の基又は単結合であり、
 Rは各々独立して、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、又は置換基を有していてもよい炭素数2~30のアルキニル基であり、
 R01は、各々独立して、置換基を有していてもよい炭素数6~40のアリール基であり、
 mは各々独立して1~9の整数であり、
 m01は0又は1であり、
 nは1~4の整数であり、
 pは各々独立して0~3の整数である。)
(式(1B)中、
 Aは、ベンゼン環又は縮合芳香環であり、
 Rは、各々独立して、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、又は置換基を有していてもよい炭素数2~30のアルキニル基であり、
 mは、1~9の整数である。)
[2]
 前記式(1-0)中のP、式(1A)及び(1B)中のR、のいずれか一つ以上が水素原子である、上記[1]記載の膜形成用組成物。
[3]
 前記式(1-0)で表される芳香族ヒドロキシ化合物が、式(1-1)で表される芳香族ヒドロキシ化合物である、上記[1]又は[2]に記載の膜形成用組成物。
Figure JPOXMLDOC01-appb-C000023
(式中、Ar、R、n、r、p及びqは、式(1-0)と同義である。)
[4]
 前記式(1-1)で表される芳香族ヒドロキシ化合物が、下記式(1-2)で表される芳香族ヒドロキシ化合物である、上記[3]に記載の膜形成用組成物。
Figure JPOXMLDOC01-appb-C000024
(式中、
 Arはフェニレン基、ナフチレン基又はビフェニレン基を表し、
 Arがフェニレン基のとき、Arはナフチレン基又はビフェニレン基を表し、
 Arがナフチレン基又はビフェニレン基のとき、Arはフェニレン基、ナフチレン基又はビフェニレン基を表し、
 RはArの置換基であり、各々独立に、同一の基でも異なる基でもよく、
 Raは水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し
 RbはArの置換基であり、各々独立に、同一の基でも異なる基でもよく、
 Rbは水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
 nは1~500の整数を示し、
 rは1~3の整数を示し、
 pは正の整数を表し、
 qは正の整数を表す。)
[5]
 Arはフェニレン基、ナフチレン基又はビフェニレン基を表し、
 Arがフェニレン基のとき、Arはビフェニレン基を表し、
 Arがナフチレン基又はビフェニレン基のとき、Arはフェニレン基、ナフチレン基又はビフェニレン基を表し、
 Raは水素原子、又は置換基を有していてもよい炭素数1~30のアルキル基を表し
 Rbは水素原子、又は置換基を有していてもよい炭素数1~30のアルキル基を表す、上記[4]に記載の膜形成用組成物。
[6]
 前記式(1-2)で表される芳香族ヒドロキシ化合物が、下記式(2)又は式(3)で表される、上記[4]又は[5]に記載の膜形成用組成物。
Figure JPOXMLDOC01-appb-C000025
(式(2)中、Ar1、R、r、p、nは式(1-2)と同義である。)
Figure JPOXMLDOC01-appb-C000026
(式(3)中、Ar1、R、r、p、nは式(1-2)と同義である。)
[7]
 前記式(2)で表される芳香族ヒドロキシ化合物が、下記式(4)で表される、上記[6]に記載の膜形成用組成物。
Figure JPOXMLDOC01-appb-C000027
(式(4)中、
 Rは、各々独立に、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
 mは1~2の整数を示し、
 nは1~50の整数を示す。)
[8]
 前記式(3)で表される芳香族ヒドロキシ化合物が、下記式(5)で表される、上記[6]に記載の膜形成用組成物。
Figure JPOXMLDOC01-appb-C000028
(式(5)中、
 Rは、各々独立に、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
 mは1~2の整数を示し、
 nは1~50の整数を示す。)
[9]
 前記式(2)で表される芳香族ヒドロキシ化合物が、下記式(6)で表される、上記[6]に記載の膜形成用組成物。
Figure JPOXMLDOC01-appb-C000029
(式(6)中、
 Rは、各々独立に、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
 mは1~4の整数を示し、
 nは1~50の整数を示す。)
[10]
 前記式(3)で表される芳香族ヒドロキシ化合物が、下記式(7)で表される、上記[6]に記載の膜形成用組成物。
Figure JPOXMLDOC01-appb-C000030
(式(7)中、
 Rは、各々独立に、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
 mは1~4の整数を示し、
 nは1~50の整数を示す。)
[11]
 前記式(1A)で表される芳香族ヒドロキシ化合物が、式(1)で表される芳香族ヒドロキシ化合物である、上記[1]に記載の膜形成用組成物。
Figure JPOXMLDOC01-appb-C000031
(式(1)中、
 X、m、n及びpは前記のとおりであり、
 Rは前記式(1A)におけるYと同義であり、
 Rは前記式(1A)におけるRと同義である。)
[12]
 前記式(1)で表される芳香族ヒドロキシ化合物が、下記式(1-1)で表される芳香族ヒドロキシ化合物である、上記[11]に記載の膜形成用組成物。
Figure JPOXMLDOC01-appb-C000032
(式(1-1)中、
 Zは酸素原子又は硫黄原子であり、
 R、R、m、p及びnは前記のとおりである。)
[13]
 前記式(1-1)で表される芳香族ヒドロキシ化合物が、下記式(1-2)で表される芳香族ヒドロキシ化合物である、上記[12]に記載の膜形成用組成物。
Figure JPOXMLDOC01-appb-C000033
(式(1-2)中、R、R、m、p及びnは前記のとおりである。)
[14]
 前記式(1-2)で表される芳香族ヒドロキシ化合物が、下記式(1-3)で表される芳香族ヒドロキシ化合物である、上記[13]に記載の膜形成用組成物。
Figure JPOXMLDOC01-appb-C000034
(上記式(1-3)中、
 Rは前記のとおりであり、
 Rは前記式(1A)におけるRと同義であり、
 mは各々独立して、1~6の整数である。)
[15]
 前記式(1A)で表される芳香族ヒドロキシ化合物が、下記式(2)で表される芳香族ヒドロキシ化合物である、上記[1]に記載の膜形成用組成物。
Figure JPOXMLDOC01-appb-C000035
(式(2)中、
 Rは前記式(1A)におけるYと同義であり、
 n及びpは前記のとおりであり、
 R及びRは前記式(1A)におけるRと同義であり、
 m及びmは各々独立して、0~5の整数であるが、m及びmは同時に0ではない。
[16]
 前記式(2)で表される芳香族ヒドロキシ化合物が、下記式(2-1)で表される芳香族ヒドロキシ化合物である、上記[15]に記載の膜形成用組成物。
Figure JPOXMLDOC01-appb-C000036
(式(2-1)中、
 R、R、R及びnは、前記のとおりであり、
 m5’は各々独立して1~4の整数であり、
 m6’は各々独立して1~5の整数である。)
[17]
 前記式(2-1)で表される芳香族ヒドロキシ化合物が、下記式(2-2)で表される芳香族ヒドロキシ化合物である、上記[16]に記載の膜形成用組成物。
Figure JPOXMLDOC01-appb-C000037
(式(2-2)中、
 Rは前記のとおりであり、
 R、R及びRは、前記式(1A)におけるRと同義であり、
 mは各々独立して0~3の整数である。)
[18]
 前記Rが、R-Rで表される基であり、ここで、当該Rはメチン基であり、当該Rは置換基を有していてもよい炭素数6~30のアリール基である、上記[11]~[17]のいずれかに記載の膜形成用組成物。
[19]
 前記式(1B)中のAが、縮合芳香環である、上記[1]~[18]のいずれかに記載の膜形成用組成物。
[20]
 前記多環ポリフェノール樹脂が、下記式(0A)で表される芳香族ヒドロキシ化合物からなる群より選ばれる少なくとも1種のモノマー由来の繰り返し単位を含む多環ポリフェノール樹脂である、上記[1]~[19]のいずれかに記載の膜形成用組成物。
Figure JPOXMLDOC01-appb-C000038
(式(0A)中、Rは炭素数1~60の2n価の基又は単結合であり、Rは各々独立して、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基又は水酸基であり、ここで、Rの少なくとも1つは水酸基であり、mは各々独立して0~5の整数であり、nは各々独立して1~4の整数である。)
[21]
 前記式(0A)で表される芳香族ヒドロキシ化合物が下記式(1-0A)で表される芳香族ヒドロキシ化合物からなる群から選ばれる少なくとも1種である、上記[20]に記載の膜形成用組成物。
Figure JPOXMLDOC01-appb-C000039
(式(1-0A)中、R、R、mは、前記式(0A)で説明したものと同義である。)
[22]
 前記式(1-0A)で表される芳香族ヒドロキシ化合物が下記式(1)で表される芳香族ヒドロキシ化合物からなる群から選ばれる少なくとも1種である、上記[21]に記載の膜形成用組成物。
Figure JPOXMLDOC01-appb-C000040
[23]
 前記Rが、R-Rで表される基であり、ここで、当該Rはメチン基であり、当該Rは置換基を有していてもよい炭素数6~40のアリール基である、上記[20]~[22]のいずれかに記載の膜形成用組成物。
[24]
 前記多環ポリフェノール樹脂が、架橋反応性のある化合物に由来する変性部分をさらに有する、上記[1]~[23]のいずれかに記載の膜形成用組成物。
[25]
 前記架橋反応性のある化合物が、アルデヒド類又はケトン類である、上記[24]に記載の膜形成用組成物。
[26]
 前記多環ポリフェノール樹脂の重量平均分子量が400~100000である、上記[1]~[25]のいずれかに記載の膜形成用組成物。
[27]
 前記多環ポリフェノール樹脂のプロピレングリコールモノメチルエーテル及び/又はプロピレングリコールモノメチルエーテルアセテートに対する溶解度が1質量%以上である、上記[1]~[26]のいずれかに記載の膜形成用組成物。
[28]
 溶媒をさらに含む、上記[1]~[27]のいずれかに記載の膜形成用組成物。
[29]
 前記溶媒が、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、シクロペンタノン、乳酸エチル及びヒドロキシイソ酪酸メチルからなる群より選ばれる少なくとも1種を含む、上記[28]に記載の膜形成用組成物。
[30]
 不純物金属の含有量が金属種毎に500ppb未満である、上記[1]~[29]のいずれかに記載の膜形成用組成物。
[31]
 前記不純物金属が、銅、マンガン、鉄、コバルト、ルテニウム、クロム、ニッケル、スズ、鉛、銀及びパラジウムからなる群より選択される少なくとも1種を含有する、上記[30]に記載の膜形成用組成物。
[32]
 前記不純物金属の含有量が金属種毎に1ppb以下である、上記[30]又は[31]に記載の膜形成用組成物。
[33]
 上記[1]~[27]ののいずれかに記載の多環ポリフェノール樹脂の製造方法であって、
 1種以上の前記芳香族ヒドロキシ化合物を酸化剤の存在下で重合させる工程を含む、多環ポリフェノール樹脂の製造方法。
[34]
 前記酸化剤が、銅、マンガン、鉄、コバルト、ルテニウム、クロム、ニッケル、スズ、鉛、銀及びパラジウムからなる群より選択される少なくとも1種を含有する金属塩類又は金属錯体である、上記[33]に記載の多環ポリフェノール樹脂の製造方法。
[35]
 上記[1]~[32]のいずれかに記載の膜形成用組成物からなる、レジスト組成物。
[36]
 溶媒、酸発生剤及び酸拡散制御剤からなる群より選択される少なくとも1つをさらに含有する、上記[35]に記載のレジスト組成物。
[37]
 上記[35]又は[36]に記載のレジスト組成物を用いて、基板上にレジスト膜を形成する工程と、
 形成された前記レジスト膜の少なくとも一部を露光する工程と、
 露光した前記レジスト膜を現像してレジストパターンを形成する工程と、
 を含む、レジストパターン形成方法。
[38]
 上記[1]~[32]のいずれかに記載の膜形成用組成物と、ジアゾナフトキノン光活性化合物と、溶媒と、を含有する感放射線性組成物であって、
 前記溶媒の含有量が、前記感放射線性組成物の総量100質量%に対して20~99質量%であり、
 前記溶媒以外の固形分の含有量が、前記感放射線性組成物の総量100質量%に対して1~80質量%である、感放射線性組成物。
[39]
 前記固形分100質量%に対する、前記前記多環ポリフェノール樹脂と、前記ジアゾナフトキノン光活性化合物と、その他の任意成分と、の含有量比が、多環ポリフェノール樹脂/ジアゾナフトキノン光活性化合物/その他の任意成分として、1~99質量%/99~1質量%/0~98質量%である、上記[38]に記載の感放射線性組成物。
[40]
 スピンコートによりアモルファス膜を形成することができる、上記[38]又は[39]に記載の感放射線性組成物。
[41]
 上記[38]~[40]のいずれかに記載の感放射線性組成物を用いて、基板上にアモルファス膜を形成する工程を含む、アモルファス膜の製造方法。
[42]
 上記[38]~[40]のいずれかに記載の感放射線性組成物を用いて、基板上にレジスト膜を形成する工程と、
 形成された前記レジスト膜の少なくとも一部を露光する工程と、
 露光した前記レジスト膜を現像して、レジストパターンを形成する工程、
を含む、レジストパターン形成方法。
[43]
 上記[1]~[32]のいずれかに記載の膜形成用組成物からなる、リソグラフィー用下層膜形成用組成物。
[44]
 溶媒、酸発生剤及び架橋剤からなる群より選択される少なくとも1つをさらに含有する、上記[43]に記載のリソグラフィー用下層膜形成用組成物。
[45]
 上記[43]又は[44]に記載のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程を含む、リソグラフィー用下層膜の製造方法。
[46]
 上記[43]又は[44]に記載のリソグラフィー用下層膜形成用組成物を用いて、基板上に、下層膜を形成する工程と、
 前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程と、
 前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程と、
 を有する、レジストパターン形成方法。
[47]
 上記[43]又は[44]に記載のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程と、
 前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程と、
 前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程と、
 前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程と、
 前記レジストパターンをマスクとして前記中間層膜をエッチングして、中間層膜パターンを形成する工程と、
 前記中間層膜パターンをエッチングマスクとして前記下層膜をエッチングして、下層膜パターンを形成する工程と、
 前記下層膜パターンをエッチングマスクとして前記基板をエッチングして、前記基板にパターンを形成する工程と、
 を有する、回路パターン形成方法。
[48]
 上記[1]~[32]のいずれかに記載の膜形成用組成物からなる、光学部材形成用組成物。
[49]
 溶媒、酸発生剤及び架橋剤からなる群より選択される少なくとも1つをさらに含有する、上記[48]に記載の光学部材形成用組成物。
 本発明によれば、耐熱性及び/又はエッチング耐性及び/又は光学特性に優れる、膜形成用組成物、レジスト組成物、感放射線性組成物及びリソグラフィー用下層膜形成用組成物、並びに、これらを用いたアモルファス膜の製造方法、レジストパターン形成方法、リソグラフィー用下層膜の製造方法及び回路パターン形成方法を提供することができる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
 本明細書における「膜」とは、例えば、リソグラフィー用膜や光学部品等(ただし、これらに限定されるものではない。)に適用されうるものを意味し、そのサイズや形状は特に限定されず、典型的には、リソグラフィー用膜や光学部品として一般的な形態を有するものである。すなわち、「膜形成用組成物」とは、このような膜の前駆体であり、その形態及び/又は組成において、当該「膜」とは明確に区別されるものである。また、「リソグラフィー用膜」とは、例えば、レジスト用永久膜、リソグラフィー用下層膜等のリソグラフィー用途の膜を広く包含する概念である。
(多環ポリフェノール樹脂)
 本実施形態における多環ポリフェノール樹脂は、以下に限定されないが、典型的には、下記(1)~(4)の特性を有する。
(1)本実施形態における多環ポリフェノール樹脂は、有機溶媒(特に安全溶媒)に対する優れた溶解性を有する。このため、例えば、本実施形態における多環ポリフェノール樹脂をリソグラフィー用膜形成材料として用いると、スピンコート法やスクリーン印刷等の湿式プロセスによりリソグラフィー用膜を形成できる。
(2)本実施形態における多環ポリフェノール樹脂では、炭素濃度が比較的高く、酸素濃度が比較的低い。また、分子中にフェノール性水酸基を有するため、硬化剤との反応による硬化物の形成に有用であるが、単独でも高温ベーク時にフェノール性水酸基が架橋反応することにより硬化物を形成できる。これらに起因して、本実施形態における多環ポリフェノール樹脂は、高い耐熱性を発現でき、リソグラフィー用膜形成材料として用いると、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性に優れたリソグラフィー用膜を形成できる。
(3)本実施形態における多環ポリフェノール樹脂は、上記のように、高い耐熱性及びエッチング耐性を発現できるとともに、レジスト層やレジスト中間層膜材料との密着性に優れる。このため、リソグラフィー用膜形成材料として用いると、レジストパターン形成性に優れたリソグラフィー用膜を形成できる。なお、ここでいう「レジストパターン形成性」とは、レジストパターン形状に大きな欠陥が見られず、解像性及び感度ともに優れる性質をいう。
(4)本実施形態における多環ポリフェノール樹脂は、芳香環密度が高いため高屈折率であり、また低温から高温までの広範囲の熱処理によっても着色が抑制され、透明性に優れることから、各種光学部品形成材料としても有用である。
 本実施形態における多環ポリフェノール樹脂は、かかる特性によりリソグラフィー用膜形成材料として好ましく適用でき、したがって本実施形態の膜形成用組成物に上述した所望とする特性が付与されるものと考えられる。本実施形態の膜形成用組成物は、上述した多環ポリフェノール樹脂を含有するものである限り、その余の構成は特に限定されない。すなわち、いかなる任意成分をいかなる配合比率で含んでいてもよく、当該膜形成用組成物の具体的な用途に応じて適宜調整することができる。
[膜形成用組成物]
 本実施形態の膜形成用組成物は、式(1-0)、(1A)、及び(1B)で表される芳香族ヒドロキシ化合物からなる群より選ばれる少なくとも1種のモノマーに由来する繰り返し単位を有する多環ポリフェノール樹脂であって、前記繰り返し単位同士が、芳香環同士の直接結合によって連結している多環ポリフェノール樹脂を含む、膜形成用組成物である。
Figure JPOXMLDOC01-appb-C000041
(式中、
 Arはフェニレン基、ナフチレン基、アントリレン基、フェナンスリレン基、ピリレン基、フルオリレン基、ビフェニレン基、ジフェニルメチレン基又はターフェニレン基を表し、RはArの置換基であり、各々独立に、同一の基でも異なる基でもよく、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
 Pは各々独立して、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、又は置換基を有していてもよい炭素数2~30のアルキニル基であり、
 Xは直鎖あるいは分岐のアルキレン基を表し
 nは1~500の整数を示し、
 rは1~3の整数を示し、
 pは正の整数を表し、
 qは正の整数を表す。)
Figure JPOXMLDOC01-appb-C000042
(式(1A)中、
 Xは酸素原子、硫黄原子、単結合又は無架橋であり、
 Yは炭素数1~60の2n価の基又は単結合であり、
 Rは各々独立して、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、又は置換基を有していてもよい炭素数2~30のアルキニル基であり、
 R01は、各々独立して、置換基を有していてもよい炭素数6~40のアリール基であり、
 mは各々独立して1~9の整数であり、
 m01は0又は1であり、
 nは1~4の整数であり、
 pは各々独立して0~3の整数である。)
(式(1B)中、
 Aは、ベンゼン環又は縮合芳香環であり、
 Rは、各々独立して、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、又は置換基を有していてもよい炭素数2~30のアルキニル基であり、
 mは、1~9の整数である。)
 本明細書においては、前述した式(1-0)で表される芳香族ヒドロキシ化合物及びその好適なものとして記載した化合物を「化合物群1」とし、式(1A)、式(1B)で表される芳香族ヒドロキシ化合物及びその好適なものとして記載した化合物を「化合物群2」とし、式(0A)で表される芳香族ヒドロキシ化合物及びその好適なものとして記載した化合物を「化合物群3」とし、以下の各化合物に付与された式番号は、各化合物群についての個別の式番号であるとする。すなわち、例えば、式(1-0)で表される芳香族ヒドロキシ化合物の好適なものとして記載した式(2)で表される化合物は、式(1A)で表される芳香族ヒドロキシ化合物の好適なものとして記載した同じく式(2)で表される化合物とは異なるものとして区別されるものとする。
 なお、本明細書に記載の構造式に関して、例えば、下記式のように、或る基Cとの結合を示す線が環A及び環Bと接触している場合には、Cが環A及び環Bのいずれと結合していてもよいことを意味する。すなわち、下記式におけるn個の基Cは、各々独立して、環A及び環Bのいずれと結合していてもよい。
Figure JPOXMLDOC01-appb-C000043
 本実施形態において、芳香族ヒドロキシ化合物は、上記式(1-0)、(1A)及び(1B)のいずれかで表されるものを、単独で用いることもでき、また2種以上を共に用いることもできる。
 本実施形態における多環ポリフェノール樹脂において、各繰返し単位の数と比は、特に限定されないが、用途や下記の分子量の値を考慮して適宜調整することが好ましい。
 また、本実施形態の多環ポリフェノール樹脂は、繰り返し単位(1-0)、(1A)および/または(1B)のみで構成することができるが、用途に応じた性能を損なわない範囲において、他の繰り返し単位を含むものであってもよい。他の繰り返し単位には、例えば、フェノール性水酸基由来の基が縮合することにより形成されるエーテル結合を有する繰り返し単位や、ケトン構造を有する繰り返し単位等が含まれる。これら他の繰り返し単位も、繰り返し単位(1-0)、(1A)および/または(1B)と、芳香環同士で直接結合していてもよい。
 例えば、本実施形態の多環ポリフェノール樹脂の総量(X)に対する繰り返し単位(1-0)、(1A)および/または(1B)の総量(Y)のモル比〔Y/X〕は、0.05~1.00とすることができ、好ましくは、0.45~1.00とすることができる。
 本実施形態における多環ポリフェノール樹脂が有する繰返し単位の、該樹脂中における結合順序は、特に限定されない。例えば、式(1-0)、式(1A)又は式(1B)で表される芳香族ヒドロキシ化合物に由来する単位のみが繰り返し単位として2以上含まれるものであってもよいし、式(1-0)で表される芳香族ヒドロキシ化合物に由来する単位と、式(1A)で表される芳香族ヒドロキシ化合物に由来する単位と、式(1B)で表される芳香族ヒドロキシ化合物に由来する単位と、を1つの繰り返し単位として、2以上含まれるものであってもよい。
 本実施形態における多環ポリフェノール樹脂を構成する全ての構成単位(モノマー単位)の合計を100モル%とした場合、芳香環同士の直接結合によって連結している式(1-0)、式(1A)、及び/又は式(1B)で表される芳香族ヒドロキシ化合物に由来する単位の合計は、好ましくは50~100モル%であり、より好ましくは70~100モル%であり、更に好ましくは90~100モル%であり、特に好ましくは100モル%である。
 本実施形態の膜形成用組成物は、耐熱性、有機溶媒に対する溶解性の観点から、前記式(1-0)中のP、式(1A)及び(1B)中のR、のいずれか一つ以上が水素原子である芳香族ヒドロキシ化合物からなる群より選ばれる少なくとも1種のモノマーに由来する繰り返し単位を有する多環ポリフェノール樹脂を含むことが好ましい。
[化合物群1]
 以下、前述の式(1-0)について詳細に説明する。
Figure JPOXMLDOC01-appb-C000044
 一般式(1-0)で示される芳香族ヒドロキシ化合物(オリゴマー)において、Arはフェニレン基、ナフチレン基、アントリレン基、フェナンスリレン基、ピリレン基、フルオリレン基、ビフェニレン基、ジフェニルメチレン基又はターフェニレン基を表し、好ましくはフェニレン基、ナフチレン基、アントリレン基、フェナンスリレン基、フルオリレン基、ビフェニレン基、ジフェニルメチレン基又はターフェニレン基を表す。RはArの置換基であり、各々独立に、同一の基でも異なる基でもよく、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、又は置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、複素環基を表し、好ましくは水素原子、又は置換基を有していてもよい炭素数1~30のアルキル基を表す。
 一般式(1-0)で示されるオリゴマーにおいて、Pは各々独立して、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、又は置換基を有していてもよい炭素数2~30のアルキニル基を表し、好ましくは水素原子、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、ターシャリブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ベンジル基、メトキシベンジル基、ジメトキシベンジル基、メチルベンジル基、フルオロベンジル基、クロロベンジル基、ターシャリブトキシカルボニル基、メチルターシャリブトキシカルボニル基、トリクロロエトキシカルボニル基、トリメチルシリルエトキシカルボニル基、メトキシメチル基、エトキシエチル基、エトキシプロピル基、テトラヒドロピラン基、メチルチオメチル基、ベンジルオキシメチル基、メトキシエトキシメチル基、メシル基、トシル基、ノシル基、トリフラート基、アセチル基、ピバロイル基、ノルマルブチリル基、トルオイル基、イソブチリル基、ペンタノイル基、プロピオニル基、ベンゾイル基、トリチル基、モノメトキシトリチル基、ジメトキシトリチル基、トリメチルシリル基、トリエチルシリル基、トリイソプロピル基、ターシャリブチルジメチルシリル基、ターシャリジフェニルジフェニルシリル基、アリル基、ビニル基、(メタ)アクリロイル基、エポキシ(メタ)アクリロイル基、ウレタン(メタ)アクリロイル基、グリシジル基などが挙げられる。Pとしては、より好ましくは水素原子、メチル基、ターシャリブチル基、ノルマルヘキシル基、オクチル基、ターシャリブトキシカルボニル基、エトキシエチル基、エトキシプロピル基、ベンジル基、メトキシベンジル基、メシル基、アセチル基、ピバロイル基、トリチル基であり、さらに好ましくは水素原子、メチル基、ターシャリブチル基、オクチル基、ターシャリブトキシカルボニル基、エトキシエチル基、エトキシプロピル基、メシル基、アセチル基であり、メチル基、ターシャリブチル基、ターシャリブトキシカルボニル基、エトキシプロピル基、メシル基、アセチル基が特に好ましい。
 一般式(1-0)で示されるオリゴマーにおいて、Xは直鎖あるいは分岐のアルキレン基を表す。具体的にはメチレン基、エチレン基、n-プロピレン基、i―プロピレン基、n-ブチレン基、i-ブチレン基、tert-ブチレン基であり、好ましくはメチレン基、エチレン基、n-プロピレン基、n-ブチレン基であり、さらに好ましくはメチレン基、n-プロピレン基であり、最も好ましくはメチレン基である。
 一般式(1-0)で示されるオリゴマーにおいて、nは1から500までの整数、好ましくは1から50までの整数を示す。
 一般式(1-0)で示されるオリゴマーにおいて、rは1から3までの整数を示す。
 一般式(1-0)で示されるオリゴマーにおいて、pは正の整数を示す。pは、Arの種類に応じて適宜変化する。
 一般式(1-0)で示されるオリゴマーにおいて、qは正の整数を示す。qは、Arの種類に応じて適宜変化する。
 一般式(1-0)で示されるオリゴマーは、下記一般式(1-1)で示されるオリゴマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000045
 一般式(1-1)で示されるオリゴマーにおいて、Arはフェニレン基、ナフチレン基、アントリレン基、フェナンスリレン基、ピリレン基、フルオリレン基、ビフェニレン基、ジフェニルメチレン基、又はターフェニレン基を表し、好ましくはフェニレン基、ナフチレン基、アントリレン基、フェナンスリレン基、フルオリレン基、ビフェニレン基、ジフェニルメチレン基、又はターフェニレン基を表す。RはArの置換基であり、各々独立に、同一の基でも異なる基でもよく、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、又は置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、複素環基を表し、好ましくは水素原子、又は置換基を有していてもよい炭素数1~30のアルキル基を表す。
 一般式(1-1)で示されるオリゴマーにおいて、nは1から500までの整数、好ましくは1から50までの整数を示す。
 一般式(1-1)で示されるオリゴマーにおいて、rは1から3までの整数を示す。
 一般式(1-1)で示されるオリゴマーにおいて、pは正の整数を示す。pは、Arの種類に応じて適宜変化する。
 一般式(1-1)で示されるオリゴマーにおいて、qは正の整数を示す。qは、Arの種類に応じて適宜変化する。
 一般式(1-1)で示されるオリゴマーは、下記一般式(1-2)で示されるオリゴマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000046
 一般式(1-2)で示されるオリゴマーにおいて、Arはフェニレン基、ナフチレン基又はビフェニレン基を表すが、Arがフェニレン基のとき、Arはナフチレン基又はビフェニレン基(好ましくはビフェニレン基)を表し、Arがナフチレン基又はビフェニレン基のとき、Arはフェニレン基、ナフチレン基又はビフェニレン基を表す。Ar及びArとして具体的には、1,4-フェニレン基、1,3-フェニレン基、4,4’-ビフェニレン基、2,4’-ビフェニレン基、2,2’-ビフェニレン基、2,3’-ビフェニレン基、3,3’-ビフェニレン基、3,4’-ビフェニレン基、2,6-ナフチレン基、1,5-ナフチレン基、1,6-ナフチレン基、1,8-ナフチレン基、1,3-ナフチレン基、1,4-ナフチレン基等が挙げられる。
 一般式(1-2)で示されるオリゴマーにおいて、RaはArの置換基であり、各々独立に、同一の基でも異なる基でもよい。Raは水素、置換基を有していてもよい炭素数1~30のアルキル基、又は置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、複素環基を表し、好ましくは水素原子、又は置換基を有していてもよい炭素数1~30のアルキル基を表す。Raの具体例としては、アルキル基としてメチル基、エチル基、n-プロピル基、i―プロピル基、n-ブチル基、i-ブチル基、tert-ブチル基、異性体ペンチル基、異性体ヘキシル基、異性体ヘクチル基、異性体オクチル基、異性体ノニル基など、アリール基としてフェニル基、アルキルフェニル基、ナフチル基、アルキルナフチル基、ビフェニル基、アルキルビフェニル基などが挙げられる。好ましくはメチル基、エチル基、n-プロピル基、n-ブチル基、n-オクチル基、フェニル基であり、さらに好ましくはメチル基、n-ブチル基、n-オクチル基であり、最も好ましくはn-オクチル基である。
 一般式(1-2)で示されるオリゴマーにおいて、RはArの置換基であり、各々独立に、同一の基でも異なる基でもよい。Rは水素、置換基を有していてもよい炭素数1~30のアルキル基、又は置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、複素環基を表し、好ましくは水素原子、又は置換基を有していてもよい炭素数1~30のアルキル基を表す。Rの具体例としては、アルキル基としてメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、i-ブチル基、tert-ブチル基、異性体ペンチル基、異性体ヘキシル基、異性体ヘクチル基、異性体オクチル基、異性体ノニル基など、アリール基としてフェニル基、アルキルフェニル基、ナフチル基、アルキルナフチル基、ビフェニル基、アルキルビフェニル基などが挙げられる。好ましくはメチル基、エチル基、n-プロピル基、n-ブチル基、n-オクチル基、フェニル基であり、さらに好ましくはメチル基、n-ブチル基、n-オクチル基であり、最も好ましくはn-オクチル基である。
 一般式(1-2)で示されるオリゴマーにおいて、nは1から500までの整数、好ましくは1から50までの整数を示す。
 一般式(1-2)で示されるオリゴマーにおいて、rは1から3までの整数を示す。
 一般式(1-2)で示されるオリゴマーにおいて、pは正の整数を示す。pは、Arの種類に応じて適宜変化する。
 一般式(1-2)で示されるオリゴマーにおいて、qは正の整数を示す。qは、Arの種類に応じて適宜変化する。
 一般式(1-2)で示されるオリゴマーのうち、好ましくは、式(2)又は(3)で示される化合物、さらに好ましくは、式(4)~(7)で示される化合物である。
Figure JPOXMLDOC01-appb-C000047
(式(2)中、Ar1、R、r、p、nは、上記のとおりである。)
Figure JPOXMLDOC01-appb-C000048
(式(3)中、Ar1、R、r、p、nは、上記のとおりである)
Figure JPOXMLDOC01-appb-C000049
(式(4)中、
 Rは、各々独立に、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、又は置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、複素環基を表し、好ましくは水素原子、又は置換基を有していてもよい炭素数1~30のアルキル基を表し、
 mは1~2の整数を示し、
 nは1~50の整数を示す。)
Figure JPOXMLDOC01-appb-C000050
(式(5)中、
 Rは、各々独立に、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、又は置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、複素環基を表し、好ましくは水素原子、又は置換基を有していてもよい炭素数1~30のアルキル基を表し、
 mは1~2の整数を示し、
 nは1~50の整数を示す。)
Figure JPOXMLDOC01-appb-C000051
(式(6)中、
 Rは、各々独立に、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、又は置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、複素環基を表し、好ましくは水素原子、又は置換基を有していてもよい炭素数1~30のアルキル基を表し、
 mは1~4の整数を示し、
 nは1~50の整数を示す。)
Figure JPOXMLDOC01-appb-C000052
(式(7)中、
 Rは、各々独立に、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、又は置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、複素環基を表し、好ましくは水素原子、又は置換基を有していてもよい炭素数1~30のアルキル基を表し、
 mは1~4の整数を示し、
 nは1~50の整数を示す。)
 式(2)~式(7)の化合物において、芳香環の置換基は、芳香環の任意の位置で置換することができる。
 一般式(4)、(5)、(6)、(7)で示されるオリゴマーにおいて、R1、2、3、は各々独立に、同一の基でも異なる基でもよい。R1、2、3、は水素、置換基を有していてもよい炭素数1~30のアルキル基、又は置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、複素環基を表し、好ましくは水素原子、又は置換基を有していてもよい炭素数1~30のアルキル基を表す。R1、2、3、の具体例としては、アルキル基としてメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、i-ブチル基、tert-ブチル基、異性体ペンチル基、異性体ヘキシル基、異性体ヘクチル基、異性体オクチル基、異性体ノニル基など、アリール基としてフェニル基、アルキルフェニル基、ナフチル基、アルキルナフチル基、ビフェニル基、アルキルビフェニル基などが挙げられる。好ましくはメチル基、エチル基、n-プロピル基、n-ブチル基、n-オクチル基、フェニル基であり、さらに好ましくはメチル基、n-ブチル基、n-オクチル基であり、最も好ましくはn-オクチル基である。
 本実施形態において「置換」とは別段定義がない限り、官能基中の一つ以上の水素原子が、置換基で置換されることを意味する。「置換基」としては、特に限定されないが、例えば、ハロゲン原子、水酸基、シアノ基、ニトロ基、チオール基、複素環基、炭素数1~30のアルキル基、炭素数6~20のアリール基、炭素数1~30のアルコキシル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数1~30のアシル基、炭素数0~30のアミノ基、が挙げられる。アルキル基は、直鎖状脂肪族炭化水素基、分岐状脂肪族炭化水素基、及び環状脂肪族炭化水素基のいずれの態様でも構わない。
 上記式(1-0)で表される化合物の具体例としては、以下の式で表される化合物が挙げられる。ただし、上記式(1-0)で表される化合物は、以下の式で表される化合物に限定されない。
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
[化合物群2]
 以下、前述の式(1A)及び式(1B)について詳細に説明する。
Figure JPOXMLDOC01-appb-C000075
 式(1A)中、Xは酸素原子、硫黄原子、単結合又は無架橋であることを示す。Xとしては、耐熱性の観点から、酸素原子が好ましい。
 式(1A)中、Yは炭素数1~60の2n価の基又は単結合であり、ここで、Xが無架橋であるとき、Yは前記2n価の基であることが好ましい。
 炭素数1~60の2n価の基とは、例えば、2n価の炭化水素基であり、当該炭化水素基は、置換基として、後述する種々の官能基を有するものであってもよい。また、2n価の炭化水素基は、n=1のときには、炭素数1~60のアルキレン基、n=2のときには、炭素数1~60のアルカンテトライル基、n=3のときには、炭素数2~60のアルカンヘキサイル基、n=4のときには、炭素数3~60のアルカンオクタイル基のことを示す。該2n価の炭化水素基としては、例えば、2n+1価の炭化水素基と、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基とが結合した基等が挙げられる。ここで、脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
 2n+1価の炭化水素基としては、以下に限定されないが、例えば、3価のメチン基、エチン基等が挙げられる。
 また、前記2n価の炭化水素基は、二重結合、ヘテロ原子及び/又は炭素数6~59のアリール基を有していてもよい。なお、Yはフルオレンやベンゾフルオレン等のフルオレン骨格を有する化合物に由来する基を含んでいてもよいが、本明細書中、「アリール基」との用語は、フルオレンやベンゾフルオレン等のフルオレン骨格を有する化合物に由来する基を含まないものとして用いる。
 本実施形態において、該2n価の基はハロゲン基、ニトロ基、アミノ基、水酸基、アルコキシ基、チオール基又は炭素数6~40のアリール基を含んでいてもよい。さらに、該2n価の基はエーテル結合、ケトン結合、エステル結合又は二重結合を含んでいてもよい。
 本実施形態において2n価の基は耐熱性の観点から直鎖状炭化水素基よりも分岐状炭化水素基又は脂環式炭化水素基を含むことが好ましく、脂環式炭化水素基を含むことがより好ましい。また、本実施形態においては、2n価の基が炭素数6~60のアリール基を有することが特に好ましい。
 2n価の基に含まれ得る置換基であって、直鎖状の炭化水素基及び分岐状炭化水素基としては、特に限定されないが、例えば、無置換のメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ドデシル基、バレル基等が挙げられる。
 2n価の基に含まれ得る置換基であって、脂環式炭化水素基および炭素数6~60の芳香族基としては、特に限定されないが、例えば、無置換のフェニル基、ナフタレン基、ビフェニル基、アントラシル基、ピレニル基、シクロヘキシル基、シクロドデシル基、ジシクロペンチル基、トリシクロデシル基、アダマンチル基、フェニレン基、ナフタレンジイル基、ビフェニルジイル基、アントラセンジイル基、ピレンジイル基、シクロヘキサンジイル基、シクロドデカンジイル基、ジシクロペンタンジイル基、トリシクロデカンジイル基、アダマンタンジイル基、ベンゼントリイル基、ナフタレントリイル基、ビフェニルトリイル基、アントラセントリイル基、ピレントリイル基、シクロヘキサントリイル基、シクロドデカントリイル基、ジシクロペンタントリイル基、トリシクロデカントリイル基、アダマンタントリイル基、ベンゼンテトライル基、ナフタレンテトライル基、ビフェニルテトライル基、アントラセンテトライル基、ピレンテトライル基、シクロヘキサンテトライル基、シクロドデカンテトライル基、ジシクロペンタンテトライル基、トリシクロデカンテトライル基、アダマンタンテトライル基等が挙げられる。
 Rは各々独立して、水素原子、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、置換基を有していてもよい炭素数2~40のアルキニル基である。ここで、前記アルキル基は、直鎖状、分岐状又は環状のいずれであってもよい。
 炭素数1~40のアルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ドデシル基、バレル基等が挙げられる。
 炭素数6~40のアリール基としては、以下に限定されないが、例えば、フェニル基、ナフタレン基、ビフェニル基、アントラシル基、ピレニル基、ペリレン基等が挙げられる。
 炭素数2~40のアルケニル基としては、以下に限定されないが、例えば、エチニル基、プロペニル基、ブチニル基、ペンチニル基等が挙げられる。
 炭素数2~40のアルキニル基としては、以下に限定されないが、例えば、アセチレン基、エチニル基等が挙げられる。
 mは各々独立して1~8の整数である。溶解性の観点から、1~6が好ましく、1~4がより好ましく、原料入手性の観点から、1が更に好ましい。
 nは1~4の整数である。溶解性の観点から、1~2が好ましく、原料入手性の観点から、1が更に好ましい。
 pは各々独立して0~3の整数である。耐熱性の観点から、1~2が好ましく、原料入手性の観点から、1が更に好ましい。
 本実施形態において、上記式(1A)で表される芳香族ヒドロキシ化合物は、製造のし易さの観点から下記式(1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000076
(式(1)中、X、m、n及びpは前記のとおりであり、Rは前記式(1A)におけるYと同義であり、Rは前記式(1A)におけるRと同義である。)
 前記式(1)で表される芳香族ヒドロキシ化合物は、耐熱性の観点から下記式(1-1)で表される芳香族ヒドロキシ化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000077
(式(1-1)中、Zは酸素原子又は硫黄原子であり、R、R、m、p及びnは前記のとおりである。)
 さらに、前記式(1-1)で表される芳香族ヒドロキシ化合物は、原料入手性の観点から下記式(1-2)で表される芳香族ヒドロキシ化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000078
(式(1-2)中、R、R、m、p及びnは前記のとおりである。)
 さらに、前記式(1-2)で表される芳香族ヒドロキシ化合物は、溶解性向上の観点から下記式(1-3)で表される芳香族ヒドロキシ化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000079
(上記式(1-3)中、Rは前記のとおりであり、Rは前記式(1A)におけるRと同義であり、mは各々独立して、1~6の整数である。)
 また、前記式(1A)で示される芳香族ヒドロキシ化合物は、溶解安定性の観点から下記式(2)で表される芳香族ヒドロキシ化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000080
(式(2)中、Rは前記式(1A)におけるYと同義であり、n及びpは前記のとおりであり、R及びRは前記式(1A)におけるRと同義であり、m及びmは各々独立して、0~5の整数であるが、m及びmは同時に0ではない。)
 さらに、前記式(2)で示される芳香族ヒドロキシ化合物は、溶解安定性の観点から下記式(2-1)で示される芳香族ヒドロキシ化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000081
(式(2-1)中、R、R、R及びnは、前記のとおりであり、m5’は各々独立して1~4の整数であり、m6’は各々独立して1~5の整数である。)
 さらに、前記式(2-1)で示される芳香族ヒドロキシ化合物は、原料入手性の観点から下記式(2-2)で示される芳香族ヒドロキシ化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000082
(2-2)
(式(2-2)中、Rは前記のとおりであり、R7、及びRは、前記式(1A)におけるRと同義であり、mは各々独立して0~3の整数である。)
 上記式(1)、式(1-1)、式(1-2)、式(1-3)、式(2)、式(2-1)又は式(2-2)において、更なる高い耐熱性と溶解性との兼備の観点から、前記Rが、R-Rで表される基であり、ここで、当該Rはメチン基であり、当該Rは置換基を有していてもよい炭素数が6~30のアリール基であることが好ましい。本実施形態において、炭素数が6~30のアリール基としては、以下に限定されないが、例えば、フェニル基、ナフタレン基、ビフェニル基、アントラシル基、ピレニル基等が挙げられる。なお、前述のとおり、フルオレンやベンゾフルオレン等のフルオレン骨格を有する化合物に由来する基は「炭素数が6~30のアリール基」に含まれない。
 前記式(1A)、(1)、式(1-1)、式(1-2)、式(1-3)、式(2)、式(2-1)又は式(2-2)で表される芳香族ヒドロキシ化合物の具体例を、以下に示すが、ここで列挙した限りではない。
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
 前記式中、R及びXは、上記式(1)で説明したものと同義である。m´は1~7の整数である。
 以下、さらに、本実施形態における芳香族ヒドロキシ化合物の具体例を示すが、ここで列挙した限りではない。
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
 上記式中、R及びXは上記式(1)で説明したものと同義である。
 m´は1~7の整数であり、m´´は1~5の整数である。
 以下、さらに、本実施形態における芳香族ヒドロキシ化合物の具体例を示すが、ここで列挙した限りではない。
Figure JPOXMLDOC01-appb-C000104
 上記式中、R、X及びm´は、上記で説明したものと同義である。
 以下、さらに、本実施形態における芳香族ヒドロキシ化合物の具体例を示すが、ここで列挙した限りではない。
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
 上記式中、R及びXは上記式(1)で説明したものと同義である。m´は1~7の整数である。m´´は1~5の整数である。
 以下、さらに、本実施形態における芳香族ヒドロキシ化合物の具体例を示すが、ここで列挙した限りではない。
Figure JPOXMLDOC01-appb-C000108
 前記式中、R及びXは、上記式(1)で説明したものと同義である。m´は1~7の整数である。
 以下、さらに、本実施形態における芳香族ヒドロキシ化合物の具体例を示すが、ここで列挙した限りではない。
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
 上記式中、R及びXは上記式(1)で説明したものと同義である。m´は1~7の整数である。m´´は1~5の整数である。
 以下、さらに、本実施形態における芳香族ヒドロキシ化合物の具体例を示すが、ここで列挙した限りではない。
Figure JPOXMLDOC01-appb-C000111
 前記式中、R及びXは、前記式(1)で説明したものと同義である。m´は1~7の整数である。
 以下、さらに、本実施形態における芳香族ヒドロキシ化合物の具体例を示すが、ここで列挙した限りではない。
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
 前記式中、R及びXは前記式(1)で説明したものと同義である。m´は1~7の整数である。m´´は1~5の整数である。
 以下に、上記式(2)で表される化合物の具体例を例示するが、ここで列挙した限りではない。
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
 前記芳香族ヒドロキシ化合物中、R及びRは前記式(2)で説明したものと同義である。
 m11は0~6の整数であり、m12は0~7の整数であり、すべてのm11及びm12が同時に0となることはない。
 以下、さらに、本実施形態における芳香族ヒドロキシ化合物の具体例を示すが、ここで列挙した限りではない。
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
 前記芳香族ヒドロキシ化合物中、R及びRは前記式(2)で説明したものと同義である。
 m5’は各々独立して0~4の整数であり、m6’は各々独立して0~5の整数であり、すべてのm5’及びm6’が同時に0となることはない。
 以下、さらに、本実施形態における芳香族ヒドロキシ化合物の具体例を示すが、ここで列挙した限りではない。
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
 前記芳香族ヒドロキシ化合物中、R及びRは前記式(2)で説明したものと同義である。
 m11は0~6の整数であり、m12は0~7の整数であり、すべてのm11及びm12が同時に0となることはない。
 以下、さらに、本実施形態における芳香族ヒドロキシ化合物の具体例を示すが、ここで列挙した限りではない。
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
 前記芳香族ヒドロキシ化合物中、R及びRは前記式(2)で説明したものと同義である。
 m5‘は0~4の整数であり、m6’は0~5の整数であり、すべてのm5‘及びm6’が同時に0となることはない。
 また、前記式(1B)中のAとしては、特に限定されないが、例えば、ベンゼン環であってもよいし、ナフタレン、アントラセン、ナフタセン、ペンタセン、ベンゾピレン、クリセン、ピレン、トリフェニレン、コランニュレン、コロネン及びオバレン等の種々公知の縮合環であってもよい。本実施形態において、Aが、ナフタレン、アントラセン、ナフタセン、ペンタセン、ベンゾピレン、クリセン、ピレン、トリフェニレン、コランニュレン、コロネン及びオバレン等の種々の縮合環であることが耐熱性の観点から好ましい。また、Aが、ナフタレン、アントラセンであることが、ArF露光で使用する波長193nmにおけるn値、k値が低く、パターンの転写性に優れる傾向にあることから好ましい。
 また、上記Aは、上記した芳香族炭化水素環の他、ピリジン、ピロール、ピリダジン、チオフェン、イミダゾール、フラン、ピラゾール、オキサゾール、トリアゾール、チアゾ?ルまたはこれらのベンゾ縮環体などのヘテロ環が挙げられる。
 本実施形態において、上記Aは、芳香族炭化水素環、ヘテロ環であることが好ましく、より好ましくは芳香族炭化水素環である。
 また、前記式(1B)中のAとしては、特に限定されないが、例えば、ベンゼン環であってもよいし、ナフタレン、アントラセン、ナフタセン、ペンタセン、ベンゾピレン、クリセン、ピレン、トリフェニレン、コランニュレン、コロネン及びオバレン等の種々公知の縮合環であってもよい。本実施形態において、前記式(1B)で表される芳香族ヒドロキシ化合物の好ましい例としては、下記式(1B’)及び式(1B’’)で表される芳香族ヒドロキシ化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000136
(式(1B’)中、R及びmは式(1B)におけるものと同義であり、pは1~3の整数である。また、式(1B’’)中、Rは式(1B)におけるものと同義であり、mは0~4の整数であるが、全てのmが同時に0になることはない。)
 前記式(1B’)で表される芳香族ヒドロキシ化合物の具体例を、以下に示すが、ここで列挙した限りではない。
Figure JPOXMLDOC01-appb-C000137
(式(B-1)~(B-4)中、Rは式(1B)におけるものと同義である。)
 前記式(B-1)中、nは0~4の整数であり、前記式(B-2)中、nは0~6の整数であり、前記式(B-3)~(B-4)中、nは0~8の整数である。式(B-1)~(B-4)中、全てのnが同時に0になることはない。
 前記式(B-1)~(B-4)で表される芳香族ヒドロキシ化合物の中でも、エッチング耐性の向上の観点から(B-3)~(B-4)で表されるものが好ましい。また、光学特性の観点からは(B-2)~(B-3)で表されるものが好ましい。さらに、平坦性の観点からは(B-1)~(B-2)及び(B-4)で表されるものが好ましく、(B-4)で表されるものがより好ましい。
 耐熱性の観点からは、フェノール性水酸基の誘導体を有する芳香環のいずれか一つの炭素原子が芳香環同士の直接結合に関与することが好ましい。
 前記式(1B’’)で表される芳香族ヒドロキシ化合物の具体例を、以下に示すが、ここで列挙した限りではない。
Figure JPOXMLDOC01-appb-C000138
(Rは、式(1B’’)のRと同義である。)
 上記の他にも、さらなるエッチング耐性向上の観点から式(1B)の具体例として、下記B-5で表される芳香族ヒドロキシ化合物を使用することもできる。
Figure JPOXMLDOC01-appb-C000139
(式(B-5)中、Rは、式(1B’’)のRと同義であり、nは0~8の整数である。)
 本実施形態における多環ポリフェノール樹脂における繰り返し単位同士が直接結合する位置としては、特に限定されず、繰り返し単位が前記一般式(1A)で表されるものである場合には、フェノール性水酸基の誘導体及び他の置換基が結合していないいずれか一つの炭素原子がモノマー同士の直接結合に関与する。
 耐熱性の観点から、フェノール性水酸基の誘導体を有する芳香環のいずれか一つの炭素原子が芳香環同士の直接結合に関与することが好ましい。
[化合物群3]
 本実施形態の膜形成用組成物に含まれる多環ポリフェノール樹脂は、下記式(0A)で表される芳香族ヒドロキシ化合物からなる群より選ばれる少なくとも1種のモノマー由来の繰り返し単位を含む多環ポリフェノール樹脂であって、前記繰り返し単位同士が、芳香環同士の直接結合によって連結しているものであってもよい。この場合、「繰り返し単位同士が、芳香環同士の直接結合によって連結している」とは、多環ポリフェノール樹脂中の構成単位(0A)同士が、一方の構成単位(0A)中の括弧内に示されるアリール構造で示される芳香環上の炭素原子と、他方の構成単位(0A)中の括弧内に示されるアリール構造で示される芳香族上の炭素原子と単結合にて、即ち、炭素原子、酸素原子、硫黄原子など他の原子を介さずに、結合されていることを意味する。
 本実施形態の多環ポリフェノール樹脂は、このように構成されていることから、耐熱性、エッチング耐性などの性能において、より優れた性能を有する。
Figure JPOXMLDOC01-appb-C000140
(式(0A)中、Rは炭素数1~60の2n価の基又は単結合であり、Rは各々独立して、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基又は水酸基であり、ここで、Rの少なくとも1つは水酸基であり、mは各々独立して0~5の整数であり、nは各々独立して1~4の整数である。)
 以下、前述の式(0A)について詳細に説明する。
 式(0A)中、Rは炭素数1~60の2n価の基又は単結合である。
 炭素数1~60の2n価の基とは、例えば、2n価の炭化水素基であり、当該炭化水素基は、置換基として、後述する種々の官能基を有するものであってもよい。また、2n価の炭化水素基は、n=1のときには、炭素数1~60のアルキレン基、n=2のときには、炭素数1~60のアルカンテトライル基、n=3のときには、炭素数2~60のアルカンヘキサイル基、n=4のときには、炭素数3~60のアルカンオクタイル基のことを示す。該2n価の炭化水素基としては、例えば、2n+1価の炭化水素基と、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基とが結合した基等が挙げられる。ここで、脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
 2n+1価の炭化水素基としては、以下に限定されないが、例えば、3価のメチン基、エチン基等が挙げられる。
 また、前記2n価の炭化水素基は、二重結合、ヘテロ原子及び/又は炭素数6~59のアリール基を有していてもよい。なお、Rはフルオレンやベンゾフルオレン等のフルオレン骨格を有する化合物に由来する基を含んでいてもよい。
 本実施形態において、該2n価の基は、ハロゲン基、ニトロ基、アミノ基、水酸基、アルコキシ基、チオール基又は炭素数6~40のアリール基を含んでいてもよい。さらに、該2n価の基は、エーテル結合、ケトン結合、エステル結合又は二重結合を含んでいてもよい。
 本実施形態において2n価の基は、耐熱性の観点から、分岐状炭化水素基又は脂環式炭化水素基を含むことが好ましく、脂環式炭化水素基を含むことがより好ましい。また、本実施形態においては、2n価の基が炭素数6~60のアリール基を有することが特に好ましい。
 2n価の基に含まれ得る置換基であって、直鎖状の炭化水素基及び分岐状炭化水素基としては、特に限定されないが、例えば、無置換のメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ドデシル基、バレル基等が挙げられる。
 2n価の基に含まれ得る置換基であって、脂環式炭化水素基および炭素数6~60の芳香族基としては、特に限定されないが、例えば、無置換のフェニル基、ナフタレン基、ビフェニル基、アントラシル基、ピレニル基、シクロヘキシル基、シクロドデシル基、ジシクロペンチル基、トリシクロデシル基、アダマンチル基、フェニレン基、ナフタレンジイル基、ビフェニルジイル基、アントラセンジイル基、ピレンジイル基、シクロヘキサンジイル基、シクロドデカンジイル基、ジシクロペンタンジイル基、トリシクロデカンジイル基、アダマンタンジイル基、ベンゼントリイル基、ナフタレントリイル基、ビフェニルトリイル基、アントラセントリイル基、ピレントリイル基、シクロヘキサントリイル基、シクロドデカントリイル基、ジシクロペンタントリイル基、トリシクロデカントリイル基、アダマンタントリイル基、ベンゼンテトライル基、ナフタレンテトライル基、ビフェニルテトライル基、アントラセンテトライル基、ピレンテトライル基、シクロヘキサンテトライル基、シクロドデカンテトライル基、ジシクロペンタンテトライル基、トリシクロデカンテトライル基、アダマンタンテトライル基等が挙げられる。
 Rは各々独立して、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、置換基を有していてもよい炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基又は水酸基である。ここで、前記アルキル基は、直鎖状、分岐状又は環状のいずれであってもよい。
 ここで、Rの少なくとも1つは水酸基である。
 炭素数1~40のアルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ドデシル基、バレル基等が挙げられる。
 炭素数6~40のアリール基としては、以下に限定されないが、例えば、フェニル基、ナフタレン基、ビフェニル基、アントラシル基、ピレニル基、ペリレン基等が挙げられる。
 炭素数2~40のアルケニル基としては、以下に限定されないが、例えば、エチニル基、プロペニル基、ブチニル基、ペンチニル基等が挙げられる。
 炭素数2~40のアルキニル基としては、以下に限定されないが、例えば、アセチレン基、エチニル基等が挙げられる。
 炭素数1~40のアルコキシ基としては、以下に限定されないが、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ等が挙げられる。
 mは各々独立して0~5の整数である。mとしては、溶解性の観点から、0~3が好ましく、0~1がより好ましく、原料入手性の観点から、0が更に好ましい。
 nは各々独立して1~4の整数である。nとしては、溶解性の観点から、1~3が好ましく、1~2がより好ましく、1が更に好ましい。耐熱性の観点からは、2~4が好ましく、3~4がより好ましく、4が更に好ましい。
 本実施形態において、芳香族ヒドロキシ化合物は、上記式(0A)で表されるものを、単独で用いることもでき、また2種以上を共に用いることもできる。
 本実施形態において、上記式(0A)で表される芳香族ヒドロキシ化合物は、製造のし易さの観点から、下記式(1-0A)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000141
(式(1-0A)中、R、R、mは、前記式(0A)で説明したものと同義である。)
 本実施形態において、上記式(1-0A)で表される芳香族ヒドロキシ化合物は、製造のし易さの観点から、下記式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000142
(式(1)中、Rは前記式(1-0A)で説明したものと同義である。)
 上記式(0A)、式(1-0A)、式(1)において、高い耐熱性と溶解性とを両立する観点から、前記Rが、置換基を有していてもよい炭素数が6~40のアリール基を含むことが好ましい。本実施形態において、炭素数が6~40のアリール基としては、以下に限定されないが、例えば、ベンゼン環であってもよいし、ナフタレン、アントラセン、ナフタセン、ペンタセン、ベンゾピレン、クリセン、ピレン、トリフェニレン、コランニュレン、コロネン、オバレン、フルオレン、ベンゾフルオレン及びジベンゾフルオレン等の種々公知の縮合環であってもよい。本実施形態において、前記Rが、ナフタレン、アントラセン、ナフタセン、ペンタセン、ベンゾピレン、クリセン、ピレン、トリフェニレン、コランニュレン、コロネン、オバレン、フルオレン、ベンゾフルオレン及びジベンゾフルオレン等の種々の縮合環であることが耐熱性の観点から好ましい。また、Rが、ナフタレン、アントラセンであることが、ArF露光で使用する波長193nmにおけるn値、k値が低く、パターンの転写性に優れる傾向にあることから好ましい。また、上記Rは、上記した芳香族炭化水素環の他、ピリジン、ピロール、ピリダジン、チオフェン、イミダゾール、フラン、ピラゾール、オキサゾール、トリアゾール、チアゾ?ルまたはこれらのベンゾ縮環体などのヘテロ環が挙げられる。本実施形態において、上記Rは、芳香族炭化水素環、ヘテロ環であることが好ましく、より好ましくは芳香族炭化水素環である。
[0000]
 上記式(0A)、式(1-0A)、式(1)において、更なる高い耐熱性と溶解性とを両立する観点から、前記Rが、R-Rで表される基であり、ここで、当該Rはメチン基であり、当該Rは置換基を有していてもよい炭素数が6~40のアリール基であることがより好ましい。
 前記式(0A)、式(1-0A)、式(1)で表される芳香族ヒドロキシ化合物の具体例を、以下に示すが、本実施形態における芳香族ヒドロキシ化合物は以下に列挙した化合物に限定されない。
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
(式中、Rは各々独立して、水素原子、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、置換基を有していてもよい炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基又は水酸基である。ここで、前記アルキル基は、直鎖状、分岐状又は環状のいずれであってもよい。)
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
 本実施形態の多環ポリフェノール樹脂において「繰り返し単位同士が、芳香環同士の直接結合によって連結している」とは、一例として、多環ポリフェノール樹脂中の繰り返し単位(0A)同士が、一方の繰り返し単位(0A)の式中の括弧内にてアリール構造で示される芳香環上の炭素原子と、他方の繰り返し単位(0A)の式中の括弧内にてアリール構造で示される芳香族上の炭素原子とが、単結合にて、即ち、炭素原子、酸素原子、硫黄原子など他の原子を介さずに、直接結合されている態様が挙げられる。
 また、本実施形態には下記の態様を含んでもよい。
(1)一方の繰り返し単位(0A)にて、R及びRのいずれかがアリール基の場合(Rがアリール基を有する2n+1価の基である場合を含む)、当該アリール基の芳香環上の原子と、他方の繰り返し単位(0A)の式中の括弧内にてアリール構造で示される芳香環上の原子とが、単結合にて直接結合している態様
(2)一方及び他方の繰り返し単位(0A)にて、R及びRのいずれかがアリール基の場合(Rがアリール基を有する2n+1価の基である場合を含む)、一方及び他方の繰り返し単位(0A)間において、R及びRで示されるアリール基の芳香環上の原子同士が、単結合にて直接結合している態様
 本実施形態の多環ポリフェノール樹脂における繰り返し単位同士が直接結合する位置としては、特に限定されず、繰り返し単位が前記一般式(1-0A)で表されるものである場合には、フェノール性水酸基及び他の置換基が結合していないいずれか一つの炭素原子がモノマー同士の直接結合に関与する。
 耐熱性の観点から、フェノール性水酸基を有する芳香環のいずれか一つの炭素原子が芳香環同士の直接結合に関与することが好ましい。
 本実施形態の多環ポリフェノール樹脂は、用途に応じた性能を損なわない範囲において、フェノール性水酸基が縮合することにより形成されるエーテル結合を有する繰り返し単位を含んでいてもよい。またケトン構造を含んでいてもよい。
 本実施形態の多環ポリフェノール樹脂は、後述する組成物、多環ポリフェノール樹脂の製造方法、膜形成用組成物、レジスト組成物、レジストパターン形成方法、感放射線性組成物、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法、回路パターン形成方法、及び光学部材形成用組成物等のあらゆる用途への適用を想定し、耐熱性及びエッチング耐性をより高める観点から、本実施形態の多環ポリフェノール樹脂は、後述する実施例に記載のRBisN-1、RBisN-2、RBisN-3、RBisN-4、及びRBisN-5からなる群より選択される少なくとも一種であることがとりわけ好ましい。
 本実施形態の膜形成用組成物は、上記式(1-0)、(1A)、及び(1B)で表される芳香族ヒドロキシ化合物からなる群より選ばれる少なくとも1種のモノマーに由来する繰り返し単位を有する多環ポリフェノール樹脂を含む。本実施形態における多環ポリフェノール樹脂において、各繰返し単位の数と比は、特に限定されないが、用途や下記の分子量の値を考慮して適宜調整することが好ましい。
 本実施形態における多環ポリフェノール樹脂の重量平均分子量は、特に限定されないが、400~100000の範囲であることが好ましく、500~15000であることがより好ましく、3200~12000であることがさらに好ましい。
 重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、その用途に応じて求められる比も異なることから、特にその範囲が限定されるものではないが、より均質な分子量を有するものとして、例えば、好ましいものは3.0以下の範囲のものが挙げられ、より好ましいものは1.05以上3.0以下の範囲のものが挙げられ、特に好ましいものとして1.05以上2.0未満のものが挙げられ、耐熱性の観点から一層好ましいものとして1.05以上1.5未満のものが挙げられる。
 本実施形態における多環ポリフェノール樹脂における繰り返し単位同士が直接結合する位置としては、特に限定されず、繰り返し単位が前記一般式(1-0)で表されるものである場合には、フェノール性水酸基及び他の置換基が結合していないいずれか一つの炭素原子がモノマー同士の直接結合に関与する。
 耐熱性の観点から、フェノール性水酸基を有する芳香環のいずれか一つの炭素原子が芳香環同士の直接結合に関与することが好ましい。
 本実施形態における多環ポリフェノール樹脂は、用途に応じた性能を損なわない範囲において、フェノール性水酸基が縮合することにより形成されるエーテル結合を有する繰り返し単位を含んでいてもよい。またケトン構造を含んでいてもよい。
 本実施形態における多環ポリフェノール樹脂は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、本実施形態における多環ポリフェノール樹脂は、プロピレングリコールモノメチルエーテル(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、23℃の温度下で当該溶媒に対する溶解度が1質量%以上であることが好ましく、より好ましくは5質量%以上であり、さらに好ましくは10質量%以上である。ここで、PGME及び/又はPGMEAに対する溶解度は、「樹脂の質量÷(樹脂の質量+溶媒の質量)×100(質量%)」と定義される。例えば、多環ポリフェノール樹脂10gがPGMEA90gに対して溶解すると評価されるのは、多環ポリフェノール樹脂のPGMEAに対する溶解度が「10質量%以上」となる場合であり、溶解しないと評価されるのは、当該溶解度が「10質量%未満」となる場合である。
[多環ポリフェノールの製造方法]
 本実施形態における多環ポリフェノール樹脂の製造方法としては、以下に限定されないが、例えば、1種又は2種以上の前記芳香族ヒドロキシ化合物を酸化剤の存在下で重合させる工程を含むものとすることができる。
 かかる工程を実施するに際しては、K. Matsumoto, Y. Shibasaki, S. Ando and M. Ueda, Polymer, 47, 3043 (2006)の内容を適宜参照することができる。すなわち、β-ナフトール型モノマーの酸化重合においては、そのモノマーに起因して一電子酸化されたラジカルがカップリングする酸化カップリング反応により、α-位のC-Cカップリングが選択的に生じるとされており、例えば、銅/ジアミン型触媒を用いることで、位置選択的重合を行うことができる。
 本実施形態における酸化剤としては、酸化カップリング反応を生ずるものであれば特に限定されないが、銅、マンガン、鉄、コバルト、ルテニウム、鉛、ニッケル、銀、スズ、クロム若しくはパラジウムなどを含有する金属塩類、過酸化水素または過塩素酸類などの過酸化物、有機過酸化物が用いられる。これらの中でも銅、マンガン、鉄若しくはコバルトを含有する金属塩類又は金属錯体を好ましく用いることができる。
 銅、マンガン、鉄、コバルト、ルテニウム、鉛、ニッケル、銀、スズ、クロム若しくはパラジウムなどの金属は、反応系中で還元することにより酸化剤として使用することもできる。これらは金属塩類に含まれる。
 例えば、一般式(1-0)、(1A)、及び(1B)で表される芳香族ヒドロキシ化合物を有機溶媒に溶解させ、さらに銅、マンガン又はコバルトを含有する金属塩類を添加し、例えば酸素又は酸素含有気体と反応させて酸化重合することにより、所望の多環ポリフェノール樹脂を得ることができる。
 上記のような酸化重合による多環ポリフェノール樹脂の製造方法によれば、分子量制御が比較的容易であり、高分子量化に伴う原料モノマーや低分子成分を残さずに分子量分布の小さい樹脂を得ることができるため、高耐熱性や低昇華物の観点から優位となる傾向にある。
 金属塩類としては、銅、マンガン、コバルト、ルテニウム、クロム、パラジウムなどのハロゲン化物、炭酸塩、酢酸塩、硝酸塩若しくはリン酸塩を用いることができる。
 金属錯体としては、特に限定されず、公知のものを用いることができ。その具体例としては、以下に限定されないが、銅を含有する錯体触媒は、特公昭36-18692号、同40-13423号、特開昭49-490号等各公報に記載の触媒が挙げられ、マンガンを含有する錯体触媒は、特公昭40-30354号、同47-5111号、特開昭56-32523号、同57-44625号、同58-19329号、同60-83185号等各公報に記載の触媒が挙げられ、コバルトを含有する錯体触媒は、特公昭45-23555号公報に記載の触媒が挙げられる。
 有機過酸化物の例としては、以下に限定されないが、t-ブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、過酢酸、過安息香酸等を示すことができる。
 上記酸化剤は、単独でまたは混合して用いることができる。これらの使用量は特に限定されないが、芳香族ヒドロキシ化合物1モルに対して0.002モルから10モルであることが好ましく、より好ましくは0.003モルから3モルであり、さらに好ましくは0.005モルから0.3モルである。すなわち、本実施形態における酸化剤は、モノマーに対して低濃度で使用できる。
 本実施形態においては、酸化重合する工程で用いられる酸化剤の他に塩基を使用することが好ましい。塩基としては、特に限定されず、公知のものを用いることができ、その具体例としては、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、アルカリ金属のアルコキサイドなどの無機塩基や、1級~3級モノアミン化合物、ジアミンなどの有機塩基であってもよい。それぞれ単独で又は組み合わせて使用することができる。
 酸化の方法については、特に限定されず、直接酸素ガスあるいは空気を使用する方法があるが、安全性およびコスト面からは空気酸化が好ましい。大気圧下で空気を用いて酸化する場合、酸化重合の速度向上および樹脂の高分子量化の観点から反応溶媒中において、液中へのバブリングによって空気を導入する方法が好ましい。
 また、本実施形態の酸化反応は加圧下での反応とすることも可能であり、反応促進の観点から2kg/cm~15kg/cmが好ましく、安全面と制御性の観点から3kg/cm~10kg/cmがさらに好ましい。
 本実施形態において、芳香族ヒドロキシ化合物の酸化反応は反応溶媒の不存在下においても行うことができるが、一般には溶媒の存在下に反応を行うことが好ましい。溶媒は、本実施形態における多環ポリフェノール樹脂を得る上で支障が無い限り、触媒をある程度溶解するものであれば種々公知の溶媒が使用できる。一般的には、メタノール、エタノール、プロパノール、ブタノールなどアルコール類、ジオキサン、テトラヒドロフランまたはエチレングリコールジメチルエーテルなどのエーテル類;アミド類またはニトリル類などの溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノンなどのケトン類;またはそれらと水とを混合して用いられる。また、水と混ざらないベンゼン、トルエンもしくはヘキサンなどの炭化水素類またはそれらと水との2相系で反応を行うことができる。
 また、反応条件は、基質濃度、酸化剤の種類及び濃度に応じて適宜調整すればよいが、反応温度は比較的低温に設定することができ、5~150℃とすることが好ましく、20~120℃とすることがより好ましい。反応時間は30分~24時間が好ましく、1時間~20時間がより好ましい。また、反応時の撹拌方法は特に限定されず、振盪、回転子又は攪拌翼を用いた攪拌のいずれでもよい。本工程は、前記の条件を満たす攪拌条件であれば、溶媒中又は気流中のいずれでもよい。
 本実施形態における多環ポリフェノール樹脂は、上記した酸化反応によって粗体として得た後、さらに精製を実施することにより、残留する酸化剤を除去することが好ましい。すなわち、経時的な樹脂の変質の防止及び保存安定性の観点から、酸化剤に由来する金属酸化剤として主に使用される銅、マンガン、鉄若しくはコバルトを含有する金属塩類又は金属錯体などの残留を避けることが好ましい。
 膜形成用組成物中の前記酸化剤由来の金属残留量としては、それぞれ10ppm未満であることが好ましく、1ppm未満であることがより好ましく、500ppb未満であることがさらに好ましい。10ppm以上であると、樹脂の変質に起因する、溶液中における樹脂の溶解度の低下を防止できる傾向にあり、溶液の濁度(ヘーズ)の増加も防止できる傾向にある。一方、500ppb未満であることにより、溶液形態においても、保存安定性が損なわれることなく使用できる傾向にある。このように、本実施形態においては、膜形成用組成物中の不純物金属の含有量が金属種毎に500ppb未満であることがとりわけ好ましく、10ppb以下であることがさらに好ましく、1ppb以下であることが特に好ましい。
 不純物金属としては、特に限定されないが、例えば、銅、マンガン、鉄、コバルト、ルテニウム、クロム、ニッケル、スズ、鉛、銀及びパラジウムからなる群より選択される少なくとも1種が挙げられる。
 精製方法としては、特に限定はされないが、多環ポリフェノール樹脂を、溶媒に溶解させて溶液(S)を得る工程と、得られた溶液(S)と酸性の水溶液とを接触させて、前記樹脂中の不純物を抽出する工程(第一抽出工程)とを含み、前記溶液(S)を得る工程で用いる溶媒が、水と任意に混和しない有機溶媒を含む。
 前記精製方法によれば、樹脂に不純物として含まれ得る種々の金属の含有量を低減することができる。
 より詳細には、前記樹脂を、水と任意に混和しない有機溶媒に溶解させて溶液(S)を得て、さらにその溶液(S)を酸性水溶液と接触させて抽出処理を行うことができる。これにより、上記溶液(S)に含まれる金属分を水相に移行させたのち、有機相と水相とを分離して金属含有量の低減された樹脂を得ることができる。
 上記精製方法で使用される水と任意に混和しない溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましく、具体的には、室温下における水への溶解度が30%未満である有機溶媒であり、より好ましくは20%未満であり、特に好ましくは10%未満である有機溶媒が好ましい。当該有機溶媒の使用量は、使用する樹脂の合計量に対して、1~100質量倍であることが好ましい。
 水と任意に混和しない溶媒の具体例としては、以下に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類、酢酸エチル、酢酸n‐ブチル、酢酸イソアミル等のエステル類、メチルエチルケトン、メチルイソブチルケトン、エチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2‐ヘプタノン、2-ペンタノン等のケトン類;エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート類;n‐ヘキサン、n‐ヘプタン等の脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類等が挙げられる。これらの中でも、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等が好ましく、メチルイソブチルケトン、酢酸エチル、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートがより好ましく、メチルイソブチルケトン、酢酸エチルがよりさらに好ましい。メチルイソブチルケトン、酢酸エチル等は、多環ポリフェノール樹脂の飽和溶解度が比較的高く、沸点が比較的低いことから、工業的に溶媒を留去する場合や乾燥により除去する工程での負荷を低減することが可能となる。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
 上記精製方法で使用される酸性の水溶液としては、一般に知られる有機系化合物若しくは無機系化合物を水に溶解させた水溶液の中から適宜選択される。以下に限定されないが、例えば、塩酸、硫酸、硝酸、リン酸等の鉱酸を水に溶解させた鉱酸水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸等の有機酸を水に溶解させた有機酸水溶液が挙げられる。これら酸性の水溶液は、それぞれ単独で用いることもできるし、また2種以上を組み合わせて用いることもできる。これら酸性の水溶液の中でも、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液であることが好ましく、硫酸、硝酸、及び酢酸、蓚酸、酒石酸、クエン酸等のカルボン酸の水溶液がより好ましく、硫酸、蓚酸、酒石酸、クエン酸の水溶液がさらに好ましく、蓚酸の水溶液がよりさらに好ましい。蓚酸、酒石酸、クエン酸等の多価カルボン酸は金属イオンに配位し、キレート効果が生じるために、より効果的に金属を除去できる傾向にあるものと考えられる。また、ここで用いる水は、本実施形態における精製方法の目的に沿って、金属含有量の少ない水、例えばイオン交換水等を用いることが好ましい。
 上記精製方法で使用する酸性の水溶液のpHは特に限定されないが、上記樹脂への影響を考慮し、水溶液の酸性度を調整することが好ましい。通常、pH範囲は0~5程度であり、好ましくはpH0~3程度である。
 上記精製方法で使用する酸性の水溶液の使用量は特に限定されないが、金属除去のための抽出回数を低減する観点及び全体の液量を考慮して操作性を確保する観点から、当該使用量を調整することが好ましい。上記観点から、酸性の水溶液の使用量は、上記溶液(S)100質量%に対して、好ましくは10~200質量%であり、より好ましくは20~100質量%である。
 上記精製方法においては、上記酸性の水溶液と、上記溶液(S)とを接触させることにより、溶液(S)中の上記樹脂から金属分を抽出することができる。
 上記精製方法においては、上記溶液(S)が、さらに水と任意に混和する有機溶媒を含むこともできる。水と任意に混和する有機溶媒を含む場合、上記樹脂の仕込み量を増加させることができ、また、分液性が向上し、高い釜効率で精製を行うことができる傾向にある。水と任意に混和する有機溶媒を加える方法は特に限定されない。例えば、予め有機溶媒を含む溶液に加える方法、予め水又は酸性の水溶液に加える方法、有機溶媒を含む溶液と水又は酸性の水溶液とを接触させた後に加える方法のいずれでもよい。これらの中でも、予め有機溶媒を含む溶液に加える方法が操作の作業性や仕込み量の管理のし易さの点で好ましい。
 上記精製方法で使用される水と任意に混和する有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。水と任意に混和する有機溶媒の使用量は、溶液相と水相とが分離する範囲であれば特に限定されないが、使用する樹脂の合計量に対して、0.1~100質量倍であることが好ましく、0.1~50質量倍であることがより好ましく、0.1~20質量倍であることがさらに好ましい。
 上記精製方法において使用される水と任意に混和する有機溶媒の具体例としては、以下に限定されないが、テトラヒドロフラン、1,3-ジオキソラン等のエーテル類;メタノール、エタノール、イソプロパノール等のアルコール類;アセトン、N-メチルピロリドン等のケトン類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のグリコールエーテル類等の脂肪族炭化水素類が挙げられる。これらの中でも、N-メチルピロリドン、プロピレングリコールモノメチルエーテル等が好ましく、N-メチルピロリドン、プロピレングリコールモノメチルエーテルがより好ましい。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
 抽出処理を行う際の温度は通常、20~90℃であり、好ましくは30~80℃の範囲である。抽出操作は、例えば、撹拌等により、よく混合させたあと、静置することにより行われる。これにより、溶液(S)中に含まれていた金属分が水相に移行する。また、本操作により、溶液の酸性度が低下し、上記樹脂の変質を抑制することができる。
 上記混合溶液は静置により、樹脂と溶媒とを含む溶液相と、水相とに分離するので、デカンテーション等により、溶液相を回収する。静置する時間は特に限定されないが、溶媒を含む溶液相と水相との分離をより良好にする観点から、当該静置する時間を調整することが好ましい。通常、静置する時間は1分以上であり、好ましくは10分以上であり、より好ましくは30分以上である。また、抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。
 上記精製方法において、第一抽出工程後、上記樹脂を含む溶液相を、さらに水に接触させて、上記樹脂中の不純物を抽出する工程(第二抽出工程)を含むことが好ましい。具体的には、例えば、酸性の水溶液を用いて上記抽出処理を行った後に、該水溶液から抽出され、回収された樹脂と溶媒を含む溶液相を、さらに水による抽出処理に供することが好ましい。上記の水による抽出処理は、特に限定されないが、例えば、上記溶液相と水とを、撹拌等により、よく混合させたあと、得られた混合溶液を、静置することにより行うことができる。当該静置後の混合溶液は、上記樹脂と溶媒とを含む溶液相と、水相とに分離するのでデカンテーション等により、溶液相を回収することができる。
 また、ここで用いる水は、本実施形態の目的に沿って、金属含有量の少ない水、例えば、イオン交換水等であることが好ましい。抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に限定されないが、先の酸性の水溶液との接触処理の場合と同様で構わない。
 こうして得られた樹脂と溶媒とを含む溶液に混入しうる水分については、減圧蒸留等の操作を施すことにより容易に除去できる。また、必要により上記溶液に溶媒を加え、樹脂の濃度を任意の濃度に調整することができる。
 本実施形態に係る多環ポリフェノール樹脂の精製方法は、前記樹脂を溶媒に溶解させた溶液をフィルターに通液することにより精製することもできる。
 本実施形態に係る物質の精製方法によれば、上記樹脂中の種々の金属分の含有量を効果的に著しく低減することができる。これらの金属成分量は後述する実施例に記載の方法で測定することができる。
 なお、本実施形態における「通液」とは、上記溶液がフィルターの外部から当該フィルターの内部を通過して再度フィルターの外部へと移動することを意味し、例えば、上記溶液を単にフィルターの表面で接触させる態様や、上記溶液を当該表面上で接触させつつイオン交換樹脂の外部で移動させる態様(すなわち、単に接触する態様)は除外される。
[フィルター精製工程(通液工程)]
 本実施形態におけるフィルター通液工程において、前記樹脂と溶媒とを含む溶液中の金属分の除去に用いられるフィルターは、通常、液体ろ過用として市販されているものを使用することができる。フィルターの濾過精度は特に限定されないが、フィルターの公称孔径は0.2μm以下であることが好ましく、より好ましくは0.2μm未満であり、さらに好ましくは0.1μm以下であり、よりさらに好ましくは0.1μm未満であり、一層好ましくは0.05μm以下である。また、フィルターの公称孔径の下限値は、特に限定されないが、通常、0.005μmである。ここでいう公称孔径とは、フィルターの分離性能を示す名目上の孔径であり、例えば、バブルポイント試験、水銀圧入法試験、標準粒子補足試験など、フィルターの製造元により決められた試験法により決定される孔径である。市販品を用いた場合、製造元のカタログデータに記載の値である。公称孔径を0.2μm以下にすることで、溶液を1回フィルターに通液させた後の金属分の含有量を効果的に低減することができる。本実施形態においては、溶液の各金属分の含有量をより低減させるために、フィルター通液工程を2回以上行ってもよい。
 フィルターの形態としては、中空糸膜フィルター、メンブレンフィルター、プリーツ膜フィルター、並びに不織布、セルロース、及びケイソウ土などの濾材を充填したフィルターなどを用いることができる。上記した中でも、フィルターが、中空糸膜フィルター、メンブレンフィルター及びプリーツ膜フィルターからなる群より選ばれる1種以上であることが好ましい。また、特に高精細な濾過精度と他の形態と比較した濾過面積の高さから、中空糸膜フィルターを用いることが特に好ましい。
 前記フィルターの材質は、ポリエチレン、ポリプロピレン等のポリオレフィン、グラフト重合によるイオン交換能を有する官能基を施したポリエチレン系樹脂、ポリアミド、ポリエステル、ポリアクリロニトリルなどの極性基含有樹脂、フッ化ポリエチレン(PTFE)などのフッ素含有樹脂を挙げることができる。上記した中でも、フィルターの濾材が、ポリアミド製、ポレオレフィン樹脂製及びフッ素樹脂製からなる群より選ばれる1種以上であることが好ましい。また、クロム等の重金属の低減効果の観点からポリアミドが特に好ましい。なお、濾材からの金属溶出を避ける観点から、焼結金属材質以外のフィルターを用いることが好ましい。
 ポリアミド系フィルターとしては(以下、商標)、以下に限定されないが、例えば、キッツマイクロフィルター(株)製のポリフィックスナイロンシリーズ、日本ポール(株)製のウルチプリーツP-ナイロン66、ウルチポアN66、スリーエム(株)製のライフアシュアPSNシリーズ、ライフアシュアEFシリーズなどを挙げることができる。
 ポリオレフィン系フィルターとしては、以下に限定されないが、例えば、日本ポール(株)製のウルチプリーツPEクリーン、イオンクリーン、日本インテグリス(株)製のプロテゴシリーズ、マイクロガードプラスHC10、オプチマイザーD等を挙げることができる。
 ポリエステル系フィルターとしては、以下に限定されないが、例えば、セントラルフィルター工業(株)製のジェラフローDFE、日本フィルター(株)製のブリーツタイプPMC等を挙げることができる。
 ポリアクリロニトリル系フィルターとしては、以下に限定されないが、例えば、アドバンテック東洋(株)製のウルトラフィルターAIP-0013D、ACP-0013D、ACP-0053D等を挙げることができる。
 フッ素樹脂系フィルターとしては、以下に限定されないが、例えば、日本ポール(株)製のエンフロンHTPFR、スリーエム(株)製のライフシュアFAシリーズ等を挙げることができる。
 これらのフィルターはそれぞれ単独で用いても2種類以上を組み合わせて用いてもよい。
 また、上記フィルターには陽イオン交換樹脂などのイオン交換体や、濾過される有機溶媒溶液にゼータ電位を生じさせるカチオン電荷調節剤などが含まれていてもよい。
 イオン交換体を含むフィルターとして、以下に限定されないが、例えば、日本インテグリス(株)製のプロテゴシリーズ、倉敷繊維加工(株)製のクラングラフト等を挙げることができる。
 また、ポリアミドポリアミンエピクロロヒドリンカチオン樹脂などの正のゼータ電位を有する物質を含むフィルターとしては(以下、商標)、以下に限定されないが、例えば、スリーエム(株)製ゼータプラス40QSHやゼータプラス020GN、あるいはライフアシュアEFシリーズ等が挙げられる。
 得られた樹脂と溶媒とを含む溶液から、樹脂を単離する方法は、特に限定されず、減圧除去、再沈殿による分離、及びそれらの組み合わせ等、公知の方法で行うことができる。必要に応じて、濃縮操作、ろ過操作、遠心分離操作、乾燥操作等の公知の処理を行うことができる。
 本実施形態における多環ポリフェノール樹脂は、架橋反応性のある化合物に由来する変性部分をさらに有していてもよい。すなわち、前述した構造を有する本実施形態における多環ポリフェノール樹脂は、架橋反応性のある化合物との反応によって得られる変性部分を有していてもよい。このような(変性)多環ポリフェノール樹脂も、耐熱性、耐エッチング性に優れており、半導体用のコーティング剤、レジスト用材料、半導体下層膜形成材料として使用可能である。
 架橋反応性のある化合物としては、以下に限定されないが、例えば、アルデヒド類、メチロール類、メチルハライド類、ケトン類、カルボン酸類、カルボン酸ハライド類、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート化合物、不飽和炭化水素基含有化合物等が挙げられる。これらは単独で用いることもできるし適宜複数を併用することもできる。
 本実施形態において、架橋反応性のある化合物は、アルデヒド類、メチロール類又はケトン類であることが好ましい。より詳細には、前述した構造を有する本実施形態における多環ポリフェノール樹脂に対して、アルデヒド類、メチロール類又はケトン類とを、触媒の存在下で重縮合反応させることによって得られる多環ポリフェノール樹脂であることが好ましい。例えば、常圧下、必要に応じて加圧下において、所望とする構造に対応するアルデヒド類、メチロール類又はケトン類とを触媒下にてさらに重縮合反応させることによって、ノボラック型の多環ポリフェノール樹脂を得ることができる。
 前記アルデヒド類としては、例えば、メチルベンズアルデヒド、ジメチルベンズアルデヒド、トリメチルベンズアルデヒド、エチルベンズアルデヒド、プロピルベンズアルデヒド、ブチルベンズアルデヒド、ペンタベンズアルデヒド、ブチルメチルベンズアルデヒド、ヒドロキシベンズアルデヒド、ジヒドロキシベンズアルデヒド、フロロメチルベンズアルデヒド等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、メチルベンズアルデヒド、ジメチルベンズアルデヒド、トリメチルベンズアルデヒド、エチルベンズアルデヒド、プロピルベンズアルデヒド、ブチルベンズアルデヒド、ペンタベンズアルデヒド、ブチルメチルベンズアルデヒド等を用いることが、高い耐熱性を与える観点から好ましい。
 前記ケトン類としては、例えば、アセチルメチルベンゼン、アセチルジメチルベンゼン、アセチルトリメチルベンゼン、アセチルエチルベンゼン、アセチルプロピルベンゼン、アセチルブチルベンゼン、アセチルペンタベンゼン、アセチルブチルメチルベンゼン、アセチルヒドロキシベンゼン、アセチルジヒドロキシベンゼン、アセチルフロロメチルベンゼン等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、アセチルメチルベンゼン、アセチルジメチルベンゼン、アセチルトリメチルベンゼン、アセチルエチルベンゼン、アセチルプロピルベンゼン、アセチルブチルベンゼン、アセチルペンタベンゼン、アセチルブチルメチルベンゼンを用いることが、高い耐熱性を与える観点から好ましい。
 前記反応に用いる触媒については、公知のものから適宜選択して用いることができ、特に限定されない。触媒としては、酸触媒や塩基触媒が好適に使用される。
 このような酸触媒としては、無機酸や有機酸が広く知られている。上記酸触媒の具体例としては、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸;ケイタングステン酸、リンタングステン酸、ケイモリブデン酸、リンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらのなかでも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることが好ましい。
 このような塩基触媒としては、アミン含有触媒の例は、ピリジンおよびエチレンジアミンであり、非アミンの塩基性触媒の例は金属塩および特にカリウム塩または酢酸塩が好ましく、適している触媒としては、限定されないが、酢酸カリウム、炭酸カリウム、水酸化カリウム、酢酸ナトリウム、炭酸ナトリウム、水酸化ナトリウムおよび酸化マグネシウムが挙げられる。
 本発明の非アミンの塩基触媒はすべて、例えば、EMサイエンス社(EMScience)またはアルドリッチ社(Aldrich)から市販されている。
 なお、触媒については、1種を単独で、又は2種以上を組み合わせて用いることができる。また、触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.001~100質量部であることが好ましい。
 前記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、用いるアルデヒド類或いはメチロール類と多環ポリエノール樹脂との反応が進行するものであれば、特に限定されず、公知のものの中から適宜選択して用いることができるが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル又はこれらの混合溶媒等が例示される。なお、溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。また、これらの溶媒の使用量は、使用する原料及び使用する酸触媒の種類、さらには反応条件などに応じて適宜設定できる。上記溶媒の使用量としては、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、上記反応における反応温度は、反応原料の反応性に応じて適宜選択することができる。上記反応温度としては、特に限定されないが、通常10~200℃の範囲であることが好ましい。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、本実施形態における多環ポリフェノール樹脂、アルデヒド類或いはメチロール類、酸触媒を一括で仕込む方法や、アルデヒド類或いはケトン類を酸触媒存在下で滴下していく方法がある。重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や酸触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物である化合物を得ることができる。
 本実施形態における多環ポリフェノール樹脂は、種々の用途を想定し、組成物として使用することができる。すなわち、本実施形態の組成物は、本実施形態における多環ポリフェノール樹脂を含む。本実施形態の組成物は、湿式プロセスの適用によって膜形成が容易になる等の観点から、溶媒をさらに含むことが好ましい。
 溶媒の具体例としては、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒;乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒;メタノール、エタノール、イソプロパノール、1-エトキシ-2-プロパノール等のアルコール系溶媒;トルエン、キシレン、アニソール等の芳香族系炭化水素等が挙げられる。これらの溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
 上記溶媒の中で、安全性の点から、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、シクロペンタノン、乳酸エチル及びヒドロキシイソ酪酸メチルが特に好ましい。
 溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、本実施形態における多環ポリフェノール樹脂100質量部に対して、100~10,000質量部であることが好ましく、200~5,000質量部であることがより好ましく、200~1,000質量部であることがさらに好ましい。
[膜形成用組成物の用途]
 本実施形態の膜形成用組成物は、上述した多環ポリフェノール樹脂を含有するものであるが、その具体的な用途に応じて様々な組成とすることができ、その用途ないし組成に応じ、以下では「レジスト組成物」、「感放射線性組成物」、「リソグラフィー用下層膜形成用組成物」と称する場合がある。
[レジスト組成物]
 本実施形態のレジスト組成物は、本実施形態の膜形成用組成物からなる。すなわち、本実施形態のレジスト組成物は、本実施形態における多環ポリフェノール樹脂を必須成分として含有するものであり、レジスト材料として用いられることを考慮し、種々の任意成分をさらに含有することができる。具体的には、本実施形態のレジスト組成物は、溶媒、酸発生剤及び酸拡散制御剤からなる群より選択される少なくとも1つをさらに含有することが好ましい。
(溶媒)
 また、本実施形態のレジスト組成物が含みうる溶媒としては、特に限定されず、種々公知の有機溶媒を用いることができる。例えば、国際公開第2013/024778号に記載のものを用いることができる。これらの溶媒は、単独で又は2種以上を使用することができる。
 本実施形態で使用される溶媒は、安全溶媒であることが好ましく、より好ましくは、PGMEA(プロピレングリコールモノメチルエーテルアセテート)、PGME(プロピレングリコールモノメチルエーテル)、CHN(シクロヘキサノン)、CPN(シクロペンタノン)、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルから選ばれる少なくとも1種であり、さらに好ましくはPGMEA、PGME及びCHNから選ばれる少なくとも一種である。
 本実施形態において固形成分(本実施形態のレジスト組成物において溶媒以外の成分)の量と溶媒との量は、特に限定されないが、固形成分の量と溶媒との合計質量100質量%に対して、固形成分1~80質量%及び溶媒20~99質量%であることが好ましく、より好ましくは固形成分1~50質量%及び溶媒50~99質量%、さらに好ましくは固形成分2~40質量%及び溶媒60~98質量%であり、特に好ましくは固形成分2~10質量%及び溶媒90~98質量%である。
(酸発生剤(C))
 本実施形態のレジスト組成物において、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線及びイオンビームから選ばれるいずれかの放射線の照射により直接的又は間接的に酸を発生する酸発生剤(C)を一種以上含むことが好ましい。酸発生剤(C)は、特に限定されないが、例えば、国際公開第2013/024778号に記載のものを用いることができる。酸発生剤(C)は、単独で又は2種以上を使用することができる。
 酸発生剤(C)の使用量は、固形成分全重量の0.001~49質量%が好ましく、1~40質量%がより好ましく、3~30質量%がさらに好ましく、10~25質量%が特に好ましい。上記範囲内で使用することにより、高感度でかつ低エッジラフネスのパターンプロファイルが得られる。本実施形態では、系内に酸が発生すれば、酸の発生方法は限定されない。g線、i線などの紫外線の代わりにエキシマレーザーを使用すれば、より微細加工が可能であるし、また高エネルギー線として電子線、極端紫外線、X線、イオンビームを使用すればさらに微細加工が可能である。
(酸架橋剤(G))
 本実施形態において、酸架橋剤(G)を一種以上含むことが好ましい。酸架橋剤(G)とは、酸発生剤(C)から発生した酸の存在下で、多環ポリフェノール樹脂を分子内又は分子間架橋し得る化合物である。このような酸架橋剤(G)としては、例えば多環ポリフェノール樹脂を架橋し得る1種以上の基(以下、「架橋性基」という。)を有する化合物を挙げることができる。
 このような架橋性基としては、特に限定されないが、例えば(i)ヒドロキシ(C1-C6アルキル基)、C1-C6アルコキシ(C1-C6アルキル基)、アセトキシ(C1-C6アルキル基)等のヒドロキシアルキル基又はそれらから誘導される基;(ii)ホルミル基、カルボキシ(C1-C6アルキル基)等のカルボニル基又はそれらから誘導される基;(iii)ジメチルアミノメチル基、ジエチルアミノメチル基、ジメチロールアミノメチル基、ジエチロールアミノメチル基、モルホリノメチル基等の含窒素基含有基;(iv)グリシジルエーテル基、グリシジルエステル基、グリシジルアミノ基等のグリシジル基含有基;(v)ベンジルオキシメチル基、ベンゾイルオキシメチル基等の、C1-C6アリルオキシ(C1-C6アルキル基)、C1-C6アラルキルオキシ(C1-C6アルキル基)等の芳香族基から誘導される基;(vi)ビニル基、イソプロペニル基等の重合性多重結合含有基等を挙げることができる。本実施形態における酸架橋剤(G)の架橋性基としては、ヒドロキシアルキル基、及びアルコキシアルキル基等が好ましく、特にアルコキシメチル基が好ましい。
 上記架橋性基を有する酸架橋剤(G)としては、特に限定されないが、例えば、国際公開第2013/024778号に記載のものを用いることができる。酸架橋剤(G)は単独で又は2種以上を使用することができる。
 本実施形態において酸架橋剤(G)の使用量は、固形成分全重量の0.5~49質量%が好ましく、0.5~40質量%がより好ましく、1~30質量%がさらに好ましく、2~20質量%が特に好ましい。上記酸架橋剤(G)の配合割合を0.5質量%以上とすると、レジスト膜のアルカリ現像液に対する溶解性の抑制効果を向上させ、残膜率が低下したり、パターンの膨潤や蛇行が生じたりするのを抑制することができるので好ましく、一方、50質量%以下とすると、レジストとしての耐熱性の低下を抑制できることから好ましい。
(酸拡散制御剤(E))
 本実施形態においては、放射線照射により酸発生剤から生じた酸のレジスト膜中における拡散を制御して、未露光領域での好ましくない化学反応を阻止する作用等を有する酸拡散制御剤(E)をレジスト組成物に配合してもよい。この様な酸拡散制御剤(E)を使用することにより、レジスト組成物の貯蔵安定性が向上する。また解像度が向上するとともに、放射線照射前の引き置き時間、放射線照射後の引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れたものとなる。このような酸拡散制御剤(E)としては、特に限定されないが、例えば、窒素原子含有塩基性化合物、塩基性スルホニウム化合物、塩基性ヨードニウム化合物等の放射線分解性塩基性化合物が挙げられる。
 上記酸拡散制御剤(E)としては、特に限定されないが、例えば、国際公開第2013/024778号に記載のものを用いることができる。酸拡散制御剤(E)は、単独で又は2種以上を使用することができる。
 酸拡散制御剤(E)の配合量は、固形成分全重量の0.001~49質量%が好ましく、0.01~10質量%がより好ましく、0.01~5質量%がさらに好ましく、0.01~3質量%が特に好ましい。上記範囲内であると、解像度の低下、パターン形状、寸法忠実度等の劣化を防止することができる。さらに、電子線照射から放射線照射後加熱までの引き置き時間が長くなっても、パターン上層部の形状が劣化することがない。また、配合量が10質量%以下であると、感度、未露光部の現像性等の低下を防ぐことができる。またこの様な酸拡散制御剤を使用することにより、レジスト組成物の貯蔵安定性が向上し、また解像度が向上するとともに、放射線照射前の引き置き時間、放射線照射後の引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れたものとなる。
(その他の成分(F))
 本実施形態のレジスト組成物には、その他の成分(F)として、必要に応じて、溶解促進剤、溶解制御剤、増感剤、界面活性剤及び有機カルボン酸又はリンのオキソ酸若しくはその誘導体等の各種添加剤を1種又は2種以上添加することができる。
(溶解促進剤)
 低分子量溶解促進剤は、本実施形態における多環ポリフェノール樹脂の現像液に対する溶解性が低すぎる場合に、その溶解性を高めて、現像時の上記化合物の溶解速度を適度に増大させる作用を有する成分であり、必要に応じて、使用することができる。上記溶解促進剤としては、例えば、低分子量のフェノール性化合物を挙げることができ、例えば、ビスフェノール類、トリス(ヒドロキシフェニル)メタン等を挙げることができる。これらの溶解促進剤は、単独で又は2種以上を混合して使用することができる。
 溶解促進剤の配合量は、使用する上記化合物の種類に応じて適宜調節されるが、固形成分全重量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%が特に好ましい。
(溶解制御剤)
 溶解制御剤は、本実施形態における多環ポリフェノール樹脂の現像液に対する溶解性が高すぎる場合に、その溶解性を制御して現像時の溶解速度を適度に減少させる作用を有する成分である。このような溶解制御剤としては、レジスト被膜の焼成、放射線照射、現像等の工程において化学変化しないものが好ましい。
 溶解制御剤としては、特に限定されないが、例えば、フェナントレン、アントラセン、アセナフテン等の芳香族炭化水素類;アセトフェノン、ベンゾフェノン、フェニルナフチルケトン等のケトン類;メチルフェニルスルホン、ジフェニルスルホン、ジナフチルスルホン等のスルホン類等を挙げることができる。これらの溶解制御剤は、単独で又は2種以上を使用することができる。
 溶解制御剤の配合量は、使用する上記化合物の種類に応じて適宜調節されるが、固形成分全重量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%が特に好ましい。
(増感剤)
 増感剤は、照射された放射線のエネルギーを吸収して、そのエネルギーを酸発生剤(C)に伝達し、それにより酸の生成量を増加する作用を有し、レジストの見掛けの感度を向上させる成分である。このような増感剤としては、例えば、ベンゾフェノン類、ビアセチル類、ピレン類、フェノチアジン類、フルオレン類等を挙げることができるが、特に限定はされない。これらの増感剤は、単独で又は2種以上を使用することができる。
 増感剤の配合量は使用する上記化合物の種類に応じて適宜調節されるが、固形成分全重量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%が特に好ましい。
(界面活性剤)
 界面活性剤は本実施形態のレジスト組成物の塗布性やストリエーション、レジストの現像性等を改良する作用を有する成分である。このような界面活性剤はアニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤あるいは両性界面活性剤のいずれでもよい。好ましい界面活性剤はノニオン系界面活性剤である。ノニオン系界面活性剤は、レジスト組成物の製造に用いる溶媒との親和性がよく、より効果がある。ノニオン系界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリエチレングリコールの高級脂肪酸ジエステル類等が挙げられるが、特に限定されない。市販品としては、特に限定されないが、以下商品名で、例えば、エフトップ(ジェムコ社製)、メガファック(大日本インキ化学工業社製)、フロラード(住友スリーエム社製)、アサヒガード、サーフロン(以上、旭硝子社製)、ペポール(東邦化学工業社製)、KP(信越化学工業社製)、ポリフロー(共栄社油脂化学工業社製)等を挙げることができる。
 界面活性剤の配合量は、使用する上記化合物の種類に応じて適宜調節されるが、固形成分全重量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%が特に好ましい。
(有機カルボン酸又はリンのオキソ酸若しくはその誘導体)
 感度劣化防止又はレジストパターン形状、引き置き安定性等の向上の目的で、さらに任意の成分として、有機カルボン酸又はリンのオキソ酸若しくはその誘導体を含有させることができる。なお、有機カルボン酸又はリンのオキソ酸若しくはその誘導体は、酸拡散制御剤と併用することもできるし、単独で用いてもよい。有機カルボン酸としては、例えば、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸などが好適である。リンのオキソ酸若しくはその誘導体としては、リン酸、リン酸ジ-n-ブチルエステル、リン酸ジフェニルエステルなどのリン酸又はそれらのエステルなどの誘導体、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸ジ-n-ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステル等のホスホン酸又はそれらのエステルなどの誘導体、ホスフィン酸、フェニルホスフィン酸などのホスフィン酸及びそれらのエステルなどの誘導体が挙げられ、これらの中で特にホスホン酸が好ましい。
 有機カルボン酸又はリンのオキソ酸若しくはその誘導体は、単独で又は2種以上を使用することができる。有機カルボン酸又はリンのオキソ酸若しくはその誘導体の配合量は、使用する上記化合物の種類に応じて適宜調節されるが、固形成分全重量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%が特に好ましい。
(上述した添加剤(溶解促進剤、溶解制御剤、増感剤、界面活性剤及び有機カルボン酸又はリンのオキソ酸若しくはその誘導体等)以外のその他添加剤)
 さらに、本実施形態のレジスト組成物には、必要に応じて、上記溶解促進剤、溶解制御剤、増感剤、界面活性剤、及び有機カルボン酸又はリンのオキソ酸若しくはその誘導体以外の添加剤を1種又は2種以上配合することができる。そのような添加剤としては、例えば、染料、顔料、及び接着助剤等が挙げられる。例えば、染料又は顔料を配合すると、露光部の潜像を可視化させて、露光時のハレーションの影響を緩和できるので好ましい。また、接着助剤を配合すると、基板との接着性を改善することができるので好ましい。さらに、他の添加剤としては、特に限定されないが、例えば、ハレーション防止剤、保存安定剤、消泡剤、形状改良剤等、具体的には4-ヒドロキシ-4’-メチルカルコン等を挙げることができる。
 本実施形態のレジスト組成物において、任意成分(F)の合計量は、固形成分全重量の0~99質量%であり、0~49質量%が好ましく、0~10質量%がより好ましく、0~5質量%がさらに好ましく、0~1質量%がさらに好ましく、0質量%が特に好ましい。
[レジスト組成物における各成分の配合割合]
 本実施形態のレジスト組成物において、本実施形態における多環ポリフェノール樹脂(成分(A))の含有量は、特に限定されないが、固形成分の全質量(多環ポリフェノール樹脂(A)、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)(「任意成分(F)」とも記す。)などの任意に使用される成分を含む固形成分の総和、以下レジスト組成物について同様。)の50~99.4質量%であることが好ましく、より好ましくは55~90質量%、さらに好ましくは60~80質量%、特に好ましくは60~70質量%である。上記含有量の場合、解像度が一層向上し、ラインエッジラフネス(LER)が一層小さくなる傾向にある。
 本実施形態のレジスト組成物において、本実施形態における多環ポリフェノール樹脂(成分(A))、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)、任意成分(F)の含有量比(成分(A)/酸発生剤(C)/酸架橋剤(G)/酸拡散制御剤(E)/任意成分(F))は、レジスト組成物の固形分100質量%に対して、好ましくは50~99.4質量%/0.001~49質量%/0.5~49質量%/0.001~49質量%/0~49質量%であり、より好ましくは55~90質量%/1~40質量%/0.5~40質量%/0.01~10質量%/0~5質量%であり、さらに好ましくは60~80質量%/3~30質量%/1~30質量%/0.01~5質量%/0~1質量%であり、特に好ましくは60~70質量%/10~25質量%/2~20質量%/0.01~3質量%/0質量%、である。成分の配合割合は、その総和が100質量%になるように各範囲から選ばれる。上記配合にすると、感度、解像度、現像性等の性能に優れる傾向にある。なお、「固形分」とは、溶媒を除いた成分をいい、「固形分100質量%」とは、溶媒を除いた成分を100質量%とすることをいう。
 本実施形態のレジスト組成物は、通常は、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば、孔径0.2μm程度のフィルター等でろ過することにより調製される。
 本実施形態のレジスト組成物は、必要に応じて、本実施形態における多環ポリフェノール樹脂以外の他の樹脂を含むことができる。当該他の樹脂は、特に限定されず、例えば、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体あるいはこれらの誘導体などが挙げられる。上記他の樹脂の含有量は、特に限定されず、使用する成分(A)の種類に応じて適宜調節されるが、成分(A)100質量部に対して、30質量部以下が好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは0質量部である。
[レジスト組成物の物性等]
 本実施形態のレジスト組成物は、スピンコートによりアモルファス膜を形成することができる。また、一般的な半導体製造プロセスに適用することができる。用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。
 ポジ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05~5Å/secがより好ましく、0.0005~5Å/secがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。また、LERの低減、ディフェクトの低減効果がある。
 ネガ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
 上記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又は走査型電子顕微鏡による断面観察等の公知の方法によって測定し決定できる。
 ポジ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
 ネガ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05~5Å/secがより好ましく、0.0005~5Å/secがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
[感放射線性組成物]
 本実施形態の感放射線性組成物は、本実施形態の膜形成用組成物と、ジアゾナフトキノン光活性化合物(B)と、溶媒と、を含有する感放射線性組成物であって、前記溶媒の含有量が、前記感放射線性組成物の総量100質量%に対して、20~99質量%であり、前記溶媒以外の成分の含有量が、前記感放射線性組成物の総量100質量%に対して、1~80質量%である。すなわち、本実施形態の感放射線性組成物は、本実施形態における多環ポリフェノール樹脂と、ジアゾナフトキノン光活性化合物(B)と、溶媒とを必須成分として含有するものであり、感放射線性であることを考慮し、種々の任意成分をさらに含有することができる。
 本実施形態の感放射線性組成物には、多環ポリフェノール樹脂(成分(A))が含まれており、ジアゾナフトキノン光活性化合物(B)と併用されるため、g線、h線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外線、電子線又はX線を照射することにより、現像液に易溶な化合物となるポジ型レジスト用基材として有用である。g線、h線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外線、電子線又はX線により、成分(A)の性質は大きくは変化しないが、現像液に難溶なジアゾナフトキノン光活性化合物(B)が易溶な化合物に変化することで、現像工程によってレジストパターンを作り得る。
 本実施形態の感放射線性組成物に含有させる成分(A)は、前述のとおり、比較的低分子量の化合物であることから、得られたレジストパターンのラフネスは非常に小さい。
 本実施形態の感放射線性組成物に含有させる成分(A)のガラス転移温度は、好ましくは100℃以上、より好ましくは120℃以上、さらに好ましくは140℃以上、特に好ましくは150℃以上である。成分(A)のガラス転移温度の上限値は、特に限定されないが、例えば、400℃である。成分(A)のガラス転移温度が上記範囲内であることにより、半導体リソグラフィープロセスにおいて、パターン形状を維持しうる耐熱性を有し、高解像度などの性能が向上する傾向にある。
 本実施形態の感放射線性組成物に含有させる成分(A)のガラス転移温度の示差走査熱量分析により求めた結晶化発熱量は20J/g未満であるのが好ましい。また、(結晶化温度)-(ガラス転移温度)は好ましくは70℃以上、より好ましくは80℃以上、さらに好ましくは100℃以上、特に好ましくは130℃以上である。結晶化発熱量が20J/g未満、又は(結晶化温度)-(ガラス転移温度)が上記範囲内であると、感放射線性組成物をスピンコートすることにより、アモルファス膜を形成しやすく、かつレジストに必要な成膜性が長期に渡り保持でき、解像性が向上する傾向にある。
 本実施形態において、上記結晶化発熱量、結晶化温度及びガラス転移温度は、島津製作所製DSC/TA-50WSを用いた示差走査熱量分析により求めることができる。試料約10mgをアルミニウム製非密封容器に入れ、窒素ガス気流中(50mL/分)昇温速度20℃/分で融点以上まで昇温する。急冷後、再び窒素ガス気流中(30mL/分)昇温速度20℃/分で融点以上まで昇温する。さらに急冷後、再び窒素ガス気流中(30mL/分)昇温速度20℃/分で400℃まで昇温する。ステップ状に変化したベースラインの段差の中点(比熱が半分に変化したところ)の温度をガラス転移温度(Tg)、その後に現れる発熱ピークの温度を結晶化温度とする。発熱ピークとベースラインに囲まれた領域の面積から発熱量を求め、結晶化発熱量とする。
 本実施形態の感放射線性組成物に含有させる成分(A)は、常圧下、100℃以下、好ましくは120℃以下、より好ましくは130℃以下、さらに好ましくは140℃以下、特に好ましくは150℃以下において、昇華性が低いことが好ましい。昇華性が低いとは、熱重量分析において、所定温度で10分保持した際の重量減少が10%以下、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下、特に好ましくは0.1%以下であることを示す。昇華性が低いことにより、露光時のアウトガスによる露光装置の汚染を防止することができる。また低ラフネスで良好なパターン形状を得ることができる。
 本実施形態の感放射線性組成物に含有させる成分(A)は、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン(CHN)、シクロペンタノン(CPN)、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルから選ばれ、かつ、成分(A)に対して最も高い溶解能を示す溶媒に、23℃で、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上溶解し、よりさらに好ましくは、PGMEA、PGME、CHNから選ばれ、かつ、成分(A)に対して最も高い溶解能を示す溶媒に、23℃で、20質量%以上溶解し、特に好ましくはPGMEAに対して、23℃で、20質量%以上溶解する。上記条件を満たしていることにより、実生産における半導体製造工程での使用が可能となる。
(ジアゾナフトキノン光活性化合物(B))
 本実施形態の感放射線性組成物に含まれるジアゾナフトキノン光活性化合物(B)は、ポリマー性及び非ポリマー性ジアゾナフトキノン光活性化合物を含む、ジアゾナフトキノン物質であり、一般にポジ型レジスト組成物において、感光性成分(感光剤)として用いられているものであれば特に限定されず、1種又は2種以上を任意に選択して用いることができる。
 このような感光剤としては、ナフトキノンジアジドスルホン酸クロライドやベンゾキノンジアジドスルホン酸クロライド等と、これら酸クロライドと縮合反応可能な官能基を有する低分子化合物又は高分子化合物とを反応させることによって得られた化合物が好ましいものである。ここで、酸クロライドと縮合可能な官能基としては、特に限定されないが、例えば、水酸基、アミノ基等が挙げられるが、特に水酸基が好適である。水酸基を含む酸クロライドと縮合可能な化合物としては、特に限定されないが、例えばハイドロキノン、レゾルシン、2,4-ジヒドロキシベンゾフェノン、2,3,4-トリヒドロキシベンゾフェノン、2,4,6-トリヒドロキシベンゾフェノン、2,4,4’-トリヒドロキシベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’,3,4,6’-ペンタヒドロキシベンゾフェノン等のヒドロキシベンゾフェノン類、ビス(2,4-ジヒドロキシフェニル)メタン、ビス(2,3,4-トリヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)プロパン等のヒドロキシフェニルアルカン類、4,4’,3”,4”-テトラヒドロキシ-3,5,3’,5’-テトラメチルトリフェニルメタン、4,4’,2”,3”,4”-ペンタヒドロキシ-3,5,3’,5’-テトラメチルトリフェニルメタン等のヒドロキシトリフェニルメタン類などを挙げることができる。
 また、ナフトキノンジアジドスルホン酸クロライドやベンゾキノンジアジドスルホン酸クロライドなどの酸クロライドとしては、例えば、1,2-ナフトキノンジアジド-5-スルフォニルクロライド、1,2-ナフトキノンジアジド-4-スルフォニルクロライドなどが好ましいものとして挙げられる。
 本実施形態の感放射線性組成物は、例えば、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば、孔径0.2μm程度のフィルター等でろ過することにより調製されることが好ましい。
(溶媒)
 本実施形態の感放射線性組成物に用いることにできる溶媒としては、特に限定されないが、例えば、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル、及び乳酸エチルが挙げられる。このなかでもプロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノンが好ましい、溶媒は、1種単独で用いても2種以上を併用してもよい。
 溶媒の含有量は、感放射線性組成物の総量100質量%に対して、20~99質量%であり、好ましくは50~99質量%であり、より好ましくは60~98質量%であり、特に好ましくは90~98質量%である。
 また、溶媒以外の成分(固形成分)の含有量は、感放射線性組成物の総量100質量%に対して、1~80質量%であり、好ましくは1~50質量%であり、より好ましくは2~40質量%であり、特に好ましくは2~10質量%である。
[感放射線性組成物の特性]
 本実施形態の感放射線性組成物は、スピンコートによりアモルファス膜を形成することができる。また、一般的な半導体製造プロセスに適用することができる。用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。
 ポジ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05~5Å/secがより好ましく、0.0005~5Å/secがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
 ネガ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
 上記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又はQCM法等の公知の方法によって測定し決定できる。
 ポジ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により照射した後、又は、20~500℃で加熱した後の露光した部分の、23℃における現像液に対する溶解速度は、10Å/sec以上が好ましく、10~10000Å/secがより好ましく、100~1000Å/secがさらに好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10000Å/sec以下の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
 ネガ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により照射した後、又は、20~500℃で加熱した後の露光した部分の、23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05~5Å/secがより好ましく、0.0005~5Å/secがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
(感放射線性組成物における各成分の配合割合)
 本実施形態の感放射線性組成物において、成分(A)の含有量は、固形成分全重量(成分(A)、ジアゾナフトキノン光活性化合物(B)及びその他の成分(D)などの任意に使用される固形成分の総和、感放射線性組成物について以下同様。)に対して、好ましくは1~99質量%であり、より好ましくは5~95質量%、さらに好ましくは10~90質量%、特に好ましくは25~75質量%である。本実施形態の感放射線性組成物は、成分(A)の含有量が上記範囲内であると、高感度でラフネスの小さなパターンを得ることができる。
 本実施形態の感放射線性組成物において、ジアゾナフトキノン光活性化合物(B)の含有量は、固形成分全重量に対して、好ましくは1~99質量%であり、より好ましくは5~95質量%、さらに好ましくは10~90質量%、特に好ましくは25~75質量%である。本実施形態の感放射線性組成物は、ジアゾナフトキノン光活性化合物(B)の含有量が上記範囲内であると、高感度でラフネスの小さなパターンを得ることができる。
(その他の成分(D))
 本実施形態の感放射線性組成物には、必要に応じて、溶媒、成分(A)及びジアゾナフトキノン光活性化合物(B)以外の成分として、上述の酸発生剤、酸架橋剤、酸拡散制御剤、溶解促進剤、溶解制御剤、増感剤、界面活性剤、有機カルボン酸又はリンのオキソ酸若しくはその誘導体等の各種添加剤を1種又は2種以上添加することができる。なお、本実施形態の感放射線性組成物に関して、その他の成分(D)を任意成分(D)ということがある。
 成分(A)と、ジアゾナフトキノン光活性化合物(B)と、任意成分(D)と、の含有量比((A)/(B)/(D))は、感放射線性組成物の固形分100質量%に対して、好ましくは1~99質量%/99~1質量%/0~98質量%であり、より好ましくは5~95質量%/95~5質量%/0~49質量%であり、さらに好ましくは10~90質量%/90~10質量%/0~10質量%であり、特に好ましくは20~80質量%/80~20質量%/0~5質量%であり、最も好ましくは25~75質量%/75~25質量%/0質量%である。
 各成分の配合割合は、その総和が100質量%になるように各範囲から選ばれる。本実施形態の感放射線性組成物は、各成分の配合割合を上記範囲にすると、ラフネスに加え、感度、解像度等の性能に優れる。
 本実施形態の感放射線性組成物は本実施形態における多環ポリフェノール樹脂以外の他の樹脂を含んでもよい。このような他の樹脂としては、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体あるいはこれらの誘導体などが挙げられる。他の樹脂の配合量は、使用する成分(A)の種類に応じて適宜調節されるが、成分(A)100質量部に対して、30質量部以下が好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは0質量部である。
[アモルファス膜の製造方法]
 本実施形態のアモルファス膜の製造方法は、上記感放射線性組成物を用いて、基板上にアモルファス膜を形成する工程を含む。
[レジストパターン形成方法]
 本実施形態において、レジストパターンは、本実施形態のレジスト組成物を用いるか、あるいは、本実施形態の感放射線性組成物を用いることにより、形成することができる。
[レジスト組成物を用いたレジストパターンの形成方法]
 本実施形態のレジスト組成物を用いたレジストパターンの形成方法は、上述した本実施形態のレジスト組成物を用いて基板上にレジスト膜を形成する工程と、形成されたレジスト膜の少なくとも一部を露光する工程と、露光した前記レジスト膜を現像してレジストパターンを形成する工程とを備える。本実施形態におけるレジストパターンは多層プロセスにおける上層レジストとして形成することもできる。
[感放射線性組成物を用いたレジストパターン形成方法]
 本実施形態の感放射線性組成物を用いたレジストパターン形成方法は、上記感放射線性組成物を用いて、基板上にレジスト膜を形成する工程と、形成された前記レジスト膜の少なくとも一部を露光する工程と、露光した前記レジスト膜を現像してレジストパターンを形成する工程と、を含む。なお、詳細には以下の、レジスト組成物を用いたレジストパターン形成方法と同様の操作とすることができる。
 以下、本実施形態のレジスト組成物を用いる場合と本実施形態の感放射線性組成物を用いる場合とで共通しうるレジストパターン形成方法の実施条件に関して説明する。
 レジストパターンを形成する方法としては、特に限定されないが、例えば、以下の方法が挙げられる。まず、従来公知の基板上に上記本実施形態のレジスト組成物を、回転塗布、流延塗布、ロール塗布等の塗布手段によって塗布することによりレジスト膜を形成する。従来公知の基板とは、特に限定されず、例えば、電子部品用の基板や、これに所定の配線パターンが形成されたもの等を例表することができる。より具体的には、特に限定されないが、例えば、シリコンウェハー、銅、クロム、鉄、アルミニウム等の金属製の基板や、ガラス基板等が挙げられる。配線パターンの材料としては、特に限定されないが、例えば、銅、アルミニウム、ニッケル、金等が挙げられる。また必要に応じて、前述基板上に無機系及び/又は有機系の膜が設けられたものであってもよい。無機系の膜としては、特に限定されないが、例えば、無機反射防止膜(無機BARC)が挙げられる。有機系の膜としては、特に限定されないが、例えば、有機反射防止膜(有機BARC)が挙げられる。ヘキサメチレンジシラザン等による表面処理を行ってもよい。
 次に、必要に応じて、塗布した基板を加熱する。加熱条件は、レジスト組成物の配合組成等により変わるが、20~250℃が好ましく、より好ましくは20~150℃である。加熱することによって、レジストの基板に対する密着性が向上する場合があり好ましい。次いで、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線、及びイオンビームからなる群から選ばれるいずれかの放射線により、レジスト膜を所望のパターンに露光する。露光条件等は、レジスト組成物の配合組成等に応じて適宜選定される。本実施形態においては、露光における高精度の微細パターンを安定して形成するために、放射線照射後に加熱するのが好ましい。
 次いで、露光されたレジスト膜を現像液で現像することにより、所定のレジストパターンを形成する。上記現像液としては、使用する成分(A)に対して溶解度パラメーター(SP値)の近い溶剤を選択することが好ましく、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤等の極性溶剤又は炭化水素系溶剤、或いはアルカリ水溶液を用いることができる。上記溶剤及びアルカリ水溶液としては、例えば、国際公開第2013/024778号に記載のものが挙げられる。
 上記の溶剤は、複数混合してもよいし、性能を有する範囲内で、上記以外の溶剤や水と混合し使用してもよい。ここで、本実施形態の所望の効果をより高める観点から、現像液全体としての含水率が70質量%未満であり、50質量%未満であることが好ましく、30質量%未満であることがより好ましく、10質量%未満であることがさらに好ましく、実質的に水分を含有しないことが特に好ましい。すなわち、現像液に対する有機溶剤の含有量は、現像液の全量に対して、30質量%以上100質量%以下であり、50質量%以上100質量%以下であることが好ましく、70質量%以上100質量%以下であることがより好ましく、90質量%以上100質量%以下であることがさらに好ましく、95質量%以上100質量%以下であることが特に好ましい。
 特に、現像液は、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種類の溶剤を含有する現像液が、レジストパターンの解像性やラフネス等のレジスト性能を改善するため好ましい。
 現像液には、必要に応じて界面活性剤を適当量添加することができる。界面活性剤としては特に限定されないが、例えば、イオン性や非イオン性のフッ素系及び/又はシリコン系界面活性剤等を用いることができる。これらのフッ素及び/又はシリコン系界面活性剤として、例えば、特開昭62-36663号公報、特開昭61-226746号公報、特開昭61-226745号公報、特開昭62-170950号公報、特開昭63-34540号公報、特開平7-230165号公報、特開平8-62834号公報、特開平9-54432号公報、特開平9-5988号公報、米国特許第5405720号明細書、同5360692号明細書、同5529881号明細書、同5296330号明細書、同5436098号明細書、同5576143号明細書、同5294511号明細書、同5824451号明細書記載の界面活性剤を挙げることができ、好ましくは、非イオン性の界面活性剤である。非イオン性の界面活性剤としては特に限定されないが、フッ素系界面活性剤又はシリコン系界面活性剤を用いることがさらに好ましい。
 界面活性剤の使用量は現像液の全量に対して、通常0.001~5質量%、好ましくは0.005~2質量%、さらに好ましくは0.01~0.5質量%である。
 現像方法としては、特に限定されないが、例えば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)などを適用することができる。パターンの現像を行なう時間には特に制限はないが、好ましくは10秒~90秒である。
 また、現像を行う工程の後に、他の溶媒に置換しながら、現像を停止する工程を実施してもよい。
 現像の後には、有機溶剤を含むリンス液を用いて洗浄する工程を含むことが好ましい。
 現像後のリンス工程に用いるリンス液としては、架橋により硬化したレジストパターンを溶解しなければ特に制限はなく、一般的な有機溶剤を含む溶液又は水を使用することができる。上記リンス液としては、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種類の有機溶剤を含有するリンス液を用いることが好ましい。より好ましくは、現像の後に、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有するリンス液を用いて洗浄する工程を行う。さらにより好ましくは、現像の後に、アルコール系溶剤又はエステル系溶剤を含有するリンス液を用いて洗浄する工程を行う。さらにより好ましくは、現像の後に、1価アルコールを含有するリンス液を用いて洗浄する工程を行う。特に好ましくは、現像の後に、炭素数5以上の1価アルコールを含有するリンス液を用いて洗浄する工程を行う。パターンのリンスを行なう時間は特に限定されないが、好ましくは10秒~90秒である。
 ここで、現像後のリンス工程で用いられる1価アルコールとしては、直鎖状、分岐状、環状の1価アルコールが挙げられ、特に限定されないが、例えば、国際公開第2013/024778号に記載のものが挙げられる。特に好ましい炭素数5以上の1価アルコールとしては、1-ヘキサノール、2-ヘキサノール、4-メチル-2-ペンタノール、1-ペンタノール、3-メチル-1-ブタノールなどを用いることができる。
 上記各成分は、複数混合してもよいし、上記以外の有機溶剤と混合し使用してもよい。
 リンス液中の含水率は、10質量%以下が好ましく、より好ましくは5質量%以下、特に好ましくは3質量%以下である。含水率を10質量%以下にすることで、より良好な現像特性を得ることができる。
 リンス液には、界面活性剤を適当量添加して使用することもできる。
 リンス工程においては、現像を行ったウェハを上記の有機溶剤を含むリンス液を用いて洗浄処理する。洗浄処理の方法は特に限定されないが、たとえば、一定速度で回転している基板上にリンス液を塗出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)、などを適用することができ、この中でも回転塗布方法で洗浄処理を行い、洗浄後に基板を2000rpm~4000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。
 レジストパターンを形成した後、エッチングすることによりパターン配線基板が得られる。エッチングの方法はプラズマガスを使用するドライエッチング及びアルカリ溶液、塩化第二銅溶液、塩化第二鉄溶液等によるウェットエッチングなど公知の方法で行うことが出来る。
 レジストパターンを形成した後、めっきを行うこともできる。上記めっき法としては、例えば、銅めっき、はんだめっき、ニッケルめっき、金めっきなどがある。
 エッチング後の残存レジストパターンは有機溶剤で剥離することが出来る。上記有機溶剤として、特に限定されないが、例えば、PGMEA(プロピレングリコールモノメチルエーテルアセテート)、PGME(プロピレングリコールモノメチルエーテル)、EL(乳酸エチル)等が挙げられる。上記剥離方法としては、特に限定されないが、例えば、浸漬方法、スプレイ方式等が挙げられる。また、レジストパターンが形成された配線基板は、多層配線基板でもよく、小径スルーホールを有していてもよい。
 本実施形態において得られる配線基板は、レジストパターン形成後、金属を真空中で蒸着し、その後レジストパターンを溶液で溶かす方法、すなわちリフトオフ法により形成することもできる。
[リソグラフィー用下層膜形成材料]
 本実施形態のリソグラフィー用下層膜形成用組成物は、膜形成用組成物からなるものである。すなわち、本実施形態のリソグラフィー用下層膜形成用組成物は、本実施形態における多環ポリフェノール樹脂を必須成分として含有するものであり、リソグラフィー用下層膜形成材料として用いられることを考慮し、種々の任意成分をさらに含有することができる。具体的には、本実施形態のリソグラフィー用下層膜形成用組成物は、溶媒、酸発生剤及び架橋剤からなる群より選択される少なくとも1つをさらに含有することが好ましい。
 本実施形態における多環ポリフェノール樹脂の含有量としては、塗布性及び品質安定性の点から、リソグラフィー用下層膜形成用組成物中、1~100質量%であることが好ましく、10~100質量%であることがより好ましく、50~100質量%であることがさらに好ましく、100質量%であることが特に好ましい。
 本実施形態のリソグラフィー用下層膜形成用組成物が溶媒を含む場合、本実施形態における多環ポリフェノール樹脂の含有量は、特に限定されないが、溶媒を含む総量100質量部に対して、1~33質量部であることが好ましく、より好ましくは2~25質量部、さらに好ましくは3~20質量部である。
 本実施形態のリソグラフィー用下層膜形成組成物は、湿式プロセスへの適用が可能であり、耐熱性及びエッチング耐性に優れる。さらに、本実施形態のリソグラフィー用下層膜形成組成物は本実施形態における多環ポリフェノール樹脂を含むため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れた下層膜を形成することができる。さらに、本実施形態のリソグラフィー用下層膜形成組成物はレジスト層との密着性にも優れるので、優れたレジストパターンを得ることができる。なお、本実施形態のリソグラフィー用下層膜形成組成物は、本実施形態の所望の効果が損なわれない範囲において、既に知られているリソグラフィー用下層膜形成材料等を含んでいてもよい。
(溶媒)
 本実施形態のリソグラフィー用下層膜形成用組成物において用いられる溶媒としては、上述した成分(A)が少なくとも溶解するものであれば、公知のものを適宜用いることができる。
 溶媒の具体例としては、特に限定されないが、例えば、国際公開第2013/024779号に記載のものが挙げられる。これらの溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
 上記溶媒の中で、安全性の点からシクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、ヒドロキシイソ酪酸メチル、アニソールが特に好ましい。
 溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、本実施形態における多環ポリフェノール樹脂100質量部に対して、100~10,000質量部であることが好ましく、200~5,000質量部であることがより好ましく、200~1,000質量部であることがさらに好ましい。
(架橋剤)
 本実施形態のリソグラフィー用下層膜形成用組成物は、インターミキシングを抑制する等の観点から、必要に応じて架橋剤を含有していてもよい。本実施形態で使用可能な架橋剤としては、特に限定されないが、例えば、国際公開第2013/024779号や国際公開第2018/016614号に記載のものを用いることができる。なお、本実施形態において、架橋剤は、単独で又は2種以上を使用することができる。
 本実施形態で使用可能な架橋剤の具体例としては、例えば、フェノール化合物(本実施形態における多環ポリフェノール樹脂を除く)、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、アクリレート化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物、アジド化合物等が挙げられるが、これらに特に限定されない。これらの架橋剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。これらの中でもベンゾオキサジン化合物、エポキシ化合物又はシアネート化合物が好ましく、エッチング耐性向上の観点から、ベンゾオキサジン化合物がより好ましい。
 前記フェノール化合物としては、公知のものが使用でき、特に限定されないが、耐熱性及び溶解性の点から、アラルキル型フェノール樹脂が好ましい。
 前記エポキシ化合物としては、公知のものが使用でき、特に限定されないが、好ましくは、耐熱性と溶解性という点から、フェノールアラルキル樹脂類、ビフェニルアラルキル樹脂類から得られるエポキシ樹脂等の常温で固体状エポキシ樹脂である。
 前記シアネート化合物としては、1分子中に2個以上のシアネート基を有する化合物であれば特に制限なく、公知のものを使用することができる。本実施形態において、好ましいシアネート化合物としては、1分子中に2個以上の水酸基を有する化合物の水酸基をシアネート基に置換した構造のものが挙げられる。また、シアネート化合物は、芳香族基を有するものが好ましく、シアネート基が芳香族基に直結した構造のものを好適に使用することができる。このようなシアネート化合物としては、特に限定されないが、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールM、ビスフェノールP、ビスフェノールE、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエンノボラック樹脂、テトラメチルビスフェノールF、ビスフェノールAノボラック樹脂、臭素化ビスフェノールA、臭素化フェノールノボラック樹脂、3官能フェノール、4官能フェノール、ナフタレン型フェノール、ビフェニル型フェノール、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂、ジシクロペンタジエンアラルキル樹脂、脂環式フェノール、リン含有フェノール等の水酸基をシアネート基に置換した構造のものが挙げられる。また、前記したシアネート化合物は、モノマー、オリゴマー及び樹脂のいずれの形態であってもよい。
 前記アミノ化合物としては、公知のものが使用でき、特に限定されないが、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテルが耐熱性と原料入手性の観点から好ましい。
 前記ベンゾオキサジン化合物としては、公知のものが使用でき、特に限定されないが、二官能性ジアミン類と単官能フェノール類から得られるP-d型ベンゾオキサジンが耐熱性の観点から好ましい。
 前記メラミン化合物としては、公知のものが使用でき、特に限定されないが、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物又はその混合物が原料入手性の観点から好ましい。
 前記グアナミン化合物としては、公知のものが使用でき、特に限定されないが、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物が耐熱性の観点から好ましい。
 前記グリコールウリル化合物としては、公知のものが使用でき、特に限定されないが、テトラメチロールグリコールウリル、テトラメトキシグリコールウリルが耐熱性およびエッチング耐性の観点から好ましい。
 前記ウレア化合物としては、公知のものが使用でき、特に限定されないが、テトラメチルウレア、テトラメトキシメチルウレアが耐熱性の観点から好ましい。
 また、本実施形態において、架橋性向上の観点から、少なくとも1つのアリル基を有する架橋剤を用いてもよい。中でも、2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、ビス(3-アリル-4-ヒドロキシフェニル)スルホン、ビス(3-アリル-4-ヒドロキシフェニル)スルフィド、ビス(3-アリル-4-ヒドロキシフェニル)エ-テル等のアリルフェノール類が好ましい。
 本実施形態のリソグラフィー用下層膜形成用組成物において、架橋剤の含有量は、特に限定されないが、本実施形態における多環ポリフェノール樹脂100質量部に対して、5~50質量部であることが好ましく、より好ましくは10~40質量部である。上記の好ましい範囲にすることで、レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。
(架橋促進剤)
 本実施形態のリソグラフィー用下層膜形成用組成物には、必要に応じて架橋、硬化反応を促進させるための架橋促進剤を用いることができる。
 前記架橋促進剤としては、架橋、硬化反応を促進させるものであれば、特に限定されないが、例えば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等が挙げられる。これらの架橋促進剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。これらの中でもイミダゾール類又は有機ホスフィン類が好ましく、架橋温度の低温化の観点から、イミダゾール類がより好ましい。
 前記架橋促進剤としては、公知のものが使用でき、特に限定されないが、例えば、国際公開2018/016614号に記載のものが挙げられる。耐熱性および硬化促進の観点から、特に2-メチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾールが好ましい。
 架橋促進剤の含有量としては、通常、組成物の合計質量100質量部とした場合に100質量部とした場合に、好ましくは0.1~10質量部であり、より好ましくは、制御のし易さ及び経済性の観点から0.1~5質量部であり、さらに好ましくは0.1~3質量部である。
(ラジカル重合開始剤)
 本実施形態のリソグラフィー用下層膜形成用組成物には、必要に応じてラジカル重合開始剤を配合することができる。ラジカル重合開始剤としては、光によりラジカル重合を開始させる光重合開始剤であってもよいし、熱によりラジカル重合を開始させる熱重合開始剤であってもよい。ラジカル重合開始剤としては、例えば、ケトン系光重合開始剤、有機過酸化物系重合開始剤及びアゾ系重合開始剤からなる群より選ばれる少なくとも1種とすることができる。
 このようなラジカル重合開始剤としては、特に制限されず、従来用いられているものを適宜採用することができる。例えば、国際公開2018/016614号に記載のものが挙げられる。これらの中でも特に好ましくは、原料入手性および保存安定性の観点からジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイドである。
 本実施形態に用いるラジカル重合開始剤としては、これらのうちの1種を単独で用いても2種以上を組み合わせて用いてもよく、他の公知の重合開始剤をさらに組み合わせて用いてもよい。
(酸発生剤)
 本実施形態のリソグラフィー用下層膜形成用組成物は、熱による架橋反応をさらに促進させるなどの観点から、必要に応じて酸発生剤を含有していてもよい。酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するものなどが知られているが、いずれのものも使用することができる。
 酸発生剤としては、特に限定されないが、例えば、国際公開第2013/024779号に記載のものを用いることができる。なお、本実施形態において、酸発生剤は、単独で又は2種以上を組み合わせて使用することができる。
 本実施形態のリソグラフィー用下層膜形成用組成物において、酸発生剤の含有量は、特に限定されないが、本実施形態における多環ポリフェノール樹脂100質量部に対して、0.1~50質量部であることが好ましく、より好ましくは0.5~40質量部である。上記の好ましい範囲にすることで、酸発生量が多くなって架橋反応が高められる傾向にあり、また、レジスト層とのミキシング現象の発生が抑制される傾向にある。
(塩基性化合物)
 さらに、本実施形態のリソグラフィー用下層膜形成用組成物は、保存安定性を向上させる等の観点から、塩基性化合物を含有していてもよい。
 塩基性化合物は、酸発生剤より微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、例えば、第一級、第二級又は第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられるが、これらに特に限定されない。
 本実施形態において用いられる塩基性化合物としては、特に限定されないが、例えば、国際公開第2013/024779号に記載のものを用いることができる。なお、本実施形態において、塩基性化合物は、単独で又は2種以上を組み合わせて使用することができる。
 本実施形態のリソグラフィー用下層膜形成用組成物において、塩基性化合物の含有量は、特に限定されないが、本実施形態における多環ポリフェノール樹脂100質量部に対して、0.001~2質量部であることが好ましく、より好ましくは0.01~1質量部である。上記の好ましい範囲にすることで、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。
(その他の添加剤)
 また、本実施形態のリソグラフィー用下層膜形成用組成物は、熱硬化性の付与や吸光度をコントロールする目的で、他の樹脂及び/又は化合物を含有していてもよい。このような他の樹脂及び/又は化合物としては、例えば、ナフトール樹脂、キシレン樹脂ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂、ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレンなどのナフタレン環、フェナントレンキノン、フルオレンなどのビフェニル環、チオフェン、インデンなどのヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられるが、これらに特に限定されない。さらに、本実施形態のリソグラフィー用下層膜形成用組成物は、公知の添加剤を含有していてもよい。上記公知の添加剤としては、以下に限定されないが、例えば、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等が挙げられる。
[リソグラフィー用下層膜の形成方法]
 本実施形態のリソグラフィー用下層膜の形成方法は、本実施形態のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程を含む。
[リソグラフィー用下層膜形成用組成物を用いたレジストパターン形成方法]
 本実施形態のリソグラフィー用下層膜形成用組成物を用いたレジストパターン形成方法は、本実施形態のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程(A-1)と、前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(A-3)と、を有する。
[リソグラフィー用下層膜形成用組成物を用いた回路パターン形成方法]
 本実施形態のリソグラフィー用下層膜形成用組成物を用いた回路パターン形成方法は、本実施形態のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程(B-1)と、前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程(B-2)と、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、前記工程(B-3)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B-4)と、前記工程(B-4)の後、前記レジストパターンをマスクとして前記中間層膜をエッチングして、中間層膜パターンを形成する工程(B-5)と、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングして、下層膜パターンを形成する工程(B-6)と、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-7)と、を有する。
 本実施形態のリソグラフィー用下層膜は、本実施形態のリソグラフィー用下層膜形成用組成物から形成されるものであれば、その形成方法は特に限定されず、公知の手法を適用することができる。例えば、本実施形態のリソグラフィー用下層膜形成用組成物をスピンコートやスクリーン印刷等の公知の塗布法或いは印刷法などで基板上に付与した後、有機溶媒を揮発させるなどして除去することで、下層膜を形成することができる。
 下層膜の形成時には、上層レジストとのミキシング現象の発生を抑制するとともに架橋反応を促進させるために、ベークをすることが好ましい。この場合、ベーク温度は、特に限定されないが、80~450℃の範囲内であることが好ましく、より好ましくは200~400℃である。また、ベーク時間も、特に限定されないが、10~300秒の範囲内であることが好ましい。なお、下層膜の厚さは、要求性能に応じて適宜選定することができ、特に限定されないが、通常、30~20,000nm程度であることが好ましく、より好ましくは50~15,000nmとすることが好ましい。
 下層膜を作製した後、2層プロセスの場合はその上に珪素含有レジスト層、或いは通常の炭化水素からなる単層レジスト、3層プロセスの場合はその上に珪素含有中間層、さらにその上に珪素を含まない単層レジスト層を作製することが好ましい。この場合、このレジスト層を形成するためのフォトレジスト材料としては公知のものを使用することができる。
 基板上に下層膜を作製した後、2層プロセスの場合はその下層膜上に珪素含有レジスト層又は通常の炭化水素からなる単層レジストを作製することができる。3層プロセスの場合はその下層膜上に珪素含有中間層、さらにその珪素含有中間層上に珪素を含まない単層レジスト層を作製することができる。これらの場合において、レジスト層を形成するためのフォトレジスト材料は、公知のものから適宜選択して使用することができ、特に限定されない。
 2層プロセス用の珪素含有レジスト材料としては、酸素ガスエッチング耐性の観点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、さらに有機溶媒、酸発生剤、必要により塩基性化合物等を含むポジ型のフォトレジスト材料が好ましく用いられる。ここで珪素原子含有ポリマーとしては、この種のレジスト材料において用いられている公知のポリマーを使用することができる。
 3層プロセス用の珪素含有中間層としてはポリシルセスキオキサンベースの中間層が好ましく用いられる。中間層に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。例えば、193nm露光用プロセスにおいて、下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなる傾向にあるが、中間層で反射を抑えることによって、基板反射を0.5%以下にすることができる。このような反射防止効果がある中間層としては、以下に限定されないが、193nm露光用としてはフェニル基又は珪素-珪素結合を有する吸光基を導入された、酸或いは熱で架橋するポリシルセスキオキサンが好ましく用いられる。
 また、Chemical Vapour Deposition(CVD)法で形成した中間層を用いることもできる。CVD法で作製した反射防止膜としての効果が高い中間層としては、以下に限定されないが、例えば、SiON膜が知られている。一般的には、CVD法よりスピンコート法やスクリーン印刷等の湿式プロセスによる中間層の形成の方が、簡便でコスト的なメリットがある。なお、3層プロセスにおける上層レジストは、ポジ型でもネガ型でもどちらでもよく、また、通常用いられている単層レジストと同じものを用いることができる。
 さらに、本実施形態における下層膜は、通常の単層レジスト用の反射防止膜或いはパターン倒れ抑制のための下地材として用いることもできる。本実施形態の下層膜は、下地加工のためのエッチング耐性に優れるため、下地加工のためのハードマスクとしての機能も期待できる。
 上記フォトレジスト材料によりレジスト層を形成する場合においては、上記下層膜を形成する場合と同様に、スピンコート法やスクリーン印刷等の湿式プロセスが好ましく用いられる。また、レジスト材料をスピンコート法などで塗布した後、通常、プリベークが行われるが、このプリベークは、80~180℃で10~300秒の範囲で行うことが好ましい。その後、常法にしたがい、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行うことで、レジストパターンを得ることができる。なお、レジスト膜の厚さは特に制限されないが、一般的には、30~500nmが好ましく、より好ましくは50~400nmである。
 また、露光光は、使用するフォトレジスト材料に応じて適宜選択して用いればよい。一般的には、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3~20nmの軟X線、電子ビーム、X線等を挙げることができる。
 上記の方法により形成されるレジストパターンは、本実施形態における下層膜によってパターン倒れが抑制されたものとなる。そのため、本実施形態における下層膜を用いることで、より微細なパターンを得ることができ、また、そのレジストパターンを得るために必要な露光量を低下させ得る。
 次に、得られたレジストパターンをマスクにしてエッチングを行う。2層プロセスにおける下層膜のエッチングとしては、ガスエッチングが好ましく用いられる。ガスエッチングとしては、酸素ガスを用いたエッチングが好適である。酸素ガスに加えて、He、Arなどの不活性ガスや、CO、CO2、NH3、SO2、N2、NO2、2ガスを加えることも可能である。また、酸素ガスを用いずに、CO、CO2、NH3、N2、NO2、2ガスだけでガスエッチングを行うこともできる。特に後者のガスは、パターン側壁のアンダーカット防止のための側壁保護のために好ましく用いられる。
 一方、3層プロセスにおける中間層のエッチングにおいても、ガスエッチングが好ましく用いられる。ガスエッチングとしては、上記の2層プロセスにおいて説明したものと同様のものが適用可能である。とりわけ、3層プロセスにおける中間層の加工は、フロン系のガスを用いてレジストパターンをマスクにして行うことが好ましい。その後、上述したように中間層パターンをマスクにして、例えば酸素ガスエッチングを行うことで、下層膜の加工を行うことができる。
 ここで、中間層として無機ハードマスク中間層膜を形成する場合は、CVD法や原子層堆積(ALD)法等で、珪素酸化膜、珪素窒化膜、珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、以下に限定されないが、例えば、特開2002-334869号公報(特許文献4)、国際公開第2004/066377号(特許文献5)に記載された方法を用いることができる。このような中間層膜の上に直接フォトレジスト膜を形成することができるが、中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。
 中間層として、ポリシルセスキオキサンベースの中間層も好ましく用いられる。レジスト中間層膜に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。ポリシルセスキオキサンベースの中間層の具体的な材料については、以下に限定されないが、例えば、特開2007-226170号公報特許文献6)、特開2007-226204号公報(特許文献7)に記載されたものを用いることができる。
 また、次の基板のエッチングも、常法によって行うことができ、例えば、基板がSiO、SiNであればフロン系ガスを主体としたエッチング、p-SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行うことができる。基板をフロン系ガスでエッチングする場合、2層レジストプロセスの珪素含有レジストと3層プロセスの珪素含有中間層は、基板加工と同時に剥離される。一方、塩素系或いは臭素系ガスで基板をエッチングした場合は、珪素含有レジスト層又は珪素含有中間層の剥離が別途行われ、一般的には、基板加工後にフロン系ガスによるドライエッチング剥離が行われる。
 本実施形態における下層膜は、これら基板のエッチング耐性に優れる特徴がある。なお、基板は、公知のものを適宜選択して使用することができ、特に限定されないが、Si、α-Si、p-Si、SiO、SiN、SiON、W、TiN、Al等が挙げられる。また、基板は、基材(支持体)上に被加工膜(被加工基板)を有する積層体であってもよい。このような被加工膜としては、Si、SiO、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si等種々のLow-k膜及びそのストッパー膜等が挙げられ、通常、基材(支持体)とは異なる材質のものが用いられる。なお、加工対象となる基板或いは被加工膜の厚さは、特に限定されないが、通常、50~1,000,000nm程度であることが好ましく、より好ましくは75~500,000nmである。
[レジスト永久膜]
 なお、本実施形態の膜形成用組成物を用いてレジスト永久膜を作製することもできる、本実施形態の膜形成用組成物を基材等に塗布してなるレジスト永久膜は、必要に応じてレジストパターンを形成した後、最終製品にも残存する永久膜として好適である。永久膜の具体例としては、特に限定されないが、例えば、半導体デバイス関係では、ソルダーレジスト、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や集積回路素子と回路基板の接着層、薄型ディスプレー関連では、薄膜トランジスタ保護膜、液晶カラーフィルター保護膜、ブラックマトリクス、スペーサーなどが挙げられる。特に、本実施形態の膜形成用組成物からなる永久膜は、耐熱性や耐湿性に優れている上に昇華成分による汚染性が少ないという非常に優れた利点も有する。特に表示材料において、重要な汚染による画質劣化の少ない高感度、高耐熱、吸湿信頼性を兼ね備えた材料となる。
 本実施形態の膜形成用組成物をレジスト永久膜用途に用いる場合には、硬化剤の他、更に必要に応じてその他の樹脂、界面活性剤や染料、充填剤、架橋剤、溶解促進剤などの各種添加剤を加え、有機溶剤に溶解することにより、レジスト永久膜用組成物とすることができる。
 本実施形態の膜形成用組成物をレジスト永久膜用とする場合、前記各成分を配合し、攪拌機等を用いて混合することによりレジスト永久膜用組成物を調製できる。また、本実施形態の膜形成用組成物が充填剤や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散あるいは混合してレジスト永久膜用組成物を調製することができる。
[光学部品形成用組成物]
 本実施形態の膜形成用組成物は、光学部品形成用として使用することもできる。すなわち、本実施形態の光学部品形成用組成物は、本実施形態の膜形成用組成物を含有するものである。換言すると、本実施形態の光学部品形成用組成物は、本実施形態における多環ポリフェノール樹脂を必須成分として含有するものである。ここで、「光学部品」とは、フィルム状、シート状の部品の他、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路をいう。本実施形態における多環ポリフェノール樹脂はこれら光学部品形成用途に有用である。本実施形態の光学部品形成用組成物は、光学部品形成材料として用いられることを考慮し、種々の任意成分をさらに含有することができる。具体的には、本実施形態の光学部品形成用組成物は、溶媒、酸発生剤及び架橋剤からなる群より選択される少なくとも1つをさらに含有することが好ましい。溶媒、酸発生剤及び架橋剤として使用し得る具体例としては、前述した本実施形態のリソグラフィー用下層膜形成用組成物に含まれ得る各成分と同様とすることができ、その配合比としても、具体的な用途を考慮して適宜設定することができる。
 以下、実施例及び比較例を示し、本実施形態をさらに詳細に説明するが、本実施形態はこれらに限定されるものではない。
 なお、以下の実施例では化合物群1に係る実施例を「実施例群1」、化合物群2に係る実施例を「実施例群2」、化合物群3に係る実施例を「実施例群3」とし、以下の各実施例に付与された実施例番号は、各実施例群についての個別の実施例番号であるとする。すなわち、例えば、化合物群1に係る実施例(実施例群1)の実施例1は、化合物群2に係る実施例(実施例群2)の実施例1とは異なるものとして区別されるものとする。
 本実施形態における多環ポリフェノール樹脂の分析及び評価方法は次の通りとした。1H-NMR測定については、Bruker社製「Advance600II spectrometer」を用いて、次の条件にて行った。
 周波数:400MHz
 溶媒:d6-DMSO
 内部標準:TMS
 測定温度:23℃
<分子量>
 多環ポリフェノール樹脂の分子量は、Water社製Acquity UPLC/MALDI-Synapt HDMSを用いて、LC-MS分析により測定した。
<ポリスチレン換算分子量>
 ゲル浸透クロマトグラフィー(GPC)分析により、ポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)を求め、分散度(Mw/Mn)を求めた。
 装置:Shodex GPC-101型(昭和電工(株)製)
 カラム:KF-80M×3
 溶離液:THF 1mL/min
 温度:40℃
<膜厚の測定>
 多環ポリフェノール樹脂を使用して作成した樹脂膜の膜厚は干渉膜厚計「OPTM-A1」(大塚電子社製)により測定した。
[実施例群1]
(合成例1)NAFP-ALの合成
 窒素下、300mL四口フラスコに1,4-ビス(クロロメチル)ベンゼン(28.8g、0.148mol、東京化成工業(株)製)、1-ナフトール(30.0g、0.1368mol、東京化成工業(株)製)、パラトルエンスルホン酸一水和物(5.7g、0.029mol、東京化成工業(株)製)を加え、さらにプロピレングリコールモノメチルエーテルアセテート(以下PGMEAという略称で示す。)150.4gを仕込み、撹拌し、リフラックスが確認されるまで昇温し溶解させ、重合を開始した。16時間後60℃まで放冷後、メタノール1600gへ再沈殿させた。
 得られた沈殿物をろ過し、減圧乾燥機で60℃、16時間乾燥させ、下記式(NAFP-AL)で表される構造を有する目的とするオリゴマー38.6gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は2020、分散度は1.86であった。また粘度は0.12Pa・s、軟化点は68℃であった。
Figure JPOXMLDOC01-appb-C000148
(合成実施例1)NAFP-ALSの合成
 攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に、NAFP-ALを16.8gと、フタル酸モノブチル銅を10.1g(20mmol)とを仕込み、溶媒として1-ブタノールを30mL加えて、反応液を110℃で6時間撹拌して反応を行った。冷却後に析出物を濾過し、得られた粗体を酢酸エチル100mLに溶解させた。次に塩酸5mLを加え、室温で攪拌後、炭酸水素ナトリウムで中和処理を行った。酢酸エチル溶液を濃縮し、メタノール200mLを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を乾燥させることにより、下記式で表される構造を有する目的樹脂(NAFP-ALS)27.3gを得た。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:3578、Mw:4793、Mw/Mn:1.34であった。
Figure JPOXMLDOC01-appb-C000149
(合成例2)PBIF-ALの合成
 窒素下、フェノール(311.9g、3.32mol、東京化成工業(株)製)及び4,4’-ジクロロメチルビフェニル(200.0g、0.80mol、東京化成工業(株)製))を、下部に抜出口のある4つ口フラスコに仕込み、温度を上昇させると、系内が80℃で均一となり、HClの発生が始まった。100℃で3時間保持し、さらに150℃で1時間熱処理を加えた。反応で出てくるHClはそのまま系外へ揮散させ、アルカリ水でトラップした。この段階で未反応4,4’-ジクロロメチルビフェニルは残存しておらず、全て反応したことをガスクロマトグラフィで確認した。反応終了後、減圧にすることにより、系内に残存するHCl及び未反応のフェノールを系外へ除去した。最終的に30torrで150℃まで減圧処理することで、残存フェノールがガスクロマトグラフィで未検出になった。この反応生成物を150℃に保持しながら、フラスコの下部抜出口からその約30gを、空冷により室温に保たれたステンレスパッド上にゆっくりと滴下した。ステンレスパッド上では1分後に30℃まで急冷され、固化した重合体が得られた。重合体の熱によりステンレスパッドの表面温度が上昇しないように、固化物は取り除き、ステンレスパッドは空冷により冷却した。この空冷・固化操作を9回繰り返し、下記式(PBIF-AL)で示される構造を有するオリゴマー213.3gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は3100、分散度は1.33であった。また粘度は0.06Pa・s、は軟化点39℃であった。
Figure JPOXMLDOC01-appb-C000150
(合成実施例2)PBIF-ALSの合成
 攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に、PBIF-ALを16.8gと、フタル酸モノブチル銅を15.2g(30mmol)とを仕込み、溶媒として1-ブタノールを40mL加えて、反応液を110℃で6時間撹拌して反応を行った。冷却後に析出物を濾過し、得られた粗体を酢酸エチル100mLに溶解させた。次に塩酸5mLを加え、室温で攪拌後、炭酸水素ナトリウムで中和処理を行った。酢酸エチル溶液を濃縮し、メタノール200mLを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を乾燥させることにより、下記式で表される構造を有する目的樹脂PBIF-ALS24.7gを得た。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:2832、Mw:3476、Mw/Mn:1.23であった。
Figure JPOXMLDOC01-appb-C000151
(合成例3)p-CBIF-ALの合成
 窒素下、p-クレゾール(359.0g、3.32mol、東京化成工業(株)製)及び4,4’-ジクロロメチルビフェニル(200.0g、0.80mol、東京化成工業(株)製))を、下部に抜出口のある4つ口フラスコに仕込み、温度を上昇させると、系内が80℃で均一となり、HClの発生が始まった。100℃で3時間保持し、さらに150℃で1時間熱処理を加えた。反応で出てくるHClはそのまま系外へ揮散させ、アルカリ水でトラップした。この段階で未反応4,4’-ジクロロメチルビフェニルは残存しておらず、全て反応したことをガスクロマトグラフィで確認した。反応終了後、減圧にすることにより、系内に残存するHCl及び未反応のp-クレゾールを系外へ除去した。最終的に30torrで150℃まで減圧処理することで、残存p-クレゾールがガスクロマトグラフィで未検出になった。この反応生成物を150℃に保持しながら、フラスコの下部抜出口からその約30gを、空冷により室温に保たれたステンレスパッド上にゆっくりと滴下した。ステンレスパッド上では1分後に30℃まで急冷され、固化した重合体が得られた。重合体の熱によりステンレスパッドの表面温度が上昇しないように、固化物は取り除き、ステンレスパッドは空冷により冷却した。この空冷・固化操作を9回繰り返し、下記式(p-CBIF-AL)で示される構造を有するオリゴマー223.1gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は2556、分散度は1.21であった。また粘度は0.03Pa・s、軟化点は35℃であった。
Figure JPOXMLDOC01-appb-C000152
(合成実施例3)p-CBIF-ALSの合成
 合成実施例2のPBIF-ALをp-CBIF-ALに変更した以外は合成実施例2と同様にして実施し、下記式で表される構造を有する目的樹脂p-CBIF-ALS29.2gを得た。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:3124、Mw:4433、Mw/Mn:1.42であった。
Figure JPOXMLDOC01-appb-C000153
(合成例4)n-BBIF-ALの合成
 窒素下、4-ブチルフェノール(498.7g、3.32mol、東京化成工業(株)製)及び4,4’-ジクロロメチルビフェニル(200.0g、0.80mol、東京化成工業(株)製))を、下部に抜出口のある4つ口フラスコに仕込み、温度を上昇させると、系内が80℃で均一となり、HClの発生が始まった。100℃で3時間保持し、さらに150℃で1時間熱処理を加えた。反応で出てくるHClはそのまま系外へ揮散させ、アルカリ水でトラップした。この段階で未反応4,4’-ジクロロメチルビフェニルは残存しておらず、全て反応したことをガスクロマトグラフィで確認した。反応終了後、減圧にすることにより、系内に残存するHCl及び未反応の4-ブチルフェノールを系外へ除去した。最終的に30torrで150℃まで減圧処理することで、残存4-ブチルフェノールがガスクロマトグラフィで未検出になった。この反応生成物を150℃に保持しながら、フラスコの下部抜出口からその約30gを、空冷により室温に保たれたステンレスパッド上にゆっくりと滴下した。ステンレスパッド上では1分後に30℃まで急冷され、固化した重合体が得られた。重合体の熱によりステンレスパッドの表面温度が上昇しないように、固化物は取り除き、ステンレスパッドは空冷により冷却した。この空冷・固化操作を9回繰り返し、下記式(n-BBIF-AL)で示される構造を有するオリゴマー267.5gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は2349、分散度は1.19であった。また粘度は0.01Pa・s、軟化点は30℃であった。
Figure JPOXMLDOC01-appb-C000154
(合成実施例4)n-BBIF-ALSの合成
 合成実施例2のPBIF-ALをn-BBIF-ALに変更した以外は合成実施例2と同様にして実施し、下記式で表される構造を有する目的樹脂n-BBIF-ALS25.8gを得た。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:2988、Mw:3773、Mw/Mn:1.26であった。
Figure JPOXMLDOC01-appb-C000155
(合成例5)NAFBIF-ALの合成
 窒素下、1-ナフトール(478.0g、3.32mol、東京化成工業(株)製)及び4,4’-ジクロロメチルビフェニル(200.0g、0.80mol、東京化成工業(株)製))を、下部に抜出口のある4つ口フラスコに仕込み、温度を上昇させると、系内が80℃で均一となり、HClの発生が始まった。100℃で3時間保持し、さらに150℃で1時間熱処理を加えた。反応で出てくるHClはそのまま系外へ揮散させ、アルカリ水でトラップした。この段階で未反応4,4’-ジクロロメチルビフェニルは残存しておらず、全て反応したことをガスクロマトグラフィで確認した。反応終了後、減圧にすることにより、系内に残存するHCl及び未反応の1-ナフトールを系外へ除去した。最終的に30torrで140℃まで減圧処理することで、残存1-ナフトールがガスクロマトグラフィで未検出になった。この反応生成物を150℃に保持しながら、フラスコの下部抜出口からその約30gを、空冷により室温に保たれたステンレスパッド上にゆっくりと滴下した。ステンレスパッド上では1分後に30℃まで急冷され、固化した重合体が得られた。重合体の熱によりステンレスパッドの表面温度が上昇しないように、固化物は取り除き、ステンレスパッドは空冷により冷却した。この空冷・固化操作を9回繰り返し、下記式(NAFBIF-AL)で示される構造単位を有するオリゴマー288.3gを得た。ポリマーのGPCによるポリスチレン換算で測定される重量平均分子量は3450、分散度は1.40であった。また粘度は0.15Pa・s、軟化点は60℃であった。
Figure JPOXMLDOC01-appb-C000156
(合成実施例5)NAFBIF-ALSの合成
 合成実施例2のPBIF-ALをNAFBIF-ALに変更した以外は合成実施例2と同様にして実施し、下記式で表される構造を有する目的樹脂NAFBIF-ALS25.8gを得た。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:4128、Mw:5493、Mw/Mn:1.33であった。
Figure JPOXMLDOC01-appb-C000157
(合成例6)M-PBIF-ALの合成
攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に、PBIF-AL 50.0g、炭酸カリウム75.6g(547mmol)と、ジメチルホルムアミド200mLとを仕込み、炭酸ジメチル49.2g(546mmol)をさらに加え、反応液を120℃で14時間撹拌して反応を行った。次に、容器内に1%HCl水溶液を100mlと酢酸エチル200mlを添加し、その後、分液操作により、水層を除去した。次いで、濃縮により有機溶媒を除去し、乾燥させ、下記式で表される構造単位を有するオリゴマー(M-PBIF-AL)51.0gを得た。得られたオリゴマーのGPCによるポリスチレン換算で測定される重量平均分子量は2800、分散度は1.31であった。
 得られたオリゴマーについてH-NMR測定を行ったところ、フェノール性水酸基を示す9.1-9.4ppm付近のピークに対し、メチル基を示す3.7-3.8ppm付近のピークが化学量で1.5倍確認され、反応前の水酸基の60%がメチル基で保護されていることが分かった。また、粘度は0.01Pa・s、軟化点は25℃であった。
Figure JPOXMLDOC01-appb-C000158
(合成実施例6)M-PBIF-ALSの合成
 合成実施例2のPBIF-ALをM-PBIF-ALに変更した以外は合成実施例2と同様にして実施し、下記式で表される構造を有する目的樹脂M-PBIF-ALS26.2gを得た。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:2773、Mw:4021、Mw/Mn:1.45であった。
Figure JPOXMLDOC01-appb-C000159
(比較合成例1)
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5-ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5-ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。
 続いて、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流下で、上記のようにして得られたジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とパラトルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後さらに、1-ナフトール52.0g(0.36mol)を加え、さらに220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の変性樹脂(CR-1)126.1gを得た。
(比較合成例2)
 攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に、BisN-2  10g(21mmol)と、パラホルムアルデヒド0.7g(42mmol)、氷酢酸50mLとPGME50mLとを仕込み、95%の硫酸8mLを加えて、反応液を100℃で6時間撹拌して反応を行った。次に、反応液を濃縮し、メタノール1000mLを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させることにより、下記式で示される構造を有する目的樹脂(NBisN-2)7.2gを得た。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:778、Mw:1793、Mw/Mn:2.30であった。
 得られた樹脂について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式の化学構造を有することを確認した。
 δ(ppm)9.7(2H,O-H)、7.2~8.5(17H,Ph-H)、6.6(1H,C-H)、4.1(2H,-CH2)
Figure JPOXMLDOC01-appb-C000160
[実施例1~6、比較例1,2]
 合成実施例1~6、および比較合成例1~2で得られた樹脂を用いて、以下に示す評価方法によって、耐熱性を評価した結果を表1に示す。
<熱分解温度の測定>
 エスアイアイ・ナノテクノロジー社製EXSTAR6000TG-DTA装置を使用し、
試料約5mgをアルミニウム製非密封容器に入れ、窒素ガス(300ml/min)気流中昇温速度10℃/minで500℃まで昇温することにより熱重量減少量を測定した。
実用的観点からは、下記A又はB評価が好ましい。
 A:400℃での熱重量減少量が、10%未満
 B:400℃での熱重量減少量が、10%~25%
 C:400℃での熱重量減少量が、25%超
Figure JPOXMLDOC01-appb-T000161
 表1から明らかなように、実施例1~実施例6で用いた樹脂は、耐熱性が良好であるが、比較例1~2で用いた樹脂は、耐熱性が劣ることが確認できた。
[実施例7~12、比較例3]
(レジスト性能)
 合成実施例1~6及び比較合成例1で得られた樹脂を用いて、下記のレジスト性能評価を行った結果を表2に示す。
(レジスト組成物の調製)
 上記で合成した各樹脂を用いて、表2に示す配合でレジスト組成物を調製した。なお、表2中のレジスト組成物の各成分のうち、酸発生剤(C)、酸拡散制御剤(E)及び溶媒については、以下のものを用いた。
 酸発生剤(C)
  P-1:トリフェニルベンゼンスルホニウム トリフルオロメタンスルホネート(みどり化学(株))
 酸拡散制御剤(E)
  Q-1:トリオクチルアミン(東京化成工業(株))
 溶媒
  S-1:プロピレングリコールモノメチルエーテル(東京化成工業(株))
(レジスト組成物のレジスト性能の評価方法)
 均一なレジスト組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ60nmのレジスト膜を形成した。得られたレジスト膜に対して、電子線描画装置(ELS-7500、(株)エリオニクス社製)を用いて、50nm間隔の1:1のラインアンドスペース設定の電子線を照射した。当該照射後に、レジスト膜を、それぞれ所定の温度で、90秒間加熱し、テトラメチルアンモニウムヒドロキシド(TMAH)2.38質量%アルカリ現像液に60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄、乾燥して、ポジ型のレジストパターンを形成した。形成されたレジストパターンについて、ラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察し、レジスト組成物の電子線照射による反応性を評価した。
Figure JPOXMLDOC01-appb-T000162
 レジストパターン評価については、実施例7~実施例12では50nm間隔の1:1のラインアンドスペース設定の電子線を照射することにより、良好なレジストパターンを得た。なお、ラインエッジラフネスはパターンの凹凸が50nm未満を良好とした。一方、比較例3では良好なレジストパターンを得ることはできなかった。
 このように本実施形態の要件を満たす樹脂を用いた場合は、当該要件を満たさない比較例3の樹脂(CR-1)に比べて、耐熱性が高く、また良好なレジストパターン形状を付与できる。前記した本実施形態の要件を満たす限り、実施例に記載した樹脂以外についても同様の効果を示す。
[実施例13~18、比較例4]
(感放射線性組成物の調製)
 表3記載の成分を調合し、均一溶液としたのち、得られた均一溶液を、孔径0.1μmのテフロン(登録商標)製メンブランフィルターで濾過して、感放射線性組成物を調製した。調製した各々の感放射線性組成物について以下の評価を行った。
Figure JPOXMLDOC01-appb-T000163
 なお、比較例4におけるレジスト基材(成分(A))として、次のものを用いた。
  PHS-1:ポリヒドロキシスチレン Mw=8000(シグマ-アルドリッチ社)
 また、光活性化合物(B)として、次のものを用いた。
  B-1:下記化学構造式(G)のナフトキノンジアジド系感光剤(4NT-300、東洋合成工業(株))
 さらに、溶媒として、次のものを用いた。
  S-1:プロピレングリコールモノメチルエーテル(東京化成工業(株))
Figure JPOXMLDOC01-appb-C000164
(感放射線性組成物のレジスト性能の評価)
 上記で得られた感放射線性組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ200nmのレジスト膜を形成した。該レジスト膜に対して、紫外線露光装置(ミカサ製マスクアライナMA-10)を用いて紫外線を露光した。紫外線ランプは超高圧水銀ランプ(相対強度比はg線:h線:i線:j線=100:80:90:60)を使用した。照射後に、レジスト膜を、110℃で90秒間加熱し、TMAH2.38質量%アルカリ現像液に60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄し、乾燥して、5μmのポジ型のレジストパターンを形成した。
 形成されたレジストパターンにおいて、得られたラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察した。ラインエッジラフネスはパターンの凹凸が50nm未満を良好とした。
 実施例13~実施例18における感放射線性組成物を用いた場合は、良好なレジストパターンを得ることができた。また、そのパターンのラフネスも小さく良好であった。
 一方、比較例4における感放射線性組成物を用いた場合は、良好なレジストパターンを得ることができた。しかしながら、そのパターンのラフネスは大きく不良であった。
 上記のように、実施例13~実施例18における感放射線性組成物は、比較例4における感放射線性組成物に比べて、ラフネスが小さく、かつ良好な形状のレジストパターンを形成することができることがわかった。上記した本実施形態の要件を満たす限り、実施例に記載した以外の感放射線性組成物も同様の効果を示す。
 なお、合成実施例1~6で得られた樹脂は、比較的に低分子量で低粘度であることから、これを用いたリソグラフィー用下層膜形成材料は埋め込み特性や膜表面の平坦性が比較的に有利に高められ得ると評価された。また、熱分解温度はいずれも150℃以上(評価A)であり、高い耐熱性を有するので、高温ベーク条件でも使用することができると評価された。これらの点を確認するべく、下層膜用途を想定し、以下の評価を行った。
[実施例19~29、比較例5~8]
(リソグラフィー用下層膜形成用組成物の調製)
 表4に示す組成となるように、リソグラフィー用下層膜形成用組成物を調製した。次に、これらのリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。酸発生剤、架橋剤、有機溶媒及びノボラックについては以下のものを用いた。
  酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
  酸発生剤:ピリジニウムパラトルエンスルホン酸(PPTS)
  架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
  架橋剤:本州化学工業株式会社製品「TMOM-BP」(TMOM)
  有機溶媒:PGMEA/PGME=9:1
  PGMEA:プロピレングリコールモノメチルエーテルアセテート
  PGME: 1-メトキシ-2-プロパノール
  ノボラック:群栄化学社製 PSM4357
 次に、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表4に示す。
[エッチング試験]
  エッチング装置:サムコインターナショナル社製 RIE-10NR
  出力:50W
  圧力:20Pa
  時間:2min
  エッチングガス
  Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
(エッチング耐性の評価)
 エッチング耐性の評価は、以下の手順で行った。まず、ノボラック(群栄化学社製 PSM4357)を用いること以外は、上記条件と同様にしてノボラックの下層膜を作製した。このノボラックの下層膜を対象として、上記のエッチング試験を行い、そのときのエッチングレートを測定した。
 次に、実施例19~29と比較例5~8の下層膜を、ノボラックの下層膜と同様の条件で作製し、上記エッチング試験を同様に行い、そのときのエッチングレートを測定した。ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
 [評価基準]
 A:ノボラックの下層膜に比べてエッチングレートが、-15%未満
 B:ノボラックの下層膜に比べてエッチングレートが、-15%~0%
 C:ノボラックの下層膜に比べてエッチングレートが、+0%超
Figure JPOXMLDOC01-appb-T000165
 実施例19~29では、ノボラックの下層膜および比較例5~8の樹脂に比べて優れたエッチングレートが発揮されることがわかった。一方、比較例5~8の樹脂では、ノボラックの下層膜に比べてエッチングレートが劣ることがわかった。
[実施例30~40、比較例9]
 次に、実施例19~実施例29、比較例5で用いたリソグラフィー用下層膜形成用組成物を膜厚80nmの60nmラインアンドスペースのSiO基板上に塗布して、240℃で60秒間ベークすることにより90nm下層膜を形成した。
(埋め込み性の評価)
 埋め込み性の評価は、以下の手順で行った。上記条件で得られた膜の断面を切り出し、電子線顕微鏡にて観察し、埋め込み性を評価した。評価結果を表5に示す。
 [評価基準]
  A:60nmラインアンドスペースのSiO基板の凹凸部分に欠陥無く下層膜が埋め込まれている。
  C:60nmラインアンドスペースのSiO基板の凹凸部分に欠陥があり下層膜が埋め込まれていない。
Figure JPOXMLDOC01-appb-T000166
 実施例30~40では、埋め込み性が良好であることがわかった。一方、比較例9では、SiO基板の凹凸部分に欠陥が見られ埋め込み性が劣ることがわかった。
[実施例41~51]
 次に、実施例19~29で用いたリソグラフィー用下層膜形成用組成物を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚85nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。
 なお、ArFレジスト溶液としては、下記式(16)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
 下記式(16)の化合物は、次のように調製した。すなわち、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。このようにして得られる生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて下記式(16)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000167
(式(16)中、40、40、20とあるのは、各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。)
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。
[比較例10]
 下層膜の形成を行わないこと以外は、実施例41と同様にしてフォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。
[評価]
 実施例41~51及び比較例10のそれぞれについて、得られたレジストパターンの形状を(株)日立製作所製電子顕微鏡(S-4800)を用いて観察した。現像後のレジストパターンの形状については、パターン倒れがなく、矩形性が良好なものを良好とし、そうでないものを不良として評価した。また、当該観察の結果、パターン倒れが無く、矩形性が良好な最小の線幅を解像性として評価の指標とした。さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を感度として、評価の指標とした。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000168
 表6から明らかなように、実施例41~51におけるレジストパターンは、比較例10に比して、解像性及び感度ともに有意に優れていることが確認された。また、現像後のレジストパターン形状もパターン倒れがなく、矩形性が良好であることが確認された。さらに、現像後のレジストパターン形状の相違から、実施例41~51におけるリソグラフィー用下層膜形成材料は、レジスト材料との密着性がよいことが示された。
[実施例52]
 実施例19で用いたリソグラフィー用下層膜形成用組成物を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚90nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、前記ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、特開2007-226170号公報<合成例1>に記載の珪素原子含有ポリマーを用いた。
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、45nmL/S(1:1)のポジ型のレジストパターンを得た。
 その後、サムコインターナショナル社製 RIE-10NRを用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行い、続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO膜のドライエッチング加工とを順次行った。
 各々のエッチング条件は、下記に示すとおりである。
 レジストパターンのレジスト中間層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:1min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:8:2(sccm)
 レジスト中間膜パターンのレジスト下層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
 レジスト下層膜パターンのSiO 膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:C12ガス流量:Cガス流量:Oガス流量
          =50:4:3:1(sccm)
[評価]
 上記のようにして得られた実施例52のパターン断面(エッチング後のSiO膜の形状)を、(株)日立製作所製電子顕微鏡(S-4800)を用いて観察したところ、本発明の下層膜を用いた実施例は、多層レジスト加工におけるエッチング後のSiO膜の形状は矩形であり、欠陥も認められず良好であることが確認された。
<樹脂膜(樹脂単独膜)の特性評価>
<樹脂膜の作成>
(実施例A01)
 溶媒としてPGMEA/PGME=9:1を用い、合成実施例1の樹脂NAFP-ALSを溶解して固形分濃度10質量%の樹脂溶液を作成した(実施例A01の樹脂溶液)。
 作成した樹脂溶液をスピンコーターLithiusPro(東京エレクトロン社製)を用いて12インチシリコンウエハ上に成膜し、200nmの膜厚となるように回転数を調整しながら成膜後、ベーク温度を250℃1分の条件でベーク処理して合成実施例1の樹脂からなる膜を積層した基板を作成した。作成した基板を更に高温処理可能なホットプレートを使用し、350℃1分の条件でベークすることで硬化した樹脂膜を得た。この際、得られた硬化した樹脂膜をPGMEA槽に1分間浸漬する前後の膜厚変化が3%以下であれば、硬化したと判断した。硬化が不十分と判断される場合は硬化温度を50℃ずつ変更して硬化する温度を調査し、硬化する温度範囲の中で一番温度が低い条件で硬化するベーク処理を行った。
<光学特性値評価>
 作製した樹脂膜について、分光エリプソメトリーVUV-VASE(J.A.Woollam社製)を用いて光学特性値(光学定数として、屈折率nと、消衰係数k)の評価を行った。
(実施例A02~実施例A06及び比較例A01)
 使用した樹脂をNAFP-ALSから表7に示す樹脂に変更したこと以外は実施例A01と同様にして樹脂膜を作成し、光学特性値評価を実施した。
[評価基準]屈折率n
 A:1.4以上
 C:1.4未満
 [評価基準]消衰係数k
 A:0.5未満
 C:0.5以上
Figure JPOXMLDOC01-appb-T000169
 実施例A01~A06の結果から、本実施形態における多環ポリフェノール樹脂を含む膜形成用組成物によりArF露光で使用する波長193nmにおけるn値は高く、k値は低い樹脂膜を形成できることがわかった。
<硬化膜の耐熱性評価>
(実施例B01)
 実施例A01で作製した樹脂膜について、ランプアニール炉を用いた耐熱性評価を行った。耐熱処理条件としては窒素雰囲気下400℃で加熱を継続し、加熱開始からの経過時間4分および10分の間の膜厚変化率を求めた。これらの膜厚変化率を硬化膜耐熱性の指標として評価した。耐熱試験前後の膜厚は、干渉膜厚計で計測して膜厚の変動値を耐熱試験処理前の膜厚に対する比を膜厚変化率(百分率%)として求めた。
 [評価基準]
 A:膜厚変化率が、10%未満
 B:膜厚変化率が、10%~15%
 C:膜厚変化率が、15%超
(実施例B02~実施例B06、比較例B01~比較例B02)
 使用した樹脂をNAFP-ALSから表8に示す樹脂に変更したこと以外は実施例B01と同様にして耐熱性評価を実施した。
Figure JPOXMLDOC01-appb-T000170
(実施例C01)
<PE-CVD成膜評価>
 12インチシリコンウエハに熱酸化処理を実施し、得られたシリコン酸化膜を有する基板上に、実施例A01と同様の方法により、実施例A01の樹脂溶液を用いて100nmの厚みで樹脂膜を作製した。当該樹脂膜上に、成膜装置TELINDY(東京エレクトロン社製)を用い、原料としてTEOS(テトラエチルシロキサン)を使用し、基板温度300℃にて膜厚70nmの酸化シリコン膜の成膜を行った。作成した酸化シリコン膜を積層した硬化膜付きウエハについて、更にKLA-Tencor SP-5を用いて欠陥検査を行い、21nm以上となる欠陥の個数を指標として、成膜した酸化膜の欠陥数の評価を行った。
A 欠陥数 ≦ 20個
B 20個 < 欠陥数 ≦ 50個
C 50個 < 欠陥数 ≦ 100個
D 100個 < 欠陥数 ≦ 1000個
E 1000個 < 欠陥数 ≦ 5000個
F 5000個 < 欠陥数
<SiN膜>
 上記と同様の方法により12インチシリコンウエハ上に100nmの厚みで熱酸化処理されたシリコン酸化膜を有する基板上に作製した硬化膜上に、成膜装置TELINDY(東京エレクトロン社製)を用い、原料としてSiN(モノシラン)、アンモニアを使用し、基板温度350℃にて膜厚40nm、屈折率1.94、膜応力-54MPaのSiN膜の成膜を行った。作成したSiN膜を積層した硬化膜付きウエハについて、更にKLA-Tencor SP-5を用いて欠陥検査を行い、21nm以上となる欠陥の個数を指標として、成膜した酸化膜の欠陥数の評価を行った。
A 欠陥数 ≦ 20個
B 20個 < 欠陥数 ≦ 50個
C 50個 < 欠陥数 ≦ 100個
D 100個 < 欠陥数 ≦ 1000個
E 1000個 < 欠陥数 ≦ 5000個
F 5000個 < 欠陥数
(実施例C02~実施例C06及び比較例C01~比較例C02)
 使用した樹脂をNAFP-ALSから表9に示す樹脂に変更したこと以外は実施例C01と同様にして欠陥評価を実施した。
Figure JPOXMLDOC01-appb-T000171
 実施例C01~C06の樹脂膜上に形成されたシリコン酸化膜あるいはSiN膜は21nm以上となる欠陥の個数が50個以下(B評価以上)であり、比較例C01あるいはC02の欠陥の個数に比べ、少なくなることが示された。
(実施例D01)
<高温処理後のエッチング評価>
 12インチシリコンウエハに熱酸化処理を実施し、得られたシリコン酸化膜を有する基板上に、実施例A01と同様の方法により、実施例A01の樹脂溶液を用いて100nmの厚みで樹脂膜を作製した。当該樹脂膜に対して、更に窒素雰囲気下で高温処理可能なホットプレートにより600℃4分の条件で加熱によるアニーリング処理を行い、アニーリングされた樹脂膜が積層されたウエハを作成した。作成したアニーリングされた樹脂膜を削り出し、元素分析により炭素含率を評価した。
 [評価基準]
A 90%以上
B 90%未満
 更に、12インチシリコンウエハに熱酸化処理を実施し、得られたシリコン酸化膜を有する基板上に、実施例A01と同様の方法により、実施例A01の樹脂溶液を用いて100nmの厚みで樹脂膜を作製した。当該樹脂膜について、更に窒素雰囲気下で600℃4分の条件で加熱によりアニーリングされた樹脂膜を形成したのち、該基板をエッチング装置TELIUS(東京エレクトロン社製)を用い、エッチングガスとしてCF/Arを用いた条件、およびCl/Arを用いた条件でエッチング処理を行い、エッチングレートの評価を行った。エッチングレートの評価はリファレンスとしてSU8(日本化薬社製)を250℃1分アニーリング処理して作成した200nm膜厚の樹脂膜を用い、SU8に対するエッチングレートの速度比を評価した。
 [評価基準]
A 0.8未満
B 0.8以上
(実施例D02~実施例D06、比較例D01~比較例D02)
 使用した樹脂をNAFP-ALSから表10に示す樹脂に変更したこと以外は実施例D01と同様にして耐熱性評価を実施した。
Figure JPOXMLDOC01-appb-T000172
<積層膜でのエッチング欠陥評価>
 合成実施例で得られた多環ポリフェノール樹脂について、精製処理前後での品質評価を実施した。すなわち、多環ポリフェノール樹脂を用いてウエハ上に成膜した樹脂膜をエッチングにより基板側に転写したのち、欠陥評価を行うことで評価した。
 12インチシリコンウエハに熱酸化処理を実施し、100nmの厚みのシリコン酸化膜を有する基板を得た。当該基板上に、多環ポリフェノール樹脂の樹脂溶液を100nmの厚みとなるようにスピンコート条件を調整して成膜後、150℃ベーク1分、続いて350℃ベーク1分を行うことで多環ポリフェノール樹脂を熱酸化膜付きシリコン上に積層した積層基板を作製した。
 エッチング装置としてTELIUS(東京エレクトロン社製)を用い、CF4/O2/Arの条件で樹脂膜をエッチングし、酸化膜表面の基板を露出させた。更にCF4/Arのガス組成比にて酸化膜を100nmエッチングする条件でエッチング処理を行い、エッチングしたウエハを作成した。
 作成したエッチングウエハを欠陥検査装置SP5(KLA-tencor社製)にて19nm以上の欠陥数を測定し、積層膜でのエッチング処理による欠陥評価として実施した。
A 欠陥数 ≦ 20個
B 20個 < 欠陥数 ≦ 50個
C 50個 < 欠陥数 ≦ 100個
D 100個 < 欠陥数 ≦ 1000個
E 1000個 < 欠陥数 ≦ 5000個
F 5000個 < 欠陥数
(実施例E01) NAFP-ALSの酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られたNAFP-ALSをPGMEAに溶解させた溶液(10質量%)を150g仕込み、攪拌しながら80℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相に分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びPGMEAを濃縮留去した。その後、ELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたNAFP-ALSのPGMEA溶液を得た。作成した多環ポリフェノール樹脂溶液を日本インテグリス社性の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E02) NAFP-ALSのフィルター通液による精製1
 クラス1000のクリーンブース内にて、1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られた樹脂(NAFP-ALS)をプロピレングリコールモノメチルエーテル(PGME)に溶解させた濃度10質量%の溶液を500g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分100mLの流量で公称孔径が0.01μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックスナイロンシリーズ)に濾過圧が0.5MPaの条件となるように加圧濾過にて通液した。濾過後の樹脂溶液をELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたNAFP-ALSのPGMEA溶液を得た。作成した多環ポリフェノール樹脂溶液を日本インテグリス社性の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。なお、酸素濃度はアズワン株式会社製の酸素濃度計「OM-25MF10」により測定した。
(実施例E03)NAFP-ALSのフィルター通液による精製2
 フィルターによる精製工程として、日本ポール社製のIONKLEEN、日本ポール社性のナイロンフィルター、更に日本インテグリス社性の公称孔径3nmのUPEフィルターをこの順番に直列に接続し、フィルターラインとして構築した。 0.1μmのナイロン製中空糸膜フィルターの代わりに、作製したフィルターラインを使用した以外は、実施例E02と同様にして濾過圧が0.5MPaの条件となるように加圧濾過により通液した。ELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたNAFP-ALSのPGMEA溶液を得た。作成した多環ポリフェノール樹脂溶液を日本インテグリス社性の公称孔径3nmのUPEフィルターにより濾過圧が0.5MPaの条件となるように加圧濾過した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E04)
(合成実施例2)で作成したPBIF-ALS について、実施例E01と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E05)
(合成実施例2)で作成したPBIF-ALS について、実施例E02と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E06)
(合成実施例2)で作成したPBIF-ALS について、実施例E03と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E07)
(合成実施例3)で作成したp-CBIF-ALS について、実施例E01と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E08)
(合成実施例3)で作成したp-CBIF-ALS について、実施例E02と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E09)
(合成実施例3)で作成したp-CBIF-ALSについて、実施例E03と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E10)
(合成実施例4)で作成したn-BBIF-ALS について、実施例E01と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E11)
(合成実施例4)で作成したn-BBIF-ALS について、実施例E02と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E12)
(合成実施例4)で作成したn-BBIF-ALSについて、実施例E03と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E13)
(合成実施例5)で作成したNAFBIF-ALS について、実施例E01と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E14)
(合成実施例5)で作成したNAFBIF-ALS について、実施例E02と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E15)
(合成実施例5)で作成したNAFBIF-ALSについて、実施例E03と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E16)
(合成実施例6)で作成したM-PBIF-ALS について、実施例E01と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E17)
(合成実施例6)で作成したM-PBIF-ALS について、実施例E02と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E18)
(合成実施例6)で作成したM-PBIF-ALSについて、実施例E03と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
Figure JPOXMLDOC01-appb-T000173
[実施例53~58、比較例11]
 上記の各実施例19、21、23、25、27、29および比較例5で調製したリソグラフィー用下層膜形成材料の溶液と同組成の光学部品形成組成物を膜厚300nmのSiO基板上に塗布して、260℃で300秒間ベークすることにより、膜厚100nmの光学部品用の膜を形成した。次いで、ジェー・エー・ウーラム・ジャパン社製 真空紫外域多入射角分光エリプソメーター(VUV-VASE)を用いて、633nmの波長における屈折率及び透明性試験を行い、以下の基準に従って屈折率及び透明性を評価した。評価結果を表12に示す。
 [屈折率の評価基準]
 A:屈折率が1.65以上
 C:屈折率が1.65未満
 [透明性の評価基準]
 A:吸光定数が0.03未満
 C:吸光定数が0.03以上
Figure JPOXMLDOC01-appb-T000174
 実施例53~58の光学部材形成組成物では、屈折率が高いのみならず、吸光係数が低く、透明性に優れることが分かった。一方で、比較例11の組成物は光学部材としての性能に劣ることが分かった。
[実施例群2]
 下記合成実施例で使用したRDHN、RBiN、RBiP-1、RDB、RBiP-2の構造は以下のとおりである。
Figure JPOXMLDOC01-appb-C000175
(合成実施例1)RDHN-Acの合成
 攪拌機、冷却管及びビュレットを備えた内容積1000mLの容器に、RDHN 3.7g、炭酸カリウム108g(810mmol)と、ジメチルホルムアミド200mLとを仕込み、アクリル酸110g(1.53mol)を加えて、反応液を110℃で24時間撹拌して反応を行った。つぎに、反応液を濃縮し、純水500gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(RDHN-Ac)2.4gを得た。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:5233、Mw:7425、Mw/Mn:1.42であった。
 得られた樹脂について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(RDHN-Ac)の化学構造を有することを確認した。
1H-NMR:(d6-DMSO、内部標準TMS):δ(ppm)7.0~7.9(4H,Ph-H)、6.2(2H,=C-H)、6.1(2H、-CH=C)、5.7(2H、=C-H)
Figure JPOXMLDOC01-appb-C000176
(合成実施例2)RDHN-Eaの合成
 攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に上述の式(RDHN)で表される樹脂3.1gと、グリシジルメタクリレRDHNとを50mlメチルイソブチルケトンに仕込み、80℃に加温して撹拌した状態で、24時間撹拌して反応を行った。
 50℃まで冷却し、反応液を純水中に滴下して析出した固形物を濾過し、乾燥させた後、カラムクロマトグラフによる分離精製を行い、下記式(RDHN―Ea)で表される目的樹脂を1.0g得た。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:8669、Mw:12300、Mw/Mn:1.42であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RDHN-Ea)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS):δ(ppm)7.0~7.9(4H,Ph-H)、6.4~6.5(4H,C=CH2)、5.7(2H,-OH)、4.7(2H、C-H)、4.0~4.4(8H,-CH2-)、2.0(6H,-CH3)
Figure JPOXMLDOC01-appb-C000177
(合成実施例3)RDHN-Uaの合成
 攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に上述の式(RDHN)で表される樹脂3.1gと、2-イソシアナトエチルメタクリレート6.1g、トリエチルアミン0.5g、及びp-メトキシフェノール0.05gとを50mLメチルイソブチルケトンに仕込み、80℃に加温して撹拌した状態で、24時間撹拌して反応を行った。50℃まで冷却し、反応液を純水中に滴下して析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(RDHN-Ua)で表される目的樹脂が1.0g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:8631、Mw:12246、Mw/Mn:1.42であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RDHN-Ua)の化学構造を有することを確認した。
 1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)8.8(4H,-NH2)、7.0~7.9(4H,Ph-H)、6.4~6.5(4H,=CH2)、4.1(4H,-CH2-)、3.4(2H,C-H)2.2(4H,-CH2-)、2.0(6H,-CH3)
Figure JPOXMLDOC01-appb-C000178
(合成実施例4)RDHN-Eの合成
 攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に上述の式(RDHN)で示される樹脂3.1gと炭酸カリウム14.8g(107mmol)とを50mLジメチルホルムアミドに仕込み、酢酸-2-クロロエチル6.56g(54mmol)を加えて、反応液を90℃で12時間撹拌して反応を行った。つぎに反応液を氷浴で冷却し結晶を析出させ、濾過を行って分離した。続いて攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に上述の結晶40g、メタノール40g、THF100g及び24%水酸化ナトリウム水溶液を仕込み、反応液を還流下で4時間撹拌して反応を行った。その後、氷浴で冷却し、反応液を濃縮し析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(RDHN-E)で示される目的樹脂が5.2g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:4842、Mw:6871、Mw/Mn:1.42であった。
 得られた樹脂について、400MHz-1H-NMRにより下記式(RDHN-E)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)7.0~7.9(4H,Ph-H)、4.9(2H,-OH)、4.4(4H,-CH2-)、3.7(4H,-CH2-)
Figure JPOXMLDOC01-appb-C000179
(合成実施例5)RDHN-PXの合成
 攪拌機、冷却管及びビュレットを備えた内容積1000mLの容器に上述の式(RDHN)で表される樹脂12gと、ヨードアニソール62.9g、炭酸セシウム116.75g、ジメチルグリシム塩酸塩1.88g、及びヨウ化銅0.68gとを400mL1,4-ジオキサンに仕込み、95℃に加温して22時間撹拌して反応を行った。つぎに不溶分をろ別し、ろ液を濃縮し純水中に滴下して析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(RDHN-M)で表される中間体樹脂が5.4g得られた。
Figure JPOXMLDOC01-appb-C000180
 つぎに、攪拌機、冷却管及びビュレットを備えた内容積1000mLの容器に上述の式(RDHN-M)で表される樹脂5.4gとピリジン塩酸塩80gを仕込み、190℃2時間撹拌して反応を行なった。つぎに温水160mLを追加し撹拌を行い、固体を析出させた。その後、酢酸エチル250mL、水100mLを加え撹拌、静置し、分液させた有機層を濃縮し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(RDHN-PX)で表される目的樹脂が3.9g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:6127、Mw:9531、Mw/Mn:1.42であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RDHN-PX)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.1(2H,O-H)、6.8~8.0(12H,Ph-H)
Figure JPOXMLDOC01-appb-C000181
(合成実施例6)RDHN-PEの合成
上述の式(RDHN)で表される樹脂の代わりに、上述の式(RDHN-E)で表される樹脂を用いた以外、合成実施例5と同様に反応させ、下記式(RDHN-PE)で表される目的樹脂が1.4g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:7810、Mw:11082、Mw/Mn:1.42であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RDHN-PE)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.1(2H,O-H)、6.7~8.0(12H,Ph-H)、4.4(4H,-CH2-)、3.1(4H,-CH2-)
Figure JPOXMLDOC01-appb-C000182
(合成実施例7)RDHN-Gの合成
 攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に前記式(RDHN)で表される樹脂3.1gと炭酸カリウム6.2g(45mmol)とを100mlジメチルホルムアミドに加えた液を仕込み、さらにエピクロルヒドリン4.1g(45mmol)を加えて、得られた反応液を90℃で6.5時間撹拌して反応を行なった。つぎに反応液から固形分をろ過で除去し、氷浴で冷却し、結晶を析出させ、濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(RDHN-G)で表される目的樹脂が1.3g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:5311、Mw:7536、Mw/Mn:1.42であった。
 得られた樹脂(RDHN-G)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(RDHN-G)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)7.0~7.9(4H,Ph-H)、4.0~4.3(4H,-CH2-)、2.3~3.0(6H,-CH(CH2)O)
Figure JPOXMLDOC01-appb-C000183
(合成実施例8)RDHN-GEの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RDHN-E)で表される樹脂を用いた以外、合成実施例7と同様に反応させ、下記式(RDHN-GE)で表される目的樹脂が1.0g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:7029、Mw:9974、Mw/Mn:1.42であった。
 400MHz-1H-NMRにより、下記式(RDHN-GE)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)7.0~7.9(4H,Ph-H)、、3.3~4.4(12H,-CH2-)、2.3~2.8(6H,-CH(CH2)O)
Figure JPOXMLDOC01-appb-C000184
(合成実施例9)RDHN-SXの合成
 攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に前記式(RDHN)で表される樹脂3.1gとビニルベンジルクロライド(商品名CMS-P;セイミケミカル(株)製)6.4gとを50mlジメチルホルムアミドに仕込み、50℃に加温して撹拌した状態で、28質量%ナトリウムメトキシド(メタノール溶液)8.0gを滴下ロートより20分間かけて加えて、反応液を50℃で1時間撹拌して反応を行った。つぎに28質量%ナトリウムメトキシド(メタノール溶液)1.6gを加え、反応液を60℃加温して3時間撹拌し、さらに85質量%燐酸1.2gを加え、10分間撹拌した後、40℃まで冷却し、反応液を純水中に滴下して析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(RDHN-SX)で表される目的樹脂が1.2g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:7654、Mw:10861、Mw/Mn:1.42であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RDHN-SX)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)7.0~7.9(4H,Ph-H)、5.2~5.8(10H,-CH2-、-CH=CH2)
Figure JPOXMLDOC01-appb-C000185
(合成実施例10)RDHN-SEの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RDHN-E)で表される樹脂を用いた以外、合成実施例8と同様に反応させ、下記式(RDHN-SE)で表される目的樹脂が1.2g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:9372、Mw:13290、Mw/Mn:1.42であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RDHN-SE)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)7.0~8.0(12H,Ph-H)、3.8~6.7(18H,-CH2-CH2-、-CH2-、-CH=CH2)
Figure JPOXMLDOC01-appb-C000186
(合成実施例11)RDHN-Prの合成
 攪拌機、冷却管及びビュレットを備えた内容積300mLの容器において、前記式(RDHN)3.0gとプロパギルブロミド7.9g(66mmol)とを100mLのジメチルホルムアミドに仕込み、室温で3時間撹拌して反応を行って反応液を得た。つぎに反応液を濃縮し、濃縮液に純水300gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って固形物を分離した。
 得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことで、下記式(RDHN-Pr)で表される目的樹脂(RDHN-Pr)を2.0g得た。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:4608、Mw:6534、Mw/Mn:1.42であった。
 得られた樹脂(RDHN-Pr)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(RDHN-Pr)の化学構造を有することを確認した。
 δ(ppm):7.0~7.9(4H,Ph-H)、4.8(4H,-CH2-)、2.1(2H,≡CH)
Figure JPOXMLDOC01-appb-C000187
(合成実施例12)RBiN-Acの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiN)で表される樹脂を用いた以外、合成実施例1と同様に反応させ、下記式(RBiN-Ac)で表される目的樹脂が3.0g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:5125、Mw:6663、Mw/Mn:1.30であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiN-Ac)の化学構造を有することを確認した。
1H-NMR:(d6-DMSO、内部標準TMS):δ(ppm)7.2~8.7(17H,Ph-H)、6.8(1H,C-H)、6.2(2H,=C-H)、6.1(2H、-CH=C)、5.7(2H、=C-H)、5.3(1H,C-H)
Figure JPOXMLDOC01-appb-C000188
(合成実施例13)RBiN-Eaの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiN)で表される樹脂を用いた以外、合成実施例2と同様に反応させ、下記式(RBiN-Ea)で表される目的樹脂が3.0g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:6768、Mw:10655、Mw/Mn:1.30であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiN-Ea)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)7.2~8.7(17H,Ph-H)、6.8(1H,C-H)、6.4~6.5(4H,C=CH2)、5.7(2H,-OH)、4.7(2H、C-H)、4.0~4.4(8H,-CH2-)、2.0(6H,-CH3)
Figure JPOXMLDOC01-appb-C000189
(合成実施例14)RBiN-Uaの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiN)で表される樹脂を用いた以外、合成実施例3と同様に反応させ、下記式(RBiN-Ua)で表される目的樹脂が3.0g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:6750、Mw:8775、Mw/Mn:1.30であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiN-Ua)の化学構造を有することを確認した。
 1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)8.8(4H,-NH2)、7.2~8.7(17H,Ph-H)、6.8(1H,C-H)、6.4~6.5(4H,=CH2)、4.1(4H,-CH2-)、3.4(2H,C-H)2.2(4H,-CH2-)、2.0(6H,-CH3)
Figure JPOXMLDOC01-appb-C000190
(合成実施例15)RBiN-Eの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiN)で表される樹脂を用いた以外、合成実施例4と同様に反応させ、下記式(RBiN-E)で表される目的樹脂が3.0g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:5017、Mw:6523、Mw/Mn:1.30であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiN-E)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)7.2~8.7(17H,Ph-H)、6.8(1H,C-H)、4.9(2H,-OH)、4.4(4H,-CH2-)、3.7(4H,-CH2-)
Figure JPOXMLDOC01-appb-C000191
(合成実施例16)RBiN-PXの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiN)で表される樹脂を用いた以外、合成実施例5と同様に反応させ、下記式(RBiN-M)で表される中間体樹脂が6.5g得られた。
Figure JPOXMLDOC01-appb-C000192
 前記式(RDHN―M)で表される樹脂の代わりに、前記式(RBiN―M)で表される樹脂を用いた以外、合成実施例5と同様に反応させ、下記式(RBiN-PX)で表される樹脂が4.7g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:5017、Mw:6523、Mw/Mn:1.30であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiN-PX)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.1(2H,O-H)、6.8~8.7(25H,Ph-H)、6.8(1H,C-H)
Figure JPOXMLDOC01-appb-C000193
(合成実施例17)RBiN-PEの合成
 上述の式(RDHN)で表される樹脂の代わりに、上述の式(RBiN-E)で表される樹脂を用いた以外、合成実施例6と同様に反応させ、下記式(RBiN-PE)で表される目的樹脂が4.2g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:6374、Mw:8288、Mw/Mn:1.30であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiN-PE)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.1(2H,O-H)、6.8~8.7(25H,Ph-H)、6.8(1H,C-H)、4.4(4H,-CH2-)、3.1(4H,-CH2-)
Figure JPOXMLDOC01-appb-C000194
(合成実施例18)RBiN-Gの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiN)で表される樹脂を用いた以外、合成実施例7と同様に反応させ、下記式(RBiN-G)で表される目的樹脂が3.0g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:5232、Mw:6802、Mw/Mn:1.30であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiN-G)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)7.2~8.7(17H,Ph-H)、6.8(C-H)、4.0~4.3(4H,-CH2-)、2.3~3.0(6H,-CH(CH2)O)
Figure JPOXMLDOC01-appb-C000195
(合成実施例19)RBiN-GEの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiN-E)で表される樹脂を用いた以外、合成実施例8と同様に反応させ、下記式(RBiN-GE)で表される目的樹脂が3.0g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:6018、Mw:7824、Mw/Mn:1.30であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiN-GE)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)7.2~8.7(17H,Ph-H)、6.8(C-H)、3.3~4.4(12H,-CH2-)、2.3~2.8(6H,-CH(CH2)O)
Figure JPOXMLDOC01-appb-C000196
(合成実施例20)RBiN-SXの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiN)で表される樹脂を用いた以外、合成実施例9と同様に反応させ、下記式(RBiN-SX)で表される目的樹脂が3.0g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:6303、Mw:8195、Mw/Mn:1.30であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiN-SX)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)6.8~8.7(25H,Ph-H)、6.8(1H,C-H)、5.2~5.8(10H,-CH2-、-CH=CH2)
Figure JPOXMLDOC01-appb-C000197
(合成実施例21)RBiN-SEの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiN-E)で表される樹脂を用いた以外、合成実施例10と同様に反応させ、下記式(RBiN-SE)で表される目的樹脂が3.5g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:7089、Mw:9216、Mw/Mn:1.30であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiN-SE)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)7.0~8.7(25H,Ph-H)、3.8~6.8(19H,-CH2-CH2-、-CH2-、-CH=CH2、C-H)
Figure JPOXMLDOC01-appb-C000198
(合成実施例22)RBiN-Prの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiN)で表される樹脂を用いた以外、合成実施例11と同様に反応させ、下記式(RBiN-Pr)で表される目的樹脂が3.0g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:4553、Mw:5920、Mw/Mn:1.30であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiN-GE)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm):7.2~8.7(17H,Ph-H)、6.8(1H,C-H)、4.8(4H,-CH2-)、2.1(2H,≡CH)
Figure JPOXMLDOC01-appb-C000199
(合成実施例23)RBiP-1-Acの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-1)で表される樹脂を用いた以外、合成実施例1と同様に反応させ、下記式(RBiP-1-Ac)で表される目的樹脂が2.2g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:6255、Mw:8188、Mw/Mn:1.33であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-1-Ac)の化学構造を有することを確認した。
1H-NMR:(d6-DMSO、内部標準TMS):δ(ppm)7.1~8.2(6H,Ph-H)、6.2(2H,=C-H)、6.1(2H、-CH=C)、5.7(2H、=C-H)
Figure JPOXMLDOC01-appb-C000200
(合成実施例24)RBiP-1-Eaの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-1)で表される樹脂を用いた以外、合成実施例2と同様に反応させ、下記式(RBiP-1-Ea)で表される目的樹脂が0.9g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:10171、Mw:13312、Mw/Mn:1.33であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-1-Ea)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)7.1~8.2(6H,Ph-H)、6.4~6.5(4H,C=CH2)、5.7(2H,-OH)、4.7(2H、C-H)、4.0~4.4(8H,-CH2-)、2.0(6H,-CH3)
Figure JPOXMLDOC01-appb-C000201
(合成実施例25)RBiP-1-Uaの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-1)で表される樹脂を用いた以外、合成実施例3と同様に反応させ、下記式(RBiP-1-Ua)で表される目的樹脂が0.9g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:6255、Mw:8188、Mw/Mn:1.33であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-1-Ua)の化学構造を有することを確認した。
 1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)
8.8(4H,-NH2)、7.1~8.2(6H,Ph-H)、6.4~6.5(4H,=CH2)、4.1(4H,-CH2-)、3.4(2H,C-H)2.2(4H,-CH2-)、2.0(6H,-CH3)
Figure JPOXMLDOC01-appb-C000202
(合成実施例26)RBiP-1-Eの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-1)で表される樹脂を用いた以外、合成実施例4と同様に反応させ、下記式(RBiP-1-E)で表される目的樹脂が3.0g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:6000、Mw:7985、Mw/Mn:1.33であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-1-E)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)7.1~8.2(6H,Ph-H)、4.9(2H,-OH)、4.4(4H,-CH2-)、3.7(4H,-CH2-)
Figure JPOXMLDOC01-appb-C000203
(合成実施例27)RBiP-1-PXの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-1)で表される樹脂を用いた以外、合成実施例5と同様に反応させ、下記式(RBiP-1-M)で表される中間体樹脂が4.9g得られた。
Figure JPOXMLDOC01-appb-C000204
 前記式(RDHN-M)で表される樹脂の代わりに、前記式(RBiP-1―M)で表される樹脂を用いた以外、合成実施例5と同様に反応させ、下記式(RBiP-1-PX)で表される樹脂が3.5g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:6000、Mw:7985、Mw/Mn:1.33であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-1-PX)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.1(2H,O-H)、6.8~8.2(10H,Ph-H)
Figure JPOXMLDOC01-appb-C000205
(合成実施例28)RBiP-1-PEの合成
 上述の式(RDHN)で表される樹脂の代わりに、上述の式(RBiP-1-E)で表される樹脂を用いた以外、合成実施例6と同様に反応させ、下記式(RBiP-1-PE)で表される目的樹脂が1.3g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:9235、Mw:12288、Mw/Mn:1.33であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-1-PE)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.1(2H,O-H)、6.7~8.2(10H,Ph-H)、4.4(4H,-CH2-)、3.1(4H,-CH2-)
Figure JPOXMLDOC01-appb-C000206
(合成実施例29)RBiP-1-Gの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-1)で表される樹脂を用いた以外、合成実施例7と同様に反応させ、下記式(RBiP-1-G)で表される目的樹脂が1.2g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:6511、Mw:8664、Mw/Mn:1.33であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-1-G)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)7.1~8.2(6H,Ph-H)、4.0~4.3(4H,-CH2-)、2.3~3.0(6H,-CH(CH2)O)
Figure JPOXMLDOC01-appb-C000207
(合成実施例30)RBiP-1-GEの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-1-E)で表される樹脂を用いた以外、合成実施例8と同様に反応させ、下記式(RBiP-1-GE)で表される目的樹脂が0.9g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:8384、Mw:11156、Mw/Mn:1.33であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-1-GE)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)7.1~8.2(6H,Ph-H)、3.3~4.4(12H,-CH2-)、2.3~2.8(6H,-CH(CH2)O)
Figure JPOXMLDOC01-appb-C000208
(合成実施31)RBiP-1-SXの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-1)で表される樹脂を用いた以外、合成実施例9と同様に反応させ、下記式(RBiP-1-SX)で表される目的樹脂が1.1g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:8384、Mw:12062、Mw/Mn:1.33であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-1-SX)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)6.8~8.2(14H,Ph-H)、5.2~5.8(10H,-CH2-、-CH=CH2)
Figure JPOXMLDOC01-appb-C000209
(合成実施例32)RBiP-1-SEの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-1-E)で表される樹脂を用いた以外、合成実施例10と同様に反応させ、下記式(RBiP-1-SE)で表される目的樹脂が1.1g得られた。
得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:10937、Mw:14554、Mw/Mn:1.33であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-1-SE)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)7.1~8.2(14H,Ph-H)、3.8~6.7(18H,-CH2-CH2-、-CH2-、-CH=CH2)
Figure JPOXMLDOC01-appb-C000210
(合成実施例33)RBiP-1-Prの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-1)で表される樹脂を用いた以外、合成実施例11と同様に反応させ、下記式(RBiP-1-Pr)で表される目的樹脂が1.9g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:4894、Mw:6512、Mw/Mn:1.33であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-1-Pr)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm):7.1~8.2(6H,Ph-H)、4.8(4H,-CH2-)、2.1(2H,≡CH)
Figure JPOXMLDOC01-appb-C000211
(合成実施例34)RDB-Acの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RDB)で表される樹脂を用いた以外、合成実施例1と同様に反応させ、下記式(RDB-Ac)で表される目的樹脂が2.0g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:3456、Mw:4538、Mw/Mn:1.31であった。
Figure JPOXMLDOC01-appb-C000212
(合成実施例35)RDB-Eaの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RDB)で表される樹脂を用いた以外、合成実施例2と同様に反応させ、下記式(RDB-Ea)で表される目的樹脂が0.7g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:5174、Mw:6794、Mw/Mn:1.31であった。
Figure JPOXMLDOC01-appb-C000213
(合成実施例36)RDB-Uaの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RDB)で表される樹脂を用いた以外、合成実施例3と同様に反応させ、下記式(RDB-Ua)で表される目的樹脂が0.7g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:5175、Mw:6794、Mw/Mn:1.31であった。
Figure JPOXMLDOC01-appb-C000214
(合成実施例37)RDB-Eの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RDB)で表される樹脂を用いた以外、合成実施例4と同様に反応させ、下記式(RDB-E)で表される目的樹脂が3.0g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:3343、Mw:4389、Mw/Mn:1.31であった。
Figure JPOXMLDOC01-appb-C000215
(合成実施例38)RDB-PXの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RDB)で表される樹脂を用いた以外、合成実施例5と同様に反応させ、下記式(RDB-M)で表される中間体樹脂が4.2g得られた。
Figure JPOXMLDOC01-appb-C000216
 前記式(RDHN-M)で表される樹脂の代わりに、前記式(RDB―M)で表される樹脂を用いた以外、合成実施例5と同様に反応させ、下記式(RDB-PX)で表される樹脂が3.0g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:4895、Mw:6426、Mw/Mn:1.31であった。
Figure JPOXMLDOC01-appb-C000217
(合成実施例39)RDB-PEの合成
 上述の式(RDHN)で表される樹脂の代わりに、上述の式(RDB-E)で表される樹脂を用いた以外、合成実施例6と同様に反応させ、下記式(RDB-PE)で表される目的樹脂が1.1g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:5620、Mw:7378、Mw/Mn:1.31であった。
Figure JPOXMLDOC01-appb-C000218
(合成実施例40)RDB-Gの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RDB)で表される樹脂を用いた以外、合成実施例7と同様に反応させ、下記式(RDB-G)で表される目的樹脂が1.1g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:3570、Mw:4687、Mw/Mn:1.31であった。
Figure JPOXMLDOC01-appb-C000219
(合成実施例41)RDB-GEの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RDB-E)で表される樹脂を用いた以外、合成実施例8と同様に反応させ、下記式(RDB-GE)で表される目的樹脂が0.8g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:4401、Mw:5778、Mw/Mn:1.31であった。
Figure JPOXMLDOC01-appb-C000220
(合成実施42)RDB-SXの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RDB)で表される樹脂を用いた以外、合成実施例9と同様に反応させ、下記式(RDB-SX)で表される目的樹脂が0.9g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:4703、Mw:6174、Mw/Mn:1.31であった。
Figure JPOXMLDOC01-appb-C000221
(合成実施例43)RDB-SEの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RDB-E)で表される樹脂を用いた以外、合成実施例10と同様に反応させ、下記式(RDB-SE)で表される目的樹脂が0.9g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:5534、Mw:7266、Mw/Mn:1.31であった。
Figure JPOXMLDOC01-appb-C000222
(合成実施例44)RDB-Prの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RDB)で表される樹脂を用いた以外、合成実施例11と同様に反応させ、下記式(RDB-Pr)で表される目的樹脂が1.9g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:2852、Mw:3744、Mw/Mn:1.31であった。
Figure JPOXMLDOC01-appb-C000223
(合成実施例45)RBiP-2-Acの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-2)で表される樹脂を用いた以外、合成実施例1と同様に反応させ、下記式(RBiP-2-Ac)で表される目的樹脂が2.0g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:6174、Mw:7762、Mw/Mn:1.26であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-2-Ac)の化学構造を有することを確認した。
1H-NMR:(d6-DMSO、内部標準TMS):δ(ppm)6.8~8.1(21H,Ph-H)、6.3~6.5(1H,C-H)、6.2(4H,=C-H)、6.1(4H、-CH=C)、5.7(4H、=C-H)
Figure JPOXMLDOC01-appb-C000224
(合成実施例46)RBiP-2-Eaの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-2)で表される樹脂を用いた以外、合成実施例2と同様に反応させ、下記式(RBiP-2-Ea)で表される目的樹脂が0.7g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:9195、Mw:11519、Mw/Mn:1.26であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-2-Ea)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)6.8~8.1(21H,Ph-H)、6.3~6.5(1H,C-H)、6.4~6.5(8H,C=CH2)、5.7(4H,-OH)、4.7(4H、C-H)、4.0~4.4(16H,-CH2-)、2.0(12H,-CH3)
Figure JPOXMLDOC01-appb-C000225
(合成実施例47)RBiP-2-Uaの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-2)で表される樹脂を用いた以外、合成実施例3と同様に反応させ、下記式(RBiP-2-Ua)で表される目的樹脂が0.7g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:9163、Mw:11519、Mw/Mn:1.26であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-2-Ua)の化学構造を有することを確認した。
 1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)8.8(8H,-NH2)、6.8~8.1(21H,Ph-H)、6.3~6.5(1H,C-H)、6.4~6.5(8H,=CH2)、4.1(8H,-CH2-)、3.4(4H,C-H)2.2(8H,-CH2-)、2.0(12H,-CH3)
Figure JPOXMLDOC01-appb-C000226
(合成実施例48)RBiP-2-Eの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-2)で表される樹脂を用いた以外、合成実施例4と同様に反応させ、下記式(RBiP-2-E)で表される目的樹脂が3.0g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:5977、Mw:7515、Mw/Mn:1.26であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-2-E)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)6.8~8.1(21H,Ph-H)、6.3~6.5(1H,C-H)、4.9(4H,-OH)、4.4(8H,-CH2-)、3.7(8H,-CH2-)
Figure JPOXMLDOC01-appb-C000227
(合成実施例49)RBiP-2-PXの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-2)で表される樹脂を用いた以外、合成実施例5と同様に反応させ、下記式(RBiP-2-M)で表される中間体樹脂が4.2g得られた。
Figure JPOXMLDOC01-appb-C000228
 前記式(RDHN-M)で表される樹脂の代わりに、前記式(RBiP-2―M)で表される樹脂を用いた以外、合成実施例5と同様に反応させ、下記式(RBiP-2-PX)で表される中間体樹脂が3.0g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:7553、Mw:9497、Mw/Mn:1.26であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-2-PX)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.1(4H,O-H)、6.8~8.1(37H,Ph-H)、6.3~6.5(1H,C-H)
Figure JPOXMLDOC01-appb-C000229
(合成実施例50)RBiP-2-PEの合成
 上述の式(RDHN)で表される樹脂の代わりに、上述の式(RBiP-2-E)で表される樹脂を用いた以外、合成実施例6と同様に反応させ、下記式(RBiP-2-PE)で表される目的樹脂が1.1g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:8473、Mw:10653、Mw/Mn:1.26であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-2-PE)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.1(4H,O-H)、6.8~8.1(37H,Ph-H)、6.3~6.5(1H,C-H)、4.4(8H,-CH2-)、3.1(8H,-CH2-)
Figure JPOXMLDOC01-appb-C000230
(合成実施例51)RBiP-2-Gの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-2)で表される樹脂を用いた以外、合成実施例7と同様に反応させ、下記式(RBiP-2-G)で表される目的樹脂が1.1g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:6371、Mw:8010、Mw/Mn:1.26であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-2-G)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)6.8~8.1(21H,Ph-H)、6.3~6.5(1H,C-H)、4.0~4.3(8H,-CH2-)、2.3~3.0(12H,-CH(CH2)O)
Figure JPOXMLDOC01-appb-C000231
(合成実施例52)RBiP-2-GEの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-2-E)で表される樹脂を用いた以外、合成実施例8と同様に反応させ、下記式(RBiP-2-GE)で表される目的樹脂が0.8g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:7816、Mw:9827、Mw/Mn:1.26であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-2-GE)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
δ(ppm)6.8~8.1(21H,Ph-H)、6.3~6.5(1H,C-H)、3.3~4.4(24H,-CH2-)、2.3~2.8(12H,-CH(CH2)O)
Figure JPOXMLDOC01-appb-C000232
(合成実施例53)RBiP-2-SXの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-2)で表される樹脂を用いた以外、合成実施例9と同様に反応させ、下記式(RBiP-2-SX)で表される目的樹脂が0.9g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:8342、Mw:10488、Mw/Mn:1.26であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-2-SX)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)6.8~8.1(37H,Ph-H)、6.3~6.5(1H,C-H)、5.2~5.8(20H,-CH2-、-CH=CH2)
Figure JPOXMLDOC01-appb-C000233
(合成実施例54)RBiP-2-SEの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-2-E)で表される樹脂を用いた以外、合成実施例10と同様に反応させ、下記式(RBiP-2-SE)で表される目的樹脂が0.9g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:9786、Mw:12304、Mw/Mn:1.26であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-2-SE)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)6.8~8.1(37H,Ph-H)、6.3~6.5(1H,C-H)、3.8~6.7(19H,-CH2-CH2-、-CH2-、-CH=CH2)
Figure JPOXMLDOC01-appb-C000234
(合成実施例55)RBiP-2-Prの合成
 前記式(RDHN)で表される樹脂の代わりに、前記式(RBiP-2)で表される樹脂を用いた以外、合成実施例11と同様に反応させ、下記式(RBiP-2-Pr)で表される目的樹脂が1.9g得られた。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:5123、Mw:6441、Mw/Mn:1.26であった。
 得られた樹脂について、400MHz-1H-NMRにより、下記式(RBiP-2-Pr)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm):6.8~8.1(21H,Ph-H)、6.3~6.5(1H,C-H)、4.8(4H,-CH2-)、2.1(2H,≡CH)
Figure JPOXMLDOC01-appb-C000235
(比較合成例1)
 実施例群1の比較合成例1と同様の方法により黒褐色固体の変性樹脂(CR-1)126.1gを得た。
(比較合成例2)
 実施例群1の比較合成例2と同様の方法により目的樹脂(NBisN-2)7.2gを得た。
[実施例1~6、参考例1及び比較例1,2]
 合成実施例1~55、および比較合成例1~2で得られた樹脂を用いて、以下に示す評価方法によって、耐熱性を評価した結果を表1に示す。
<熱分解温度の測定>
 エスアイアイ・ナノテクノロジー社製EXSTAR6000TG/DTA装置を使用し、試料約5mgをアルミニウム製非密封容器に入れ、窒素ガス(30mL/min)気流中昇温速度10℃/minで700℃まで昇温した。その際、10重量%の熱減量が観測される温度を熱分解温度(Tg)とし、以下の基準で耐熱性を評価した。
 評価A:熱分解温度が450℃以上
 評価B:熱分解温度が320℃以上
 評価C:熱分解温度が320℃未満
Figure JPOXMLDOC01-appb-T000236
Figure JPOXMLDOC01-appb-T000237
 表1から明らかなように、実施例1~実施例55で用いた樹脂は、耐熱性が良好であるが、比較例1~2で用いた樹脂は、耐熱性が劣ることが確認できた。とりわけ、実施例2~6で用いた樹脂は著しく良好な耐熱性を発現することが確認できた。
[実施例56~60、比較例3]
(レジスト組成物の調製)
 上記で合成した各樹脂を用いて、表2に示す配合でレジスト組成物を調製した。なお、表2中のレジスト組成物の各成分のうち、酸発生剤(C)、酸拡散制御剤(E)及び溶媒については、以下のものを用いた。
 酸発生剤(C)
  P-1:トリフェニルベンゼンスルホニウム トリフルオロメタンスルホネート(みどり化学(株))
 酸拡散制御剤(E)
  Q-1:トリオクチルアミン(東京化成工業(株))
 溶媒
  S-1:プロピレングリコールモノメチルエーテル(東京化成工業(株))
(レジスト組成物のレジスト性能の評価方法)
 均一なレジスト組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ60nmのレジスト膜を形成した。得られたレジスト膜に対して、電子線描画装置(ELS-7500、(株)エリオニクス社製)を用いて、50nm間隔の1:1のラインアンドスペース設定の電子線を照射した。当該照射後に、レジスト膜を、それぞれ所定の温度で、90秒間加熱し、テトラメチルアンモニウムヒドロキシド(TMAH)2.38質量%アルカリ現像液に60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄、乾燥して、ポジ型のレジストパターンを形成した。形成されたレジストパターンについて、ラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察し、レジスト組成物の電子線照射による反応性を評価した。
Figure JPOXMLDOC01-appb-T000238
 レジストパターン評価については、実施例56~実施例60では50nm間隔の1:1のラインアンドスペース設定の電子線を照射することにより、良好なレジストパターンを得た。なお、ラインエッジラフネスはパターンの凹凸が5nm未満を良好とした。一方、比較例3では良好なレジストパターンを得ることはできなかった。
 このように本実施形態の要件を満たす樹脂を用いた場合は、当該要件を満たさない比較例3の樹脂(CR-1)に比べて、良好なレジストパターン形状を付与できる。前記した本実施形態の要件を満たす限り、実施例に記載した樹脂以外についても同様の効果を示す。
[実施例61~65、比較例4]
(感放射線性組成物の調製)
 表3記載の成分を調合し、均一溶液としたのち、得られた均一溶液を、孔径0.1μmのテフロン(登録商標)製メンブランフィルターで濾過して、感放射線性組成物を調製した。調製した各々の感放射線性組成物について以下の評価を行った。
Figure JPOXMLDOC01-appb-T000239
 なお、比較例4におけるレジスト基材(成分(A))として、次のものを用いた。
  PHS-1:ポリヒドロキシスチレン Mw=8000(シグマ-アルドリッチ社)
 また、光活性化合物(B)として、次のものを用いた。
  B-1:下記化学構造式(G)のナフトキノンジアジド系感光剤(4NT-300、東洋合成工業(株))
 さらに、溶媒として、次のものを用いた。
  S-1:プロピレングリコールモノメチルエーテル(東京化成工業(株))
Figure JPOXMLDOC01-appb-C000240
(感放射線性組成物のレジスト性能の評価)
 上記で得られた感放射線性組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ200nmのレジスト膜を形成した。該レジスト膜に対して、紫外線露光装置(ミカサ製マスクアライナMA-10)を用いて紫外線を露光した。紫外線ランプは超高圧水銀ランプ(相対強度比はg線:h線:i線:j線=100:80:90:60)を使用した。照射後に、レジスト膜を、110℃で90秒間加熱し、TMAH2.38質量%アルカリ現像液に60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄し、乾燥して、5μmのポジ型のレジストパターンを形成した。
 形成されたレジストパターンにおいて、得られたラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察した。ラインエッジラフネスはパターンの凹凸が5nm未満を良好とした。
 実施例61~実施例65における感放射線性組成物を用いた場合は、解像度5μmの良好なレジストパターンを得ることができた。また、そのパターンのラフネスも小さく良好であった。
 一方、比較例4における感放射線性組成物を用いた場合は、解像度5μmの良好なレジストパターンを得ることができた。しかしながら、そのパターンのラフネスは大きく不良であった。
 上記のように、実施例61~実施例65における感放射線性組成物は、比較例4における感放射線性組成物に比べて、ラフネスが小さく、かつ良好な形状のレジストパターンを形成することができることがわかった。上記した本実施形態の要件を満たす限り、実施例に記載した以外の感放射線性組成物も同様の効果を示す。
 なお、合成実施例1~合成実施例55で得られた樹脂は、比較的に低分子量で低粘度であることから、これを用いたリソグラフィー用下層膜形成材料は埋め込み特性や膜表面の平坦性が比較的に有利に高められ得ると評価された。また、熱分解温度はいずれも450℃以上(評価A)であり、高い耐熱性を有するので、高温ベーク条件でも使用することができると評価された。これらの点を確認するべく、下層膜用途を想定し、以下の評価を行った。
[実施例A1-1~A55-2、比較例5~6]
(リソグラフィー用下層膜形成用組成物の調製)
 表4に示す組成となるように、リソグラフィー用下層膜形成用組成物を調製した。次に、これらのリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。酸発生剤、架橋剤及び有機溶媒については以下のものを用いた。
  酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
  架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
  有機溶媒:プロピレングリコールモノメチルエーテルアセテート(PGMEA)
  ノボラック:群栄化学社製 PSM4357
 次に、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表4に示す。
[エッチング試験]
  エッチング装置:サムコインターナショナル社製 RIE-10NR
  出力:50W
  圧力:20Pa
  時間:2min
  エッチングガス
  Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
(エッチング耐性の評価)
 エッチング耐性の評価は、以下の手順で行った。まず、ノボラック(群栄化学社製 PSM4357)を用いること以外は、上記条件と同様にしてノボラックの下層膜を作製した。このノボラックの下層膜を対象として、上記のエッチング試験を行い、そのときのエッチングレートを測定した。
 次に、実施例A1-1~A55-2と比較例5~6の下層膜を、ノボラックの下層膜と同様の条件で作製し、上記エッチング試験を同様に行い、そのときのエッチングレートを測定した。ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
 [評価基準]
 A:ノボラックの下層膜に比べてエッチングレートが、-20%未満
 B:ノボラックの下層膜に比べてエッチングレートが、-20%~0%
 C:ノボラックの下層膜に比べてエッチングレートが、+0%超
(埋め込み性の評価)
 次に、実施例A1-1~実施例A55-2,比較例5~6で用いたリソグラフィー用下層膜形成用組成物を膜厚80nmの60nmラインアンドスペースのSiO基板上に塗布して、240℃で60秒間ベークすることにより90nm下層膜を形成した。
 埋め込み性の評価は、以下の手順で行った。上記条件で得られた膜の断面を切り出し、電子線顕微鏡にて観察し、埋め込み性を評価した。評価結果を表4に示す。
 [評価基準]
  A:60nmラインアンドスペースのSiO基板の凹凸部分に欠陥無く下層膜が埋め込まれている。
  C:60nmラインアンドスペースのSiO基板の凹凸部分に欠陥があり下層膜が埋め込まれていない。
Figure JPOXMLDOC01-appb-T000241
Figure JPOXMLDOC01-appb-T000242
Figure JPOXMLDOC01-appb-T000243
Figure JPOXMLDOC01-appb-T000244
Figure JPOXMLDOC01-appb-T000245
<樹脂膜(樹脂単独膜)の特性評価>
<樹脂膜の作成>
(実施例A1)
 溶媒としてPGMEAを用い、合成実施例1の樹脂RDHN-Acを溶解して固形分濃度10質量%の樹脂溶液を作成した(実施例A1の樹脂溶液)。
 作成した樹脂溶液をスピンコーターLithiusPro(東京エレクトロン社製)を用いて12インチシリコンウエハ上に成膜し、200nmの膜厚となるように回転数を調整しながら成膜後、ベーク温度を250℃1分の条件でベーク処理して合成実施例1の樹脂からなる膜を積層した基板を作成した。作成した基板を更に高温処理可能なホットプレートを使用し、350℃1分の条件でベークすることで硬化した樹脂膜を得た。この際、得られた硬化した樹脂膜をPGMEA槽に1分間浸漬する前後の膜厚変化が3%以下であれば、硬化したと判断した。硬化が不十分と判断される場合は硬化温度を50℃づつ変更して硬化する温度を調査し、硬化する温度範囲の中で一番温度が低い条件で硬化するベーク処理を行った。
<硬化膜の耐熱性評価>
(実施例B1)
 実施例A1で作製した樹脂膜について、ランプアニール炉を用いた耐熱性評価を行った。耐熱処理条件としては窒素雰囲気下450℃で加熱を継続し、加熱開始からの経過時間4分および10分の間の膜厚変化率を求めた。また、窒素雰囲気下550℃で加熱を継続し、加熱開始からの経過時間4分および550℃10分の間での膜厚変化率を求めた。これらの膜厚変化率を硬化膜耐熱性の指標として評価した。耐熱試験前後の膜厚は、干渉膜厚計で計測して膜厚の変動値を耐熱試験処理前の膜厚に対する比を膜厚変化率(百分率%)として求めた。
 [評価基準]
 A:膜厚変化率が、10%未満
 B:膜厚変化率が、10%~15%
 C:膜厚変化率が、15%超
(実施例B2~実施例B55、及び比較例B1~比較例B2)
 使用した樹脂をRDHN―Acから表5に示す樹脂に変更したこと以外は実施例B01と同様にして耐熱性評価を実施した。
Figure JPOXMLDOC01-appb-T000246
Figure JPOXMLDOC01-appb-T000247
(実施例C1)
<PE-CVD成膜評価>
 12インチシリコンウエハに熱酸化処理を実施し、得られたシリコン酸化膜を有する基板上に、実施例A1と同様の方法により、実施例A1の樹脂溶液を用いて100nmの厚みで樹脂膜を作製した。当該樹脂膜上に、成膜装置TELINDY(東京エレクトロン社製)を用い、原料としてTEOS(テトラエチルシロキサン)を使用し、基板温度300℃にて膜厚70nmの酸化シリコン膜の成膜を行った。作成した酸化シリコン膜を積層した硬化膜付きウエハについて、更にKLA-Tencor SP-5を用いて欠陥検査を行い、21nm以上となる欠陥の個数を指標として、成膜した酸化膜の欠陥数の評価を行った。
A 欠陥数 ≦ 20個
B 20個 < 欠陥数 ≦ 50個
C 50個 < 欠陥数 ≦ 100個
D 100個 < 欠陥数 ≦ 1000個
E 1000個 < 欠陥数 ≦ 5000個
F 5000個 < 欠陥数
<SiN膜>
 上記と同様の方法により12インチシリコンウエハ上に100nmの厚みで熱酸化処理されたシリコン酸化膜を有する基板上に作製した硬化膜上に、成膜装置TELINDY(東京エレクトロン社製)を用い、原料としてSiH4(モノシラン)、アンモニアを使用し、基板温度350℃にて膜厚40nm、屈折率1.94、膜応力-54MPaのSiN膜の成膜を行った。作成したSiN膜を積層した硬化膜付きウエハについて、更にKLA-Tencor SP-5を用いて欠陥検査を行い、21nm以上となる欠陥の個数を指標として、成膜した酸化膜の欠陥数の評価を行った。
A 欠陥数 ≦ 20個
B 20個 < 欠陥数 ≦ 50個
C 50個 < 欠陥数 ≦ 100個
D 100個 < 欠陥数 ≦ 1000個
E 1000個 < 欠陥数 ≦ 5000個
F 5000個 < 欠陥数
(実施例C2~実施例C55及び比較例C1~比較例C2)
 使用した樹脂をRDHN-Acから表6に示す樹脂に変更したこと以外は実施例C1と同様にして耐熱性評価を実施した。
Figure JPOXMLDOC01-appb-T000248
Figure JPOXMLDOC01-appb-T000249
 実施例C1~C55の樹脂膜上に形成されたシリコン酸化膜あるいはSiN膜は21nm以上となる欠陥の個数が50個以下(B評価以上)であり、比較例C1あるいはC2の欠陥の個数に比べ、少なくなることが示された。
(実施例D1)
<高温処理後のエッチング評価>
 12インチシリコンウエハに熱酸化処理を実施し、得られたシリコン酸化膜を有する基板上に、実施例A1と同様の方法により、実施例A1の樹脂溶液を用いて100nmの厚みで樹脂膜を作製した。当該樹脂膜に対して、更に窒素雰囲気下で高温処理可能なホットプレートにより600℃4分の条件で加熱によるアニーリング処理を行い、アニーリングされた樹脂膜が積層されたウエハを作成した。作成したアニーリングされた樹脂膜を削り出し、元素分析により炭素含率を求めた。
 更に、12インチシリコンウエハに熱酸化処理を実施し、得られたシリコン酸化膜を有する基板上に、実施例A1と同様の方法により、実施例A1の樹脂溶液を用いて100nmの厚みで樹脂膜を作製した。当該樹脂膜について、更に窒素雰囲気下で600℃4分の条件で加熱によりアニーリングされた樹脂膜を形成したのち、該基板をエッチング装置TELIUS(東京エレクトロン社製)を用い、エッチングガスとしてCF/Arを用いた条件、およびCl/Arを用いた条件でエッチング処理を行い、エッチングレートの評価を行った。エッチングレートの評価はリファレンスとしてSU8(日本化薬社製)を250℃1分アニーリング処理して作成した200nm膜厚の樹脂膜を用い、SU8に対するエッチングレートの速度比を相対値として求めて評価した。
(実施例D2~実施例D55、比較例D1~比較例D2)
 使用した樹脂をRDHN-Acから表7に示す樹脂に変更したこと以外は実施例D1と同様にして耐熱性評価を実施した。
Figure JPOXMLDOC01-appb-T000250
Figure JPOXMLDOC01-appb-T000251
<積層膜でのエッチング欠陥評価>
 合成実施例で得られた多環ポリフェノール樹脂について、精製処理前後での品質評価を実施した。すなわち、多環ポリフェノール樹脂を用いてウエハ上に成膜した樹脂膜をエッチングにより基板側に転写したのち、欠陥評価を行うことで評価した。
 12インチシリコンウエハに熱酸化処理を実施し、100nmの厚みのシリコン酸化膜を有する基板を得た。当該基板上に、多環ポリフェノール樹脂の樹脂溶液を100nmの厚みとなるようにスピンコート条件を調整して成膜後、150℃ベーク1分、続いて350℃ベーク1分を行うことで多環ポリフェノール樹脂を熱酸化膜付きシリコン上に積層した積層基板を作製した。
 エッチング装置としてTELIUS(東京エレクトロン社製)を用い、CF4/O2/Arの条件で樹脂膜をエッチングし、酸化膜表面の基板を露出させた。更にCF4/Arのガス組成比にて酸化膜を100nmエッチングする条件でエッチング処理を行い、エッチングしたウエハを作成した。
 作成したエッチングウエハを欠陥検査装置SP5(KLA-tencor社製)にて19nm以上の欠陥数を測定し、積層膜でのエッチング処理による欠陥評価として実施した。
(実施例E1) RDHN―Acの酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られたRDHN-AcをPGMEAに溶解させた溶液(10質量%)を150g仕込み、攪拌しながら80℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相に分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びPGMEAを濃縮留去した。その後、ELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRDHN-AcのPGMEA溶液を得た。作成した多環ポリフェノール樹脂溶液を日本インテグリス社性の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E2) RBiN-Acの酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例12で得られたRBiN-AcをPGMEAに溶解させた溶液(10質量%)を140g仕込み、攪拌しながら60℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相に分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びPGMEAを濃縮留去した。その後、ELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRBiN-AcのPGMEA溶液を得た。作成した多環ポリフェノール樹脂溶液を日本インテグリス社性の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E3) フィルター通液による精製
 クラス1000のクリーンブース内にて、1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られた樹脂(RDHN-Ac)をプロピレングリコールモノメチルエーテル(PGME)に溶解させた濃度10質量%の溶液を500g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分100mLの流量で公称孔径が0.01μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックスナイロンシリーズ)に濾過圧が0.5MPaの条件となるように加圧濾過にて通液した。濾過後の樹脂溶液をELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRDHN-AcのPGMEA溶液を得た。作成した多環ポリフェノール樹脂溶液を日本インテグリス社性の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。なお、酸素濃度はアズワン株式会社製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。
(実施例E4)
 フィルターによる精製工程として、日本ポール社製のIONKLEEN、日本ポール社性のナイロンフィルター、更に日本インテグリス社性の公称孔径3nmのUPEフィルターをこの順番に直列に接続し、フィルターラインとして構築した。0.1μmのナイロン製中空糸膜フィルターの代わりに、作製したフィルターラインを使用した以外は、実施例E3と同様にして濾過圧が0.5MPaの条件となるように加圧濾過により通液した。ELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRDHN-AcのPGMEA溶液を得た。作成した多環ポリフェノール樹脂溶液を日本インテグリス社性の公称孔径3nmのUPEフィルターにより濾過圧が0.5MPaの条件となるように加圧濾過した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E5)
 実施例E1で作成した溶液サンプルを、さらに実施例E4で作成したフィルターラインを使用して濾過圧が0.5MPaの条件となるように加圧濾過した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E6)
 合成実施例12で作成したRBiN-Acについて、実施例E5と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E7)
 合成例45で作成したRBiP-2-Acについて、実施例E5と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
Figure JPOXMLDOC01-appb-T000252
[実施例66~71]
 上記の各実施例A1-1~A5-1および比較例5で調製したリソグラフィー用下層膜形成材料の溶液と同組成の光学部品形成組成物を膜厚300nmのSiO基板上に塗布して、260℃で300秒間ベークすることにより、膜厚100nmの光学部品用の膜を形成した。次いで、ジェー・エー・ウーラム・ジャパン社製 真空紫外域多入射角分光エリプソメーター(VUV-VASE)を用いて、633nmの波長における屈折率及び透明性試験を行い、以下の基準に従って屈折率及び透明性を評価した。評価結果を表7に示す。
 [屈折率の評価基準]
 A:屈折率が1.65以上
 C:屈折率が1.65未満
 [透明性の評価基準]
 A:吸光定数が0.03未満
 C:吸光定数が0.03以上
Figure JPOXMLDOC01-appb-T000253
 実施例66~71の光学部材形成組成物では、屈折率が高いのみならず、吸光係数が低く、透明性に優れることが分かった。一方で、比較例7の組成物は光学部材としての性能に劣ることが分かった。
[実施例群3]
(合成例1)BisN-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に、2,7-ナフタレンジオール(シグマ-アルドリッチ社製試薬)32.0g(200mmol)と、4-ビフェニルアルデヒド(三菱瓦斯化学社製)18.2g(100mmol)と、1,4-ジオキサン200mLとを仕込み、95%の硫酸10mLを加えて、100℃で6時間撹拌して反応を行った。次に、24%水酸化ナトリウム水溶液にて反応液を中和し、純水100gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(BisN-1)25.5gを得た。
 なお、400MHz-H-NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。また、2,7-ジヒドロキシナフトールの置換位置が1位であることは、3位と4位のプロトンのシグナルがダブレットであることから確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.6(2H,O-H)、7.2~8.5(19H,Ph-H)、6.6(1H,C-H)
 また、LC-MS分析により、分子量が下記化学構造相当の466であることが確認された。
Figure JPOXMLDOC01-appb-C000254
(合成例2~5)BisN-2~BisN-5の合成
 2,7-ナフタレンジオールの代わりに、2,3-ナフタレンジオール、1,4-ナフタレンジオール、1,5-ナフタレンジオール、1,6-ナフタレンジオールを用いて、それ以外は合成例1と同様に行ない、それぞれ、下記式で表される目的化合物(BisN-2)、(BisN-3)、(BisN-4)、(BisN-5)を得た。(BisN-5)は3つの構造の混合物である。
Figure JPOXMLDOC01-appb-C000255
(合成実施例1)RBisN-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に、BisN-1を50g(105mmol)とフタル酸モノブチル銅を10.1g(20mmol)仕込み、溶媒として1-ブタノールを100mL加えて、反応液を100℃で6時間撹拌して反応を行った。冷却後に析出物を濾過し、得られた粗体を酢酸エチル100mLに溶解させた。次に塩酸5mLを加え、室温で攪拌後、炭酸水素ナトリウムで中和処理を行った。酢酸エチル溶液を濃縮し、メタノール200mLを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を乾燥させることにより、下記式で表される構造を有する目的樹脂(RBisN-1)38.2gを得た。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:1002、Mw:1482、Mw/Mn:1.48であった。
 得られた樹脂について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式の化学構造を有することを確認した。
 δ(ppm)9.3~9.6(2H,O-H)、7.2~8.5(17H,Ph-H)、6.7~6.9(1H,C-H)
Figure JPOXMLDOC01-appb-C000256
(合成実施例2~5)RBisN-2~RBisN-5の合成
 BisN-1の代わりに、BisN-2、BisN-3、BisN-4、BisN-5を用いて、それ以外は合成実施例1と同様に行ない、それぞれ、下記式で表される目的化合物(RBisN-2)、(RBisN-3)、(RBisN-4)、(RBisN-5)を得た。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定し、Mn、Mw、Mw/Mnを求めた。また、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式の化学構造を有することを確認した。
(RBisN-2)Mn:955、Mw:1288、Mw/Mn:1.35
δ(ppm)9.2~9.6(2H,O-H)、7.2~8.4(17H,Ph-H)、6.7~6.9(1H,C-H)
(RBisN-3)Mn:888、Mw:1122、Mw/Mn:1.26
δ(ppm)9.3~9.7(2H,O-H)、7.2~8.5(17H,Ph-H)、6.7~6.9(1H,C-H)
(RBisN-4)Mn:876、Mw:1146、Mw/Mn:1.31
δ(ppm)9.2~9.5(2H,O-H)、7.2~8.6(17H,Ph-H)、6.7~6.9(1H,C-H)
(RBisN-5)Mn:936、Mw:1198、Mw/Mn:1.28
δ(ppm)9.3~9.6(2H,O-H)、7.2~8.5(17H,Ph-H)、6.7~6.9(1H,C-H)
Figure JPOXMLDOC01-appb-C000257
(合成実施例6)RBisN―1Eの合成
 攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に、BisN-1を50g(105mmol)と塩化銅(I)を2.0g(20mmol)とピリジン12.6g(80mmol)を仕込み、溶媒として1-ブタノールを200mL加えて、反応液を100℃で8時間撹拌して反応を行った。冷却後に析出物を濾過し、得られた粗体を酢酸ブチル600mLに溶解させた。次に硫酸300mLを加え、洗浄した後、水洗を二回行った。酢酸ブチル溶液を濃縮し、メタノール200mLを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を乾燥させることにより、下記式で表される構造を有する目的樹脂(RBisN-1E)17.6gを得た。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:720、Mw:824、Mw/Mn:1.14であった。
 得られた樹脂について、前記測定条件でNMR測定を行ったところ、以下のピークが見出された。
δ(ppm)9.3~9.6(1H,O-H)、7.2~8.5(18H,Ph-H)、6.7~6.9(1H,C-H)
さらに、IR測定を行うことで、以下のピークが見いだされ、下記式の化学構造を有することを確認した。
ν(cm-1)3420-3450(Ph-OH)、1219(Ph-O-Ph)
Figure JPOXMLDOC01-appb-C000258
 式(RBisN―1E)中、繰り返し数nである繰り返し単位と、繰り返し数mである繰り返し単位と、繰り返し数lである繰り返し単位が、ブロック共重合などの特定の重合状態を表しているものではない。
(合成比較例1)
 実施例群1の比較合成例2と同様の方法により、下記式で示される構造を有する目的樹脂(NBisN-1)7.2gを得た。
Figure JPOXMLDOC01-appb-C000259
(合成比較例2)
 実施例群1の比較合成例1と同様の方法により黒褐色固体の変性樹脂(CR-1)126.1gを得た。
(合成比較例3)
 BisN-6の合成
 2,7-ナフタレンジオールの代わりに、2,6-ナフタレンジオールを用いて、それ以外は合成例1と同様に行ない、下記式で表される化合物(BisN-6)を得た。
Figure JPOXMLDOC01-appb-C000260
 続いて、BisN-1の代わりに、BisN-6を用いて、それ以外は合成実施例1と同様に行ない、下記式で表される目的化合物(RBisN-6)を得た。
Figure JPOXMLDOC01-appb-C000261
[実施例1~6]
 合成実施例1~合成実施例6、および合成比較例1で得られた樹脂を用いて、以下に示す評価方法によって、耐熱性を評価した結果を表1に示す。
<熱分解温度の測定>
 エスアイアイ・ナノテクノロジー社製EXSTAR6000TG/DTA装置を使用し、試料約5mgをアルミニウム製非密封容器に入れ、窒素ガス(30mL/min)気流中昇温速度10℃/minで700℃まで昇温した。その際、10重量%の熱減量が観測される温度を熱分解温度(Tg)とし、以下の基準で耐熱性を評価した。
 評価A:熱分解温度が450℃以上
 評価B:熱分解温度が320℃以上
 評価C:熱分解温度が320℃未満
Figure JPOXMLDOC01-appb-T000262
 表1から明らかなように、実施例1~実施例6で用いた樹脂は、耐熱性が良好であるが、比較例1で用いた樹脂は、耐熱性が劣ることが確認できた。
[実施例7~12、比較例2]
(リソグラフィー用下層膜形成用組成物の調製)
 表2に示す組成となるように、リソグラフィー用下層膜形成用組成物を調製した。次に、これらのリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布し、その後、窒素雰囲気下において、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200~250nmの下層膜を各々作製した。
 次に、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表2に示す。
[エッチング試験]
  エッチング装置:サムコインターナショナル社製 RIE-10NR
  出力:50W
  圧力:20Pa
  時間:2min
  エッチングガス
  Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
(エッチング耐性の評価)
 エッチング耐性の評価は、以下の手順で行った。まず、ノボラック(群栄化学社製 PSM4357)を用いること以外は、上記条件と同様にしてノボラックの下層膜を作製した。このノボラックの下層膜を対象として、上記のエッチング試験を行い、そのときのエッチングレートを測定した。
 次に、実施例7~実施例12と比較例2の下層膜を、ノボラックの下層膜と同様の条件で作製し、上記エッチング試験を同様に行い、そのときのエッチングレートを測定した。ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
 [評価基準]
 A:ノボラックの下層膜に比べてエッチングレートが、-20%未満
 B:ノボラックの下層膜に比べてエッチングレートが、-20%以上0%以下
 C:ノボラックの下層膜に比べてエッチングレートが、+0%超
Figure JPOXMLDOC01-appb-T000263
 実施例7~実施例12では、ノボラックの下層膜および比較例2の樹脂に比べて優れたエッチングレートが発揮されることがわかった。一方、比較例2の樹脂では、ノボラックの下層膜に比べてエッチングレートが同等であることがわかった。
 多環ポリフェノール樹脂(を含む組成物)の精製前後の金属含有量と溶液の保存安定性を以下の方法で評価を行った。
(各種金属含有量測定)
 ICP-MSを用いて以下の測定条件にて、以下の実施例、比較例によって得られた各種樹脂のプロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液中の金属含有量を測定した。
  装置:アジレント社製AG8900
  温度:25℃
  環境:クラス100クリーンルーム
(保存安定性評価)
 以下の実施例、比較例によって得られたPGMEA溶液を23℃にて240時間保持した後の溶液の濁度(HAZE)を色差・濁度計を用いて測定し、以下の基準にて溶液の保存安定性を評価した。
  装置:色差・濁度計COH400(日本電色(株)製)
  光路長:1cm
  石英セル使用
[評価基準]
   0≦HAZE≦1.0 :良好
 1.0<HAZE≦2.0 :可
 2.0<HAZE     :不良
(実施例13) RBisN-1の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られたRBisN-1をPGMEAに溶解させた溶液(10質量%)を150g仕込み、攪拌しながら80℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相に分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びPGMEAを濃縮留去した。その後、ELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRBisN-1のPGMEA溶液を得た。
(参考例1) RBisN-1の超純水による精製
 蓚酸水溶液の代わりに、超純水を用いる以外は実施例6と同様に実施し、10質量%に濃度調整を行うことにより、RBisN-1のPGMEA溶液を得た。
 処理前のRBisN-1の10質量%PGMEA溶液、実施例13及び参考例1において得られた溶液について、各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例14) RBisN-2の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例2で得られたRBisN-2をPGMEAに溶解させた溶液(10質量%)を140g仕込み、攪拌しながら60℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相に分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びPGMEAを濃縮留去した。その後、ELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRBisN-2のPGMEA溶液を得た。
(参考例2) RBisN-2の超純水による精製
 蓚酸水溶液の代わりに、超純水を用いる以外は実施例7と同様に実施し、10質量%に濃度調整を行うことにより、RBisN-2のPGMEA溶液を得た。
 処理前のRBisN-2の10質量%PGMEA溶液、実施例14及び参考例2において得られた溶液について、各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例15) フィルター通液による精製
 クラス1000のクリーンブース内にて、1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られた樹脂(RBisN-1)をプロピレングリコールモノメチルエーテル(PGME)に溶解させた濃度10質量%の溶液を500g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分100mLの流量で公称孔径が0.01μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックスナイロンシリーズ)に通液した。得られたRBisN-1の溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン株式会社製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表3に示す。
(実施例16)
 公称孔径が0.01μmのポリエチレン(PE)製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックス)を使用した以外は、実施例15と同様に通液し、得られたRBisN-1の溶液の各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例17)
 公称孔径が0.04μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックス)を使用した以外は、実施例8と同様に通液し、得られたRBisN-1の各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例18)
 公称孔径が0.2μmのゼータプラスフィルター40QSH(スリーエム(株)製、イオン交換能あり)を使用した以外は、実施例8と同様に通液し、得られたRBisN-1溶液各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例19)
 公称孔径が0.2μmのゼータプラスフィルター020GN(スリーエム(株)製、イオン交換能あり、ゼータプラスフィルター40QSHとはろ過面積及びろ材厚みが異なる)を使用した以外は、実施例8と同様に通液し、得られたRBisN-1溶液を下記条件にて分析した。測定結果を表3に示す。
(実施例20)
 実施例15における樹脂(RBisN-1)の代わりに、合成実施例2で得られた樹脂(RBisN-2)を使用した以外は、実施例15と同様に通液し、得られたRBisN-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例21)
 実施例16における樹脂(RBisN-1)の代わりに、合成実施例2で得られた樹脂(RBisN-2)を使用した以外は、実施例16と同様に通液し、得られたRBisN-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例22)
 実施例17における化合物(RBisN-1)の代わりに、合成実施例2で得られた樹脂(RBisN-2)を使用した以外は、実施例17と同様に通液し、得られたRBisN-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例23)
 実施例18における化合物(RBisN-1)の代わりに、合成実施例2で得られた樹脂(RBisN-2)を使用した以外は、実施例18と同様に通液し、得られたRBisN-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例24)
 実施例19における化合物(RBisN-1)の代わりに、合成実施例2で得られた樹脂(RBisN-2)を使用した以外は、実施例19と同様に通液し、得られたRBisN-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例25)酸洗浄、フィルター通液併用1
 クラス1000のクリーンブース内にて、300mL容量の四つ口フラスコ(底抜き型)に、実施例13によって得られた金属含有量の低減されたRBisN-1の10質量%PGMEA溶液を140g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分10mLの流量で公称孔径が0.01μmのイオン交換フィルター(日本ポール社製、商品名:イオンクリーンシリーズ)に通液した。その後、回収された該溶液を上記300mL容量の四つ口フラスコに戻し、フィルターを公称口径1nmの高密度PE製フィルター(日本インテグリス社製)に変え、同様にポンプ通液を実施した。得られたRBisN-1の溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン株式会社製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表3に示す。
(実施例26)酸洗浄、フィルター通液併用2
 クラス1000のクリーンブース内にて、300mL容量の四つ口フラスコ(底抜き型)に、実施例13によって得られた金属含有量の低減されたRBisN-1の10質量%PGMEA溶液を140g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分10mLの流量で公称孔径が0.01μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックスに通液した。その後、回収された該溶液を上記300mL容量の四つ口フラスコに戻し、フィルターを公称口径1nmの高密度PE製フィルター(日本インテグリス社製)に変え、同様にポンプ通液を実施した。得られたRBisN-1の溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン株式会社製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表3に示す。
(実施例27)酸洗浄、フィルター通液併用3
 実施例25で使用したRBisN-1の10質量%PGMEA溶液を実施例14によって得られたRBisN-2の10質量%PGMEA溶液に変えた以外は実施例25と同様の操作を行い、金属量の低減されたRBisN-2の10質量%PGMEA溶液を回収した。得られた溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン株式会社製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表3に示す。
(実施例28)酸洗浄、フィルター通液併用4
 実施例26で使用したRBisN-1の10質量%PGMEA溶液を実施例14によって得られたRBisN-2の10質量%PGMEA溶液に変えた以外は実施例26と同様の操作を行い、金属量の低減されたRBisN-2の10質量%PGMEA溶液を回収した。得られた溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン株式会社製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000264
Figure JPOXMLDOC01-appb-T000265
 表3に示すように、各種精製方法によって、酸化剤に由来する金属を低減することにより、本実施形態における樹脂溶液の保存安定性が良好となることが確認された。
 特に酸洗浄方法とイオン交換フィルターあるいはナイロンフィルターを使用することで、イオン性の金属を効果的に低減し、高精細な高密度ポリエチレン製の微粒子除去フィルターを併用することで、劇的な金属除去効果を得ることができる。
[実施例29~35、比較例3]
(耐熱性及びレジスト性能)
 合成実施例1~合成実施例6及び合成比較例1で得られた樹脂を用いて、下記の耐熱性試験及びレジスト性能評価を行った結果を表4に示す。
(レジスト組成物の調製)
 上記で合成した各樹脂を用いて、表4に示す配合でレジスト組成物を調製した。なお、表4中のレジスト組成物の各成分のうち、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及び溶媒については、以下のものを用いた。
 酸発生剤(C)
  P-1:トリフェニルベンゼンスルホニウム トリフルオロメタンスルホネート(みどり化学(株))
 酸架橋剤(G)
  C-1:ニカラックMW-100LM(三和ケミカル(株))
 酸拡散制御剤(E)
  Q-1:トリオクチルアミン(東京化成工業(株))
 溶媒
  S-1:プロピレングリコールモノメチルエーテル(東京化成工業(株))
(レジスト組成物のレジスト性能の評価方法)
 均一なレジスト組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ60nmのレジスト膜を形成した。得られたレジスト膜に対して、電子線描画装置(ELS-7500、(株)エリオニクス社製)を用いて、50nm間隔の1:1のラインアンドスペース設定の電子線を照射した。当該照射後に、レジスト膜を、それぞれ所定の温度で、90秒間加熱し、テトラメチルアンモニウムヒドロキシド(TMAH)2.38質量%アルカリ現像液に60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄、乾燥して、ポジ型のレジストパターンを形成した。形成されたレジストパターンについて、ラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察し、レジスト組成物の電子線照射による反応性を評価した。
Figure JPOXMLDOC01-appb-T000266
 レジストパターン評価については、実施例29~実施例35では50nm間隔の1:1のラインアンドスペース設定の電子線を照射することにより、良好なレジストパターンを得た。なお、ラインエッジラフネスはパターンの凹凸が5nm未満を良好とした。一方、比較例3では良好なレジストパターンを得ることはできなかった。
 このように本実施形態の要件を満たす樹脂を用いた場合は、当該要件を満たさない比較例3の樹脂(NBisN-1)に比べて、耐熱性が高く、また良好なレジストパターン形状を付与できる。前記した本実施形態の要件を満たす限り、実施例に記載した樹脂以外についても同様の効果を示す。
[実施例36~41、比較例4]
(感放射線性組成物の調製)
 表5に記載の成分を調合し、均一溶液としたのち、得られた均一溶液を、孔径0.1μmのテフロン(登録商標)製メンブランフィルターで濾過して、感放射線性組成物を調製した。調製した各々の感放射線性組成物について以下の評価を行った。
Figure JPOXMLDOC01-appb-T000267
 なお、比較例4におけるレジスト基材(成分(A))として、次のものを用いた。
  PHS-1:ポリヒドロキシスチレン Mw=8000(シグマ-アルドリッチ社)
 また、光活性化合物(B)として、次のものを用いた。
  B-1:下記化学構造式(G)のナフトキノンジアジド系感光剤(4NT-300、東洋合成工業(株))
 さらに、溶媒として、次のものを用いた。
  S-1:プロピレングリコールモノメチルエーテル(東京化成工業(株))
Figure JPOXMLDOC01-appb-C000268
(感放射線性組成物のレジスト性能の評価)
 上記で得られた感放射線性組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ200nmのレジスト膜を形成した。該レジスト膜に対して、紫外線露光装置(ミカサ製マスクアライナMA-10)を用いて紫外線を露光した。紫外線ランプは超高圧水銀ランプ(相対強度比はg線:h線:i線:j線=100:80:90:60)を使用した。照射後に、レジスト膜を、110℃で90秒間加熱し、TMAH2.38質量%アルカリ現像液に60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄し、乾燥して、5μmのポジ型のレジストパターンを形成した。
 形成されたレジストパターンにおいて、得られたラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察した。ラインエッジラフネスはパターンの凹凸が5nm未満を良好とした。
 実施例36~実施例41における感放射線性組成物を用いた場合は、解像度5μmの良好なレジストパターンを得ることができた。また、そのパターンのラフネスも小さく良好であった。
 一方、比較例4における感放射線性組成物を用いた場合は、解像度5μmの良好なレジストパターンを得ることができた。しかしながら、そのパターンのラフネスは大きく不良であった。
 上記のように、実施例36~実施例41における感放射線性組成物は、比較例4における感放射線性組成物に比べて、ラフネスが小さく、かつ良好な形状のレジストパターンを形成することができることがわかった。上記した本実施形態の要件を満たす限り、実施例に記載した以外の感放射線性組成物も同様の効果を示す。
 なお、合成実施例1~合成実施例6で得られた樹脂は、比較的に低分子量で低粘度であることから、これを用いたリソグラフィー用下層膜形成材料は埋め込み特性や膜表面の平坦性が比較的に有利に高められ得ると評価された。また、熱分解温度はいずれも150℃以上(評価A)であり、高い耐熱性を有するので、高温ベーク条件でも使用することができると評価された。これらの点を確認するべく、下層膜用途を想定し、以下の評価を行った。
[実施例42~48、比較例5~6]
(リソグラフィー用下層膜形成用組成物の調製)
 表6に示す組成となるように、リソグラフィー用下層膜形成用組成物を調製した。次に、これらのリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。酸発生剤、架橋剤及び有機溶媒については以下のものを用いた。
  酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
  架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
  有機溶媒:シクロヘキサノン
プロピレングリコールモノメチルエーテルアセテート(PGMEA)
  ノボラック:群栄化学社製 PSM4357
 次に、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表6に示す。
[エッチング試験]
  エッチング装置:サムコインターナショナル社製 RIE-10NR
  出力:50W
  圧力:20Pa
  時間:2min
  エッチングガス
  Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
(エッチング耐性の評価)
 エッチング耐性の評価は、以下の手順で行った。まず、ノボラック(群栄化学社製 PSM4357)を用いること以外は、上記条件と同様にしてノボラックの下層膜を作製した。このノボラックの下層膜を対象として、上記のエッチング試験を行い、そのときのエッチングレートを測定した。
 次に、実施例42~48と比較例5~6の下層膜を、ノボラックの下層膜と同様の条件で作製し、上記エッチング試験を同様に行い、そのときのエッチングレートを測定した。ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
 [評価基準]
 A:ノボラックの下層膜に比べてエッチングレートが、-20%未満
 B:ノボラックの下層膜に比べてエッチングレートが、-20%以上0%以下
 C:ノボラックの下層膜に比べてエッチングレートが、+0%超
Figure JPOXMLDOC01-appb-T000269
 実施例42~48では、ノボラックの下層膜および比較例5~6の樹脂に比べて優れたエッチングレートが発揮されることがわかった。一方、比較例5あるいは比較例6の樹脂では、ノボラックの下層膜に比べてエッチングレートが同等或いは劣ることがわかった。
[実施例49~55、比較例7]
 次に、実施例42~実施例48、比較例5で用いたリソグラフィー用下層膜形成用組成物を膜厚80nmの60nmラインアンドスペースのSiO基板上に塗布して、240℃で60秒間ベークすることにより90nm下層膜を形成した。
(埋め込み性の評価)
 埋め込み性の評価は、以下の手順で行った。上記条件で得られた膜の断面を切り出し、電子線顕微鏡にて観察し、埋め込み性を評価した。評価結果を表7に示す。
 [評価基準]
  A:60nmラインアンドスペースのSiO基板の凹凸部分に欠陥無く下層膜が埋め込まれている。
  C:60nmラインアンドスペースのSiO基板の凹凸部分に欠陥があり下層膜が埋め込まれていない。
Figure JPOXMLDOC01-appb-T000270
 実施例49~55では、埋め込み性が良好であることがわかった。一方、比較例7では、SiO基板の凹凸部分に欠陥が見られ埋め込み性が劣ることがわかった。
[実施例56~62]
 次に、実施例42~48で調製したリソグラフィー用下層膜形成用組成物を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚85nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。
 なお、ArFレジスト溶液としては、下記式(16)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
 下記式(16)の化合物は、次のように調製した。すなわち、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。このようにして得られる生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて下記式(16)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000271
(式(16)中、40、40、20とあるのは、各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。)
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。
[比較例8]
 下層膜の形成を行わないこと以外は、実施例45と同様にしてフォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。
[評価]
 実施例56~62及び比較例8A及び8のそれぞれについて、得られた45nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの形状を(株)日立製作所製電子顕微鏡(S-4800)を用いて観察した。現像後のレジストパターンの形状については、パターン倒れがなく、矩形性が良好なものを良好とし、そうでないものを不良として評価した。また、当該観察の結果、パターン倒れが無く、矩形性が良好な最小の線幅を解像性として評価の指標とした。さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を感度として、評価の指標とした。その結果を表8に示す。
Figure JPOXMLDOC01-appb-T000272
 表8から明らかなように、実施例56~62におけるレジストパターンは、比較例8に比して、解像性及び感度ともに有意に優れていることが確認された。また、現像後のレジストパターン形状もパターン倒れがなく、矩形性が良好であることが確認された。さらに、現像後のレジストパターン形状の相違から、実施例42~48におけるリソグラフィー用下層膜形成組成物は、レジスト材料との密着性がよいことが示された。
[実施例63]
 実施例42で調製したリソグラフィー用下層膜形成用組成物を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚90nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、前記ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、特開2007-226170号公報<合成例1>に記載の珪素原子含有ポリマーを用いた。
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、45nmL/S(1:1)のポジ型のレジストパターンを得た。
 その後、サムコインターナショナル社製 RIE-10NRを用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行い、続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO膜のドライエッチング加工とを順次行った。
 各々のエッチング条件は、下記に示すとおりである。
・レジストパターンのレジスト中間層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:1min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:8:2(sccm)
・レジスト中間膜パターンのレジスト下層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
・レジスト下層膜パターンのSiO膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:C12ガス流量:Cガス流量:Oガス流量
          =50:4:3:1(sccm)
[評価]
 上記のようにして得られた実施例63のパターン断面(エッチング後のSiO膜の形状)を、(株)日立製作所製電子顕微鏡(S-4800)を用いて観察したところ、本発明の下層膜を用いた実施例は、多層レジスト加工におけるエッチング後のSiO膜の形状は矩形であり、欠陥も認められず良好であることが確認された。
<樹脂膜(樹脂単独膜)の特性評価>
<樹脂膜の作製>
(実施例A01)
 溶媒としてPGMEAを用い、合成実施例1の樹脂RBisN-1を溶解して固形分濃度10質量%の樹脂溶液を調製した(実施例A01の樹脂溶液)。
 調製した樹脂溶液を、スピンコーターLithiusPro(東京エレクトロン社製)を用いて12インチシリコンウエハ上に成膜し、200nmの膜厚となるように回転数を調整しながら成膜後、ベーク温度を250℃1分の条件でベーク処理して合成例1の樹脂からなる膜を積層した基板を作製した。作製した基板を更に高温処理可能なホットプレートを使用し、350℃1分の条件でベークすることで硬化した樹脂膜を得た。この際、得られた硬化した樹脂膜をPGMEA槽に1分間浸漬する前後の膜厚変化が3%以下であれば、硬化したと判断した。硬化が不十分と判断される場合は硬化温度を50℃ずつ変更して硬化する温度を調査し、硬化する温度範囲の中で一番温度が低い条件で硬化するベーク処理を行った。
<光学特性値評価>
 作製した樹脂膜について、分光エリプソメトリーVUV-VASE(J.A.Woollam社製)を用いて光学特性値(光学定数として、屈折率nと、消衰係数k)の評価を行った。
(実施例A02~実施例A06及び比較例A01)
 使用した樹脂をRBisN-1から表9に示す樹脂に変更したこと以外は実施例A01と同様にして樹脂膜を作製し、光学特性値評価を実施した。
[評価基準]屈折率n
 A:1.4以上
 C:1.4未満
 [評価基準]消衰係数k
 A:0.5未満
 C:0.5以上
Figure JPOXMLDOC01-appb-T000273
 実施例A01~A06の結果から、本実施形態における多環ポリフェノール樹脂を含む膜形成用組成物によりArF露光で使用する波長193nmにおけるn値が高くk値の低い樹脂膜を形成できることがわかった。
<硬化膜の耐熱性評価>
(実施例B01)
 実施例A01で作製した樹脂膜について、ランプアニール炉を用いた耐熱性評価を行った。耐熱処理条件としては窒素雰囲気下450℃で加熱を継続し、加熱開始からの経過時間4分および10分の間の膜厚変化率を求めた。また、窒素雰囲気下550℃で加熱を継続し、加熱開始からの経過時間4分および550℃10分の間での膜厚変化率を求めた。これらの膜厚変化率を硬化膜耐熱性の指標として評価した。耐熱試験前後の膜厚は、干渉膜厚計で計測して膜厚の変動値を耐熱試験処理前の膜厚に対する比を膜厚変化率(百分率%)として求めた。
 [評価基準]
 A:膜厚変化率が、10%未満
 B:膜厚変化率が、10%~15%
 C:膜厚変化率が、15%超
(実施例B02~実施例B06、及び比較例B01~比較例B02)
 使用した樹脂をRBisN-1から表10に示す樹脂に変更したこと以外は実施例B01と同様にして耐熱性評価を実施した。
Figure JPOXMLDOC01-appb-T000274
 実施例B01~B05の結果から、比較例B01及びB02に比して、本実施形態の多環ポリフェノール樹脂を含む膜形成用組成物により550℃の温度においても膜厚変化が少ない耐熱性の高い樹脂膜を形成できることがわかった。
(実施例C01)
<PE-CVD成膜評価>
 12インチシリコンウエハに熱酸化処理を実施し、得られたシリコン酸化膜を有する基板上に、実施例A01と同様の方法により、実施例A01の樹脂溶液を用いて100nmの厚みで樹脂膜を作製した。当該樹脂膜上に、成膜装置TELINDY(東京エレクトロン社製)を用い、原料としてTEOS(テトラエチルシロキサン)を使用し、基板温度300℃にて膜厚70nmの酸化シリコン膜の成膜を行った。作製した酸化シリコン膜を積層した硬化膜付きウエハについて、更に欠陥検査装置「SP5」(KLA-Tencor社製)を用いて欠陥検査を行い、21nm以上となる欠陥の個数を指標として、下記基準に従い、成膜した酸化膜の欠陥数の評価を行った。
A 欠陥数 ≦ 20個
B 20個 < 欠陥数 ≦ 50個
C 50個 < 欠陥数 ≦ 100個
D 100個 < 欠陥数 ≦ 1000個
E 1000個 < 欠陥数 ≦ 5000個
F 5000個 < 欠陥数
<SiN膜>
 上記と同様の方法により12インチシリコンウエハ上に100nmの厚みで熱酸化処理されたシリコン酸化膜を有する基板上に作製した硬化膜上に、成膜装置TELINDY(東京エレクトロン社製)を用い、原料としてSiH(モノシラン)、アンモニアを使用し、基板温度350℃にて膜厚40nm、屈折率1.94、膜応力-54MPaのSiN膜の成膜を行った。作製したSiN膜を積層した硬化膜付きウエハについて、更に欠陥検査装置「SP5」(KLA-Tencor社製)を用いて欠陥検査を行い、21nm以上となる欠陥の個数を指標として、下記基準に従い、成膜した酸化膜の欠陥数の評価を行った。
A 欠陥数 ≦ 20個
B 20個 < 欠陥数 ≦ 50個
C 50個 < 欠陥数 ≦ 100個
D 100個 < 欠陥数 ≦ 1000個
E 1000個 < 欠陥数 ≦ 5000個
F 5000個 < 欠陥数
(実施例C02~実施例C06及び比較例C01~比較例C02)
 使用した樹脂をRBisN-1から表11に示す樹脂に変更したこと以外は実施例C01と同様にして膜の欠陥評価を実施した。
Figure JPOXMLDOC01-appb-T000275
 実施例C01~C06の樹脂膜上に形成されたシリコン酸化膜あるいはSiN膜は21nm以上となる欠陥の個数が50個以下(B評価以上)であり、比較例C01あるいはC02の欠陥の個数に比べ、少なくなることが示された。
(実施例D01)
<高温処理後のエッチング評価>
 12インチシリコンウエハに熱酸化処理を実施し、得られたシリコン酸化膜を有する基板上に、実施例A01と同様の方法により、実施例A01の樹脂溶液を用いて100nmの厚みで樹脂膜を作製した。当該樹脂膜に対して、更に窒素雰囲気下で高温処理可能なホットプレートにより600℃4分の条件で加熱によるアニーリング処理を行い、アニーリングされた樹脂膜が積層されたウエハを作製した。作製したアニーリングされた樹脂膜を削り出し、元素分析により炭素含率を求めた。
 更に、12インチシリコンウエハに熱酸化処理を実施し、得られたシリコン酸化膜を有する基板上に、実施例A01と同様の方法により、実施例A01の樹脂溶液を用いて100nmの厚みで樹脂膜を作製した。当該樹脂膜について、更に窒素雰囲気下で600℃4分の条件で加熱によりアニーリングされた樹脂膜を形成したのち、該基板をエッチング装置TELIUS(東京エレクトロン社製)を用い、エッチングガスとしてCF/Arを用いた条件、およびCl/Arを用いた条件でエッチング処理を行い、エッチングレートの評価を行った。エッチングレートの評価はリファレンスとしてSU8(日本化薬社製)を250℃1分アニーリング処理して作製した200nm膜厚の樹脂膜を用い、SU8に対するエッチングレートの速度比を相対値として求めて、下記基準に従って、評価した。
 A:SU8の樹脂膜に比べてエッチングレートが、-20%未満
 B:SU8の樹脂膜に比べてエッチングレートが、-20%以上0%以下
 C:SU8の樹脂膜に比べてエッチングレートが、+0%超
(実施例D02~実施例D06、比較例D01~比較例D02)
 使用した樹脂をRBisN-1から表12に示す樹脂に変更したこと以外は実施例D01と同様にして耐熱性評価を実施した。
Figure JPOXMLDOC01-appb-T000276
 実施例D01~D06の結果から、比較例D01及びD02に比して、本実施形態の多環ポリフェノール樹脂を含む組成物を用いた場合、高温処理後のエッチング耐性に優れた樹脂膜を形成できることがわかった。
<積層膜でのエッチング欠陥評価>
 合成例で得られた多環ポリフェノール樹脂について、精製処理前後での品質評価を実施した。すなわち、後述する精製処理前後の各々において、多環ポリフェノール樹脂を用いてウエハ上に成膜した樹脂膜をエッチングにより基板側に転写したのち、欠陥評価を行うことで評価した。
 12インチシリコンウエハに熱酸化処理を実施し、100nmの厚みのシリコン酸化膜を有する基板を得た。当該基板上に、多環ポリフェノール樹脂の樹脂溶液を100nmの厚みとなるようにスピンコート条件を調整して成膜後、150℃ベーク1分、続いて350℃ベーク1分を行うことで多環ポリフェノール樹脂を熱酸化膜付きシリコン上に積層した積層基板を作製した。
 エッチング装置としてTELIUS(東京エレクトロン社製)を用い、CF4/O2/Arの条件で樹脂膜をエッチングし、酸化膜表面の基板を露出させた。更にCF4/Arのガス組成比にて酸化膜を100nmエッチングする条件でエッチング処理を行い、エッチングしたウエハを作製した。
 作製したエッチングウエハを欠陥検査装置SP5(KLA-tencor社製)にて19nm以上の欠陥数を測定し、下記基準に従い、積層膜でのエッチング処理による欠陥評価として実施した。
A 欠陥数 ≦ 20個
B 20個 < 欠陥数 ≦ 50個
C 50個 < 欠陥数 ≦ 100個
D 100個 < 欠陥数 ≦ 1000個
E 1000個 < 欠陥数 ≦ 5000個
F 5000個 < 欠陥数
(実施例E01) RBisN-1の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られたRBisN-1をPGMEAに溶解させた溶液(10質量%)を150g仕込み、攪拌しながら80℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相に分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びPGMEAを濃縮留去した。その後、ELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRBisN-1のPGMEA溶液を得た。調製した多環ポリフェノール樹脂溶液を日本インテグリス社製の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作製した。
 当該精製処理前後の各々の溶液サンプルについて、上述のようにウエハ上に樹脂膜を成膜し、樹脂膜をエッチングにより基板側に転写したのち、積層膜でのエッチング欠陥評価を実施した。
(実施例E02) RBisN-2の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例4-1で得られたRBisN-2をPGMEAに溶解させた溶液(10質量%)を140g仕込み、攪拌しながら60℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相に分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びPGMEAを濃縮留去した。その後、ELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRBisN-2のPGMEA溶液を得た。調製した多環ポリフェノール樹脂溶液を日本インテグリス社製の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作製した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E03) フィルター通液による精製
 クラス1000のクリーンブース内にて、1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られた樹脂(RBisN-1)をプロピレングリコールモノメチルエーテル(PGME)に溶解させた濃度10質量%の溶液を500g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分100mLの流量で公称孔径が0.01μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックスナイロンシリーズ)に濾過圧が0.5MPaの条件となるように加圧濾過にて通液した。濾過後の樹脂溶液をELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRBisN-1のPGMEA溶液を得た。調製した多環ポリフェノール樹脂溶液を日本インテグリス社製の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作製した後、積層膜でのエッチング欠陥評価を実施した。なお、酸素濃度はアズワン株式会社製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。
(実施例E04)
 フィルターによる精製工程として、日本ポール社製のIONKLEEN、日本ポール社製のナイロンフィルター、更に日本インテグリス社製の公称孔径3nmのUPEフィルターをこの順番に直列に接続し、フィルターラインとして構築した。0.1μmのナイロン製中空糸膜フィルターの代わりに、作製したフィルターラインを使用した以外は、実施例E03と同様にして濾過圧が0.5MPaの条件となるように加圧濾過により通液した。ELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRBisN-1のPGMEA溶液を得た。調製した多環ポリフェノール樹脂溶液を日本インテグリス社製の公称孔径3nmのUPEフィルターにより濾過圧が0.5MPaの条件となるように加圧濾過した溶液サンプルを作製した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E05)
実施例E01で作製した溶液サンプルを、さらに実施例E04で作製したフィルターラインを使用して濾過圧が0.5MPaの条件となるように加圧濾過した溶液サンプルを作製した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E06)
(合成実施例2)で合成したRBisN-2について、実施例E05と同様の方法により精製した溶液サンプルを作製した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E07)
(合成実施例3)で合成したRBisN-3について、実施例E05と同様の方法により精製した溶液サンプルを作製した後、積層膜でのエッチング欠陥評価を実施した。
Figure JPOXMLDOC01-appb-T000277
[実施例64~70]
 上記の各実施例42~48および比較例5で調製したリソグラフィー用下層膜形成材料の溶液と同組成の光学部材形成組成物を膜厚300nmのSiO基板上に塗布して、260℃で300秒間ベークすることにより、膜厚100nmの光学部材用の膜を形成した。次いで、ジェー・エー・ウーラム・ジャパン社製 真空紫外域多入射角分光エリプソメーター(VUV-VASE)を用いて、633nmの波長における屈折率及び透明性試験を行い、以下の基準に従って屈折率及び透明性を評価した。評価結果を表14に示す。
 [屈折率の評価基準]
 A:屈折率が1.65以上
 C:屈折率が1.65未満
 [透明性の評価基準]
 A:吸光定数が0.03未満
 C:吸光定数が0.03以上
Figure JPOXMLDOC01-appb-T000278
 実施例64~70の光学部材形成組成物では、屈折率が高いのみならず、吸光係数が低く、透明性に優れることが分かった。一方で、比較例9の組成物は光学部材としての性能に劣ることが分かった。
 本出願は、2020年7月8日に日本国特許庁に出願された日本特許出願(特願2020-117602号)、2020年7月15日に日本国特許庁に出願された日本特許出願(特願2020-121276号、特願2020-121088号)に基づく優先権を主張しており、その内容はここに参照として取り込まれる。
 本発明は、特定の骨格を有する芳香族ヒドロキシ化合物同士が架橋基を介さずに連結してなる、すなわち、芳香環が直接結合によって連結してなる、新規な多環ポリフェノール樹脂を提供するものである。かかる多環ポリフェノール樹脂は耐熱性、耐エッチング性、熱フロー性、溶媒溶解性などに優れており、とりわけ耐熱性、耐エッチング性に優れており、半導体用のコーティング剤、レジスト用材料、半導体下層膜形成材料として使用可能である。
 また本発明は、光学部材、フォトレジストの成分や、電気・電子部品用材料の樹脂原料、光硬化性樹脂等の硬化性樹脂原料、構造用材料の樹脂原料、又は樹脂硬化剤等に用いることのできる組成物として、産業上の利用可能性を有する。

Claims (49)

  1.  式(1-0)、(1A)、及び(1B)で表される芳香族ヒドロキシ化合物からなる群より選ばれる少なくとも1種のモノマーに由来する繰り返し単位を有する多環ポリフェノール樹脂であって、前記繰り返し単位同士が、芳香環同士の直接結合によって連結している多環ポリフェノール樹脂を含む、膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、
     Arはフェニレン基、ナフチレン基、アントリレン基、フェナンスリレン基、ピリレン基、フルオリレン基、ビフェニレン基、ジフェニルメチレン基又はターフェニレン基を表し、RはArの置換基であり、各々独立に、同一の基でも異なる基でもよく、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
     Pは各々独立して、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、又は置換基を有していてもよい炭素数2~30のアルキニル基であり、
     Xは直鎖あるいは分岐のアルキレン基を表し
     nは1~500の整数を示し、
     rは1~3の整数を示し、
     pは正の整数を表し、
     qは正の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(1A)中、
     Xは酸素原子、硫黄原子、単結合又は無架橋であり、
     Yは炭素数1~60の2n価の基又は単結合であり、
     Rは各々独立して、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、又は置換基を有していてもよい炭素数2~30のアルキニル基であり、
     R01は、各々独立して、置換基を有していてもよい炭素数6~40のアリール基であり、
     mは各々独立して1~9の整数であり、
     m01は0又は1であり、
     nは1~4の整数であり、
     pは各々独立して0~3の整数である。)
    (式(1B)中、
     Aは、ベンゼン環又は縮合芳香環であり、
     Rは、各々独立して、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、又は置換基を有していてもよい炭素数2~30のアルキニル基であり、
     mは、1~9の整数である。)
  2.  前記式(1-0)中のP、式(1A)及び(1B)中のR、のいずれか一つ以上が水素原子である、請求項1記載の膜形成用組成物。
  3.  前記式(1-0)で表される芳香族ヒドロキシ化合物が、式(1-1)で表される芳香族ヒドロキシ化合物である、請求項1又は2に記載の膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Ar、R、n、r、p及びqは、式(1-0)と同義である。)
  4.  前記式(1-1)で表される芳香族ヒドロキシ化合物が、下記式(1-2)で表される芳香族ヒドロキシ化合物である、請求項3に記載の膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、
     Arはフェニレン基、ナフチレン基又はビフェニレン基を表し、
     Arがフェニレン基のとき、Arはナフチレン基又はビフェニレン基を表し、
     Arがナフチレン基又はビフェニレン基のとき、Arはフェニレン基、ナフチレン基又はビフェニレン基を表し、
     RはArの置換基であり、各々独立に、同一の基でも異なる基でもよく、
     Raは水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し
     RbはArの置換基であり、各々独立に、同一の基でも異なる基でもよく、
     Rbは水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
     nは1~500の整数を示し、
     rは1~3の整数を示し、
     pは正の整数を表し、
     qは正の整数を表す。)
  5.  Arはフェニレン基、ナフチレン基又はビフェニレン基を表し、
     Arがフェニレン基のとき、Arはビフェニレン基を表し、
     Arがナフチレン基又はビフェニレン基のとき、Arはフェニレン基、ナフチレン基又はビフェニレン基を表し、
     Raは水素原子、又は置換基を有していてもよい炭素数1~30のアルキル基を表し
     Rbは水素原子、又は置換基を有していてもよい炭素数1~30のアルキル基を表す、請求項4に記載の膜形成用組成物。
  6.  前記式(1-2)で表される芳香族ヒドロキシ化合物が、下記式(2)又は式(3)で表される、請求項4又は5に記載の膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式(2)中、Ar1、R、r、p、nは式(1-2)と同義である。)
    Figure JPOXMLDOC01-appb-C000006
    (式(3)中、Ar1、R、r、p、nは式(1-2)と同義である。)
  7.  前記式(2)で表される芳香族ヒドロキシ化合物が、下記式(4)で表される、請求項6に記載の膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000007
    (式(4)中、
     Rは、各々独立に、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
     mは1~2の整数を示し、
     nは1~50の整数を示す。)
  8.  前記式(3)で表される芳香族ヒドロキシ化合物が、下記式(5)で表される、請求項6に記載の膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000008
    (式(5)中、
     Rは、各々独立に、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
     mは1~2の整数を示し、
     nは1~50の整数を示す。)
  9.  前記式(2)で表される芳香族ヒドロキシ化合物が、下記式(6)で表される、請求項6に記載の膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000009
    (式(6)中、
     Rは、各々独立に、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
     mは1~4の整数を示し、
     nは1~50の整数を示す。)
  10.  前記式(3)で表される芳香族ヒドロキシ化合物が、下記式(7)で表される、請求項6に記載の膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000010
    (式(7)中、
     Rは、各々独立に、水素原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、置換基を有していてもよい炭素数1~30のアシル基、置換基を有していてもよい炭素数1~30のカルボキシル基を含む基、置換基を有していてもよい炭素数0~30のアミノ基、ハロゲン原子、シアノ基、ニトロ基、チオール基、又は複素環基を表し、
     mは1~4の整数を示し、
     nは1~50の整数を示す。)
  11.  前記式(1A)で表される芳香族ヒドロキシ化合物が、式(1)で表される芳香族ヒドロキシ化合物である、請求項1に記載の膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000011
    (式(1)中、
     X、m、n及びpは前記のとおりであり、
     Rは前記式(1A)におけるYと同義であり、
     Rは前記式(1A)におけるRと同義である。)
  12.  前記式(1)で表される芳香族ヒドロキシ化合物が、下記式(1-1)で表される芳香族ヒドロキシ化合物である、請求項11に記載の膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000012
    (式(1-1)中、
     Zは酸素原子又は硫黄原子であり、
     R、R、m、p及びnは前記のとおりである。)
  13.  前記式(1-1)で表される芳香族ヒドロキシ化合物が、下記式(1-2)で表される芳香族ヒドロキシ化合物である、請求項12に記載の膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000013
    (式(1-2)中、R、R、m、p及びnは前記のとおりである。)
  14.  前記式(1-2)で表される芳香族ヒドロキシ化合物が、下記式(1-3)で表される芳香族ヒドロキシ化合物である、請求項13に記載の膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000014
    (上記式(1-3)中、
     Rは前記のとおりであり、
     Rは前記式(1A)におけるRと同義であり、
     mは各々独立して、1~6の整数である。)
  15.  前記式(1A)で表される芳香族ヒドロキシ化合物が、下記式(2)で表される芳香族ヒドロキシ化合物である、請求項1に記載の膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000015
    (式(2)中、
     Rは前記式(1A)におけるYと同義であり、
     n及びpは前記のとおりであり、
     R及びRは前記式(1A)におけるRと同義であり、
     m及びmは各々独立して、0~5の整数であるが、m及びmは同時に0ではない。
  16.  前記式(2)で表される芳香族ヒドロキシ化合物が、下記式(2-1)で表される芳香族ヒドロキシ化合物である、請求項15に記載の膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000016
    (式(2-1)中、
     R、R、R及びnは、前記のとおりであり、
     m5’は各々独立して1~4の整数であり、
     m6’は各々独立して1~5の整数である。)
  17.  前記式(2-1)で表される芳香族ヒドロキシ化合物が、下記式(2-2)で表される芳香族ヒドロキシ化合物である、請求項16に記載の膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000017
    (式(2-2)中、
     Rは前記のとおりであり、
     R、R及びRは、前記式(1A)におけるRと同義であり、
     mは各々独立して0~3の整数である。)
  18.  前記Rが、R-Rで表される基であり、ここで、当該Rはメチン基であり、当該Rは置換基を有していてもよい炭素数6~30のアリール基である、請求項11~17のいずれかに記載の膜形成用組成物。
  19.  前記式(1B)中のAが、縮合芳香環である、請求項1~18のいずれかに記載の膜形成用組成物。
  20.  前記多環ポリフェノール樹脂が、下記式(0A)で表される芳香族ヒドロキシ化合物からなる群より選ばれる少なくとも1種のモノマー由来の繰り返し単位を含む多環ポリフェノール樹脂である、請求項1~19のいずれかに記載の膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000018
    (式(0A)中、Rは炭素数1~60の2n価の基又は単結合であり、Rは各々独立して、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基又は水酸基であり、ここで、Rの少なくとも1つは水酸基であり、mは各々独立して0~5の整数であり、nは各々独立して1~4の整数である。)
  21.  前記式(0A)で表される芳香族ヒドロキシ化合物が下記式(1-0A)で表される芳香族ヒドロキシ化合物からなる群から選ばれる少なくとも1種である、請求項20に記載の膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000019
    (式(1-0A)中、R、R、mは、前記式(0A)で説明したものと同義である。)
  22.  前記式(1-0A)で表される芳香族ヒドロキシ化合物が下記式(1)で表される芳香族ヒドロキシ化合物からなる群から選ばれる少なくとも1種である、請求項21に記載の膜形成用組成物。
    Figure JPOXMLDOC01-appb-C000020
  23.  前記Rが、R-Rで表される基であり、ここで、当該Rはメチン基であり、当該Rは置換基を有していてもよい炭素数6~40のアリール基である、請求項20~22のいずれか1項に記載の膜形成用組成物。
  24.  前記多環ポリフェノール樹脂が、架橋反応性のある化合物に由来する変性部分をさらに有する、請求項1~23のいずれかに記載の膜形成用組成物。
  25.  前記架橋反応性のある化合物が、アルデヒド類又はケトン類である、請求項24に記載の膜形成用組成物。
  26.  前記多環ポリフェノール樹脂の重量平均分子量が400~100000である、請求項1~25のいずれかに記載の膜形成用組成物。
  27.  前記多環ポリフェノール樹脂のプロピレングリコールモノメチルエーテル及び/又はプロピレングリコールモノメチルエーテルアセテートに対する溶解度が1質量%以上である、請求項1~26のいずれか1項に記載の膜形成用組成物。
  28.  溶媒をさらに含む、請求項1~27のいずれか1項に記載の膜形成用組成物。
  29.  前記溶媒が、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、シクロペンタノン、乳酸エチル及びヒドロキシイソ酪酸メチルからなる群より選ばれる少なくとも1種を含む、請求項28に記載の膜形成用組成物。
  30.  不純物金属の含有量が金属種毎に500ppb未満である、請求項1~29のいずれか1項に記載の膜形成用組成物。
  31.  前記不純物金属が、銅、マンガン、鉄、コバルト、ルテニウム、クロム、ニッケル、スズ、鉛、銀及びパラジウムからなる群より選択される少なくとも1種を含有する、請求項30に記載の膜形成用組成物。
  32.  前記不純物金属の含有量が金属種毎に1ppb以下である、請求項30又は31に記載の膜形成用組成物。
  33.  請求項1~27のいずれか1項に記載の多環ポリフェノール樹脂の製造方法であって、
     1種以上の前記芳香族ヒドロキシ化合物を酸化剤の存在下で重合させる工程を含む、多環ポリフェノール樹脂の製造方法。
  34.  前記酸化剤が、銅、マンガン、鉄、コバルト、ルテニウム、クロム、ニッケル、スズ、鉛、銀及びパラジウムからなる群より選択される少なくとも1種を含有する金属塩類又は金属錯体である、請求項33に記載の多環ポリフェノール樹脂の製造方法。
  35.  請求項1~32のいずれかに記載の膜形成用組成物からなる、レジスト組成物。
  36.  溶媒、酸発生剤及び酸拡散制御剤からなる群より選択される少なくとも1つをさらに含有する、請求項35に記載のレジスト組成物。
  37.  請求項35又は36に記載のレジスト組成物を用いて、基板上にレジスト膜を形成する工程と、
     形成された前記レジスト膜の少なくとも一部を露光する工程と、
     露光した前記レジスト膜を現像してレジストパターンを形成する工程と、
     を含む、レジストパターン形成方法。
  38.  請求項1~32のいずれかに記載の膜形成用組成物と、ジアゾナフトキノン光活性化合物と、溶媒と、を含有する感放射線性組成物であって、
     前記溶媒の含有量が、前記感放射線性組成物の総量100質量%に対して20~99質量%であり、
     前記溶媒以外の固形分の含有量が、前記感放射線性組成物の総量100質量%に対して1~80質量%である、感放射線性組成物。
  39.  前記固形分100質量%に対する、前記前記多環ポリフェノール樹脂と、前記ジアゾナフトキノン光活性化合物と、その他の任意成分と、の含有量比が、多環ポリフェノール樹脂/ジアゾナフトキノン光活性化合物/その他の任意成分として、1~99質量%/99~1質量%/0~98質量%である、請求項38に記載の感放射線性組成物。
  40.  スピンコートによりアモルファス膜を形成することができる、請求項38又は39に記載の感放射線性組成物。
  41.  請求項38~40のいずれかに記載の感放射線性組成物を用いて、基板上にアモルファス膜を形成する工程を含む、アモルファス膜の製造方法。
  42.  請求項38~40のいずれかに記載の感放射線性組成物を用いて、基板上にレジスト膜を形成する工程と、
     形成された前記レジスト膜の少なくとも一部を露光する工程と、
     露光した前記レジスト膜を現像して、レジストパターンを形成する工程、
    を含む、レジストパターン形成方法。
  43.  請求項1~32のいずれかに記載の膜形成用組成物からなる、リソグラフィー用下層膜形成用組成物。
  44.  溶媒、酸発生剤及び架橋剤からなる群より選択される少なくとも1つをさらに含有する、請求項43に記載のリソグラフィー用下層膜形成用組成物。
  45.  請求項43又は44に記載のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程を含む、リソグラフィー用下層膜の製造方法。
  46.  請求項43又は44に記載のリソグラフィー用下層膜形成用組成物を用いて、基板上に、下層膜を形成する工程と、
     前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程と、
     前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程と、
     を有する、レジストパターン形成方法。
  47.  請求項43又は44に記載のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程と、
     前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程と、
     前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程と、
     前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程と、
     前記レジストパターンをマスクとして前記中間層膜をエッチングして、中間層膜パターンを形成する工程と、
     前記中間層膜パターンをエッチングマスクとして前記下層膜をエッチングして、下層膜パターンを形成する工程と、
     前記下層膜パターンをエッチングマスクとして前記基板をエッチングして、前記基板にパターンを形成する工程と、
     を有する、回路パターン形成方法。
  48.  請求項1~32のいずれかに記載の膜形成用組成物からなる、光学部材形成用組成物。
  49.  溶媒、酸発生剤及び架橋剤からなる群より選択される少なくとも1つをさらに含有する、請求項48に記載の光学部材形成用組成物。
PCT/JP2021/025867 2020-07-08 2021-07-08 膜形成用組成物、レジスト組成物、感放射線性組成物、アモルファス膜の製造方法、レジストパターン形成方法、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法及び回路パターン形成方法、光学部材形成用組成物、膜形成用樹脂、レジスト樹脂、感放射線性樹脂、リソグラフィー用下層膜形成用樹脂 WO2022009966A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227041052A KR20230035520A (ko) 2020-07-08 2021-07-08 막형성용 조성물, 레지스트 조성물, 감방사선성 조성물, 아몰퍼스막의 제조방법, 레지스트패턴 형성방법, 리소그래피용 하층막형성용 조성물, 리소그래피용 하층막의 제조방법 및 회로패턴 형성방법, 광학부재형성용 조성물, 막형성용 수지, 레지스트 수지, 감방사선성 수지, 리소그래피용 하층막형성용 수지
CN202180048505.3A CN115968391B (zh) 2020-07-08 2021-07-08 组合物、树脂、非晶质膜的制造方法、抗蚀图案形成方法、光刻用下层膜的制造方法及电路图案形成方法
JP2022535394A JPWO2022009966A1 (ja) 2020-07-08 2021-07-08
US18/013,870 US20240117101A1 (en) 2020-07-08 2021-07-08 Composition for film formation, resist composition, radiation-sensitive composition, method for producing amorphous film, resist pattern formation method, composition for underlayer film formation for lithography, method for producing underlayer film for lithography, circuit pattern formation method, composition for optical member formation, resin for underlayer film formation, resist resin, radiation-sensitive resin, and resin for underlayer film formation for lithography

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020-117602 2020-07-08
JP2020117602 2020-07-08
JP2020121088 2020-07-15
JP2020-121088 2020-07-15
JP2020-121276 2020-07-15
JP2020121276 2020-07-15

Publications (1)

Publication Number Publication Date
WO2022009966A1 true WO2022009966A1 (ja) 2022-01-13

Family

ID=79552631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025867 WO2022009966A1 (ja) 2020-07-08 2021-07-08 膜形成用組成物、レジスト組成物、感放射線性組成物、アモルファス膜の製造方法、レジストパターン形成方法、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法及び回路パターン形成方法、光学部材形成用組成物、膜形成用樹脂、レジスト樹脂、感放射線性樹脂、リソグラフィー用下層膜形成用樹脂

Country Status (6)

Country Link
US (1) US20240117101A1 (ja)
JP (1) JPWO2022009966A1 (ja)
KR (1) KR20230035520A (ja)
CN (1) CN115968391B (ja)
TW (1) TW202216837A (ja)
WO (1) WO2022009966A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116554444B (zh) * 2023-06-15 2024-03-29 嘉庚创新实验室 用于光刻介质组合物的聚合物以及光刻介质组合物

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183362A (ja) * 2001-12-20 2003-07-03 Hitachi Chem Co Ltd ポリナフチレンの合成方法、感光性樹脂組成物、パターンの製造法及び電子部品
JP2008065081A (ja) * 2006-09-07 2008-03-21 Jsr Corp レジスト下層膜形成用組成物及びパターン形成方法
JP2008274250A (ja) * 2007-04-06 2008-11-13 Osaka Gas Co Ltd フェノール樹脂およびその製造方法
JP2010271654A (ja) * 2009-05-25 2010-12-02 Shin-Etsu Chemical Co Ltd レジスト下層膜材料及びこれを用いたパターン形成方法
JP2012141496A (ja) * 2011-01-05 2012-07-26 Shin Etsu Chem Co Ltd レジスト下層膜材料及びこれを用いたパターン形成方法
JP2016047919A (ja) * 2014-08-25 2016-04-07 日本化薬株式会社 新規反応性エポキシカルボキシレート化合物、その誘導体、それを含有する樹脂組成物及びその硬化物
JP2016206676A (ja) * 2015-04-24 2016-12-08 Jsr株式会社 レジスト下層膜形成方法及びパターン形成方法
JP2020027302A (ja) * 2018-08-17 2020-02-20 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC 芳香族下層
WO2020145406A1 (ja) * 2019-01-11 2020-07-16 三菱瓦斯化学株式会社 膜形成用組成物、レジスト組成物、感放射線性組成物、アモルファス膜の製造方法、レジストパターン形成方法、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法及び回路パターン形成方法
WO2020145407A1 (ja) * 2019-01-11 2020-07-16 三菱瓦斯化学株式会社 多環ポリフェノール樹脂、及び多環ポリフェノール樹脂の製造方法
WO2020241576A1 (ja) * 2019-05-27 2020-12-03 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法および精製方法
WO2021112194A1 (ja) * 2019-12-04 2021-06-10 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、レジストパターン形成方法及び、回路パターン形成方法、オリゴマー、及び、精製方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0354181B1 (de) * 1988-08-04 1995-01-25 Ciba-Geigy Ag Härterkombination für kationisch polymerisierbare Materialien
JP3774668B2 (ja) 2001-02-07 2006-05-17 東京エレクトロン株式会社 シリコン窒化膜形成装置の洗浄前処理方法
JP3914493B2 (ja) 2002-11-27 2007-05-16 東京応化工業株式会社 多層レジストプロセス用下層膜形成材料およびこれを用いた配線形成方法
US7094708B2 (en) 2003-01-24 2006-08-22 Tokyo Electron Limited Method of CVD for forming silicon nitride film on substrate
JP3981030B2 (ja) 2003-03-07 2007-09-26 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法
JP4388429B2 (ja) 2004-02-04 2009-12-24 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法
JP4781280B2 (ja) 2006-01-25 2011-09-28 信越化学工業株式会社 反射防止膜材料、基板、及びパターン形成方法
JP4638380B2 (ja) 2006-01-27 2011-02-23 信越化学工業株式会社 反射防止膜材料、反射防止膜を有する基板及びパターン形成方法
JP2010138393A (ja) 2008-11-13 2010-06-24 Nippon Kayaku Co Ltd 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
US8871888B2 (en) * 2009-05-22 2014-10-28 Ppg Industries Ohio, Inc One-component epoxy coating compositions
KR101907481B1 (ko) 2011-08-12 2018-10-12 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 리소그래피용 하층막 형성재료, 리소그래피용 하층막 및 패턴형성방법
CN103827163A (zh) * 2011-09-30 2014-05-28 三菱瓦斯化学株式会社 具有芴结构的树脂及光刻用下层膜形成材料
EP2955169B1 (en) 2013-02-08 2017-03-15 Mitsubishi Gas Chemical Company, Inc. Novel allyl compound and method for producing the same
WO2014136693A1 (ja) * 2013-03-05 2014-09-12 日本化薬株式会社 多価カルボン酸組成物、エポキシ樹脂用硬化剤組成物、エポキシ樹脂組成物およびその硬化物
JP2015174877A (ja) 2014-03-13 2015-10-05 日産化学工業株式会社 特定の硬化促進触媒を含む樹脂組成物
WO2017038643A1 (ja) * 2015-08-31 2017-03-09 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びその製造方法、並びにレジストパターン形成方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183362A (ja) * 2001-12-20 2003-07-03 Hitachi Chem Co Ltd ポリナフチレンの合成方法、感光性樹脂組成物、パターンの製造法及び電子部品
JP2008065081A (ja) * 2006-09-07 2008-03-21 Jsr Corp レジスト下層膜形成用組成物及びパターン形成方法
JP2008274250A (ja) * 2007-04-06 2008-11-13 Osaka Gas Co Ltd フェノール樹脂およびその製造方法
JP2010271654A (ja) * 2009-05-25 2010-12-02 Shin-Etsu Chemical Co Ltd レジスト下層膜材料及びこれを用いたパターン形成方法
JP2012141496A (ja) * 2011-01-05 2012-07-26 Shin Etsu Chem Co Ltd レジスト下層膜材料及びこれを用いたパターン形成方法
JP2016047919A (ja) * 2014-08-25 2016-04-07 日本化薬株式会社 新規反応性エポキシカルボキシレート化合物、その誘導体、それを含有する樹脂組成物及びその硬化物
JP2016206676A (ja) * 2015-04-24 2016-12-08 Jsr株式会社 レジスト下層膜形成方法及びパターン形成方法
JP2020027302A (ja) * 2018-08-17 2020-02-20 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC 芳香族下層
WO2020145406A1 (ja) * 2019-01-11 2020-07-16 三菱瓦斯化学株式会社 膜形成用組成物、レジスト組成物、感放射線性組成物、アモルファス膜の製造方法、レジストパターン形成方法、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法及び回路パターン形成方法
WO2020145407A1 (ja) * 2019-01-11 2020-07-16 三菱瓦斯化学株式会社 多環ポリフェノール樹脂、及び多環ポリフェノール樹脂の製造方法
WO2020241576A1 (ja) * 2019-05-27 2020-12-03 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びパターン形成方法および精製方法
WO2021112194A1 (ja) * 2019-12-04 2021-06-10 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、レジストパターン形成方法及び、回路パターン形成方法、オリゴマー、及び、精製方法

Also Published As

Publication number Publication date
KR20230035520A (ko) 2023-03-14
CN115968391A (zh) 2023-04-14
CN115968391B (zh) 2024-04-26
TW202216837A (zh) 2022-05-01
US20240117101A1 (en) 2024-04-11
JPWO2022009966A1 (ja) 2022-01-13

Similar Documents

Publication Publication Date Title
JP7212449B2 (ja) 化合物及びその製造方法、並びに、組成物、光学部品形成用組成物、リソグラフィー用膜形成組成物、レジスト組成物、レジストパターンの形成方法、感放射線性組成物、アモルファス膜の製造方法、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法、レジストパターン形成方法、回路パターン形成方法、及び、精製方法
WO2017111165A1 (ja) 化合物、樹脂、組成物、レジストパターン形成方法、及び、回路パターン形成方法
JP7069530B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
JP6861950B2 (ja) 新規化合物及びその製造方法
JP2022033731A (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP6853957B2 (ja) 新規(メタ)アクリロイル化合物及びその製造方法
WO2018016615A1 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
WO2022014684A1 (ja) 多環ポリフェノール樹脂、組成物、多環ポリフェノール樹脂の製造方法、膜形成用組成物、レジスト組成物、レジストパターン形成方法、感放射線性組成物、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法、回路パターン形成方法、及び光学部材形成用組成物
WO2022014679A1 (ja) 重合体、組成物、重合体の製造方法、組成物、膜形成用組成物、レジスト組成物、感放射線性組成物、リソグラフィー用下層膜形成用組成物、レジストパターン形成方法、リソグラフィー用下層膜の製造方法、回路パターン形成方法、及び光学部材形成用組成物
WO2018101377A1 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
WO2020145406A1 (ja) 膜形成用組成物、レジスト組成物、感放射線性組成物、アモルファス膜の製造方法、レジストパターン形成方法、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法及び回路パターン形成方法
JP7061271B2 (ja) 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JP7068661B2 (ja) 化合物、樹脂、組成物、並びにレジストパターン形成方法及びパターン形成方法
WO2022009966A1 (ja) 膜形成用組成物、レジスト組成物、感放射線性組成物、アモルファス膜の製造方法、レジストパターン形成方法、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法及び回路パターン形成方法、光学部材形成用組成物、膜形成用樹脂、レジスト樹脂、感放射線性樹脂、リソグラフィー用下層膜形成用樹脂
JP7385827B2 (ja) 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び樹脂の精製方法
JP7090843B2 (ja) 化合物、樹脂、組成物、パターン形成方法及び精製方法
WO2018052028A1 (ja) 化合物、樹脂、組成物及びパターン形成方法
WO2020158931A1 (ja) 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び樹脂の精製方法
CN110856451A (zh) 膜形成材料、光刻用膜形成用组合物、光学部件形成用材料、抗蚀剂组合物、抗蚀图案形成方法、抗蚀剂用永久膜、辐射敏感组合物、非晶膜的制造方法、光刻用下层膜形成材料、光刻用下层膜形成用组合物、光刻用下层膜的制造方法及电路图案形成方法
CN116529671A (zh) 多环多酚树脂、组合物、多环多酚树脂的制造方法、膜形成用组合物、抗蚀剂组合物、抗蚀图案形成方法、辐射敏感组合物、光刻用下层膜形成用组合物、光刻用下层膜的制造方法、电路图案形成方法、及光学构件形成用组合物
JP7459789B2 (ja) 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び樹脂の精製方法
WO2022158335A1 (ja) 重合体、組成物、重合体の製造方法、膜形成用組成物、レジスト組成物、レジストパターン形成方法、感放射線性組成物、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法、回路パターン形成方法、光学部材形成用組成物
WO2021039843A1 (ja) リソグラフィー用膜形成組成物、レジストパターン形成方法、回路パターン形成方法及び精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535394

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838698

Country of ref document: EP

Kind code of ref document: A1