WO2022014679A1 - 重合体、組成物、重合体の製造方法、組成物、膜形成用組成物、レジスト組成物、感放射線性組成物、リソグラフィー用下層膜形成用組成物、レジストパターン形成方法、リソグラフィー用下層膜の製造方法、回路パターン形成方法、及び光学部材形成用組成物 - Google Patents

重合体、組成物、重合体の製造方法、組成物、膜形成用組成物、レジスト組成物、感放射線性組成物、リソグラフィー用下層膜形成用組成物、レジストパターン形成方法、リソグラフィー用下層膜の製造方法、回路パターン形成方法、及び光学部材形成用組成物 Download PDF

Info

Publication number
WO2022014679A1
WO2022014679A1 PCT/JP2021/026631 JP2021026631W WO2022014679A1 WO 2022014679 A1 WO2022014679 A1 WO 2022014679A1 JP 2021026631 W JP2021026631 W JP 2021026631W WO 2022014679 A1 WO2022014679 A1 WO 2022014679A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
polymer
composition
forming
Prior art date
Application number
PCT/JP2021/026631
Other languages
English (en)
French (fr)
Inventor
淳矢 堀内
耕大 松浦
悠 岡田
禎 大松
高史 牧野嶋
雅敏 越後
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US18/015,818 priority Critical patent/US20230296982A1/en
Priority to JP2022536445A priority patent/JPWO2022014679A1/ja
Priority to CN202180061314.0A priority patent/CN116194502A/zh
Priority to KR1020227040630A priority patent/KR20230038645A/ko
Publication of WO2022014679A1 publication Critical patent/WO2022014679A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0395Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having a backbone with alicyclic moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3242Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more oxygen atoms as the only heteroatom, e.g. benzofuran
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene

Definitions

  • the present invention relates to a polymer, a composition, a method for producing a polymer, a composition, a composition for forming a film, a resist composition, a radiation-sensitive composition, a composition for forming an underlayer film for lithography, a method for forming a resist pattern, and a lithography.
  • the present invention relates to a method for producing an underlayer film for use, a method for forming a circuit pattern, and a composition for forming an optical member.
  • Patent Documents 1 and 2 propose the use of a polyphenol compound or resin having a specific skeleton.
  • a method for producing a polyphenol-based resin a method for producing a novolak resin or a resol resin by adding and condensing phenols and formalin with an acid or alkaline catalyst is known.
  • formaldehyde is used as a raw material for the phenol resin in this method for producing a phenol resin
  • various other methods using a substance instead of formaldehyde have been studied from the viewpoint of safety.
  • phenols are oxidatively polymerized in a solvent such as water or an organic solvent by using an enzyme having peroxidase activity such as peroxidase and a peroxide such as hydrogen peroxide.
  • Non-Patent Document 1 A method of producing a phenol polymer by allowing the phenol polymer to be produced has been proposed. Further, a method for producing polyphenylene oxide (PPO) by oxidatively polymerizing 2,6-dimethylphenol is known (see Non-Patent Document 1 below).
  • PPO polyphenylene oxide
  • the light source for lithography used for forming the resist pattern has a shorter wavelength from a KrF excimer laser (248 nm) to an ArF excimer laser (193 nm).
  • a KrF excimer laser (248 nm)
  • an ArF excimer laser (193 nm)
  • it is difficult to obtain a resist pattern film thickness sufficient for substrate processing simply by thinning the resist. Therefore, not only the resist pattern but also a process of forming a resist underlayer film between the resist and the semiconductor substrate to be processed and giving the resist underlayer film a function as a mask at the time of substrate processing is required.
  • a resist underlayer film for lithography having a selection ratio of a dry etching rate close to that of a resist, unlike a conventional resist underlayer film having a high etching rate, can be mentioned.
  • a resin component having at least a substituent that produces a sulfonic acid residue by desorption of a terminal group by application of a predetermined energy, and a solvent are used.
  • a lower layer film forming material for a multilayer resist process containing the same has been proposed (see, for example, Patent Document 3 below).
  • a resist underlayer film for lithography having a selection ratio of a dry etching rate smaller than that of a resist can also be mentioned.
  • a material for forming such a resist underlayer film for lithography a resist underlayer film material containing a polymer having a specific repeating unit has been proposed (see, for example, Patent Document 4 below).
  • a resist underlayer film for lithography having a selection ratio of a dry etching rate smaller than that of a semiconductor substrate can be mentioned.
  • a resist underlayer film material containing a polymer obtained by copolymerizing a repeating unit of acenaphthylene and a repeating unit having a substituted or unsubstituted hydroxy group is used. It has been proposed (see, for example, Patent Document 5 below). Further, a resist underlayer film material containing a specific oxidative polymer of bisnaphthol has been proposed (see, for example, Patent Document 6 below).
  • a chemical vapor deposition thin film deposition method (Chemical Vapor Deposition, hereinafter also referred to as “CVD”) using methane gas, ethane gas, acetylene gas or the like as raw materials is used.
  • CVD Chemical Vapor Deposition
  • methane gas, ethane gas, acetylene gas or the like is used as raw materials.
  • the formed amorphous carbon underlayer film is well known.
  • a resist underlayer film material capable of forming a resist underlayer film by a wet process such as a spin coating method or screen printing.
  • a method for forming a silicon nitride film for example, see Patent Document 7 below
  • a method for forming a CVD film for a silicon nitride film see, for example, Patent Document 7 below
  • Patent Document 8 for example, see Patent Document 8 below.
  • an intermediate layer material for a three-layer process a material containing a silicon compound based on silsesquioxane is known (see, for example, Patent Document 9 below).
  • the present inventors have proposed a composition for forming an underlayer film for lithography containing a specific compound or resin (see, for example, Patent Document 10 below).
  • the materials described in Patent Documents 1 and 2 still have room for improvement in performance such as heat resistance and etching resistance, and development of new materials having further excellent physical properties is required.
  • the polyphenol-based resin obtained based on the method of Non-Patent Document 1 has both an oxyphenol unit and a unit having a phenolic hydroxyl group in the molecule as a constituent unit.
  • the oxyphenol unit is usually obtained by forming a bond between a carbon atom on the aromatic ring of one phenol which is a monomer and a phenolic hydroxyl group of the other phenol.
  • the unit having a phenolic hydroxyl group in the above-mentioned molecule is obtained by bonding phenols as a monomer between carbon atoms on the aromatic ring.
  • Such a polyphenol-based resin is a polymer having flexibility because the aromatic rings are bonded to each other via oxygen atoms, but it is not preferable from the viewpoint of crosslinkability and heat resistance because the phenolic hydroxyl group disappears
  • compositions for optical members have been proposed in the past, none of them have both heat resistance, transparency and refractive index at a high level, and development of a new material is required.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a polymer having better performance such as heat resistance and etching resistance.
  • a polymer in which the repeating units are linked by direct bonds between aromatic rings. In the formulas (1A) and (1B), R independently has an alkyl group having 1 to 40 carbon atoms which may have a substituent and 6 to 40 carbon atoms which may have a substituent.
  • Aryl group an alkenyl group having 2 to 40 carbon atoms which may have a substituent, an alkynyl group having 2 to 40 carbon atoms, an alkoxy group having 1 to 40 carbon atoms which may have a substituent, and a halogen.
  • A is an aryl group having 6 to 40 carbon atoms which may have a substituent and may have a substituent.
  • R 1 is an independently hydrogen atom, an alkyl group having 1 to 40 carbon atoms which may have a substituent, or an aryl group having 6 to 40 carbon atoms which may have a substituent.
  • Each of R 2 independently has an alkyl group having 1 to 40 carbon atoms which may have a substituent, an aryl group having 6 to 40 carbon atoms which may have a substituent, and a substituent.
  • m is an integer of 0 to 4 independently of each other.
  • n is an integer of 1 to 3 independently of each other.
  • p is an integer of 2 to 10 and The symbol * represents a connection point with an adjacent repeating unit. ).
  • the repeating unit represented by the formula (1A) is a repeating unit represented by the formula (1-1-1) and / or a repeating unit represented by the formula (1-1-2) [4].
  • the polymer according to. (In the formula (1-1-1), R 1 , R 2 , m, n, p, and the symbol * are synonymous with the above formula (1A).)
  • R 1 , R 2 , m, n, p, and the symbol * are synonymous with the above formula (1A).
  • the repeating unit represented by the formula (1A) is at least one selected from the repeating unit represented by the formula (1-2-1) to the repeating unit represented by the formula (1-2-4). , [4].
  • R 1 is a 2n-valent group or a single bond having 1 to 60 carbon atoms
  • R 2 is an alkyl having 1 to 40 carbon atoms which may independently have a substituent.
  • m are each independently an integer of 0 to 3
  • n represents in an integer of 1-4.
  • formula (2A), R 2 and m are synonymous with those described in formula (1A) be.
  • R 1 , R 2 , m and n are synonymous with those described in the above formula (1A).
  • R 1 and n have the same meanings as those described in formula (1).
  • R 1 is a group represented by R A -R B, in the R A is a methine group, wherein R B is an optionally substituted carbon atoms of 6 to 40 aryl group
  • a polymer having a repeating unit derived from a heteroatom-containing aromatic monomer which is a polymer having a repeating unit.
  • the hetero atom in the hetero atom-containing aromatic monomer contains at least one selected from the group consisting of a nitrogen atom, a phosphorus atom and a sulfur atom.
  • the heteroatom-containing aromatic monomer comprises a substituted or unsubstituted monomer represented by the following formula (1-1) or a substituted or unsubstituted monomer represented by the following formula (1-2) [12]. ] To [14]. (In the above formula (1-1), X is a group represented by NR 0 , a sulfur atom, an oxygen atom or a group represented by PR 0 , respectively, and R 0 and R 1 are respectively.
  • Q 1 and Q 2 is a single bond, a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, a substituted or unsubstituted C3-C20 cycloalkylene group, a substituted or unsubstituted 6 to 20 carbon atoms
  • the Q 1 and Q 2 are present in the monomer comprises at least one of them is a hetero atom
  • the Q 1 is includes a hetero atom
  • Q 3 is a group represented by a nitrogen atom, a phosphorus atom or CRb, where Q 3 in the monomer comprises a heteroatom.
  • the Ra and Rb are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, or a halogen atom.
  • R 1 is a substituted or unsubstituted phenyl group in the above formula (1-1).
  • Q4 and Q5 are single-bonded, substituted or unsubstituted alkylene groups having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkylene groups having 3 to 20 carbon atoms, and substituted or unsubstituted arylene groups having 6 to 20 carbon atoms.
  • Q6 is a group represented by CRb', and Rb is a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms.
  • composition according to [22], further comprising a solvent comprising one or more selected from the group consisting of propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexanone, cyclopentanone, ethyl lactate and methyl hydroxyisobutyrate.
  • solvent comprises one or more selected from the group consisting of propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexanone, cyclopentanone, ethyl lactate and methyl hydroxyisobutyrate.
  • the content of the impurity metal is 1 ppb or less for each metal species.
  • a method for producing the polymer according to any one of [1] to [21]. A method for producing a polymer, which comprises a step of polymerizing one or more of the monomers corresponding to the repeating unit in the presence of an oxidizing agent.
  • the oxidizing agent is a metal salt or metal complex containing at least one selected from the group consisting of copper, manganese, iron, cobalt, ruthenium, chromium, nickel, tin, lead, silver and palladium [28].
  • the method for producing a polymer according to. [30] A film-forming composition comprising the polymer according to any one of [1] to [21]. [31] A resist composition comprising the film-forming composition according to [30]. [32] The resist composition according to [31], further containing at least one selected from the group consisting of a solvent, an acid generator and an acid diffusion control agent.
  • a composition for forming a lower layer film for lithography which comprises the composition for forming a film according to [30].
  • the composition for forming an underlayer film for lithography according to [36] which further contains at least one selected from the group consisting of a solvent, an acid generator and a cross-linking agent.
  • a method for producing a lower layer film for lithography which comprises a step of forming a lower layer film on a substrate by using the composition for forming a lower layer film for lithography according to [36] or [37].
  • a resist pattern forming method which comprises a step of forming a lower layer film on a substrate by using the composition for forming a lower layer film for lithography according to [36] or [37].
  • the present embodiment a mode for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be appropriately modified and carried out within the scope of the gist thereof.
  • substitution means that one or more hydrogen atoms in a functional group are substituted with a substituent.
  • the "substituent” is not particularly limited, but is, for example, a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, a nitro group, a thiol group, a heterocyclic group, an alkyl group having 1 to 30 carbon atoms, and 6 to 20 carbon atoms.
  • Examples thereof include an aryl group, an alkoxyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms, an acyl group having 1 to 30 carbon atoms, and an amino group having 0 to 30 carbon atoms. Be done. Further, the "alkyl group” includes a linear aliphatic hydrocarbon group, a branched aliphatic hydrocarbon group, and a cyclic aliphatic hydrocarbon group unless otherwise defined.
  • the polymer of the present embodiment has a predetermined structure, and has more excellent performance such as heat resistance and etching resistance.
  • those having a hydroxyl group bonded to an aromatic ring may be referred to as a "polycyclic polyphenol resin".
  • the polymer according to the first aspect hereinafter, also referred to as “first polymer”
  • second polymer the polymer according to the second aspect
  • the polymer of the present embodiment includes the first polymer, the second polymer, the third polymer, and the fourth polymer.
  • aromatic hydroxy compounds represented by the formulas (1A) and (1B) described in the section of [1st polymer] described later and the compounds described as suitable thereof are referred to as "compounds”.
  • the aromatic hydroxy compound represented by the formula (1A-1) described in the section of [Second Polymer] and the compound described as a suitable compound thereof are referred to as “Compound Group 2" and are referred to as “Compound Group 2”.
  • the aromatic hydroxy compound represented by the formulas (1A) and (2A) described in the section of [Polymer of 3] and the compound described as a suitable compound thereof are referred to as "Compound Group 3" and are referred to as "Fourth Polymer”.
  • Compound Group 4 The heteroatom-containing aromatic monomer described in the above section and the compound described as a suitable compound thereof are referred to as “Compound Group 4”, and the formula numbers given to each of the following compounds are individual formula numbers for each compound group.
  • the aromatic hydroxy compound represented by the formula (1A) described in the section of [1st polymer] and the compound described as a suitable compound thereof are described in the section of [3rd polymer]. It shall be distinguished from the aromatic hydroxy compound represented by the above formula (1A) and the compound described as a suitable compound thereof.
  • the first polymer is a polymer having a repeating unit derived from at least one monomer selected from the group consisting of aromatic hydroxy compounds represented by the following formulas (1A) and (1B), and the repeating unit. They are connected to each other by a direct bond between aromatic rings. Since the first polymer is configured in this way, it has more excellent performance such as heat resistance and etching resistance.
  • R independently has an alkyl group having 1 to 40 carbon atoms which may have a substituent and 6 to 40 carbon atoms which may have a substituent.
  • Aryl group an alkenyl group having 2 to 40 carbon atoms which may have a substituent, an alkynyl group having 2 to 40 carbon atoms, an alkoxy group having 1 to 40 carbon atoms which may have a substituent, and a halogen.
  • the first polymer can also be referred to as a polycyclic polyphenol resin because it has a group containing at least one hydroxyl group in the repeating unit as defined for the above formulas (1A) and (1B).
  • R is an alkyl group having 1 to 40 carbon atoms which may have a substituent and 6 to 6 carbon atoms which may have a substituent, respectively. It may have an aryl group of 40, an alkenyl group having 2 to 40 carbon atoms which may have a substituent, an alkynyl group having 2 to 40 carbon atoms which may have a substituent, and a substituent. It is an alkoxy group, a halogen atom, a thiol group, an amino group, a nitro group, a cyano group, a nitro group, a heterocyclic group, a carboxyl group or a hydroxyl group having 1 to 40 carbon atoms.
  • the alkyl group may be linear, branched or cyclic.
  • at least one of R is a hydroxyl group.
  • the alkyl group having 1 to 40 carbon atoms is not limited to the following, but for example, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, and the like. Examples thereof include an n-pentyl group, an n-hexyl group, an n-dodecyl group and a barrel group.
  • Examples of the aryl group having 6 to 40 carbon atoms include, but are not limited to, a phenyl group, a naphthalene group, a biphenyl group, an anthracyl group, a pyrenyl group, a perylene group and the like.
  • Examples of the alkenyl group having 2 to 40 carbon atoms include, but are not limited to, an ethynyl group, a propenyl group, a butynyl group, a pentynyl group and the like.
  • Examples of the alkynyl group having 2 to 40 carbon atoms include, but are not limited to, an acetylene group and an ethynyl group.
  • the alkoxy group having 1 to 40 carbon atoms is not limited to the following, and examples thereof include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a pentoxy group.
  • the halogen atom include, but are not limited to, fluorine, chlorine, bromine, and iodine.
  • the heterocyclic group include, but are not limited to, pyridine, pyrrole, pyridazine, thiophene, imidazole, furan, pyrazole, oxazole, triazole, thiazole, or benzo-condensate thereof.
  • M is an integer of 1 to 10 independently. From the viewpoint of solubility, 1 to 4 are preferable, and from the viewpoint of raw material availability, 1 to 2 are preferable.
  • the aromatic hydroxy compound represented by the above formula (1A) or the above formula (1B) can be used alone, or two or more kinds can be used together.
  • the compound represented by the above formula (1A) is preferable to adopt the compound represented by the above formula (1A) as the aromatic hydroxy compound.
  • the compound represented by the above formula (1B) is preferable to adopt the aromatic hydroxy compound.
  • the aromatic hydroxy compounds represented by the above formulas (1A) and (1B) are represented by the following formulas (2A) and (2A), respectively, from the viewpoint of having both heat resistance and solubility and being easy to manufacture.
  • the compound represented by (2B) is preferable.
  • m 1 is an integer of 0 to 10
  • m 2 is an integer of 0 to 10
  • at least one m 1 or m 2 is an integer of 1 or more.
  • the aromatic hydroxy compounds represented by the above formulas (1A) and (1B) are the compounds represented by the following formulas (3A) and (3B), respectively. preferable. (Formula (3A) and (3B) in, m 1 'is an integer of 1-10.)
  • aromatic hydroxy compounds represented by the formulas (1A), (2A) and (3A) are shown below, but are not limited to those listed here.
  • each of R 3 independently has a hydrogen atom, an alkyl group having 1 to 40 carbon atoms which may have a substituent, and an aryl group having 6 to 40 carbon atoms which may have a substituent.
  • the alkyl group may be linear, branched or cyclic.
  • the bonding order of the repeating units of the first polymer in the polymer is not particularly limited.
  • only one unit derived from the aromatic hydroxy compound represented by the formula (1A) or the formula (1B) may be contained as a repeating unit in an amount of two or more, or the formula (1A) or the formula (1B) may be contained.
  • the order may be either block copolymerization or random copolymerization.
  • the position where the repeating units are directly bonded to each other in the first polymer is not particularly limited, and when the repeating unit is represented by the general formula (1A) or the formula (1B), a phenolic hydroxyl group is used. And any one carbon atom to which no other substituent is attached participates in the direct bond between the monomers.
  • "repeating units are linked by direct bonds between aromatic rings” means, for example, that the repeating units (1A) in the polymer are one of the repeating units (1A).
  • the carbon atom on the aromatic ring represented by the aryl structure in the parentheses in the formula and the carbon atom on the aromatic structure represented by the aryl structure in the parentheses in the other repeating unit (1A) are simply.
  • the first polymer may include the following aspects.
  • R is an aryl group (including the case where R is a 2n-valent group having an aryl group)
  • the atom on the aromatic ring of the aryl group and the other An embodiment in which an atom on an aromatic ring represented by an aryl structure in parentheses in the formula of the repeating unit (1A) is directly bonded by a single bond.
  • the number and ratio of each repeating unit are not particularly limited, but it is preferable to appropriately adjust them in consideration of the intended use and the following molecular weight values.
  • the first polymer can be composed of only the repeating unit (1A) and / or (1B), but contains other repeating units as long as the performance according to the application is not impaired. May be good.
  • Other repeating units include, for example, a repeating unit having an ether bond formed by condensation of phenolic hydroxyl groups, a repeating unit having a ketone structure, and the like. These other repeating units may also be directly bonded to the repeating units (1A) and / or (1B) at the aromatic rings.
  • the molar ratio [Y / X] of the total amount (Y) of the repeating unit (1A) and / or (1B) to the total amount (X) of the first polymer may be 0.05 to 1.00. It can be, preferably 0.45 to 1.00.
  • the weight average molecular weight of the first polymer is not particularly limited, but is preferably in the range of 400 to 100,000, more preferably 500 to 15,000, and even more preferably 1000 to 12,000.
  • the range of the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) in the first polymer is particularly limited because the ratio required depending on the use thereof is different.
  • examples of those having a more uniform molecular weight include, for example, those having a molecular weight in the range of 3.0 or less, and those having a more preferable molecular weight in the range of 1.05 or more and 3.0 or less.
  • Particularly preferable ones are 1.05 or more and less than 2.0, and more preferable ones are 1.05 or more and less than 1.5 from the viewpoint of heat resistance.
  • the first polymer is preferably highly soluble in a solvent from the viewpoint of facilitating the application of a wet process. More specifically, when the first polymer uses 1-methoxy-2-propanol (PGME) and / or propylene glycol monomethyl ether acetate (PGMEA) as a solvent, the solubility in the solvent at a temperature of 23 ° C. Is preferably 1% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, particularly preferably 20% by mass or more, and particularly preferably 30% by mass or more.
  • PGME 1-methoxy-2-propanol
  • PGMEA propylene glycol monomethyl ether acetate
  • the solubility in PGME and / or PGMEA is defined as "mass of first polymer ⁇ (mass of first polymer + mass of solvent) x 100 (mass%)".
  • 10 g of the first polymer is evaluated to be soluble in 90 g of PGMEA when the solubility of the first polymer in PGMEA is "10% by mass or more", and it is evaluated that it is not soluble. Is the case where the solubility is "less than 10% by mass”.
  • compositions described later polymer production methods, film-forming compositions, resist compositions, resist pattern-forming methods, radiation-sensitive compositions, lithography underlayer film-forming compositions, lithography underlayer film production methods, circuits
  • the first polymer will be described later from the viewpoint of further enhancing heat resistance and etching resistance. It is particularly preferable that it is at least one selected from the group consisting of ANT-1, ANT-2, ANT-3, ANT-4 and PYL-5 described in the examples.
  • the second polymer has a repeating unit represented by the following formula (1A). Since the second polymer is configured in this way, it has more excellent performance such as heat resistance and etching resistance. In addition to heat resistance and etching resistance, the second polymer has, for example, resist pattern forming property, adhesion and embedding property to resist layer and resist intermediate layer film material, film forming property, transparency and bending rate. In, more excellent performance can be exhibited.
  • A is an aryl group having 6 to 40 carbon atoms which may have a substituent and may have a substituent.
  • R 1 is an independently hydrogen atom, an alkyl group having 1 to 40 carbon atoms which may have a substituent, or an aryl group having 6 to 40 carbon atoms which may have a substituent.
  • Each of R 2 independently has an alkyl group having 1 to 40 carbon atoms which may have a substituent, an aryl group having 6 to 40 carbon atoms which may have a substituent, and a substituent.
  • m is an integer of 0 to 4 independently of each other.
  • n is an integer of 1 to 3 independently of each other.
  • p is an integer of 2 to 10 and The symbol * represents a connection point with an adjacent repeating unit. ).
  • the second polymer has at least one hydroxyl group in the repeating unit, and thus can also be referred to as a polycyclic polyphenol resin.
  • A is an aryl group having 6 to 40 carbon atoms which may have a substituent, and R 1 may independently have a hydrogen atom and a substituent. It is an alkyl group having 1 to 40 carbon atoms or an aryl group having 6 to 40 carbon atoms which may have a substituent, and R 2 has an independently having a substituent and may have a substituent.
  • m is an independently integer of 0 to 4
  • n is an independently of an integer of 1 to 3
  • p is an integer of 2 to 10
  • the symbol * is an adjacent repeating unit. Represents the connection point with.
  • the second polymer has a structure in which the repeating units represented by the formula (1A) are bonded to each other. That is, the second polymer has a structure in which the aromatic rings represented by the aryl structure in A in the polymer are directly bonded to each other.
  • the second polymer may be a homopolymer in which one type of repeating unit represented by the formula (1A) is continuously bonded, and two or more types of repeating units represented by the formula (1A) may be used. And may be a copolymer having a repeating unit derived from another copolymerization component. Further, in the case of the copolymer, it may be a block copolymer or a random copolymer.
  • the second polymer has more excellent heat resistance, more excellent solubility in a solvent, and more excellent moldability. Therefore, one type of repeating unit represented by the formula (1A) is continuously used. More preferably, it is a homopolymer to be bonded.
  • "the aromatic rings are directly bonded to each other” means, for example, that the repeating units (1A) in the polymer have an aryl structure in A in the formula of one repeating unit (1A).
  • the carbon atom on the aromatic ring shown and the carbon atom on the aromatic represented by the aryl structure in A in the formula of the other repeating unit (1A) are in a single bond, that is, a carbon atom, an oxygen atom, and the like.
  • the second polymer may include the following aspects.
  • R 1 or R 2 is an aryl group (including the case where R 1 is a 2n + 1 valent group having an aryl group), the aromatic of the aryl group.
  • R 1 or R 2 is an aryl group (including the case where R 1 is a 2n + 1 valent group having an aryl group)
  • the aromatic of the aryl group when either R 1 or R 2 is an aryl group (including the case where R 1 is a 2n + 1 valent group having an aryl group), the aromatic of the aryl group.
  • An embodiment in which an atom on the ring and an atom on the aromatic ring represented by the aryl structure in A in the formula of the other repeating unit (1A) are directly bonded by a single bond.
  • R 1 or R 2 is an aryl group (including the case where R 1 is a 2n + 1 valent group having an aryl group), one and the other.
  • the compound which is the basis of the structure of the polymer is referred to as an aromatic hydroxy compound.
  • the second polymer is obtained by using an aromatic hydroxy compound which is the basis of the structure as a monomer, and has a structure in which aromatic rings represented by the aryl structure in A in the polymer are directly bonded to each other.
  • the polymer having a repeating unit represented by the formula (1A) uses the aromatic hydroxy compound represented by the following formula (1A-1), which is the basis of the structure, as a monomer and has the formula (1A-1). It is obtained by directly bonding the aromatic rings represented by the aryl structure in A inside.
  • A, R 1 , R 2 , m, n, and p are synonymous with the formula (1A).
  • A is an aryl group having 6 to 40 carbon atoms which may have a substituent.
  • the aryl group having 6 to 40 carbon atoms include a phenyl group, a naphthalene group, a biphenyl group, an anthracyl group, a pyrenyl group, a perylene group and the like.
  • excellent solubility is obtained, heat resistance, etching resistance, storage stability, resist pattern forming property, adhesion and embedding property to resist layer, resist intermediate layer film material, etc., film forming property, and transparency.
  • a phenyl group and a naphthalene group are preferable because they have better performance in terms of property and bending rate.
  • R 1 is an independently hydrogen atom, an alkyl group having 1 to 40 carbon atoms which may have a substituent, or an aryl group having 6 to 40 carbon atoms which may have a substituent. .. From the viewpoint of combining high heat resistance and excellent solubility, R 1 is preferably an aryl group having 6 to 40 carbon atoms which may have a substituent.
  • R 1 is preferably an aryl group having 6 to 40 carbon atoms which may have a substituent.
  • a carboxyl group, a cyano group, a nitro group, a thiol group, or a heterocyclic group is preferable, and a carboxyl group, a cyano group, a nitro group, etc.
  • a thiol group are more preferred, a carboxyl group and a cyano group are even more preferred, and a cyano group is even more preferred.
  • alkyl group having 1 to 40 carbon atoms which may have a substituent examples include a methyl group, a hydroxymethyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group and i-butyl.
  • substituents include a group, a cyanobutyl group, a nitrobutyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, an n-dodecyl group, a barrel group and the like.
  • Examples of the aryl group having 6 to 40 carbon atoms which may have a substituent include a phenyl group, a cyclohexylphenyl group, a phenol group, a cyanophenyl group, a nitrophenyl group, a naphthalene group, a biphenyl group, an anthracene group and a naphthacene.
  • Examples thereof include a group, anthracyl group, pyrenyl group, perylene group, pentacene group, benzopyrene group, chrysen group, pyrene group, triphenylene group, colannelen group, coronen group, ovalen group, fluorene group, benzofluorene group, dibenzofluorene group and the like. ..
  • R 1 has a hydrogen atom, a phenyl group, a phenol group, a cyanophenyl group, a cyclohexylphenyl group, and a hydrogen atom, a phenyl group, a phenol group, a cyanophenyl group, and a cyclohexylphenyl group.
  • naphthalene groups are preferred, and hydrogen atoms, phenol groups, cyanophenyl groups, and cyclohexylphenyl groups are more preferred.
  • R 1 is a heterocycle such as pyridine, pyrrole, pyridazine, thiophene, imidazole, furan, pyrazole, oxazole, triazole, and thiazole, and their benzo-condensed rings. May be.
  • Each of R 2 independently has an alkyl group having 1 to 40 carbon atoms which may have a substituent, an aryl group having 6 to 40 carbon atoms which may have a substituent, and a substituent.
  • An alkenyl group having 2 to 40 carbon atoms may be present, an alkynyl group having 2 to 40 carbon atoms may have a substituent, an alkoxy group having 1 to 40 carbon atoms may have a substituent, and a halogen. It is an atomic, thiol group, amino group, nitro group, cyano group, nitro group, heterocyclic group, carboxyl group, or hydroxyl group.
  • the alkyl group may be linear, branched, or cyclic.
  • alkyl group having 1 to 40 carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, an n-pentyl group, and n. -Hexyl group, n-dodecyl group, barrel group and the like can be mentioned.
  • aryl group having 6 to 40 carbon atoms examples include a phenyl group, a naphthalene group, a biphenyl group, an anthracyl group, a pyrenyl group, a perylene group and the like.
  • Examples of the alkenyl group having 2 to 40 carbon atoms include an ethynyl group, a propenyl group, a butynyl group, a pentynyl group and the like.
  • Examples of the alkynyl group having 2 to 40 carbon atoms include an acetylene group and an ethynyl group.
  • Examples of the alkoxy group having 1 to 40 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a pentoxy group.
  • the R 2 provides excellent solubility, heat resistance, etching resistance, storage stability, resist pattern formability, adhesiveness and embedding properties with respect to the resist layer and resist intermediate film material and the like, film-forming property, and
  • An i-propyl group, an i-butyl group, and a t-butyl group are preferable, and a t-butyl group is more preferable, because they have better performance in terms of transparency and bending rate.
  • M is an integer of 0 to 4 independently of each other. From the viewpoint of solubility, an integer of 0 to 2 is preferable, an integer of 0 to 1 is more preferable, and from the viewpoint of raw material availability, 0 is further preferable.
  • N is an integer of 1 to 3 independently of each other. From the viewpoint of both solubility and heat resistance, an integer of 1 to 2 is preferable, and 2 is more preferable from the viewpoint of raw material availability.
  • P is an integer of 2 to 10. From the viewpoint of both solubility and heat resistance, an integer of 3 to 8 is preferable, an integer of 4 to 6 is more preferable, and 4 is even more preferable.
  • the repeating unit represented by the formula (1A) is the repeating unit represented by the formula (1-1-1) and / or the repeating unit represented by the formula (1-1-2) from the viewpoint of ease of manufacture. ) Is preferably a repeating unit.
  • R 1, R 2, m, n, p, and the symbol * are as defined for formula (1A).
  • the repeating unit represented by the formula (1A) is a repeating unit represented by the formula (1-2-1) to the formula (1-2-4) from the viewpoint of ease of manufacture. It is more preferable that it is at least one selected by the repeating unit represented.
  • the repeating unit represented by the formula (1A) is a repeating unit represented by the formula (1-3-1) to the formula (1-3-12) from the viewpoint of ease of manufacture. It is more preferable that it is at least one selected by the repeating unit represented.
  • R 1, p, and the symbol * are as defined for formula (1A).
  • Each of R 3 independently has a hydrogen atom, an alkyl group having 1 to 40 carbon atoms which may have a substituent, an aryl group having 6 to 40 carbon atoms which may have a substituent, and a substituent.
  • the alkyl group may be linear, branched, or cyclic.
  • the repeating unit represented by the formula (1A) is easy to manufacture, has more excellent heat resistance, is more soluble in a solvent, and is more excellent in moldability. It is at least one selected by the repeating unit represented by 3-1), the repeating unit represented by the formula (1-3-2), and the repeating unit represented by the formula (1-3-9). Is even more preferable. Further, in the formulas (1-3-1) to (1-3-12), from the viewpoint of ease of production , even if each of R 3 independently has a hydrogen atom and a substituent. A good alkyl group having 1 to 40 carbon atoms and an aryl group having 6 to 40 carbon atoms which may have a substituent are more preferable.
  • the alkyl group having 1 to 40 carbon atoms which may have a substituent is easy to produce, has excellent solubility in a solvent, and has excellent moldability. Therefore, a hydrogen atom, an i-propyl group, or i. -Butyl groups and t-butyl groups are even more preferable, and hydrogen atoms and t-butyl groups are particularly preferable.
  • the repeating unit represented by the formula (1A) is a repeating unit represented by the formula (1-4-1) to the formula (1-4-12) from the viewpoint of ease of manufacture. Even more preferably, it is at least one selected in the represented repeating unit.
  • R 1, p, and the symbol * are as defined for formula (1A).
  • the repeating unit represented by the formula (1A) is easy to manufacture, has further excellent heat resistance, is further excellent in solubility in a solvent, and is further excellent in moldability. It is more preferable that the number is at least one selected by the repeating unit represented by the formula (1-4-2) and the repeating unit represented by the formula (1-4-7).
  • R 1 is a hydrogen atom and a group of any one of the formulas (2-1-1) to (2-1-37) from the viewpoint of having a better balance of solubility, heat resistance, and etching resistance. Is preferable.
  • R 1 in the repeating unit represented by the formula (1A) is a hydrogen atom or the formula (2-1-1).
  • each repeating unit may have a different group.
  • the wavy line portion indicates the main structure of the polymer, and indicates the bond portion of —CH— in the formula (1A) with the carbon atom.
  • R 4 has the same meaning as R 3.
  • R 1 has a hydrogen atom, a formula (2-1-17), a formula (2-1-19), and a formula (2-1-1) from the viewpoint of having a better balance of solubility, heat resistance, and etching resistance. It is more preferable that the group is any one of 29).
  • the weight average molecular weight (Mw) of the second polymer is preferably in the range of 400 to 100,000, more preferably 500 to 15,000, and 3,200 to 12,000. Is even more preferable.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) in the second polymer varies depending on the application, but it is excellent if it has a more uniform molecular weight. It is preferably 3.0 or less, more preferably 1.05 or more and 3.0 or less, still more preferably 1.05 or more and 2.0 or less, and more preferably, because heat resistance can be obtained. It is more preferably 1.05 or more and 1.7 or less from the viewpoint of obtaining excellent heat resistance.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are obtained in terms of polystyrene by GPC measurement.
  • the number of repeating units represented by the formula (1A) in the second polymer is preferably 2 to 300, more preferably 2 to 100, and 2 to 100 from the viewpoint of obtaining high heat resistance. It is more preferably 10.
  • the total number of these units shall be used, and the composition ratio thereof shall be appropriately adjusted in consideration of the intended use and the value of the weight average molecular weight. be able to.
  • the second polymer can be composed of only the repeating unit (1A), but may contain other repeating units as long as the performance according to the application is not impaired.
  • Other repeating units include, for example, a repeating unit having an ether bond formed by condensation of phenolic hydroxyl groups, a repeating unit having a ketone structure, and the like. These other repeating units may also be directly bonded to the repeating unit (1A) at the aromatic rings.
  • the molar ratio [Y / X] of the molar amount (Y) of the repeating unit (1A) to the total molar amount (X) of the number of repetitions contained in the second polymer is preferably 5 to 100. Is 45 to 100.
  • the carbon atom in the aryl group in the formula (1A) is involved in the direct bonding between the monomers.
  • the carbon atom in the aromatic ring having a phenolic hydroxyl group participates in the direct bond between the monomers from the viewpoint of obtaining more excellent heat resistance.
  • the second polymer may contain a repeating unit having an ether bond formed by condensation of phenolic hydroxyl groups, as long as the performance is not impaired depending on the application. It may also contain a ketone structure.
  • the second polymer is preferably highly soluble in a solvent from the viewpoint of facilitating the application of a wet process.
  • a solvent for example, when the second polymer uses 1-methoxy-2-propanol (PGME) and / or propylene glycol monomethyl ether acetate (PGMEA) as a solvent, the solubility in the solvent is 1% by mass at a temperature of 23 ° C.
  • the above is preferable, more preferably 5% by mass or more, still more preferably 10% by mass or more, still more preferably 20% by mass or more, and even more preferably 30% by mass or more.
  • the solubility in PGME and / or PGMEA is defined as "total amount of second polymer / (total amount of second polymer + total amount of solvent) x 100 (% by mass)".
  • total amount of 10 g of the second polymer is evaluated to be soluble in 90 g of PGMEA when the solubility of the second polymer in PGMEA is "1% by mass or more", and the solubility is high. It is evaluated as not high when the solubility is "less than 1% by mass”.
  • compositions described later polymer production methods, film-forming compositions, resist compositions, resist pattern-forming methods, radiation-sensitive compositions, lithography underlayer film-forming compositions, lithography underlayer film production methods, circuits
  • the second polymer will be described later from the viewpoint of further enhancing heat resistance and etching resistance. It is particularly preferable that it is at least one selected from the group consisting of RCA-1, RCR-1, RCR-2, RCN-1 and RCN-2 described in the examples.
  • the third polymer is a polymer containing a repeating unit derived from at least one selected from the group composed of aromatic hydroxy compounds represented by the following formulas (1A) and (2A).
  • the repeating units are connected by a direct bond between the aromatic rings. Since the third polymer is configured in this way, it has more excellent performance such as heat resistance and etching resistance.
  • R 1 is a 2n-valent group or a single bond having 1 to 60 carbon atoms
  • R 2 is an alkyl having 1 to 40 carbon atoms which may independently have a substituent.
  • m are each independently an integer of 0 to 3
  • n represents in an integer of 1-4.
  • the third polymer has at least two hydroxyl groups in the repeating unit, and thus can also be referred to as a polycyclic polyphenol resin.
  • R 1 is a 2n-valent group or single bond having 1 to 60 carbon atoms.
  • the 2n-valent group having 1 to 60 carbon atoms is, for example, a 2n-valent hydrocarbon group, and the hydrocarbon group may have various functional groups described later as a substituent.
  • Examples of the 2n-valent hydrocarbon group include a group in which a 2n + 1-valent hydrocarbon group is bonded to a linear hydrocarbon group, a branched hydrocarbon group, or an alicyclic hydrocarbon group.
  • the alicyclic hydrocarbon group the Aribashi alicyclic hydrocarbon group is also included.
  • Examples of the 2n + 1-valent hydrocarbon group include, but are not limited to, a trivalent methine group and an ethine group.
  • the 2n-valent hydrocarbon group may have a double bond, a heteroatom and / or an aryl group having 6 to 59 carbon atoms.
  • R 1 may contain a group derived from a compound having a fluorene skeleton such as fluorene and benzofluorene.
  • the 2n-valent group may contain a halogen group, a nitro group, an amino group, a hydroxyl group, an alkoxy group, a thiol group or an aryl group having 6 to 40 carbon atoms. Further, the 2n-valent group may contain an ether bond, a ketone bond, an ester bond or a double bond.
  • the 2n-valent group preferably contains a branched hydrocarbon group or an alicyclic hydrocarbon group rather than a linear hydrocarbon group from the viewpoint of heat resistance, and contains an alicyclic hydrocarbon group. Is more preferable. Further, in the third polymer, it is particularly preferable that the 2n-valent group has an aryl group having 6 to 60 carbon atoms.
  • the substituent which can be contained in the 2n-valent group and is not particularly limited as an alicyclic hydrocarbon group and an aromatic group having 6 to 60 carbon atoms is, for example, an unsubstituted phenyl group, a naphthalene group and a biphenyl.
  • anthracyl group pyrenyl group, cyclohexyl group, cyclododecyl group, dicyclopentyl group, tricyclodecyl group, adamantyl group, phenylene group, naphthalenediyl group, biphenyldiyl group, anthracendiyl group, pyrenedyl group, cyclohexanediyl group, cyclo Dodecandyl group, dicyclopentanediyl group, tricyclodecandyl group, adamantandiyl group, benzenetriyl group, naphthalentryyl group, biphenyltriyl group, anthracentlyyl group, pyrentryyl group, cyclohexanetriyl group, cyclododecane Triyl group, dicyclopentanetriyl group, tricyclodecantryyl group, adamantan
  • each of R 2 independently has an alkyl group having 1 to 40 carbon atoms which may have a substituent and an aryl group having 6 to 40 carbon atoms which may have a substituent.
  • It is an alkoxy group, a halogen atom, a thiol group, an amino group, a nitro group, a cyano group, a nitro group, a heterocyclic group, a carboxyl group or a hydroxyl group.
  • the alkyl group or the like may be linear, branched or cyclic.
  • the alkyl group having 1 to 40 carbon atoms is not limited to the following, but for example, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, and the like. Examples thereof include an n-pentyl group, an n-hexyl group, an n-dodecyl group and a barrel group.
  • Examples of the aryl group having 6 to 40 carbon atoms include, but are not limited to, a phenyl group, a naphthalene group, a biphenyl group, an anthracyl group, a pyrenyl group, a perylene group and the like.
  • Examples of the alkenyl group having 2 to 40 carbon atoms include, but are not limited to, an ethynyl group, a propenyl group, a butynyl group, a pentynyl group and the like.
  • Examples of the alkynyl group having 2 to 40 carbon atoms include, but are not limited to, an acetylene group and an ethynyl group.
  • the alkoxy group having 1 to 40 carbon atoms is not limited to the following, and examples thereof include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a pentoxy group.
  • the halogen atom include fluorine, chlorine, bromine and iodine.
  • the heterocyclic group include, but are not limited to, pyridine, pyrrole, pyridazine, thiophene, imidazole, furan, pyrazole, oxazole, triazole, thiazole, or benzo-condensate thereof.
  • m is an integer of 0 to 3 independently.
  • m 0 to 1 is preferable from the viewpoint of solubility, and 0 is more preferable from the viewpoint of raw material availability.
  • n is an integer of 1 to 4, preferably 1 to 2.
  • n is an integer of 2 or more, the structural formulas in n [] may be the same or different.
  • R 2 and m have the same meanings as those described in formula (1A).
  • the aromatic hydroxy compound represented by the above formula (1A) or the above formula (2A) can be used alone, or two or more kinds can be used together.
  • the third polymer from the viewpoint of heat resistance, it is preferable to use the one represented by the above formula (1A) as the aromatic hydroxy compound. Further, from the viewpoint of solubility, it is preferable to adopt the compound represented by the above formula (2A) as the aromatic hydroxy compound.
  • the aromatic hydroxy compound represented by the above formula (1A) is a compound represented by the following formula (1) from the viewpoint of having both heat resistance and solubility and being easy to manufacture. preferable.
  • R 1 , R 2 , m and n are synonymous with those described in the above formula (1A).
  • the aromatic hydroxy compound represented by the above formula (1) is preferably an aromatic hydroxy compound represented by the following formula (1-1) from the viewpoint of ease of production. .. (In the formula (1-1), R 1 and n have the same meanings as those described in formula (1).)
  • the aromatic hydroxy compound represented by the above formula (1-1) is preferably the compound represented by the following formula (1-2) from the viewpoint of ease of production.
  • R 1 has the same meaning as that described in the above formula (1-1).
  • the R 1 is substituted It preferably contains an aryl group having 6 to 40 carbon atoms.
  • the aryl group having 6 to 40 carbon atoms is not limited to the following, but may be, for example, a benzene ring, naphthalene, anthracene, naphthalene, pentacene, benzopyrene, chrysene, pyrene, and the like.
  • fused rings such as triphenylene, corannulene, coronene, ovalene, fluorene, benzofluorene and dibenzofluorene may be used.
  • R 1 is naphthalene, anthracene, naphthacene, pentacene, benzopyrene, chrysene, pyrene, triphenylene, Corannulene, coronene, ovalene, fluorene
  • it is various condensed rings such as benzo fluorene and dibenzo fluorene Is preferable from the viewpoint of heat resistance.
  • R 1 is naphthalene or anthracene because the n-value and k-value at a wavelength of 193 nm used in ArF exposure tend to be low and the pattern transferability tends to be excellent.
  • the R 1 may include heterocycles such as pyridine, pyrrole, pyridazine, thiophene, imidazole, furan, pyrazole, oxazole, triazole, thiazole, or benzo-condensed rings thereof. ..
  • R 1 is the solubility of the viewpoint aromatic hydrocarbon ring from is preferably a heterocycle, more preferably an aromatic hydrocarbon ring.
  • the R 1 may be an aromatic hydrocarbon ring other than a group derived from a compound having a fluorene skeleton such as fluorene or benzofluorene.
  • the R 1 is R A- R. a group represented by B, wherein the R a is a methine group, the R B is more preferably a carbon number which may have a substituent is an aryl group of 6 to 40.
  • the aryl include the above-mentioned aryl groups, and further, an aryl group other than a group derived from a compound having a fluorene skeleton such as fluorene or benzofluorene may be used.
  • the aromatic hydroxy compound represented by the formula (1A), the formula (1), the formula (1-1), and the formula (1-2) are shown below.
  • the aromatic hydroxy compound in the third polymer is not limited to the compounds listed below.
  • at least one selected from the repeating units (1A) and (2A) derived from the aromatic hydroxy compound shown below is contained, and the repeating units are used together. Examples thereof include polymers linked by direct bonds between aromatic rings. Examples of such polymers include RBisP-1, RBisP-2, RBisP-3, RBisP-4, and RBisP-5, which are shown in Synthesis Examples described later.
  • a composition described later a method for producing a polymer, a film forming composition, a resist composition, a resist pattern forming method, a radiation-sensitive composition, a composition for forming an underlayer film for lithography, and a method for producing an underlayer film for lithography.
  • the third polymer is described in Examples described later from the viewpoint of further enhancing heat resistance and etching resistance, assuming application to all applications such as a circuit pattern forming method and an optical member forming composition. It can be at least one selected from the group consisting of RBisP-1, RBisP-2, RBisP-3, RBisP-4, RBisP-5 and RBP-1 described later.
  • R 3 are each independently a hydrogen atom, an alkyl group having a substituent and 1 carbon atoms which may have a 40, substituents to 6 carbon atoms which may have a 40 aryl A group, an alkenyl group having 2 to 40 carbon atoms which may have a substituent, an alkynyl group having 2 to 40 carbon atoms which may have a substituent, and a carbon number 1 which may have a substituent.
  • the alkyl group may be linear, branched or cyclic.
  • aromatic hydroxy compound represented by the above formula (2A) is shown below.
  • aromatic hydroxy compound in the third polymer is not limited to the compounds listed below.
  • the number and ratio of each repeating unit are not particularly limited, but it is preferable to appropriately adjust them in consideration of the intended use and the following molecular weight values.
  • the third polymer can be composed of only the repeating unit (1A) or (2A), but may contain other repeating units as long as the performance according to the application is not impaired. ..
  • Other repeating units include, for example, a repeating unit having an ether bond formed by condensation of phenolic hydroxyl groups, a repeating unit having a ketone structure, and the like. These other repeating units may also be directly bonded to the repeating unit (1A) or (2A) by the aromatic rings.
  • the molar ratio [Y / X] of the repeating unit (1A) [Y] to the total amount [X] of the third polymer can be 0.05 to 1.00, preferably 0.45. It can be ⁇ 1.00.
  • the weight average molecular weight of the third polymer is not particularly limited, but is preferably in the range of 400 to 100,000, more preferably 500 to 15,000, and 1,000 to 12,000 in terms of heat resistance and solubility. Is more preferable.
  • the range of the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) in the third polymer is particularly limited because the ratio required depending on the use thereof is different.
  • examples of those having a more uniform molecular weight include, for example, those having a molecular weight in the range of 3.0 or less, and those having a more preferable molecular weight in the range of 1.05 or more and 3.0 or less.
  • Particularly preferable ones are 1.05 or more and less than 2.0, and more preferable ones are 1.05 or more and less than 1.5 from the viewpoint of heat resistance.
  • the order of bonding of the repeating units of the third polymer in the polymer is not particularly limited.
  • only one unit derived from the aromatic hydroxy compound represented by the formula (1A) or the formula (2A) may be contained as a repeating unit in an amount of two or more, or the formula (1A) or the formula (2A).
  • the order may be either block copolymerization or random copolymerization.
  • the repeating units are linked by direct bonds between the aromatic rings
  • the repeating units (1A) and the repeating units (2A) in the third polymer are one of the repeating units.
  • the repeating unit (1A) and the repeating unit (2A) may be collectively referred to simply as the "repeating unit (A)
  • the present embodiment may include the following aspects. (1) at one of the repeating units (A), in the case where any aryl groups for R 1 and R 2 (e.g., if R 1 as described above is a group represented by R A -R B, etc. , R 1 is a 2n + 1 valent group having an aryl group), represented by an aryl structure in parentheses in the formula of the atomic on the aromatic ring of the aryl group and the other repeating unit (A).
  • any aryl groups for R 1 and R 2 e.g., if R 1 as described above is a group represented by R A -R B, etc. , R 1 is a 2n + 1 valent group having an aryl group
  • any one carbon atom to which the phenolic hydroxyl group and other substituents are not bonded is the monomer to each other. Involved in the direct binding of. From the viewpoint of heat resistance, it is preferable that any one carbon atom of the aromatic ring having a phenolic hydroxyl group participates in the direct bond between the aromatic rings.
  • each of the two aryl structures in formula (1A) is bound to the other repeating unit. The structure is preferred.
  • each of the two aryl structures is bonded to another repeating unit (1A)
  • the positions of the carbon atoms bonded to the other repeating unit in each aryl structure may be different or correspond to each other. It may be a location (eg, bonded to the 7th position of both naphthalene rings).
  • the repeating units (1A) are bonded by direct bonds between aromatic rings, but they are bonded to other repeating units via other atoms such as oxygen and carbon.
  • the repeating unit (1A) may be included.
  • the binding standard is used. It is preferable that 50% or more, more preferably 90% or more of the repeating unit (1A) is bonded to another repeating unit (1A) by direct bonding between aromatic rings.
  • the third polymer is preferably highly soluble in a solvent from the viewpoint of facilitating the application of a wet process. More specifically, when the third polymer uses propylene glycol monomethyl ether (PGME) and / or propylene glycol monomethyl ether acetate (PGMEA) as a solvent, the third polymer is propylene glycol monomethyl ether and / or propylene glycol.
  • the solubility in monomethyl ether acetate is preferably 1% by mass or more.
  • the solubility in the solvent at a temperature of 23 ° C. is preferably 1% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, and particularly preferably 20% by mass.
  • the solubility in PGME and / or PGMEA is defined as "mass of third polymer ⁇ (mass of third polymer + mass of solvent) x 100 (mass%)".
  • 10 g of the third polymer is evaluated to be soluble in 90 g of PGMEA when the solubility of the third polymer in PGMEA is "10% by mass or more", and it is evaluated to be insoluble. Is the case where the solubility is "less than 10% by mass”.
  • compositions described later polymer production methods, film-forming compositions, resist compositions, resist pattern-forming methods, radiation-sensitive compositions, lithography underlayer film-forming compositions, lithography underlayer film production methods, circuits
  • the third polymer will be described later from the viewpoint of further enhancing heat resistance and etching resistance. It is particularly preferable that it is at least one selected from the group consisting of RBisP-1, RBisP-2, RBisP-3, RBisP-4, RBisP-5 and RBP-1 described in the examples.
  • the fourth polymer is a polymer having a repeating unit derived from a heteroatom-containing aromatic monomer, and the repeating units are linked to each other by a direct bond between the aromatic rings of the heteroatom-containing aromatic monomer. .. Since the fourth polymer is configured in this way, it has more excellent performance such as heat resistance and etching resistance.
  • the position of the heteroatom in the heteroatom-containing aromatic monomer is not particularly limited, but it is preferable that the heteroatom constitutes an aromatic ring from the viewpoint of heat resistance, solubility and etching resistance. That is, it is preferable that the heteroatom-containing aromatic monomer contains a heterocyclic aromatic compound.
  • the hetero atom in the hetero atom-containing aromatic monomer is not particularly limited, and examples thereof include an oxygen atom, a nitrogen atom, a phosphorus atom, and a sulfur atom.
  • the fourth polymer preferably contains a nitrogen atom, a phosphorus atom or a sulfur atom rather than containing an oxygen atom as a heteroatom. That is, it is preferable that the hetero atom in the hetero atom-containing aromatic monomer contains at least one selected from the group consisting of a nitrogen atom, a phosphorus atom and a sulfur atom. Further, from the viewpoint of storage stability, it is preferable that the hetero atom in the hetero atom-containing aromatic monomer contains at least one of a nitrogen atom and a phosphorus atom.
  • the heteroatom-containing aromatic monomer may be substituted or unsubstituted by the following formula (1-1), or substituted or unsubstituted by the following formula (1-2). It preferably contains the represented monomer.
  • X is a group represented by NR 0 , a sulfur atom, an oxygen atom or a group represented by PR 0 , respectively, and R 0 and R 1 are respectively.
  • Q 1 and Q 2 is a single bond, a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, a substituted or unsubstituted C3-C20 cycloalkylene group, a substituted or unsubstituted 6 to 20 carbon atoms
  • the Ra is independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms or a halogen atom.
  • Q 1 and Q 2 when only Q 1 is present in the monomer, the Q 1 is includes a hetero atom
  • Q 3 is a group represented by a nitrogen atom, a phosphorus atom or CRb, where Q 3 in the monomer comprises a heteroatom.
  • the Ra and Rb are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, or a halogen atom.
  • the "monomer represented by the following formula (1-1) substituted or unsubstituted” and the “monomer represented by the following formula (1-2) substituted or unsubstituted” are expressed by the formulas.
  • a hydrogen atom is bonded to a carbon atom other than the carbon atom contained in X, Q 1 , Q 2 and Q 3 , it means that at least one of the hydrogen atoms can be substituted.
  • the "substituted group” here includes, for example, a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, a nitro group, a thiol group, a heterocyclic group, an alkyl group having 1 to 30 carbon atoms, and a carbon number of carbon atoms. 6 to 20 aryl groups, 1 to 30 carbon alcohol groups, 2 to 30 carbon alkenyl groups, 2 to 30 carbon alkynyl groups, 1 to 30 carbon acyl groups, 0 to 30 carbon amino The group etc. can be mentioned.
  • X is an independent group represented by NR 0 , a sulfur atom, an oxygen atom or a PR 0 , and R 0 and R 1 are independent of each other.
  • X is preferably a group represented by NR 0 , a sulfur atom, or a group represented by PR 0, respectively.
  • the substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms is not limited to the following, and examples thereof include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy, a hexyloxy, an octyloxy, and 2-ethylhexyloxy.
  • the halogen atom is not limited to the following, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the substituted or unsubstituted alkyl group having 1 to 30 carbon atoms is not limited to the following, and for example, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, and the like.
  • Examples include t-butyl group, sec-butyl group, n-pentyl group, neopentyl group, isoamyl group, n-hexyl group, n-heptyl group, n-octyl group, n-dodecyl group, barrel group, 2-ethylhexyl and the like. Be done.
  • the substituted or unsubstituted aryl group having 6 to 30 carbon atoms is not limited to the following, and is, for example, a phenyl group, a naphthyl group, a biphenyl group, a fluorenyl group, an anthryl group, a pyrenyl group, an azulenyl group, an asenaftyrenyl group, and a terphenyl.
  • Examples include a group, a phenylthrill group, a perylene group and the like.
  • R 1 is preferably a substituted or unsubstituted phenyl group.
  • Q 1 and Q 2 is a single bond, a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 20 carbon atoms, a substituted or unsubstituted Substituted arylene group with 6 to 20 carbon atoms, substituted or unsubstituted heteroarylene group with 2 to 20 carbon atoms, substituted or unsubstituted alkenylene group with 2 to 20 carbon atoms, substituted or unsubstituted carbon number of 2 to 20 carbon atoms
  • the alkynylene group, the carbonyl group, the group represented by NRa, the oxygen atom, the sulfur atom or the group represented by PRa, and each of the Ra is independently a hydrogen atom, substituted or unsubstituted carbon number 1 to 1.
  • Q 1 contains a heteroatom.
  • Q 3 is a group represented by a nitrogen atom, a phosphorus atom or CRb, and here, in the monomer, Q 3 contains a hetero atom.
  • the Ra and Rb are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, or a halogen atom.
  • the substituted or unsubstituted alkylene group having 1 to 20 carbon atoms is not limited to the following, and for example, a methylene group, an ethylene group, an n-propylene group, an i-propylene group, an n-butylene group, an i-butylene group, and the like.
  • Examples thereof include t-butylene group, n-pentylene group, n-hexylene group, n-dodecylene group, valerene group, methylmethylene group, dimethylmethylene group, methylethylene group and the like.
  • the substituted or unsubstituted cycloalkylene group having 3 to 20 carbon atoms is not limited to the following, and examples thereof include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cyclododecylene group, and a cyclovalerene group. Be done.
  • the substituted or unsubstituted arylene group having 6 to 20 carbon atoms is not limited to the following, and is, for example, a phenylene group, a naphthylene group, an anthrylene group, a phenanthrinylene group, a pyrenylene group, a peryleneylene group, a fluorenylene group, or a biphenylene group. And so on.
  • the substituted or unsubstituted heteroarylene group having 2 to 20 carbon atoms is not limited to the following, and examples thereof include a thienylene group, a pyridinylene group, and a furylene group.
  • Examples of the substituted or unsubstituted alkenylene group having 2 to 20 carbon atoms include a vinylene group, a propenylene group, a butenylene group and the like.
  • Examples of the substituted or unsubstituted alkynylene group having 2 to 20 carbon atoms include an ethynylene group, a propynylene group, and a butynylene group.
  • the substituted or unsubstituted alkyl group having 1 to 10 carbon atoms is not limited to the following, and for example, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, and the like.
  • Examples thereof include a t-butyl group, an n-pentyl group, an n-hexyl group, an n-dodecyl group and a barrel group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • the fourth polymer can improve heat resistance by directly bonding an aromatic monomer having a hetero atom. Further, by including a heteroatom such as P, N, O or S in the structural unit, not only the etching resistance of the polymer can be ensured, but also the polarity of the polymer is increased by the heteroatom, so that the polymer is dissolved in a solvent. It is possible to improve the sex. Furthermore, an organic film using a polymer in which the above-mentioned aromatic monomer having a hetero atom is directly bonded in a structural unit can secure an excellent film density and can improve the processing accuracy by etching.
  • a heteroatom such as P, N, O or S
  • the heteroatom-containing aromatic monomer is preferably a substituted or unsubstituted monomer represented by the following formula (1-1), and indole and 2-phenylbenzoxazole.
  • 2-Phenylbenzothiazole, carbazole and dibenzothiophene are more preferably comprising at least one selected from the group.
  • the fourth polymer may be a homopolymer of one kind of heteroatom-containing aromatic monomer, or may be a polymer of two or more kinds of heteroatom-containing aromatic monomers. Further, it may have a non-heteroatom-containing aromatic monomer as a copolymerization component.
  • the fourth polymer preferably further has a structural unit derived from the monomer represented by the following formula (2).
  • Q4 and Q5 are single-bonded, substituted or unsubstituted alkylene groups having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkylene groups having 3 to 20 carbon atoms, and substituted or unsubstituted carbon atoms. It is an arylene group of 6 to 20, a substituted or unsubstituted alkenylene group having 2 to 20 carbon atoms, and a substituted or unsubstituted alkynylene group having 2 to 20 carbon atoms.
  • Q6 is a group represented by CRb', and Rb is a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms.
  • the 2 to 20 alkenylene groups and the substituted or unsubstituted alkynylene groups having 2 to 20 carbon atoms are the same as the definition of the above formula (1-2).
  • the number and ratio of each repeating unit are not particularly limited, but it is preferable to appropriately adjust them in consideration of the intended use and the following molecular weight values.
  • the fourth polymer can be composed only of the formula (1), it may contain other repeating units as long as the performance according to the application is not impaired.
  • Other repeating units include, for example, a repeating unit having an ether bond formed by condensation of phenolic hydroxyl groups, a repeating unit having a ketone structure, and the like. These other repeating units may also be directly bonded to the repeating unit (1) at the aromatic rings.
  • the molar ratio [Y / X] of the structural unit (A) [Y] to the total amount [X] of the fourth polymer can be 5 to 100, preferably 45 to 100.
  • the weight average molecular weight of the fourth polymer is not particularly limited, but is preferably in the range of 400 to 100,000, more preferably 500 to 15,000, and 1,000 to 12,000 in terms of heat resistance and solubility. Is more preferable.
  • the range of the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) in the fourth polymer is particularly limited because the ratio required depending on the use thereof is different.
  • examples of those having a more uniform molecular weight include, for example, those having a molecular weight in the range of 3.0 or less, and those having a more preferable molecular weight in the range of 1.05 or more and 3.0 or less.
  • Particularly preferable ones are 1.05 or more and less than 2.0, and more preferable ones are 1.05 or more and less than 1.5 from the viewpoint of heat resistance.
  • the order of bonding of the repeating units of the fourth polymer in the polymer is not particularly limited.
  • only one unit derived from one kind of polycyclic aromatic monomer represented by the formula (1) may be contained as a repeating unit of two or more, or two kinds represented by the formula (1).
  • a plurality of units derived from the above polycyclic aromatic monomers may be contained in an amount of 1 or more.
  • the order may be either block copolymerization or random copolymerization.
  • “repeating units are linked by direct bonds between aromatic rings” is, for example, a polycyclic aromatic monomer medium unit (1) (or a repeating unit (1)).
  • a plurality of repeating units represented; hereinafter, these may be collectively referred to simply as “repeating unit (A)", which is indicated by an aryl structure in parentheses in the formula of one repeating unit (A).
  • the carbon atom on the aromatic ring and the carbon atom on the aromatic represented by the aryl structure in the parentheses in the formula of the other repeating unit (A) are in a single bond, that is, the carbon atom, the oxygen atom, and the like.
  • Examples thereof include a mode in which the compound is directly bonded without interposing another atom such as a sulfur atom.
  • the position where the repeating units in the fourth polymer are directly bonded to each other is not particularly limited, and any one carbon atom to which the substituent is not bonded is involved in the direct bonding between the monomers. From the viewpoint of heat resistance, it is preferable that any one carbon atom of the heteroatom-containing condensed ring monomer participates in the direct bond between the aromatic rings.
  • each of the two aryl structures in formula (1) is bound to another repeating unit. The structure is preferred.
  • each of the two aryl structures is bonded to another repeating unit (1)
  • the positions of the carbon atoms bonded to the other repeating units in each aryl structure may be different or correspond to each other. It may be a location (eg, bonded to the 7th position of both naphthalene rings).
  • the repeating units (1) are bonded by direct bonds between aromatic rings, but they are bonded to other repeating units via other atoms such as oxygen and carbon.
  • the repeating unit (1) may be included.
  • the binding standard is used. It is preferable that 50% or more, more preferably 90% or more of the repeating unit (1) is bonded to another repeating unit (1) by direct bonding between aromatic rings.
  • the fourth polymer is preferably highly soluble in a solvent from the viewpoint of facilitating the application of a wet process. More specifically, the fourth polymer is propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), cyclohexanone (CHN), cyclopentanone (CPN), ethyl lactate (EL) and hydroxyiso. It is preferable that the solubility in one or more selected from the group composed of methyl butyrate (HBM) is 1% by mass or more. Specifically, the solubility in the solvent at a temperature of 23 ° C.
  • the solubility in PGME, PGMEA, CHN, CPN, EL and / or HBM is "mass of the fourth polymer ⁇ (mass of the fourth polymer + mass of the solvent) ⁇ 100 (mass%)".
  • 10 g of the fourth polymer is evaluated to be soluble in 90 g of PGMEA when the solubility of the fourth polymer in PGMEA is "10% by mass or more", and it is evaluated to be insoluble. Is the case where the solubility is "less than 10% by mass”.
  • compositions described later polymer production methods, film-forming compositions, resist compositions, resist pattern-forming methods, radiation-sensitive compositions, lithography underlayer film-forming compositions, lithography underlayer film production methods, circuits
  • the fourth polymer will be described later from the viewpoint of further enhancing heat resistance and etching resistance. It is particularly preferable that it is at least one selected from the group consisting of RHE-1, RHE-2, RHE-3, RHE-4, RHE-5 and RHE-6 described in the examples.
  • the polymer of the present embodiment may further have a modified moiety derived from a crosslink-reactive compound. That is, the polymer of the present embodiment having the above-mentioned structure may have a modified portion obtained by reaction with a compound having a cross-linking reactivity.
  • modified polymers are also excellent in heat resistance and etching resistance, and can be used as coating agents for semiconductors, resist materials, and semiconductor underlayer film forming materials.
  • the cross-linking reactive compound is not limited to the following, and includes, for example, aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanate compounds, and unsaturated hydrocarbon groups. Examples include compounds. These can be used alone or in combination of two as appropriate.
  • the compound having a cross-linking reaction is preferably aldehydes or ketones. More specifically, it is preferably a polymer obtained by polycondensing reaction of aldehydes or ketones with the polymer of the present embodiment having the above-mentioned structure in the presence of a catalyst.
  • a novolak type polymer can be obtained by further polycondensing reaction with aldehydes or ketones corresponding to a desired structure under normal pressure and, if necessary, under pressure under a catalyst.
  • aldehydes examples include methylbenzaldehyde, dimethylbenzaldehyde, trimethylbenzaldehyde, ethylbenzaldehyde, propylbenzaldehyde, butylbenzaldehyde, pentabenzaldehyde, butylmethylbenzaldehyde, hydroxybenzaldehyde, dihydroxybenzaldehyde, fluoromethylbenzaldehyde and the like. Not particularly limited. These can be used alone or in combination of two or more.
  • methylbenzaldehyde dimethylbenzaldehyde, trimethylbenzaldehyde, ethylbenzaldehyde, propylbenzaldehyde, butylbenzaldehyde, pentabenzaldehyde, butylmethylbenzaldehyde and the like from the viewpoint of imparting high heat resistance.
  • ketones examples include acetylmethylbenzene, acetyldimethylbenzene, acetyltrimethylbenzene, acetylethylbenzene, acetylpropylbenzene, acetylbutylbenzene, acetylpentabenzene, acetylbutylmethylbenzene, acetylhydroxybenzene, acetyldihydroxybenzene, and acetylfluororo.
  • examples thereof include methylbenzene, but the present invention is not particularly limited thereto. These can be used alone or in combination of two or more.
  • acetylmethylbenzene acetyldimethylbenzene, acetyltrimethylbenzene, acetylethylbenzene, acetylpropylbenzene, acetylbutylbenzene, acetylpentabenzene, and acetylbutylmethylbenzene from the viewpoint of imparting high heat resistance.
  • the catalyst used in the reaction can be appropriately selected from known catalysts and is not particularly limited.
  • an acid catalyst or a base catalyst is preferably used.
  • Inorganic acids and organic acids are widely known as such acid catalysts.
  • Specific examples of the acid catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid and hydrofluoric acid; oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, citric acid, fumaric acid and malein.
  • Organic acids such as acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid; zinc chloride, aluminum chloride , Lewis acids such as iron chloride and boron trifluoride; solid acids such as silicate tung acid, phosphotung acid, silicate molybdic acid, phosphomolybdic acid and the like, but are not particularly limited thereto.
  • organic acids and solid acids are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferably used from the viewpoint of production such as easy availability and handling.
  • a base catalyst examples include pyridine and ethylenediamine as examples of amine-containing catalysts, and metal salts and particularly potassium salts or acetates are preferable as examples of non-amine basic catalysts, and suitable catalysts are limited.
  • examples thereof include potassium acetate, potassium carbonate, potassium hydroxide, sodium acetate, sodium carbonate, sodium hydroxide and magnesium oxide.
  • Non-amine base catalysts are commercially available, for example, from EMscience or Aldrich. As for the catalyst, one type can be used alone, or two or more types can be used in combination.
  • the amount of the catalyst used can be appropriately set according to the raw material to be used, the type of the catalyst to be used, the reaction conditions, and the like, and is not particularly limited, but is 0.001 to 100 mass with respect to 100 parts by mass of the reaction raw material. It is preferably a part.
  • a reaction solvent may be used in the reaction.
  • the reaction solvent is not particularly limited as long as the reaction between the aldehydes or ketones used and the polymer proceeds, and can be appropriately selected from known ones, and can be used, for example, water or methanol. , Ethanol, propanol, butanol, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether or a mixed solvent thereof and the like are exemplified.
  • the solvent one type can be used alone, or two or more types can be used in combination. The amount of these solvents used can be appropriately set according to the raw materials used, the type of acid catalyst used, reaction conditions, and the like.
  • the amount of the solvent used is not particularly limited, but is preferably in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material.
  • the reaction temperature in the above reaction can be appropriately selected according to the reactivity of the reaction raw material.
  • the reaction temperature is not particularly limited, but is usually preferably in the range of 10 to 200 ° C.
  • the reaction method can be appropriately selected and used by a known method, and is not particularly limited, but is a method of collectively charging the polymer, aldehydes or ketones, acid catalyst of the present embodiment, or aldehydes or ketones. There is a method of dropping the kind in the presence of an acid catalyst.
  • isolation of the obtained compound can be carried out according to a conventional method and is not particularly limited.
  • a general method such as raising the temperature of the reaction kettle to 130 to 230 ° C. and removing volatile substances at about 1 to 50 mmHg is used. By taking it, the target compound can be obtained.
  • the polymer of the present embodiment is not limited to the following, but typically has the following characteristics (1) to (4).
  • the polymer of the present embodiment has excellent solubility in an organic solvent (particularly a safe solvent). Therefore, for example, when the polymer of the present embodiment is used as a film forming material for lithography, a film for lithography can be formed by a wet process such as a spin coating method or screen printing.
  • a wet process such as a spin coating method or screen printing.
  • the carbon concentration is relatively high and the oxygen concentration is relatively low.
  • the molecule has a phenolic hydroxyl group, it is useful for forming a cured product by reaction with a curing agent, but the cured product can be formed by the cross-linking reaction of the phenolic hydroxyl group at high temperature baking alone. Due to these, the first polymer, the second polymer, and the third polymer can exhibit high heat resistance, and when used as a film forming material for lithography, deterioration of the film during high temperature baking is suppressed. Therefore, it is possible to form a lithography film having excellent etching resistance to oxygen plasma etching and the like. (2-2) In the fourth polymer, the carbon concentration is relatively high and the oxygen concentration is relatively low.
  • the fourth polymer can exhibit high heat resistance, and when used as a film forming material for lithography, deterioration of the film during high temperature baking is suppressed, and etching resistance to oxygen plasma etching and the like is excellent. A film for lithography can be formed.
  • the polymer of the present embodiment can exhibit high heat resistance and etching resistance, and has excellent adhesion to the resist layer and the resist intermediate layer film material.
  • resist pattern formability means a property in which no major defects are found in the resist pattern shape and both resolution and sensitivity are excellent.
  • the polymer of the present embodiment has a high refractive index due to its high aromatic ring density, coloration is suppressed even after heat treatment, and it is excellent in transparency. Therefore, the polymer of the present embodiment is also useful as a composition for forming various optical members.
  • the polymer of the present embodiment can be preferably applied as a film forming material for lithography due to the above-mentioned characteristics, and therefore the desired characteristics described above are imparted to the film-forming composition for lithography of the present embodiment.
  • the aromatic ring density is higher than that of a resin crosslinked with a divalent organic group or an oxygen atom, and the carbon-carbon of the aromatic ring is directly linked by a direct bond, so that the molecular weight is relatively low.
  • it is considered to have better performance in terms of performance such as heat resistance and etching resistance.
  • the method for producing the polymer of the present embodiment is not limited to the following, but for example, one or more of the monomers corresponding to the repeating unit, and the presence of an oxidizing agent. It can include a step of polymerizing below (oxidative polymerization step).
  • oxidative polymerization step oxidative polymerization step
  • the method for producing the first polymer is not limited to the following, but may include the above-mentioned oxidative polymerization step.
  • the contents of K. Matsumoto, Y. Shibasaki, S. Ando and M. Ueda, Polymer, 47, 3043 (2006) can be referred to as appropriate. That is, in the oxidative polymerization of ⁇ -naphthol type monomer, the ⁇ -position CC coupling is selectively generated by the oxidation coupling reaction in which radicals oxidized by one electron due to the monomer are coupled.
  • a copper / diamine type catalyst position-selective polymerization can be performed.
  • the oxidizing agent in the present embodiment is not particularly limited as long as it causes an oxidation coupling reaction, but is a metal containing copper, manganese, iron, cobalt, ruthenium, lead, nickel, silver, tin, chromium, palladium and the like.
  • Peroxides such as salts, hydrogen peroxide or perchloric acids, and organic peroxides are used.
  • metal salts or metal complexes containing copper, manganese, iron or cobalt can be preferably used.
  • Metals such as copper, manganese, iron, cobalt, ruthenium, lead, nickel, silver, tin, chromium or palladium can also be used as an oxidant by reduction in the reaction system.
  • metal salts For example, the aromatic hydroxy compound represented by the general formula (1A) is dissolved in an organic solvent, and metal salts containing copper, manganese or cobalt are added and, for example, reacted with oxygen or an oxygen-containing gas to carry out oxidative polymerization. Therefore, a desired polymer can be obtained.
  • the above-mentioned method for producing a polymer by oxidative polymerization it is relatively easy to control the molecular weight, and it is possible to obtain a polymer having a small molecular weight distribution without leaving a raw material monomer or a low molecular weight component associated with the increase in molecular weight. Therefore, it tends to be superior in terms of high heat resistance and low sublimation.
  • metal salts halides such as copper, manganese, cobalt, ruthenium, chromium and palladium, carbonates, acetates, nitrates and phosphates can be used.
  • the metal complex is not particularly limited, and known ones can be used. Specific examples thereof include, but are not limited to, the catalysts described in JP-A-36-18692, JP-A-40-13423, JP-A-49-490 and the like, as examples of the complex catalyst containing copper.
  • Manganese-containing complex catalysts such as Japanese Patent Publication No. 40-30354, 47-5111, Japanese Patent Application Laid-Open No. 56-32523, No. 57-44625, No. 58-19329, No. 60-83185, etc.
  • the catalyst described in the above is mentioned, and as the complex catalyst containing cobalt, the catalyst described in Japanese Patent Publication No. 45-23555 can be mentioned.
  • organic peroxides include, but are not limited to, t-butyl hydroperoxide, di-t-butyl peroxide, cumene hydroperoxide, dicumyl peroxide, peracetic acid, perbenzoic acid and the like. Can be done.
  • the above oxidizing agent can be used alone or in combination.
  • the amount of these used is not particularly limited, but is preferably 0.002 to 10 mol, more preferably 0.003 to 3 mol, still more preferably 0. It is 005 to 0.3 mol. That is, the oxidizing agent in the present embodiment can be used at a low concentration with respect to the monomer.
  • a base in addition to the oxidizing agent used in the oxidative polymerization step.
  • the base is not particularly limited, and known ones can be used, and specific examples thereof include inorganic bases such as alkali metal hydroxides, alkaline earth metal hydroxides, and alkali metal alcoxides. It may be an organic base such as a primary to tertiary monoamine compound or a diamine. Each can be used alone or in combination.
  • the method of oxidation is not particularly limited, and there is a method of directly using oxygen gas or air, but air oxidation is preferable from the viewpoint of safety and cost.
  • air oxidation is preferable from the viewpoint of safety and cost.
  • a method of introducing air by bubbling into a liquid in a reaction solvent is preferable from the viewpoint of improving the rate of oxidative polymerization and increasing the molecular weight of the polymer.
  • the oxidation reaction of this embodiment can also be a reaction under pressure, preferably 2kg / cm 2 ⁇ 15kg / cm 2 from the viewpoint of reaction promotion, 3 kg / cm in terms of safety and controllability 2 to 10 kg / cm 2 is more preferable.
  • the oxidation reaction of the aromatic hydroxy compound can be carried out even in the absence of a reaction solvent, but it is generally preferable to carry out the reaction in the presence of a solvent.
  • a solvent various known solvents can be used as long as they dissolve the catalyst to some extent as long as there is no problem in obtaining the first polymer.
  • alcohols such as methanol, ethanol, propanol and butanol
  • ethers such as dioxane, tetrahydrofuran or ethylene glycol dimethyl ether
  • solvents such as amides or nitriles
  • acetone methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone.
  • Ketones such as; or mixed with water.
  • the reaction can be carried out with hydrocarbons such as benzene, toluene or hexane which are immiscible with water, or a two-phase system between them and water.
  • the reaction conditions may be appropriately adjusted according to the substrate concentration, the type and concentration of the oxidizing agent, but the reaction temperature can be set to a relatively low temperature, preferably 5 to 150 ° C, and 20 to 20 to. More preferably, it is 120 ° C.
  • the reaction time is preferably 30 minutes to 24 hours, more preferably 1 hour to 20 hours.
  • the stirring method at the time of reaction is not particularly limited, and any of shaking, stirring using a rotor or a stirring blade may be used. This step may be performed in a solvent or in an air stream as long as the stirring conditions satisfy the above conditions.
  • the method for producing the second polymer to the fourth polymer is not particularly limited, but may include, for example, the above-mentioned oxidative polymerization step. That is, instead of using the aromatic hydroxy compounds represented by the formulas (1A) and (1B) described in the section of [1st polymer] as the "monomer corresponding to the repeating unit" as a raw material.
  • the oxidative polymerization step can be carried out in the same manner as in the item of [Method for producing the polymer of 1] to produce the second polymer to the fourth polymer.
  • the polymer of the present embodiment can be used as a composition assuming various uses. That is, the composition of the present embodiment contains the polymer of the present embodiment.
  • the composition of the present embodiment preferably further contains a solvent from the viewpoint of facilitating film formation by applying a wet process. Specific examples of the solvent are not particularly limited, but for example, a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; a cellosolve solvent such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate; ethyl lactate and methyl acetate.
  • a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • a cellosolve solvent such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate
  • one or more selected from the group consisting of propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexanone, cyclopentanone, ethyl lactate and methyl hydroxyisobutyrate is particularly preferable from the viewpoint of safety. ..
  • the content of the solvent in the composition of the present embodiment is not particularly limited, but is 100 to 10,000 parts by mass with respect to 100 parts by mass of the polymer of the present embodiment from the viewpoint of solubility and film formation. It is preferably 200 to 5,000 parts by mass, more preferably 200 to 1,000 parts by mass.
  • the polymer of the present embodiment is obtained as a crude product by the above-mentioned oxidation reaction and then further purified to remove the residual oxidizing agent.
  • metal salts or metals containing copper, manganese, iron or cobalt which are mainly used as metal oxidizing agents derived from oxidizing agents. It is preferable to avoid the residue of the complex and the like. That is, the composition of the present embodiment preferably has an impurity metal content of less than 500 ppb for each metal species, and more preferably 1 ppb or less.
  • the impurity metal is not particularly limited, but is selected from a group composed of copper, manganese, iron, cobalt, ruthenium, chromium, nickel, tin, lead, silver and palladium. At least one is mentioned. Since the residual amount of metal derived from the oxidizing agent (content of impurity metal) is less than 500 ppb, it tends to be usable even in solution form without impairing storage stability.
  • the purification method is not particularly limited, but the step of dissolving the polymer in a solvent to obtain a solution (S) and the obtained solution (S) and an acidic aqueous solution are brought into contact with each other in the polymer.
  • a purification method including a step of extracting impurities (first extraction step) and an organic solvent in which the solvent used in the step of obtaining the solution (S) is optionally immiscible with water can be mentioned. According to the purification method, the content of various metals that may be contained as impurities in the polymer can be reduced.
  • the polymer can be dissolved in an organic solvent that is not miscible with water to obtain a solution (S), and the solution (S) can be further contacted with an acidic aqueous solution for extraction treatment. ..
  • a solution (S) can be further contacted with an acidic aqueous solution for extraction treatment.
  • the organic phase and the aqueous phase can be separated to obtain a polymer having a reduced metal content.
  • the solvent that is not arbitrarily miscible with the water used in the above purification method is not particularly limited, but an organic solvent that can be safely applied to the semiconductor manufacturing process is preferable, and specifically, the solubility in water at room temperature is 30%. It is an organic solvent which is less than, more preferably less than 20%, and particularly preferably less than 10%.
  • the amount of the organic solvent used is preferably 1 to 100 times by mass with respect to the total amount of the polymers used.
  • solvent immiscible with water are not limited to the following, but for example, ethers such as diethyl ether and diisopropyl ether, esters such as ethyl acetate, n-butyl acetate and isoamyl acetate, methyl ethyl ketone and methyl isobutyl.
  • ethers such as diethyl ether and diisopropyl ether
  • esters such as ethyl acetate, n-butyl acetate and isoamyl acetate, methyl ethyl ketone and methyl isobutyl.
  • Ketones such as ketone, ethyl isobutyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 2-pentanone; ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl Glycol ether acetates such as ether acetate; aliphatic hydrocarbons such as n-hexane and n-heptane; aromatic hydrocarbons such as toluene and xylene; halogenated hydrocarbons such as methylene chloride and chloroform. ..
  • toluene, 2-heptanone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, ethyl acetate and the like are preferable, and methyl isobutyl ketone, ethyl acetate, cyclohexanone and propylene glycol monomethyl ether acetate are more preferable.
  • Methyl isobutyl ketone and ethyl acetate are even more preferable.
  • each of these solvents can be used alone, or two or more of them can be mixed and used.
  • the acidic aqueous solution used in the above purification method is appropriately selected from a generally known organic compound or an aqueous solution obtained by dissolving an inorganic compound in water.
  • aqueous mineral acid solution in which a mineral acid such as hydrochloric acid, sulfuric acid, nitrate, or phosphoric acid is dissolved in water, or acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, and maleic acid.
  • Tartrate acid citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluenesulfonic acid, trifluoroacetic acid and other organic acids dissolved in water.
  • acidic aqueous solutions can be used alone or in combination of two or more.
  • one or more mineral acid aqueous solutions selected from the group composed of hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, or acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid and malein.
  • aqueous organic acid solutions selected from the group consisting of acids, tartaric acid, citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluenesulfonic acid and trifluoroacetic acid, preferably sulfuric acid, nitrate and
  • An aqueous solution of a carboxylic acid such as acetic acid, oxalic acid, tartaric acid, or citric acid is more preferable, an aqueous solution of sulfuric acid, oxalic acid, tartaric acid, or citrate is more preferable, and an aqueous solution of oxalic acid is even more preferable.
  • polyvalent carboxylic acids such as oxalic acid, tartaric acid, and citric acid are coordinated to metal ions and have a chelating effect, so that the metal can be removed more effectively.
  • water used here it is preferable to use water having a low metal content, for example, ion-exchanged water, etc., in line with the purpose of the purification method in the present embodiment.
  • the pH of the acidic aqueous solution used in the above purification method is not particularly limited, but it is preferable to adjust the acidity of the aqueous solution in consideration of the influence on the above polymer.
  • the pH range is about 0 to 5, preferably about 0 to 3.
  • the amount of the acidic aqueous solution used in the above purification method is not particularly limited, but the amount used may be used from the viewpoint of reducing the number of extractions for removing the metal and ensuring operability in consideration of the total amount of the liquid. It is preferable to adjust. From the above viewpoint, the amount of the acidic aqueous solution used is preferably 10 to 200 parts by mass, more preferably 20 to 100 parts by mass with respect to 100 parts by mass of the solution (S).
  • the metal component can be extracted from the polymer in the solution (S) by contacting the acidic aqueous solution with the solution (S).
  • the solution (S) may further contain an organic solvent that is optionally miscible with water.
  • an organic solvent that is arbitrarily miscible with water is contained, the amount of the polymer charged can be increased, the liquid separation property is improved, and purification can be performed with high pot efficiency.
  • the method of adding an organic solvent that is arbitrarily miscible with water is not particularly limited. For example, any of a method of adding to a solution containing an organic solvent in advance, a method of adding to water or an acidic aqueous solution in advance, and a method of adding after contacting a solution containing an organic solvent with water or an acidic aqueous solution may be used. Among these, the method of adding to a solution containing an organic solvent in advance is preferable in terms of workability of operation and ease of control of the amount of charge.
  • the organic solvent that is arbitrarily miscible with the water used in the above purification method is not particularly limited, but an organic solvent that can be safely applied to the semiconductor manufacturing process is preferable.
  • the amount of the organic solvent to be arbitrarily mixed with water is not particularly limited as long as the solution phase and the aqueous phase are separated, but is 0.1 to 100 times by mass with respect to the total amount of the polymers used. It is preferably 0.1 to 50 times by mass, more preferably 0.1 to 20 times by mass.
  • N-methylpyrrolidone, propylene glycol monomethyl ether and the like are preferable, and N-methylpyrrolidone and propylene glycol monomethyl ether are more preferable.
  • Each of these solvents can be used alone, or two or more of them can be mixed and used.
  • the temperature at which the extraction process is performed is usually 20 to 90 ° C, preferably 30 to 80 ° C.
  • the extraction operation is performed by, for example, stirring well and then allowing the mixture to stand still. As a result, the metal content contained in the solution (S) is transferred to the aqueous phase. Further, by this operation, the acidity of the solution is lowered, and the deterioration of the polymer can be suppressed.
  • the solution phase is recovered by decantation or the like.
  • the standing time is not particularly limited, but it is preferable to adjust the standing time from the viewpoint of improving the separation between the solution phase containing the solvent and the aqueous phase.
  • the standing time is 1 minute or more, preferably 10 minutes or more, and more preferably 30 minutes or more.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separating a plurality of times.
  • the above purification method it is preferable to include a step (second extraction step) of extracting impurities in the polymer by further contacting the solution phase containing the polymer with water after the first extraction step.
  • a step (second extraction step) of extracting impurities in the polymer by further contacting the solution phase containing the polymer with water after the first extraction step.
  • the above-mentioned extraction treatment with water is not particularly limited, but can be carried out, for example, by mixing the above-mentioned solution phase and water well by stirring or the like, and then allowing the obtained mixed solution to stand still.
  • the solution phase can be recovered by decantation or the like.
  • the water used here is preferably water having a low metal content, for example, ion-exchanged water, for the purpose of the present embodiment.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separating a plurality of times.
  • the conditions such as the ratio of use of both in the extraction treatment, the temperature, and the time are not particularly limited, but the same as in the case of the contact treatment with the acidic aqueous solution described above may be used.
  • Moisture that can be mixed in the solution containing the polymer and the solvent thus obtained can be easily removed by performing an operation such as vacuum distillation. Further, if necessary, a solvent can be added to the above solution to adjust the concentration of the polymer to an arbitrary concentration.
  • the polymer purification method according to the present embodiment can also be purified by passing a solution of the polymer in a solvent through a filter.
  • the content of various metals in the polymer can be effectively and significantly reduced.
  • the amounts of these metal components can be measured by the method described in Examples described later.
  • the term "passing liquid" in the present embodiment means that the solution passes from the outside of the filter through the inside of the filter and moves to the outside of the filter again. For example, the solution is simply transferred to the surface of the filter.
  • the mode of contacting with the above solution and the mode of moving the solution outside the ion exchange resin while contacting the solution on the surface that is, the mode of simply contacting the solution are excluded.
  • the filter used for removing the metal component in the solution containing the polymer and the solvent can usually be a commercially available filter for liquid filtration.
  • the filtration accuracy of the filter is not particularly limited, but the nominal pore size of the filter is preferably 0.2 ⁇ m or less, more preferably less than 0.2 ⁇ m, still more preferably 0.1 ⁇ m or less, still more preferably 0. It is less than .1 ⁇ m, more preferably 0.05 ⁇ m or less.
  • the lower limit of the nominal pore diameter of the filter is not particularly limited, but is usually 0.005 ⁇ m.
  • the nominal pore size referred to here is a nominal pore size indicating the separation performance of the filter, and is determined by a test method determined by the filter manufacturer, such as a bubble point test, a mercury intrusion method test, and a standard particle capture test.
  • the hole diameter When a commercially available product is used, it is a value described in the manufacturer's catalog data.
  • the filter passing step may be performed twice or more.
  • a hollow fiber membrane filter As the form of the filter, a hollow fiber membrane filter, a membrane filter, a pleated membrane filter, and a filter filled with a filter medium such as non-woven fabric, cellulose, and diatom soil can be used.
  • the filter is one or more selected from the group composed of the hollow fiber membrane filter, the membrane filter and the pleated membrane filter. Further, it is particularly preferable to use a hollow fiber membrane filter because of its high-definition filtration accuracy and high filtration area as compared with other forms.
  • the material of the filter includes polyolefins such as polyethylene and polypropylene, polyethylene resins having a functional group capable of ion exchange by graft polymerization, polar group-containing resins such as polyamide, polyester and polyacrylonitrile, polyethylene fluoride (PTFE) and the like. Fluorohydrate-containing resin can be mentioned.
  • the filter medium of the filter is at least one selected from the group composed of polyamide, poreolefin resin and fluororesin.
  • polyamide is particularly preferable from the viewpoint of reducing heavy metals such as chromium. From the viewpoint of avoiding metal elution from the filter medium, it is preferable to use a filter other than the sintered metal material.
  • the polyamide-based filter is not limited to the following (hereinafter, registered trademark), but for example, KITZ Microfilter Co., Ltd.'s Polyfix Nylon Series, Nippon Pole Co., Ltd.'s Uruchi Pleated P-Nylon 66, Ultipore N66, etc. Examples include the Life Asure PSN series and Life Asure EF series manufactured by 3M Corporation.
  • the polyolefin-based filter is not limited to the following, but includes, for example, Uruchi Pleated PE Clean and Ion Clean manufactured by Nippon Pole Co., Ltd., Protego Series manufactured by Nippon Entegris Co., Ltd., Microguard Plus HC10, Optimizer D, and the like. Can be mentioned.
  • polyester filter examples include, but are not limited to, Geraflow DFE manufactured by Central Filter Industry Co., Ltd., Breeze type PMC manufactured by Nippon Filter Co., Ltd., and the like.
  • polyacrylonitrile-based filter examples include, but are not limited to, ultrafilters AIP-0013D, ACP-0013D, and ACP-0053D manufactured by Advantech Toyo Co., Ltd.
  • fluororesin-based filter include, but are not limited to, Enflon HTPFR manufactured by Nippon Pole Co., Ltd., Lifesure FA series manufactured by 3M Co., Ltd., and the like. Each of these filters may be used alone or in combination of two or more.
  • the filter may contain an ion exchanger such as a cation exchange resin, a cation charge regulator that causes a zeta potential in the organic solvent solution to be filtered, and the like.
  • an ion exchanger such as a cation exchange resin, a cation charge regulator that causes a zeta potential in the organic solvent solution to be filtered, and the like.
  • the filter containing the ion exchanger include, but are not limited to, the Protego series manufactured by Entegris Japan Co., Ltd., the clan graft manufactured by Kurashiki Textile Manufacturing Co., Ltd., and the like.
  • the filter containing a substance having a positive zeta potential such as polyamide polyamine epichlorohydrin cation resin is not limited to the following, and for example, Zeta Plus 40QSH and Zeta Plus manufactured by 3M Ltd. 020GN, Life Asure EF series and the like can be mentioned.
  • the method for isolating the polymer from the obtained solution containing the polymer and the solvent is not particularly limited, and can be carried out by a known method such as removal under reduced pressure, separation by reprecipitation, and a combination thereof. If necessary, known treatments such as concentration operation, filtration operation, centrifugation operation, and drying operation can be performed.
  • composition for film formation The composition of this embodiment can be used for film forming applications. That is, since the film-forming composition of the present embodiment contains the polymer of the present embodiment, excellent heat resistance and etching resistance can be exhibited.
  • the term "film” means a film that can be applied to, for example, a lithographic film, an optical member, and the like (but not limited to these), and the size and shape thereof are not particularly limited. Typically, it has a general form as a lithographic film or an optical member. That is, the "film-forming composition” is a precursor of such a film, and is clearly distinguished from the “film” in its form and / or composition. Further, the “membrane for lithography” is a concept that broadly includes films for lithography such as permanent films for resists and underlayer films for lithography.
  • the film-forming composition of the present embodiment contains the above-mentioned polymer, but can be various compositions depending on the specific use thereof, and depending on the use or composition, the following " It may be referred to as “resist composition”, “radiosensitive composition”, or “composition for forming an underlayer film for lithography”.
  • the resist composition of the present embodiment includes the film-forming composition of the present embodiment. That is, the resist composition of the present embodiment contains the polymer of the present embodiment as an essential component, and can further contain various arbitrary components in consideration of being used as a resist material. Specifically, the resist composition of the present embodiment preferably further contains at least one selected from the group composed of a solvent, an acid generator and an acid diffusion control agent.
  • the solvent that can be contained in the resist composition of the present embodiment is not particularly limited, and various known organic solvents can be used. For example, those described in International Publication No. 2013/024778 can be used. These solvents can be used alone or in combination of two or more.
  • the solvent used in this embodiment is preferably a safe solvent, more preferably PGMEA (propylene glycol monomethyl ether acetate), PGME (propylene glycol monomethyl ether), CHN (cyclohexanone), CPN (cyclopentanone). , 2-Heptanone, anisole, butyl acetate, ethyl propionate and ethyl lactate, more preferably at least one selected from PGMEA, PGME and CHN.
  • the amount of the solid component (component other than the solvent in the resist composition of the present embodiment) and the amount of the solvent are not particularly limited, but with respect to the total mass of 100 parts by mass of the amount of the solid component and the solvent. , 1 to 80 parts by mass of the solid component and 20 to 99 parts by mass of the solvent, more preferably 1 to 50 parts by mass of the solid component and 50 to 99 parts by mass of the solvent, still more preferably 2 to 40 parts by mass of the solid component and the like. It is 60 to 98 parts by mass of the solvent, and particularly preferably 2 to 10 parts by mass of the solid component and 90 to 98 parts by mass of the solvent.
  • acid generator (C) In the resist composition of the present embodiment, acid is directly or indirectly generated by irradiation with any radiation selected from visible light, ultraviolet light, excimer laser, electron beam, extreme ultraviolet (EUV), X-ray and ion beam. It is preferable to contain one or more of the acid generator (C).
  • the acid generator (C) is not particularly limited, but for example, the acid generator (C) described in International Publication No. 2013/024778 can be used.
  • the acid generator (C) may be used alone or in combination of two or more.
  • the amount of the acid generator (C) used is preferably 0.001 to 49% by mass, more preferably 1 to 40% by mass, further preferably 3 to 30% by mass, and 10 to 25% by mass of the total mass of the solid component. Especially preferable. By using within the above range, a pattern profile with high sensitivity and low edge roughness can be obtained.
  • the method of generating the acid is not limited. Finer processing is possible by using an excimer laser instead of ultraviolet rays such as g-rays and i-rays, and further fine processing is possible by using electron beams, extreme ultraviolet rays, X-rays, and ion beams as high-energy rays. Is possible.
  • the resist composition may contain one or more acid cross-linking agents (G).
  • the acid cross-linking agent (G) is a compound capable of intramolecularly or intermolecularly cross-linking the polymer (component (A)) of the present embodiment in the presence of an acid generated from the acid generator (C).
  • Examples of such an acid cross-linking agent (G) include compounds having one or more groups (hereinafter, referred to as “crosslinkable groups”) capable of cross-linking the component (A).
  • Such a crosslinkable group is not particularly limited, but is, for example, (i) hydroxy (C1-C6 alkyl group), C1-C6 alkoxy (C1-C6 alkyl group), acetoxy (C1-C6 alkyl group) and the like.
  • the acid cross-linking agent (G) having a cross-linking group is not particularly limited, but for example, the one described in International Publication No. 2013/024778 can be used.
  • the acid cross-linking agent (G) can be used alone or in combination of two or more.
  • the amount of the acid cross-linking agent (G) used is preferably 0.5 to 49% by mass, more preferably 0.5 to 40% by mass, still more preferably 1 to 30% by mass, based on the total mass of the solid component. 2 to 20% by mass is particularly preferable.
  • the blending ratio of the acid cross-linking agent (G) is 0.5% by mass or more, the effect of suppressing the solubility of the resist film in the alkaline developer is improved, the residual film ratio is lowered, and the pattern is swollen or tortuous. It is preferable because it can suppress the occurrence, and on the other hand, when it is 50% by mass or less, it is preferable because the decrease in heat resistance as a resist can be suppressed.
  • the acid diffusion control agent (E) has an action of controlling the diffusion of the acid generated from the acid generator in the resist film by irradiation to prevent an unfavorable chemical reaction in an unexposed region. May be blended into the resist composition.
  • an acid diffusion control agent (E) By using such an acid diffusion control agent (E), the storage stability of the resist composition is improved. In addition, the resolution is improved, and changes in the line width of the resist pattern due to fluctuations in the leaving time before irradiation and the leaving time after irradiation can be suppressed, resulting in extremely excellent process stability.
  • the acid diffusion control agent (E) is not particularly limited, and examples thereof include radiolytic basic compounds such as nitrogen atom-containing basic compounds, basic sulfonium compounds, and basic iodonium compounds.
  • the acid diffusion control agent (E) is not particularly limited, but for example, the one described in International Publication No. 2013/024778 can be used.
  • the acid diffusion control agent (E) may be used alone or in combination of two or more.
  • the blending amount of the acid diffusion control agent (E) is preferably 0.001 to 49% by mass, more preferably 0.01 to 10% by mass, still more preferably 0.01 to 5% by mass, and 0. 0.01 to 3% by mass is particularly preferable. Within the above range, it is possible to prevent deterioration of resolution, pattern shape, dimensional fidelity, and the like. Further, even if the leaving time from the electron beam irradiation to the heating after the irradiation is long, the shape of the upper layer portion of the pattern does not deteriorate. Further, when the blending amount is 10% by mass or less, it is possible to prevent deterioration of sensitivity, developability of the unexposed portion and the like.
  • the storage stability of the resist composition is improved, the resolution is improved, and the retention time before irradiation and the retention time after irradiation fluctuate.
  • the change in the line width of the resist pattern can be suppressed, and the process stability is extremely excellent.
  • the low molecular weight dissolution accelerator is a component having an action of increasing the solubility of the polymer in the present embodiment in a developing solution and appropriately increasing the dissolution rate of the compound during development. Yes, it can be used as needed.
  • the dissolution accelerator include low molecular weight phenolic compounds, and examples thereof include bisphenols and tris (hydroxyphenyl) methane. These dissolution accelerators can be used alone or in admixture of two or more.
  • the blending amount of the dissolution accelerator is appropriately adjusted according to the type of the above compound used, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, and 0 to 1% by mass of the total mass of the solid component. Is more preferable, and 0% by mass is particularly preferable.
  • the dissolution control agent is a component having an action of controlling the solubility of the polymer in the present embodiment in a developing solution and appropriately reducing the dissolution rate during development.
  • a dissolution control agent one that does not chemically change in steps such as firing of the resist film, irradiation, and development is preferable.
  • the dissolution control agent is not particularly limited, and for example, aromatic hydrocarbons such as phenanthrene, anthracene, and acenaphthene; ketones such as acetophenone, benzophenone, and phenylnaphthylketone; and methylphenylsulfone, diphenylsulfone, and dinaphthylsulfone. Sulfones and the like can be mentioned. These dissolution control agents may be used alone or in combination of two or more.
  • the blending amount of the dissolution control agent is appropriately adjusted according to the type of the above compound used, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, and 0 to 1% by mass of the total mass of the solid component. Is more preferable, and 0% by mass is particularly preferable.
  • the sensitizer has the effect of absorbing the energy of the irradiated radiation and transferring that energy to the acid generator (C), thereby increasing the amount of acid produced, improving the apparent sensitivity of the resist. It is an ingredient that causes.
  • a sensitizer include benzophenones, biacetyls, pyrenes, phenothiazines, fluorenes and the like, but are not particularly limited. These sensitizers can be used alone or in combination of two or more.
  • the blending amount of the sensitizer is appropriately adjusted according to the type of the above compound used, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, and 0 to 1% by mass of the total mass of the solid component. More preferably, 0% by mass is particularly preferable.
  • the surfactant is a component having an action of improving the coatability, striation, developability of the resist, etc. of the resist composition of the present embodiment.
  • a surfactant may be any of an anionic surfactant, a cationic surfactant, a nonionic surfactant or an amphoteric surfactant.
  • Preferred surfactants are nonionic surfactants.
  • the nonionic surfactant has a good affinity with the solvent used for producing the resist composition and is more effective. Examples of the nonionic surfactant include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkylphenyl ethers, polyethylene glycol higher fatty acid diesters, and the like, but are not particularly limited.
  • the commercial products are not particularly limited, but the following product names include, for example, Ftop (manufactured by Gemco), Megafuck (manufactured by Dainippon Ink and Chemicals), Florard (manufactured by Sumitomo 3M), Asahi Guard, and Surflon (manufactured by Sumitomo 3M).
  • Ftop manufactured by Gemco
  • Megafuck manufactured by Dainippon Ink and Chemicals
  • Florard manufactured by Sumitomo 3M
  • Asahi Guard Asahi Guard
  • Surflon manufactured by Sumitomo 3M
  • examples thereof include Asahi Glass Co., Ltd.), Pepole (Toho Chemical Industry Co., Ltd.), KP (Shin-Etsu Chemical Industry Co., Ltd.), Polyflow (Kyoei Co., Ltd. Oil and Fat Chemical Industry Co., Ltd.) and the like.
  • the blending amount of the surfactant is appropriately adjusted according to the type of the above compound used, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, and 0 to 1% by mass of the total mass of the solid component. Is more preferable, and 0% by mass is particularly preferable.
  • Organic carboxylic acid or phosphorus oxo acid or its derivative For the purpose of preventing deterioration of sensitivity or improving the shape of the resist pattern, retention stability, etc., an organic carboxylic acid or an oxo acid of phosphorus or a derivative thereof can be further contained as an arbitrary component.
  • the organic carboxylic acid or the oxo acid of phosphorus or a derivative thereof can be used in combination with an acid diffusion control agent, or may be used alone.
  • the organic carboxylic acid for example, malonic acid, citric acid, malic acid, succinic acid, benzoic acid, salicylic acid and the like are suitable.
  • Examples of the phosphorus oxo acid or its derivative include phosphoric acid such as phosphoric acid, phosphoric acid di-n-butyl ester, and phosphoric acid diphenyl ester, or derivatives such as those esters, phosphonic acid, phosphonic acid dimethyl ester, and phosphonic acid di-.
  • Examples thereof include phosphonic acids such as n-butyl ester, phenylphosphonic acid, phosphonic acid diphenyl ester and phosphonic acid dibenzyl ester or derivatives such as their esters, phosphinic acid such as phosphinic acid and phenylphosphinic acid and derivatives such as their esters. Of these, phosphonic acid is particularly preferable.
  • the organic carboxylic acid or phosphorus oxoacid or its derivative can be used alone or in combination of two or more.
  • the blending amount of the organic carboxylic acid or the oxo acid of phosphorus or a derivative thereof is appropriately adjusted according to the type of the above compound used, but is preferably 0 to 49% by mass, preferably 0 to 5% by mass, based on the total mass of the solid component. More preferably, 0 to 1% by mass is further preferable, and 0% by mass is particularly preferable.
  • the resist composition of the present embodiment may contain, if necessary, one or more additives other than the above-mentioned dissolution control agent, sensitizer, surfactant, and organic carboxylic acid or phosphorus oxoacid or a derivative thereof. Two or more types can be mixed. Examples of such additives include dyes, pigments, adhesive aids and the like.
  • a dye or a pigment because the latent image of the exposed portion can be visualized and the influence of halation during exposure can be alleviated.
  • an adhesive aid because the adhesiveness to the substrate can be improved.
  • the other additives are not particularly limited, and examples thereof include anti-halation agents, storage stabilizers, antifoaming agents, shape improvers, and the like, specifically, 4-hydroxy-4'-methylchalcone and the like. Can be done.
  • the total amount of the optional component (F) is 0 to 99% by mass, preferably 0 to 49% by mass, more preferably 0 to 10% by mass, and 0. It is more preferably from 5% by mass, further preferably from 0 to 1% by mass, and particularly preferably from 0% by mass.
  • the content of the polymer (component (A)) in the present embodiment is not particularly limited, but the total mass of the solid component (polymer (A), acid generator (C), Total of solid components including optionally used components such as acid cross-linking agent (G), acid diffusion control agent (E) and other components (F) (also referred to as "arbitrary component (F)"), hereinafter resist.
  • the same applies to the composition preferably 50 to 99.4% by mass, more preferably 55 to 90% by mass, still more preferably 60 to 80% by mass, and particularly preferably 60 to 70% by mass.
  • the resolution tends to be further improved and the line edge roughness (LER) tends to be further reduced.
  • the polymer in the resist composition of the present embodiment, the polymer (component (A)), acid generator (C), acid cross-linking agent (G), acid diffusion control agent (E), and optional component (F) according to the present embodiment.
  • the content ratio (component (A) / acid generator (C) / acid cross-linking agent (G) / acid diffusion control agent (E) / optional component (F)) is based on 100% by mass of the solid content of the resist composition. It is preferably 50 to 99.4% by mass / 0.001 to 49% by mass / 0.5 to 49% by mass / 0.001 to 49% by mass / 0 to 49% by mass, and more preferably 55 to 90%.
  • the blending ratio of the components is selected from each range so that the total of the components is 100% by mass. With the above formulation, there is a tendency for excellent performance such as sensitivity, resolution, and developability.
  • the "solid content” means a component excluding the solvent, and the "solid content 100% by mass” means that the component excluding the solvent is 100% by mass.
  • the resist composition of the present embodiment is usually prepared by dissolving each component in a solvent at the time of use to form a uniform solution, and then, if necessary, filtering through a filter having a pore size of about 0.2 ⁇ m or the like, if necessary.
  • the resist composition of the present embodiment may contain a resin other than the polymer of the present embodiment, if necessary.
  • the other resin is not particularly limited, and for example, novolak resin, polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resin, and acrylic acid, vinyl alcohol, or vinylphenol as a monomer unit. Examples thereof include polymers containing the same or derivatives thereof.
  • the content of the other resin is not particularly limited and is appropriately adjusted according to the type of the component (A) to be used, but is preferably 30 parts by mass or less with respect to 100 parts by mass of the component (A). It is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and particularly preferably 0 parts by mass.
  • the resist composition of the present embodiment can form an amorphous film by spin coating. It can also be applied to general semiconductor manufacturing processes. Depending on the type of developer used, either a positive resist pattern or a negative resist pattern can be produced separately.
  • the dissolution rate of the amorphous film formed by spin-coating the resist composition of the present embodiment in a developing solution at 23 ° C. is preferably 5 ⁇ / sec or less, more preferably 0.05 to 5 ⁇ / sec. It is preferably 0.0005 to 5 ⁇ / sec, more preferably 0.0005 to 5 ⁇ / sec.
  • the dissolution rate is 5 ⁇ / sec or less, it is insoluble in a developing solution and can be used as a resist. Further, if the dissolution rate is 0.0005 ⁇ / sec or more, the resolution may be improved.
  • the dissolution rate of the amorphous film formed by spin-coating the resist composition of the present embodiment in a developing solution at 23 ° C. is preferably 10 ⁇ / sec or more.
  • the dissolution rate is 10 ⁇ / sec or more, it is easily dissolved in a developing solution and is more suitable for a resist.
  • the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. It is presumed that this is because the micro surface portion of the component (A) is dissolved and the LER is reduced. It also has the effect of reducing defects.
  • the dissolution rate is determined by immersing the amorphous film in a developing solution at 23 ° C. for a predetermined time and measuring the film thickness before and after the immersion by a known method such as visual inspection, cross-sectional observation with an ellipsometer or a scanning electron microscope. can.
  • the dissolution rate is preferably 10 ⁇ / sec or more. When the dissolution rate is 10 ⁇ / sec or more, it is easily dissolved in a developing solution and is more suitable for a resist. Further, if the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. It is presumed that this is because the micro surface portion of the component (A) is dissolved and the LER is reduced. It also has the effect of reducing defects.
  • the dissolution rate is preferably 5 ⁇ / sec or less, more preferably 0.05 to 5 ⁇ / sec, still more preferably 0.0005 to 5 ⁇ / sec.
  • the dissolution rate is 5 ⁇ / sec or less, it is insoluble in a developing solution and can be used as a resist. Further, if the dissolution rate is 0.0005 ⁇ / sec or more, the resolution may be improved.
  • the radiation-sensitive composition of the present embodiment is a radiation-sensitive composition containing the film-forming composition of the present embodiment, a diazonaphthoquinone photoactive compound (B), and a solvent, and is a radiation-sensitive composition of the solvent.
  • the content is 20 to 99 parts by mass with respect to 100 parts by mass of the total amount of the radiation-sensitive composition, and the content of the components other than the solvent is 100 parts by mass of the total amount of the radiation-sensitive composition. It is 1 to 80 parts by mass. That is, the radiation-sensitive composition of the present embodiment may contain the polymer of the present embodiment, the diazonaphthoquinone photoactive compound (B), and the solvent as essential components, and is radiation-sensitive. In consideration, various optional components can be further contained.
  • the radiation-sensitive composition of the present embodiment contains a polymer (component (A)) and is used in combination with the diazonaphthoquinone photoactive compound (B), g-ray, h-ray, i-ray, and KrF It is useful as a base material for a positive resist, which becomes a compound easily soluble in a developing solution by irradiating with an excimer laser, ArF excimer laser, extreme ultraviolet rays, electron beams, or X-rays.
  • a resist pattern can be formed by the developing step.
  • the glass transition temperature of the polymer (component (A)) of the present embodiment contained in the radiation-sensitive composition of the present embodiment is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 140 ° C. or higher. Particularly preferably, it is 150 ° C. or higher.
  • the upper limit of the glass transition temperature of the component (A) is not particularly limited, but is, for example, 600 ° C. When the glass transition temperature of the component (A) is within the above range, it has heat resistance capable of maintaining the pattern shape in the semiconductor lithography process, and tends to improve performance such as high resolution.
  • the calorific value for crystallization determined by differential scanning calorimetry of the glass transition temperature of the component (A) contained in the radiation-sensitive composition of the present embodiment is preferably less than 20 J / g. Further, (crystallization temperature)-(glass transition temperature) is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, still more preferably 100 ° C. or higher, and particularly preferably 130 ° C. or higher. When the calorific value for crystallization is less than 20 J / g, or (crystallization temperature)-(glass transition temperature) is within the above range, an amorphous film can be easily formed by spin-coating the radiation-sensitive composition. The film-forming property required for the resist can be maintained for a long period of time, and the resolution tends to be improved.
  • the crystallization calorific value, the crystallization temperature, and the glass transition temperature can be obtained by differential scanning calorimetry using DSC / TA-50WS manufactured by Shimadzu Corporation.
  • About 10 mg of the sample is placed in an unsealed aluminum container, and the temperature is raised to the melting point or higher at a heating rate of 20 ° C./min in a nitrogen gas stream (50 mL / min). After quenching, the temperature is raised to the melting point or higher again in a nitrogen gas stream (30 mL / min) at a heating rate of 20 ° C./min. After further quenching, the temperature is raised to 400 ° C.
  • the temperature at the midpoint of the stepped baseline (where the specific heat has changed in half) is the glass transition temperature (Tg), and the temperature of the exothermic peak that appears after that is the crystallization temperature.
  • Tg glass transition temperature
  • the calorific value is calculated from the area of the area surrounded by the exothermic peak and the baseline, and is used as the crystallization calorific value.
  • the component (A) contained in the radiation-sensitive composition of the present embodiment is 100 or less, preferably 120 ° C. or lower, more preferably 130 ° C. or lower, still more preferably 140 ° C. or lower, and particularly preferably 150 ° C. or lower under normal pressure. It is preferable that the sublimation property is low. Low sublimation means that in thermogravimetric analysis, the weight loss when held at a predetermined temperature for 10 minutes is 10% or less, preferably 5% or less, more preferably 3% or less, still more preferably 1% or less, particularly preferably. Indicates that it is 0.1% or less. Due to the low sublimation property, it is possible to prevent contamination of the exposure apparatus due to outgas during exposure. In addition, a good pattern shape can be obtained with low roughness.
  • the component (A) contained in the radiation-sensitive composition of the present embodiment is propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), cyclohexanone (CHN), cyclopentanone (CPN), 2-heptanone. , Anisol, butyl acetate, ethyl propionate and ethyl lactate, and in a solvent having the highest dissolving ability for the component (A) at 23 ° C., preferably 1% by mass or more, more preferably 5% by mass.
  • % Or more more preferably 10% by mass or more, and even more preferably, in a solvent selected from PGMEA, PGME, CHN and exhibiting the highest dissolving ability for the component (A) at 23 ° C., 20 It dissolves in an amount of 20% by mass or more, particularly preferably 20% by mass or more at 23 ° C. with PGMEA.
  • PGMEA PGMEA
  • the diazonaphthoquinone photoactive compound (B) contained in the radiation-sensitive composition of the present embodiment is a diazonaphthoquinone substance containing a polymeric and non-polymeric diazonaphthoquinone photoactive compound, and is generally used in a positive resist composition. It is not particularly limited as long as it is used as a photosensitive component (photosensitive agent), and one type or two or more types can be arbitrarily selected and used.
  • Such a photosensitizer was obtained by reacting naphthoquinone diazide sulfonic acid chloride, benzoquinone diazido sulfonic acid chloride, or the like with a low molecular weight compound or a high molecular weight compound having a functional group capable of a condensation reaction with these acid chlorides.
  • Compounds are preferred.
  • the functional group capable of condensing with acid chloride is not particularly limited, and examples thereof include a hydroxyl group and an amino group, but a hydroxyl group is particularly preferable.
  • the compound capable of condensing with the acid chloride containing a hydroxyl group is not particularly limited, and is, for example, hydroquinone, resorcin, 2,4-dihydroxybenzophenone, 2,3,4-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, and the like.
  • 2,4,4'-Trihydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,2', 4,4'-tetrahydroxybenzophenone, 2,2', 3,4,6'- Hydroxybenzophenones such as pentahydroxybenzophenone, hydroxyphenyl alkanes such as bis (2,4-dihydroxyphenyl) methane, bis (2,3,4-trihydroxyphenyl) methane, bis (2,4-dihydroxyphenyl) propane , 4,4', 3 ", 4" -Tetrahydroxy-3,5,3', 5'-Tetramethyltriphenylmethane, 4,4', 2 ", 3", 4 "-Pentahydroxy-3, Hydroxytriphenylmethanes such as 5,3', 5'-tetramethyltriphenylmethane and the like can be mentioned.
  • hydroxyphenyl alkanes such as bis (2,4-dihydroxyphenyl) methane, bis (2,3,4
  • acid chloride such as naphthoquinone diazide sulfonic acid chloride and benzoquinone diazido sulfonic acid chloride
  • 1,2-naphthoquinone diazide-5-sulfonyl chloride, 1,2-naphthoquinone diazido-4-sulfonyl chloride and the like are preferable.
  • the radiation-sensitive composition of the present embodiment is prepared, for example, by dissolving each component in a solvent at the time of use to form a uniform solution, and then, if necessary, filtering with a filter having a pore size of about 0.2 ⁇ m or the like. It is preferable to be done.
  • the solvent that can be used in the radiation-sensitive composition of the present embodiment is not particularly limited, and is, for example, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, cyclohexanone, cyclopentanone, 2-heptanone, anisole, and butyl acetate. , Ethyl propionate, and ethyl lactate. Of these, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, and cyclohexanone are preferable, and the solvent may be used alone or in combination of two or more.
  • the content of the solvent is 20 to 99 parts by mass, preferably 50 to 99 parts by mass, more preferably 60 to 98 parts by mass, and particularly, with respect to 100 parts by mass of the total amount of the radiation-sensitive composition. It is preferably 90 to 98 parts by mass.
  • the content of the component (solid component) other than the solvent is 1 to 80 parts by mass, preferably 1 to 50 parts by mass, and more preferably 1 part by mass with respect to 100 parts by mass of the total amount of the radiation-sensitive composition. It is 2 to 40 parts by mass, and particularly preferably 2 to 10 parts by mass.
  • the radiation-sensitive composition of the present embodiment can form an amorphous film by spin coating. It can also be applied to general semiconductor manufacturing processes. Depending on the type of developer used, either a positive resist pattern or a negative resist pattern can be produced separately.
  • the dissolution rate of the amorphous film formed by spin-coating the radiation-sensitive composition of the present embodiment in a developing solution at 23 ° C. is preferably 5 ⁇ / sec or less, preferably 0.05 to 5 ⁇ / sec. Is more preferable, and 0.0005 to 5 ⁇ / sec is even more preferable.
  • the dissolution rate is 5 ⁇ / sec or less, it is insoluble in a developing solution and can be used as a resist. Further, if the dissolution rate is 0.0005 ⁇ / sec or more, the resolution may be improved.
  • the dissolution rate of the amorphous film formed by spin-coating the radiation-sensitive composition of the present embodiment in a developing solution at 23 ° C. is preferably 10 ⁇ / sec or more.
  • the dissolution rate is 10 ⁇ / sec or more, it is easily dissolved in a developing solution and is more suitable for a resist.
  • the dissolution rate is 10 ⁇ / sec or more, the resolution may be improved. It is presumed that this is because the micro surface portion of the component (A) is dissolved and the LER is reduced. It also has the effect of reducing defects.
  • the dissolution rate can be determined by immersing the amorphous film in a developing solution at 23 ° C. and measuring the film thickness before and after the immersion by a known method such as visual inspection, ellipsometer or QCM method.
  • the dissolution rate of the exposed portion after heating at 500 ° C. (preferably 50 to 500 ° C.) in the developing solution at 23 ° C. is preferably 10 ⁇ / sec or more, more preferably 10 to 10000 ⁇ / sec, and 100 to 1000 ⁇ . / Sec is more preferred.
  • the dissolution rate is 10 ⁇ / sec or more, it is easily dissolved in a developing solution and is more suitable for a resist.
  • the dissolution rate is 10,000 ⁇ / sec or less, the resolution may be improved. It is presumed that this is because the micro surface portion of the component (A) is dissolved and the LER is reduced. It also has the effect of reducing defects.
  • a negative resist pattern after irradiating an amorphous film formed by spin-coating the radiation-sensitive composition of the present embodiment with radiation such as a KrF excimer laser, extreme ultraviolet rays, electron beams or X-rays, or from 20 to 20.
  • the dissolution rate of the exposed portion after heating at 500 ° C. (preferably 50 to 500 ° C.) in the developing solution at 23 ° C.
  • the dissolution rate is preferably 5 ⁇ / sec or less, more preferably 0.05 to 5 ⁇ / sec, and 0. 0005-5 ⁇ / sec is more preferred.
  • the dissolution rate is 5 ⁇ / sec or less, it is insoluble in a developing solution and can be used as a resist. Further, if the dissolution rate is 0.0005 ⁇ / sec or more, the resolution may be improved. It is presumed that this is because the contrast between the unexposed portion that dissolves in the developing solution and the exposed portion that does not dissolve in the developing solution increases due to the change in the solubility of the component (A) before and after exposure. It also has the effect of reducing LER and reducing defects.
  • the content of the polymer (component (A)) of the present embodiment is the total mass of the solid component (polymer of the present embodiment, diazonaphthoquinone photoactive compound (B) and others. 1 to 99% by mass, more preferably 5 to 95% by mass, based on the total of the solid components arbitrarily used such as the component (D) of the above, and the same applies to the radiation-sensitive composition below. It is more preferably 10 to 90% by mass, and particularly preferably 25 to 75% by mass.
  • the content of the polymer of the present embodiment is within the above range, the radiation-sensitive composition of the present embodiment can obtain a pattern having high sensitivity and small roughness.
  • the content of the diazonaphthoquinone photoactive compound (B) is preferably 1 to 99% by mass, more preferably 5 to 95% by mass, based on the total mass of the solid components. , More preferably 10 to 90% by mass, and particularly preferably 25 to 75% by mass.
  • the radiation-sensitive composition of the present embodiment can obtain a pattern with high sensitivity and small roughness.
  • the radiation-sensitive composition of the present embodiment contains the above-mentioned acid generator, acid cross-linking agent, and acid as components other than the solvent, the polymer of the present embodiment, and the diazonaphthoquinone photoactive compound (B), if necessary.
  • One or two or more kinds of additives such as diffusion control agent, dissolution accelerator, dissolution control agent, sensitizer, surfactant, organic carboxylic acid or phosphorus oxo acid or a derivative thereof can be added.
  • the other component (D) may be referred to as an optional component (D).
  • the content ratio ((A) / (B) / (D)) of the polymer (component (A)) of the present embodiment, the diazonaphthoquinone photoactive compound (B), and the optional component (D) is It is preferably 1 to 99% by mass / 99 to 1% by mass / 0 to 98% by mass, and more preferably 5 to 95% by mass / 95 to 5% by mass with respect to 100% by mass of the solid content of the radiation-sensitive composition. % / 0 to 49% by mass, more preferably 10 to 90% by mass / 90 to 10% by mass / 0 to 10% by mass, and particularly preferably 20 to 80% by mass / 80 to 20% by mass / 0 to 0. It is 5% by mass, and most preferably 25 to 75% by mass / 75 to 25% by mass / 0% by mass.
  • the blending ratio of each component is selected from each range so that the total sum is 100% by mass.
  • the radiation-sensitive composition of the present embodiment is excellent in performance such as sensitivity and resolution in addition to roughness when the blending ratio of each component is within the above range.
  • the radiation-sensitive composition of the present embodiment may contain a resin other than the polymer of the present embodiment.
  • Such other resins include novolak resins, polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resin, and polymers containing acrylic acid, vinyl alcohol, or vinylphenol as a monomer unit. Examples thereof include these derivatives.
  • the blending amount of the other resin is appropriately adjusted according to the type of the polymer of the present embodiment to be used, but is preferably 30 parts by mass or less, more preferably 30 parts by mass with respect to 100 parts by mass of the polymer of the present embodiment. It is 10 parts by mass or less, more preferably 5 parts by mass or less, and particularly preferably 0 parts by mass.
  • the method for producing an amorphous film of the present embodiment includes a step of forming an amorphous film on a substrate by using the above-mentioned radiation-sensitive composition.
  • the resist pattern can be formed by using the resist composition of the present embodiment or by using the radiation-sensitive composition of the present embodiment. Further, as will be described later, it is also possible to form a resist pattern using the composition for forming an underlayer film for lithography of the present embodiment.
  • the method for forming a resist pattern using the resist composition of the present embodiment includes a step of forming a resist film on a substrate using the resist composition of the present embodiment described above, and at least a part of the formed resist film. It includes a step of exposing and a step of developing the exposed resist film to form a resist pattern.
  • the resist pattern in this embodiment can also be formed as an upper resist in a multilayer process.
  • the resist pattern forming method using the radiation-sensitive composition of the present embodiment includes a step of forming a resist film on a substrate using the above-mentioned radiation-sensitive composition and at least a part of the formed resist film. It includes a step of exposing and a step of developing the exposed resist film to form a resist pattern. In detail, the same operation as the following resist pattern forming method using a resist composition can be performed.
  • a resist film is formed by applying the resist composition of the present embodiment on a conventionally known substrate by a coating means such as rotary coating, cast coating, and roll coating.
  • the conventionally known substrate is not particularly limited, and examples thereof include a substrate for electronic components and a substrate on which a predetermined wiring pattern is formed.
  • the present invention is not particularly limited, and examples thereof include a silicon wafer, a metal substrate such as copper, chromium, iron, and aluminum, and a glass substrate.
  • the material of the wiring pattern is not particularly limited, and examples thereof include copper, aluminum, nickel, and gold. Further, if necessary, an inorganic and / or organic film may be provided on the above-mentioned substrate.
  • the inorganic film is not particularly limited, and examples thereof include an inorganic antireflection film (inorganic BARC).
  • the organic film is not particularly limited, and examples thereof include an organic antireflection film (organic BARC). Surface treatment with hexamethylene disilazane or the like may be performed.
  • the heating conditions vary depending on the composition of the resist composition and the like, but are preferably 20 to 250 ° C, more preferably 20 to 150 ° C. By heating, the adhesion of the resist to the substrate may be improved, which is preferable.
  • the resist film is then exposed to the desired pattern with any radiation selected from the group consisting of visible light, ultraviolet light, excimer lasers, electron beams, extreme ultraviolet rays (EUV), X-rays, and ion beams.
  • the exposure conditions and the like are appropriately selected according to the compounding composition and the like of the resist composition. In the present embodiment, it is preferable to heat after irradiation in order to stably form a high-precision fine pattern in exposure.
  • the exposed resist film is developed with a developing solution to form a predetermined resist pattern.
  • a developing solution it is preferable to select a solvent having a solubility parameter (SP value) close to that of the component (A) to be used, and a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent, and an ether solvent.
  • SP value solubility parameter
  • a polar solvent such as, a hydrocarbon solvent, or an alkaline aqueous solution can be used. Examples of the solvent and alkaline aqueous solution include those described in International Publication No. 2013/024778.
  • the water content of the developer as a whole is preferably less than 70% by mass, preferably less than 50% by mass, and more preferably less than 30% by mass. It is preferable that it is less than 10% by mass, and it is particularly preferable that it contains substantially no water. That is, the content of the organic solvent in the developing solution is preferably 30% by mass or more and 100% by mass or less, preferably 50% by mass or more and 100% by mass or less, and 70% by mass or more and 100% by mass, based on the total amount of the developing solution. It is more preferably 90% by mass or more, further preferably 90% by mass or more and 100% by mass or less, and particularly preferably 95% by mass or more and 100% by mass or less.
  • the developing solution contains at least one solvent selected from a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent and an ether solvent, and the developing solution contains the resolution and roughness of the resist pattern. It is preferable because it improves the resist performance of the solvent.
  • the surfactant is not particularly limited, and for example, an ionic or nonionic fluorine-based and / or silicon-based surfactant can be used.
  • fluorine and / or silicon-based surfactants include Japanese Patent Application Laid-Open No. 62-36663, Japanese Patent Application Laid-Open No. 61-226746, Japanese Patent Application Laid-Open No. 61-226745, and Japanese Patent Application Laid-Open No. 62-170950. , JP-A-63-34540, JP-A-7-230165, JP-A-8-62834, JP-A-9-54432, JP-A-9-5988, US Pat. No.
  • the surfactants described in the same 5360692, 5529881, 5296330, 5436098, 5576143, 5294511, and 5824451 can be mentioned. It can be, preferably a nonionic surfactant.
  • the nonionic surfactant is not particularly limited, but it is more preferable to use a fluorine-based surfactant or a silicon-based surfactant.
  • the amount of the surfactant used is usually 0.001 to 5% by mass, preferably 0.005 to 2% by mass, and more preferably 0.01 to 0.5% by mass with respect to the total amount of the developing solution.
  • the developing method is not particularly limited, but for example, a method of immersing the substrate in a tank filled with a developing solution for a certain period of time (dip method), or a method of raising the developing solution on the surface of the substrate by surface tension and allowing it to stand still for a certain period of time.
  • a method of developing paddle method
  • a method of spraying the developer on the surface of the substrate spray method
  • a method of spraying the developer on the substrate rotating at a constant speed while scanning the developer dispensing nozzle at a constant speed.
  • a method (dynamic dispense method) or the like can be applied.
  • the time for developing the pattern is not particularly limited, but is preferably 10 seconds to 90 seconds.
  • a step of stopping the development may be carried out while substituting with another solvent.
  • the rinsing solution used in the rinsing step after development is not particularly limited as long as the resist pattern cured by crosslinking is not dissolved, and a solution containing a general organic solvent or water can be used.
  • a rinsing solution it is preferable to use a rinsing solution containing at least one organic solvent selected from a hydrocarbon solvent, a ketone solvent, an ester solvent, an alcohol solvent, an amide solvent and an ether solvent. .. More preferably, after development, a step of washing with a rinsing solution containing at least one organic solvent selected from the group consisting of a ketone solvent, an ester solvent, an alcohol solvent, and an amide solvent is performed. conduct.
  • a step of washing with a rinsing solution containing an alcohol-based solvent or an ester-based solvent is performed. Even more preferably, after development, a step of washing with a rinsing solution containing a monohydric alcohol is performed. Particularly preferably, after development, a step of washing with a rinsing solution containing a monohydric alcohol having 5 or more carbon atoms is performed.
  • the time for rinsing the pattern is not particularly limited, but is preferably 10 to 90 seconds.
  • examples of the monohydric alcohol used in the rinsing step after development include linear, branched, and cyclic monohydric alcohols, which are not particularly limited, but are described in, for example, International Publication No. 2013/024778. Things can be mentioned.
  • a particularly preferable monohydric alcohol having 5 or more carbon atoms 1-hexanol, 2-hexanol, 4-methyl-2-pentanol, 1-pentanol, 3-methyl-1-butanol and the like can be used.
  • Each of the above components may be mixed in a plurality or mixed with an organic solvent other than the above.
  • the water content in the rinse solution is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less. By setting the water content to 10% by mass or less, better development characteristics can be obtained.
  • An appropriate amount of surfactant can be added to the rinse solution before use.
  • the cleaning treatment method is not particularly limited, but for example, a method of continuously spraying the rinse liquid on a substrate rotating at a constant speed (rotational coating method), or immersing the substrate in a tank filled with the rinse liquid for a certain period of time.
  • a method (dip method), a method of spraying a rinse solution on the surface of the substrate (spray method), etc. can be applied.
  • the cleaning treatment is performed by the rotation coating method, and after cleaning, the substrate is rotated at a rotation speed of 2000 rpm to 4000 rpm. It is preferable to rotate and remove the rinse liquid from the substrate.
  • a pattern wiring board can be obtained by etching after forming a resist pattern.
  • the etching method can be a known method such as dry etching using plasma gas and wet etching with an alkaline solution, a ferric chloride solution, a ferric chloride solution or the like.
  • plating after forming a resist pattern.
  • Examples of the plating method include copper plating, solder plating, nickel plating, and gold plating.
  • the residual resist pattern after etching can be peeled off with an organic solvent.
  • the organic solvent is not particularly limited, and examples thereof include PGMEA (propylene glycol monomethyl ether acetate), PGME (propylene glycol monomethyl ether), and EL (ethyl lactate).
  • the peeling method is not particularly limited, and examples thereof include a dipping method and a spray method.
  • the wiring board on which the resist pattern is formed may be a multilayer wiring board or may have a small-diameter through hole.
  • the wiring board obtained in the present embodiment can also be formed by a method of forming a resist pattern, depositing a metal in a vacuum, and then dissolving the resist pattern with a solution, that is, a lift-off method.
  • composition for forming an underlayer film for lithography of the present embodiment includes the composition for forming a film of the present embodiment. That is, the composition for forming a lower layer film for lithography of the present embodiment contains the polymer of the present embodiment as an essential component, and various optional components are considered in consideration of being used as a material for forming a lower layer film for lithography. Can be further contained. Specifically, the composition for forming an underlayer film for lithography of the present embodiment preferably further contains at least one selected from the group composed of a solvent, an acid generator and a cross-linking agent.
  • the content of the polymer in the present embodiment is preferably 1 to 100% by mass with respect to the total solid content in the composition for forming a lower layer film for lithography from the viewpoint of coatability and quality stability. It is more preferably 10 to 100% by mass, further preferably 50 to 100% by mass, and particularly preferably 100% by mass.
  • the content of the polymer in the present embodiment is not particularly limited, but is 1 to 33 parts by mass with respect to 100 parts by mass of the total amount containing the solvent. It is preferably 2 to 25 parts by mass, more preferably 3 to 20 parts by mass.
  • the composition for forming an underlayer film for lithography of the present embodiment can be applied to a wet process and has excellent heat resistance and etching resistance. Further, since the composition for forming a lower layer film for lithography of the present embodiment contains the polymer of the present embodiment, deterioration of the film during high temperature baking is suppressed, and a lower layer film having excellent etching resistance to oxygen plasma etching and the like can be obtained. Can be formed. Further, since the composition for forming an underlayer film for lithography of the present embodiment has excellent adhesion to the resist layer, an excellent resist pattern can be obtained.
  • the composition for forming a lower layer film for lithography of the present embodiment may contain already known materials for forming a lower layer film for lithography and the like as long as the desired effect of the present embodiment is not impaired.
  • solvent As the solvent used in the composition for forming a lower layer film for lithography of the present embodiment, a known solvent can be appropriately used as long as the polymer of the present embodiment is at least soluble.
  • solvents are not particularly limited, but examples thereof include those described in International Publication No. 2013/024779. These solvents may be used alone or in combination of two or more.
  • cyclohexanone propylene glycol monomethyl ether
  • propylene glycol monomethyl ether acetate propylene glycol monomethyl ether acetate
  • ethyl lactate propylene glycol monomethyl ether acetate
  • ethyl lactate propylene glycol monomethyl ether acetate
  • ethyl lactate propylene glycol monomethyl ether acetate
  • ethyl lactate propylene glycol monomethyl ether acetate
  • ethyl lactate methyl hydroxyisobutyrate
  • anisole anisole
  • the content of the solvent is not particularly limited, but is preferably 100 to 10,000 parts by mass, preferably 200 to 5 parts by mass, based on 100 parts by mass of the polymer in the present embodiment from the viewpoint of solubility and film formation. It is more preferably 000 parts by mass, and even more preferably 200 to 1,000 parts by mass.
  • the composition for forming a lower layer film for lithography of the present embodiment may contain a cross-linking agent, if necessary, from the viewpoint of suppressing intermixing and the like.
  • the cross-linking agent that can be used in the present embodiment is not particularly limited, and for example, those described in International Publication No. 2013/024778, International Publication No. 2013/024779, and International Publication No. 2018/016614 may be used. can.
  • the cross-linking agent may be used alone or in combination of two or more.
  • cross-linking agent examples include phenol compounds, epoxy compounds, cyanate compounds, amino compounds, benzoxazine compounds, acrylate compounds, melamine compounds, guanamine compounds, glycol uryl compounds, urea compounds, and isocyanates. Examples thereof include compounds and azide compounds, but the present invention is not particularly limited thereto.
  • These cross-linking agents may be used alone or in combination of two or more. Among these, a benzoxazine compound, an epoxy compound or a cyanate compound is preferable, and a benzoxazine compound is more preferable from the viewpoint of improving etching resistance. Further, a melamine compound and a urea compound are more preferable because they have good reactivity.
  • Examples of the melamine compound include a compound represented by the formula (a) (Nicarac MW-100LM (trade name), manufactured by Sanwa Chemical Co., Ltd.) and a compound represented by the formula (b) (Nicarac MX270 (commodity). Name), manufactured by Sanwa Chemical Co., Ltd.).
  • a condensed aromatic ring-containing phenol compound is more preferable from the viewpoint of improving etching resistance. Further, a methylol group-containing phenol compound is more preferable from the viewpoint of improving flatness.
  • the phenol compound known compounds can be used and are not particularly limited.
  • the methylol group-containing phenol compound used as a cross-linking agent is preferably represented by the following formula (11-1) or (11-2) from the viewpoint of improving flatness.
  • V is a single-bonded or n-valent organic group
  • R 2 and R 4 are independently hydrogen atoms or 1 to 1 to carbon atoms, respectively. It is an alkyl group of 10
  • R3 and R5 are independently alkyl groups having 1 to 10 carbon atoms or aryl groups having 6 to 40 carbon atoms.
  • n is an integer of 2 to 10
  • r is an independently integer of 0 to 6.
  • epoxy compound known ones can be used and are not particularly limited, but are preferably in a solid state at room temperature such as phenol aralkyl resins and epoxy resins obtained from biphenyl aralkyl resins from the viewpoint of heat resistance and solubility. It is an epoxy resin.
  • the cyanate compound is not particularly limited as long as it is a compound having two or more cyanate groups in one molecule, and known compounds can be used.
  • a preferable cyanate compound has a structure in which the hydroxyl group of a compound having two or more hydroxyl groups in one molecule is replaced with a cyanate group.
  • the cyanate compound preferably has an aromatic group, and a compound having a structure in which the cyanate group is directly linked to the aromatic group can be preferably used.
  • Such cyanate compounds are not particularly limited, but are, for example, bisphenol A, bisphenol F, bisphenol M, bisphenol P, bisphenol E, phenol novolak resin, cresol novolak resin, dicyclopentadiene novolak resin, tetramethylbisphenol F, bisphenol.
  • amino compound known compounds can be used, and the present invention is not particularly limited, but 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, and 4,4'-diaminodiphenyl ether have heat resistance and availability of raw materials. Preferred from the point of view.
  • benzoxazine compound known compounds can be used, and the compound is not particularly limited, but Pd-type benzoxazine obtained from bifunctional diamines and monofunctional phenols is preferable from the viewpoint of heat resistance.
  • the raw material is not particularly limited, but a compound in which 1 to 6 methylol groups of hexamethylol melamine, hexamethoxymethyl melamine, and hexamethylol melamine are methoxymethylated or a mixture thereof can be obtained as a raw material. It is preferable from the viewpoint of sex.
  • the guanamine compound known compounds can be used, and the compound is not particularly limited, but a compound in which 1 to 4 methylol groups of tetramethylol guanamine, tetramethoxymethyl guanamine, and tetramethylol guanamine are methoxymethylated or a mixture thereof is heat resistant. It is preferable from the viewpoint of.
  • glycol uryl compound known compounds can be used, and the present invention is not particularly limited, but tetramethylol glycol urilu and tetramethoxyglycol uryl are preferable from the viewpoint of heat resistance and etching resistance.
  • urea compound known compounds can be used, and the present invention is not particularly limited, but tetramethylurea and tetramethoxymethylurea are preferable from the viewpoint of heat resistance.
  • a cross-linking agent having at least one allyl group may be used from the viewpoint of improving the cross-linking property.
  • 2,2-bis (3-allyl-4-hydroxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3-allyl-4-hydroxyphenyl) propane , Bis (3-allyl-4-hydroxyphenyl) sulfone, bis (3-allyl-4-hydroxyphenyl) sulfide, bis (3-allyl-4-hydroxyphenyl) ether and other allylphenols are preferable.
  • the content of the cross-linking agent is not particularly limited, but is preferably 5 to 50 parts by mass with respect to 100 parts by mass of the polymer in the present embodiment. More preferably, it is 10 to 40 parts by mass.
  • Cross-linking accelerator for promoting a cross-linking and curing reaction
  • a cross-linking accelerator for promoting a cross-linking and curing reaction can be used, if necessary.
  • the cross-linking accelerator is not particularly limited as long as it promotes the cross-linking and curing reaction, and examples thereof include amines, imidazoles, organic phosphines, and Lewis acids. These cross-linking accelerators can be used alone or in combination of two or more. Among these, imidazoles or organic phosphines are preferable, and imidazoles are more preferable from the viewpoint of lowering the crosslinking temperature.
  • cross-linking accelerator known ones can be used, and the cross-linking accelerator is not particularly limited, and examples thereof include those described in International Publication No. 2018/016614. From the viewpoint of heat resistance and curing promotion, 2-methylimidazole, 2-phenylimidazole, and 2-ethyl-4-methylimidazole are particularly preferable.
  • the content of the cross-linking accelerator is usually preferably 0.1 to 10 parts by mass, more preferably controlled, when the total mass of the composition is 100 parts by mass and 100 parts by mass. From the viewpoint of ease and economy, it is 0.1 to 5 parts by mass, more preferably 0.1 to 3 parts by mass.
  • a radical polymerization initiator can be added to the composition for forming a lower layer film for lithography of the present embodiment, if necessary.
  • the radical polymerization initiator may be a photopolymerization initiator that initiates radical polymerization by light, or a thermal polymerization initiator that initiates radical polymerization by heat.
  • the radical polymerization initiator may be, for example, at least one selected from the group composed of a ketone-based photopolymerization initiator, an organic peroxide-based polymerization initiator, and an azo-based polymerization initiator.
  • the radical polymerization initiator is not particularly limited, and conventionally used ones can be appropriately adopted. For example, those described in International Publication No. 2018/016614 can be mentioned. Of these, dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, and t-butylcumyl peroxide are particularly preferable from the viewpoint of raw material availability and storage stability. ..
  • radical polymerization initiator used in the present embodiment one of these may be used alone or in combination of two or more, or another known polymerization initiator may be further used in combination. ..
  • the composition for forming an underlayer film for lithography of the present embodiment may contain an acid generator, if necessary, from the viewpoint of further promoting the cross-linking reaction by heat.
  • an acid generator those that generate acid by thermal decomposition, those that generate acid by light irradiation, and the like are known, but any of them can be used.
  • the acid generator is not particularly limited, but for example, the acid generator described in International Publication No. 2013/024779 can be used. In this embodiment, the acid generator can be used alone or in combination of two or more.
  • the content of the acid generator is not particularly limited, but is 0.1 to 50 parts by mass with respect to 100 parts by mass of the polymer in the present embodiment. Is preferable, and more preferably 0.5 to 40 parts by mass.
  • composition for forming an underlayer film for lithography of the present embodiment may contain a basic compound from the viewpoint of improving storage stability and the like.
  • the basic compound acts as a quencher for the acid to prevent the acid generated in a smaller amount than the acid generator from advancing the cross-linking reaction.
  • Examples of such basic compounds include primary, secondary or tertiary aliphatic amines, mixed amines, aromatic amines, heterocyclic amines, and nitrogen-containing compounds having a carboxy group. Examples thereof include a nitrogen-containing compound having a sulfonyl group, a nitrogen-containing compound having a hydroxyl group, a nitrogen-containing compound having a hydroxyphenyl group, an alcoholic nitrogen-containing compound, an amide derivative, an imide derivative and the like, but the present invention is not particularly limited thereto.
  • the basic compound used in this embodiment is not particularly limited, but for example, the compound described in International Publication No. 2013/024779 can be used. In this embodiment, the basic compound can be used alone or in combination of two or more.
  • the content of the basic compound is not particularly limited, but is 0.001 to 2 parts by mass with respect to 100 parts by mass of the polymer in the present embodiment. Is preferable, and more preferably 0.01 to 1 part by mass. By setting the above-mentioned preferable range, the storage stability tends to be enhanced without excessively impairing the crosslinking reaction.
  • the composition for forming an underlayer film for lithography of the present embodiment contains other resins and / or compounds that do not correspond to the polymer of the present embodiment for the purpose of imparting thermosetting property and controlling the absorbance. May be good.
  • other resins and / or compounds include naphthalene resin, xylene resin, naphthalene-modified resin, phenol-modified resin of naphthalene resin, polyhydroxystyrene, dicyclopentadiene resin, (meth) acrylate, dimethacrylate, and trimethacrylate.
  • composition for forming an underlayer film for lithography of the present embodiment may contain a known additive.
  • known additives include, but are not limited to, ultraviolet absorbers, surfactants, colorants, nonionic surfactants, and the like.
  • the method for forming the underlayer film for lithography (manufacturing method) of the present embodiment includes a step of forming the underlayer film on the substrate by using the composition for forming the underlayer film for lithography of the present embodiment.
  • the resist pattern forming method using the lithography underlayer film forming composition of the present embodiment is a step of forming an underlayer film on a substrate using the lithography underlayer film forming composition of the present embodiment (A-1). ), And a step (A-2) of forming at least one photoresist layer on the underlayer film.
  • the resist pattern forming method may include a step (A-3) of irradiating a predetermined region of the photoresist layer with radiation and developing the resist pattern.
  • the circuit pattern forming method using the composition for forming a lower layer film for lithography of the present embodiment is a step of forming a lower layer film on a substrate using the composition for forming a lower layer film for lithography of the present embodiment (B-1). ), The step of forming an intermediate layer film using a resist intermediate layer film material containing a silicon atom on the lower layer film (B-2), and at least one photoresist layer on the intermediate layer film. (B-3), and after the step (B-3), a predetermined region of the photoresist layer is irradiated with radiation and developed to form a resist pattern (B-4).
  • the intermediate layer film is etched using the resist pattern as a mask to form the intermediate layer film pattern (B-5), and the obtained intermediate layer film pattern is etched.
  • the method for forming the underlayer film for lithography of the present embodiment is not particularly limited as long as it is formed from the composition for forming the underlayer film for lithography of the present embodiment, and a known method can be applied.
  • the composition for forming an underlayer film for lithography of the present embodiment is applied onto a substrate by a known coating method such as spin coating or screen printing or a printing method, and then removed by volatilizing an organic solvent. , An underlayer film can be formed.
  • the baking temperature is not particularly limited, but is preferably in the range of 80 to 450 ° C, more preferably 200 to 400 ° C.
  • the baking time is also not particularly limited, but is preferably in the range of 10 to 300 seconds.
  • the thickness of the underlayer film can be appropriately selected according to the required performance and is not particularly limited, but is usually preferably about 30 to 20,000 nm, more preferably 50 to 15,000 nm. Is preferable.
  • a silicon-containing resist layer is placed on top of it, or in the case of a three-layer process, a silicon-containing intermediate layer is placed on top of it, or a single-layer resist containing ordinary hydrocarbons. It is preferable to prepare a single-layer resist layer containing no silicon. In this case, a known photoresist material can be used to form the resist layer.
  • a silicon-containing resist layer or a single-layer resist containing ordinary hydrocarbons can be produced on the underlayer film.
  • a silicon-containing intermediate layer can be formed on the lower film thereof, and a silicon-free single-layer resist layer can be formed on the silicon-containing intermediate layer.
  • the photoresist material for forming the resist layer can be appropriately selected from known materials and used, and is not particularly limited.
  • a silicon atom-containing polymer such as a polysilsesquioxane derivative or a vinylsilane derivative is used as the base polymer from the viewpoint of oxygen gas etching resistance, and further, an organic solvent, an acid generator, and the like. If necessary, a positive photoresist material containing a basic compound or the like is preferably used.
  • the silicon atom-containing polymer a known polymer used in this type of resist material can be used.
  • a polysilsesquioxane-based intermediate layer is preferably used as the silicon-containing intermediate layer for the three-layer process.
  • the intermediate layer By giving the intermediate layer an effect as an antireflection film, it tends to be possible to effectively suppress reflection.
  • the substrate reflection can be reduced to 0.5% or less.
  • the intermediate layer having such an antireflection effect is not limited to the following, but for 193 nm exposure, a phenyl group or an absorbent group having a silicon-silicon bond is introduced, and the polysilseskioki crosslinked with an acid or heat. Sun is preferably used.
  • an intermediate layer formed by the Chemical Vapor Deposition (CVD) method can also be used.
  • the intermediate layer having a high effect as an antireflection film produced by the CVD method is not limited to the following, and for example, a SiON film is known.
  • the formation of an intermediate layer by a wet process such as a spin coating method or screen printing is simpler and more cost effective than the CVD method.
  • the upper layer resist in the three-layer process may be either a positive type or a negative type, and the same single-layer resist as normally used can be used.
  • the underlayer film in the present embodiment can also be used as an antireflection film for a normal single-layer resist or a base material for suppressing pattern collapse. Since the underlayer film of the present embodiment has excellent etching resistance for base processing, it can be expected to function as a hard mask for base processing.
  • a wet process such as a spin coating method or screen printing is preferably used as in the case of forming the underlayer film.
  • prebaking is usually performed, and this prebaking is preferably performed at 80 to 180 ° C. for 10 to 300 seconds.
  • a resist pattern can be obtained by performing exposure, post-exposure baking (PEB), and development according to a conventional method.
  • the thickness of the resist film is not particularly limited, but is generally preferably 30 to 500 nm, more preferably 50 to 400 nm.
  • the exposure light may be appropriately selected and used according to the photoresist material used.
  • high-energy rays having a wavelength of 300 nm or less specifically, excimer lasers having a wavelength of 248 nm, 193 nm, and 157 nm, soft X-rays having a wavelength of 3 to 20 nm, electron beams, X-rays, and the like can be mentioned.
  • the resist pattern formed by the above method has the pattern collapse suppressed by the underlayer film in the present embodiment. Therefore, by using the underlayer film in the present embodiment, a finer pattern can be obtained, and the exposure amount required to obtain the resist pattern can be reduced.
  • gas etching is preferably used as the etching of the lower layer film in the two-layer process.
  • gas etching etching using oxygen gas is preferable.
  • oxygen gas it is also possible to add an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2, or H 2 gas.
  • an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2, or H 2 gas.
  • the latter gas is preferably used to protect the side wall to prevent undercutting of the side wall of the pattern.
  • gas etching is also preferably used for etching the intermediate layer in the three-layer process.
  • the gas etching the same ones as described in the above two-layer process can be applied.
  • the processing of the intermediate layer in the three-layer process is preferably performed by using a fluorocarbon-based gas and using the resist pattern as a mask.
  • the lower layer film can be processed by, for example, performing oxygen gas etching using the intermediate layer pattern as a mask as described above.
  • a silicon oxide film, a silicon nitride film, and a silicon oxide nitride film are formed by a CVD method, an atomic layer deposition (ALD) method, or the like.
  • ALD atomic layer deposition
  • the method for forming the nitride film is not limited to the following, and for example, the method described in JP-A-2002-334869 and International Publication No. 2004/066377 can be used.
  • a photoresist film can be formed directly on such an intermediate layer film, but an organic antireflection film (BARC) is formed on the intermediate layer film by spin coating, and a photoresist film is formed on the organic antireflection film (BARC). You may.
  • BARC organic antireflection film
  • a polysilsesquioxane-based intermediate layer is also preferably used.
  • the resist intermediate layer film By giving the resist intermediate layer film an effect as an antireflection film, it tends to be possible to effectively suppress reflection.
  • the specific material of the polysilsesquioxane-based intermediate layer is not limited to the following, and for example, those described in JP-A-2007-226170 and JP-A-2007-226204 can be used.
  • the next etching of the substrate can also be performed by a conventional method.
  • the etching is mainly composed of chlorofluorocarbons
  • the substrate is p-Si, Al, or W
  • chlorine-based or bromine-based etching is performed.
  • Etching mainly composed of gas can be performed.
  • the silicon-containing resist layer or the silicon-containing intermediate layer is separately peeled off, and generally, dry etching peeling is performed with a freon-based gas after the substrate is processed. ..
  • the underlayer film in the present embodiment is characterized by having excellent etching resistance of these substrates.
  • a known substrate can be appropriately selected and used, and examples thereof include Si, ⁇ -Si, p-Si, SiO 2 , SiN, SiON, W, TiN, and Al. ..
  • the substrate may be a laminated body having a film to be processed (substrate to be processed) on a base material (support).
  • various Low-k films such as Si, SiO 2 , SiON, SiN, p-Si, ⁇ -Si, W, W-Si, Al, Cu, Al-Si and their stopper films and stopper films thereof.
  • Etc. and usually, a material different from the base material (support) is used.
  • the thickness of the substrate or the film to be processed is not particularly limited, but is usually preferably about 50 to 1,000,000 nm, and more preferably 75 to 500,000 nm.
  • Specific examples of the permanent film are not particularly limited, but for example, in the case of semiconductor devices, a package adhesive layer such as a solder resist, a package material, an underfill material, or a circuit element, an adhesive layer between an integrated circuit element and a circuit board, and a thin display are used.
  • Related examples include a thin film transistor protective film, a liquid crystal color filter protective film, a black matrix, and a spacer.
  • the permanent film made of the film-forming composition of the present embodiment has excellent heat resistance and moisture resistance, and also has a very excellent advantage of being less contaminated by sublimation components.
  • the display material it is a material having high sensitivity, high heat resistance, and moisture absorption reliability with little deterioration of image quality due to important contamination.
  • the film-forming composition of the present embodiment is used for a permanent resist film, in addition to a curing agent, other resins, surfactants and dyes, fillers, cross-linking agents, dissolution accelerators, etc., if necessary, etc. By adding various additives of the above and dissolving in an organic solvent, a composition for a permanent resist film can be obtained.
  • the resist permanent film composition can be prepared by blending each of the above components and mixing them using a stirrer or the like.
  • the film-forming composition of the present embodiment contains a filler or a pigment
  • the composition for a resist permanent film is prepared by dispersing or mixing using a disperser such as a dissolver, a homogenizer, or a three-roll mill. can do.
  • composition for forming an optical member The film-forming composition of the present embodiment can also be used for forming an optical member (or forming an optical component). That is, the composition for forming an optical member of the present embodiment contains the composition for forming a film of the present embodiment. In other words, the composition for forming an optical member of the present embodiment contains the polymer of the present embodiment as an essential component.
  • the "optical member” (or “optical component”) is a film-shaped or sheet-shaped component, as well as a plastic lens (prism lens, lenticular lens, microlens, frennel lens, viewing angle control lens, contrast improving lens).
  • the composition for forming an optical member of the present embodiment can further contain various arbitrary components in consideration of being used as an optical member forming material. Specifically, the composition for forming an optical member of the present embodiment preferably further contains at least one selected from the group composed of a solvent, an acid generator and a cross-linking agent.
  • the components that can be used as the solvent, the acid generator, and the cross-linking agent can be the same as those of the components that can be contained in the composition for forming the underlayer film for lithography of the present embodiment described above, and the compounding ratio thereof is also the same. , Can be set as appropriate in consideration of specific applications.
  • Example group 1 is “Example group 1”
  • Example group 2 is “Example group 2”
  • Example group 3 is “Example group 3”.
  • Example group 4 is referred to as "Example group 4"
  • the example number given to each of the following examples is an individual example number for each example group. That is, for example, Example 1 of Example (Example Group 1) according to Compound Group 1 is distinguished from Example 1 of Example (Example Group 2) according to Compound Group 2. do.
  • the analysis and evaluation method of the polymer of this embodiment was as follows.
  • the film thickness of the resin film prepared by using the polymer was measured by an interference film thickness meter "OPTM-A1" (manufactured by Otsuka Electronics Co., Ltd.).
  • Example group 1 Synthesis of ANT-1 25 g (105 mmol) of 1,4,9,10-tetrahydroxyanthracene and 10 monobutyl phthalate in a container having an internal volume of 500 mL equipped with a stirrer, a cooling tube and a burette. .1 g (20 mmol) was charged, 100 mL of 1-butanol was added as a solvent, and the reaction solution was stirred at 100 ° C. for 6 hours to carry out the reaction. After cooling, the precipitate was filtered and the obtained crude was dissolved in 100 mL of ethyl acetate.
  • the obtained solid substance was filtered and dried to obtain 7.2 g of a target resin (NBisN-1) having a structure represented by the following formula.
  • a target resin (NBisN-1) having a structure represented by the following formula.
  • Mn 1278, Mw: 1993, Mw / Mn: 1.56.
  • the obtained resin was subjected to NMR measurement under the above measurement conditions, the following peaks were found, and it was confirmed that the resin had the chemical structure of the following formula. ⁇ (ppm) 9.7 (2H, O-H), 7.2-8.5 (17H, Ph-H), 6.6 (1H, CH), 4.1 (2H, -CH2)
  • ethylbenzene (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added to the reaction solution as a diluting solvent, and after standing, the aqueous phase of the lower phase was removed. Further, the mixture was neutralized and washed with water, and ethylbenzene and unreacted 1,5-dimethylnaphthalene were distilled off under reduced pressure to obtain 1.25 kg of a light brown solid dimethylnaphthalene formaldehyde resin.
  • a four-necked flask having an internal volume of 0.5 L equipped with a Dimroth condenser, a thermometer and a stirring blade was prepared.
  • 100 g (0.51 mol) of the obtained dimethylnaphthalene formaldehyde resin and 0.05 g of p-toluenesulfonic acid were charged under a nitrogen stream, the temperature was raised to 190 ° C., and the mixture was heated for 2 hours. Stirred. After that, 52.0 g (0.36 mol) of 1-naphthol was further added, the temperature was further raised to 220 ° C., and the reaction was carried out for 2 hours.
  • a dark brown solid modified resin (CR-1).
  • the typical partial structure of the resin (CR-1) is shown below. These partial structures are bonded with a methylene group, but some of them are also bonded via an ether bond or the like.
  • the obtained resin (CR-1) had Mn of 885, Mw of 2220, and Mw / Mn of 2.51.
  • Table 1 shows the results of evaluating the heat resistance by the evaluation methods shown below using the resins obtained in Synthesis Examples 1 to 5 and Comparative Synthesis Example 1.
  • Examples 1'to 5', Comparative Example 1' preparation of composition for forming underlayer film for lithography
  • a composition for forming an underlayer film for lithography was prepared so as to have the composition shown in Table 2.
  • these lithographic underlayer film forming compositions were rotationally coated on a silicon substrate, and then baked at 240 ° C. for 60 seconds and then at 400 ° C. for 120 seconds in a nitrogen atmosphere to form a film thickness of 200 to 250 nm.
  • Underlayer membranes were prepared respectively.
  • Etching device RIE-10NR manufactured by SAMCO International Corporation Output: 50W Pressure: 20Pa Time: 2min Etching gas
  • Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate 50: 5: 5 (sccm)
  • etching resistance was evaluated by the following procedure. First, a novolak underlayer film was prepared in the same manner as described above except that novolak (PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.) was used. The above etching test was performed on the underlayer film of this novolak, and the etching rate at that time was measured.
  • novolak PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.
  • the underlayer films of Examples 1'to Example 5'and Comparative Example 1' were prepared under the same conditions as the underlayer film of Novolac, the above etching test was performed in the same manner, and the etching rate at that time was measured. ..
  • the etching resistance was evaluated according to the following evaluation criteria based on the etching rate of the underlayer film of Novolac. [Evaluation criteria] A: Etching rate is less than -20% compared to Novolac underlayer B: Etching rate is -20% to 0% compared to Novolac underlayer. C: Etching rate is over + 0% compared to the underlayer film of Novolac
  • the metal content of the polycyclic polyphenol resin (containing the composition) before and after purification and the storage stability of the solution were evaluated by the following methods. (Measurement of various metal contents) Using ICP-MS, the metal content of various resins obtained by the following Examples and Comparative Examples in the propylene glycol monomethyl ether acetate (PGMEA) solution was measured under the following measurement conditions. Equipment: Agilent AG8900 Temperature: 25 ° C Environment: Class 100 clean room
  • turbidity (HAZE) of the solution after holding the PGMEA solution obtained in the following Examples and Comparative Examples at 23 ° C. for 240 hours was measured using a color difference / turbidity meter, and the solution was prepared according to the following criteria. Storage stability was evaluated.
  • Example 6 Purification of ANT-1 with acid
  • a solution (10% by mass) of ANT-1 obtained in Synthesis Example 1 dissolved in cyclohexanone was placed in a four-necked flask (bottom punching type).
  • 150 g was charged and heated to 80 ° C. with stirring.
  • 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, the mixture was stirred for 5 minutes, and then allowed to stand for 30 minutes. As a result, the oil phase and the aqueous phase were separated, and the aqueous phase was removed.
  • Example 7 Purification of ANT-2 with acid
  • a solution (10% by mass) of ANT-2 obtained in Synthesis Example 2 dissolved in cyclohexanone was placed. 140 g was charged and heated to 60 ° C. with stirring. Then, 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, the mixture was stirred for 5 minutes, and then allowed to stand for 30 minutes. As a result, the oil phase and the aqueous phase were separated, and the aqueous phase was removed.
  • an aqueous oxalic acid solution pH 1.3
  • Example 8 Purification by passing a filter solution In a class 1000 clean booth, put the resin (ANT-1) obtained in Synthesis Example 1 into cyclohexanone in a 1000 mL capacity four-necked flask (bottom punching type). 500 g of the dissolved solution with a concentration of 10% by mass was charged, and then the air inside the flask was removed under reduced pressure. Then, nitrogen gas was introduced and returned to atmospheric pressure. Was adjusted to less than 1%, and then heated to 30 ° C. with stirring.
  • the above solution is withdrawn from the bottom punching valve, and a nylon hollow fiber membrane filter (manufactured by KITZ Micro Filter Co., Ltd.) with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 100 mL / min via a pressure resistant tube made of fluororesin is used.
  • Product name: Polyfix nylon series was passed through.
  • the various metal contents of the obtained ANT-1 solution were measured by ICP-MS.
  • the oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter). The measurement results are shown in Table 3.
  • Example 9 A hollow fiber membrane filter made of polyethylene (PE) having a nominal pore size of 0.01 ⁇ m (manufactured by KITZ Micro Filter Co., Ltd., trade name: Polyfix) was used, but the solution was passed in the same manner as in Example 8 to obtain the solution.
  • Various metal contents of the solution of ANT-1 were measured by ICP-MS. The measurement results are shown in Table 3.
  • Example 10 ANT-1 obtained by passing liquid in the same manner as in Example 8 except that a nylon hollow fiber membrane filter having a nominal pore size of 0.04 ⁇ m (manufactured by KITZ Micro Filter Co., Ltd., trade name: Polyfix) was used.
  • the various metal contents of KITZ were measured by ICP-MS. The measurement results are shown in Table 3.
  • Example 11 Except for using a Zeta Plus filter 40QSH (manufactured by 3M Co., Ltd., capable of ion exchange) having a nominal pore size of 0.2 ⁇ m, the solution was passed in the same manner as in Example 8 to obtain various metal contents of the ANT-1 solution. Was measured by ICP-MS. The measurement results are shown in Table 3.
  • Example 12 Same as in Example 8 except that a Zeta Plus filter 020GN (manufactured by 3M Co., Ltd., having an ion exchange capability and having a different filtration area and filter medium thickness from the Zeta Plus filter 40QSH) having a nominal pore diameter of 0.2 ⁇ m was used.
  • the solution was liquid, and the obtained ANT-1 solution was analyzed under the following conditions. The measurement results are shown in Table 3.
  • Example 13 The solution was passed in the same manner as in Example 8 except that the resin (ANT-2) obtained in Synthesis Example 2 was used instead of the resin (ANT-1) in Example 8, and the obtained ANT-2 was obtained.
  • the various metal contents of the solution were measured by ICP-MS. The measurement results are shown in Table 3.
  • Example 14 ANT-2 obtained by passing the liquid in the same manner as in Example 9 except that the resin (ANT-2) obtained in Synthesis Example 2 was used instead of the resin (ANT-1) in Example 9.
  • the various metal contents of the solution were measured by ICP-MS. The measurement results are shown in Table 3.
  • Example 15 The solution was passed in the same manner as in Example 10 except that the resin (ANT-2) obtained in Synthesis Example 2 was used instead of the compound (ANT-1) in Example 10, and the obtained ANT-2 was obtained.
  • Various metal contents of the solution were measured by ICP-MS. The measurement results are shown in Table 3.
  • Example 16 The solution was passed in the same manner as in Example 11 except that the resin (ANT-2) obtained in Synthesis Example 2 was used instead of the compound (ANT-1) in Example 11, and the obtained ANT-2 was obtained.
  • Various metal contents of the solution were measured by ICP-MS. The measurement results are shown in Table 3.
  • Example 17 The solution was passed in the same manner as in Example 12 except that the resin (ANT-2) obtained in Synthesis Example 2 was used instead of the compound (ANT-1) in Example 12, and the obtained ANT-2 was obtained.
  • Various metal contents of the solution were measured by ICP-MS. The measurement results are shown in Table 3.
  • Example 18 Combined use of acid cleaning and filter flow 1
  • a 300 mL volume four-necked flask (bottom punch) was charged with 140 g of a 10 mass% cyclohexanone solution of ANT-1 with reduced metal content obtained in Example 6.
  • nitrogen gas was introduced and returned to atmospheric pressure, the nitrogen gas was aerated at 100 mL / min, the oxygen concentration inside was adjusted to less than 1%, and then 30 while stirring. Heated to ° C.
  • the above solution is withdrawn from the bottom punching valve, and an ion exchange filter with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 10 mL per minute with a diaphragm pump via a fluororesin pressure-resistant tube (manufactured by Nippon Pole Co., Ltd., trade name: Ion Clean Series) ). Then, the recovered solution was returned to the above-mentioned three-necked flask having a capacity of 300 mL, the filter was changed to a high-density PE filter (manufactured by Entegris Japan, Inc.) having a nominal diameter of 1 nm, and pumping was carried out in the same manner.
  • the various metal contents of the obtained cyclohexanone solution were measured by ICP-MS.
  • the oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter). The measurement results are shown in Table 3.
  • Example 19 Combined use of acid cleaning and filter flow 2
  • a 300 mL volume four-necked flask (bottom punch) was charged with 140 g of a 10% by mass PGMEA solution of ANT-1 having a reduced metal content obtained in Example 6.
  • nitrogen gas was introduced and returned to atmospheric pressure, the nitrogen gas was aerated at 100 mL / min, the oxygen concentration inside was adjusted to less than 1%, and then 30 while stirring. Heated to ° C.
  • the above solution is withdrawn from the bottom punching valve, and a nylon hollow fiber membrane filter (manufactured by KITZ Micro Filter Co., Ltd.) with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 10 mL / min via a pressure resistant tube made of fluororesin is used.
  • Product name The solution was passed through Polyfix. After that, the recovered solution was returned to the above-mentioned 300 mL capacity four-necked flask, and the filter was changed to a high-density PE filter (manufactured by Nippon Integris) with a nominal diameter of 1 nm.
  • the various metal contents of the obtained ANT-1 solution were measured by ICP-MS.
  • the oxygen concentration was measured by an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Co., Ltd. (The same applies to the following). The measurement results are shown in Table 3.
  • Example 20 Combined use of acid cleaning and filter flow 3
  • the same operation as in Example 18 was performed except that the 10% by mass cyclohexanone solution of ANT-1 used in Example 18 was changed to the 10% by mass cyclohexanone solution of ANT-2 obtained in Example 7, and the amount of metal was increased. A reduced 10% by weight cyclohexanone solution of ANT-2 was recovered.
  • Various metal contents of the obtained solution were measured by ICP-MS.
  • the oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter). The measurement results are shown in Table 3.
  • Example 21 Combined use of acid cleaning and filter flow 4
  • the same operation as in Example 19 was performed except that the 10% by mass cyclohexanone solution of ANT-1 used in Example 19 was changed to the 10% by mass cyclohexanone solution of ANT-2 obtained in Example 7, and the amount of metal was increased. A reduced 10% by weight cyclohexanone solution of ANT-2 was recovered.
  • Various metal contents of the obtained solution were measured by ICP-MS.
  • the oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter). The measurement results are shown in Table 3.
  • a resist composition was prepared according to the formulation shown in Table 4. Among the components of the resist composition in Table 4, the following were used as the acid generator (C), the acid diffusion control agent (E), and the solvent.
  • Acid generator (C) P-1 Triphenylbenzene Sulfonium Trifluoromethanesulfonate (Midori Kagaku Co., Ltd.) Acid cross-linking agent (G) C-1: Nicarac MW-100LM (Sanwa Chemical Co., Ltd.) Acid diffusion control agent (E) Q-1: Trioctylamine (Tokyo Chemical Industry Co., Ltd.) Solvent S-1: Propylene glycol monomethyl ether (Tokyo Chemical Industry Co., Ltd.)
  • a uniform resist composition was spin-coated on a clean silicon wafer and then pre-exposed baked (PB) in an oven at 110 ° C. to form a resist film with a thickness of 60 nm.
  • the obtained resist film was irradiated with an electron beam having a 1: 1 line and space setting at 50 nm intervals using an electron beam drawing apparatus (ELS-7500, manufactured by Elionix Inc.). After the irradiation, each resist film was heated at a predetermined temperature for 90 seconds and immersed in a 2.38% by mass alkaline developer of tetramethylammonium hydroxide (TMAH) for 60 seconds for development.
  • TMAH tetramethylammonium hydroxide
  • the resist film was washed with ultrapure water for 30 seconds and dried to form a positive resist pattern.
  • the line and space of the formed resist pattern was observed with a scanning electron microscope (S-4800 manufactured by Hitachi High-Technologies Corporation), and the reactivity of the resist composition by electron beam irradiation was evaluated.
  • Examples 22 to 27 a good resist pattern was obtained by irradiating an electron beam with a 1: 1 line and space setting at 50 nm intervals. The line edge roughness was good when the unevenness of the pattern was less than 5 nm. On the other hand, in Comparative Example 3, a good resist pattern could not be obtained.
  • the heat resistance is higher than that of the resin (NBisN-1) of Comparative Example 3 which does not satisfy the requirements, and a good resist pattern shape can be imparted. ..
  • the same effect is exhibited with respect to the resins other than those described in the examples.
  • the radiation-sensitive composition obtained above was rotationally coated on a clean silicon wafer and then pre-exposed baked (PB) in an oven at 110 ° C. to form a resist film having a thickness of 200 nm.
  • the resist film was exposed to ultraviolet rays using an ultraviolet exposure device (Mikasa Mask Aligner MA-10).
  • the resist film was heated at 110 ° C. for 90 seconds and immersed in TMAH 2.38 mass% alkaline developer for 60 seconds for development. Then, the resist film was washed with ultrapure water for 30 seconds and dried to form a 5 ⁇ m positive resist pattern.
  • the obtained line and space was observed with a scanning electron microscope (S-4800 manufactured by Hitachi High-Technologies Corporation).
  • the line edge roughness was good when the unevenness of the pattern was less than 5 nm.
  • the radiation-sensitive compositions of Examples 28 to 32 can form a resist pattern having a smaller roughness and a better shape than the radiation-sensitive compositions of Comparative Example 4. I understand. As long as the above-mentioned requirements of the present embodiment are satisfied, radiation-sensitive compositions other than those described in the examples show the same effect.
  • the underlayer film forming material for lithography using this has embedding characteristics and flatness of the film surface.
  • the pyrolysis temperature was 405 ° C. or higher (evaluation A), and since it had high heat resistance, it was evaluated that it could be used even under high temperature baking conditions. In order to confirm these points, the following evaluations were made assuming the use of the underlayer membrane.
  • composition for forming underlayer film for lithography A composition for forming an underlayer film for lithography was prepared so as to have the composition shown in Table 6. Next, these composition for forming a lower layer film for lithography was rotationally applied onto a silicon substrate, and then baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to prepare a lower layer film having a film thickness of 200 nm. ..
  • the following acid generators, cross-linking agents and organic solvents were used. Acid generator: Midori Kagaku Co., Ltd.
  • DTDPI Jitterly Butyl Diphenyliodonium Nonafluoromethane Sulfonate
  • Crosslinking agent Nikalac MX270 manufactured by Sanwa Chemical Co., Ltd.
  • Organic solvent cyclohexanone, propylene glycol monomethyl ether acetate (PGMEA)
  • PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.
  • Etching device RIE-10NR manufactured by SAMCO International Corporation Output: 50W Pressure: 20Pa Time: 2min Etching gas
  • Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate 50: 5: 5 (sccm)
  • etching resistance was evaluated by the following procedure. First, a novolak underlayer film was prepared in the same manner as described above except that novolak (PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.) was used. The above etching test was performed on the underlayer film of this novolak, and the etching rate at that time was measured.
  • novolak PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.
  • Examples 39 to 44, Comparative Example 7 the composition for forming an underlayer film for lithography used in Examples 33 to 38 and Comparative Example 5 was applied onto a 60 nm line-and-space SiO 2 substrate having a film thickness of 80 nm and baked at 240 ° C. for 60 seconds. By doing so, a 90 nm underlayer film was formed.
  • the embedding property was evaluated by the following procedure. A cross section of the membrane obtained under the above conditions was cut out and observed with an electron beam microscope to evaluate the implantability. The evaluation results are shown in Table 7.
  • Example 45 to 50 the composition for forming an underlayer film for lithography used in Examples 33 to 38 was applied onto a SiO 2 substrate having a film thickness of 300 nm, and baked at 240 ° C. for 60 seconds and then at 400 ° C. for 120 seconds. An underlayer film having a film thickness of 85 nm was formed. A resist solution for ArF was applied onto this underlayer film and baked at 130 ° C. for 60 seconds to form a photoresist layer having a film thickness of 140 nm.
  • the ArF resist solution contains 5 parts by mass of the compound of the following formula (16), 1 part by mass of triphenylsulfonium nonafluoromethanesulfonate, 2 parts by mass of tributylamine, and 92 parts by mass of PGMEA. The prepared one was used.
  • the compound of the following formula (16) was prepared as follows. That is, 2-methyl-2-methacryloyloxyadamantane 4.15 g, methacrylloyloxy- ⁇ -butyrolactone 3.00 g, 3-hydroxy-1-adamantyl methacrylate 2.08 g, azobisisobutyronitrile 0.38 g, and tetrahydrofuran. It was dissolved in 80 mL to prepare a reaction solution. The reaction solution was polymerized under a nitrogen atmosphere at a reaction temperature of 63 ° C. for 22 hours, and then the reaction solution was added dropwise to 400 mL of n-hexane. The produced resin thus obtained was coagulated and purified, the produced white powder was filtered, and dried under reduced pressure at 40 ° C. overnight to obtain a compound represented by the following formula (16).
  • the photoresist layer was then exposed using an electron beam lithography system (ELS-7500, 50 keV) and baked (PEB) at 115 ° C. for 90 seconds to obtain 2.38 mass% tetramethylammonium hydroxide (2.38 mass% tetramethylammonium hydroxide).
  • ELS-7500 electron beam lithography system
  • PEB baked
  • a positive resist pattern was obtained by developing with an aqueous solution of TMAH) for 60 seconds.
  • Example 51 The composition for forming a lower layer film for lithography used in Example 39 was applied onto a SiO 2 substrate having a film thickness of 300 nm, and baked at 240 ° C. for 60 seconds and then at 400 ° C. for 120 seconds to form a lower layer having a film thickness of 90 nm. A film was formed. A silicon-containing intermediate layer material was applied onto the lower layer film and baked at 200 ° C. for 60 seconds to form an intermediate layer film having a film thickness of 35 nm. Further, the resist solution for ArF was applied onto the intermediate layer film and baked at 130 ° C. for 60 seconds to form a photoresist layer having a film thickness of 150 nm. As the silicon-containing intermediate layer material, the silicon atom-containing polymer described in JP-A-2007-226170 ⁇ Synthesis Example 1> was used.
  • the photoresist layer was mask-exposed using an electron beam lithography system (ELS-7500, 50 keV) and baked (PEB) at 115 ° C. for 90 seconds to obtain 2.38 mass% tetramethylammonium hydroxide.
  • ELS-7500 electron beam lithography system
  • PEB baked
  • TMAH aqueous solution of
  • the silicon-containing intermediate layer film (SOG) is dry-etched using the obtained resist pattern as a mask, and then the obtained silicon-containing intermediate layer film pattern is obtained.
  • the dry etching process of the lower layer film used as a mask and the dry etching process of the SiO 2 film using the obtained lower layer film pattern as a mask were sequentially performed.
  • Etching condition output of resist underlayer film pattern to SiO 2 film: 50W Pressure: 20Pa Time: 2min Etching gas Ar gas flow rate: C 5 F 12 gas flow rate: C 2 F 6 gas flow rate: O 2 gas flow rate 50: 4: 3: 1 (sccm)
  • a cured resin film was obtained by baking the prepared substrate at 350 ° C. for 1 minute using a hot plate capable of further high temperature treatment. At this time, if the change in film thickness before and after immersing the obtained cured resin film in the cyclohexanone bath for 1 minute was 3% or less, it was judged to be cured. When it was judged that the curing was insufficient, the curing temperature was changed by 50 ° C. to investigate the curing temperature, and the baking treatment was performed under the condition of the lowest temperature in the curing temperature range.
  • the prepared resin film was evaluated for optical characteristic values (refractive index n and extinction coefficient k as optical constants) using spectroscopic ellipsometry VUV-VASE (manufactured by JA Woollam).
  • Example A02 to Example A05 and Comparative Example A01 A resin film was prepared in the same manner as in Example A01 except that the resin used was changed from ANT-1 to the resin shown in Table 9, and the optical characteristic values were evaluated.
  • the film-forming composition containing the polycyclic polyphenol resin in the present embodiment can form a resin film having a high n value and a low k value at a wavelength of 193 nm used in ArF exposure.
  • Example B01 The heat resistance of the resin film produced in Example A01 was evaluated using a lamp annealing furnace. As the heat-resistant treatment conditions, heating was continued at 450 ° C. under a nitrogen atmosphere, and the rate of change in film thickness during the elapsed time of 4 minutes and 10 minutes from the start of heating was determined. Further, heating was continued at 550 ° C. under a nitrogen atmosphere, and the rate of change in film thickness between the elapsed time of 4 minutes from the start of heating and 10 minutes at 550 ° C. was determined. These film thickness change rates were evaluated as an index of the heat resistance of the cured film.
  • Example B02 to Example B05 and Comparative Example B01 to Comparative Example B02 The heat resistance evaluation was carried out in the same manner as in Example B01 except that the resin used was changed from ANT-1 to the resin shown in Table 10.
  • Example C01 ⁇ PE-CVD film formation evaluation> A 12-inch silicon wafer was subjected to thermal oxidation treatment, and a resin film having a thickness of 100 nm was prepared on a substrate having the obtained silicon oxide film by the same method as in Example A01 using the resin solution of Example A01. did. A silicon oxide film having a film thickness of 70 nm was formed on the resin film by using a film forming apparatus TELINDY (manufactured by Tokyo Electron Limited) and using TEOS (tetraethylsiloxane) as a raw material at a substrate temperature of 300 ° C.
  • TELINDY manufactured by Tokyo Electron Limited
  • TEOS tetraethylsiloxane
  • a wafer with a cured film on which the created silicon oxide film is laminated is further inspected for defects using KLA-Tencor SP-5, and the number of defects in the film-formed oxide film is evaluated using the number of defects having a diameter of 21 nm or more as an index.
  • a Number of defects ⁇ 20 B 20 ⁇ Number of defects ⁇ 50 C 50 ⁇ Number of defects ⁇ 100 D 100 ⁇ Number of defects ⁇ 1000 E 1000 ⁇ Number of defects ⁇ 5000 F 5000 ⁇ Number of defects
  • ⁇ SiN film> A raw material using a film forming apparatus TELINDY (manufactured by Tokyo Electron) on a cured film prepared on a substrate having a silicon oxide film heat-oxidized to a thickness of 100 nm on a 12-inch silicon wafer by the same method as described above.
  • a SiN film having a film thickness of 40 nm, a refractive index of 1.94, and a film stress of ⁇ 54 MPa was formed at a substrate temperature of 350 ° C. using SiH4 (monosilane) and ammonia.
  • a wafer with a cured film on which the created SiN film is laminated is further inspected for defects using KLA-Tencor SP-5, and the number of defects in the formed oxide film is evaluated using the number of defects having a diameter of 21 nm or more as an index. gone.
  • a Number of defects ⁇ 20 B 20 ⁇ Number of defects ⁇ 50 C 50 ⁇ Number of defects ⁇ 100 D 100 ⁇ Number of defects ⁇ 1000 E 1000 ⁇ Number of defects ⁇ 5000 F 5000 ⁇ Number of defects
  • Example C02 to Example C05 and Comparative Example C01 to Comparative Example C02 The heat resistance evaluation was carried out in the same manner as in Example C01 except that the resin used was changed from ANT-1 to the resin shown in Table 11.
  • the silicon oxide film or SiN film formed on the resin films of Examples C01 to C05 has 50 or less defects (B evaluation or more) having a diameter of 21 nm or more, which is compared with the number of defects of Comparative Examples C01 or C02. , Was shown to be less.
  • Example D01 ⁇ Etching evaluation after high temperature treatment> A 12-inch silicon wafer was subjected to thermal oxidation treatment, and a resin film having a thickness of 100 nm was prepared on a substrate having the obtained silicon oxide film by the same method as in Example A01 using the resin solution of Example A01. did.
  • the resin film was further annealed by heating under a hot plate capable of high temperature treatment in a nitrogen atmosphere at 600 ° C. for 4 minutes to prepare a wafer on which the annealed resin film was laminated.
  • the prepared annealed resin film was carved out, and the carbon content was determined by elemental analysis.
  • a 12-inch silicon wafer was subjected to thermal oxidation treatment, and a resin film having a thickness of 100 nm was applied to a substrate having the obtained silicon oxide film by the same method as in Example A01 using the resin solution of Example A01.
  • a resin film having a thickness of 100 nm was applied to a substrate having the obtained silicon oxide film by the same method as in Example A01 using the resin solution of Example A01.
  • the substrate was subjected to CF 4 / as an etching gas using an etching apparatus TELIUS (manufactured by Tokyo Electron Limited).
  • the etching treatment was performed under the conditions using Ar and Cl 2 / Ar, and the etching rate was evaluated.
  • the etching rate was evaluated by using a resin film with a thickness of 200 nm prepared by annealing SU8 (manufactured by Nippon Kayaku Co., Ltd.) at 250 ° C. for 1 minute as a reference, and obtaining the rate ratio of the etching rate to SU8 as a relative value. ..
  • Example D02 to Example D05 and Comparative Example D01 to Comparative Example D02 The heat resistance evaluation was carried out in the same manner as in Example D01 except that the resin used was changed from ANT-1 to the resin shown in Table 12.
  • the polycyclic polyphenol resin obtained in the synthetic example was evaluated for quality before and after the purification treatment. That is, the resin film formed on the wafer using the polycyclic polyphenol resin was transferred to the substrate side by etching, and then the defect was evaluated.
  • a 12-inch silicon wafer was subjected to thermal oxidation treatment to obtain a substrate having a silicon oxide film having a thickness of 100 nm. After forming a film on the substrate by adjusting the spin coating conditions so that the resin solution of the polyphenolic polyphenol resin has a thickness of 100 nm, the film is baked at 150 ° C. for 1 minute, and then baked at 350 ° C. for 1 minute.
  • a laminated substrate was prepared by laminating a polyphenol resin on silicon with a thermal oxide film.
  • TELIUS manufactured by Tokyo Electron Limited
  • the resin film was etched under the conditions of CF4 / O2 / Ar to expose the substrate on the surface of the oxide film. Further, an etching process was performed under the condition that the oxide film was etched at 100 nm with a gas composition ratio of CF4 / Ar to prepare an etched wafer.
  • the prepared etched wafer was measured for the number of defects of 19 nm or more with a defect inspection device SP5 (manufactured by KLA-tencor), and was carried out as a defect evaluation by etching treatment with a laminated film.
  • SP5 manufactured by KLA-tencor
  • Example E01 Purification of ANT-1 with acid A solution (10% by mass) of ANT-1 obtained in Synthesis Example 1 dissolved in cyclohexanone was placed in a 1000 mL volume four-necked flask (bottom punching type). 150 g was charged and heated to 80 ° C. with stirring. Then, 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, the mixture was stirred for 5 minutes, and then allowed to stand for 30 minutes. As a result, the oil phase and the aqueous phase were separated, and the aqueous phase was removed.
  • aqueous oxalic acid solution pH 1.3
  • Example E02 Purification of ANT-2 with acid
  • an aqueous oxalic acid solution pH 1.3
  • Example E03 Purification by passing a filter solution
  • a filter solution In a class 1000 clean booth, put the resin (ANT-1) obtained in Synthesis Example 1 into cyclohexanone in a 1000 mL capacity four-necked flask (bottom punching type). 500 g of the dissolved solution with a concentration of 10% by mass was charged, and then the air inside the flask was removed under reduced pressure. Then, nitrogen gas was introduced and returned to atmospheric pressure. Was adjusted to less than 1%, and then heated to 30 ° C. with stirring.
  • the above solution is withdrawn from the bottom punching valve, and a nylon hollow fiber membrane filter (manufactured by KITZ Micro Filter Co., Ltd.) with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 100 mL per minute with a diaphragm pump via a pressure resistant tube made of fluororesin.
  • the liquid was passed through the product name: Polyfix Nylon Series) by pressure filtration so that the filtration pressure was 0.5 MPa.
  • the filtered resin solution was diluted with EL grade cyclohexanone (reagent manufactured by Kanto Chemical Co., Inc.) and the concentration was adjusted to 10% by mass to obtain a cyclohexanone solution of ANT-1 having a reduced metal content.
  • Example E04 As a purification process using a filter, IONKLEEEN manufactured by Nippon Pole, a nylon filter manufactured by Nippon Pole, and an UPE filter with a nominal pore size of 3 nm manufactured by Entegris Japan were connected in series in this order to construct a filter line. The liquid was passed by pressure filtration so that the filtration pressure was 0.5 MPa in the same manner as in Example E03, except that the prepared filter line was used instead of the 0.1 ⁇ m nylon hollow fiber membrane filter. ..
  • Example E05 The solution sample prepared in Example E01 was further pressure-filtered using the filter line prepared in Example E04 so that the filtration pressure was 0.5 MPa, and then the solution sample was prepared in a laminated film. Etching defect evaluation was carried out.
  • Example E06 For the ANT-2 prepared in Synthesis Example 2, a solution sample purified by the same method as in Example E05 was prepared, and then etching defect evaluation was performed on the laminated film.
  • Example E07 For the ANT-3 prepared in Synthesis Example 3, a solution sample purified by the same method as in Example E05 was prepared, and then etching defect evaluation was performed on the laminated film. The evaluation results of Examples E01 to E07 are shown in Table 13.
  • Examples 52 to 57 and Comparative Example 9 An optical component forming composition having the same composition as the solution of the underlayer film forming material for lithography prepared in Examples 33 to 38 and Comparative Example 5 above is applied onto a SiO 2 substrate having a film thickness of 300 nm, and 300 at 260 ° C. By baking for seconds, a film for an optical component having a film thickness of 100 nm was formed. Next, a refractive index and transparency test at a wavelength of 633 nm were performed using a vacuum ultraviolet multi-incident angle spectroscopic ellipsometer (VUV-VASE) manufactured by JA Woolam Japan, and the refractive index and transparency were tested according to the following criteria. Gender was evaluated. The evaluation results are shown in Table 14.
  • VUV-VASE vacuum ultraviolet multi-incident angle spectroscopic ellipsometer
  • Refractive index evaluation criteria A: Refractive index is 1.65 or more C: Refractive index is less than 1.65
  • the compound represented by the formula (CR-1), the compound represented by the formula (CR-2), the compound represented by the formula (CN-1), and the compound represented by the formula (CN-2). was obtained with reference to Synthesis Example 1 and Synthesis Example 4 described in International Publication No. 2011/024957, respectively. That is, the compound represented by the formula (CR-1) was synthesized based on Synthesis Example 4 described in International Publication No. 2011/024957.
  • the compound represented by the formula (CR-2) 4-cyanobenzaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 4-isopropylbenzaldehyde in Synthesis Example 1 described in International Publication No. 2011/024957. Synthesized using.
  • Example 1 [Examples 1 to 5 and Comparative Example 1] Using the resins RCA-1, RCR-1, RCR-2, RCN-1 and RCN-2 obtained in the above Synthesis Examples 1 to 5, the heat resistance was evaluated by the evaluation method shown below. .. Further, the resin obtained in Comparative Synthesis Example 1 of Example Group 1 is referred to as NBisN-2 (hereinafter, in Example Group 2, it may be abbreviated as "resin obtained in Comparative Synthesis Example 1"). The heat resistance was evaluated in the same manner as above. The results are shown in Table 15.
  • composition for forming a lithography underlayer film was prepared so as to have the composition shown in Table 16. Further, in Table 16, the numerical values in parentheses indicate the blending amount (parts by mass). Next, each of these lithography underlayer film forming compositions was rotationally coated on a silicon substrate, then heated at 240 ° C. for 60 seconds in a nitrogen atmosphere, and further baked at 400 ° C. for 120 seconds to form a film thickness. An underlayer film for lithography of 200 to 250 nm was prepared.
  • each underlayer film was subjected to an etching test under the conditions shown below, the etching rate at that time was measured, and the etching resistance was evaluated by the following procedure. The evaluation results are shown in Table 16.
  • Example 6 of Table 16 The etching resistance was evaluated by the following procedure. First, in Example 6 of Table 16, except that novolak resin (PSM4357 (trade name) manufactured by Gun Ei Chemical Industry Co., Ltd.) is used instead of the resin (RCA-1) obtained in Synthesis Example 1. , A composition for forming a lithography underlayer film was prepared in the same manner as in Example 6 in Table 16. Then, using this composition, a novolak resin underlayer film was prepared in the same manner as described above. The underlayer film of this novolak resin was subjected to an etching test under the above conditions, and the etching rate at that time was measured. Based on the etching rate in the lower layer film of the novolak resin, the etching resistance of each of the lower layer films of Examples 6 to 10 and Comparative Example 2 was evaluated according to the following evaluation criteria.
  • turbidity (HAZE) of the solution after holding the cyclohexanone solution obtained in the following examples and reference examples at 23 ° C. for 240 hours was measured using a color difference / turbidity meter, and the solution was measured according to the following criteria.
  • the storage stability of the was evaluated.
  • Optical path length 1 cm Quartz cell used [evaluation criteria] 0 ⁇ HAZE ⁇ 1.0: Good 1.0 ⁇ HAZE ⁇ 2.0: Possible 2.0 ⁇ HAZE: Defective
  • Example 11 Purification of RCA-1 with acid A solution (10 mass) of the resin (RCA-1) obtained in Synthesis Example 1 dissolved in cyclohexanone in a 1000 mL volume four-necked flask (bottom punching type). %) was charged and heated to 80 ° C. with stirring. Then, 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, the mixture was stirred for 5 minutes, and then allowed to stand for 30 minutes. As a result, the oil phase and the aqueous phase were separated, and the aqueous phase was removed.
  • an aqueous oxalic acid solution pH 1.3
  • Example 12 Purification of RCR-2 with acid A solution (10 mass) of the resin (RCR-2) obtained in Synthesis Example 2 dissolved in cyclohexanone in a 1000 mL volume four-necked flask (bottom punching type). %) was charged and heated to 60 ° C. with stirring. Then, 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, the mixture was stirred for 5 minutes, and then allowed to stand for 30 minutes. Then, it was separated into an oil phase and an aqueous phase, and the aqueous phase was removed.
  • an aqueous oxalic acid solution pH 1.3
  • Example 13 Purification by passing a filter solution In a class 1000 clean booth, put the resin (RCA-1) obtained in Synthesis Example 1 into cyclohexanone in a 1000 mL capacity four-necked flask (bottom punching type). 500 g of the dissolved solution with a concentration of 10% by mass was charged, and then the air inside the flask was removed under reduced pressure. Was adjusted to less than 1%, and then heated to 30 ° C. with stirring.
  • Nylon hollow fiber membrane filter manufactured by KITZ Micro Filter Co., Ltd.
  • a nominal pore diameter 0.01 ⁇ m at a flow rate of 100 mL / min with a diaphragm pump via a pressure resistant tube made of fluororesin after extracting the above solution from the bottom punching valve.
  • Product name Polyfix nylon series
  • ICP-MS oxygen concentration meter
  • OMF10 oxygen concentration meter
  • Example 14 The liquid was passed in the same manner as in Example 13 except that a polyethylene (PE) hollow fiber membrane filter (manufactured by KITZ Micro Filter Co., Ltd., trade name: Polyfix) having a nominal pore diameter of 0.01 ⁇ m was used.
  • PE polyethylene
  • Polyfix trade name: Polyfix
  • Example 15 The liquid was passed in the same manner as in Example 13 except that a nylon hollow fiber membrane filter having a nominal pore size of 0.04 ⁇ m (manufactured by KITZ Micro Filter Co., Ltd., trade name: Polyfix) was used.
  • a nylon hollow fiber membrane filter having a nominal pore size of 0.04 ⁇ m manufactured by KITZ Micro Filter Co., Ltd., trade name: Polyfix
  • various metal residual amounts were measured by ICP-MS. The measurement results are shown in Table 17.
  • Example 16 The liquid was passed in the same manner as in Example 13 except that a Zetaplus filter 40QSH (manufactured by 3M Co., Ltd., capable of ion exchange) having a nominal pore size of 0.2 ⁇ m was used.
  • a Zetaplus filter 40QSH manufactured by 3M Co., Ltd., capable of ion exchange
  • various metal residual amounts were measured by ICP-MS. The measurement results are shown in Table 17.
  • Example 17 The same as in Example 13 except that a Zeta Plus filter 020GN (manufactured by 3M Co., Ltd., having an ion exchange capability and having a different filtration area and filter medium thickness from the Zeta Plus filter 40QSH) having a nominal pore diameter of 0.2 ⁇ m was used. , I passed the liquid. For the obtained cyclohexanone solution of RCA-1, various metal residual amounts were measured by ICP-MS. The measurement results are shown in Table 17.
  • Example 18 The liquid was passed in the same manner as in Example 13 except that the resin (RCR-2) obtained in Synthesis Example 2 was used instead of the resin (RCA-1) in Example 13.
  • RCR-2 the resin obtained in Synthesis Example 2 was used instead of the resin (RCA-1) in Example 13.
  • Example 19 The liquid was passed in the same manner as in Example 14 except that the resin (RCR-2) obtained in Synthesis Example 2 was used instead of the resin (RCA-1) in Example 13.
  • RCR-2 the resin obtained in Synthesis Example 2 was used instead of the resin (RCA-1) in Example 13.
  • Example 20 The liquid was passed in the same manner as in Example 15 except that the resin (RCR-2) obtained in Synthesis Example 2 was used instead of the compound (RCA-1) in Example 13.
  • RCR-2 the resin obtained in Synthesis Example 2 was used instead of the compound (RCA-1) in Example 13.
  • Example 21 The liquid was passed in the same manner as in Example 16 except that the resin (RCR-2) obtained in Synthesis Example 2 was used instead of the compound (RCA-1) in Example 13.
  • RCR-2 the resin obtained in Synthesis Example 2 was used instead of the compound (RCA-1) in Example 13.
  • Example 22 The liquid was passed in the same manner as in Example 17 except that the resin (RCR-2) obtained in Synthesis Example 2 was used instead of the compound (RCA-1) in Example 13.
  • RCR-2 the resin obtained in Synthesis Example 2 was used instead of the compound (RCA-1) in Example 13.
  • Example 23 Combined use of acid cleaning and filter flow 1
  • a 300 mL volume four-necked flask (bottom punch) was filled with a 10 mass% cyclohexanone solution of the metal content reduced resin (RCA-1) obtained in Example 11.
  • RCA-1 metal content reduced resin
  • the air inside the flask was removed under reduced pressure, nitrogen gas was introduced and returned to atmospheric pressure, the nitrogen gas was aerated at 100 mL / min, the internal oxygen concentration was adjusted to less than 1%, and then stirring was performed. While heating to 30 ° C.
  • Example 24 Combined use of acid cleaning and filter flow 2
  • a 300 mL volume four-necked flask (bottom punch) was filled with a 10 mass% cyclohexanone solution of the metal content reduced resin (RCA-1) obtained in Example 11.
  • RCA-1 metal content reduced resin
  • the air inside the flask was removed under reduced pressure, nitrogen gas was introduced and returned to atmospheric pressure, the nitrogen gas was aerated at 100 mL / min, the internal oxygen concentration was adjusted to less than 1%, and then stirring was performed. While heating to 30 ° C.
  • the above solution is withdrawn from the bottom punching valve, and a nylon hollow fiber membrane filter with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 10 mL / min with a diaphragm pump via a pressure-resistant tube made of fluororesin (manufactured by KITZ Micro Filter Co., Ltd.) Product name: Polyfix) was passed through. Then, the recovered solution was returned to the above-mentioned 300 mL capacity four-necked flask, the filter was changed to a high-density PE filter (manufactured by Entegris Japan Co., Ltd.) having a nominal diameter of 1 nm, and pumping was carried out in the same manner. For the obtained cyclohexanone solution of RCA-1, various metal residual amounts were measured by ICP-MS. The measurement results are shown in Table 17.
  • Example 25 Combined use of acid cleaning and filter flow 3
  • the same operation as in Example 23 was performed except that the 10% by mass cyclohexanone solution of RCA-1 used in Example 23 was changed to the 10% by mass cyclohexanone solution of RCR-2 obtained in Example 12, and the metal was subjected to the same operation. A reduced volume of 10% by weight cyclohexanone solution of RCR-2 was recovered. Various metal residues of the obtained solution were measured by ICP-MS. The measurement results are shown in Table 17.
  • Example 26 Combined use of acid cleaning and filter flow 4
  • the same operation as in Example 23 was performed except that the 10% by mass cyclohexanone solution of RCA-1 used in Example 23 was changed to the 10% by mass cyclohexanone solution of RCR-2 obtained in Example 12, and the metal was subjected to the same operation. A reduced volume of 10% by weight cyclohexanone solution of RCR-2 was recovered. Various metal residues of the obtained solution were measured by ICP-MS. The measurement results are shown in Table 17.
  • Examples 27 to 32 and Comparative Example 3 (Preparation of resist composition) Using the resins obtained in Synthetic Examples 1 to 5 and Synthetic Comparative Example 1, resist compositions were prepared according to the formulations shown in Table 18. Among the components of the resist composition in Table 18, the following were used as the acid generator, the acid diffusion control agent, and the solvent. In Table 18, the numerical values indicate the blending amount (g) of each component.
  • Acid generator P-1 Triphenylsulfonium Trifluoromethanesulfonate (manufactured by Midori Chemical Co., Ltd.) Acid cross-linking agent (G) C-1: Nicarac MW-100LM (Sanwa Chemical Co., Ltd.) Acid diffusion control agent Q-1: Trioctylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) Solvent S-1: Propylene glycol monomethyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • the uniform resist composition was spin-coated on a clean silicon wafer and then pre-exposed baked (PB) in an oven at 110 ° C. to form a resist film with a thickness of 60 nm.
  • the obtained resist film was irradiated with an electron beam using an electron beam drawing apparatus (ELS-7500, manufactured by Elionix Inc.) with a 1: 1 line and space setting at 50 nm intervals. After irradiation, each resist film was heated at 110 ° C. for 90 seconds and immersed in an alkaline developer of 2.38% by mass of tetramethylammonium hydroxide (TMAH) for 60 seconds for development.
  • TMAH tetramethylammonium hydroxide
  • each resist film was washed with ultrapure water for 30 seconds and dried to form a positive resist pattern.
  • line and space was observed with a scanning electron microscope (S-4800 (trade name) manufactured by Hitachi High-Technologies Corporation), and the reactivity of the resist composition by electron beam irradiation was evaluated as the resist performance. did.
  • S-4800 scanning electron microscope
  • Examples 33 to 37 and Comparative Example 4 (Preparation of radiation-sensitive composition) Using the resins obtained in Synthesis Examples 1 to 5 and the following resin (PHS-1) as Comparative Example 4, each component was prepared according to the formulation shown in Table 19 to prepare a uniform solution. The obtained uniform solution was filtered through a Teflon (registered trademark) membrane filter having a pore size of 0.1 ⁇ m to prepare a radiation-sensitive composition. Among the components of the radiation-sensitive composition in Table 19, the following diazonaphthoquinone compounds and solvents were used. Further, in Table 19, the numerical values in parentheses indicate the blending amount (g).
  • Each of the obtained radiation-sensitive compositions was rotationally coated on a clean silicon wafer and then pre-exposed baked (PB) in an oven at 110 ° C. to form a resist film having a thickness of 200 nm.
  • the resist film was exposed to ultraviolet rays using an ultraviolet exposure device (Mask Aligner MA-10 (trade name) manufactured by Mikasa) with a 1: 1 line and space setting at 50 nm intervals.
  • the resist film was heated at 110 ° C.
  • TMAH tetramethylammonium hydroxide
  • the obtained 1: 1 line and space at 50 nm intervals was observed with a scanning electron microscope (S-4800 (trade name) manufactured by Hitachi High-Technologies Corporation), and the resist performance was evaluated. .. In the evaluation, in the line edge roughness, the unevenness of the pattern was good when it was less than 5 nm, and the other was bad.
  • the radiation-sensitive compositions of Examples 33 to 37 can form a resist pattern having a smaller roughness and a better shape than the radiation-sensitive compositions of Comparative Example 4. I understand. As long as the requirements of this embodiment are satisfied, radiation-sensitive compositions other than those described in Examples show the same effect.
  • the lithography underlayer film forming material using the resin has a comparison of embedding characteristics and film surface flatness. It was evaluated that it could be enhanced in an advantageous manner. Moreover, since the resin according to this embodiment has high heat resistance, it was evaluated that it can be used even under high temperature baking conditions. In order to confirm these points, the following evaluations were made assuming the use of the underlayer membrane.
  • these lithographic underlayer film forming compositions were rotationally coated on a silicon substrate and then baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to prepare a underlayer film having a film thickness of 200 nm.
  • the components of the composition for forming a lithography lower layer film in Table 20 the following were used as the acid generator, the cross-linking agent, and the solvent.
  • the numerical values indicate the blending amount (parts by mass) of each component.
  • Acid generator DTDPI Jitterly butyldiphenyliodonium nonafluoromethanesulfonate (manufactured by Midori Kagaku Co., Ltd.)
  • Crosslinking agent Nicarac Nikalac MX270 manufactured by Sanwa Chemical Co., Ltd. (trade name) Organic solvent Cyclohexanone (manufactured by Kanto Chemical Co., Inc.)
  • PGMEA Propylene glycol monomethyl ether acetate (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • each underlayer film was subjected to an etching test under the conditions shown below, the etching rate at that time was measured, and the etching resistance was evaluated by the following procedure. The evaluation results are shown in Table 20.
  • Example 38 of Table 20 The etching resistance was evaluated by the following procedure. First, in Example 38 of Table 20, except that novolak resin (PSM4357 (trade name) manufactured by Gun Ei Chemical Industry Co., Ltd.) is used instead of the resin (RCA-1) obtained in Synthesis Example 1. , A composition for forming a lithography underlayer film was prepared in the same manner as in Example 38 in Table 20. Then, using this composition, a novolak resin underlayer film was prepared in the same manner as described above. The underlayer film of this novolak resin was subjected to an etching test under the above conditions, and the etching rate at that time was measured. Based on the etching rate in the lower layer film of the novolak resin, the etching resistance of each of the lower layer films of Examples 38 to 43 and Comparative Examples 5 and 6 was evaluated according to the following evaluation criteria. The results are shown in Table 20.
  • each of the lithography underlayer film forming compositions obtained in Examples 38 to 43 and Comparative Example 5 was placed on a SiO 2 substrate with a film thickness of 80 nm and a 1: 1 line and space at 60 nm intervals.
  • a 90 nm underlayer film was formed by rolling coating on top, heating at 240 ° C. for 60 seconds in an air atmosphere, and baking at 400 ° C. for 60 seconds.
  • each of the lithography underlayer film forming compositions obtained in Examples 38 to 43 was rotationally coated on a SiO 2 substrate having a film thickness of 300 nm, and heated at 240 ° C. for 60 seconds in a nitrogen atmosphere. Further, by baking at 400 ° C. for 120 seconds, an underlayer film having a film thickness of 85 nm was formed. A resist solution A for ArF excimer laser was applied onto this lower film and baked at 130 ° C. for 60 seconds to form a photoresist layer having a film thickness of 140 nm.
  • the compound of the formula (16) was prepared as follows. That is, 4.15 g of 2-methyl-2-methacryloyloxyadamantane, 3.00 g of methacrylloyloxy- ⁇ -butyrolactone, 2.08 g of 3-hydroxy-1-adamantyl methacrylate, and 0.38 g of azobisisobutyronitrile. It was dissolved in 80 mL of tetrahydrofuran to prepare a reaction solution. The reaction solution was polymerized under a nitrogen atmosphere at a reaction temperature of 63 ° C. for 22 hours, and then the reaction solution was added dropwise to 400 mL of n-hexane. The resin thus obtained was coagulated and purified, the produced white powder was filtered, and dried at 40 ° C. under reduced pressure overnight to obtain a compound represented by the following formula (16).
  • 40, 40, and 20 indicate the ratio of each structural unit, not the block copolymer.
  • the photoresist layers formed on the obtained resist underlayer film were formed on the obtained resist underlayer film at 45 nm, 50 nm, and 50 nm, respectively.
  • the electron beam was irradiated and exposed at a line-and-space setting of 1: 1 at each interval of 80 nm.
  • it was baked (PEB) at 115 ° C. for 90 seconds and immersed in an alkaline developer of 2.38% by mass of tetramethylammonium hydroxide (TMAH) for 60 seconds for development to obtain a positive resist pattern. ..
  • Example 56 The composition for forming a lithography underlayer film obtained in Example 38 is rotationally coated on a SiO 2 substrate having a film thickness of 300 nm, heated at 240 ° C. for 60 seconds in a nitrogen atmosphere, and further baked at 400 ° C. for 120 seconds. As a result, a lithography underlayer film having a film thickness of 90 nm was formed. A silicon-containing intermediate layer material was applied onto this lower layer film and baked at 200 ° C. for 60 seconds to form a silicon-containing intermediate layer film having a film thickness of 35 nm. Further, the resist solution A for ArF excimer laser was applied onto the silicon-containing intermediate layer film and baked at 130 ° C.
  • the silicon-containing intermediate layer material the silicon atom-containing polymer described in ⁇ Synthesis Example 1> of JP-A-2007-226170 was used.
  • etching condition is as shown below.
  • the pattern cross section (that is, the shape of the SiO 2 substrate after etching) obtained as described above was observed using an electron microscope (S-4800, trade name) manufactured by Hitachi, Ltd. As a result, it was confirmed that in the example using the underlayer film of the present embodiment, the shape of the SiO 2 substrate after etching in the multilayer resist processing was rectangular, and no defects were observed, which was good.
  • a cured resin film was obtained by baking each of the obtained substrates at 350 ° C. for 1 minute using a hot plate capable of further high temperature treatment. At this time, if the change in film thickness before and after immersing the obtained cured film in the PGMEA tank for 1 minute was 3% or less, it was judged to be cured. When it was judged that the curing was insufficient, the curing temperature was changed by 50 ° C. to examine the curing temperature, and the baking treatment was performed under the condition of the lowest temperature in the curing temperature range.
  • the wavelength used for exposure to the ArF excimer laser is 193 nm. It was found that the exposure can be preferably performed because the influence of the existing wave can be suppressed and the resolution and roughness of the pattern can be improved.
  • Example 62 to 66, Comparative Examples 11 and 12 Heat resistance evaluation using a lamp annealing furnace was performed using each of the cured films obtained in Examples 62 to 65 and Comparative Examples 9 and 10.
  • the film thickness is measured by an interference film thickness meter (OPTM-A1 (trade name) manufactured by Otsuka Electronics Co., Ltd.), and the fluctuation value of the film thickness is measured by the film thickness when the elapsed time from the start of heating is 4 minutes.
  • the ratio of the film thickness to 10 minutes after the start of heating was determined as the film thickness change rate (percentage%), and evaluated according to the following evaluation criteria. The results are shown in Table 24.
  • B The film thickness change rate is 10% or more and less than 15%
  • C The film thickness change rate exceeds 15%
  • a film forming apparatus TELINDY (manufactured by Tokyo Electron Limited, trade name) is used on the underlayer film, TEOS (tetraethylsiloxane, manufactured by Tama Chemical Industry Co., Ltd.) is used as a raw material, and the film thickness is 70 nm at a substrate temperature of 300 ° C.
  • TEOS tetraethylsiloxane, manufactured by Tama Chemical Industry Co., Ltd.
  • the film thickness is 70 nm at a substrate temperature of 300 ° C.
  • a silicon oxide film was formed.
  • Surfscan SP-5 (trade name, manufactured by KLA-Tencor). The evaluation was performed according to the following evaluation criteria using the number of defects obtained by counting the number of defects having a diameter of 21 nm or more for the oxide film on the uppermost layer.
  • ⁇ SiN film> substrates in which an underlayer film having a thickness of 100 nm was laminated on a silicon oxide film were prepared. After that, a film forming apparatus TELINDY (manufactured by Tokyo Electron Co., Ltd., trade name) was used on the underlayer film, and SiH 4 gas (monosilane, manufactured by Mitsui Chemicals Co., Ltd.) and ammonia gas (manufactured by Taiyo Nippon Sanso Co., Ltd.) were used as raw materials. A SiN film having a film thickness of 40 nm, a refractive index of 1.94, and a film stress of ⁇ 54 MPa was formed at a substrate temperature of 350 ° C.
  • the film formation was evaluated by counting the number of defects using Surfscan SP-5 (trade name, manufactured by KLA-Tencor). The evaluation was performed according to the above-mentioned evaluation criteria by counting the number of defects in the same manner as described above.
  • the silicon oxide oxide film or SiN film formed on the underlayer films of Examples 67 to 71 has 20 or more and less than 50 defects having a diameter of 21 nm or more (B evaluation). It was shown that the number of defects was smaller than the number of defects in Comparative Examples 13 and 14.
  • Examples 72 to 76, Comparative Examples 15 and 16 Each of the resins obtained in Synthesis Example 1 to Synthesis Example 5 and Synthesis Comparative Examples 1 and 2 was dissolved in cyclohexanone as a solvent to prepare a resin solution having a solid content concentration of 10% by mass.
  • a 12-inch silicon wafer was subjected to thermal oxidation treatment to obtain a substrate having a silicon oxide film.
  • the mixture is heated at 240 ° C. for 60 seconds at atmospheric pressure and further baked at 400 ° C. for 120 seconds to a thickness of 100 nm.
  • a cured film was prepared. Each cured film was annealed by heating at 600 ° C. for 4 minutes on a hot plate capable of high temperature treatment under a nitrogen atmosphere to obtain a silicon wafer on which the annealed cured film was laminated.
  • the rate ratio of the etching rate to the cured film was determined as a relative value. Evaluation was made according to the following criteria. [Evaluation criteria] A: The etching rate is less than 20% compared to SU8 cured film. B: The etching rate is 20% or more as compared with the SU8 cured film.
  • each of the resins obtained in Synthesis Examples 1 to 5 was dissolved in cyclohexanone as a solvent to prepare resin solutions having a solid content concentration of 10% by mass.
  • a 12-inch silicon wafer was subjected to thermal oxidation treatment to obtain a substrate having a silicon oxide film having a thickness of 100 nm.
  • a film was formed on this substrate using each of the resin solutions obtained above by adjusting the spin coating and heating conditions so as to have a thickness of 100 nm under a nitrogen atmosphere, and then baking at 150 ° C. 1
  • a silicon wafer with a cured film was prepared by carrying out a minute and then a bake at 350 ° C. for 1 minute.
  • the cured film was etched using TELIUS (trade name, manufactured by Tokyo Electron Limited) as an etching device and CF 4 / O 2 / Ar as an etching gas to etch silicon.
  • TELIUS trade name, manufactured by Tokyo Electron Limited
  • CF 4 / O 2 / Ar as an etching gas to etch silicon.
  • the substrate surface of the oxide film was exposed.
  • CF 4 / Ar as the etching gas
  • the silicon oxide film was etched by 100 nm to prepare an etched silicon wafer.
  • the quality of the obtained etched wafer was evaluated by counting the number of defects using a defect inspection device SP5 (trade name, manufactured by KLA-tencor Co., Ltd.).
  • Example 77 Purification of RCA-1 with acid A solution (10 mass) of the resin (RCA-1) obtained in Synthesis Example 1 dissolved in cyclohexanone in a 1000 mL volume four-necked flask (bottom punching type). %) was charged and heated to 80 ° C. with stirring. Then, 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, the mixture was stirred for 5 minutes, and then allowed to stand for 30 minutes. As a result, the oil phase and the aqueous phase were separated, and the aqueous phase was removed.
  • an aqueous oxalic acid solution pH 1.3
  • the obtained cyclohexanone solution of RCA-1 was filtered by UPE filter (trade name: Microguard) having a nominal pore size of 3 nm manufactured by Entegris Japan, Inc. under the condition of 0.5 MPa to prepare a solution sample.
  • this solution sample (10% by mass) was used to prepare a silicon wafer with a cured film in the same manner as described above. Then, using this silicon wafer with a cured film, etching was performed in the same manner as described above, and quality evaluation was performed. The results are shown in Table 27.
  • Example 78 Purification of RCR-2 with acid A solution (10 mass) of the resin (RCR-2) obtained in Synthesis Example 3 dissolved in PGMEA in a 1000 mL volume four-necked flask (bottom punching type). %) was charged and heated to 60 ° C. with stirring. Then, 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, the mixture was stirred for 5 minutes, and then allowed to stand for 30 minutes. As a result, the oil phase and the aqueous phase were separated, and the aqueous phase was removed.
  • an aqueous oxalic acid solution pH 1.3
  • the obtained PGMEA solution of RCR-2 was filtered by UPE filter (trade name: Microguard) having a nominal pore size of 3 nm manufactured by Entegris Japan, Inc. under the condition of 0.5 MPa to prepare a solution sample.
  • this solution sample (10% by mass) was used to prepare a silicon wafer with a cured film in the same manner as described above. Then, using this silicon wafer with a cured film, etching was performed in the same manner as described above, and quality evaluation was performed. The results are shown in Table 27.
  • Example 79 Purification by passing a filter solution In a class 1000 clean booth, put the resin (RCA-1) obtained in Synthesis Example 1 into cyclohexanone in a 1000 mL capacity four-necked flask (bottom punching type). 500 g of the dissolved solution with a concentration of 10% by mass was charged, and then the air inside the flask was removed under reduced pressure. was adjusted to less than 1%, and then heated to 30 ° C. with stirring.
  • the above solution is withdrawn from the bottom punching valve, and a nylon hollow fiber membrane filter with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 100 mL / min with a diaphragm pump via a fluororesin pressure-resistant tube (manufactured by KITZ Micro Filter Co., Ltd.)
  • the liquid was passed through the product name: Polyfix Nylon Series) by pressure filtration so that the filtration pressure was 0.5 MPa.
  • the filtered resin solution was diluted with EL grade cyclohexanone (reagent manufactured by Kanto Chemical Co., Ltd.) and the concentration was adjusted to 10% by mass to obtain a cyclohexanone solution of RCA-1 with a reduced metal residue. ..
  • the obtained cyclohexanone solution of RCA-1 was filtered by UPE filter (trade name: Microguard) having a nominal pore size of 3 nm manufactured by Entegris Japan, Inc. under the condition of 0.5 MPa to prepare a solution sample.
  • this solution sample (10% by mass) was used to prepare a silicon wafer with a cured film in the same manner as described above. Then, using this silicon wafer with a cured film, etching was performed in the same manner as described above, and quality evaluation was performed. The results are shown in Table 27.
  • Example 80 As a purification process using a filter, IONKLEEEN (trade name) manufactured by Nippon Pole Co., Ltd., nylon filter (trade name: Uruchi Pleated P-nylon) manufactured by Nippon Pole Co., Ltd., and a nominal hole diameter of 3 nm manufactured by Nippon Integris Co., Ltd. UPE filters (trade name: Microguard) were connected in series in this order and constructed as a filter line. Pressurized filtration so that the filtration pressure is 0.5 MPa in the same manner as in Example 79, except that the prepared filter line is used instead of the nylon hollow fiber membrane filter having a nominal pore size of 0.01 ⁇ m. The liquid was passed through.
  • IONKLEEEN trade name
  • nylon filter trade name: Uruchi Pleated P-nylon manufactured by Nippon Pole Co., Ltd.
  • UPE filters (trade name: Microguard) were connected in series in this order and constructed as a filter line. Pressurized filtration so that the filtration pressure is 0.5 MPa in the same
  • the resin solution was diluted with EL grade cyclohexanone and the concentration was adjusted to 10% by mass to obtain a cyclohexanone solution of RCA-1 having a reduced metal residual amount.
  • the obtained cyclohexanone solution of RCA-1 was filtered through a UPE filter (trade name: Microguard) having a nominal pore size of 3 nm manufactured by Entegris Japan, Inc. under the condition of 0.5 MPa to prepare a solution sample.
  • this solution sample (10% by mass) was used to prepare a silicon wafer with a cured film in the same manner as described above. Then, using this silicon wafer with a cured film, etching was performed in the same manner as described above, and quality evaluation was performed.
  • Table 27 The results are shown in Table 27.
  • Example 81 The solution sample obtained in Example 77 was further pressure-filtered using the filter line prepared in Example 80 so that the filtration pressure was 0.5 MPa to prepare a solution sample. Instead of the resin solution having a solid content concentration of 10% by mass, this solution sample (10% by mass) was used to prepare a silicon wafer with a cured film in the same manner as described above. Then, using this silicon wafer with a cured film, etching was performed in the same manner as described above, and quality evaluation was performed. The results are shown in Table 27.
  • Example 82 instead of the resin (RCA-1) obtained in Synthesis Example 1, the resin (RCN-2) obtained in Synthesis Example 5 was used to prepare a solution sample by the same method as in Example 81. Instead of the resin solution having a solid content concentration of 10% by mass, this solution sample (10% by mass) was used to prepare a silicon wafer with a cured film in the same manner as described above. Then, using this silicon wafer with a cured film, etching was performed in the same manner as described above, and quality evaluation was performed. The results are shown in Table 27.
  • Example 83 to 88 and Comparative Example 17 (Preparation of composition for forming optical members) A composition for forming an optical member having the same composition as each of the lithography underlayer film forming compositions obtained in Examples 38 to 43 and Comparative Example 5 was prepared. (Refractive index and transparency) Each of the obtained optical member forming compositions was rotationally coated on a SiO 2 substrate having a film thickness of 300 nm, heated at 260 ° C. for 300 seconds in a nitrogen atmosphere, and further baked at 400 ° C. for 120 seconds. , A cured film for an optical member having a film thickness of 100 nm was formed. Then, J. A.
  • the obtained cured films were subjected to refractive index and transparency tests at a wavelength of 633 nm, respectively, and the following criteria were used.
  • the refractive index and transparency were evaluated according to the above. The evaluation results are shown in Table 28. When the refractive index is 1.65 or more, it means that the light collection efficiency is high, and when the extinction constant is less than 0.03, it means that the transparency is excellent.
  • Refractive index evaluation criteria A: Refractive index is 1.65 or more C: Refractive index is less than 1.65
  • reaction solution was neutralized with a 24% aqueous sodium hydroxide solution, 100 g of pure water was added to precipitate the reaction product, the mixture was cooled to room temperature, and then filtered and separated. The obtained solid substance was dried and then separated and purified by column chromatography to obtain 22.3 g of the target compound (BisP-1) represented by the following formula.
  • the following peaks were found by 400 MHz- 1 1 H-NMR, and it was confirmed that the chemical structure had the following formula.
  • Table 29 shows the results of evaluating the heat resistance by the evaluation method shown below using the resins obtained in Synthesis Examples 1 to 5 and Comparative Synthesis Example 1.
  • composition for forming underlayer film for lithography A composition for forming an underlayer film for lithography was prepared so as to have the composition shown in Table 30. Next, these compositiones for forming an underlayer film for lithography are rotationally coated on a silicon substrate, and then baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds in a nitrogen atmosphere to form a film thickness of 200 to 250 nm. Underlayer membranes were prepared respectively.
  • Etching device "RIE-10NR" manufactured by SAMCO International Corporation Output: 50W Pressure: 20Pa Time: 2min Etching gas
  • Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate 50: 5: 5 (sccm)
  • etching resistance was evaluated by the following procedure. First, a novolak underlayer film was produced in the same manner as described above except that novolak (“PSM4357” manufactured by Gun Ei Chemical Industry Co., Ltd.) was used. The above-mentioned etching test was performed on the underlayer film of this novolak, and the etching rate at that time was measured.
  • novolak (“PSM4357” manufactured by Gun Ei Chemical Industry Co., Ltd.) was used.
  • PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.
  • turbidity (HAZE) of the solution after holding the PGMEA solution obtained in the following Examples and Comparative Examples at 23 ° C. for 240 hours was measured using a color difference / turbidity meter, and the solution was prepared according to the following criteria. Storage stability was evaluated.
  • Example 11 Purification of RBisP-1 with acid
  • a solution (10% by mass) of RBisP-1 obtained in Synthesis Example 1 dissolved in PGMEA was placed in a four-necked flask (bottom punching type).
  • 150 g was charged and heated to 80 ° C. with stirring.
  • 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, and the mixture was stirred for 5 minutes and then allowed to stand for 30 minutes.
  • the oil phase and the aqueous phase were separated, and then the aqueous phase was removed.
  • Example 12 Purification of RBisP-2 with acid A solution (10% by mass) of RBisP-2 obtained in Synthesis Example 2 dissolved in PGMEA was placed in a 1000 mL volume four-necked flask (bottom punching type). 140 g was charged and heated to 60 ° C. with stirring. Then, 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, and the mixture was stirred for 5 minutes and then allowed to stand for 30 minutes. As a result, the oil phase and the aqueous phase were separated, and then the aqueous phase was removed.
  • aqueous oxalic acid solution pH 1.3
  • Example 13 Purification by passing through a filter In a class 1000 clean booth, propylene glycol is used to put the resin (RBisP-1) obtained in Synthesis Example 1 into a 1000 mL volume four-necked flask (bottom punching type). 500 g of a solution of 10% by mass dissolved in monomethyl ether (PGME) was charged, and then the air inside the flask was removed under reduced pressure, then nitrogen gas was introduced and returned to atmospheric pressure, and the nitrogen gas was aerated at 100 mL per minute. Below, after adjusting the internal oxygen concentration to less than 1%, the mixture was heated to 30 ° C. with stirring.
  • PGME monomethyl ether
  • the solution is withdrawn from the bottom punching valve, and a nylon hollow fiber membrane filter (manufactured by KITZ Micro Filter Co., Ltd.) with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 100 mL / min via a pressure resistant tube made of fluororesin is used.
  • Product name: Polyfix nylon series was passed through.
  • Various metal contents of the obtained solution of RBisP-1 were measured by ICP-MS.
  • the oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter). The measurement results are shown in Table 31.
  • Example 14 A hollow fiber membrane filter made of polyethylene (PE) having a nominal pore size of 0.01 ⁇ m (manufactured by KITZ Micro Filter Co., Ltd., trade name: Polyfix) was used, but the solution was passed in the same manner as in Example 13 to obtain a solution.
  • Various metal contents of the RBisP-1 solution were measured by ICP-MS. The measurement results are shown in Table 31.
  • Example 15 RBisP-1 obtained by passing liquid in the same manner as in Example 13 except that a nylon hollow fiber membrane filter having a nominal pore size of 0.04 ⁇ m (manufactured by KITZ Micro Filter Co., Ltd., trade name: Polyfix) was used. Various metal contents of the solution were measured by ICP-MS. The measurement results are shown in Table 31.
  • Example 16 Except for using a Zeta Plus filter 40QSH (manufactured by 3M Co., Ltd., capable of ion exchange) having a nominal pore size of 0.2 ⁇ m, the solution was passed in the same manner as in Example 13, and the obtained RBisP-1 solution contained various metals. The amount was measured by ICP-MS. The measurement results are shown in Table 31.
  • Example 17 Same as in Example 13 except that a Zeta Plus filter 020GN with a nominal pore size of 0.2 ⁇ m (manufactured by 3M Co., Ltd., having ion exchange capability, and having a different filtration area and filter medium thickness from the Zeta Plus filter 40QSH) was used. The solution was liquid and the resulting RBisP-1 solution was analyzed by ICP-MS. The measurement results are shown in Table 31.
  • Example 18 RBisP-2 obtained by passing the liquid in the same manner as in Example 13 except that the resin (RBisP-2) obtained in Synthesis Example 2 was used instead of the resin (RBisP-1) in Example 13.
  • the various metal contents of the solution were measured by ICP-MS. The measurement results are shown in Table 31.
  • Example 19 RBisP-2 obtained by passing the liquid in the same manner as in Example 14 except that the resin (RBisP-2) obtained in Synthesis Example 2 was used instead of the resin (RBisP-1) in Example 14.
  • the various metal contents of the solution were measured by ICP-MS. The measurement results are shown in Table 31.
  • Example 20 RBisP-2 obtained by passing the liquid in the same manner as in Example 15 except that the resin (RBisP-2) obtained in Synthesis Example 2 was used instead of the compound (RBisP-1) in Example 15.
  • Various metal contents of the solution were measured by ICP-MS. The measurement results are shown in Table 31.
  • Example 21 RBisP-2 obtained by passing the liquid in the same manner as in Example 16 except that the resin (RBisP-2) obtained in Synthesis Example 2 was used instead of the compound (RBisP-1) in Example 16.
  • Various metal contents of the solution were measured by ICP-MS. The measurement results are shown in Table 31.
  • Example 22 RBisP-2 obtained by passing the liquid in the same manner as in Example 17 except that the resin (RBisP-2) obtained in Synthesis Example 2 was used instead of the compound (RBisP-1) in Example 17.
  • Various metal contents of the solution were measured by ICP-MS. The measurement results are shown in Table 31.
  • Example 23 Combined use of acid cleaning and filter flow 1
  • a 300 mL volume four-necked flask (bottom punch) was charged with 140 g of a 10% by mass PGMEA solution of RBisP-1 with reduced metal content obtained in Example 18.
  • nitrogen gas was introduced and returned to atmospheric pressure, the nitrogen gas was aerated at 100 mL / min, the oxygen concentration inside was adjusted to less than 1%, and then 30 while stirring. Heated to ° C.
  • the solution is withdrawn from the bottom valve, and an ion exchange filter with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 10 mL per minute with a diaphragm pump via a fluororesin pressure-resistant tube (manufactured by Nippon Pole, trade name: Ion Clean Series). ). Then, the recovered solution was returned to the 300 mL capacity four-necked flask, the filter was changed to a high-density PE filter (manufactured by Entegris Japan, Inc.) having a nominal diameter of 1 nm, and pumping was carried out in the same manner.
  • Various metal contents of the obtained solution of RBisP-1 were measured by ICP-MS.
  • the oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter). The measurement results are shown in Table 31.
  • Example 24 Acid cleaning and filter flow combined use 2
  • a 300 mL volume four-necked flask (bottom punch) was charged with 140 g of a 10% by mass PGMEA solution of RBisP-1 with reduced metal content obtained in Example 18.
  • nitrogen gas was introduced and returned to atmospheric pressure, the nitrogen gas was aerated at 100 mL / min, the oxygen concentration inside was adjusted to less than 1%, and then 30 while stirring. Heated to ° C.
  • the solution is withdrawn from the bottom punching valve, and a nylon hollow fiber membrane filter (manufactured by KITZ Micro Filter Co., Ltd.) with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 10 mL / min via a pressure resistant tube made of fluororesin is used. Product name: Polyfix) was passed through. Then, the recovered solution was returned to the 300 mL capacity four-necked flask, the filter was changed to a high-density PE filter (manufactured by Entegris Japan, Inc.) having a nominal diameter of 1 nm, and pumping was carried out in the same manner.
  • Various metal contents of the obtained solution of RBisP-1 were measured by ICP-MS.
  • the oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter). The measurement results are shown in Table 31.
  • Example 25 Combined use of acid cleaning and filter flow 3 The same operation as in Example 23 was performed except that the 10% by mass PGMEA solution of RBisP-1 used in Example 23 was changed to the 10% by mass PGMEA solution of RBisP-2 obtained in Example 19, and the amount of metal was increased. A reduced 10% by weight PGMEA solution of RBisP-2 was recovered. Various metal contents of the obtained solution were measured by ICP-MS. The oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter). The measurement results are shown in Table 31.
  • Example 26 Pickling and filter flow combined use 4 The same operation as in Example 24 was performed except that the 10% by mass PGMEA solution of RBisP-1 used in Example 24 was changed to the 10% by mass PGMEA solution of RBisP-2 obtained in Example 19, and the amount of metal was increased. A reduced 10% by weight PGMEA solution of RBisP-2 was recovered. Various metal contents of the obtained solution were measured by ICP-MS. The oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter). The measurement results are shown in Table 31.
  • a resist composition was prepared according to the formulation shown in Table 32.
  • the following were used as the acid generator (C), the acid diffusion control agent (E), and the solvent.
  • Acid generator (C) P-1 Triphenylbenzene Sulfonium Trifluoromethanesulfonate (Midori Kagaku Co., Ltd.) Acid cross-linking agent (G) C-1: Nicarac MW-100LM (Sanwa Chemical Co., Ltd.) Acid diffusion control agent (E) Q-1: Trioctylamine (Tokyo Chemical Industry Co., Ltd.) Solvent S-1: Propylene glycol monomethyl ether (Tokyo Chemical Industry Co., Ltd.)
  • a uniform resist composition was spin-coated on a clean silicon wafer and then pre-exposed baked (PB) in an oven at 110 ° C. to form a resist film with a thickness of 60 nm.
  • the obtained resist film was irradiated with an electron beam having a 1: 1 line and space setting at 50 nm intervals using an electron beam drawing apparatus (“ELS-7500”, manufactured by Elionix Inc.). After the irradiation, each resist film was heated at a predetermined temperature for 90 seconds and immersed in a 2.38% by mass alkaline developer of tetramethylammonium hydroxide (TMAH) for 60 seconds for development.
  • TMAH tetramethylammonium hydroxide
  • the resist film was washed with ultrapure water for 30 seconds and dried to form a positive resist pattern.
  • the line and space of the formed resist pattern was observed with a scanning electron microscope (“S-4800” manufactured by Hitachi High-Technologies Corporation), and the reactivity of the resist composition by electron beam irradiation was evaluated.
  • Examples 27 to 32-1 a good resist pattern was obtained by irradiating an electron beam with a 1: 1 line and space setting at 50 nm intervals. The line edge roughness was good when the unevenness of the pattern was less than 5 nm. On the other hand, in Comparative Example 3, a good resist pattern could not be obtained.
  • Examples 33 to 37-1, Comparative Example 4 preparation of radiation-sensitive composition
  • the components were prepared according to the formulations shown in Table 33 to prepare a uniform solution, and then the obtained uniform solution was filtered through a Teflon (registered trademark) membrane filter having a pore size of 0.1 ⁇ m to prepare a radiation-sensitive composition. ..
  • Teflon registered trademark
  • the following evaluations were made for each of the prepared radiation-sensitive compositions.
  • the radiation-sensitive composition obtained above was rotationally coated on a clean silicon wafer and then pre-exposed baked (PB) in an oven at 110 ° C. to form a resist film having a thickness of 200 nm.
  • the resist film was exposed to ultraviolet rays using an ultraviolet exposure device (Mikasa Mask Aligner MA-10).
  • the resist film was heated at 110 ° C. for 90 seconds and immersed in TMAH 2.38 mass% alkaline developer for 60 seconds for development. Then, the resist film was washed with ultrapure water for 30 seconds and dried to form a 5 ⁇ m positive resist pattern.
  • the obtained line and space was observed with a scanning electron microscope (“S-4800” manufactured by Hitachi High-Technologies Corporation).
  • S-4800 manufactured by Hitachi High-Technologies Corporation.
  • the line edge roughness was good when the unevenness of the pattern was less than 5 nm.
  • the radiation-sensitive compositions of Examples 33 to 37-1 form a resist pattern having a smaller roughness and a better shape than the radiation-sensitive compositions of Comparative Example 4. I found that I could do it. As long as the above-mentioned requirements of the present embodiment are satisfied, radiation-sensitive compositions other than those described in the examples show the same effect.
  • the underlayer film forming material for lithography using this has embedding characteristics and flatness of the film surface.
  • the pyrolysis temperature was 150 ° C. or higher (evaluation A), and since it had high heat resistance, it was evaluated that it could be used even under high temperature baking conditions. In order to confirm these points, the following evaluations were made assuming the use of the underlayer membrane.
  • composition for forming underlayer film for lithography A composition for forming an underlayer film for lithography was prepared so as to have the composition shown in Table 34. Next, these composition for forming an underlayer film for lithography was rotationally coated on a silicon substrate, and then baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to prepare an underlayer film having a film thickness of 200 nm. ..
  • the following acid generators, cross-linking agents and organic solvents were used. Acid generator: Midori Kagaku Co., Ltd.
  • DTDPI Jitterly Butyl Diphenyliodonium Nonafluoromethane Sulfonate
  • Crosslinking agent Sanwa Chemical Co., Ltd.
  • Nikalac MX270 Nikalac
  • Organic Solvent Cyclohexanone Propylene Glycol Monomethyl Ether Acetate (PGMEA)
  • Etching device RIE-10NR manufactured by SAMCO International Corporation Output: 50W Pressure: 20Pa Time: 2min Etching gas
  • Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate 50: 5: 5 (sccm)
  • etching resistance was evaluated by the following procedure. First, a novolak underlayer film was produced in the same manner as described above except that novolak (“PSM4357” manufactured by Gun Ei Chemical Industry Co., Ltd.) was used. The above-mentioned etching test was performed on the underlayer film of this novolak, and the etching rate at that time was measured.
  • novolak (“PSM4357” manufactured by Gun Ei Chemical Industry Co., Ltd.) was used.
  • PSM4357 manufactured by Gun Ei Chemical Industry Co., Ltd.
  • Examples 44 to 49-1, Comparative Example 7 the composition for forming an underlayer film for lithography prepared in Examples 38 to 43-1 and Comparative Example 5 was applied onto a 60 nm line-and-space SiO 2 substrate having a film thickness of 80 nm, and 60 at 240 ° C. A 90 nm underlayer film was formed by baking for seconds.
  • the embedding property was evaluated by the following procedure. A cross section of the membrane obtained under the above conditions was cut out and observed with an electron beam microscope to evaluate the implantability. The evaluation results are shown in Table 35.
  • Examples 50 to 55-1 the composition for forming an underlayer film for lithography prepared in Examples 38 to 43-1 is applied onto a SiO 2 substrate having a film thickness of 300 nm, and baked at 240 ° C. for 60 seconds and then at 400 ° C. for 120 seconds. To form an underlayer film having a film thickness of 85 nm. A resist solution for ArF was applied onto this underlayer film and baked at 130 ° C. for 60 seconds to form a photoresist layer having a film thickness of 140 nm.
  • the ArF resist solution contains 5 parts by mass of the compound of the following formula (16), 1 part by mass of triphenylsulfonium nonafluoromethanesulfonate, 2 parts by mass of tributylamine, and 92 parts by mass of PGMEA. The prepared one was used.
  • the compound of the following formula (16) was prepared as follows. That is, 2-methyl-2-methacryloyloxyadamantane 4.15 g, methacrylloyloxy- ⁇ -butyrolactone 3.00 g, 3-hydroxy-1-adamantyl methacrylate 2.08 g, azobisisobutyronitrile 0.38 g, and tetrahydrofuran. It was dissolved in 80 mL to prepare a reaction solution. The reaction solution was polymerized under a nitrogen atmosphere at a reaction temperature of 63 ° C. for 22 hours, and then the reaction solution was added dropwise to 400 mL of n-hexane. The produced resin thus obtained was coagulated and purified, the produced white powder was filtered, and dried under reduced pressure at 40 ° C. overnight to obtain a compound represented by the following formula (16).
  • the photoresist layer was exposed using an electron beam lithography system (ELS-7500, 50 keV) and baked (PEB) at 115 ° C. for 90 seconds to obtain 2.38 mass% tetramethylammonium hydroxide (2.38 mass% tetramethylammonium hydroxide).
  • ELS-7500 electron beam lithography system
  • PEB baked
  • a positive resist pattern was obtained by developing with an aqueous solution of TMAH) for 60 seconds.
  • Example 56 The composition for forming a lower layer film for lithography prepared in Example 38 is applied onto a SiO 2 substrate having a film thickness of 300 nm, and baked at 240 ° C. for 60 seconds and then at 400 ° C. for 120 seconds to form a lower layer having a film thickness of 90 nm. A film was formed. A silicon-containing intermediate layer material was applied onto the lower layer film and baked at 200 ° C. for 60 seconds to form an intermediate layer film having a film thickness of 35 nm. Further, the resist solution for ArF was applied onto the intermediate layer film and baked at 130 ° C. for 60 seconds to form a photoresist layer having a film thickness of 150 nm. As the silicon-containing intermediate layer material, the silicon atom-containing polymer (polymer 1) described in JP-A-2007-226170 ⁇ Synthesis Example 1> was used.
  • the photoresist layer was mask-exposed using an electron beam lithography system (ELS-7500, 50 keV), baked (PEB) at 115 ° C. for 90 seconds, and 2.38 mass% tetramethylammonium hydroxide.
  • ELS-7500 electron beam lithography system
  • PEB baked
  • 2.38 mass% tetramethylammonium hydroxide By developing with an aqueous solution of (TMAH) for 60 seconds, a positive resist pattern of 45 nm L / S (1: 1) was obtained.
  • a cured resin film was obtained by baking the produced substrate at 350 ° C. for 1 minute using a hot plate capable of further high temperature treatment. At this time, if the change in film thickness before and after immersing the obtained cured resin film in the PGMEA tank for 1 minute was 3% or less, it was determined that the film was cured. When it was judged that the curing was insufficient, the curing temperature was changed by 50 ° C. to investigate the curing temperature, and the baking treatment was performed under the condition of the lowest temperature in the curing temperature range.
  • Example A02 to Example A06 and Comparative Example A01 A resin film was prepared in the same manner as in Example A01 except that the resin used was changed from RBisP-1 to the resin shown in Table 37, and the optical characteristic values were evaluated.
  • the film-forming composition containing the polycyclic polyphenol resin of the present embodiment can form a resin film having a high n value and a low k value at a wavelength of 193 nm used in ArF exposure.
  • Example B01 The heat resistance of the resin film produced in Example A01 was evaluated using a lamp annealing furnace. As the heat-resistant treatment conditions, heating was continued at 450 ° C. under a nitrogen atmosphere, and the film thickness change rate was determined by comparing the film thicknesses after 4 minutes and 10 minutes after the elapsed time from the start of heating. Further, heating was continued at 550 ° C. under a nitrogen atmosphere, and the film thickness change rate was determined by comparing the film thicknesses after 4 minutes and 10 minutes after the elapsed time from the start of heating. These film thickness change rates were evaluated as an index of the heat resistance of the cured film.
  • the film thickness before and after the heat resistance test was measured with an interference film thickness meter, and the fluctuation value of the film thickness was obtained as the ratio of the film thickness to the film thickness before the heat resistance test treatment as the film thickness change rate (percentage%).
  • Example B02 to Example B06, Comparative Example B01 to Comparative Example B02 The heat resistance evaluation was carried out in the same manner as in Example B01 except that the resin used was changed from RBisP-1 to the resin shown in Table 38.
  • the film-forming composition containing the polycyclic polyphenol resin of the present embodiment has high heat resistance with little change in film thickness even at a temperature of 550 ° C. It was found that a resin film could be formed.
  • Example C01 ⁇ PE-CVD film formation evaluation> A 12-inch silicon wafer was subjected to thermal oxidation treatment, and a resin film having a thickness of 100 nm was prepared on a substrate having the obtained silicon oxide film by the same method as in Example A01 using the resin solution of Example A01. did. A silicon oxide film having a film thickness of 70 nm was formed on the resin film by using a film forming apparatus TELINDY (manufactured by Tokyo Electron Limited) and using TEOS (tetraethylsiloxane) as a raw material at a substrate temperature of 300 ° C.
  • TELINDY manufactured by Tokyo Electron Limited
  • TEOS tetraethylsiloxane
  • a wafer with a cured film laminated with a silicon oxide film produced is further inspected for defects using a defect inspection device "SP5" (manufactured by KLA-Tencor), and the following criteria are used with the number of defects having a diameter of 21 nm or more as an index. Therefore, the number of defects in the formed oxide film was evaluated.
  • SP5" defect inspection device
  • ⁇ SiN film evaluation> A raw material using a film forming apparatus TELINDY (manufactured by Tokyo Electron) on a cured film prepared on a substrate having a silicon oxide film heat-oxidized to a thickness of 100 nm on a 12-inch silicon wafer by the same method as described above.
  • a SiN film having a film thickness of 40 nm, a refractive index of 1.94, and a film stress of ⁇ 54 MPa was formed at a substrate temperature of 350 ° C. using SiH 4 (monosilane) and ammonia.
  • a wafer with a cured film on which the manufactured SiN film is laminated is further inspected for defects using a defect inspection device "SP5" (manufactured by KLA-tencor), and the number of defects having a diameter of 21 nm or more is used as an index according to the following criteria.
  • SP5 defect inspection device
  • the number of defects in the formed oxide film was evaluated. (standard) A Number of defects ⁇ 20 B 20 ⁇ Number of defects ⁇ 50 C 50 ⁇ Number of defects ⁇ 100 D 100 ⁇ Number of defects ⁇ 1000 E 1000 ⁇ Number of defects ⁇ 5000 F 5000 ⁇ Number of defects
  • Examples C02 to C06 and Comparative Examples C01 to C02 Defect evaluation of the film was carried out in the same manner as in Example C01 except that the resin used was changed from RBisP-1 to the resin shown in Table 39.
  • the silicon oxide film or SiN film formed on the resin films of Examples C01 to C06 has 50 or less defects (B evaluation or more) having a diameter of 21 nm or more, which is compared with the number of defects of Comparative Examples C01 or C02. , Was shown to be less.
  • Example D01 ⁇ Etching evaluation after high temperature treatment> A 12-inch silicon wafer was subjected to thermal oxidation treatment, and a resin film having a thickness of 100 nm was prepared on a substrate having the obtained silicon oxide film by the same method as in Example A01 using the resin solution of Example A01. did. The resin film was further annealed by heating under a hot plate capable of high temperature treatment in a nitrogen atmosphere at 600 ° C. for 4 minutes to prepare a wafer on which the annealed resin film was laminated. The prepared annealed resin film was carved out, and the carbon content was determined by elemental analysis.
  • a 12-inch silicon wafer was subjected to thermal oxidation treatment, and a resin film having a thickness of 100 nm was applied to a substrate having the obtained silicon oxide film by the same method as in Example A01 using the resin solution of Example A01. Was produced.
  • the resin film was further annealed by heating at 600 ° C. for 4 minutes in a nitrogen atmosphere, and then the substrate was used as an etching gas using an etching device "TELIUS" (manufactured by Tokyo Electron Limited).
  • the etching treatment was performed under the conditions using CF 4 / Ar and Cl 2 / Ar, and the etching rate was evaluated.
  • etching rate a resin film having a thickness of 200 nm prepared by annealing a photoresist "SU8 3000" manufactured by Nippon Kayaku Co., Ltd. at 250 ° C. for 1 minute was used, and the rate ratio of the etching rate to SU8 3000 was relative. It was calculated as a value and evaluated according to the following evaluation criteria.
  • evaluation criteria A: Etching rate is less than -20% compared to SU8 3000 resin film B: Etching rate is -20% or more and 0% or less compared to SU8 3000 resin film C: Etching compared to SU8 3000 resin film Rate is over + 0%
  • Example D02 to Example D06 Comparative Example D01 to Comparative Example D02
  • the etching rate was evaluated in the same manner as in Example D01 except that the resin used was changed from RBisP-1 to the resin shown in Table 40.
  • the polycyclic polyphenol resin obtained in the synthesis example was evaluated for quality before and after the purification treatment. That is, before and after the purification treatment described later, the resin film formed on the wafer using the polycyclic polyphenol resin was transferred to the substrate side by etching, and then the defect was evaluated.
  • a 12-inch silicon wafer was subjected to thermal oxidation treatment to obtain a substrate having a silicon oxide film having a thickness of 100 nm. After forming a film on the substrate by adjusting the spin coating conditions so that the resin solution of the polyphenolic polyphenol resin has a thickness of 100 nm, the film is baked at 150 ° C.
  • a laminated substrate was prepared by laminating a polyphenol resin on silicon with a thermal oxide film. Using "TELIUS" (manufactured by Tokyo Electron Limited) as an etching apparatus , the resin film was etched under the conditions of CF 4 / O 2 / Ar to expose the substrate on the surface of the oxide film. Further, an etching treatment was performed under the condition that the oxide film was etched at 100 nm at a gas composition ratio of CF 4 / Ar to prepare an etched wafer.
  • the produced etched wafer was measured for the number of defects of 19 nm or more with a defect inspection device "SP5" (manufactured by KLA-tencor), and was carried out as a defect evaluation by etching treatment with a laminated film according to the following criteria.
  • SP5" defect inspection device
  • Example E01 Purification of RBisP-1 with acid A solution (10% by mass) of RBisP-1 obtained in Synthesis Example 1 dissolved in PGMEA was placed in a 1000 mL volume four-necked flask (bottom punching type). 150 g was charged and heated to 80 ° C. with stirring. Then, 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, and the mixture was stirred for 5 minutes and then allowed to stand for 30 minutes. As a result, the oil phase and the aqueous phase were separated, and then the aqueous phase was removed.
  • aqueous oxalic acid solution pH 1.3
  • a solution sample was prepared by filtering the prepared polycyclic polyphenol resin solution with a UPE filter having a nominal pore size of 3 nm manufactured by Entegris Japan, Inc. under the condition of 0.5 MPa.
  • a resin film was formed on the wafer as described above, the resin film was transferred to the substrate side by etching, and then an etching defect evaluation was performed on the laminated film.
  • Example E02 Purification of RBisP-2 with acid A solution (10% by mass) of RBisP-2 obtained in Synthesis Example 2 dissolved in PGMEA was placed in a 1000 mL volume four-necked flask (bottom punching type). 140 g was charged and heated to 60 ° C. with stirring. Then, 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, and the mixture was stirred for 5 minutes and allowed to stand for 30 minutes. As a result, the oil phase and the aqueous phase were separated, and then the aqueous phase was removed.
  • aqueous oxalic acid solution pH 1.3
  • Example E03 Purification by passing through a filter In a class 1000 clean booth, propylene glycol is used to put the resin (RBisP-1) obtained in Synthesis Example 1 into a 1000 mL volume four-necked flask (bottom punching type). 500 g of a solution of 10% by mass dissolved in monomethyl ether (PGME) was charged, and then the air inside the flask was removed under reduced pressure, then nitrogen gas was introduced and returned to atmospheric pressure, and the nitrogen gas was aerated at 100 mL per minute. Below, after adjusting the internal oxygen concentration to less than 1%, the mixture was heated to 30 ° C. with stirring.
  • PGME monomethyl ether
  • the solution is withdrawn from the bottom punching valve, and a nylon hollow fiber membrane filter (manufactured by KITZ Micro Filter Co., Ltd.) with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 100 mL / min via a pressure resistant tube made of fluororesin is used.
  • the liquid was passed through the product name: Polyfix Nylon Series) by pressure filtration so that the filtration pressure was 0.5 MPa.
  • the filtered resin solution was diluted with EL grade PGMEA (reagent manufactured by Kanto Chemical Co., Inc.) and the concentration was adjusted to 10% by mass to obtain a PGMEA solution of RBisP-1 having a reduced metal content.
  • etching defect evaluation was performed on the laminated film in the same manner as in Example E01. did.
  • the oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter).
  • Example E04 As a purification process using a filter, "IONKLEEEN” manufactured by Nippon Pole, "Nylon filter” manufactured by Nippon Pole, and UPE filter with a nominal hole diameter of 3 nm manufactured by Entegris Japan are connected in series in this order and constructed as a filter line. did. The liquid was passed by pressure filtration so that the filtration pressure was 0.5 MPa in the same manner as in Example E03, except that the prepared filter line was used instead of the 0.1 ⁇ m nylon hollow fiber membrane filter. ..
  • PGMEA reagent manufactured by Kanto Chemical Co., Inc.
  • concentration 10% by mass
  • a PGMEA solution of RBisP-1 having a reduced metal content was obtained.
  • the prepared polyphenolic polyphenol resin solution was pressure-filtered with a UPE filter having a nominal pore size of 3 nm manufactured by Entegris Japan, Inc. so that the filtration pressure was 0.5 MPa, and then laminated in the same manner as in Example E01. Etching defect evaluation on the film was carried out.
  • Example E05 The solution sample prepared in Example E01 was further pressure-filtered using the filter line prepared in Example E04 so that the filtration pressure was 0.5 MPa, and then the solution sample was prepared with Example E01. Similarly, an etching defect evaluation was performed on the laminated film.
  • Example E06 Synthesis For RBisP-2 synthesized in Example 2, a solution sample purified by the same method as in Example E05 was prepared, and then etching defect evaluation was performed on the laminated film in the same manner as in Example E01.
  • Example E06-1 Synthesis For RBP-1 synthesized in Example 6, a solution sample purified by the same method as in Example E05 was prepared, and then etching defect evaluation was performed on the laminated film in the same manner as in Example E01.
  • Example E07 Synthesis For RBisP-3 synthesized in Example 3, a solution sample purified by the same method as in Example E05 was prepared, and then etching defect evaluation was performed on the laminated film in the same manner as in Example E01. The evaluation results of Examples E01 to E07 are shown in Table 41.
  • Examples 57 to 62-1, Comparative Example 9 A composition for forming an optical member having the same composition as the solution of the underlayer film forming material for lithography prepared in Examples 38 to 43-1 and Comparative Example 5 described above is applied onto a SiO 2 substrate having a film thickness of 300 nm and 260. By baking at ° C. for 300 seconds, a film for an optical member having a film thickness of 100 nm was formed. Then, using the vacuum ultraviolet multi-incident angle spectroscopic ellipsometer "VUV-VASE" manufactured by JA Woolam Japan, the refractive index and transparency test at a wavelength of 633 nm were performed, and the refractive index and transparency were tested according to the following criteria. Gender was evaluated. The evaluation results are shown in Table 42.
  • compositions for forming optical members of Examples 57 to 62-1 not only had a high refractive index but also a low extinction coefficient and excellent transparency.
  • composition of Comparative Example 9 was inferior in performance as an optical member.
  • Example group 4 Synthesis of RHE-1 Indol (manufactured by Tokyo Chemical Industry Co., Ltd.) 11.7 g (100 mmol) and phthalic acid represented by the following formula are placed in a container having an internal volume of 500 mL equipped with a stirrer, a cooling tube and a burette. 10.1 g (20 mmol) of monobutyl copper was charged, 100 mL of chloroform was added as a solvent, and the reaction solution was stirred at 61 ° C. for 6 hours to carry out the reaction.
  • Synthesis Examples 2 to 6 Synthesis of RHE-2 to RHE-6 In Synthesis Examples 2 to 6, 2-phenylbenzoxazole and 2-phenylbenzothiazole, respectively, were used instead of the indole used in Synthesis Example 1. , Carbazole, and dibenzothiophene were used, but the polymer was synthesized in the same manner as in Synthesis Example 1.
  • Table 43 shows the results of evaluating the heat resistance by the evaluation method shown below using the polymers obtained in Synthesis Example 1 to Synthesis Example 6 and Comparative Synthesis Example 1.
  • Examples 6 to 10-1, Comparative Example 2 Preparation of composition for forming underlayer film for lithography
  • a composition for forming an underlayer film for lithography was prepared so as to have the composition shown in Table 44.
  • these lithographic underlayer film forming compositions were rotationally coated on a silicon substrate, and then baked at 240 ° C. for 60 seconds and then at 400 ° C. for 120 seconds in a nitrogen atmosphere to form a film thickness of 200 to 250 nm.
  • Underlayer membranes were prepared respectively.
  • Etching device "RIE-10NR" manufactured by SAMCO International Corporation Output: 50W Pressure: 20Pa Time: 2min Etching gas
  • Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate 50: 5: 5 (sccm)
  • the etching resistance was evaluated by the following procedure. First, a novolak underlayer film was produced in the same manner as described above except that novolak (“PSM4357” manufactured by Gun Ei Chemical Industry Co., Ltd.) was used. The above etching test was performed on the underlayer film of this novolak, and the etching rate at that time was measured.
  • novolak (“PSM4357” manufactured by Gun Ei Chemical Industry Co., Ltd.) was used.
  • the above etching test was performed on the underlayer film of this novolak, and the etching rate at that time was measured.
  • turbidity (HAZE) of the solution after holding the PGMEA solution obtained by each of the following examples at 23 ° C. for 240 hours was measured using a color difference / turbidity meter, and the storage stability of the solution was measured according to the following criteria.
  • Equipment Color difference / turbidity meter COH400 (manufactured by Nippon Denshoku Co., Ltd.)
  • Optical path length 1 cm Quartz cell used [evaluation criteria] 0 ⁇ HAZE ⁇ 1.0: Good 1.0 ⁇ HAZE ⁇ 2.0: Possible 2.0 ⁇ HAZE: Defective
  • Example 11 Purification of RHE-1 with acid A solution (10% by mass) of RHE-1 obtained in Synthesis Example 1 dissolved in CHN was placed in a 1000 mL volume four-necked flask (bottom punching type). 150 g was charged and heated to 80 ° C. with stirring. Then, 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, the mixture was stirred for 5 minutes, and then allowed to stand for 30 minutes. As a result, the oil phase and the aqueous phase were separated, and then the aqueous phase was removed.
  • an aqueous oxalic acid solution pH 1.3
  • Example 12 Purification of RHE-2 with acid A solution (10% by mass) of RHE-2 obtained in Synthesis Example 2 dissolved in CHN was placed in a 1000 mL volume four-necked flask (bottom punching type). 140 g was charged and heated to 60 ° C. with stirring. Then, 37.5 g of an aqueous oxalic acid solution (pH 1.3) was added, the mixture was stirred for 5 minutes, and then allowed to stand for 30 minutes. As a result, the oil phase and the aqueous phase were separated, and then the aqueous phase was removed.
  • aqueous oxalic acid solution pH 1.3
  • Example 13 Purification by passing through a filter In a class 1000 clean booth, CHN the polymer (RHE-1) obtained in Synthesis Example 1 in a 1000 mL capacity four-necked flask (bottom punching type). 500 g of a solution with a concentration of 10% by mass dissolved in the flask was charged, and then the air inside the flask was removed under reduced pressure, then nitrogen gas was introduced and returned to atmospheric pressure. After adjusting the concentration to less than 1%, the mixture was heated to 30 ° C. with stirring.
  • the above solution is withdrawn from the bottom punching valve, and a nylon hollow fiber membrane filter (manufactured by KITZ Micro Filter Co., Ltd.) with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 100 mL / min via a pressure resistant tube made of fluororesin is used.
  • Product name: Polyfix nylon series was passed through.
  • Various metal contents of the obtained solution of RHE-1 were measured by ICP-MS.
  • the oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter). The measurement results are shown in Table 45.
  • Example 14 A hollow fiber membrane filter made of polyethylene (PE) having a nominal pore size of 0.01 ⁇ m (manufactured by KITZ Micro Filter Co., Ltd., trade name: Polyfix) was used, but the solution was passed in the same manner as in Example 13 to obtain a solution.
  • Various metal contents of the solution of RHE-1 were measured by ICP-MS. The measurement results are shown in Table 45.
  • Example 15 RHE-1 obtained by passing liquid in the same manner as in Example 13 except that a nylon hollow fiber membrane filter having a nominal pore size of 0.04 ⁇ m (manufactured by KITZ Micro Filter Co., Ltd., trade name: Polyfix) was used. The various metal contents of KITZ were measured by ICP-MS. The measurement results are shown in Table 45.
  • Example 16 The RHE-1 solution obtained by passing the liquid in the same manner as in Example 13 except that a Zeta Plus filter 40QSH (manufactured by 3M Co., Ltd., capable of ion exchange) having a nominal pore size of 0.2 ⁇ m was used, and contained various metals in the obtained RHE-1 solution. The amount was measured by ICP-MS. The measurement results are shown in Table 45.
  • Example 17 Same as in Example 13 except that a Zeta Plus filter 020GN with a nominal pore size of 0.2 ⁇ m (manufactured by 3M Co., Ltd., having ion exchange capability, and having a different filtration area and filter medium thickness from the Zeta Plus filter 40QSH) was used.
  • the liquid was liquid, and the various metal contents of the obtained RHE-1 solution were measured by ICP-MS. The measurement results are shown in Table 45.
  • Example 18 RHE obtained by passing the liquid in the same manner as in Example 13 except that the polymer (RHE-2) obtained in Synthesis Example 2 was used instead of the polymer (RHE-1) in Example 13. -Various metal contents of the solution were measured by ICP-MS. The measurement results are shown in Table 45.
  • Example 19 RHE obtained by passing the liquid in the same manner as in Example 14 except that the polymer (RHE-2) obtained in Synthesis Example 2 was used instead of the polymer (RHE-1) in Example 14. -Various metal contents of the solution were measured by ICP-MS. The measurement results are shown in Table 45.
  • Example 20 RHE- obtained by passing the liquid in the same manner as in Example 15 except that the polymer (RHE-2) obtained in Synthesis Example 2 was used instead of the compound (RHE-1) in Example 15.
  • the various metal contents of the two solutions were measured by ICP-MS. The measurement results are shown in Table 45.
  • Example 21 RHE- obtained by passing the liquid in the same manner as in Example 16 except that the polymer (RHE-2) obtained in Synthesis Example 2 was used instead of the compound (RHE-1) in Example 16.
  • the various metal contents of the two solutions were measured by ICP-MS. The measurement results are shown in Table 45.
  • Example 22 RHE- obtained by passing the liquid in the same manner as in Example 17 except that the polymer (RHE-2) obtained in Synthesis Example 2 was used instead of the compound (RHE-1) in Example 17.
  • the various metal contents of the two solutions were measured by ICP-MS. The measurement results are shown in Table 45.
  • Example 23 Combined use of acid cleaning and filter flow 1
  • a 300 mL volume four-necked flask (bottom punch) was charged with 140 g of a 10% by mass CHN solution of RHE-1 having a reduced metal content obtained in Example 11.
  • nitrogen gas was introduced and returned to atmospheric pressure, the nitrogen gas was aerated at 100 mL / min, the oxygen concentration inside was adjusted to less than 1%, and then 30 while stirring. Heated to ° C.
  • the above solution is withdrawn from the bottom punching valve, and an ion exchange filter with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 10 mL per minute with a diaphragm pump via a fluororesin pressure-resistant tube (manufactured by Nippon Pole Co., Ltd., trade name: Ion Clean Series) ). Then, the recovered solution was returned to the above-mentioned three-necked flask having a capacity of 300 mL, the filter was changed to a high-density PE filter (manufactured by Entegris Japan, Inc.) having a nominal diameter of 1 nm, and pumping was carried out in the same manner.
  • Various metal contents of the obtained solution of RHE-1 were measured by ICP-MS.
  • the oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter). The measurement results are shown in Table 45.
  • Example 24 Combined use of acid cleaning and filter flow 2
  • a 300 mL volume four-necked flask (bottom punch) was charged with 140 g of a 10% by mass CHN solution of RHE-1 having a reduced metal content obtained in Example 11.
  • nitrogen gas was introduced and returned to atmospheric pressure, the nitrogen gas was aerated at 100 mL / min, the oxygen concentration inside was adjusted to less than 1%, and then 30 while stirring. Heated to ° C.
  • the above solution is withdrawn from the bottom punching valve, and a nylon hollow fiber membrane filter (manufactured by KITZ Micro Filter Co., Ltd.) with a nominal pore diameter of 0.01 ⁇ m at a flow rate of 10 mL / min via a pressure resistant tube made of fluororesin is used. Product name: Polyfix) was passed through. Then, the recovered solution was returned to the above-mentioned three-necked flask having a capacity of 300 mL, the filter was changed to a high-density PE filter (manufactured by Entegris Japan, Inc.) having a nominal diameter of 1 nm, and pumping was carried out in the same manner.
  • Various metal contents of the obtained solution of RHE-1 were measured by ICP-MS.
  • the oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter). The measurement results are shown in Table 45.
  • Example 25 Combined use of acid cleaning and filter flow 3
  • the same operation as in Example 23 was performed except that the 10% by mass CHN solution of RHE-1 used in Example 23 was changed to the 10% by mass CHN solution of RHE-2 obtained in Example 12, and the amount of metal was increased.
  • a reduced 10% by weight PGMEA solution of RHE-2 was recovered.
  • Various metal contents of the obtained solution were measured by ICP-MS.
  • the oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter). The measurement results are shown in Table 45.
  • Example 26 Combined use of acid cleaning and filter flow 4
  • the same operation as in Example 24 was performed except that the 10% by mass CHN solution of RHE-1 used in Example 24 was changed to the 10% by mass CHN solution of RHE-2 obtained in Example 12, and the amount of metal was increased.
  • a reduced 10% by weight PGMEA solution of RHE-2 was recovered.
  • Various metal contents of the obtained solution were measured by ICP-MS.
  • the oxygen concentration was measured with an oxygen concentration meter "OM-25MF10" manufactured by AS ONE Corporation (the same applies hereinafter). The measurement results are shown in Table 45.
  • Acid generator (C) P-1 Triphenylbenzene Sulfonium Trifluoromethanesulfonate (Midori Kagaku Co., Ltd.) Acid cross-linking agent (G) C-1: Nicarac MW-100LM (Sanwa Chemical Co., Ltd.) Acid diffusion control agent (E) Q-1: Trioctylamine (Tokyo Chemical Industry Co., Ltd.) Solvent S-1: CHN (Tokyo Chemical Industry Co., Ltd.)
  • a uniform resist composition was spin-coated on a clean silicon wafer and then pre-exposed baked (PB) in an oven at 110 ° C. to form a resist film with a thickness of 60 nm.
  • the obtained resist film was irradiated with an electron beam having a 1: 1 line and space setting at 50 nm intervals using an electron beam drawing apparatus (ELS-7500, manufactured by Elionix Inc.). After the irradiation, the resist membrane was heated at a predetermined temperature for 90 seconds and immersed in an alkaline developer of 2.38% by mass of tetramethylammonium hydroxide (TMAH) for 60 seconds for development.
  • TMAH tetramethylammonium hydroxide
  • the resist film was washed with ultrapure water for 30 seconds and dried to form a resist pattern.
  • the line and space of the formed resist pattern was observed with a scanning electron microscope (S-4800 manufactured by Hitachi High-Technologies Corporation), and the reactivity of the resist composition by electron beam irradiation was evaluated.
  • Examples 27 to 32-1 a good resist pattern was obtained by irradiating an electron beam with a 1: 1 line and space setting at 50 nm intervals. The line edge roughness was good when the unevenness of the pattern was less than 5 nm. On the other hand, in Comparative Example 3, a good resist pattern could not be obtained.
  • the radiation-sensitive composition obtained above was rotationally coated on a clean silicon wafer and then pre-exposed baked (PB) in an oven at 110 ° C. to form a resist film having a thickness of 200 nm.
  • the resist film was exposed to ultraviolet rays using an ultraviolet exposure device (Mikasa Mask Aligner MA-10).
  • the resist film was heated at 110 ° C. for 90 seconds and immersed in TMAH 2.38 mass% alkaline developer for 60 seconds for development. Then, the resist film was washed with ultrapure water for 30 seconds and dried to form a resist pattern of 5 ⁇ m.
  • the obtained line and space was observed with a scanning electron microscope (S-4800 manufactured by Hitachi High-Technologies Corporation).
  • the line edge roughness was good when the unevenness of the pattern was less than 5 nm.
  • the radiation-sensitive compositions of Examples 33 to 37-1 form a resist pattern having a smaller roughness and a better shape than the radiation-sensitive compositions of Comparative Example 4. I found that I could do it. As long as the above-mentioned requirements of the present embodiment are satisfied, radiation-sensitive compositions other than those described in the examples show the same effect.
  • the underlayer film forming material for lithography using this has embedding characteristics and flatness of the film surface. It was evaluated that the sex could be enhanced in a relatively advantageous manner.
  • the pyrolysis temperature was 430 ° C. or higher (evaluation A), and since it had high heat resistance, it was evaluated that it could be used even under high temperature baking conditions. In order to confirm these points, the following evaluations were made assuming the use of the underlayer membrane.
  • composition for forming underlayer film for lithography A composition for forming an underlayer film for lithography was prepared so as to have the composition shown in Table 48. Next, these composition for forming a lower layer film for lithography was rotationally applied onto a silicon substrate, and then baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to prepare a lower layer film having a film thickness of 200 nm. ..
  • the following acid generators, cross-linking agents and organic solvents were used. Acid generator: Midori Kagaku Co., Ltd.
  • DTDPI Jitterly Butyl Diphenyliodonium Nonafluoromethane Sulfonate
  • Etching device RIE-10NR manufactured by SAMCO International Corporation Output: 50W Pressure: 20Pa Time: 2min Etching gas
  • Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate 50: 5: 5 (sccm)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

式(1A)及び(1B)で表される芳香族ヒドロキシ化合物からなる群より選ばれる少なくとも1種のモノマー由来の繰り返し単位を有する重合体であって、 前記繰り返し単位同士が、芳香環同士の直接結合によって連結している、重合体。 (式(1A)及び(1B)中、Rは各々独立して、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基又は水酸基であり、少なくとも1つのRは水酸基を含む基であり、mは各々独立して1~10の整数である。)

Description

重合体、組成物、重合体の製造方法、組成物、膜形成用組成物、レジスト組成物、感放射線性組成物、リソグラフィー用下層膜形成用組成物、レジストパターン形成方法、リソグラフィー用下層膜の製造方法、回路パターン形成方法、及び光学部材形成用組成物
 本発明は、重合体、組成物、重合体の製造方法、組成物、膜形成用組成物、レジスト組成物、感放射線性組成物、リソグラフィー用下層膜形成用組成物、レジストパターン形成方法、リソグラフィー用下層膜の製造方法、回路パターン形成方法、及び光学部材形成用組成物に関する。
 半導体用の封止剤、コーティング剤、レジスト用材料、半導体下層膜形成材料として、ヒドロキシ置換芳香族化合物等に由来する繰り返し単位を有するポリフェノール系樹脂が知られている。例えば、下記特許文献1~2には、特定の骨格を有するポリフェノール化合物又は樹脂を使用することが提案されている。
 一方、ポリフェノール系樹脂の製造方法としては、酸やアルカリ触媒によりフェノール類とホルマリンとを付加及び縮合させて、ノボラック樹脂やレゾール樹脂を製造する方法などが知られている。しかしながら、このフェノール樹脂の製造方法では、近年、ホルムアルデヒドを、前記フェノール樹脂の原材料として使用することから、安全性の点からホルムアルデヒドの代わりの物質を用いた他の方法が種々研究されている。この問題を解決するポリフェノール系樹脂の製造方法として、水や有機溶媒などの溶媒中において、ペルオキシターゼなどのペルオキシターゼ活性を有する酵素と過酸化水素などの過酸化物とを用いて、フェノール類を酸化重合させてフェノール重合体を製造する方法などが提案されている。また、2,6-ジメチルフェノールを酸化重合させて、ポリフェニレンオキシド(PPO)を製造する方法が知られている(下記非特許文献1参照)。
 半導体デバイスの製造において、フォトレジスト材料を用いたリソグラフィーによる微細加工が行われているが、近年、LSIの高集積化と高速度化に伴い、パターンルールによる更なる微細化が求められている。現在の汎用技術として用いられている光露光を用いたリソグラフィーにおいては、光源の波長に由来する本質的な解像度の限界に近づきつつある。
 レジストパターン形成の際に使用するリソグラフィー用の光源は、KrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化されている。しかしながら、レジストパターンの微細化が進むにつれ、解像度の問題、又は、現像後にレジストパターンが倒れるといった問題が生じてくるため、レジストの薄膜化が望まれている。このような要望に対して、単にレジストの薄膜化を行うのみでは、基板加工に十分なレジストパターンの膜厚を得ることが難しくなる。そのため、レジストパターンだけではなく、レジストと加工する半導体基板との間にレジスト下層膜を作製し、このレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になってくる。
 現在、このようなプロセス用のレジスト下層膜として、種々のものが知られている。例えば、従来のエッチング速度の速いレジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を挙げることができる。このようなリソグラフィー用レジスト下層膜を形成するための材料としては、所定のエネルギーの印加によって末端基が脱離することでスルホン酸残基を生じる置換基を少なくとも有する樹脂成分と、溶媒と、を含有する多層レジストプロセス用下層膜形成材料が提案されている(例えば、下記特許文献3参照。)。また、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜も挙げることができる。このようなリソグラフィー用レジスト下層膜を形成するための材料として、特定の繰り返し単位を有する重合体を含むレジスト下層膜材料が提案されている(例えば、下記特許文献4参照。)。さらに、半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜も挙げることができる。このようなリソグラフィー用レジスト下層膜を形成するための材料として、アセナフチレン類の繰り返し単位と、置換又は非置換のヒドロキシ基を有する繰り返し単位とを共重合してなる重合体を含むレジスト下層膜材料が提案されている(例えば、下記特許文献5参照。)。また特定のビスナフトール体の酸化重合体を含むレジスト下層膜材料が提案されている(例えば、下記特許文献6参照)。
 一方、この種のレジスト下層膜において高いエッチング耐性を持つ材料としては、メタンガス、エタンガス、アセチレンガスなどを原料に用いた化学蒸着薄膜成膜法(Chemical Vapor Deposition、以下「CVD」とも記す。)により形成されたアモルファスカーボン下層膜がよく知られている。しかしながら、プロセス上の観点から、スピンコート法やスクリーン印刷等の湿式プロセスでレジスト下層膜を形成できるレジスト下層膜材料が求められている。
 また、最近は複雑な形状の被加工層に対し、リソグラフィー用レジスト下層膜を形成する要求があり、埋め込み性や膜表面の平坦化性に優れた下層膜を形成できるレジスト下層膜材料が求められている。
 なお、3層プロセスにおけるレジスト下層膜の形成において用いられる中間層の形成方法に関しては、例えば、シリコン窒化膜の形成方法(例えば、下記特許文献7参照。)や、シリコン窒化膜のCVD形成方法(例えば、下記特許文献8参照。)が知られている。また、3層プロセス用の中間層材料としては、シルセスキオキサンベースの珪素化合物を含む材料が知られている(例えば、下記特許文献9参照。)。
 本発明者らは、特定の化合物又は樹脂を含むリソグラフィー用下層膜形成用組成物を提案している(例えば、下記特許文献10参照。)。
 光学部材形成組成物としても様々なものが提案されており、例えば、アクリル系樹脂(例えば、下記特許文献11及び12参照。)や、アリル基で誘導された特定の構造を有するポリフェノール(例えば、下記特許文献13参照。)が提案されている。
国際公開2013/024778号 国際公開2013/024779号 特開2004-177668号公報 特開2004-271838号公報 特開2005-250434号公報 特開2020-027302号公報 特開2002-334869号公報 国際公開第2004/066377号 特開2007-226204号公報 国際公開第2013/024779号 特開2010-138393号公報 特開2015-174877号公報 国際公開第2014/123005号
東村秀之、小林四郎、化学と工業、53,501(2000)
 特許文献1及び2に記載の材料は、耐熱性、耐エッチング性などの性能において未だ改善の余地があり、これらの物性においてさらに優れる新たな材料の開発が求められている。
 また、非特許文献1の方法に基づいて得られるポリフェノール系樹脂は、オキシフェノールユニットと、分子中にフェノール性水酸基を有するユニットとの両方を構成単位とするものである。オキシフェノールユニットは、通常、モノマーである一方のフェノール類の芳香環上の炭素原子と他方のフェノール類のフェノール性水酸基との間で結合が生じて得られる。また、上述の分子中にフェノール性水酸基を有するユニットは、モノマーであるフェノール類がその芳香環上の炭素原子間で結合されることにより得られる。かかるポリフェノール系樹脂は、芳香環同士が酸素原子を介して結合しているため、柔軟性を有する重合体となるが、架橋性及び耐熱性の観点からはフェノール性水酸基が消失するため好ましくない。
 上述したように、従来数多くのリソグラフィー用膜形成材料が提案されているが、耐熱性及びエッチング耐性を高い水準で両立させたものはなく、新たな材料の開発が求められている。
 さらに、従来、数多くの光学部材向け組成物が提案されているが、耐熱性、透明性及び屈折率を高い次元で両立させたものはなく、新たな材料の開発が求められている。
 本発明は、前記問題点に鑑みてなされたものであり、耐熱性、耐エッチング性などの性能において、より優れた性能を有する重合体等を提供することにある。
 本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、特定の構造を有する重合体を用いることにより、前記課題を解決できることを見出し、本発明を完成するに到った。
 すなわち、本発明は以下の態様を包含する。
[1]
 式(1A)及び(1B)で表される芳香族ヒドロキシ化合物からなる群より選ばれる少なくとも1種のモノマー由来の繰り返し単位を有する重合体であって、
 前記繰り返し単位同士が、芳香環同士の直接結合によって連結している、重合体。
Figure JPOXMLDOC01-appb-C000017
(式(1A)及び(1B)中、Rは各々独立して、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基又は水酸基であり、少なくとも一つのRは水酸基を含む基であり、mは各々独立して1~10の整数である。)
[2]
 前記式(1A)及び(1B)で表される芳香族ヒドロキシ化合物が、それぞれ、式(2A)及び(2B)で表される芳香族ヒドロキシ化合物である、[1]に記載の重合体。
Figure JPOXMLDOC01-appb-C000018
(式(2A)及び(2B)中、mは0~10の整数であり、mは0~10の整数であり、少なくともひとつのm又はmは1以上の整数である。)
[3]
 前記式(1A)及び(1B)で表される芳香族ヒドロキシ化合物が、それぞれ、式(3A)及び(3B)で表される芳香族ヒドロキシ化合物である、[1]に記載の重合体。
Figure JPOXMLDOC01-appb-C000019
(式(3A)及び(3B)中、m1’は1~10の整数である。)
[4]
 下記式(1A)で表される繰り返し単位を有する、重合体。
Figure JPOXMLDOC01-appb-C000020
 (式(1A)中、
 Aは、置換基を有していてもよい炭素数6~40のアリール基であり、
 Rは、各々独立して、水素原子、置換基を有していてもよい炭素数1~40のアルキル基、又は置換基を有していてもよい炭素数6~40のアリール基であり、
 Rは、各々独立して、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基、又は水酸基であり、
 mは、各々独立して、0~4の整数であり、
 nは、各々独立して、1~3の整数であり、
 pは、2~10の整数であり、
 記号*は、隣接する繰り返し単位との結合箇所を表す。)。
[5]
 前記式(1A)で表される繰り返し単位が、式(1-1-1)で表される繰り返し単位及び/又は式(1-1-2)で表される繰り返し単位である、[4]に記載の重合体。
Figure JPOXMLDOC01-appb-C000021
 (式(1-1-1)中、R、R、m、n、p、及び記号*は、前記式(1A)と同義である。)
Figure JPOXMLDOC01-appb-C000022
 (式(1-1-2)中、R、R、m、n、p、及び記号*は、前記式(1A)と同義である。)。
[6]
 前記式(1A)で表される繰り返し単位が、式(1-2-1)で表される繰り返し単位~式(1-2-4)で表される繰り返し単位で選ばれる少なくとも1種である、[4]に記載の重合体。
Figure JPOXMLDOC01-appb-C000023
 (式(1-2-1)中、R、R、m、p、及び記号*は、前記式(1A)と同義である。)
Figure JPOXMLDOC01-appb-C000024
 (式(1-2-2)中、R、R、m、p、及び記号*は、前記式(1A)と同義である。)
Figure JPOXMLDOC01-appb-C000025
 (式(1-2-3)中、R、R、m、p、及び記号*は、前記式(1A)と同義である。)
Figure JPOXMLDOC01-appb-C000026
 (式(1-2-4)中、R、R、m、p、及び記号*は、前記式(1A)と同義である。)。
[7]
 前記Rが、置換基を有していてもよい炭素数が6~40のアリール基である、[4]~[6]のいずれかに記載の重合体。
[8]
 下記式(1A)及び式(2A)で表される芳香族ヒドロキシ化合物で構成される群から選ばれる少なくとも1種に由来する繰り返し単位を含む重合体であって、
 前記繰り返し単位同士が、芳香環同士の直接結合によって連結している、重合体。
Figure JPOXMLDOC01-appb-C000027
(式(1A)中、Rは炭素数1~60の2n価の基又は単結合であり、Rは各々独立して、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、置換基を有していてもよい炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基又は水酸基であり、mは各々独立して0~3の整数であり、nは1~4の整数である。式(2A)中、R及びmは前記式(1A)において説明したものと同義である。)
[9]
 前記式(1A)で表される芳香族ヒドロキシ化合物が、下記式(1)で表される芳香族ヒドロキシ化合物である、[8]に記載の重合体。
Figure JPOXMLDOC01-appb-C000028
(式(1)中、R、R、m及びnは前記式(1A)において説明したものと同義である。)
[10]
 前記式(1)で表される芳香族ヒドロキシ化合物が、下記式(1-1)で表される芳香族ヒドロキシ化合物である、[9]に記載の重合体。
Figure JPOXMLDOC01-appb-C000029
(式(1-1)中、R及びnは前記式(1)において説明したものと同義である。)
[11]
 前記Rが、R-Rで表される基であり、前記Rはメチン基であり、前記Rは置換基を有していてもよい炭素数が6~40のアリール基である、[8]~[10]のいずれかに記載の重合体。
[12]
 ヘテロ原子含有芳香族モノマー由来の繰り返し単位を有する重合体であって、
 前記繰り返し単位同士が、前記ヘテロ原子含有芳香族モノマーの芳香環同士の直接結合によって連結している、重合体。
[13]
 前記ヘテロ原子含有芳香族モノマーが、複素環式芳香族化合物を含む、[12]に記載の重合体。
[14]
 前記ヘテロ原子含有芳香族モノマーにおけるヘテロ原子が、窒素原子、リン原子及び硫黄原子からなる群より選択される少なくとも1種を含む、[12]又は[13]に記載の重合体。
[15]
 前記ヘテロ原子含有芳香族モノマーが、置換若しくは非置換の下記式(1-1)で表されるモノマー、又は置換若しくは非置換の下記式(1-2)で表されるモノマーを含む、[12]~[14]のいずれかに記載の重合体。
Figure JPOXMLDOC01-appb-C000030
(前記式(1-1)中、Xは、各々独立して、NRで表される基、硫黄原子、酸素原子又はPRで表される基であり、R及びRは、各々独立して、水素原子、水酸基、置換若しくは非置換の炭素数1~30のアルコキシ基、ハロゲン原子、置換若しくは非置換の炭素数1~30のアルキル基又は置換若しくは非置換の炭素数6~30のアリール基である。)
Figure JPOXMLDOC01-appb-C000031
(前記式(1-2)中、
 Q及びQは、単結合、置換若しくは非置換の炭素数1~20のアルキレン基、置換若しくは非置換の炭素数3~20のシクロアルキレン基、置換若しくは非置換の炭素数6~20のアリーレン基、置換若しくは非置換の炭素数2~20のヘテロアリーレン基、置換若しくは非置換の炭素数2~20のアルケニレン基、置換若しくは非置換の炭素数2~20のアルキニレン基、カルボニル基、NRaで表される基、酸素原子、硫黄原子又はPRaで表される基であり、前記Raは、各々独立して、水素原子、置換若しくは非置換の炭素数1~10のアルキル基又はハロゲン原子であり、ここで、前記モノマーにおいてQ及びQの双方が存在する場合、これらの少なくとも一方がヘテロ原子を含み、前記モノマーにおいてQのみが存在する場合、当該Qはヘテロ原子を含み、
 Qは、窒素原子、リン原子又はCRbで表される基であり、ここで、前記モノマーにおいてQはヘテロ原子を含み、
 前記Ra及びRbは、各々独立して、水素原子、置換若しくは非置換の炭素数1~10のアルキル基又はハロゲン原子である。)
[16]
 前記式(1-1)中、Rは、置換又は非置換のフェニル基である、[15]に記載の重合体。
[17]
 下記式(2)で表されるモノマー由来の構成単位をさらに有する、[12]~[16]のいずれかに記載の重合体。
Figure JPOXMLDOC01-appb-C000032
(式(2)中、
 Q4及びQ5は、単結合、置換若しくは非置換の炭素数1~20のアルキレン基、置換若しくは非置換の炭素数3~20のシクロアルキレン基、置換若しくは非置換の炭素数6~20のアリーレン基、置換若しくは非置換の炭素数2~20のアルケニレン基、置換若しくは非置換の炭素数2~20のアルキニレン基であり、
 Q6は、CRb’で表される基であり、前記Rbは、水素原子又は置換若しくは非置換の炭素数1~10のアルキル基である。)
[18]
 架橋反応性のある化合物に由来する変性部分をさらに有する、[1]~[17]のいずれかに記載の重合体。
[19]
 重量平均分子量が400~100000である、[1]~[18]のいずれかに記載の重合体。
[20]
 1-メトキシ-2-プロパノール及び/又はプロピレングリコールモノメチルエーテルアセテートに対する溶解度が1質量%以上である、[1]~[19]のいずれかに記載の重合体。
[21]
 前記溶解度が10質量%以上である、[20]に記載の重合体。
[22]
 [1]~[21]のいずれかに記載の重合体を含む、組成物。
[23]
 溶媒をさらに含む、[22]に記載の組成物。
[24]
 前記溶媒が、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、シクロペンタノン、乳酸エチル及びヒドロキシイソ酪酸メチルからなる群より選ばれる1種以上を含む、[23]に記載の組成物。
[25]
 不純物金属の含有量が金属種毎に500ppb未満である、[22]~[24]のいずれかに記載の組成物。
[26]
 前記不純物金属が、銅、マンガン、鉄、コバルト、ルテニウム、クロム、ニッケル、スズ、鉛、銀及びパラジウムからなる群より選択される少なくとも1種を含有する、[25]に記載の組成物。
[27]
 前記不純物金属の含有量が、金属種毎に1ppb以下である、[25]又は[26]に記載の組成物。
[28]
 [1]~[21]のいずれかに記載の重合体を製造するための方法であって、
 前記繰り返し単位に対応する単量体であって、1種又は2種以上の当該単量体を、酸化剤の存在下で重合させる工程を含む、重合体の製造方法。
[29]
 前記酸化剤が、銅、マンガン、鉄、コバルト、ルテニウム、クロム、ニッケル、スズ、鉛、銀及びパラジウムからなる群より選択される少なくとも1種を含有する金属塩類又は金属錯体である、[28]に記載の重合体の製造方法。
[30]
 [1]~[21]のいずれかに記載の重合体を含む、膜形成用組成物。
[31]
 [30]に記載の膜形成用組成物からなる、レジスト組成物。
[32]
 溶媒、酸発生剤及び酸拡散制御剤からなる群より選択される少なくとも1つをさらに含有する、[31]に記載のレジスト組成物。
[33]
 [31]又は[32]に記載のレジスト組成物を用いて、基板上にレジスト膜を形成する工程と、
 形成された前記レジスト膜の少なくとも一部を露光する工程と、
 露光した前記レジスト膜を現像してレジストパターンを形成する工程と、
 を含む、レジストパターン形成方法。
[34]
 [30]に記載の膜形成用組成物と、ジアゾナフトキノン光活性化合物と、溶媒と、を含有する感放射線性組成物であって、
 前記溶媒の含有量が、前記感放射線性組成物の総量100質量%に対して20~99質量%であり、
 前記溶媒以外の固形分の含有量が、前記感放射線性組成物の総量100質量%に対して1~80質量%である、感放射線性組成物。
[35]
 [34]に記載の感放射線性組成物を用いて、基板上にレジスト膜を形成する工程と、
 形成された前記レジスト膜の少なくとも一部を露光する工程と、
 露光した前記レジスト膜を現像して、レジストパターンを形成する工程を含む、レジストパターン形成方法。
[36]
 [30]に記載の膜形成用組成物からなる、リソグラフィー用下層膜形成用組成物。
[37]
 溶媒、酸発生剤及び架橋剤からなる群より選択される少なくとも1つをさらに含有する、[36]に記載のリソグラフィー用下層膜形成用組成物。
[38]
 [36]又は[37]に記載のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程を含む、リソグラフィー用下層膜の製造方法。
[39]
 [36]又は[37]に記載のリソグラフィー用下層膜形成用組成物を用いて、基板上に、下層膜を形成する工程と、
 前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程と、
 前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程と、
 を有する、レジストパターン形成方法。
[40]
 [36]又は[37]に記載のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程と、
 前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程と、
 前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程と、
 前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程と、
 前記レジストパターンをマスクとして前記中間層膜をエッチングして、中間層膜パターンを形成する工程と、
 前記中間層膜パターンをエッチングマスクとして前記下層膜をエッチングして、下層膜パターンを形成する工程と、
 前記下層膜パターンをエッチングマスクとして前記基板をエッチングして、前記基板にパターンを形成する工程と、
 を有する、回路パターン形成方法。
[41]
 [30]に記載の膜形成用組成物からなる、光学部材形成用組成物。
[42]
 溶媒、酸発生剤及び架橋剤からなる群より選択される少なくとも1つをさらに含有する、[41]に記載の光学部材形成用組成物。
 本発明によれば、耐熱性、耐エッチング性などの性能において、より優れた性能を有する重合体等を提供することができる。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
 本明細書において「置換」とは別段定義がない限り、官能基中の一つ以上の水素原子が、置換基で置換されることを意味する。「置換基」としては、特に限定されないが、例えば、ハロゲン原子、水酸基、カルボキシル基、シアノ基、ニトロ基、チオール基、複素環基、炭素数1~30のアルキル基、炭素数6~20のアリール基、炭素数1~30のアルコキシル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数1~30のアシル基、炭素数0~30のアミノ基、が挙げられる。
 また、「アルキル基」とは、別段定義がない限り、直鎖状脂肪族炭化水素基、分岐状脂肪族炭化水素基、及び環状脂肪族炭化水素基を包含する。
 なお、本明細書に記載の構造式に関して、例えば、下記式のように、或る基Cとの結合を示す線が環A及び環Bと接触している場合には、Cが環A及び環Bのいずれと結合していてもよいことを意味する。すなわち、下記式におけるn個の基Cは、各々独立して、環A及び環Bのいずれと結合していてもよい。
Figure JPOXMLDOC01-appb-C000033
<重合体>
 本実施形態の重合体は、所定の構造を有するものであり、耐熱性、耐エッチング性などの性能において、より優れた性能を有する。本実施形態の重合体のうち、特に芳香環に結合する水酸基を有するものについては、「多環ポリフェノール樹脂」と称する場合がある。
 本実施形態の重合体としては、後述するとおり、第1の態様に係る重合体(以下、「第1の重合体」ともいう。)、第2の態様に係る重合体(以下、「第2の重合体」ともいう。)、第3の態様に係る重合体(以下、「第3の重合体」ともいう。)、及び第4の態様に係る重合体(以下、「第4の重合体」ともいう。)を挙げることができる。すなわち、本実施形態の重合体には、第1の重合体、第2の重合体、第3の重合体及び第4の重合体が包含される。
 なお、本明細書においては、後述の[第1の重合体]の項で記載した式(1A)及び(1B)で表される芳香族ヒドロキシ化合物及びその好適なものとして記載した化合物を「化合物群1」とし、[第2の重合体]の項で記載した式(1A-1)で表される芳香族ヒドロキシ化合物及びその好適なものとして記載した化合物を「化合物群2」とし、[第3の重合体]の項で記載した式(1A)及び式(2A)で表される芳香族ヒドロキシ化合物及びその好適なものとして記載した化合物を「化合物群3」とし、[第4の重合体]の項で記載したヘテロ原子含有芳香族モノマー及びその好適なものとして記載した化合物を「化合物群4」とし、以下の各化合物に付与された式番号は、各化合物群についての個別の式番号であるとする。すなわち、例えば、[第1の重合体]の項で記載した式(1A)で表される芳香族ヒドロキシ化合物及びその好適なものとして記載した化合物は、[第3の重合体]の項で記載した式(1A)で表される芳香族ヒドロキシ化合物及びその好適なものとして記載した化合物とは異なるものとして区別されるものとする。
[第1の重合体]
 第1の重合体は、下記式(1A)及び(1B)で表される芳香族ヒドロキシ化合物からなる群より選ばれる少なくとも1種のモノマー由来の繰り返し単位を有する重合体であって、前記繰り返し単位同士が、芳香環同士の直接結合によって連結している。第1の重合体は、このように構成されていることから、耐熱性、耐エッチング性などの性能において、より優れた性能を有する。
Figure JPOXMLDOC01-appb-C000034
(式(1A)及び(1B)中、Rは各々独立して、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基又は水酸基であり、少なくとも1つのRは水酸基を含む基であり、mは各々独立して1~10の整数である。)
 以下、[第1の重合体]の項における式(1A)及び式(1B)について詳細に説明する。なお、第1の重合体は、上記式(1A)及び式(1B)について定義したとおり、繰り返し単位中に少なくとも1つの水酸基を含む基を有することから、多環ポリフェノール樹脂と称することもできる。
 式(1A)及び式(1B)において、Rは、各々独立して、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、置換基を有していてもよい炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基又は水酸基である。ここで、前記アルキル基は、直鎖状、分岐状又は環状のいずれであってもよい。
 ここで、Rの少なくとも1つは水酸基である。
 炭素数1~40のアルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ドデシル基、バレル基等が挙げられる。
 炭素数6~40のアリール基としては、以下に限定されないが、例えば、フェニル基、ナフタレン基、ビフェニル基、アントラシル基、ピレニル基、ペリレン基等が挙げられる。
 炭素数2~40のアルケニル基としては、以下に限定されないが、例えば、エチニル基、プロペニル基、ブチニル基、ペンチニル基等が挙げられる。
 炭素数2~40のアルキニル基としては、以下に限定されないが、例えば、アセチレン基、エチニル基等が挙げられる。
 炭素数1~40のアルコキシ基としては、以下に限定されないが、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ等が挙げられる。
 ハロゲン原子としては、以下に限定されないが、例えば、フッ素、塩素、臭素、ヨウ素が挙げられる。
 複素環基としては、以下に限定されないが、例えば、ピリジン、ピロール、ピリダジン、チオフェン、イミダゾール、フラン、ピラゾール、オキサゾール、トリアゾール、チアゾール又はこれらのベンゾ縮環体等が挙げられる。
 mは各々独立して1~10の整数である。溶解性の観点から、1~4が好ましく、原料入手性の観点から、1~2が好ましい。
 本実施形態において、芳香族ヒドロキシ化合物は、上記式(1A)又は上記式(1B)で表されるものを、単独で用いることもでき、また2種以上を共に用いることもできる。本実施形態において、耐熱性の観点から、上記式(1A)で表されるものを芳香族ヒドロキシ化合物として採用することが好ましい。また溶解性の観点から、上記式(1B)で表されるものを芳香族ヒドロキシ化合物として採用することが好ましい。
 本実施形態において、耐熱性と溶解性との兼備、製造のし易さの観点から、上記式(1A)及び(1B)で表される芳香族ヒドロキシ化合物は、それぞれ、下記式(2A)及び(2B)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000035
(式(2A)及び(2B)中、mは0~10の整数であり、mは0~10の整数であり、少なくともひとつのm又はmは1以上の整数である。)
 本実施形態において、製造のし易さの観点から、上記式(1A)及び(1B)で表される芳香族ヒドロキシ化合物は、それぞれ、下記式(3A)及び(3B)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000036
(式(3A)及び(3B)中、m1’は1~10の整数である。)
 前記式(1A)、式(2A)及び式(3A)で表される芳香族ヒドロキシ化合物の具体例を、以下に示すが、ここで列挙した限りではない。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 上記式中、Rは各々独立して、水素原子、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、置換基を有していてもよい炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基又は水酸基である。ここで、前記アルキル基は、直鎖状、分岐状又は環状のいずれであってもよい。
Figure JPOXMLDOC01-appb-C000039
 第1の重合体が有する繰返し単位の、該重合体中における結合順序は、特に限定されない。例えば、式(1A)又は式(1B)で表される芳香族ヒドロキシ化合物に由来するひとつの単位のみが繰り返し単位として2以上含まれるものであってもよいし、式(1A)又は式(1B)で表される芳香族ヒドロキシ化合物に由来する複数の単位が、それぞれ1以上含まれるものであってもよい。その順序もブロック共重合あるいはランダム共重合のいずれでもよい。
 第1の重合体における繰り返し単位同士が直接結合する位置としては、特に限定されず、繰り返し単位が前記一般式(1A)又は式(1B)で表されるものである場合には、フェノール性水酸基及び他の置換基が結合していないいずれか一つの炭素原子がモノマー同士の直接結合に関与する。
 第1の重合体において「繰り返し単位同士が、芳香環同士の直接結合によって連結している」とは、一例として、重合体中の繰り返し単位(1A)同士が、一方の繰り返し単位(1A)の式中の括弧内にてアリール構造で示される芳香環上の炭素原子と、他方の繰り返し単位(1A)の式中の括弧内にてアリール構造で示される芳香族上の炭素原子とが、単結合にて、即ち、炭素原子、酸素原子、硫黄原子など他の原子を介さずに、直接結合されている態様が挙げられる。
 また、第1の重合体としては下記の態様を含んでもよい。
(1)一方の繰り返し単位(1A)にて、Rがアリール基の場合(Rがアリール基を有する2n価の基である場合を含む)、当該アリール基の芳香環上の原子と、他方の繰り返し単位(1A)の式中の括弧内にてアリール構造で示される芳香環上の原子とが、単結合にて直接結合している態様。
(2)一方及び他方の繰り返し単位(1A)にて、Rがアリール基の場合(Rがアリール基を有する2n価の基である場合を含む)、一方及び他方の繰り返し単位(1A)間において、Rで示されるアリール基の芳香環上の原子同士が、単結合にて直接結合している態様。
 なお、第1の重合体においては、上記(1)及び(2)のいずれの態様であっても、耐熱性の観点から、フェノール性水酸基を有する芳香環のいずれか一つの炭素原子が芳香環同士の直接結合に関与することが好ましい。
 第1の重合体において、各繰返し単位の数と比は、特に限定されないが、用途や下記の分子量の値を考慮して適宜調整することが好ましい。
 また、第1の重合体は、繰り返し単位(1A)及び/又は(1B)のみで構成することができるが、用途に応じた性能を損なわない範囲において、他の繰り返し単位を含むものであってもよい。他の繰り返し単位には、例えば、フェノール性水酸基が縮合することにより形成されるエーテル結合を有する繰り返し単位や、ケトン構造を有する繰り返し単位等が含まれる。これら他の繰り返し単位も、繰り返し単位(1A)及び/又は(1B)と、芳香環同士で直接結合していてもよい。
 例えば、第1の重合体の総量(X)に対する繰り返し単位(1A)及び/又は(1B)の総量(Y)のモル比〔Y/X〕は、0.05~1.00とすることができ、好ましくは、0.45~1.00とすることができる。
 第1の重合体の重量平均分子量は、特に限定されないが、400~100000の範囲であることが好ましく、500~15000であることがより好ましく、1000~12000であることがさらに好ましい。
 第1の重合体における重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、その用途に応じて求められる比も異なることから、特にその範囲が限定されるものではないが、より均質な分子量を有するものとして、例えば、好ましいものは3.0以下の範囲のものが挙げられ、より好ましいものは1.05以上3.0以下の範囲のものが挙げられ、特に好ましいものとして1.05以上2.0未満のものが挙げられ、耐熱性の観点から一層好ましいものとして1.05以上1.5未満のものが挙げられる。
 第1の重合体は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、第1の重合体は、1-メトキシ-2-プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、23℃の温度下で当該溶媒に対する溶解度が1質量%以上であることが好ましく、より好ましくは5質量%以上であり、さらに好ましくは10質量%以上、特に好ましくは20重量%以上、とりわけ好ましいのは30重量%以上である。ここで、PGME及び/又はPGMEAに対する溶解度は、「第1の重合体の質量÷(第1の重合体の質量+溶媒の質量)×100(質量%)」と定義される。例えば、第1の重合体10gがPGMEA90gに対して溶解すると評価されるのは、第1の重合体のPGMEAに対する溶解度が「10質量%以上」となる場合であり、溶解しないと評価されるのは、当該溶解度が「10質量%未満」となる場合である。
 後述する組成物、重合体の製造方法、膜形成用組成物、レジスト組成物、レジストパターン形成方法、感放射線性組成物、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法、回路パターン形成方法、及び光学部材形成用組成物からなる群より選択される少なくとも一つの用途への適用を想定し、耐熱性及びエッチング耐性をより高める観点から、第1の重合体は、後述する実施例に記載のANT-1、ANT-2、ANT-3、ANT-4及びPYL-5からなる群より選択される少なくとも一種であることがとりわけ好ましい。
[第2の重合体]
 第2の重合体は、下記式(1A)で表される繰り返し単位を有する。第2の重合体は、このように構成されていることから、耐熱性、耐エッチング性などの性能において、より優れた性能を有する。第2の重合体は、耐熱性、耐エッチング性の他、例えば、レジストパターン形成性、レジスト層やレジスト中間層膜材料等に対する密着性及び埋め込み性、成膜性、並びに透明性及び屈性率において、より優れた性能を発現することができる。
Figure JPOXMLDOC01-appb-C000040
 (式(1A)中、
 Aは、置換基を有していてもよい炭素数6~40のアリール基であり、
 Rは、各々独立して、水素原子、置換基を有していてもよい炭素数1~40のアルキル基、又は置換基を有していてもよい炭素数6~40のアリール基であり、
 Rは、各々独立して、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基、又は水酸基であり、
 mは、各々独立して、0~4の整数であり、
 nは、各々独立して、1~3の整数であり、
 pは、2~10の整数であり、
 記号*は、隣接する繰り返し単位との結合箇所を表す。)。
 以下、[第2の重合体]の項における式(1A)について詳細に説明する。なお、第2の重合体は、上記式(1A)から明らかであるように、繰り返し単位中に少なくとも1つの水酸基を有することから、多環ポリフェノール樹脂と称することもできる。
 式(1A)中、Aは、置換基を有していてもよい炭素数6~40のアリール基であり、Rは、各々独立して、水素原子、置換基を有していてもよい炭素数1~40のアルキル基、又は置換基を有していてもよい炭素数6~40のアリール基であり、Rは、各々独立して、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基、又は水酸基であり、mは、各々独立して、0~4の整数であり、nは、各々独立して、1~3の整数であり、pは2~10の整数であり、記号*は、隣接する繰り返し単位との結合箇所を表す。
 第2の重合体は、式(1A)で表される繰り返し単位同士が、結合している構造を有する。すなわち、第2の重合体は、重合体中のAにおけるアリール構造で示される芳香環同士が直接結合している構造を有する。第2の重合体は、式(1A)で表される1種の繰り返し単位が、連続して結合する単独重合体であってもよく、式(1A)で表される2種以上の繰り返し単位と他の共重合成分に由来する繰り返し単位とを有する共重合体であってもよい。また、当該共重合体である場合、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。第2の重合体は、より優れた耐熱性が得られ、さらに溶媒への溶解性がより優れ、成形性により優れる点から、式(1A)で表される1種の繰り返し単位が連続して結合する単独重合体であることがより好ましい。
 第2の重合体において、「芳香環同士が直接結合する」とは、一例として、重合体中の繰り返し単位(1A)同士が、一方の繰り返し単位(1A)の式中のAにおけるアリール構造で示される芳香環上の炭素原子と、他方の繰り返し単位(1A)の式中のAにおけるアリール構造で示される芳香族上の炭素原子とが、単結合にて、即ち、炭素原子、酸素原子、硫黄原子など他の原子を介さずに、直接結合されている態様が挙げられる。
 また、第2の重合体としては下記の態様を含んでもよい。
(1)一方の繰り返し単位(1A)にて、R及びRのいずれかがアリール基の場合(Rがアリール基を有する2n+1価の基である場合を含む)、当該アリール基の芳香環上の原子と、他方の繰り返し単位(1A)の式中のAにおけるアリール構造で示される芳香環上の原子とが、単結合にて直接結合している態様。
(2)一方及び他方の繰り返し単位(1A)にて、R及びRのいずれかがアリール基の場合(Rがアリール基を有する2n+1価の基である場合を含む)、一方及び他方の繰り返し単位(1A)間において、R及びRで示されるアリール基の芳香環上の原子同士が、単結合にて直接結合している態様。
 また、第2の重合体においては、特に断りのない限り、重合体の構造の元となる化合物を芳香族ヒドロキシ化合物と称する。第2の重合体は、その構造の元となる芳香族ヒドロキシ化合物をモノマーとして得られ、重合体中のAにおけるアリール構造で示される芳香環同士が直接結合する構造を有する。例えば、式(1A)で表される繰り返し単位を有する重合体は、その構造の元となる下記の式(1A-1)で表される芳香族ヒドロキシ化合物をモノマーとして、式(1A-1)中のAにおけるアリール構造で示される芳香環同士が直接結合することにより得られる。
Figure JPOXMLDOC01-appb-C000041
(式(1A-1)中、A、R、R、m、n、及びpは、式(1A)と同義である。)
 式(1A)中、Aは、置換基を有していてもよい炭素数6~40のアリール基である。
 炭素数6~40のアリール基としては、例えば、フェニル基、ナフタレン基、ビフェニル基、アントラシル基、ピレニル基、及びペリレン基等が挙げられる。これらの中でも、優れた溶解性が得られ、耐熱性、耐エッチング性、保存安定性、レジストパターン形成性、レジスト層やレジスト中間層膜材料等に対する密着性及び埋め込み性、成膜性、並びに透明性及び屈性率の性能において、より優れた性能を有することから、フェニル基、及びナフタレン基が好ましい。
 Rは、各々独立して、水素原子、置換基を有していてもよい炭素数1~40のアルキル基、又は置換基を有していてもよい炭素数6~40のアリール基である。Rは、高い耐熱性と優れた溶解性との兼備の観点から、置換基を有していてもよい炭素数が6~40のアリール基であることが好ましい。
 Rの置換基としては、溶解性、耐熱性、及びエッチング耐性の兼備の観点から、カルボキシル基、シアノ基、ニトロ基、チオール基、複素環基が好ましく、カルボキシル基、シアノ基、ニトロ基、及びチオール基がより好ましく、カルボキシル基、及びシアノ基が更に好ましく、シアノ基が更により好ましい。
 置換基を有していてもよい炭素数1~40のアルキル基としては、例えば、メチル基、ヒドロキシメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、シアノブチル基、ニトロブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ドデシル基、及びバレル基等が挙げられる。
 置換基を有していてもよい炭素数6~40のアリール基としては、例えば、フェニル基、シクロヘキシルフェニル基、フェノール基、シアノフェニル基、ニトロフェニル基、ナフタレン基、ビフェニル基、アントラセン基、ナフタセン基、アントラシル基、ピレニル基、ペリレン基、ペンタセン基、ベンゾピレン基、クリセン基、ピレン基、トリフェニレン基、コランニュレン基、コロネン基、オバレン基、フルオレン基、ベンゾフルオレン基、及びジベンゾフルオレン基等が挙げられる。
 Rとしては、より更に優れた耐熱性が得られ、よりさらに溶媒への溶解性が優れ、成形性によりさらに優れる点から、水素原子、フェニル基、フェノール基、シアノフェニル基、シクロヘキシルフェニル基、及びナフタレン基が好ましく、水素原子、フェノール基、シアノフェニル基、及びシクロヘキシルフェニル基がより好ましい。また、これらの基であると、優れた耐熱性に加えて、ArF露光で使用する波長193nmにおけるn値が高く、及びk値が低く、パターンの転写性に優れる傾向にあることからより好ましい。
 また、Rは、これらの芳香族炭化水素環の他、ピリジン、ピロール、ピリダジン、チオフェン、イミダゾール、フラン、ピラゾール、オキサゾール、トリアゾール、及びチアゾール、並びにこれらのベンゾ縮環体などのヘテロ環であってもよい。
 Rは、各々独立して、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、置換基を有していてもよい炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基、又は水酸基である。ここで、アルキル基は、直鎖状、分岐状、又は環状のいずれであってもよい。
 炭素数1~40のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ドデシル基、及びバレル基等が挙げられる。
 炭素数6~40のアリール基としては、例えば、フェニル基、ナフタレン基、ビフェニル基、アントラシル基、ピレニル基、及びペリレン基等が挙げられる。
 炭素数2~40のアルケニル基としては、例えば、エチニル基、プロペニル基、ブチニル基、及びペンチニル基等が挙げられる。
 炭素数2~40のアルキニル基としては、例えば、アセチレン基、及びエチニル基等が挙げられる。
 炭素数1~40のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、及びペントキシ等が挙げられる。
 Rとしては、優れた溶解性が得られ、耐熱性、耐エッチング性、保存安定性、レジストパターン形成性、レジスト層やレジスト中間層膜材料等に対する密着性及び埋め込み性、成膜性、並びに透明性及び屈性率の性能において、より優れた性能を有することから、i-プロピル基、i-ブチル基、t-ブチル基が好ましく、t-ブチル基がより好ましい。
 mは、各々独立して、0~4の整数である。溶解性の観点から、0~2の整数が好ましく、0~1の整数がより好ましく、原料入手性の観点から、0が更に好ましい。
 nは、各々独立して、1~3の整数である。溶解性と耐熱性兼備の観点から、原料入手性の観点から、1~2の整数が好ましく、2がより好ましい。
 pは、2~10の整数である。溶解性と耐熱性兼備の観点から、3~8の整数が好ましく、4~6の整数がより好ましく、4が更に好ましい。
 本実施形態において、式(1A)で表される繰り返し単位が、製造のし易さの観点から、式(1-1-1)で表される繰り返し単位及び/又は式(1-1-2)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 式(1-1-1)及び(1-1-2)中、R、R、m、n、p、及び記号*は、式(1A)と同義である。
 本実施形態において、式(1A)で表される繰り返し単位は、製造のし易さの観点から、式(1-2-1)で表される繰り返し単位~式(1-2-4)で表される繰り返し単位で選ばれる少なくとも1種であることがより好ましい。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 式(1-2-1)~(1-2-4)中、R、R、m、p、及び記号*は、式(1A)と同義である。
 本実施形態において、式(1A)で表される繰り返し単位は、製造のし易さの観点から、式(1-3-1)で表される繰り返し単位~式(1-3-12)で表される繰り返し単位で選ばれる少なくとも1種であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
 式(1-3-1)~式(1-3-12)中、R、p、及び記号*は、式(1A)と同義である。
 Rは、各々独立して、水素原子、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、置換基を有していてもよい炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基、又は水酸基である。ここで、アルキル基は、直鎖状、分岐状、又は環状のいずれであってもよい。
 本実施形態において、式(1A)で表される繰り返し単位は、製造がし易く、より優れた耐熱性が得られ、さらに溶媒への溶解性が優れ、成形性により優れる点から、式(1-3-1)で表される繰り返し単位、式(1-3-2)で表される繰り返し単位、及び式(1-3-9)で表される繰り返し単位で選ばれる少なくとも1種であることがより更に好ましい。
 また、式(1-3-1)~式(1-3-12)中、製造のし易さの観点から、Rは、各々独立して、水素原子、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基であることがより更に好ましい。置換基を有していてもよい炭素数1~40のアルキル基としては、製造がし易く、さらに溶媒への溶解性が優れ、成形性により優れることから、水素原子、i-プロピル基、i-ブチル基、及びt-ブチル基であることがより更により好ましく、水素原子、及びt-ブチル基が特に好ましい。
 本実施形態において、式(1A)で表される繰り返し単位は、製造のし易さの観点から、式(1-4-1)で表される繰り返し単位~式(1-4-12)で表される繰り返し単位で選ばれる少なくとも1種であることがより更により好ましい。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
 式(1-4-1)~式(1-4-12)中、R、p、及び記号*は、式(1A)と同義である。
 本実施形態において、式(1A)で表される繰り返し単位は、製造がし易く、より更に優れた耐熱性が得られ、よりさらに溶媒への溶解性が優れ、成形性によりさらに優れる点から、式(1-4-2)で表される繰り返し単位、及び式(1-4-7)で表される繰り返し単位で選ばれる少なくとも1種であることがより更に好ましい。
 Rは、溶解性、耐熱性、及びエッチング耐性をよりバランスよく有する点から、水素原子、及び式(2-1-1)~式(2-1-37)のいずれか1つの基であることが好ましい。なお、重合体中に複数の式(1A)で表される繰り返し単位を有する場合、それらの式(1A)で表される繰り返し単位におけるRは、水素原子、又は式(2-1-1)~式(2-1-37)のいずれか1つの基であってもよく、それぞれの繰り返し単位において、それぞれ異なる基を有していてもよい。なお、各基において、波線部分は、重合体の主構造を示し、式(1A)における-CH-の炭素原子との結合部分を示す。また、各基において、R4は、Rと同義である。
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
 Rは、溶解性、耐熱性、及びエッチング耐性をより更にバランスよく有する点から、水素原子、式(2-1-17)、式(2-1-19)、及び式(2-1-29)のいずれか1つの基であることがより好ましい。
 第2の重合体の重量平均分子量(Mw)としては、400~100,000の範囲であることが好ましく、500~15,000であることがより好ましく、3,200~12,000であることがさらに好ましい。
 第2の重合体における重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、その用途に応じて求められる比も異なるが、より均質な分子量を有すると、優れた耐熱性が得られることから、3.0以下であることが好ましく、1.05以上3.0以下であることがより好ましく、1.05以上2.0以下であることが更に好ましく、より優れた耐熱性が得られる点から1.05以上1.7以下であることがより更に好ましい。なお、重量平均分子量(Mw)及び数平均分子量(Mn)は、GPC測定によるポリスチレン換算で求められる。
 第2の重合体中の式(1A)で表される繰り返し単位数は、高い耐熱性が得られる点から、2~300であることが好ましく、2~100であることがより好ましく、2~10であることが更に好ましい。なお、式(1A)で表される繰り返し単位が2種以上含まれる場合には、これらの単位の合計数とし、これらの構成比は、用途及び重量平均分子量の値を考慮して適宜調整することができる。
 また、第2の重合体は、繰り返し単位(1A)のみで構成することができるが、用途に応じた性能を損なわない範囲において、他の繰り返し単位を含むものであってもよい。他の繰り返し単位には、例えば、フェノール性水酸基が縮合することにより形成されるエーテル結合を有する繰り返し単位や、ケトン構造を有する繰り返し単位等が含まれる。これら他の繰り返し単位も、繰り返し単位(1A)と、芳香環同士で直接結合していてもよい。
 例えば、第2の重合体中に含まれる繰り返し数の総モル量(X)に対する、繰り返し単位(1A)のモル量(Y)のモル比〔Y/X〕は、5~100であり、好ましくは45~100である。
 第2の重合体における繰り返し単位同士が直接結合する位置としては、例えば、式(1A)におけるアリール基における炭素原子が、モノマー同士の直接結合に関与している。
 第2の重合体は、より優れた耐熱性が得られる点から、フェノール性水酸基を有する芳香環における炭素原子が、モノマー同士の直接結合に関与することが好ましい。
 第2の重合体は、用途に応じて性能を損なわない範囲において、フェノール性水酸基が縮合することにより形成されるエーテル結合を有する繰り返し単位を含んでいてもよい。また、ケトン構造を含んでいてもよい。
 第2の重合体は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。例えば、第2の重合体は、1-メトキシ-2-プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、23℃の温度下で当該溶媒に対する溶解度が1質量%以上であることが好ましく、より好ましくは5質量%以上であり、さらに好ましくは10質量%以上、よりさらに好ましくは20重量%以上、よりさらにより好ましくは30重量%以上である。ここで、PGME及び/又はPGMEAに対する溶解度は、「第2の重合体の合計量/(第2の重合体の合計量+溶媒の合計量)×100(質量%)」と定義される。例えば、第2の重合体の合計量10gが、PGMEA90gに対して溶解すると評価されるのは、第2の重合体のPGMEAに対する溶解度が「1質量%以上」となる場合であり、溶解性が高くないと評価されるのは、当該溶解度が「1質量%未満」となる場合である。
 後述する組成物、重合体の製造方法、膜形成用組成物、レジスト組成物、レジストパターン形成方法、感放射線性組成物、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法、回路パターン形成方法、及び光学部材形成用組成物からなる群より選択される少なくとも一つの用途への適用を想定し、耐熱性及びエッチング耐性をより高める観点から、第2の重合体は、後述する実施例に記載のRCA-1、RCR-1、RCR-2、RCN-1及びRCN-2からなる群より選択される少なくとも一種であることがとりわけ好ましい。
[第3の重合体]
 第3の重合体は、下記式(1A)及び式(2A)で表される芳香族ヒドロキシ化合物で構成される群から選ばれる少なくとも1種に由来する繰り返し単位を含む重合体であって、前記繰り返し単位同士が、芳香環同士の直接結合によって連結している。第3の重合体は、このように構成されていることから、耐熱性、耐エッチング性などの性能において、より優れた性能を有する。
Figure JPOXMLDOC01-appb-C000061
(式(1A)中、Rは炭素数1~60の2n価の基又は単結合であり、Rは各々独立して、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、置換基を有していてもよい炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基又は水酸基であり、mは各々独立して0~3の整数であり、nは1~4の整数である。式(2A)中、R及びmは前記式(1A)において説明したものと同義である。)
 以下、[第3の重合体]の項における式(1A)及び式(2A)について詳細に説明する。なお、第3の重合体は、式(1A)及び式(2A)から明らかであるように、繰り返し単位中に少なくとも2つの水酸基を有することから、多環ポリフェノール樹脂と称することもできる。
 式(1A)中、Rは炭素数1~60の2n価の基又は単結合である。
 炭素数1~60の2n価の基とは、例えば、2n価の炭化水素基であり、当該炭化水素基は、置換基として、後述する種々の官能基を有するものであってもよい。また、2n価の炭化水素基は、n=1のときには、炭素数1~60のアルキレン基、n=2のときには、炭素数1~60のアルカンテトライル基、n=3のときには、炭素数2~60のアルカンヘキサイル基、n=4のときには、炭素数3~60のアルカンオクタイル基のことを示す。該2n価の炭化水素基としては、例えば、2n+1価の炭化水素基と、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基とが結合した基等が挙げられる。ここで、脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
 2n+1価の炭化水素基としては、以下に限定されないが、例えば、3価のメチン基、エチン基等が挙げられる。
 また、前記2n価の炭化水素基は、二重結合、ヘテロ原子及び/又は炭素数6~59のアリール基を有していてもよい。なお、Rはフルオレンやベンゾフルオレン等のフルオレン骨格を有する化合物に由来する基を含んでいてもよい。
 第3の重合体において、該2n価の基はハロゲン基、ニトロ基、アミノ基、水酸基、アルコキシ基、チオール基又は炭素数6~40のアリール基を含んでいてもよい。さらに、該2n価の基はエーテル結合、ケトン結合、エステル結合又は二重結合を含んでいてもよい。
 第3の重合体において2n価の基は耐熱性の観点から直鎖状炭化水素基よりも分岐状炭化水素基又は脂環式炭化水素基を含むことが好ましく、脂環式炭化水素基を含むことがより好ましい。また、第3の重合体においては、2n価の基が炭素数6~60のアリール基を有することが特に好ましい。
 2n価の基に含まれ得る置換基であって、直鎖状の炭化水素基及び分岐状炭化水素基としては、特に限定されないが、例えば、無置換のメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ドデシル基、バレル基等が挙げられる。
 2n価の基に含まれ得る置換基であって、脂環式炭化水素基及び炭素数6~60の芳香族基としては、特に限定されないが、例えば、無置換のフェニル基、ナフタレン基、ビフェニル基、アントラシル基、ピレニル基、シクロヘキシル基、シクロドデシル基、ジシクロペンチル基、トリシクロデシル基、アダマンチル基、フェニレン基、ナフタレンジイル基、ビフェニルジイル基、アントラセンジイル基、ピレンジイル基、シクロヘキサンジイル基、シクロドデカンジイル基、ジシクロペンタンジイル基、トリシクロデカンジイル基、アダマンタンジイル基、ベンゼントリイル基、ナフタレントリイル基、ビフェニルトリイル基、アントラセントリイル基、ピレントリイル基、シクロヘキサントリイル基、シクロドデカントリイル基、ジシクロペンタントリイル基、トリシクロデカントリイル基、アダマンタントリイル基、ベンゼンテトライル基、ナフタレンテトライル基、ビフェニルテトライル基、アントラセンテトライル基、ピレンテトライル基、シクロヘキサンテトライル基、シクロドデカンテトライル基、ジシクロペンタンテトライル基、トリシクロデカンテトライル基、アダマンタンテトライル基等が挙げられる。
 式(1A)において、Rは各々独立して、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、置換基を有していてもよい炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基又は水酸基である。ここで、前記アルキル基等は、直鎖状、分岐状又は環状のいずれであってもよい。
 炭素数1~40のアルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ドデシル基、バレル基等が挙げられる。
 炭素数6~40のアリール基としては、以下に限定されないが、例えば、フェニル基、ナフタレン基、ビフェニル基、アントラシル基、ピレニル基、ペリレン基等が挙げられる。
 炭素数2~40のアルケニル基としては、以下に限定されないが、例えば、エチニル基、プロペニル基、ブチニル基、ペンチニル基等が挙げられる。
 炭素数2~40のアルキニル基としては、以下に限定されないが、例えば、アセチレン基、エチニル基等が挙げられる。
 炭素数1~40のアルコキシ基としては、以下に限定されないが、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ等が挙げられる。
 ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。
 複素環基としては、以下に限定されないが、例えば、ピリジン、ピロール、ピリダジン、チオフェン、イミダゾール、フラン、ピラゾール、オキサゾール、トリアゾール、チアゾールまたは又はこれらのベンゾ縮環体等が挙げられる。
 式(1A)において、mは各々独立して0~3の整数である。mとしては、溶解性の観点から、0~1が好ましく、原料入手性の観点からは、0が更に好ましい。
 式(1A)において、nは、1~4の整数であり、1~2が好ましい。なお、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよい。
 式(2A)において、R及びmは前記式(1A)において説明したものと同義である。
 第3の重合体において、芳香族ヒドロキシ化合物は、前記式(1A)又は前記式(2A)で表されるものを、単独で用いることもでき、また2種以上を共に用いることもできる。第3の重合体において、耐熱性の観点から、前記式(1A)で表されるものを芳香族ヒドロキシ化合物として採用することが好ましい。また溶解性の観点から、前記式(2A)で表されるものを芳香族ヒドロキシ化合物として採用することが好ましい。
 第3の重合体において、前記式(1A)で表される芳香族ヒドロキシ化合物は、耐熱性と溶解性との兼備、製造のし易さの観点から下記式(1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000062
(式(1)中、R、R、m及びnは前記式(1A)において説明したものと同義である。)
 第3の重合体において、前記式(1)で表される芳香族ヒドロキシ化合物は、製造のし易さの観点から下記式(1-1)で表される芳香族ヒドロキシ化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000063
(式(1-1)中、R及びnは前記式(1)において説明したものと同義である。)
 第3の重合体において、前記式(1-1)で表される芳香族ヒドロキシ化合物は、製造のし易さの観点から下記式(1-2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000064
(式(1-2)中、Rは前記式(1-1)において説明したものと同義である。)
 前記式(1A)、式(1)、式(1-1)、式(1-2)において、高い耐熱性と溶解性との兼備の観点から、前記Rは、置換基を有していてもよい炭素数が6~40のアリール基を含むことが好ましい。第3の重合体において、炭素数が6~40のアリール基としては、以下に限定されないが、例えば、ベンゼン環であってもよいし、ナフタレン、アントラセン、ナフタセン、ペンタセン、ベンゾピレン、クリセン、ピレン、トリフェニレン、コランニュレン、コロネン、オバレン、フルオレン、ベンゾフルオレン及びジベンゾフルオレン等の種々公知の縮合環であってもよい。第3の重合体において、前記Rが、ナフタレン、アントラセン、ナフタセン、ペンタセン、ベンゾピレン、クリセン、ピレン、トリフェニレン、コランニュレン、コロネン、オバレン、フルオレン、ベンゾフルオレン及びジベンゾフルオレン等の種々の縮合環であることが耐熱性の観点から好ましい。また、Rが、ナフタレン、アントラセンであることが、ArF露光で使用する波長193nmにおけるn値、k値が低く、パターンの転写性に優れる傾向にあることから好ましい。また、前記Rは、上述の芳香族炭化水素環の他、ピリジン、ピロール、ピリダジン、チオフェン、イミダゾール、フラン、ピラゾール、オキサゾール、トリアゾール、チアゾール又はこれらのベンゾ縮環体などのヘテロ環が挙げられる。第3の重合体において、前記Rは、溶解性の観点から芳香族炭化水素環、ヘテロ環であることが好ましく、より好ましくは芳香族炭化水素環である。また、前記Rは、溶解性の観点から、フルオレンやベンゾフルオレン等のフルオレン骨格を有する化合物に由来する基以外の芳香族炭化水素環であってもよい。
 前記式(1A)、式(1)、式(1-1)、式(1-2)において、更なる高い耐熱性と溶解性との兼備の観点から、前記Rが、R-Rで表される基であり、ここで、当該Rはメチン基であり、当該Rは置換基を有していてもよい炭素数が6~40のアリール基であることがより好ましい。当該アリールとしては上述のアリール基が挙げられ、さらに、フルオレンやベンゾフルオレン等のフルオレン骨格を有する化合物に由来する基以外のアリール基であってもよい 。
 前記式(1A)、式(1)、式(1-1)、式(1-2)で表される芳香族ヒドロキシ化合物の具体例を、以下に示す。ただし、第3の重合体における芳香族ヒドロキシ化合物は以下に列挙した化合物に限定されるものではない。
 また、第3の重合体の具体例としては、例えば、下記で示される芳香族ヒドロキシ化合物に由来する繰り返し単位(1A)及び(2A)から選ばれる少なくとも1種を含み、当該繰り返し単位同士が、芳香環同士の直接結合によって連結している重合体が挙げられる。このような重合体としては、例えば、後述する合成実施例で示される、RBisP-1、RBisP-2、RBisP-3、RBisP-4、及びRBisP-5が、重合体の例として挙げられる。また、後述する組成物、重合体の製造方法、膜形成用組成物、レジスト組成物、レジストパターン形成方法、感放射線性組成物、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法、回路パターン形成方法、及び光学部材形成用組成物等のあらゆる用途への適用を想定し、耐熱性及びエッチング耐性をより高める観点からも、第3の重合体は、後述する実施例に記載のRBisP-1、RBisP-2、RBisP-3、RBisP-4、RBisP-5及び後述するRBP-1からなる群より選択される少なくとも一種とすることができる。
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
 上述の式中、Rは各々独立して、水素原子、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、置換基を有していてもよい炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基又は水酸基である。また、前記アルキル基は、直鎖状、分岐状又は環状のいずれであってもよい。
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
 前記式(2A)で表される芳香族ヒドロキシ化合物の具体例を、以下に示す。ただし、第3の重合体における芳香族ヒドロキシ化合物は以下に列挙した化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000075
 第3の重合体において、各繰り返し単位の数と比は、特に限定されないが、用途や下記の分子量の値を考慮して適宜調整することが好ましい。また、第3の重合体は、繰り返し単位(1A)又は(2A)のみで構成することができるが、用途に応じた性能を損なわない範囲において、他の繰り返し単位を含むものであってもよい。他の繰り返し単位には、例えば、フェノール性水酸基が縮合することにより形成されるエーテル結合を有する繰り返し単位や、ケトン構造を有する繰り返し単位等が含まれる。これら他の繰り返し単位も、繰り返し単位(1A)又は(2A)と、芳香環同士で直接結合していてもよい。例えば、第3の重合体の総量〔X〕に対する繰り返し単位(1A)〔Y〕のモル比〔Y/X〕は、0.05~1.00とすることができ、好ましくは、0.45~1.00とすることができる。
 第3の重合体の重量平均分子量は、特に限定されないが、耐熱性及び溶解性兼備の点で、400~100000の範囲であることが好ましく、500~15000であることがより好ましく、1000~12000であることがさらに好ましい。
 第3の重合体における重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、その用途に応じて求められる比も異なることから、特にその範囲が限定されるものではないが、より均質な分子量を有するものとして、例えば、好ましいものは3.0以下の範囲のものが挙げられ、より好ましいものは1.05以上3.0以下の範囲のものが挙げられ、特に好ましいものとして1.05以上2.0未満のものが挙げられ、耐熱性の観点から一層好ましいものとして1.05以上1.5未満のものが挙げられる。
 第3の重合体が有する繰り返し単位の、該重合体中における結合順序は、特に限定されない。例えば、式(1A)又は式(2A)で表される芳香族ヒドロキシ化合物に由来するひとつの単位のみが繰り返し単位として2以上含まれるものであってもよいし、式(1A)又は式(2A)で表される芳香族ヒドロキシ化合物に由来する複数の単位が、それぞれ1以上含まれるものであってもよい。その順序もブロック共重合或いはランダム共重合のいずれでも良い。
 第3の重合体において「繰り返し単位同士が、芳香環同士の直接結合によって連結している」とは、一例として、第3の重合体中の繰り返し単位(1A)同士、繰り返し単位(2A)同士、又は繰り返し単位(1A)及び繰り返し単位(2A)(以下、繰り返し単位(1A)と(2A)とを総称して単に「繰り返し単位(A)」ということがある。)が、一方の繰り返し単位(A)の式中の括弧内にてアリール構造で示される芳香環上の炭素原子と、他方の繰り返し単位(A)の式中の括弧内にてアリール構造で示される芳香族上の炭素原子とが単結合にて、即ち、炭素原子、酸素原子、硫黄原子など他の原子を介さずに、直接結合されている態様が挙げられる。
 また、本実施形態には下記の態様を含んでもよい。
(1)一方の繰り返し単位(A)にて、R及びRのいずれかがアリール基の場合(例えば、上述のようにRがR-Rで表される基である場合等、Rがアリール基を有する2n+1価の基である場合を含む)、当該アリール基の芳香環上の原子と、他方の繰り返し単位(A)の式中の括弧内にてアリール構造で示される芳香環上の炭素原子とが、単結合にて直接結合している態様
(2)一方及び他方の繰り返し単位(A)にて、R及びRのいずれかがアリール基の場合(例えば、上述のようにRがR-Rで表される基である場合等、Rがアリール基を有する2n+1価の基である場合を含む)、一方及び他方の繰り返し単位(A)間において、R及びRで示されるアリール基の芳香環上の原子同士が、単結合にて直接結合している態様
 第3の重合体における繰り返し単位同士が直接結合する位置としては、特に限定されず、繰り返し単位が前記一般式(1A)又は式(2A)で表されるものである場合には、フェノール性水酸基及び他の置換基が結合していないいずれか一つの炭素原子がモノマー同士の直接結合に関与する。
 耐熱性の観点から、フェノール性水酸基を有する芳香環のいずれか一つの炭素原子が芳香環同士の直接結合に関与することが好ましい。換言すると、一つの繰り返し単位(1A)に対して2つの繰り返し単位(1A)が結合する場合には、式(1A)中の2つのアリール構造の各々において、他の繰り返し単位と結合している構造が好ましい。2つのアリール構造の各々において他の繰り返し単位(1A)と結合している場合、各アリール構造において他の繰り返し単位と結合している炭素原子の位置は、各々異なっていてもよいし、対応する箇所(例えば、両ナフタレン環の7位の位置に結合しているなど)であってもよい。
 また、第3の重合体においては、全ての繰り返し単位(1A)が芳香環同士の直接結合によって結合されていることが好ましいが、酸素や炭素など他原子等を介して他の繰り返し単位と結合している繰り返し単位(1A)が含まれていてもよい。特に限定されるものではないが、耐熱性及びエッチング耐性などの本実施形態の効果を十分に発揮する観点からは、第3の重合体中の全繰り返し単位(1A)のうち、結合基準で、好ましくは50%以上、さらに好ましくは90%以上の繰り返し単位(1A)が芳香環同士の直接結合によって他の繰り返し単位(1A)と結合していることが好ましい。
 第3の重合体は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、第3の重合体は、プロピレングリコールモノメチルエーテル(PGME)、及び/又は、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、プロピレングリコールモノメチルエーテル、及び/又は、プロピレングリコールモノメチルエーテルアセテートに対する溶解度が1質量%以上であることが好ましい。具体的には、23℃の温度下で当該溶媒に対する溶解度が1質量%以上であることが好ましく、より好ましくは5質量%以上であり、さらに好ましくは10質量%以上、特に好ましくは20質量%以上、とりわけ好ましいのは30質量%以上である。ここで、PGME及び/又はPGMEAに対する溶解度は、「第3の重合体の質量÷(第3の重合体の質量+溶媒の質量)×100(質量%)」と定義される。例えば、第3の重合体10gがPGMEA90gに対して溶解すると評価されるのは、第3の重合体のPGMEAに対する溶解度が「10質量%以上」となる場合であり、溶解しないと評価されるのは、当該溶解度が「10質量%未満」となる場合である。
 後述する組成物、重合体の製造方法、膜形成用組成物、レジスト組成物、レジストパターン形成方法、感放射線性組成物、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法、回路パターン形成方法、及び光学部材形成用組成物からなる群より選択される少なくとも一つの用途への適用を想定し、耐熱性及びエッチング耐性をより高める観点から、第3の重合体は、後述する実施例に記載のRBisP-1、RBisP-2、RBisP-3、RBisP-4、RBisP-5及びRBP-1からなる群より選択される少なくとも一種であることがとりわけ好ましい。
[第4の重合体]
 第4の重合体は、ヘテロ原子含有芳香族モノマー由来の繰り返し単位を有する重合体であって、前記繰り返し単位同士が、前記ヘテロ原子含有芳香族モノマーの芳香環同士の直接結合によって連結している。第4の重合体は、このように構成されていることから、耐熱性、耐エッチング性などの性能において、より優れた性能を有する。
 第4の重合体において、ヘテロ原子含有芳香族モノマー中のヘテロ原子の位置は特に限定されないが、耐熱性、溶解性及びエッチング耐性兼備の観点から、ヘテロ原子が芳香環を構成することが好ましい。すなわち、ヘテロ原子含有芳香族モノマーが、複素環式芳香族化合物を含むことが好ましい。
 第4の重合体において、前記ヘテロ原子含有芳香族モノマーにおけるヘテロ原子は特に限定されず、例えば、酸素原子、窒素原子、リン原子及び硫黄原子を挙げることができる。第4の重合体においては、エッチング耐性の観点から、ヘテロ原子として酸素原子を含有するよりも、窒素原子、リン原子又は硫黄原子を含有する方が好ましい。すなわち、前記ヘテロ原子含有芳香族モノマーにおけるヘテロ原子が、窒素原子、リン原子及び硫黄原子からなる群より選択される少なくとも1種を含むことが好ましい。さらに、保存安定性の観点からは、前記ヘテロ原子含有芳香族モノマーにおけるヘテロ原子が、窒素原子及びリン原子の少なくとも一方を含むことが好ましい。
 耐熱性及びエッチング耐性兼備の観点から、ヘテロ原子含有芳香族モノマーが、置換若しくは非置換の下記式(1-1)で表されるモノマー、又は置換若しくは非置換の下記式(1-2)で表されるモノマーを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000076
(前記式(1-1)中、Xは、各々独立して、NRで表される基、硫黄原子、酸素原子又はPRで表される基であり、R及びRは、各々独立して、水素原子、水酸基、置換若しくは非置換の炭素数1~30のアルコキシ基、ハロゲン原子、置換若しくは非置換の炭素数1~30のアルキル基又は置換若しくは非置換の炭素数6~30のアリール基である。)
Figure JPOXMLDOC01-appb-C000077
(前記式(1-2)中、
 Q及びQは、単結合、置換若しくは非置換の炭素数1~20のアルキレン基、置換若しくは非置換の炭素数3~20のシクロアルキレン基、置換若しくは非置換の炭素数6~20のアリーレン基、置換若しくは非置換の炭素数2~20のヘテロアリーレン基、置換若しくは非置換の炭素数2~20のアルケニレン基、置換若しくは非置換の炭素数2~20のアルキニレン基、カルボニル基、NRaで表される基、酸素原子、硫黄原子又はPRaで表される基であり、前記Raは、各々独立して、水素原子、置換若しくは非置換の炭素数1~10のアルキル基又はハロゲン原子であり、ここで、前記モノマーにおいてQ及びQの双方が存在する場合、これらの少なくとも一方がヘテロ原子を含み、前記モノマーにおいてQのみが存在する場合、当該Qはヘテロ原子を含み、
 Qは、窒素原子、リン原子又はCRbで表される基であり、ここで、前記モノマーにおいてQはヘテロ原子を含み、
 前記Ra及びRbは、各々独立して、水素原子、置換若しくは非置換の炭素数1~10のアルキル基又はハロゲン原子である。)
 第4の重合体において、「置換若しくは非置換の下記式(1-1)で表されるモノマー」及び「置換若しくは非置換の下記式(1-2)で表されるモノマー」とは、式中のX、Q、Q及びQに含まれる炭素原子以外の炭素原子に水素原子が結合している場合、当該水素原子の少なくとも1つが置換され得ることを意味する。ここでの「置換基」としては、別段定義がない限り、例えば、ハロゲン原子、水酸基、カルボキシル基、シアノ基、ニトロ基、チオール基、複素環基、炭素数1~30のアルキル基、炭素数6~20のアリール基、炭素数1~30のアルコキシル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基、炭素数1~30のアシル基、炭素数0~30のアミノ基等が挙げられる。
 以下、前述の式(1-1)及び式(1-2)について詳細に説明する。
 式(1-1)中、Xは、各々独立して、NRで表される基、硫黄原子、酸素原子又はPRで表される基であり、R及びRは、各々独立して、水素原子、水酸基、置換若しくは非置換の炭素数1~30のアルコキシ基、ハロゲン原子、置換若しくは非置換の炭素数1~30のアルキル基又は置換若しくは非置換の炭素数6~30のアリール基である。
 式(1-1)中、Xは、各々独立して、NRで表される基、硫黄原子、又はPRで表される基であることが好ましい。
 置換若しくは非置換の炭素数1~30のアルコキシ基としては、以下に限定されないが、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ、ヘキシルオキシ、オクチルオキシ、2-エチルヘキシルオキシ等が挙げられる。
 ハロゲン原子とは、以下に限定されないが、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 置換若しくは非置換の炭素数1~30のアルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、sec-ブチル基、n-ペンチル基、ネオペンチル基、イソアミル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ドデシル基、バレル基、2-エチルヘキシル等が挙げられる。
 置換若しくは非置換の炭素数6~30のアリール基としては、以下に限定されないが、例えば、フェニル基、ナフチル基、ビフェニル基、フルオレニル基、アンスリル基、ピレニル基、アズレニル基、アセナフチレニル基、ターフェニル基、フェナンスリル基、ペリレン基等が挙げられる。
 第4の重合体において、溶解性及びエッチング耐性兼備の観点から、式(1-1)中、Rは、置換又は非置換のフェニル基であることが好ましい。
 式(1-2)中、Q及びQは、単結合、置換若しくは非置換の炭素数1~20のアルキレン基、置換若しくは非置換の炭素数3~20のシクロアルキレン基、置換若しくは非置換の炭素数6~20のアリーレン基、置換若しくは非置換の炭素数2~20のヘテロアリーレン基、置換若しくは非置換の炭素数2~20のアルケニレン基、置換若しくは非置換の炭素数2~20のアルキニレン基、カルボニル基、NRaで表される基、酸素原子、硫黄原子又はPRaで表される基であり、前記Raは、各々独立して、水素原子、置換若しくは非置換の炭素数1~10のアルキル基又はハロゲン原子であり、ここで、前記モノマーにおいてQ及びQの双方が存在する場合、これらの少なくとも一方がヘテロ原子を含み、前記モノマーにおいてQのみが存在する場合、当該Qはヘテロ原子を含む。
 式(1-2)中、Qは、窒素原子、リン原子又はCRbで表される基であり、ここで、前記モノマーにおいてQはヘテロ原子を含む。
 前記Ra及びRbは、各々独立して、水素原子、置換若しくは非置換の炭素数1~10のアルキル基又はハロゲン原子である。
 置換若しくは非置換の炭素数1~20のアルキレン基としては、以下に限定されないが、例えば、メチレン基、エチレン基、n-プロピレン基、i-プロピレン基、n-ブチレン基、i-ブチレン基、t-ブチレン基、n-ペンチレン基、n-ヘキシレン基、n-ドデシレン基、バレレン基、メチルメチレン基、ジメチルメチレン基、メチルエチレン基等が挙げられる。
 置換若しくは非置換の炭素数3~20のシクロアルキレン基としては、以下に限定されないが、例えば、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロドデシレン基、シクロバレレン基等が挙げられる。
 置換若しくは非置換の炭素数6~20のアリーレン基としては、以下に限定されないが、例えば、フェニレン基、ナフチレン基、アンスリレン基、フェナントリニレン基、ピレニレン基、ペリレニレン基、フルオレニレン基、ビフェニレン基等が挙げられる。
 置換若しくは非置換の炭素数2~20のヘテロアリーレン基としては、以下に限定されないが、例えば、チエニレン基、ピリジニレン基、フリレン基等が挙げられる。
 置換若しくは非置換の炭素数2~20のアルケニレン基としては、ビニレン基、プロペニレン基、ブテニレン基等が挙げられる。
 置換若しくは非置換の炭素数2~20のアルキニレン基としては、エチニレン基、プロピニレン基、ブチニレン基等が挙げられる。
 置換若しくは非置換の炭素数1~10のアルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ドデシル基、バレル基等が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 第4の重合体は、ヘテロ原子を有する芳香族モノマーが直接結合することにより耐熱性を向上しうる。またその構造単位内にP、N、O又はSのようなヘテロ原子を含むことによって、重合体の耐エッチング耐性を確保できるだけで無く、ヘテロ原子によって重合体の極性が高くなることで、溶媒溶解性を向上させることができる。さらには、構造単位内に上記のヘテロ原子を有する芳香族モノマーが直接結合した重合体を用いた有機膜は優れた膜密度を確保でき、エッチングによる加工精度を向上しうる。
 上述した観点から、第4の重合体において、ヘテロ原子含有芳香族モノマーは、置換若しくは非置換の下記式(1-1)で表されるモノマーであることが好ましく、インドール、2-フェニルベンゾオキサゾール、2-フェニルベンゾチアゾール、カルバゾール及びジベンゾチオフェンからなる群より選択される少なくとも1種を含むことがより好ましい。
 第4の重合体は、1種のヘテロ原子含有芳香族モノマーの単独重合体であってもよく、2種以上のヘテロ原子含有芳香族モノマーの重合体であってもよい。さらに、ヘテロ原子含有芳香族モノマー以外を共重合成分として有していてもよい。
 第4の重合体は、更なる高い耐熱性、エッチング耐性と溶解性との兼備の観点から、下記式(2)で表されるモノマー由来の構成単位をさらに有することが好ましい。
Figure JPOXMLDOC01-appb-C000078
 式(2)中、Q4及びQ5は、単結合、置換若しくは非置換の炭素数1~20のアルキレン基、置換若しくは非置換の炭素数3~20のシクロアルキレン基、置換若しくは非置換の炭素数6~20のアリーレン基、置換若しくは非置換の炭素数2~20のアルケニレン基、置換若しくは非置換の炭素数2~20のアルキニレン基である。
 Q6は、CRb’で表される基であり、前記Rbは、水素原子又は置換若しくは非置換の炭素数1~10のアルキル基である。
 置換若しくは非置換の炭素数1~20のアルキレン基、置換若しくは非置換の炭素数3~20のシクロアルキレン基、置換若しくは非置換の炭素数6~20のアリーレン基、置換若しくは非置換の炭素数2~20のアルケニレン基、置換若しくは非置換の炭素数2~20のアルキニレン基は、前式(1-2)の定義と同様である。
 第4の重合体において、各繰り返し単位の数と比は、特に限定されないが、用途や下記の分子量の値を考慮して適宜調整することが好ましい。また、第4の重合体は、式(1)のみで構成することができるが、用途に応じた性能を損なわない範囲において、他の繰り返し単位を含むものであってもよい。他の繰り返し単位には、例えば、フェノール性水酸基が縮合することにより形成されるエーテル結合を有する繰り返し単位や、ケトン構造を有する繰り返し単位等が含まれる。これら他の繰り返し単位も、繰り返し単位(1)と、芳香環同士で直接結合していてもよい。例えば、第4の重合体の総量〔X〕に対する構成単位(A)〔Y〕のモル比〔Y/X〕は、5~100とすることができ、好ましくは、45~100とすることができる。
 第4の重合体の重量平均分子量は、特に限定されないが、耐熱性及び溶解性兼備の点で、400~100000の範囲であることが好ましく、500~15000であることがより好ましく、1000~12000であることがさらに好ましい。
 第4の重合体における重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、その用途に応じて求められる比も異なることから、特にその範囲が限定されるものではないが、より均質な分子量を有するものとして、例えば、好ましいものは3.0以下の範囲のものが挙げられ、より好ましいものは1.05以上3.0以下の範囲のものが挙げられ、特に好ましいものとして1.05以上2.0未満のものが挙げられ、耐熱性の観点から一層好ましいものとして1.05以上1.5未満のものが挙げられる。
 第4の重合体が有する繰り返し単位の、該重合体中における結合順序は、特に限定されない。例えば、式(1)で表される一種の多環芳香族モノマーに由来するひとつの単位のみが繰り返し単位として2以上含まれるものであってもよいし、式(1)で表される二種以上の多環芳香族モノマーに由来する複数の単位が、それぞれ1以上含まれるものであってもよい。その順序もブロック共重合あるいはランダム共重合のいずれでも良い。
 第4の重合体において「繰り返し単位同士が、芳香環同士の直接結合によって連結している」とは、一例として、多環芳香族モノマー中単位(1)同士(又は、繰り返し単位(1)で表される複数の繰り返し単位;以下、これらを総称して単に「繰り返し単位(A)」ということがある。)が、一方の繰り返し単位(A)の式中の括弧内にてアリール構造で示される芳香環上の炭素原子と、他方の繰り返し単位(A)の式中の括弧内にてアリール構造で示される芳香族上の炭素原子とが単結合にて、即ち、炭素原子、酸素原子、硫黄原子など他の原子を介さずに、直接結合されている態様が挙げられる。
 第4の重合体における繰り返し単位同士が直接結合する位置としては、特に限定されず、置換基が結合していないいずれか一つの炭素原子がモノマー同士の直接結合に関与する。
 耐熱性の観点から、ヘテロ原子含有縮合環モノマーのいずれか一つの炭素原子が芳香環同士の直接結合に関与することが好ましい。換言すると、一つの繰り返し単位(1)に対して2つの繰り返し単位(1)が結合する場合には、式(1)中の2つのアリール構造の各々において、他の繰り返し単位と結合している構造が好ましい。2つのアリール構造の各々において他の繰り返し単位(1)と結合している場合、各アリール構造において他の繰り返し単位と結合している炭素原子の位置は、各々異なっていてもよいし、対応する箇所(例えば、両ナフタレン環の7位の位置に結合しているなど)であってもよい。
 また、第4の重合体においては、全ての繰り返し単位(1)が芳香環同士の直接結合によって結合されていることが好ましいが、酸素や炭素など他原子等を介して他の繰り返し単位と結合している繰り返し単位(1)が含まれていてもよい。特に限定されるものではないが、耐熱性及びエッチング耐性などの本実施形態の効果を十分に発揮する観点からは、第4の重合体中の全繰り返し単位(1)のうち、結合基準で、好ましくは50%以上、さらに好ましくは90%以上の繰り返し単位(1)が芳香環同士の直接結合によって他の繰り返し単位(1)と結合していることが好ましい。
 第4の重合体は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、第4の重合体は、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、シクロヘキサノン(CHN)、シクロペンタノン(CPN)、乳酸エチル(EL)及びヒドロキシイソ酪酸メチル(HBM)で構成される群から選ばれる一種以上に対する溶解度が1質量%以上であることが好ましい。具体的には、23℃の温度下で当該溶媒に対する溶解度が1質量%以上であることが好ましく、より好ましくは5質量%以上であり、さらに好ましくは10質量%以上、特に好ましくは20重量%以上、とりわけ好ましいのは30重量%以上である。ここで、PGME、PGMEA、CHN、CPN、EL及び/又はHBMに対する溶解度は、「第4の重合体の質量÷(第4の重合体の質量+溶媒の質量)×100(質量%)」と定義される。例えば、第4の重合体10gがPGMEA90gに対して溶解すると評価されるのは、第4の重合体のPGMEAに対する溶解度が「10質量%以上」となる場合であり、溶解しないと評価されるのは、当該溶解度が「10質量%未満」となる場合である。
 後述する組成物、重合体の製造方法、膜形成用組成物、レジスト組成物、レジストパターン形成方法、感放射線性組成物、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法、回路パターン形成方法、及び光学部材形成用組成物からなる群より選択される少なくとも一つの用途への適用を想定し、耐熱性及びエッチング耐性をより高める観点から、第4の重合体は、後述する実施例に記載のRHE-1、RHE-2、RHE-3、RHE-4、RHE-5及びRHE-6からなる群より選択される少なくとも一種であることがとりわけ好ましい。 
 本実施形態の重合体は、架橋反応性のある化合物に由来する変性部分をさらに有していてもよい。すなわち、前述した構造を有する本実施形態の重合体は、架橋反応性のある化合物との反応によって得られる変性部分を有していてもよい。このような(変性)重合体も、耐熱性、耐エッチング性に優れており、半導体用のコーティング剤、レジスト用材料、半導体下層膜形成材料として使用可能である。
 架橋反応性のある化合物としては、以下に限定されないが、例えば、アルデヒド類、ケトン類、カルボン酸類、カルボン酸ハライド類、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート化合物、不飽和炭化水素基含有化合物等が挙げられる。これらは単独で用いることもできるし適宜複数を併用することもできる。
 本実施形態の重合体において、架橋反応性のある化合物は、アルデヒド類又はケトン類であることが好ましい。より詳細には、前述した構造を有する本実施形態の重合体に対して、アルデヒド類又はケトン類とを、触媒の存在下で重縮合反応させることによって得られる重合体であることが好ましい。例えば、常圧下、必要に応じて加圧下において、所望とする構造に対応するアルデヒド類又はケトン類とを触媒下にてさらに重縮合反応させることによって、ノボラック型の重合体を得ることができる。
 前記アルデヒド類としては、例えば、メチルベンズアルデヒド、ジメチルベンズアルデヒド、トリメチルベンズアルデヒド、エチルベンズアルデヒド、プロピルベンズアルデヒド、ブチルベンズアルデヒド、ペンタベンズアルデヒド、ブチルメチルベンズアルデヒド、ヒドロキシベンズアルデヒド、ジヒドロキシベンズアルデヒド、フロロメチルベンズアルデヒド等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、メチルベンズアルデヒド、ジメチルベンズアルデヒド、トリメチルベンズアルデヒド、エチルベンズアルデヒド、プロピルベンズアルデヒド、ブチルベンズアルデヒド、ペンタベンズアルデヒド、ブチルメチルベンズアルデヒド等を用いることが、高い耐熱性を与える観点から好ましい。
 前記ケトン類としては、例えば、アセチルメチルベンゼン、アセチルジメチルベンゼン、アセチルトリメチルベンゼン、アセチルエチルベンゼン、アセチルプロピルベンゼン、アセチルブチルベンゼン、アセチルペンタベンゼン、アセチルブチルメチルベンゼン、アセチルヒドロキシベンゼン、アセチルジヒドロキシベンゼン、アセチルフロロメチルベンゼン等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、アセチルメチルベンゼン、アセチルジメチルベンゼン、アセチルトリメチルベンゼン、アセチルエチルベンゼン、アセチルプロピルベンゼン、アセチルブチルベンゼン、アセチルペンタベンゼン、アセチルブチルメチルベンゼンを用いることが、高い耐熱性を与える観点から好ましい。
 前記反応に用いる触媒については、公知のものから適宜選択して用いることができ、特に限定されない。触媒としては、酸触媒や塩基触媒が好適に使用される。
 このような酸触媒としては、無機酸や有機酸が広く知られている。上記酸触媒の具体例としては、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸;ケイタングステン酸、リンタングステン酸、ケイモリブデン酸、リンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらのなかでも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることが好ましい。
 このような塩基触媒としては、アミン含有触媒の例は、ピリジン及びエチレンジアミンであり、非アミンの塩基性触媒の例は金属塩及び特にカリウム塩又は酢酸塩が好ましく、適している触媒としては、限定されないが、酢酸カリウム、炭酸カリウム、水酸化カリウム、酢酸ナトリウム、炭酸ナトリウム、水酸化ナトリウム及び酸化マグネシウムが挙げられる。
 非アミンの塩基触媒は、例えば、EMサイエンス社(EMScience)又はアルドリッチ社(Aldrich)から市販されている。
 なお、触媒については、1種を単独で、又は2種以上を組み合わせて用いることができる。また、触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.001~100質量部であることが好ましい。
 前記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、用いるアルデヒド類或いはケトン類と重合体との反応が進行するものであれば、特に限定されず、公知のものの中から適宜選択して用いることができるが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル又はこれらの混合溶媒等が例示される。なお、溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。また、これらの溶媒の使用量は、使用する原料及び使用する酸触媒の種類、さらには反応条件などに応じて適宜設定できる。上記溶媒の使用量としては、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、上記反応における反応温度は、反応原料の反応性に応じて適宜選択することができる。上記反応温度としては、特に限定されないが、通常10~200℃の範囲であることが好ましい。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、本実施形態の重合体、アルデヒド類或いはケトン類、酸触媒を一括で仕込む方法や、アルデヒド類或いはケトン類を酸触媒存在下で滴下していく方法がある。重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や酸触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物である化合物を得ることができる。
[重合体の特性]
 本実施形態の重合体は、以下に限定されないが、典型的には、下記(1)~(4)の特性を有する。
(1)本実施形態の重合体は、有機溶媒(特に安全溶媒)に対する優れた溶解性を有する。このため、例えば、本実施形態の重合体をリソグラフィー用膜形成材料として用いると、スピンコート法やスクリーン印刷等の湿式プロセスによりリソグラフィー用膜を形成できる。
(2-1)第1の重合体、第2の重合体及び第3の重合体では、炭素濃度が比較的高く、酸素濃度が比較的低い。また、分子中にフェノール性水酸基を有するため、硬化剤との反応による硬化物の形成に有用であるが、単独でも高温ベーク時にフェノール性水酸基が架橋反応することにより硬化物を形成できる。これらに起因して、第1の重合体、第2の重合体及び第3の重合体は、高い耐熱性を発現でき、リソグラフィー用膜形成材料として用いると、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性に優れたリソグラフィー用膜を形成できる。
(2-2)第4の重合体では、炭素濃度が比較的高く、酸素濃度が比較的低い。また、分子中に反応活性部位を有するため、硬化剤との反応による硬化物の形成に有用であるが、単独でも高温ベーク時に反応活性部位が架橋反応することにより硬化物を形成できる。これらに起因して、第4の重合体は、高い耐熱性を発現でき、リソグラフィー用膜形成材料として用いると、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性に優れたリソグラフィー用膜を形成できる。
(3)本実施形態の重合体は、上記のように、高い耐熱性及びエッチング耐性を発現できるとともに、レジスト層やレジスト中間層膜材料との密着性に優れる。このため、リソグラフィー用膜形成材料として用いると、レジストパターン形成性に優れたリソグラフィー用膜を形成できる。なお、ここでいう「レジストパターン形成性」とは、レジストパターン形状に大きな欠陥が見られず、解像性及び感度ともに優れる性質をいう。
(4)本実施形態の重合体は、芳香環密度が高いため高屈折率であり、加熱処理しても着色が抑制され、透明性に優れる。このため、本実施形態の重合体は、各種光学部材形成用組成物としても有用である。
 本実施形態の重合体は、上述した特性によりリソグラフィー用膜形成材料として好ましく適用でき、したがって本実施形態のリソグラフィー用膜形成組成物に上述した所望とする特性が付与されるものと考えられる。特に、2価の有機基や酸素原子等で架橋された樹脂に比べて芳香環密度が高く、直接芳香環の炭素-炭素同士が直接結合で連結されているため、比較的低分子量であっても、耐熱性、耐エッチング性などの性能において、より優れた性能を有するものと考えられる。
<重合体の製造方法>
 本実施形態の重合体の製造方法としては、以下に限定されないが、例えば、前記繰り返し単位に対応する単量体であって、1種又は2種以上の当該単量体を、酸化剤の存在下で重合させる工程(酸化重合工程)を含むものとすることができる。以下、第1の重合体を例として詳述する。
[第1の重合体の製造方法]
 第1の重合体の製造方法としては、以下に限定されないが、前述した酸化重合工程を含むものとすることができる。かかる工程を実施するに際しては、K. Matsumoto, Y. Shibasaki, S. Ando and M. Ueda, Polymer, 47, 3043 (2006)の内容を適宜参照することができる。すなわち、β-ナフトール型モノマーの酸化重合においては、そのモノマーに起因して一電子酸化されたラジカルがカップリングする酸化カップリング反応により、α-位のC-Cカップリングが選択的に生じるとされており、例えば、銅/ジアミン型触媒を用いることで、位置選択的重合を行うことができる。
 本実施形態における酸化剤としては、酸化カップリング反応を生ずるものであれば特に限定されないが、銅、マンガン、鉄、コバルト、ルテニウム、鉛、ニッケル、銀、スズ、クロム若しくはパラジウムなどを含有する金属塩類、過酸化水素または過塩素酸類などの過酸化物、有機過酸化物が用いられる。これらの中でも銅、マンガン、鉄若しくはコバルトを含有する金属塩類又は金属錯体を好ましく用いることができる。
 銅、マンガン、鉄、コバルト、ルテニウム、鉛、ニッケル、銀、スズ、クロム若しくはパラジウムなどの金属は、反応系中で還元することにより酸化剤として使用することもできる。これらは金属塩類に含まれる。
 例えば、一般式(1A)で示される芳香族ヒドロキシ化合物を有機溶媒に溶解させ、さらに銅、マンガン又はコバルトを含有する金属塩類を添加し、例えば酸素又は酸素含有気体と反応させて酸化重合することにより、所望の重合体を得ることができる。
 上記のような酸化重合による重合体の製造方法によれば、分子量制御が比較的容易であり、高分子量化に伴う原料モノマーや低分子成分を残さずに分子量分布の小さい重合体を得ることができるため、高耐熱性や低昇華物の観点から優位となる傾向にある。
 金属塩類としては、銅、マンガン、コバルト、ルテニウム、クロム、パラジウムなどのハロゲン化物、炭酸塩、酢酸塩、硝酸塩若しくはリン酸塩を用いることができる。
 金属錯体としては、特に限定されず、公知のものを用いることができ。その具体例としては、以下に限定されないが、銅を含有する錯体触媒は、特公昭36-18692号、同40-13423号、特開昭49-490号等各公報に記載の触媒が挙げられ、マンガンを含有する錯体触媒は、特公昭40-30354号、同47-5111号、特開昭56-32523号、同57-44625号、同58-19329号、同60-83185号等各公報に記載の触媒が挙げられ、コバルトを含有する錯体触媒は、特公昭45-23555号公報に記載の触媒が挙げられる。
 有機過酸化物の例としては、以下に限定されないが、t-ブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、過酢酸、過安息香酸等を示すことができる。
 上記酸化剤は、単独でまたは混合して用いることができる。これらの使用量は特に限定されないが、芳香族ヒドロキシ化合物1モルに対して0.002モルから10モルであることが好ましく、より好ましくは0.003モルから3モルであり、さらに好ましくは0.005モルから0.3モルである。すなわち、本実施形態における酸化剤は、モノマーに対して低濃度で使用できる。
 本実施形態においては、酸化重合する工程で用いられる酸化剤の他に塩基を使用することが好ましい。塩基としては、特に限定されず、公知のものを用いることができ、その具体例としては、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、アルカリ金属のアルコキサイドなどの無機塩基や、1級~3級モノアミン化合物、ジアミンなどの有機塩基であってもよい。それぞれ単独で又は組み合わせて使用することができる。
 酸化の方法については、特に限定されず、直接酸素ガスあるいは空気を使用する方法があるが、安全性およびコスト面からは空気酸化が好ましい。大気圧下で空気を用いて酸化する場合、酸化重合の速度向上および重合体の高分子量化の観点から反応溶媒中において、液中へのバブリングによって空気を導入する方法が好ましい。
 また、本実施形態の酸化反応は加圧下での反応とすることも可能であり、反応促進の観点から2kg/cm~15kg/cmが好ましく、安全面と制御性の観点から3kg/cm~10kg/cmがさらに好ましい。
 本実施形態において、芳香族ヒドロキシ化合物の酸化反応は反応溶媒の不存在下においても行うことができるが、一般には溶媒の存在下に反応を行うことが好ましい。溶媒は、第1の重合体を得る上で支障が無い限り、触媒をある程度溶解するものであれば種々公知の溶媒が使用できる。一般的には、メタノール、エタノール、プロパノール、ブタノールなどアルコール類、ジオキサン、テトラヒドロフランまたはエチレングリコールジメチルエーテルなどのエーテル類;アミド類またはニトリル類などの溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノンなどのケトン類;またはそれらと水とを混合して用いられる。また、水と混ざらないベンゼン、トルエンもしくはヘキサンなどの炭化水素類またはそれらと水との2相系で反応を行うことができる。
 また、反応条件は、基質濃度、酸化剤の種類及び濃度に応じて適宜調整すればよいが、反応温度は比較的低温に設定することができ、5~150℃とすることが好ましく、20~120℃とすることがより好ましい。反応時間は30分~24時間が好ましく、1時間~20時間がより好ましい。また、反応時の撹拌方法は特に限定されず、振盪、回転子又は攪拌翼を用いた攪拌のいずれでもよい。本工程は、前記の条件を満たす攪拌条件であれば、溶媒中又は気流中のいずれでもよい。
[第2の重合体~第4の重合体の製造方法]
 第2の重合体~第4の重合体の製造方法としても、特に限定されないが、例えば、上述した酸化重合工程を含むものとすることができる。すなわち、原料として、[第1の重合体]の項で記載した式(1A)及び(1B)で表される芳香族ヒドロキシ化合物を「前記繰り返し単位に対応する単量体」として用いることに代えて、[第2の重合体]の項で記載した式(1A-1)で表される芳香族ヒドロキシ化合物、[第3の重合体]の項で記載した式(1A)及び式(2A)で表される芳香族ヒドロキシ化合物、又は[第4の重合体]の項で記載したヘテロ原子含有芳香族モノマーを「前記繰り返し単位に対応する単量体」として用いることを除き、前述した[第1の重合体の製造方法]の項と同様に酸化重合工程を実施し、第2の重合体~第4の重合体を製造することができる。
<組成物>
 本実施形態の重合体は、種々の用途を想定し、組成物として使用することができる。すなわち、本実施形態の組成物は、本実施形態の重合体を含む。本実施形態の組成物は、湿式プロセスの適用によって膜形成が容易になる等の観点から、溶媒をさらに含むことが好ましい。
 溶媒の具体例としては、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒;乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒;メタノール、エタノール、イソプロパノール、1-エトキシ-2-プロパノール等のアルコール系溶媒;トルエン、キシレン、アニソール等の芳香族系炭化水素等が挙げられる。これらの溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
 上記溶媒の中で、安全性の点から、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、シクロペンタノン、乳酸エチル及びヒドロキシイソ酪酸メチルで構成される群から選ばれる1種以上が特に好ましい。
 本実施形態の組成物における溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、本実施形態の重合体100質量部に対して、100~10,000質量部であることが好ましく、200~5,000質量部であることがより好ましく、200~1,000質量部であることがさらに好ましい。
 本実施形態の重合体は、上記した酸化反応によって粗体として得た後、さらに精製を実施することにより、残留する酸化剤を除去したものであることが好ましい。具体的には、経時的な重合体の変質の防止及び保存安定性の観点から、酸化剤に由来する金属酸化剤として主に使用される銅、マンガン、鉄若しくはコバルトを含有する金属塩類又は金属錯体などの残留を避けることが好ましい。すなわち、本実施形態の組成物は、不純物金属の含有量が金属種毎に500ppb未満であることが好ましく、1ppb以下であることがさらに好ましい。また、前記不純物金属としては、特に限定はないが、銅、マンガン、鉄、コバルト、ルテニウム、クロム、ニッケル、スズ、鉛、銀及びパラジウムからなる群で構成されるより選択される群から選ばれる少なくとも1種が挙げられる。
 前記酸化剤由来の金属残留量(不純物金属の含有量)が500ppb未満であることにより、溶液形態においても、保存安定性が損なわれることなく使用できる傾向にある。
 精製方法としては、特に限定はされないが、重合体を、溶媒に溶解させて溶液(S)を得る工程と、得られた溶液(S)と酸性の水溶液とを接触させて、前記重合体中の不純物を抽出する工程(第一抽出工程)とを含み、前記溶液(S)を得る工程で用いる溶媒が、水と任意に混和しない有機溶媒を含む精製方法が挙げられる。
 前記精製方法によれば、重合体に不純物として含まれ得る種々の金属の含有量を低減することができる。
 より詳細には、前記重合体を、水と任意に混和しない有機溶媒に溶解させて溶液(S)を得て、さらにその溶液(S)を酸性水溶液と接触させて抽出処理を行うことができる。これにより、上記溶液(S)に含まれる金属分を水相に移行させたのち、有機相と水相とを分離して金属含有量の低減された重合体を得ることができる。
 上記精製方法で使用される水と任意に混和しない溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましく、具体的には、室温下における水への溶解度が30%未満である有機溶媒であり、より好ましくは20%未満であり、特に好ましくは10%未満である有機溶媒が好ましい。当該有機溶媒の使用量は、使用する重合体の合計量に対して、1~100質量倍であることが好ましい。
 水と任意に混和しない溶媒の具体例としては、以下に限定されないが、例えば、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類、酢酸エチル、酢酸n-ブチル、酢酸イソアミル等のエステル類、メチルエチルケトン、メチルイソブチルケトン、エチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、2-ペンタノン等のケトン類;エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート類;n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類等が挙げられる。これらの中でも、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等が好ましく、メチルイソブチルケトン、酢酸エチル、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートがより好ましく、メチルイソブチルケトン、酢酸エチルがよりさらに好ましい。メチルイソブチルケトン、酢酸エチル等は、重合体の飽和溶解度が比較的高く、沸点が比較的低いことから、工業的に溶媒を留去する場合や乾燥により除去する工程での負荷を低減することが可能となる。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
 上記精製方法で使用される酸性の水溶液としては、一般に知られる有機系化合物若しくは無機系化合物を水に溶解させた水溶液の中から適宜選択される。以下に限定されないが、例えば、塩酸、硫酸、硝酸、リン酸等の鉱酸を水に溶解させた鉱酸水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸等の有機酸を水に溶解させた有機酸水溶液が挙げられる。これら酸性の水溶液は、それぞれ単独で用いることもできるし、また2種以上を組み合わせて用いることもできる。これら酸性の水溶液の中でも、塩酸、硫酸、硝酸及びリン酸で構成される群から選ばれる1種以上の鉱酸水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸で構成される群から選ばれる1種以上の有機酸水溶液であることが好ましく、硫酸、硝酸、及び酢酸、蓚酸、酒石酸、クエン酸等のカルボン酸の水溶液がより好ましく、硫酸、蓚酸、酒石酸、クエン酸の水溶液がさらに好ましく、蓚酸の水溶液がよりさらに好ましい。蓚酸、酒石酸、クエン酸等の多価カルボン酸は金属イオンに配位し、キレート効果が生じるために、より効果的に金属を除去できる傾向にあるものと考えられる。また、ここで用いる水は、本実施形態における精製方法の目的に沿って、金属含有量の少ない水、例えばイオン交換水等を用いることが好ましい。
 上記精製方法で使用する酸性の水溶液のpHは特に限定されないが、上記重合体への影響を考慮し、水溶液の酸性度を調整することが好ましい。通常、pH範囲は0~5程度であり、好ましくはpH0~3程度である。
 上記精製方法で使用する酸性の水溶液の使用量は特に限定されないが、金属除去のための抽出回数を低減する観点及び全体の液量を考慮して操作性を確保する観点から、当該使用量を調整することが好ましい。上記観点から、酸性の水溶液の使用量は、上記溶液(S)100質量部に対して、好ましくは10~200質量部であり、より好ましくは20~100質量部である。
 上記精製方法においては、上記酸性の水溶液と、上記溶液(S)とを接触させることにより、溶液(S)中の上記重合体から金属分を抽出することができる。
 上記精製方法においては、上記溶液(S)が、さらに水と任意に混和する有機溶媒を含むこともできる。水と任意に混和する有機溶媒を含む場合、上記重合体の仕込み量を増加させることができ、また、分液性が向上し、高い釜効率で精製を行うことができる傾向にある。水と任意に混和する有機溶媒を加える方法は特に限定されない。例えば、予め有機溶媒を含む溶液に加える方法、予め水又は酸性の水溶液に加える方法、有機溶媒を含む溶液と水又は酸性の水溶液とを接触させた後に加える方法のいずれでもよい。これらの中でも、予め有機溶媒を含む溶液に加える方法が操作の作業性や仕込み量の管理のし易さの点で好ましい。
 上記精製方法で使用される水と任意に混和する有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。水と任意に混和する有機溶媒の使用量は、溶液相と水相とが分離する範囲であれば特に限定されないが、使用する重合体の合計量に対して、0.1~100質量倍であることが好ましく、0.1~50質量倍であることがより好ましく、0.1~20質量倍であることがさらに好ましい。
 上記精製方法において使用される水と任意に混和する有機溶媒の具体例としては、以下に限定されないが、テトラヒドロフラン、1,3-ジオキソラン等のエーテル類;メタノール、エタノール、イソプロパノール等のアルコール類;アセトン、N-メチルピロリドン等のケトン類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のグリコールエーテル類等の脂肪族炭化水素類が挙げられる。これらの中でも、N-メチルピロリドン、プロピレングリコールモノメチルエーテル等が好ましく、N-メチルピロリドン、プロピレングリコールモノメチルエーテルがより好ましい。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
 抽出処理を行う際の温度は通常、20~90℃であり、好ましくは30~80℃の範囲である。抽出操作は、例えば、撹拌等により、よく混合させたあと、静置することにより行われる。これにより、溶液(S)中に含まれていた金属分が水相に移行する。また、本操作により、溶液の酸性度が低下し、上記重合体の変質を抑制することができる。
 上記混合溶液は静置により、重合体と溶媒とを含む溶液相と、水相とに分離するので、デカンテーション等により、溶液相を回収する。静置する時間は特に限定されないが、溶媒を含む溶液相と水相との分離をより良好にする観点から、当該静置する時間を調整することが好ましい。通常、静置する時間は1分間以上であり、好ましくは10分間以上であり、より好ましくは30分間以上である。また、抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。
 上記精製方法において、第一抽出工程後、上記重合体を含む溶液相を、さらに水に接触させて、上記重合体中の不純物を抽出する工程(第二抽出工程)を含むことが好ましい。具体的には、例えば、酸性の水溶液を用いて上記抽出処理を行った後に、該水溶液から抽出され、回収された重合体と溶媒を含む溶液相を、さらに水による抽出処理に供することが好ましい。上記の水による抽出処理は、特に限定されないが、例えば、上記溶液相と水とを、撹拌等により、よく混合させたあと、得られた混合溶液を、静置することにより行うことができる。当該静置後の混合溶液は、上記重合体と溶媒とを含む溶液相と、水相とに分離するのでデカンテーション等により、溶液相を回収することができる。
 また、ここで用いる水は、本実施形態の目的に沿って、金属含有量の少ない水、例えば、イオン交換水等であることが好ましい。抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に限定されないが、先の酸性の水溶液との接触処理の場合と同様で構わない。
 こうして得られた重合体と溶媒とを含む溶液に混入しうる水分については、減圧蒸留等の操作を施すことにより容易に除去できる。また、必要により上記溶液に溶媒を加え、重合体の濃度を任意の濃度に調整することができる。
 本実施形態に係る重合体の精製方法は、前記重合体を溶媒に溶解させた溶液をフィルターに通液することにより精製することもできる。
 本実施形態に係る重合体の精製方法によれば、上記重合体中の種々の金属分の含有量を効果的に著しく低減することができる。これらの金属成分量は後述する実施例に記載の方法で測定することができる。
 なお、本実施形態における「通液」とは、上記溶液がフィルターの外部から当該フィルターの内部を通過して再度フィルターの外部へと移動することを意味し、例えば、上記溶液を単にフィルターの表面で接触させる態様や、上記溶液を当該表面上で接触させつつイオン交換樹脂の外部で移動させる態様(すなわち、単に接触する態様)は除外される。
(フィルター精製工程(通液工程))
 本実施形態におけるフィルター通液工程において、前記重合体と溶媒とを含む溶液中の金属分の除去に用いられるフィルターは、通常、液体濾過用として市販されているものを使用することができる。フィルターのろ過精度は特に限定されないが、フィルターの公称孔径は0.2μm以下であることが好ましく、より好ましくは0.2μm未満であり、さらに好ましくは0.1μm以下であり、よりさらに好ましくは0.1μm未満であり、一層好ましくは0.05μm以下である。また、フィルターの公称孔径の下限値は、特に限定されないが、通常、0.005μmである。ここでいう公称孔径とは、フィルターの分離性能を示す名目上の孔径であり、例えば、バブルポイント試験、水銀圧入法試験、標準粒子補足試験など、フィルターの製造元により決められた試験法により決定される孔径である。市販品を用いた場合、製造元のカタログデータに記載の値である。公称孔径を0.2μm以下にすることで、溶液を1回フィルターに通液させた後の金属分の含有量を効果的に低減することができる。本実施形態においては、溶液の各金属分の含有量をより低減させるために、フィルター通液工程を2回以上行ってもよい。
 フィルターの形態としては、中空糸膜フィルター、メンブレンフィルター、プリーツ膜フィルター、並びに不織布、セルロース、及びケイソウ土などの濾材を充填したフィルターなどを用いることができる。上記した中でも、フィルターが、中空糸膜フィルター、メンブレンフィルター及びプリーツ膜フィルターで構成される群から選ばれる1種以上であることが好ましい。また、特に高精細な濾過精度と他の形態と比較した濾過面積の高さから、中空糸膜フィルターを用いることが特に好ましい。
 前記フィルターの材質は、ポリエチレン、ポリプロピレン等のポリオレフィン、グラフト重合によるイオン交換能を有する官能基を施したポリエチレン系樹脂、ポリアミド、ポリエステル、ポリアクリロニトリルなどの極性基含有樹脂、フッ化ポリエチレン(PTFE)などのフッ素含有樹脂を挙げることができる。上記した中でも、フィルターの濾材が、ポリアミド製、ポレオレフィン樹脂製及びフッ素樹脂製で構成される群から選ばれる1種以上であることが好ましい。また、クロム等の重金属の低減効果の観点からポリアミドが特に好ましい。なお、濾材からの金属溶出を避ける観点から、焼結金属材質以外のフィルターを用いることが好ましい。
 ポリアミド系フィルターとしては、以下(以下、登録商標)に限定されないが、例えば、キッツマイクロフィルター(株)製のポリフィックスナイロンシリーズ、日本ポール(株)製のウルチプリーツP-ナイロン66、ウルチポアN66、スリーエム(株)製のライフアシュアPSNシリーズ、ライフアシュアEFシリーズなどを挙げることができる。
 ポリオレフィン系フィルターとしては、以下に限定されないが、例えば、日本ポール(株)製のウルチプリーツPEクリーン、イオンクリーン、日本インテグリス(株)製のプロテゴシリーズ、マイクロガードプラスHC10、オプチマイザーD等を挙げることができる。
 ポリエステル系フィルターとしては、以下に限定されないが、例えば、セントラルフィルター工業(株)製のジェラフローDFE、日本フィルター(株)製のブリーツタイプPMC等を挙げることができる。
 ポリアクリロニトリル系フィルターとしては、以下に限定されないが、例えば、アドバンテック東洋(株)製のウルトラフィルターAIP-0013D、ACP-0013D、ACP-0053D等を挙げることができる。
 フッ素樹脂系フィルターとしては、以下に限定されないが、例えば、日本ポール(株)製のエンフロンHTPFR、スリーエム(株)製のライフシュアFAシリーズ等を挙げることができる。
 これらのフィルターはそれぞれ単独で用いても2種類以上を組み合わせて用いてもよい。
 また、上記フィルターには陽イオン交換樹脂などのイオン交換体や、濾過される有機溶媒溶液にゼータ電位を生じさせるカチオン電荷調節剤などが含まれていてもよい。
 イオン交換体を含むフィルターとして、以下に限定されないが、例えば、日本インテグリス(株)製のプロテゴシリーズ、倉敷繊維加工(株)製のクラングラフト等を挙げることができる。
 また、ポリアミドポリアミンエピクロロヒドリンカチオン樹脂などの正のゼータ電位を有する物質を含むフィルターとしては(以下、登録商標)、以下に限定されないが、例えば、スリーエム(株)製ゼータプラス40QSHやゼータプラス020GN、あるいはライフアシュアEFシリーズ等が挙げられる。
 得られた重合体と溶媒とを含む溶液から、重合体を単離する方法は、特に限定されず、減圧除去、再沈殿による分離、及びそれらの組み合わせ等、公知の方法で行うことができる。必要に応じて、濃縮操作、ろ過操作、遠心分離操作、乾燥操作等の公知の処理を行うことができる。
[膜形成用組成物]
 本実施形態の組成物は、膜形成用途に使用できる。すなわち、本実施形態の膜形成用組成物は、本実施形態の重合体を含有するため、優れた耐熱性及びエッチング耐性を発揮できる。
 本明細書における「膜」とは、例えば、リソグラフィー用膜や光学部材等(ただし、これらに限定されるものではない。)に適用されうるものを意味し、そのサイズや形状は特に限定されず、典型的には、リソグラフィー用膜や光学部材として一般的な形態を有するものである。すなわち、「膜形成用組成物」とは、このような膜の前駆体であり、その形態及び/又は組成において、当該「膜」とは明確に区別されるものである。また、「リソグラフィー用膜」とは、例えば、レジスト用永久膜、リソグラフィー用下層膜等のリソグラフィー用途の膜を広く包含する概念である。
[膜形成用組成物の用途]
 本実施形態の膜形成用組成物は、上述した重合体を含有するものであるが、その具体的な用途に応じて様々な組成とすることができ、その用途ないし組成に応じ、以下では「レジスト組成物」、「感放射線性組成物」、「リソグラフィー用下層膜形成用組成物」と称する場合がある。
[レジスト組成物]
 本実施形態のレジスト組成物は、本実施形態の膜形成用組成物を含む。すなわち、本実施形態のレジスト組成物は、本実施形態の重合体を必須成分として含有するものであり、レジスト材料として用いられることを考慮し、種々の任意成分をさらに含有することができる。具体的には、本実施形態のレジスト組成物は、溶媒、酸発生剤及び酸拡散制御剤で構成される群から選択される少なくとも1つをさらに含有することが好ましい。
(溶媒)
 また、本実施形態のレジスト組成物が含みうる溶媒としては、特に限定されず、種々公知の有機溶媒を用いることができる。例えば、国際公開第2013/024778号に記載のものを用いることができる。これらの溶媒は、単独で又は2種以上を使用することができる。
 本実施形態で使用される溶媒は、安全溶媒であることが好ましく、より好ましくは、PGMEA(プロピレングリコールモノメチルエーテルアセテート)、PGME(プロピレングリコールモノメチルエーテル)、CHN(シクロヘキサノン)、CPN(シクロペンタノン)、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルから選ばれる少なくとも1種であり、さらに好ましくはPGMEA、PGME及びCHNから選ばれる少なくとも1種である。
 本実施形態において固形成分(本実施形態のレジスト組成物において溶媒以外の成分)の量と溶媒との量は、特に限定されないが、固形成分の量と溶媒との合計質量100質量部に対して、固形成分1~80質量部及び溶媒20~99質量部であることが好ましく、より好ましくは固形成分1~50質量部及び溶媒50~99質量部、さらに好ましくは固形成分2~40質量部及び溶媒60~98質量部であり、特に好ましくは固形成分2~10質量部及び溶媒90~98質量部である。
(酸発生剤(C))
 本実施形態のレジスト組成物において、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線及びイオンビームから選ばれるいずれかの放射線の照射により直接的又は間接的に酸を発生する酸発生剤(C)を一種以上含むことが好ましい。酸発生剤(C)は、特に限定されないが、例えば、国際公開第2013/024778号に記載のものを用いることができる。酸発生剤(C)は、単独で又は2種以上を使用することができる。
 酸発生剤(C)の使用量は、固形成分全質量の0.001~49質量%が好ましく、1~40質量%がより好ましく、3~30質量%がさらに好ましく、10~25質量%が特に好ましい。上記範囲内で使用することにより、高感度でかつ低エッジラフネスのパターンプロファイルが得られる。本実施形態では、系内に酸が発生すれば、酸の発生方法は限定されない。g線、i線などの紫外線の代わりにエキシマレーザーを使用すれば、より微細加工が可能であるし、また高エネルギー線として電子線、極端紫外線、X線、イオンビームを使用すればさらに微細加工が可能である。
(酸架橋剤(G))
 本実施形態においてレジスト組成物は、酸架橋剤(G)を一種以上含むことができる。酸架橋剤(G)とは、酸発生剤(C)から発生した酸の存在下で、本実施形態の重合体(成分(A))を分子内又は分子間架橋し得る化合物である。このような酸架橋剤(G)としては、例えば成分(A)を架橋し得る1種以上の基(以下、「架橋性基」という。)を有する化合物を挙げることができる。
 このような架橋性基としては、特に限定されないが、例えば(i)ヒドロキシ(C1-C6アルキル基)、C1-C6アルコキシ(C1-C6アルキル基)、アセトキシ(C1-C6アルキル基)等のヒドロキシアルキル基又はそれらから誘導される基;(ii)ホルミル基、カルボキシ(C1-C6アルキル基)等のカルボニル基又はそれらから誘導される基;(iii)ジメチルアミノメチル基、ジエチルアミノメチル基、ジメチロールアミノメチル基、ジエチロールアミノメチル基、モルホリノメチル基等の含窒素基含有基;(iv)グリシジルエーテル基、グリシジルエステル基、グリシジルアミノ基等のグリシジル基含有基;(v)ベンジルオキシメチル基、ベンゾイルオキシメチル基等の、C1-C6アリルオキシ(C1-C6アルキル基)、C1-C6アラルキルオキシ(C1-C6アルキル基)等の芳香族基から誘導される基;(vi)ビニル基、イソプロペニル基等の重合性多重結合含有基等を挙げることができる。本実施形態における酸架橋剤(G)の架橋性基としては、ヒドロキシアルキル基、及びアルコキシアルキル基等が好ましく、特にアルコキシメチル基が好ましい。
 上記架橋性基を有する酸架橋剤(G)としては、特に限定されないが、例えば、国際公開第2013/024778号に記載のものを用いることができる。酸架橋剤(G)は単独で又は2種以上を使用することができる。
 本実施形態において酸架橋剤(G)の使用量は、固形成分全質量の0.5~49質量%が好ましく、0.5~40質量%がより好ましく、1~30質量%がさらに好ましく、2~20質量%が特に好ましい。上記酸架橋剤(G)の配合割合を0.5質量%以上とすると、レジスト膜のアルカリ現像液に対する溶解性の抑制効果を向上させ、残膜率が低下したり、パターンの膨潤や蛇行が生じたりするのを抑制することができるので好ましく、一方、50質量%以下とすると、レジストとしての耐熱性の低下を抑制できることから好ましい。
(酸拡散制御剤(E))
 本実施形態においては、放射線照射により酸発生剤から生じた酸のレジスト膜中における拡散を制御して、未露光領域での好ましくない化学反応を阻止する作用等を有する酸拡散制御剤(E)をレジスト組成物に配合してもよい。この様な酸拡散制御剤(E)を使用することにより、レジスト組成物の貯蔵安定性が向上する。また解像度が向上するとともに、放射線照射前の引き置き時間、放射線照射後の引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れたものとなる。このような酸拡散制御剤(E)としては、特に限定されないが、例えば、窒素原子含有塩基性化合物、塩基性スルホニウム化合物、塩基性ヨードニウム化合物等の放射線分解性塩基性化合物が挙げられる。
 上記酸拡散制御剤(E)としては、特に限定されないが、例えば、国際公開第2013/024778号に記載のものを用いることができる。酸拡散制御剤(E)は、単独で又は2種以上を使用することができる。
 酸拡散制御剤(E)の配合量は、固形成分全質量の0.001~49質量%が好ましく、0.01~10質量%がより好ましく、0.01~5質量%がさらに好ましく、0.01~3質量%が特に好ましい。上記範囲内であると、解像度の低下、パターン形状、寸法忠実度等の劣化を防止することができる。さらに、電子線照射から放射線照射後加熱までの引き置き時間が長くなっても、パターン上層部の形状が劣化することがない。また、配合量が10質量%以下であると、感度、未露光部の現像性等の低下を防ぐことができる。またこの様な酸拡散制御剤を使用することにより、レジスト組成物の貯蔵安定性が向上し、また解像度が向上するとともに、放射線照射前の引き置き時間、放射線照射後の引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れたものとなる。
(その他の成分(F))
 本実施形態のレジスト組成物には、その他の成分(F)として、必要に応じて、溶解促進剤、溶解制御剤、増感剤、界面活性剤及び有機カルボン酸又はリンのオキソ酸若しくはその誘導体等の各種添加剤を1種又は2種以上添加することができる。
(溶解促進剤)
 低分子量溶解促進剤は、本実施形態における重合体の現像液に対する溶解性が低すぎる場合に、その溶解性を高めて、現像時の上記化合物の溶解速度を適度に増大させる作用を有する成分であり、必要に応じて、使用することができる。上記溶解促進剤としては、例えば、低分子量のフェノール性化合物を挙げることができ、例えば、ビスフェノール類、トリス(ヒドロキシフェニル)メタン等を挙げることができる。これらの溶解促進剤は、単独で又は2種以上を混合して使用することができる。
 溶解促進剤の配合量は、使用する上記化合物の種類に応じて適宜調節されるが、固形成分全質量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%が特に好ましい。
(溶解制御剤)
 溶解制御剤は、本実施形態における重合体の現像液に対する溶解性が高すぎる場合に、その溶解性を制御して現像時の溶解速度を適度に減少させる作用を有する成分である。このような溶解制御剤としては、レジスト被膜の焼成、放射線照射、現像等の工程において化学変化しないものが好ましい。
 溶解制御剤としては、特に限定されないが、例えば、フェナントレン、アントラセン、アセナフテン等の芳香族炭化水素類;アセトフェノン、ベンゾフェノン、フェニルナフチルケトン等のケトン類;メチルフェニルスルホン、ジフェニルスルホン、ジナフチルスルホン等のスルホン類等を挙げることができる。これらの溶解制御剤は、単独で又は2種以上を使用することができる。
 溶解制御剤の配合量は、使用する上記化合物の種類に応じて適宜調節されるが、固形成分全質量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%が特に好ましい。
(増感剤)
 増感剤は、照射された放射線のエネルギーを吸収して、そのエネルギーを酸発生剤(C)に伝達し、それにより酸の生成量を増加する作用を有し、レジストの見掛けの感度を向上させる成分である。このような増感剤としては、例えば、ベンゾフェノン類、ビアセチル類、ピレン類、フェノチアジン類、フルオレン類等を挙げることができるが、特に限定はされない。これらの増感剤は、単独で又は2種以上を使用することができる。
 増感剤の配合量は使用する上記化合物の種類に応じて適宜調節されるが、固形成分全質量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%が特に好ましい。
(界面活性剤)
 界面活性剤は本実施形態のレジスト組成物の塗布性やストリエーション、レジストの現像性等を改良する作用を有する成分である。このような界面活性剤はアニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤あるいは両性界面活性剤のいずれでもよい。好ましい界面活性剤はノニオン系界面活性剤である。ノニオン系界面活性剤は、レジスト組成物の製造に用いる溶媒との親和性がよく、より効果がある。ノニオン系界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリエチレングリコールの高級脂肪酸ジエステル類等が挙げられるが、特に限定されない。市販品としては、特に限定されないが、以下商品名で、例えば、エフトップ(ジェムコ社製)、メガファック(大日本インキ化学工業社製)、フロラード(住友スリーエム社製)、アサヒガード、サーフロン(以上、旭硝子社製)、ペポール(東邦化学工業社製)、KP(信越化学工業社製)、ポリフロー(共栄社油脂化学工業社製)等を挙げることができる。
 界面活性剤の配合量は、使用する上記化合物の種類に応じて適宜調節されるが、固形成分全質量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%が特に好ましい。
(有機カルボン酸又はリンのオキソ酸若しくはその誘導体)
 感度劣化防止又はレジストパターン形状、引き置き安定性等の向上の目的で、さらに任意の成分として、有機カルボン酸又はリンのオキソ酸若しくはその誘導体を含有させることができる。なお、有機カルボン酸又はリンのオキソ酸若しくはその誘導体は、酸拡散制御剤と併用することもできるし、単独で用いてもよい。有機カルボン酸としては、例えば、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸などが好適である。リンのオキソ酸若しくはその誘導体としては、リン酸、リン酸ジ-n-ブチルエステル、リン酸ジフェニルエステルなどのリン酸又はそれらのエステルなどの誘導体、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸ジ-n-ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステル等のホスホン酸又はそれらのエステルなどの誘導体、ホスフィン酸、フェニルホスフィン酸などのホスフィン酸及びそれらのエステルなどの誘導体が挙げられ、これらの中で特にホスホン酸が好ましい。
 有機カルボン酸又はリンのオキソ酸若しくはその誘導体は、単独で又は2種以上を使用することができる。有機カルボン酸又はリンのオキソ酸若しくはその誘導体の配合量は、使用する上記化合物の種類に応じて適宜調節されるが、固形成分全質量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%が特に好ましい。
(上述した添加剤(溶解促進剤、溶解制御剤、増感剤、界面活性剤及び有機カルボン酸又はリンのオキソ酸若しくはその誘導体等)以外のその他添加剤)
 さらに、本実施形態のレジスト組成物には、必要に応じて、上記溶解制御剤、増感剤、界面活性剤、及び有機カルボン酸又はリンのオキソ酸若しくはその誘導体以外の添加剤を1種又は2種以上配合することができる。そのような添加剤としては、例えば、染料、顔料、及び接着助剤等が挙げられる。例えば、染料又は顔料を配合すると、露光部の潜像を可視化させて、露光時のハレーションの影響を緩和できるので好ましい。また、接着助剤を配合すると、基板との接着性を改善することができるので好ましい。さらに、他の添加剤としては、特に限定されないが、例えば、ハレーション防止剤、保存安定剤、消泡剤、形状改良剤等、具体的には4-ヒドロキシ-4’-メチルカルコン等を挙げることができる。
 本実施形態のレジスト組成物において、任意成分(F)の合計量は、固形成分全質量の0~99質量%であり、0~49質量%が好ましく、0~10質量%がより好ましく、0~5質量%がさらに好ましく、0~1質量%がさらに好ましく、0質量%が特に好ましい。
[レジスト組成物における各成分の配合割合]
 本実施形態のレジスト組成物において、本実施形態における重合体(成分(A))の含有量は、特に限定されないが、固形成分の全質量(重合体(A)、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)(「任意成分(F)」とも記す。)などの任意に使用される成分を含む固形成分の総和、以下レジスト組成物について同様。)の50~99.4質量%であることが好ましく、より好ましくは55~90質量%、さらに好ましくは60~80質量%、特に好ましくは60~70質量%である。上記含有量の場合、解像度が一層向上し、ラインエッジラフネス(LER)が一層小さくなる傾向にある。
 本実施形態のレジスト組成物において、本実施形態における重合体(成分(A))、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)、任意成分(F)の含有量比(成分(A)/酸発生剤(C)/酸架橋剤(G)/酸拡散制御剤(E)/任意成分(F))は、レジスト組成物の固形分100質量%に対して、好ましくは50~99.4質量%/0.001~49質量%/0.5~49質量%/0.001~49質量%/0~49質量%であり、より好ましくは55~90質量%/1~40質量%/0.5~40質量%/0.01~10質量%/0~5質量%であり、さらに好ましくは60~80質量%/3~30質量%/1~30質量%/0.01~5質量%/0~1質量%であり、特に好ましくは60~70質量%/10~25質量%/2~20質量%/0.01~3質量%/0質量%、である。成分の配合割合は、その総和が100質量%になるように各範囲から選ばれる。上記配合にすると、感度、解像度、現像性等の性能に優れる傾向にある。なお、「固形分」とは、溶媒を除いた成分をいい、「固形分100質量%」とは、溶媒を除いた成分を100質量%とすることをいう。
 本実施形態のレジスト組成物は、通常は、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば、孔径0.2μm程度のフィルター等でろ過することにより調製される。
 本実施形態のレジスト組成物は、必要に応じて、本実施形態における重合体以外の他の樹脂を含むことができる。当該他の樹脂は、特に限定されず、例えば、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体あるいはこれらの誘導体などが挙げられる。上記他の樹脂の含有量は、特に限定されず、使用する成分(A)の種類に応じて適宜調節されるが、成分(A)100質量部に対して、30質量部以下が好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは0質量部である。
[レジスト組成物の物性等]
 本実施形態のレジスト組成物は、スピンコートによりアモルファス膜を形成することができる。また、一般的な半導体製造プロセスに適用することができる。用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。
 ポジ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05~5Å/secがより好ましく、0.0005~5Å/secがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。また、LERの低減、ディフェクトの低減効果がある。
 ネガ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
 上記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又は走査型電子顕微鏡による断面観察等の公知の方法によって測定し決定できる。
 ポジ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
 ネガ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05~5Å/secがより好ましく、0.0005~5Å/secがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
[感放射線性組成物]
 本実施形態の感放射線性組成物は、本実施形態の膜形成用組成物と、ジアゾナフトキノン光活性化合物(B)と、溶媒と、を含有する感放射線性組成物であって、前記溶媒の含有量が、前記感放射線性組成物の総量100質量部に対して、20~99質量部であり、前記溶媒以外の成分の含有量が、前記感放射線性組成物の総量100質量部に対して、1~80質量部である。すなわち、本実施形態の感放射線性組成物は、本実施形態における重合体と、ジアゾナフトキノン光活性化合物(B)と、溶媒とを必須成分として含有してもよく、感放射線性であることを考慮し、種々の任意成分をさらに含有することができる。
 本実施形態の感放射線性組成物には、重合体(成分(A))が含まれており、ジアゾナフトキノン光活性化合物(B)と併用されるため、g線、h線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外線、電子線又はX線を照射することにより、現像液に易溶な化合物となるポジ型レジスト用基材として有用である。g線、h線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外線、電子線又はX線により、成分(A)の性質は大きくは変化しないが、現像液に難溶なジアゾナフトキノン光活性化合物(B)が易溶な化合物に変化することで、現像工程によってレジストパターンを作り得る。
 本実施形態の感放射線性組成物に含有させる本実施形態の重合体(成分(A))のガラス転移温度は、好ましくは100℃以上、より好ましくは120℃以上、さらに好ましくは140℃以上、特に好ましくは150℃以上である。成分(A)のガラス転移温度の上限値は、特に限定されないが、例えば、600℃である。成分(A)のガラス転移温度が上記範囲内であることにより、半導体リソグラフィープロセスにおいて、パターン形状を維持しうる耐熱性を有し、高解像度などの性能が向上する傾向にある。
 本実施形態の感放射線性組成物に含有させる成分(A)のガラス転移温度の示差走査熱量分析により求めた結晶化発熱量は20J/g未満であるのが好ましい。また、(結晶化温度)-(ガラス転移温度)は好ましくは70℃以上、より好ましくは80℃以上、さらに好ましくは100℃以上、特に好ましくは130℃以上である。結晶化発熱量が20J/g未満、又は(結晶化温度)-(ガラス転移温度)が上記範囲内であると、感放射線性組成物をスピンコートすることにより、アモルファス膜を形成しやすく、かつレジストに必要な成膜性が長期に渡り保持でき、解像性が向上する傾向にある。
 本実施形態において、上記結晶化発熱量、結晶化温度及びガラス転移温度は、島津製作所製DSC/TA-50WSを用いた示差走査熱量分析により求めることができる。試料約10mgをアルミニウム製非密封容器に入れ、窒素ガス気流中(50mL/分)昇温速度20℃/分で融点以上まで昇温する。急冷後、再び窒素ガス気流中(30mL/分)昇温速度20℃/分で融点以上まで昇温する。さらに急冷後、再び窒素ガス気流中(30mL/分)昇温速度20℃/分で400℃まで昇温する。ステップ状に変化したベースラインの段差の中点(比熱が半分に変化したところ)の温度をガラス転移温度(Tg)、その後に現れる発熱ピークの温度を結晶化温度とする。発熱ピークとベースラインに囲まれた領域の面積から発熱量を求め、結晶化発熱量とする。
 本実施形態の感放射線性組成物に含有させる成分(A)は、常圧下、100以下、好ましくは120℃以下、より好ましくは130℃以下、さらに好ましくは140℃以下、特に好ましくは150℃以下において、昇華性が低いことが好ましい。昇華性が低いとは、熱重量分析において、所定温度で10分保持した際の重量減少が10%以下、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下、特に好ましくは0.1%以下であることを示す。昇華性が低いことにより、露光時のアウトガスによる露光装置の汚染を防止することができる。また低ラフネスで良好なパターン形状を得ることができる。
 本実施形態の感放射線性組成物に含有させる成分(A)は、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン(CHN)、シクロペンタノン(CPN)、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルから選ばれ、かつ、成分(A)に対して最も高い溶解能を示す溶媒に、23℃で、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上溶解し、よりさらに好ましくは、PGMEA、PGME、CHNから選ばれ、かつ、成分(A)に対して最も高い溶解能を示す溶媒に、23℃で、20質量%以上溶解し、特に好ましくはPGMEAに対して、23℃で、20質量%以上溶解する。上記条件を満たしていることにより、実生産における半導体製造工程での使用が可能となる。
(ジアゾナフトキノン光活性化合物(B))
 本実施形態の感放射線性組成物に含まれるジアゾナフトキノン光活性化合物(B)は、ポリマー性及び非ポリマー性ジアゾナフトキノン光活性化合物を含む、ジアゾナフトキノン物質であり、一般にポジ型レジスト組成物において、感光性成分(感光剤)として用いられているものであれば特に限定されず、1種又は2種以上を任意に選択して用いることができる。
 このような感光剤としては、ナフトキノンジアジドスルホン酸クロライドやベンゾキノンジアジドスルホン酸クロライド等と、これら酸クロライドと縮合反応可能な官能基を有する低分子化合物又は高分子化合物とを反応させることによって得られた化合物が好ましいものである。ここで、酸クロライドと縮合可能な官能基としては、特に限定されないが、例えば、水酸基、アミノ基等が挙げられるが、特に水酸基が好適である。水酸基を含む酸クロライドと縮合可能な化合物としては、特に限定されないが、例えばハイドロキノン、レゾルシン、2,4-ジヒドロキシベンゾフェノン、2,3,4-トリヒドロキシベンゾフェノン、2,4,6-トリヒドロキシベンゾフェノン、2,4,4’-トリヒドロキシベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’,3,4,6’-ペンタヒドロキシベンゾフェノン等のヒドロキシベンゾフェノン類、ビス(2,4-ジヒドロキシフェニル)メタン、ビス(2,3,4-トリヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)プロパン等のヒドロキシフェニルアルカン類、4,4’,3”,4”-テトラヒドロキシ-3,5,3’,5’-テトラメチルトリフェニルメタン、4,4’,2”,3”,4”-ペンタヒドロキシ-3,5,3’,5’-テトラメチルトリフェニルメタン等のヒドロキシトリフェニルメタン類などを挙げることができる。
 また、ナフトキノンジアジドスルホン酸クロライドやベンゾキノンジアジドスルホン酸クロライドなどの酸クロライドとしては、例えば、1,2-ナフトキノンジアジド-5-スルフォニルクロライド、1,2-ナフトキノンジアジド-4-スルフォニルクロライドなどが好ましいものとして挙げられる。
 本実施形態の感放射線性組成物は、例えば、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば、孔径0.2μm程度のフィルター等でろ過することにより調製されることが好ましい。
(溶媒)
 本実施形態の感放射線性組成物に用いることにできる溶媒としては、特に限定されないが、例えば、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル、及び乳酸エチルが挙げられる。このなかでもプロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノンが好ましい、溶媒は、1種単独で用いても2種以上を併用してもよい。
 溶媒の含有量は、感放射線性組成物の総量100質量部に対して、20~99質量部であり、好ましくは50~99質量部であり、より好ましくは60~98質量部であり、特に好ましくは90~98質量部である。
 また、溶媒以外の成分(固形成分)の含有量は、感放射線性組成物の総量100質量部に対して、1~80質量部であり、好ましくは1~50質量部であり、より好ましくは2~40質量部であり、特に好ましくは2~10質量部である。
[感放射線性組成物の特性]
 本実施形態の感放射線性組成物は、スピンコートによりアモルファス膜を形成することができる。また、一般的な半導体製造プロセスに適用することができる。用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。
 ポジ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05~5Å/secがより好ましく、0.0005~5Å/secがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、本実施形態の重合体(成分(A))の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
 ネガ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
 上記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又はQCM法等の公知の方法によって測定し決定できる。
 ポジ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により照射した後、又は、20~500℃(好ましくは、50~500℃)で加熱した後の露光した部分の、23℃における現像液に対する溶解速度は、10Å/sec以上が好ましく、10~10000Å/secがより好ましく、100~1000Å/secがさらに好ましい。当該溶解速度が10Å/sec以上であると現像液に易溶で、レジストに一層向いている。また、10000Å/sec以下の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
 ネガ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により照射した後、又は、20~500℃(好ましくは、50~500℃)で加熱した後の露光した部分の、23℃における現像液に対する溶解速度は、5Å/sec以下が好ましく、0.05~5Å/secがより好ましく、0.0005~5Å/secがさらに好ましい。当該溶解速度が5Å/sec以下であると現像液に不溶で、レジストとすることができる。また、0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、成分(A)の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
(感放射線性組成物における各成分の配合割合)
 本実施形態の感放射線性組成物において、本実施形態の重合体(成分(A))の含有量は、固形成分全質量(本実施形態の重合体、ジアゾナフトキノン光活性化合物(B)及びその他の成分(D)などの任意に使用される固形成分の総和、感放射線性組成物について以下同様。)に対して、好ましくは1~99質量%であり、より好ましくは5~95質量%、さらに好ましくは10~90質量%、特に好ましくは25~75質量%である。本実施形態の感放射線性組成物は、本実施形態の重合体の含有量が上記範囲内であると、高感度でラフネスの小さなパターンを得ることができる。
 本実施形態の感放射線性組成物において、ジアゾナフトキノン光活性化合物(B)の含有量は、固形成分全質量に対して、好ましくは1~99質量%であり、より好ましくは5~95質量%、さらに好ましくは10~90質量%、特に好ましくは25~75質量%である。本実施形態の感放射線性組成物は、ジアゾナフトキノン光活性化合物(B)の含有量が上記範囲内であると、高感度でラフネスの小さなパターンを得ることができる。
(その他の成分(D))
 本実施形態の感放射線性組成物には、必要に応じて、溶媒、本実施形態の重合体及びジアゾナフトキノン光活性化合物(B)以外の成分として、上述の酸発生剤、酸架橋剤、酸拡散制御剤、溶解促進剤、溶解制御剤、増感剤、界面活性剤、有機カルボン酸又はリンのオキソ酸若しくはその誘導体等の各種添加剤を1種又は2種以上添加することができる。なお、本実施形態の感放射線性組成物に関して、その他の成分(D)を任意成分(D)ということがある。
 本実施形態の重合体(成分(A))と、ジアゾナフトキノン光活性化合物(B)と、任意成分(D)と、の含有量比((A)/(B)/(D))は、感放射線性組成物の固形分100質量%に対して、好ましくは1~99質量%/99~1質量%/0~98質量%であり、より好ましくは5~95質量%/95~5質量%/0~49質量%であり、さらに好ましくは10~90質量%/90~10質量%/0~10質量%であり、特に好ましくは20~80質量%/80~20質量%/0~5質量%であり、最も好ましくは25~75質量%/75~25質量%/0質量%である。
 各成分の配合割合は、その総和が100質量%になるように各範囲から選ばれる。本実施形態の感放射線性組成物は、各成分の配合割合を上記範囲にすると、ラフネスに加え、感度、解像度等の性能に優れる。
 本実施形態の感放射線性組成物は本実施形態における重合体以外の他の樹脂を含んでもよい。このような他の樹脂としては、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体あるいはこれらの誘導体などが挙げられる。他の樹脂の配合量は、使用する本実施形態の重合体の種類に応じて適宜調節されるが、本実施形態の重合体100質量部に対して、30質量部以下が好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは0質量部である。
[アモルファス膜の製造方法]
 本実施形態のアモルファス膜の製造方法は、上記感放射線性組成物を用いて、基板上にアモルファス膜を形成する工程を含む。
[レジストパターン形成方法]
 本実施形態において、レジストパターンは、本実施形態のレジスト組成物を用いるか、あるいは、本実施形態の感放射線性組成物を用いることにより、形成することができる。また、後述するが、本実施形態のリソグラフィー用下層膜形成用組成物を用いてレジストパターンを形成することでもきる。
[レジスト組成物を用いたレジストパターンの形成方法]
 本実施形態のレジスト組成物を用いたレジストパターンの形成方法は、上述した本実施形態のレジスト組成物を用いて基板上にレジスト膜を形成する工程と、形成されたレジスト膜の少なくとも一部を露光する工程と、露光した前記レジスト膜を現像してレジストパターンを形成する工程とを備える。本実施形態におけるレジストパターンは多層プロセスにおける上層レジストとして形成することもできる。
[感放射線性組成物を用いたレジストパターン形成方法]
 本実施形態の感放射線性組成物を用いたレジストパターン形成方法は、上記感放射線性組成物を用いて、基板上にレジスト膜を形成する工程と、形成された前記レジスト膜の少なくとも一部を露光する工程と、露光した前記レジスト膜を現像してレジストパターンを形成する工程と、を含む。なお、詳細には以下の、レジスト組成物を用いたレジストパターン形成方法と同様の操作とすることができる。
 以下、本実施形態のレジスト組成物を用いる場合と本実施形態の感放射線性組成物を用いる場合とで共通しうるレジストパターン形成方法の実施条件に関して説明する。
 レジストパターンを形成する方法としては、特に限定されないが、例えば、以下の方法が挙げられる。まず、従来公知の基板上に上記本実施形態のレジスト組成物を、回転塗布、流延塗布、ロール塗布等の塗布手段によって塗布することによりレジスト膜を形成する。従来公知の基板とは、特に限定されず、例えば、電子部品用の基板や、これに所定の配線パターンが形成されたもの等を例表することができる。より具体的には、特に限定されないが、例えば、シリコンウェハー、銅、クロム、鉄、アルミニウム等の金属製の基板や、ガラス基板等が挙げられる。配線パターンの材料としては、特に限定されないが、例えば、銅、アルミニウム、ニッケル、金等が挙げられる。また必要に応じて、前述基板上に無機系及び/又は有機系の膜が設けられたものであってもよい。無機系の膜としては、特に限定されないが、例えば、無機反射防止膜(無機BARC)が挙げられる。有機系の膜としては、特に限定されないが、例えば、有機反射防止膜(有機BARC)が挙げられる。ヘキサメチレンジシラザン等による表面処理を行ってもよい。
 次に、必要に応じて、塗布した基板を加熱する。加熱条件は、レジスト組成物の配合組成等により変わるが、20~250℃が好ましく、より好ましくは20~150℃である。加熱することによって、レジストの基板に対する密着性が向上する場合があり好ましい。次いで、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線、及びイオンビームからなる群から選ばれるいずれかの放射線により、レジスト膜を所望のパターンに露光する。露光条件等は、レジスト組成物の配合組成等に応じて適宜選定される。本実施形態においては、露光における高精度の微細パターンを安定して形成するために、放射線照射後に加熱するのが好ましい。
 次いで、露光されたレジスト膜を現像液で現像することにより、所定のレジストパターンを形成する。上記現像液としては、使用する成分(A)に対して溶解度パラメーター(SP値)の近い溶剤を選択することが好ましく、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤等の極性溶剤又は炭化水素系溶剤、或いはアルカリ水溶液を用いることができる。上記溶剤及びアルカリ水溶液としては、例えば、国際公開第2013/024778号に記載のものが挙げられる。
 上記の溶剤は、複数混合してもよいし、性能を有する範囲内で、上記以外の溶剤や水と混合し使用してもよい。ここで、本実施形態の所望の効果をより高める観点から、現像液全体としての含水率が70質量%未満であり、50質量%未満であることが好ましく、30質量%未満であることがより好ましく、10質量%未満であることがさらに好ましく、実質的に水分を含有しないことが特に好ましい。すなわち、現像液に対する有機溶剤の含有量は、現像液の全量に対して、30質量%以上100質量%以下であり、50質量%以上100質量%以下であることが好ましく、70質量%以上100質量%以下であることがより好ましく、90質量%以上100質量%以下であることがさらに好ましく、95質量%以上100質量%以下であることが特に好ましい。
 特に、現像液は、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種類の溶剤を含有する現像液が、レジストパターンの解像性やラフネス等のレジスト性能を改善するため好ましい。
 現像液には、必要に応じて界面活性剤を適当量添加することができる。界面活性剤としては特に限定されないが、例えば、イオン性や非イオン性のフッ素系及び/又はシリコン系界面活性剤等を用いることができる。これらのフッ素及び/又はシリコン系界面活性剤として、例えば、特開昭62-36663号公報、特開昭61-226746号公報、特開昭61-226745号公報、特開昭62-170950号公報、特開昭63-34540号公報、特開平7-230165号公報、特開平8-62834号公報、特開平9-54432号公報、特開平9-5988号公報、米国特許第5405720号明細書、同5360692号明細書、同5529881号明細書、同5296330号明細書、同5436098号明細書、同5576143号明細書、同5294511号明細書、同5824451号明細書記載の界面活性剤を挙げることができ、好ましくは、非イオン性の界面活性剤である。非イオン性の界面活性剤としては特に限定されないが、フッ素系界面活性剤又はシリコン系界面活性剤を用いることがさらに好ましい。
 界面活性剤の使用量は現像液の全量に対して、通常0.001~5質量%、好ましくは0.005~2質量%、さらに好ましくは0.01~0.5質量%である。
 現像方法としては、特に限定されないが、例えば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)などを適用することができる。パターンの現像を行なう時間には特に制限はないが、好ましくは10秒~90秒である。
 また、現像を行う工程の後に、他の溶媒に置換しながら、現像を停止する工程を実施してもよい。
 現像の後には、有機溶剤を含むリンス液を用いて洗浄する工程を含むことが好ましい。
 現像後のリンス工程に用いるリンス液としては、架橋により硬化したレジストパターンを溶解しなければ特に制限はなく、一般的な有機溶剤を含む溶液又は水を使用することができる。上記リンス液としては、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種類の有機溶剤を含有するリンス液を用いることが好ましい。より好ましくは、現像の後に、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤で構成される群から選択される少なくとも1種類の有機溶剤を含有するリンス液を用いて洗浄する工程を行う。さらにより好ましくは、現像の後に、アルコール系溶剤又はエステル系溶剤を含有するリンス液を用いて洗浄する工程を行う。さらにより好ましくは、現像の後に、1価アルコールを含有するリンス液を用いて洗浄する工程を行う。特に好ましくは、現像の後に、炭素数5以上の1価アルコールを含有するリンス液を用いて洗浄する工程を行う。パターンのリンスを行なう時間は特に限定されないが、好ましくは10秒間~90秒間である。
 ここで、現像後のリンス工程で用いられる1価アルコールとしては、直鎖状、分岐状、環状の1価アルコールが挙げられ、特に限定されないが、例えば、国際公開第2013/024778号に記載のものが挙げられる。特に好ましい炭素数5以上の1価アルコールとしては、1-ヘキサノール、2-ヘキサノール、4-メチル-2-ペンタノール、1-ペンタノール、3-メチル-1-ブタノールなどを用いることができる。
 上記各成分は、複数混合してもよいし、上記以外の有機溶剤と混合し使用してもよい。
 リンス液中の含水率は、10質量%以下が好ましく、より好ましくは5質量%以下、特に好ましくは3質量%以下である。含水率を10質量%以下にすることで、より良好な現像特性を得ることができる。
 リンス液には、界面活性剤を適当量添加して使用することもできる。
 リンス工程においては、現像を行ったウエハを上記の有機溶剤を含むリンス液を用いて洗浄処理する。洗浄処理の方法は特に限定されないが、たとえば、一定速度で回転している基板上にリンス液を塗出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)、などを適用することができ、この中でも回転塗布方法で洗浄処理を行い、洗浄後に基板を2000rpm~4000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。
 レジストパターンを形成した後、エッチングすることによりパターン配線基板が得られる。エッチングの方法はプラズマガスを使用するドライエッチング及びアルカリ溶液、塩化第二銅溶液、塩化第二鉄溶液等によるウェットエッチングなど公知の方法で行うことが出来る。
 レジストパターンを形成した後、めっきを行うこともできる。上記めっき法としては、例えば、銅めっき、はんだめっき、ニッケルめっき、金めっきなどがある。
 エッチング後の残存レジストパターンは有機溶剤で剥離することが出来る。上記有機溶剤として、特に限定されないが、例えば、PGMEA(プロピレングリコールモノメチルエーテルアセテート)、PGME(プロピレングリコールモノメチルエーテル)、EL(乳酸エチル)等が挙げられる。上記剥離方法としては、特に限定されないが、例えば、浸漬方法、スプレイ方式等が挙げられる。また、レジストパターンが形成された配線基板は、多層配線基板でもよく、小径スルーホールを有していてもよい。
 本実施形態において得られる配線基板は、レジストパターン形成後、金属を真空中で蒸着し、その後レジストパターンを溶液で溶かす方法、すなわちリフトオフ法により形成することもできる。
[リソグラフィー用下層膜形成用組成物]
 本実施形態のリソグラフィー用下層膜形成用組成物は、本実施形態の膜形成用組成物を含むものである。すなわち、本実施形態のリソグラフィー用下層膜形成用組成物は、本実施形態における重合体を必須成分として含有するものであり、リソグラフィー用下層膜形成材料として用いられることを考慮し、種々の任意成分をさらに含有することができる。具体的には、本実施形態のリソグラフィー用下層膜形成用組成物は、溶媒、酸発生剤及び架橋剤で構成される群から選択される少なくとも1つをさらに含有することが好ましい。
 本実施形態における重合体の含有量としては、塗布性及び品質安定性の点から、リソグラフィー用下層膜形成用組成物中、全固形分に対して、1~100質量%であることが好ましく、10~100質量%であることがより好ましく、50~100質量%であることがさらに好ましく、100質量%であることが特に好ましい。
 本実施形態のリソグラフィー用下層膜形成用組成物が溶媒を含む場合、本実施形態における重合体の含有量は、特に限定されないが、溶媒を含む総量100質量部に対して、1~33質量部であることが好ましく、より好ましくは2~25質量部、さらに好ましくは3~20質量部である。
 本実施形態のリソグラフィー用下層膜形成用組成物は、湿式プロセスへの適用が可能であり、耐熱性及びエッチング耐性に優れる。さらに、本実施形態のリソグラフィー用下層膜形成用組成物は本実施形態における重合体を含むため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れた下層膜を形成することができる。さらに、本実施形態のリソグラフィー用下層膜形成用組成物はレジスト層との密着性にも優れるので、優れたレジストパターンを得ることができる。なお、本実施形態のリソグラフィー用下層膜形成用組成物は、本実施形態の所望の効果が損なわれない範囲において、既に知られているリソグラフィー用下層膜形成材料等を含んでいてもよい。
(溶媒)
 本実施形態のリソグラフィー用下層膜形成用組成物において用いられる溶媒としては、本実施形態の重合体が少なくとも溶解するものであれば、公知のものを適宜用いることができる。
 溶媒の具体例としては、特に限定されないが、例えば、国際公開第2013/024779号に記載のものが挙げられる。これらの溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
 上記溶媒の中で、安全性の点からシクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、ヒドロキシイソ酪酸メチル、アニソールが特に好ましい。
 溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、本実施形態における重合体100質量部に対して、100~10,000質量部であることが好ましく、200~5,000質量部であることがより好ましく、200~1,000質量部であることがさらに好ましい。
(架橋剤)
 本実施形態のリソグラフィー用下層膜形成用組成物は、インターミキシングを抑制する等の観点から、必要に応じて架橋剤を含有していてもよい。本実施形態で使用可能な架橋剤としては、特に限定されないが、例えば、国際公開第2013/024778号、国際公開第2013/024779号や国際公開第2018/016614号に記載のものを用いることができる。なお、本実施形態において、架橋剤は、単独で又は2種以上を使用することができる。
 本実施形態で使用可能な架橋剤の具体例としては、例えば、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、アクリレート化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物、アジド化合物等が挙げられるが、これらに特に限定されない。これらの架橋剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。これらの中でもベンゾオキサジン化合物、エポキシ化合物又はシアネート化合物が好ましく、エッチング耐性向上の観点から、ベンゾオキサジン化合物がより好ましい。また良好な反応性を有する点から、メラミン化合物、及びウレア化合物がより好ましい。メラミン化合物としては、例えば、式(a)で表される化合物(ニカラックMW-100LM(商品名)、(株)三和ケミカル製)、及び式(b)で表される化合物(ニカラックMX270(商品名)、(株)三和ケミカル製)が挙げられる。
Figure JPOXMLDOC01-appb-C000079
 エッチング耐性向上の観点から縮合芳香環含有フェノール化合物がより好ましい。また平坦化性向上の観点からメチロール基含有フェノール化合物がより好ましい。前記フェノール化合物としては、公知のものが使用でき、特に限定されない。
 架橋剤として用いられるメチロール基含有フェノール化合物は下記式(11-1)又は(11-2)で表されるものが平坦化性向上の観点から好ましい。
Figure JPOXMLDOC01-appb-C000080
 一般式(11-1)又は(11-2)で表される架橋剤において、Vは単結合又はn価の有機基であり、R及びRは各々独立に水素原子或いは炭素数1~10のアルキル基であり、R3及びR5は各々独立して炭素数1~10のアルキル基又は炭素数6~40のアリール基である。nは2~10の整数であり、rは各々独立して0~6の整数である。
 一般式(11-1)又は(11-2)の具体例としては、以下の式で表される化合物が挙げられる。ただし、一般式(11-1)又は(11-2)は、以下の式で表される化合物に限定されない。
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
 前記エポキシ化合物としては、公知のものが使用でき、特に限定されないが、好ましくは、耐熱性と溶解性という点から、フェノールアラルキル樹脂類、ビフェニルアラルキル樹脂類から得られるエポキシ樹脂等の常温で固体状エポキシ樹脂である。
 前記シアネート化合物としては、1分子中に2個以上のシアネート基を有する化合物であれば特に制限なく、公知のものを使用することができる。本実施形態において、好ましいシアネート化合物としては、1分子中に2個以上の水酸基を有する化合物の水酸基をシアネート基に置換した構造のものが挙げられる。また、シアネート化合物は、芳香族基を有するものが好ましく、シアネート基が芳香族基に直結した構造のものを好適に使用することができる。このようなシアネート化合物としては、特に限定されないが、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールM、ビスフェノールP、ビスフェノールE、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエンノボラック樹脂、テトラメチルビスフェノールF、ビスフェノールAノボラック樹脂、臭素化ビスフェノールA、臭素化フェノールノボラック樹脂、3官能フェノール、4官能フェノール、ナフタレン型フェノール、ビフェニル型フェノール、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂、ジシクロペンタジエンアラルキル樹脂、脂環式フェノール、リン含有フェノール等の水酸基をシアネート基に置換した構造のものが挙げられる。また、前記したシアネート化合物は、モノマー、オリゴマー及び樹脂のいずれの形態であってもよい。
 前記アミノ化合物としては、公知のものが使用でき、特に限定されないが、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテルが耐熱性と原料入手性の観点から好ましい。
 前記ベンゾオキサジン化合物としては、公知のものが使用でき、特に限定されないが、二官能性ジアミン類と単官能フェノール類から得られるP-d型ベンゾオキサジンが耐熱性の観点から好ましい。
 前記メラミン化合物としては、公知のものが使用でき、特に限定されないが、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物又はその混合物が原料入手性の観点から好ましい。
 前記グアナミン化合物としては、公知のものが使用でき、特に限定されないが、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物が耐熱性の観点から好ましい。
 前記グリコールウリル化合物としては、公知のものが使用でき、特に限定されないが、テトラメチロールグリコールウリル、テトラメトキシグリコールウリルが耐熱性及びエッチング耐性の観点から好ましい。
 前記ウレア化合物としては、公知のものが使用でき、特に限定されないが、テトラメチルウレア、テトラメトキシメチルウレアが耐熱性の観点から好ましい。
 また、本実施形態において、架橋性向上の観点から、少なくとも1つのアリル基を有する架橋剤を用いてもよい。中でも、2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、ビス(3-アリル-4-ヒドロキシフェニル)スルホン、ビス(3-アリル-4-ヒドロキシフェニル)スルフィド、ビス(3-アリル-4-ヒドロキシフェニル)エ-テル等のアリルフェノール類が好ましい。
 本実施形態のリソグラフィー用下層膜形成用組成物において、架橋剤の含有量は、特に限定されないが、本実施形態における重合体100質量部に対して、5~50質量部であることが好ましく、より好ましくは10~40質量部である。上記の好ましい範囲にすることで、レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。
(架橋促進剤)
 本実施形態のリソグラフィー用下層膜形成用組成物には、必要に応じて架橋、硬化反応を促進させるための架橋促進剤を用いることができる。
 前記架橋促進剤としては、架橋、硬化反応を促進させるものであれば、特に限定されないが、例えば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等が挙げられる。これらの架橋促進剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。これらの中でもイミダゾール類又は有機ホスフィン類が好ましく、架橋温度の低温化の観点から、イミダゾール類がより好ましい。
 前記架橋促進剤としては、公知のものが使用でき、特に限定されないが、例えば、国際公開2018/016614号に記載のものが挙げられる。耐熱性及び硬化促進の観点から、特に2-メチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾールが好ましい。
 架橋促進剤の含有量としては、通常、組成物の合計質量100質量部とした場合に100質量部とした場合に、好ましくは0.1~10質量部であり、より好ましくは、制御のし易さ及び経済性の観点から0.1~5質量部であり、さらに好ましくは0.1~3質量部である
(ラジカル重合開始剤)
 本実施形態のリソグラフィー用下層膜形成用組成物には、必要に応じてラジカル重合開始剤を配合することができる。ラジカル重合開始剤としては、光によりラジカル重合を開始させる光重合開始剤であってもよいし、熱によりラジカル重合を開始させる熱重合開始剤であってもよい。ラジカル重合開始剤としては、例えば、ケトン系光重合開始剤、有機過酸化物系重合開始剤及びアゾ系重合開始剤で構成される群から選ばれる少なくとも1種とすることができる。
 このようなラジカル重合開始剤としては、特に制限されず、従来用いられているものを適宜採用することができる。例えば、国際公開2018/016614号に記載のものが挙げられる。これらの中でも特に好ましくは、原料入手性及び保存安定性の観点からジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイドである。
 本実施形態に用いるラジカル重合開始剤としては、これらのうちの1種を単独で用いても2種以上を組み合わせて用いてもよく、他の公知の重合開始剤をさらに組み合わせて用いてもよい。
(酸発生剤)
 本実施形態のリソグラフィー用下層膜形成用組成物は、熱による架橋反応をさらに促進させるなどの観点から、必要に応じて酸発生剤を含有していてもよい。酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するものなどが知られているが、いずれのものも使用することができる。
 酸発生剤としては、特に限定されないが、例えば、国際公開第2013/024779号に記載のものを用いることができる。なお、本実施形態において、酸発生剤は、単独で又は2種以上を組み合わせて使用することができる。
 本実施形態のリソグラフィー用下層膜形成用組成物において、酸発生剤の含有量は、特に限定されないが、本実施形態における重合体100質量部に対して、0.1~50質量部であることが好ましく、より好ましくは0.5~40質量部である。上記の好ましい範囲にすることで、酸発生量が多くなって架橋反応が高められる傾向にあり、また、レジスト層とのミキシング現象の発生が抑制される傾向にある。
(塩基性化合物)
 さらに、本実施形態のリソグラフィー用下層膜形成用組成物は、保存安定性を向上させる等の観点から、塩基性化合物を含有していてもよい。
 塩基性化合物は、酸発生剤より微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、例えば、第一級、第二級又は第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられるが、これらに特に限定されない。
 本実施形態において用いられる塩基性化合物としては、特に限定されないが、例えば、国際公開第2013/024779号に記載のものを用いることができる。なお、本実施形態において、塩基性化合物は、単独で又は2種以上を組み合わせて使用することができる。
 本実施形態のリソグラフィー用下層膜形成用組成物において、塩基性化合物の含有量は、特に限定されないが、本実施形態における重合体100質量部に対して、0.001~2質量部であることが好ましく、より好ましくは0.01~1質量部である。上記の好ましい範囲にすることで、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。
(その他の添加剤)
 また、本実施形態のリソグラフィー用下層膜形成用組成物は、熱硬化性の付与や吸光度をコントロールする目的で、本実施形態の重合体に該当しない他の樹脂及び/又は化合物を含有していてもよい。このような他の樹脂及び/又は化合物としては、例えば、ナフトール樹脂、キシレン樹脂ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂、ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレンなどのナフタレン環、フェナントレンキノン、フルオレンなどのビフェニル環、チオフェン、インデンなどのヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられるが、これらに特に限定されない。さらに、本実施形態のリソグラフィー用下層膜形成用組成物は、公知の添加剤を含有していてもよい。上記公知の添加剤としては、以下に限定されないが、例えば、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等が挙げられる。
[リソグラフィー用下層膜の形成方法]
 本実施形態のリソグラフィー用下層膜の形成方法(製造方法)は、本実施形態のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程を含む。
[リソグラフィー用下層膜形成用組成物を用いたレジストパターン形成方法]
 本実施形態のリソグラフィー用下層膜形成用組成物を用いたレジストパターン形成方法は、本実施形態のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程(A-1)と、前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、を含む。また、当該レジストパターン形成方法は、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(A-3)を含んでもよい。
[リソグラフィー用下層膜形成用組成物を用いた回路パターン形成方法]
 本実施形態のリソグラフィー用下層膜形成用組成物を用いた回路パターン形成方法は、本実施形態のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程(B-1)と、前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程(B-2)と、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、前記工程(B-3)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B-4)と、前記工程(B-4)の後、前記レジストパターンをマスクとして前記中間層膜をエッチングして、中間層膜パターンを形成する工程(B-5)と、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングして、下層膜パターンを形成する工程(B-6)と、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-7)と、を有する。
 本実施形態のリソグラフィー用下層膜は、本実施形態のリソグラフィー用下層膜形成用組成物から形成されるものであれば、その形成方法は特に限定されず、公知の手法を適用することができる。例えば、本実施形態のリソグラフィー用下層膜形成用組成物をスピンコートやスクリーン印刷等の公知の塗布法或いは印刷法などで基板上に付与した後、有機溶媒を揮発させるなどして除去することで、下層膜を形成することができる。
 下層膜の形成時には、上層レジストとのミキシング現象の発生を抑制するとともに架橋反応を促進させるために、ベークをすることが好ましい。この場合、ベーク温度は、特に限定されないが、80~450℃の範囲内であることが好ましく、より好ましくは200~400℃である。また、ベーク時間も、特に限定されないが、10~300秒の範囲内であることが好ましい。なお、下層膜の厚さは、要求性能に応じて適宜選定することができ、特に限定されないが、通常、30~20,000nm程度であることが好ましく、より好ましくは50~15,000nmとすることが好ましい。
 下層膜を作製した後、2層プロセスの場合はその上に珪素含有レジスト層、或いは通常の炭化水素を含む単層レジスト、3層プロセスの場合はその上に珪素含有中間層、さらにその上に珪素を含まない単層レジスト層を作製することが好ましい。この場合、このレジスト層を形成するためのフォトレジスト材料としては公知のものを使用することができる。
 基板上に下層膜を作製した後、2層プロセスの場合はその下層膜上に珪素含有レジスト層又は通常の炭化水素を含む単層レジストを作製することができる。3層プロセスの場合はその下層膜上に珪素含有中間層、さらにその珪素含有中間層上に珪素を含まない単層レジスト層を作製することができる。これらの場合において、レジスト層を形成するためのフォトレジスト材料は、公知のものから適宜選択して使用することができ、特に限定されない。
 2層プロセス用の珪素含有レジスト材料としては、酸素ガスエッチング耐性の観点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、さらに有機溶媒、酸発生剤、必要により塩基性化合物等を含むポジ型のフォトレジスト材料が好ましく用いられる。ここで珪素原子含有ポリマーとしては、この種のレジスト材料において用いられている公知のポリマーを使用することができる。
 3層プロセス用の珪素含有中間層としてはポリシルセスキオキサンベースの中間層が好ましく用いられる。中間層に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。例えば、193nm露光用プロセスにおいて、下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなる傾向にあるが、中間層で反射を抑えることによって、基板反射を0.5%以下にすることができる。このような反射防止効果がある中間層としては、以下に限定されないが、193nm露光用としてはフェニル基又は珪素-珪素結合を有する吸光基を導入された、酸或いは熱で架橋するポリシルセスキオキサンが好ましく用いられる。
 また、Chemical Vapor Deposition(CVD)法で形成した中間層を用いることもできる。CVD法で作製した反射防止膜としての効果が高い中間層としては、以下に限定されないが、例えば、SiON膜が知られている。一般的には、CVD法よりスピンコート法やスクリーン印刷等の湿式プロセスによる中間層の形成の方が、簡便でコスト的なメリットがある。なお、3層プロセスにおける上層レジストは、ポジ型でもネガ型でもどちらでもよく、また、通常用いられている単層レジストと同じものを用いることができる。
 さらに、本実施形態における下層膜は、通常の単層レジスト用の反射防止膜或いはパターン倒れ抑制のための下地材として用いることもできる。本実施形態の下層膜は、下地加工のためのエッチング耐性に優れるため、下地加工のためのハードマスクとしての機能も期待できる。
 上記フォトレジスト材料によりレジスト層を形成する場合においては、上記下層膜を形成する場合と同様に、スピンコート法やスクリーン印刷等の湿式プロセスが好ましく用いられる。また、レジスト材料をスピンコート法などで塗布した後、通常、プリベークが行われるが、このプリベークは、80~180℃で10~300秒の範囲で行うことが好ましい。その後、常法にしたがい、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行うことで、レジストパターンを得ることができる。なお、レジスト膜の厚さは特に制限されないが、一般的には、30~500nmが好ましく、より好ましくは50~400nmである。
 また、露光光は、使用するフォトレジスト材料に応じて適宜選択して用いればよい。一般的には、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3~20nmの軟X線、電子ビーム、X線等を挙げることができる。
 上記の方法により形成されるレジストパターンは、本実施形態における下層膜によってパターン倒れが抑制されたものとなる。そのため、本実施形態における下層膜を用いることで、より微細なパターンを得ることができ、また、そのレジストパターンを得るために必要な露光量を低下させ得る。
 次に、得られたレジストパターンをマスクにしてエッチングを行う。2層プロセスにおける下層膜のエッチングとしては、ガスエッチングが好ましく用いられる。ガスエッチングとしては、酸素ガスを用いたエッチングが好適である。酸素ガスに加えて、He、Arなどの不活性ガスや、CO、CO2、NH3、SO2、N2、NO2、2ガスを加えることも可能である。また、酸素ガスを用いずに、CO、CO2、NH3、N2、NO2、2ガスだけでガスエッチングを行うこともできる。特に後者のガスは、パターン側壁のアンダーカット防止のための側壁保護のために好ましく用いられる。
 一方、3層プロセスにおける中間層のエッチングにおいても、ガスエッチングが好ましく用いられる。ガスエッチングとしては、上記の2層プロセスにおいて説明したものと同様のものが適用可能である。とりわけ、3層プロセスにおける中間層の加工は、フロン系のガスを用いてレジストパターンをマスクにして行うことが好ましい。その後、上述したように中間層パターンをマスクにして、例えば酸素ガスエッチングを行うことで、下層膜の加工を行うことができる。
 ここで、中間層として無機ハードマスク中間層膜を形成する場合は、CVD法や原子層堆積(ALD)法等で、珪素酸化膜、珪素窒化膜、珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、以下に限定されないが、例えば、特開2002-334869号公報、国際公開第2004/066377号に記載された方法を用いることができる。このような中間層膜の上に直接フォトレジスト膜を形成することができるが、中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。
 中間層として、ポリシルセスキオキサンベースの中間層も好ましく用いられる。レジスト中間層膜に反射防止膜として効果を持たせることによって、効果的に反射を抑えることができる傾向にある。ポリシルセスキオキサンベースの中間層の具体的な材料については、以下に限定されないが、例えば、特開2007-226170号、特開2007-226204号公報に記載されたものを用いることができる。
 また、次の基板のエッチングも、常法によって行うことができ、例えば、基板がSiO、SiNであればフロン系ガスを主体としたエッチング、p-SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行うことができる。基板をフロン系ガスでエッチングする場合、2層レジストプロセスの珪素含有レジストと3層プロセスの珪素含有中間層は、基板加工と同時に剥離される。一方、塩素系或いは臭素系ガスで基板をエッチングした場合は、珪素含有レジスト層又は珪素含有中間層の剥離が別途行われ、一般的には、基板加工後にフロン系ガスによるドライエッチング剥離が行われる。
 本実施形態における下層膜は、これら基板のエッチング耐性に優れる特徴がある。なお、基板は、公知のものを適宜選択して使用することができ、特に限定されないが、Si、α-Si、p-Si、SiO、SiN、SiON、W、TiN、Al等が挙げられる。また、基板は、基材(支持体)上に被加工膜(被加工基板)を有する積層体であってもよい。このような被加工膜としては、Si、SiO、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si等種々のLow-k膜及びそのストッパー膜等が挙げられ、通常、基材(支持体)とは異なる材質のものが用いられる。なお、加工対象となる基板或いは被加工膜の厚さは、特に限定されないが、通常、50~1,000,000nm程度であることが好ましく、より好ましくは75~500,000nmである。
[レジスト永久膜]
 なお、本実施形態の膜形成用組成物を用いてレジスト永久膜を作製することもできる、本実施形態の膜形成用組成物を基材等に塗布してなるレジスト永久膜は、必要に応じてレジストパターンを形成した後、最終製品にも残存する永久膜として好適である。永久膜の具体例としては、特に限定されないが、例えば、半導体デバイス関係では、ソルダーレジスト、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や集積回路素子と回路基板の接着層、薄型ディスプレー関連では、薄膜トランジスタ保護膜、液晶カラーフィルター保護膜、ブラックマトリクス、スペーサーなどが挙げられる。特に、本実施形態の膜形成用組成物からなる永久膜は、耐熱性や耐湿性に優れている上に昇華成分による汚染性が少ないという非常に優れた利点も有する。特に表示材料において、重要な汚染による画質劣化の少ない高感度、高耐熱、吸湿信頼性を兼ね備えた材料となる。
 本実施形態の膜形成用組成物をレジスト永久膜用途に用いる場合には、硬化剤の他、更に必要に応じてその他の樹脂、界面活性剤や染料、充填剤、架橋剤、溶解促進剤などの各種添加剤を加え、有機溶剤に溶解することにより、レジスト永久膜用組成物とすることができる。
 本実施形態の膜形成用組成物をレジスト永久膜用とする場合、前記各成分を配合し、攪拌機等を用いて混合することによりレジスト永久膜用組成物を調製できる。また、本実施形態の膜形成用組成物が充填剤や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散あるいは混合してレジスト永久膜用組成物を調製することができる。
[光学部材形成用組成物]
 本実施形態の膜形成用組成物は、光学部材形成(又は光学部品形成)用として使用することもできる。すなわち、本実施形態の光学部材形成用組成物は、本実施形態の膜形成用組成物を含有するものである。換言すると、本実施形態の光学部材形成用組成物は、本実施形態における重合体を必須成分として含有するものである。ここで、「光学部材」(又は「光学部品」)とは、フィルム状、シート状の部品の他、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路をいう。本実施形態における重合体はこれら光学部材形成用途に有用である。本実施形態の光学部材形成用組成物は、光学部材形成材料として用いられることを考慮し、種々の任意成分をさらに含有することができる。具体的には、本実施形態の光学部材形成用組成物は、溶媒、酸発生剤及び架橋剤で構成される群から選択される少なくとも1つをさらに含有することが好ましい。溶媒、酸発生剤及び架橋剤として使用し得る具体例としては、前述した本実施形態のリソグラフィー用下層膜形成用組成物に含まれ得る各成分と同様とすることができ、その配合比としても、具体的な用途を考慮して適宜設定することができる。
 以下、実施例及び比較例を示し、本実施形態をさらに詳細に説明するが、本実施形態はこれらに限定されるものではない。
 なお、以下の実施例では化合物群1に係る実施例を「実施例群1」、化合物群2に係る実施例を「実施例群2」、化合物群3に係る実施例を「実施例群3」、化合物群4に係る実施例を「実施例群4」とし、以下の各実施例に付与された実施例番号は、各実施例群についての個別の実施例番号であるとする。すなわち、例えば、化合物群1に係る実施例(実施例群1)の実施例1は、化合物群2に係る実施例(実施例群2)の実施例1とは異なるものとして区別されるものとする。
 本実施形態の重合体の分析及び評価方法は次のとおりとした。
(構造分析)
 H-NMR測定については、Bruker社製「Advance600II spectrometer」を用いて、次の条件にて行った。
 周波数:400MHz
 溶媒:d6-DMSO
 内部標準:TMS
 測定温度:23℃
(分子量測定)
 LC-MS分析により、Water社製Acquity UPLC/MALDI-Synapt HDMSを用いて測定した。
(ポリスチレン換算分子量)
 ゲル浸透クロマトグラフィー(GPC)分析により、ポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)を求め、分散度(Mw/Mn)を求めた。
 装置:Shodex GPC-101型(昭和電工(株)製)
 カラム:KF-80M×3
 溶離液:THF 1mL/min
 温度:40℃
(膜厚の測定)
 重合体を使用して作成した樹脂膜の膜厚は干渉膜厚計「OPTM-A1」(大塚電子社製)により測定した。
[実施例群1]
(合成実施例1)ANT-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に、1,4,9,10-テトラヒドロキシアントラセンを25g(105mmol)とフタル酸モノブチル銅を10.1g(20mmol)仕込み、溶媒として1-ブタノールを100mL加えて、反応液を100℃で6時間撹拌して反応を行った。冷却後に析出物を濾過し、得られた粗体を酢酸エチル100mLに溶解させた。次に塩酸5mLを加え、室温で攪拌後、炭酸水素ナトリウムで中和処理を行った。酢酸エチル溶液を濃縮し、メタノール200mLを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を乾燥させることにより、下記式で表される構造を有する目的樹脂(ANT-1)38.0gを得た。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:1212、Mw:1864、Mw/Mn:1.54であった。
 得られた樹脂について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式の化学構造を有することを確認した。
 δ(ppm)9.1~10.3(4H,O-H)、6.4~8.5(4H,Ph-H)
Figure JPOXMLDOC01-appb-C000084
(合成実施例2~5)ANT-2~ANT-4及びPYL-1の合成
 1,4,9,10-テトラヒドロキシアントラセンの代わりに、1,8,9-トリヒドロキシアントラセン、2,6-ジヒドロキシアントラセン、2-ヒドロキシアントラセン、1-ヒドロキピレンを用いて、それ以外は合成実施例1と同様に行ない、それぞれ、下記式で表される目的化合物(ANT-2)、(ANT-3)、(ANT-4)、(PYL-1)を得た。
Figure JPOXMLDOC01-appb-C000085
 合成実施例2~5で得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果を以下に示す。また、得られた樹脂について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式の化学構造を有することを確認した。
  (ANT-2)Mn:1121、Mw:1682、Mw/Mn:1.50
 δ(ppm)9.1~10.3(3H,O-H)、6.6~8.0(5H,Ph-H)
  (ANT-3)Mn:1042、Mw:1448、Mw/Mn:1.39
 δ(ppm)9.2(2H,O-H)、7.2~8.4(6H,Ph-H)
  (ANT-4)Mn:934、Mw:1252、Mw/Mn:1.34
 δ(ppm)9.2(1H,O-H)、7.2~8.4(7H,Ph-H)
  (PYL-5)Mn:718、Mw:886、Mw/Mn:1.23
 δ(ppm)9.7(1H,O-H)、4.6~4.8(2H,Ph-H)、7.5~7.8(7H,Ph-H)
(比較合成例1)
 攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に、BisN-2  10g(21mmol)と、パラホルムアルデヒド0.7g(42mmol)、氷酢酸50mLとPGME50mLとを仕込み、95%の硫酸8mLを加えて、反応液を100℃で6時間撹拌して反応を行った。次に、反応液を濃縮し、メタノール1000mLを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させることにより、下記式で示される構造を有する目的樹脂(NBisN-1)7.2gを得た。
 得られた樹脂について、前記方法によりポリスチレン換算分子量を測定した結果、Mn:1278、Mw:1993、Mw/Mn:1.56であった。
 得られた樹脂について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式の化学構造を有することを確認した。
 δ(ppm)9.7(2H,O-H)、7.2~8.5(17H,Ph-H)、6.6(1H,C-H)、4.1(2H,-CH2)
Figure JPOXMLDOC01-appb-C000086
(比較合成例2)
 ジムロート冷却管、温度計、及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5-ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5-ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。
 続いて、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流下で、得られたジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とパラトルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後さらに、1-ナフトール52.0g(0.36mol)を加え、さらに220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の変性樹脂(CR-1)126.1gを得た。なお、樹脂(CR-1)については、下記に代表的な部分構造を示す。これらの部分構造はメチレン基で結合しているが、一部はエーテル結合等も介して結合されていた。
 得られた樹脂(CR-1)は、Mnが885であり、Mwが2220であり、Mw/Mnが2.51であった。
Figure JPOXMLDOC01-appb-C000087
[実施例1~5]
 合成例1~合成例5、および比較合成例1で得られた樹脂を用いて、以下に示す評価方法によって、耐熱性を評価した結果を表1に示す。
<熱分解温度の測定>
 エスアイアイ・ナノテクノロジー社製EXSTAR6000TG/DTA装置を使用し、試料約5mgをアルミニウム製非密封容器に入れ、窒素ガス(30mL/min)気流中昇温速度10℃/minで700℃まで昇温した。その際、10重量%の熱減量が観測される温度を熱分解温度(Tg)とし、以下の基準で耐熱性を評価した。
 評価A:熱分解温度が405℃以上
 評価B:熱分解温度が320℃以上
 評価C:熱分解温度が320℃未満
Figure JPOXMLDOC01-appb-T000088
 表1から明らかなように、実施例1~実施例5で用いた樹脂は、耐熱性が良好であるが、比較例1で用いた樹脂は、耐熱性が劣ることが確認できた。
[実施例1’~5’、比較例1’]
(リソグラフィー用下層膜形成用組成物の調製)
 表2に示す組成となるように、リソグラフィー用下層膜形成用組成物を調製した。次に、これらのリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布し、その後、窒素雰囲気下において、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200~250nmの下層膜を各々作製した。
 次に、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表2に示す。
[エッチング試験]
  エッチング装置:サムコインターナショナル社製 RIE-10NR
  出力:50W
  圧力:20Pa
  時間:2min
  エッチングガス
  Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
(エッチング耐性の評価)
 エッチング耐性の評価は、以下の手順で行った。まず、ノボラック(群栄化学社製 PSM4357)を用いること以外は、上記条件と同様にしてノボラックの下層膜を作製した。このノボラックの下層膜を対象として、上記のエッチング試験を行い、そのときのエッチングレートを測定した。
 次に、実施例1’~実施例5’と比較例1’の下層膜を、ノボラックの下層膜と同様の条件で作製し、上記エッチング試験を同様に行い、そのときのエッチングレートを測定した。ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
 [評価基準]
 A:ノボラックの下層膜に比べてエッチングレートが、-20%未満
 B:ノボラックの下層膜に比べてエッチングレートが、-20%~0%
 C:ノボラックの下層膜に比べてエッチングレートが、+0%超
Figure JPOXMLDOC01-appb-T000089
 実施例1’~実施例5’では、ノボラックの下層膜および比較例1’の樹脂に比べて優れたエッチングレートが発揮されることがわかった。一方、比較例1’の樹脂では、ノボラックの下層膜に比べてエッチングレートが同等であることがわかった。
 多環ポリフェノール樹脂(を含む組成物)の精製前後の金属含有量と溶液の保存安定性を以下の方法で評価を行った。
(各種金属含有量測定)
 ICP-MSを用いて以下の測定条件にて、以下の実施例、比較例によって得られた各種樹脂のプロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液中の金属含有量を測定した。
  装置:アジレント社製AG8900
  温度:25℃
  環境:クラス100クリーンルーム
(保存安定性評価)
 以下の実施例、比較例によって得られたPGMEA溶液を23℃にて240時間保持した後の溶液の濁度(HAZE)を色差・濁度計を用いて測定し、以下の基準にて溶液の保存安定性を評価した。
  装置:色差・濁度計COH400(日本電色(株)製)
  光路長:1cm
  石英セル使用
[評価基準]
   0≦HAZE≦1.0 :良好
 1.0<HAZE≦2.0 :可
 2.0<HAZE     :不良
(実施例6) ANT-1の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られたANT-1をシクロヘキサノンに溶解させた溶液(10質量%)を150g仕込み、攪拌しながら80℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相に分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びシクロヘキサノンを濃縮留去した。その後、ELグレードのシクロヘキサノン(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたANT-1のPGMEA溶液を得た。
(参考例1) ANT-1の超純水による精製
 蓚酸水溶液の代わりに、超純水を用いる以外は実施例6と同様に実施し、10質量%に濃度調整を行うことにより、ANT-1のPGMEA溶液を得た。
 処理前のANTの10質量%シクロヘキサノン溶液、実施例6及び参考例1において得られた溶液について、各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例7) ANT-2の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例2で得られたANT-2をシクロヘキサノンに溶解させた溶液(10質量%)を140g仕込み、攪拌しながら60℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相に分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びシクロヘキサノンを濃縮留去した。その後、ELグレードのシクロヘキサノン(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたANT-2のシクロヘキサノン溶液を得た。
(参考例2) ANT-2の超純水による精製
 蓚酸水溶液の代わりに、超純水を用いる以外は実施例7と同様に実施し、10質量%に濃度調整を行うことにより、ANTのシクロヘキサノン溶液を得た。
 処理前のANT-2の10質量%シクロヘキサノン溶液、実施例7及び参考例2において得られた溶液について、各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例8) フィルター通液による精製
 クラス1000のクリーンブース内にて、1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られた樹脂(ANT-1)をシクロヘキサノンに溶解させた濃度10質量%の溶液を500g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分100mLの流量で公称孔径が0.01μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックスナイロンシリーズ)に通液した。得られたANT-1の溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン株式会社製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表3に示す。
(実施例9)
 公称孔径が0.01μmのポリエチレン(PE)製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックス)を使用した以外は、実施例8と同様に通液し、得られたANT-1の溶液の各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例10)
 公称孔径が0.04μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックス)を使用した以外は、実施例8と同様に通液し、得られたANT-1の各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例11)
 公称孔径が0.2μmのゼータプラスフィルター40QSH(スリーエム(株)製、イオン交換能あり)を使用した以外は、実施例8と同様に通液し、得られたANT-1溶液各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例12)
 公称孔径が0.2μmのゼータプラスフィルター020GN(スリーエム(株)製、イオン交換能あり、ゼータプラスフィルター40QSHとはろ過面積及びろ材厚みが異なる)を使用した以外は、実施例8と同様に通液し、得られたANT-1溶液を下記条件にて分析した。測定結果を表3に示す。
(実施例13)
 実施例8における樹脂(ANT-1)の代わりに、合成実施例2で得られた樹脂(ANT-2)を使用した以外は、実施例8と同様に通液し、得られたANT-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例14)
 実施例9における樹脂(ANT-1)の代わりに、合成実施例2で得られた樹脂(ANT-2)を使用した以外は、実施例9と同様に通液し、得られたANT-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例15)
 実施例10における化合物(ANT-1)の代わりに、合成実施例2で得られた樹脂(ANT-2)を使用した以外は、実施例10と同様に通液し、得られたANT-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例16)
 実施例11における化合物(ANT-1)の代わりに、合成実施例2で得られた樹脂(ANT-2)を使用した以外は、実施例11と同様に通液し、得られたANT-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例17)
 実施例12における化合物(ANT-1)の代わりに、合成実施例2で得られた樹脂(ANT-2)を使用した以外は、実施例12と同様に通液し、得られたANT-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表3に示す。
(実施例18)酸洗浄、フィルター通液併用1
 クラス1000のクリーンブース内にて、300mL容量の四つ口フラスコ(底抜き型)に、実施例6によって得られた金属含有量の低減されたANT-1の10質量%シクロヘキサノン溶液を140g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分10mLの流量で公称孔径が0.01μmのイオン交換フィルター(日本ポール社製、商品名:イオンクリーンシリーズ)に通液した。その後、回収された該溶液を上記300mL容量の四つ口フラスコに戻し、フィルターを公称口径1nmの高密度PE製フィルター(日本インテグリス社製)に変え、同様にポンプ通液を実施した。得られたシクロヘキサノンの溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン株式会社製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表3に示す。
(実施例19)酸洗浄、フィルター通液併用2
 クラス1000のクリーンブース内にて、300mL容量の四つ口フラスコ(底抜き型)に、実施例6によって得られた金属含有量の低減されたANT-1の10質量%PGMEA溶液を140g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分10mLの流量で公称孔径が0.01μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックスに通液した。その後、回収された該溶液を上記300mL容量の四つ口フラスコに戻し、フィルターを公称口径1nmの高密度PE製フィルター(日本インテグリス社製)に変え、同様にポンプ通液を実施した。得られたANT-1の溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン株式会社製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表3に示す。
(実施例20)酸洗浄、フィルター通液併用3
 実施例18で使用したANT-1の10質量%シクロヘキサノン溶液を実施例7によって得られたANT-2の10質量%シクロヘキサノン溶液に変えた以外は実施例18と同様の操作を行い、金属量の低減されたANT-2の10質量%シクロヘキサノン溶液を回収した。得られた溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン株式会社製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表3に示す。
(実施例21)酸洗浄、フィルター通液併用4
 実施例19で使用したANT-1の10質量%シクロヘキサノン溶液を実施例7によって得られたANT-2の10質量%シクロヘキサノン溶液に変えた以外は実施例19と同様の操作を行い、金属量の低減されたANT-2の10質量%シクロヘキサノン溶液を回収した。得られた溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン株式会社製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-I000091
 表3に示すように、各種精製方法によって、酸化剤に由来する金属を低減することにより、本実施形態における樹脂溶液の保存安定性が良好となることが確認された。
 特に酸洗浄方法とイオン交換フィルターあるいはナイロンフィルターを使用することで、イオン性の金属を効果的に低減し、高精細な高密度ポリエチレン製の微粒子除去フィルターを併用することで、劇的な金属除去効果を得ることができる。
[実施例22~27、比較例3]
(耐熱性及びレジスト性能)
 合成実施例1~合成実施例5及び比較合成例1で得られた樹脂を用いて、下記の耐熱性試験及びレジスト性能評価を行った結果を表4に示す。
(レジスト組成物の調製)
 上記で合成した各樹脂を用いて、表4に示す配合でレジスト組成物を調製した。なお、表4中のレジスト組成物の各成分のうち、酸発生剤(C)、酸拡散制御剤(E)及び溶媒については、以下のものを用いた。
 酸発生剤(C)
  P-1:トリフェニルベンゼンスルホニウム トリフルオロメタンスルホネート(みどり化学(株))
 酸架橋剤(G)
  C-1:ニカラックMW-100LM(三和ケミカル(株))
 酸拡散制御剤(E)
  Q-1:トリオクチルアミン(東京化成工業(株))
 溶媒
  S-1:プロピレングリコールモノメチルエーテル(東京化成工業(株))
(レジスト組成物のレジスト性能の評価方法)
 均一なレジスト組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ60nmのレジスト膜を形成した。得られたレジスト膜に対して、電子線描画装置(ELS-7500、(株)エリオニクス社製)を用いて、50nm間隔の1:1のラインアンドスペース設定の電子線を照射した。当該照射後に、レジスト膜を、それぞれ所定の温度で、90秒間加熱し、テトラメチルアンモニウムヒドロキシド(TMAH)2.38質量%アルカリ現像液に60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄、乾燥して、ポジ型のレジストパターンを形成した。形成されたレジストパターンについて、ラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察し、レジスト組成物の電子線照射による反応性を評価した。
Figure JPOXMLDOC01-appb-T000092
 レジストパターン評価については、実施例22~実施例27では50nm間隔の1:1のラインアンドスペース設定の電子線を照射することにより、良好なレジストパターンを得た。なお、ラインエッジラフネスはパターンの凹凸が5nm未満を良好とした。一方、比較例3では良好なレジストパターンを得ることはできなかった。
 このように本実施形態の要件を満たす樹脂を用いた場合は、当該要件を満たさない比較例3の樹脂(NBisN-1)に比べて、耐熱性が高く、また良好なレジストパターン形状を付与できる。前記した本実施形態の要件を満たす限り、実施例に記載した樹脂以外についても同様の効果を示す。
[実施例28~32、比較例4]
(感放射線性組成物の調製)
 表5記載の成分を調合し、均一溶液としたのち、得られた均一溶液を、孔径0.1μmのテフロン(登録商標)製メンブランフィルターで濾過して、感放射線性組成物を調製した。調製した各々の感放射線性組成物について以下の評価を行った。
Figure JPOXMLDOC01-appb-T000093
 なお、比較例4におけるレジスト基材(成分(A))として、次のものを用いた。
  PHS-1:ポリヒドロキシスチレン Mw=8000(シグマ-アルドリッチ社)
 また、光活性化合物(B)として、次のものを用いた。
  B-1:下記化学構造式(G)のナフトキノンジアジド系感光剤(4NT-300、東洋合成工業(株))
 さらに、溶媒として、次のものを用いた。
  S-1:プロピレングリコールモノメチルエーテル(東京化成工業(株))
Figure JPOXMLDOC01-appb-C000094
(感放射線性組成物のレジスト性能の評価)
 上記で得られた感放射線性組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ200nmのレジスト膜を形成した。該レジスト膜に対して、紫外線露光装置(ミカサ製マスクアライナMA-10)を用いて紫外線を露光した。紫外線ランプは超高圧水銀ランプ(相対強度比はg線:h線:i線:j線=100:80:90:60)を使用した。照射後に、レジスト膜を、110℃で90秒間加熱し、TMAH2.38質量%アルカリ現像液に60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄し、乾燥して、5μmのポジ型のレジストパターンを形成した。
 形成されたレジストパターンにおいて、得られたラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察した。ラインエッジラフネスはパターンの凹凸が5nm未満を良好とした。
 実施例28~実施例32における感放射線性組成物を用いた場合は、解像度5μmの良好なレジストパターンを得ることができた。また、そのパターンのラフネスも小さく良好であった。
 一方、比較例4における感放射線性組成物を用いた場合は、解像度5μmの良好なレジストパターンを得ることができた。しかしながら、そのパターンのラフネスは大きく不良であった。
 上記のように、実施例28~実施例32における感放射線性組成物は、比較例4における感放射線性組成物に比べて、ラフネスが小さく、かつ良好な形状のレジストパターンを形成することができることがわかった。上記した本実施形態の要件を満たす限り、実施例に記載した以外の感放射線性組成物も同様の効果を示す。
 なお、合成実施例1~合成実施例5で得られた樹脂は、比較的に低分子量で低粘度であることから、これを用いたリソグラフィー用下層膜形成材料は埋め込み特性や膜表面の平坦性が比較的に有利に高められ得ると評価された。また、熱分解温度はいずれも405℃以上(評価A)であり、高い耐熱性を有するので、高温ベーク条件でも使用することができると評価された。これらの点を確認するべく、下層膜用途を想定し、以下の評価を行った。
[実施例33~38、比較例5~6]
(リソグラフィー用下層膜形成用組成物の調製)
 表6に示す組成となるように、リソグラフィー用下層膜形成用組成物を調製した。次に、これらのリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。酸発生剤、架橋剤及び有機溶媒については以下のものを用いた。
  酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
  架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
  有機溶媒:シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート(PGMEA)
  ノボラック:群栄化学社製 PSM4357
 次に、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表6に示す。
[エッチング試験]
  エッチング装置:サムコインターナショナル社製 RIE-10NR
  出力:50W
  圧力:20Pa
  時間:2min
  エッチングガス
  Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
(エッチング耐性の評価)
 エッチング耐性の評価は、以下の手順で行った。まず、ノボラック(群栄化学社製 PSM4357)を用いること以外は、上記条件と同様にしてノボラックの下層膜を作製した。このノボラックの下層膜を対象として、上記のエッチング試験を行い、そのときのエッチングレートを測定した。
 次に、実施例33~38と比較例5~6の下層膜を、ノボラックの下層膜と同様の条件で作製し、上記エッチング試験を同様に行い、そのときのエッチングレートを測定した。ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
 [評価基準]
 A:ノボラックの下層膜に比べてエッチングレートが、-20%未満
 B:ノボラックの下層膜に比べてエッチングレートが、-20%~0%
 C:ノボラックの下層膜に比べてエッチングレートが、+0%超
Figure JPOXMLDOC01-appb-T000095
 実施例33~38では、ノボラックの下層膜および比較例5~6の樹脂に比べて優れたエッチングレートが発揮されることがわかった。一方、比較例5あるいは比較例6の樹脂では、ノボラックの下層膜に比べてエッチングレートが同等或いは劣ることがわかった。
[実施例39~44、比較例7]
 次に、実施例33~実施例38,比較例5で用いたリソグラフィー用下層膜形成用組成物を膜厚80nmの60nmラインアンドスペースのSiO基板上に塗布して、240℃で60秒間ベークすることにより90nm下層膜を形成した。
(埋め込み性の評価)
 埋め込み性の評価は、以下の手順で行った。上記条件で得られた膜の断面を切り出し、電子線顕微鏡にて観察し、埋め込み性を評価した。評価結果を表7に示す。
 [評価基準]
  A:60nmラインアンドスペースのSiO基板の凹凸部分に欠陥無く下層膜が埋め込まれている。
  C:60nmラインアンドスペースのSiO基板の凹凸部分に欠陥があり下層膜が埋め込まれていない。
Figure JPOXMLDOC01-appb-T000096
 実施例39~44では、埋め込み性が良好であることがわかった。一方、比較例7では、SiO基板の凹凸部分に欠陥が見られ埋め込み性が劣ることがわかった。
[実施例45~50]
 次に、実施例33~38で用いたリソグラフィー用下層膜形成用組成物を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚85nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。
 なお、ArFレジスト溶液としては、下記式(16)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
 下記式(16)の化合物は、次のように調製した。すなわち、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。このようにして得られる生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて下記式(16)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000097
(式(16)中、40、40、20とあるのは、各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。)
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。
[比較例8]
 下層膜の形成を行わないこと以外は、実施例39と同様にしてフォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。
[評価]
 実施例45~50及び比較例8のそれぞれについて、得られた45nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの形状を(株)日立製作所製電子顕微鏡(S-4800)を用いて観察した。現像後のレジストパターンの形状については、パターン倒れがなく、矩形性が良好なものを良好とし、そうでないものを不良として評価した。また、当該観察の結果、パターン倒れが無く、矩形性が良好な最小の線幅を解像性として評価の指標とした。さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を感度として、評価の指標とした。その結果を表8に示す。
Figure JPOXMLDOC01-appb-T000098
 表8から明らかなように、実施例45~50におけるレジストパターンは、比較例8に比して、解像性及び感度ともに有意に優れていることが確認された。また、現像後のレジストパターン形状もパターン倒れがなく、矩形性が良好であることが確認された。さらに、現像後のレジストパターン形状の相違から、実施例33~38におけるリソグラフィー用下層膜形成材料は、レジスト材料との密着性がよいことが示された。
[実施例51]
 実施例39で用いたリソグラフィー用下層膜形成用組成物を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚90nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、前記ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、特開2007-226170号公報<合成例1>に記載の珪素原子含有ポリマーを用いた。
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、45nmL/S(1:1)のポジ型のレジストパターンを得た。
 その後、サムコインターナショナル社製 RIE-10NRを用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行い、続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO膜のドライエッチング加工とを順次行った。
 各々のエッチング条件は、下記に示すとおりである。
 レジストパターンのレジスト中間層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:1min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:8:2(sccm)
 レジスト中間膜パターンのレジスト下層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
 レジスト下層膜パターンのSiO 膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:C12ガス流量:Cガス流量:Oガス流量
          =50:4:3:1(sccm)
[評価]
 上記のようにして得られた実施例37のパターン断面(エッチング後のSiO膜の形状)を、(株)日立製作所製電子顕微鏡(S-4800)を用いて観察したところ、本実施形態の要件を満たす下層膜を用いた実施例は、多層レジスト加工におけるエッチング後のSiO膜の形状は矩形であり、欠陥も認められず良好であることが確認された。
<樹脂膜(樹脂単独膜)の特性評価>
<樹脂膜の作成>
(実施例A01)
 溶媒としてPGMEAを用い、合成実施例1の樹脂ANT-1を溶解して固形分濃度10質量%の樹脂溶液を作成した(実施例A01の樹脂溶液)。
 作成した樹脂溶液をスピンコーターLithiusPro(東京エレクトロン社製)を用いて12インチシリコンウエハ上に成膜し、200nmの膜厚となるように回転数を調整しながら成膜後、ベーク温度を250℃1分の条件でベーク処理して合成例1の樹脂からなる膜を積層した基板を作成した。作成した基板を更に高温処理可能なホットプレートを使用し、350℃1分の条件でベークすることで硬化した樹脂膜を得た。この際、得られた硬化した樹脂膜をシクロヘキサノン槽に1分間浸漬する前後の膜厚変化が3%以下であれば、硬化したと判断した。硬化が不十分と判断される場合は硬化温度を50℃づつ変更して硬化する温度を調査し、硬化する温度範囲の中で一番温度が低い条件で硬化するベーク処理を行った。
<光学特性値評価>
 作製した樹脂膜について、分光エリプソメトリーVUV-VASE(J.A.Woollam社製)を用いて光学特性値(光学定数として、屈折率nと、消衰係数k)の評価を行った。
(実施例A02~実施例A05及び比較例A01)
 使用した樹脂をANT-1から表9に示す樹脂に変更したこと以外は実施例A01と同様にして樹脂膜を作成し、光学特性値評価を実施した。
[評価基準]屈折率n
 A:1.4以上
 C:1.4未満
[評価基準]消衰係数k
 A:0.5未満
 C:0.5以上
Figure JPOXMLDOC01-appb-T000099
 実施例A01~A05の結果から、本実施形態における多環ポリフェノール樹脂を含む膜形成用組成物によりArF露光で使用する波長193nmにおけるn値が高くk値の低い樹脂膜を形成できることがわかった。
<硬化膜の耐熱性評価>
(実施例B01)
 実施例A01で作製した樹脂膜について、ランプアニール炉を用いた耐熱性評価を行った。耐熱処理条件としては窒素雰囲気下450℃で加熱を継続し、加熱開始からの経過時間4分および10分の間の膜厚変化率を求めた。また、窒素雰囲気下550℃で加熱を継続し、加熱開始からの経過時間4分および550℃10分の間での膜厚変化率を求めた。これらの膜厚変化率を硬化膜耐熱性の指標として評価した。耐熱試験前後の膜厚は、干渉膜厚計で計測して膜厚の変動値を耐熱試験処理前の膜厚に対する比を膜厚変化率(百分率%)として求めた。
 [評価基準]
 A:膜厚変化率が、10%未満
 B:膜厚変化率が、10%~15%
 C:膜厚変化率が、15%超
(実施例B02~実施例B05及び比較例B01~比較例B02)
 使用した樹脂をANT-1から表10に示す樹脂に変更したこと以外は実施例B01と同様にして耐熱性評価を実施した。
Figure JPOXMLDOC01-appb-T000100
(実施例C01)
<PE-CVD成膜評価>
 12インチシリコンウエハに熱酸化処理を実施し、得られたシリコン酸化膜を有する基板上に、実施例A01と同様の方法により、実施例A01の樹脂溶液を用いて100nmの厚みで樹脂膜を作製した。当該樹脂膜上に、成膜装置TELINDY(東京エレクトロン社製)を用い、原料としてTEOS(テトラエチルシロキサン)を使用し、基板温度300℃にて膜厚70nmの酸化シリコン膜の成膜を行った。作成した酸化シリコン膜を積層した硬化膜付きウエハについて、更にKLA-Tencor SP-5を用いて欠陥検査を行い、21nm以上となる欠陥の個数を指標として、成膜した酸化膜の欠陥数の評価を行った。
A 欠陥数 ≦ 20個
B 20個 ≦ 欠陥数 ≦ 50個
C 50個 ≦ 欠陥数 ≦ 100個
D 100個 ≦ 欠陥数 ≦ 1000個
E 1000個 ≦ 欠陥数 ≦ 5000個
F 5000個 ≦ 欠陥数
<SiN膜>
 上記と同様の方法により12インチシリコンウエハ上に100nmの厚みで熱酸化処理されたシリコン酸化膜を有する基板上に作製した硬化膜上に、成膜装置TELINDY(東京エレクトロン社製)を用い、原料としてSiH4(モノシラン)、アンモニアを使用し、基板温度350℃にて膜厚40nm、屈折率1.94、膜応力-54MPaのSiN膜の成膜を行った。作成したSiN膜を積層した硬化膜付きウエハについて、更にKLA-Tencor SP-5を用いて欠陥検査を行い、21nm以上となる欠陥の個数を指標として、成膜した酸化膜の欠陥数の評価を行った。
A 欠陥数 ≦ 20個
B 20個 ≦ 欠陥数 ≦ 50個
C 50個 ≦ 欠陥数 ≦ 100個
D 100個 ≦ 欠陥数 ≦ 1000個
E 1000個 ≦ 欠陥数 ≦ 5000個
F 5000個 ≦ 欠陥数
(実施例C02~実施例C05及び比較例C01~比較例C02)
 使用した樹脂をANT-1から表11に示す樹脂に変更したこと以外は実施例C01と同様にして耐熱性評価を実施した。
Figure JPOXMLDOC01-appb-T000101
 実施例C01~C05の樹脂膜上に形成されたシリコン酸化膜あるいはSiN膜は21nm以上となる欠陥の個数が50個以下(B評価以上)であり、比較例C01あるいはC02の欠陥の個数に比べ、少なくなることが示された。
(実施例D01)
<高温処理後のエッチング評価>
 12インチシリコンウエハに熱酸化処理を実施し、得られたシリコン酸化膜を有する基板上に、実施例A01と同様の方法により、実施例A01の樹脂溶液を用いて100nmの厚みで樹脂膜を作製した。当該樹脂膜に対して、更に窒素雰囲気下で高温処理可能なホットプレートにより600℃4分の条件で加熱によるアニーリング処理を行い、アニーリングされた樹脂膜が積層されたウエハを作成した。作成したアニーリングされた樹脂膜を削り出し、元素分析により炭素含率を求めた。
 更に、12インチシリコンウエハに熱酸化処理を実施し、得られたシリコン酸化膜を有する基板上に、実施例A01と同様の方法により、実施例A01の樹脂溶液を用いて100nmの厚みで樹脂膜を作製した。当該樹脂膜について、更に窒素雰囲気下で600℃4分の条件で加熱によりアニーリングされた樹脂膜を形成したのち、該基板をエッチング装置TELIUS(東京エレクトロン社製)を用い、エッチングガスとしてCF/Arを用いた条件、およびCl/Arを用いた条件でエッチング処理を行い、エッチングレートの評価を行った。エッチングレートの評価はリファレンスとしてSU8(日本化薬社製)を250℃1分アニーリング処理して作成した200nm膜厚の樹脂膜を用い、SU8に対するエッチングレートの速度比を相対値として求めて評価した。
(実施例D02~実施例D05及び比較例D01~比較例D02)
 使用した樹脂をANT-1から表12に示す樹脂に変更したこと以外は実施例D01と同様にして耐熱性評価を実施した。
Figure JPOXMLDOC01-appb-T000102
<積層膜でのエッチング欠陥評価>
 合成例で得られた多環ポリフェノール樹脂について、精製処理前後での品質評価を実施した。すなわち、多環ポリフェノール樹脂を用いてウエハ上に成膜した樹脂膜をエッチングにより基板側に転写したのち、欠陥評価を行うことで評価した。
 12インチシリコンウエハに熱酸化処理を実施し、100nmの厚みのシリコン酸化膜を有する基板を得た。当該基板上に、多環ポリフェノール樹脂の樹脂溶液を100nmの厚みとなるようにスピンコート条件を調整して成膜後、150℃ベーク1分、続いて350℃ベーク1分を行うことで多環ポリフェノール樹脂を熱酸化膜付きシリコン上に積層した積層基板を作製した。
 エッチング装置としてTELIUS(東京エレクトロン社製)を用い、CF4/O2/Arの条件で樹脂膜をエッチングし、酸化膜表面の基板を露出させた。更にCF4/Arのガス組成比にて酸化膜を100nmエッチングする条件でエッチング処理を行い、エッチングしたウエハを作成した。
 作成したエッチングウエハを欠陥検査装置SP5(KLA-tencor社製)にて19nm以上の欠陥数を測定し、積層膜でのエッチング処理による欠陥評価として実施した。
A 欠陥数 ≦ 20個
B 20個 ≦ 欠陥数 ≦ 50個
C 50個 ≦ 欠陥数 ≦ 100個
D 100個 ≦ 欠陥数 ≦ 1000個
E 1000個 ≦ 欠陥数 ≦ 5000個
F 5000個 ≦ 欠陥数
(実施例E01) ANT-1の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られたANT-1をシクロヘキサノンに溶解させた溶液(10質量%)を150g仕込み、攪拌しながら80℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相に分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びシクロヘキサノンを濃縮留去した。その後、ELグレードのシクロヘキサノン(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたANT-1のシクロヘキサノン溶液を得た。作成した多環ポリフェノール樹脂溶液を日本インテグリス社性の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E02) ANT-2の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例2で得られたANT-2をシクロヘキサノンに溶解させた溶液(10質量%)を140g仕込み、攪拌しながら60℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相に分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びシクロヘキサノンを濃縮留去した。その後、ELグレードのシクロヘキサノン(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたANT-2のシクロヘキサノン溶液を得た。作成した多環ポリフェノール樹脂溶液を日本インテグリス社性の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E03) フィルター通液による精製
 クラス1000のクリーンブース内にて、1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られた樹脂(ANT-1)をシクロヘキサノンに溶解させた濃度10質量%の溶液を500g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分100mLの流量で公称孔径が0.01μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックスナイロンシリーズ)に濾過圧が0.5MPaの条件となるように加圧濾過にて通液した。濾過後の樹脂溶液をELグレードのシクロヘキサノン(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたANT-1のシクロヘキサノン溶液を得た。作成した多環ポリフェノール樹脂溶液を日本インテグリス社性の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。なお、酸素濃度はアズワン株式会社製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。
(実施例E04)
 フィルターによる精製工程として、日本ポール社製のIONKLEEN、日本ポール社性のナイロンフィルター、更に日本インテグリス社性の公称孔径3nmのUPEフィルターをこの順番に直列に接続し、フィルターラインとして構築した。0.1μmのナイロン製中空糸膜フィルターの代わりに、作製したフィルターラインを使用した以外は、実施例E03と同様にして濾過圧が0.5MPaの条件となるように加圧濾過により通液した。ELグレードのシクロヘキサノン(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたANT-1のシクロヘキサノン溶液を得た。作成した多環ポリフェノール樹脂溶液を日本インテグリス社性の公称孔径3nmのUPEフィルターにより濾過圧が0.5MPaの条件となるように加圧濾過した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E05)
 実施例E01で作成した溶液サンプルを、さらに実施例E04で作成したフィルターラインを使用して濾過圧が0.5MPaの条件となるように加圧濾過した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E06)
 合成実施例2で作成したANT-2について、実施例E05と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
(実施例E07)
 合成実施例3で作成したANT-3について、実施例E05と同様の方法により精製した溶液サンプルを作成した後、積層膜でのエッチング欠陥評価を実施した。
 実施例E01~実施例E07の評価結果を表13に示す。
Figure JPOXMLDOC01-appb-T000103
[実施例52~57及び比較例9]
 上記の各実施例33~38および比較例5で調製したリソグラフィー用下層膜形成材料の溶液と同組成の光学部品形成組成物を膜厚300nmのSiO基板上に塗布して、260℃で300秒間ベークすることにより、膜厚100nmの光学部品用の膜を形成した。次いで、ジェー・エー・ウーラム・ジャパン社製 真空紫外域多入射角分光エリプソメーター(VUV-VASE)を用いて、633nmの波長における屈折率及び透明性試験を行い、以下の基準に従って屈折率及び透明性を評価した。評価結果を表14に示す。
 [屈折率の評価基準]
 A:屈折率が1.65以上
 C:屈折率が1.65未満
 [透明性の評価基準]
 A:吸光定数が0.03未満
 C:吸光定数が0.03以上
Figure JPOXMLDOC01-appb-T000104
 実施例52~57の光学部材形成組成物では、屈折率が高いのみならず、吸光係数が低く、透明性に優れることが分かった。一方で、比較例9の組成物は光学部材としての性能に劣ることが分かった。
[実施例群2]
(合成実施例1)RCA-1の合成
 攪拌機、冷却管、及びビュレットを備えた内容積500mLの容器に、4-t-ブチルカリックス[4]アレーン(東京化成工業(株)製、式(CA-1))を32.45g(50mmol)と、フタル酸モノブチル銅を10.1g(20mmol)とを仕込み、溶媒として1-ブタノールを100mL加えて、反応液を100℃で6時間撹拌して反応を行った。冷却後に析出物を濾過し、得られた粗体を酢酸エチル100mLに溶解させた。次に塩酸5mLを加え、室温で攪拌後、炭酸水素ナトリウムで中和処理を行った。酢酸エチル溶液を濃縮し、メタノール200mLを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を乾燥させることにより、下記(式)で表される構造を有する目的樹脂(RCA-1)20.4gを得た。
 得られた樹脂について、前記測定条件によりポリスチレン換算で分子量を測定した結果、Mnが2424であり、Mwが3466であり、Mw/Mnが1.43であった。
 得られた樹脂について、前記測定条件でNMR測定を行ったところ、以下のピークが検出され、下記式(RCA-1)の化学構造を有することを確認した。
 δ(ppm)(d6-DMSO):10.2(4H,O-H)、7.1~7.3(6H,Ph-H)、3.5~4.3(8H,C-H)、1.2(36H,-CH
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
(合成実施例2~5)RCR-1、RCR-2、RCN-1、およびRCN-2の合成
 4-t-ブチルカリックス[4]アレーン(東京化成工業(株)製、式(CA-1))の代わりに、下記の式(CR-1)で表される化合物、下記の式(CR-2)で表される化合物、下記の式(CN-1)で表される化合物、又は下記の式(CN-2)で表される化合物を用いた以外は、合成実施例1と同様に行ない、それぞれ、下記式で表される目的化合物(RCR-1)、(RCR-2)、(RCN-1)、及び(RCN-2)を得た。なお、式(CR-1)で表される化合物、式(CR-2)で表される化合物、式(CN-1)で表される化合物、及び式(CN-2)で表される化合物は、それぞれ、国際公開2011/024957号に記載の合成例1及び合成例4を参考にして得た。すなわち、式(CR-1)で表される化合物については、国際公開2011/024957号に記載の合成例4に基づいて合成した。式(CR-2)で表される化合物については、国際公開2011/024957号に記載の合成例1において、4-イソプロピルベンズアルデヒドの代わりに、4-シアノベンズアルデヒド(東京化成工業(株)製)を用いて合成した。式(CN-1)で表される化合物については、国際公開2011/024957号に記載の合成例1において、レゾルシノールの代わりに、1,6-ジヒドロキシナフタレン(東京化成工業(株)製)を用い、かつ、4-イソプロピルベンズアルデヒドの代わりに、4-ヒドロキシベンズアルデヒド(東京化成工業(株)製)を用いて合成した。式(CN-2)で表される化合物については、国際公開2011/024957号に記載の合成例1において、レゾルシノールの代わりに、1,6-ジヒドロキシナフタレン(東京化成工業(株)製)を用い、かつ、4-イソプロピルベンズアルデヒドの代わりに、4-シアノベンズアルデヒド(東京化成工業(株)製)を用いて合成した。
 得られた樹脂(RCR-1)について、前記測定条件によりポリスチレン換算で分子量を測定した結果、Mnが2228であり、Mwが3355であり、Mw/Mnが1.51であった。
 また、得られた樹脂(RCR-1)について、前記測定条件でNMR測定を行ったところ、以下のピークが検出され、式(RCR-1)の化学構造を有することを確認した。
 δ(ppm)(d6-DMSO):8.4~8.5(8H,O-H)、6.0~6.8(22H,Ph-H)、5.5~5.6(4H,C-H)、0.8~1.9(44H,-シクロヘキシル基)
 得られた樹脂(RCR-2)について、前記測定条件によりポリスチレン換算で分子量を測定した結果、Mnが2108であり、Mwが3305であり、Mw/Mnが1.57であった。
 また、得られた樹脂(RCR-2)について、前記測定条件でNMR測定を行ったところ、以下のピークが検出され、式(RCR-2)の化学構造を有することを確認した。
 δ(ppm)(d6-DMSO):8.4~8.5(8H,O-H)、6.0~6.8(22H,Ph-H)、5.5~5.6(4H,C-H)
 得られた樹脂(RCN-1)について、前記測定条件によりポリスチレン換算で分子量を測定した結果、Mnが2208であり、Mwが3652であり、Mw/Mnが1.65であった。
 また、得られた樹脂(RCN-1)について、前記測定条件でNMR測定を行ったところ、以下のピークが検出され、式(RCN-1)の化学構造を有することを確認した。
 δ(ppm)(d6-DMSO):9.0~9.6(12H,O-H)、5.9~8.7(34H,Ph-H,C-H)
 得られた樹脂(RCN-2)について、前記測定条件によりポリスチレン換算分子量を測定した結果、Mnが2302であり、Mwが3754であり、Mw/Mnが1.63であった。
 また、得られた樹脂(RCN-2)について、前記測定条件でNMR測定を行ったところ、以下のピークが検出され、式(RCN-2)の化学構造を有することを確認した。
 δ(ppm)(d6-DMSO):9.2~9.6(8H,O-H)、5.9~8.7(34H,Ph-H,C-H)
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
[実施例1~5、及び比較例1]
 上記の合成実施例1~合成実施例5で得られた樹脂RCA-1、RCR-1、RCR-2、RCN-1及びRCN-2を用い、以下に示す評価方法によって、耐熱性を評価した。また、実施例群1の比較合成例1で得られた樹脂をNBisN-2とし(以下、実施例群2において、「比較合成例1で得られた樹脂」と略記する場合がある。)、上記と同様に耐熱性を評価した。それらの結果を表15に示す。
<熱分解温度の測定>
 エスアイアイ・ナノテクノロジー(株)製EXSTAR6000TG/DTA装置(商品名)を使用し、試料約5mgをアルミニウム製非密封容器に入れ、窒素ガス(30mL/min)気流中にて昇温速度10℃/minで700℃まで昇温した。その際、10重量%の熱減量が観測される温度を熱分解温度(Tg)とし、以下の基準で耐熱性を評価した。
 評価A:熱分解温度が410℃以上
 評価B:熱分解温度が320℃以上410℃未満
 評価C:熱分解温度が320℃未満
Figure JPOXMLDOC01-appb-T000112
 表15に示すように、実施例1~実施例5で用いた樹脂は、耐熱性が良好であることが確認された。一方、比較例1で用いた樹脂は、耐熱性が劣ることが確認された。
[実施例6~10、及び比較例2]
(リソグラフィー下層膜形成用組成物の調製)
 表16に示す組成となるように、リソグラフィー下層膜形成用組成物を調製した。また、表16中、括弧内の数値は、配合量(質量部)を示す。
 次に、これらのリソグラフィー下層膜形成用組成物のそれぞれをシリコン基板上に回転塗布し、その後、窒素雰囲気下において、240℃で60秒間加熱し、さらに400℃で120秒間ベークして、膜厚200~250nmのリソグラフィー用の下層膜を作製した。
 次に、それぞれの下層膜について、下記に示す条件でエッチング試験を行い、そのときのエッチングレートを測定し、以下の手順でエッチング耐性を評価した。それらの評価結果を表16に示す。
[エッチング試験]
 エッチング装置:サムコ(株)製RIE-10NR(商品名)
  出力:50W
  圧力:20Pa
  時間:2min
  エッチングガス:Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
(エッチング耐性の評価)
 エッチング耐性の評価は、以下の手順で行った。まず、表16の実施例6において、合成実施例1で得られた樹脂(RCA-1)の代わりに、ノボラック樹脂(群栄化学工業(株)製PSM4357(商品名))を用いること以外は、表16における実施例6と同様にして、リソグラフィー下層膜形成用組成物を調製した。その後、この組成物を用いて、前記条件と同様にして、ノボラック樹脂の下層膜を作製した。このノボラック樹脂の下層膜について、前記の条件でエッチング試験を行い、そのときのエッチングレートを測定した。このノボラック樹脂の下層膜におけるエッチングレートを基準として、以下の評価基準にて、実施例6~実施例10、及び比較例2のそれぞれの下層膜について、エッチング耐性を評価した。
 [評価基準]
 A:ノボラック樹脂の下層膜に比べてエッチングレートが、-20%未満である。
 B:ノボラック樹脂の下層膜に比べてエッチングレートが、-20%~0%である。
 C:ノボラック樹脂の下層膜に比べてエッチングレートが、+0%を超える。
Figure JPOXMLDOC01-appb-T000113
 表16に示すように、実施例6~実施例10では、ノボラック樹脂の下層膜及び比較例2の樹脂に比べて優れたエッチングレートが発揮されることがわかった。なお、比較例2の樹脂では、ノボラック樹脂の下層膜のエッチングレートと同等であった。
[実施例11~26、及び参考例1~4]
 多環ポリフェノール樹脂における精製前後の金属残留量と、多環ポリフェノール樹脂と溶液とを含む組成物の保存安定性を以下の方法で評価を行った。
(金属残留量の測定)
 ICP-MS(誘導結合プラズマ質量分析装置)を用いて以下の測定条件にて、以下の実施例、及び参考例によって得られた各種樹脂のシクロヘキサノン溶液中の金属残留量(ppb)を測定した。
  装置:アジレント・テクノロジー(株)製AG8900(商品名)
  温度:25℃
  環境:クラス1000(米国連邦規格)のクリーンルーム
(保存安定性評価)
 以下の実施例、及び参考例によって得られたシクロヘキサノン溶液を23℃にて240時間保持した後の溶液の濁度(HAZE)を色差・濁度計を用いて測定し、以下の基準にて溶液の保存安定性を評価した。
  装置:色差・濁度計COH400(商品名、日本電色工業(株)製)
  光路長:1cm
  石英セル使用
[評価基準]
   0≦HAZE≦1.0 :良好
 1.0<HAZE≦2.0 :可
 2.0<HAZE     :不良
(実施例11)RCA-1の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られた樹脂(RCA-1)をシクロヘキサノンに溶解させた溶液(10質量%)を150g仕込み、攪拌しながら80℃まで加熱した。次いで、シュウ酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相とに分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びシクロヘキサノンを濃縮留去した。その後、ELグレードのシクロヘキサノン(関東化学(株)製試薬)で希釈し、10質量%に濃度調製を行うことにより、金属残留量が低減されたRCA-1のシクロヘキサノン溶液を得た。
(参考例2)RCA-1の超純水による精製
 シュウ酸水溶液の代わりに、超純水を用いる以外は実施例11と同様に実施し、10質量%に濃度調製を行うことにより、RCA-1のシクロヘキサノン溶液を得た。
 処理前のRCA-1の10質量%シクロヘキサノン溶液(参考例1)、実施例11及び参考例2において得られた溶液について、各種金属残留量をICP-MSによって測定した。それらの測定結果を表17に示す。なお、表17中、「Cr」、「Fe」、「Cu」及び「Zn」は、それぞれクロム、鉄、銅、及び亜鉛を示し、溶液中に残留金属として検出された金属であった。
(実施例12)RCR-2の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例2で得られた樹脂(RCR-2)をシクロヘキサノンに溶解させた溶液(10質量%)を140g仕込み、攪拌しながら60℃まで加熱した。次いで、シュウ酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。その後、油相と水相に分離し、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びシクロヘキサノンを濃縮留去した。その後、ELグレードのシクロヘキサノン(関東化学(株)製試薬)で希釈し、10質量%に濃度調製を行うことにより、金属残留量が低減されたRCR-2のシクロヘキサノン溶液を得た。
(参考例3)RCR-2の超純水による精製
 シュウ酸水溶液の代わりに、超純水を用いる以外は実施例12と同様に実施し、10質量%に濃度調製を行うことにより、RCR-2のシクロヘキサノン溶液を得た。
 処理前のRCR-2の10質量%シクロヘキサノン溶液(参考例4)、実施例12及び参考例3において得られた溶液について、各種金属残留量をICP-MSによって測定した。それらの測定結果を表17に示す。
(実施例13)フィルター通液による精製
 クラス1000のクリーンブース内にて、1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られた樹脂(RCA-1)をシクロヘキサノンに溶解させた濃度10質量%の溶液を500g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを100mL/分で通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで100mL/分の流量で公称孔径が0.01μmのナイロン製中空糸膜フィルター((株)キッツマイクロフィルター製、商品名:ポリフィックスナイロンシリーズ)に通液した。得られたRCA-1のシクロヘキサノン溶液について、各種金属残留量をICP-MSによって測定した。なお、酸素濃度はアズワン(株)製の酸素濃度計「OM-25MF10(商品名)」により測定した(以下も同様)。その測定結果を表17に示す。
(実施例14)
 公称孔径が0.01μmのポリエチレン(PE)製中空糸膜フィルター((株)キッツマイクロフィルター製、商品名:ポリフィックス)を使用した以外は、実施例13と同様にして、通液した。得られたRCA-1のシクロヘキサノン溶液について、各種金属残留量をICP-MSによって測定した。その測定結果を表17に示す。
(実施例15)
 公称孔径が0.04μmのナイロン製中空糸膜フィルター((株)キッツマイクロフィルター製、商品名:ポリフィックス)を使用した以外は、実施例13と同様にして、通液した。得られたRCA-1のシクロヘキサノン溶液について、各種金属残留量をICP-MSによって測定した。その測定結果を表17に示す。
(実施例16)
 公称孔径が0.2μmのゼータプラスフィルター40QSH(スリーエム(株)製、イオン交換能あり)を使用した以外は、実施例13と同様にして、通液した。得られたRCA-1のシクロヘキサノン溶液について、各種金属残留量をICP-MSによって測定した。その測定結果を表17に示す。
(実施例17)
 公称孔径が0.2μmのゼータプラスフィルター020GN(スリーエム(株)製、イオン交換能あり、ゼータプラスフィルター40QSHとはろ過面積及びろ材厚みが異なる)を使用した以外は、実施例13と同様にして、通液した。得られたRCA-1のシクロヘキサノン溶液について、各種金属残留量をICP-MSによって測定した。その測定結果を表17に示す。
(実施例18)
 実施例13における樹脂(RCA-1)の代わりに、合成実施例2で得られた樹脂(RCR-2)を使用した以外は、実施例13と同様にして、通液した。得られたRCR-2のシクロヘキサノン溶液について、各種金属残留量をICP-MSによって測定した。その測定結果を表17に示す。
(実施例19)
 実施例13における樹脂(RCA-1)の代わりに、合成実施例2で得られた樹脂(RCR-2)を使用した以外は、実施例14と同様にして、通液した。得られたRCR-2のシクロヘキサノン溶液について、各種金属残留量をICP-MSによって測定した。その測定結果を表17に示す。
(実施例20)
 実施例13における化合物(RCA-1)の代わりに、合成実施例2で得られた樹脂(RCR-2)を使用した以外は、実施例15と同様にして、通液した。得られたRCR-2のシクロヘキサノン溶液について、各種金属残留量をICP-MSによって測定した。その測定結果を表17に示す。
(実施例21)
 実施例13における化合物(RCA-1)の代わりに、合成実施例2で得られた樹脂(RCR-2)を使用した以外は、実施例16と同様にして、通液した。得られたRCR-2のシクロヘキサノン溶液について、各種金属残留量をICP-MSによって測定した。その測定結果を表17に示す。
(実施例22)
 実施例13における化合物(RCA-1)の代わりに、合成実施例2で得られた樹脂(RCR-2)を使用した以外は、実施例17と同様にして、通液した。得られたRCR-2のシクロヘキサノン溶液について、各種金属残留量をICP-MSによって測定した。その測定結果を表17に示す。
(実施例23)酸洗浄、フィルター通液併用1
 クラス1000のクリーンブース内にて、300mL容量の四つ口フラスコ(底抜き型)に、実施例11によって得られた金属含有量の低減された樹脂(RCA-1)の10質量%シクロヘキサノン溶液を140g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを100mL/分で通気下、内部の酸素濃度を1%未満に調製した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで10mL/分の流量で公称孔径が0.01μmのイオン交換フィルター(日本ポール(株)製、商品名:イオンクリーンシリーズ)に通液した。その後、回収された該溶液を上記300mL容量の四つ口フラスコに戻し、フィルターを公称口径1nmの高密度PE製フィルター(日本インテグリス(株)製)に変え、同様にポンプ通液を実施した。得られたRCA-1のシクロヘキサノン溶液について、各種金属残留量をICP-MSによって測定した。その測定結果を表17に示す。
(実施例24)酸洗浄、フィルター通液併用2
 クラス1000のクリーンブース内にて、300mL容量の四つ口フラスコ(底抜き型)に、実施例11によって得られた金属含有量の低減された樹脂(RCA-1)の10質量%シクロヘキサノン溶液を140g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを100mL/分で通気下、内部の酸素濃度を1%未満に調製した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで10mL/分の流量で公称孔径が0.01μmのナイロン製中空糸膜フィルター((株)キッツマイクロフィルター製、商品名:ポリフィックス)に通液した。その後、回収された該溶液を上記300mL容量の四つ口フラスコに戻し、フィルターを公称口径1nmの高密度PE製フィルター(日本インテグリス(株)製)に変え、同様にポンプ通液を実施した。得られたRCA-1のシクロヘキサノン溶液について、各種金属残留量をICP-MSによって測定した。その測定結果を表17に示す。
(実施例25)酸洗浄、フィルター通液併用3
 実施例23で使用したRCA-1の10質量%シクロヘキサノン溶液を、実施例12によって得られたRCR-2の10質量%シクロヘキサノン溶液に変えた以外は、実施例23と同様の操作を行い、金属量の低減されたRCR-2の10質量%シクロヘキサノン溶液を回収した。得られた溶液の各種金属残留量をICP-MSによって測定した。その測定結果を表17に示す。
(実施例26)酸洗浄、フィルター通液併用4
 実施例23で使用したRCA-1の10質量%シクロヘキサノン溶液を、実施例12によって得られたRCR-2の10質量%シクロヘキサノン溶液に変えた以外は、実施例23と同様の操作を行い、金属量の低減されたRCR-2の10質量%シクロヘキサノン溶液を回収した。得られた溶液の各種金属残留量をICP-MSによって測定した。その測定結果を表17に示す。
Figure JPOXMLDOC01-appb-T000114
 表17に示すように、各種精製方法によって、酸化剤に由来する金属を低減することにより、本実施形態における多環ポリフェノール樹脂を含む組成物の保存安定性が良好となることが確認された。
 また、酸洗浄方法と、イオン交換フィルター又はナイロンフィルターとを併用することで、イオン性の金属を効果的に低減できることが確認された。さらに、高精細な高密度ポリエチレン製の微粒子除去フィルターを併用することで、劇的な金属除去効果を得ることができることが確認された。
[実施例27~32、及び比較例3]
(レジスト組成物の調製)
 合成実施例1~合成実施例5、及び合成比較例1で得られた樹脂を用いて、表18に示す配合でレジスト組成物をそれぞれ調製した。なお、表18中のレジスト組成物の各成分のうち、酸発生剤、酸拡散制御剤、及び溶媒については、以下のものを用いた。表18中、数値は、各成分の配合量(g)を示した。
 酸発生剤
  P-1:トリフェニルスルホニウム トリフルオロメタンスルホネート(みどり化学(株)製)
 酸架橋剤(G)
  C-1:ニカラックMW-100LM(三和ケミカル(株))
 酸拡散制御剤
  Q-1:トリオクチルアミン(東京化成工業(株)製)
 溶媒
  S-1:プロピレングリコールモノメチルエーテル(東京化成工業(株)製)
(レジスト性能)
 得られたレジスト組成物のそれぞれを用いて、下記の評価方法に従って、レジスト性能評価を行った。それらの結果を表18に示す。なお、表18中、括弧内の数値は、配合量(g)を示す。
(評価方法)
 均一なレジスト組成物を、清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ60nmのレジスト膜を形成した。得られたレジスト膜に対して、電子線描画装置(ELS-7500、(株)エリオニクス製)を用いて、50nm間隔の1:1のラインアンドスペース設定で電子線を照射した。照射後に、レジスト膜を、それぞれ、110℃で、90秒間加熱し、テトラメチルアンモニウムヒドロキシド(TMAH)2.38質量%のアルカリ現像液に60秒間浸漬して現像を行った。その後、それぞれのレジスト膜を、超純水で30秒間洗浄、乾燥して、ポジ型のレジストパターンを形成した。形成されたレジストパターンについて、ラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800(商品名))により観察し、レジスト組成物の電子線照射による反応性をレジスト性能として評価した。評価は、ラインエッジラフネスにおいて、パターンの凹凸が5nm未満を良好とし、それ以外を不良とした。
Figure JPOXMLDOC01-appb-T000115
 表18に示すように、レジスト性能については、実施例27~実施例32では50nm間隔の1:1のラインアンドスペース設定の電子線を照射することにより、良好なレジストパターンを得た。一方、比較例3では良好なレジストパターンを得ることはできなかった。
[実施例33~37、及び比較例4]
(感放射線性組成物の調製)
 合成実施例1~合成実施例5で得られた樹脂、及び比較例4として以下の樹脂(PHS-1)を用いて、表19に示す配合で、各成分を調製し、均一溶液としたのち、得られた均一溶液を、孔径0.1μmのテフロン(登録商標)製メンブランフィルターで濾過して、感放射線性組成物をそれぞれ調製した。なお、表19中の感放射線性組成物の各成分のうち、ジアゾナフトキノン化合物、及び溶媒については、以下のものを用いた。また、表19中、括弧内の数値は、配合量(g)を示す。
 ジアゾナフトキノン化合物
  B-1:下記式(G)のナフトキノンジアジド系感光剤(4NT-300(商品名)、東洋合成工業(株)製)
 溶媒
  S-1:プロピレングリコールモノメチルエーテル(東京化成工業(株)製)
  PHS-1:ポリヒドロキシスチレン Mw=8000(シグマアルドリッチ製)
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-T000117
(感放射線性組成物のレジスト性能の評価)
 得られた感放射線性組成物のそれぞれを、清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ200nmのレジスト膜を形成した。レジスト膜に対して、紫外線露光装置(ミカサ製マスクアライナMA-10(商品名))を用いて、50nm間隔の1:1のラインアンドスペース設定で紫外線を露光した。紫外線ランプは超高圧水銀ランプ(相対強度比はg線:h線:i線:j線=100:80:90:60)を使用した。照射後に、レジスト膜を、110℃で90秒間加熱し、2.38質量%のテトラメチルアンモニウムヒドロキシド(TMAH)のアルカリ現像液に60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄し、乾燥して、解像度5μmのポジ型のレジストパターンを形成した。
 形成されたレジストパターンにおいて、得られた50nm間隔の1:1のラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800(商品名))により観察し、レジスト性能を評価した。評価は、ラインエッジラフネスにおいて、パターンの凹凸が5nm未満を良好とし、それ以外を不良とした。
 実施例33~実施例37における感放射線性組成物を用いた場合は、解像度5μmの良好なレジストパターンを得ることができた。また、そのパターンのラフネスも小さく良好であった。
 一方、比較例4における感放射線性組成物を用いた場合においても、解像度5μmの良好なレジストパターンを得ることができたが、そのパターンのラフネスは大きく不良であった。
 上記のように、実施例33~実施例37における感放射線性組成物は、比較例4における感放射線性組成物に比べて、ラフネスが小さく、かつ良好な形状のレジストパターンを形成することができることがわかった。本実施形態の要件を満たす限り、実施例に記載した以外の感放射線性組成物も同様の効果を示す。
 なお、合成実施例1~合成実施例5で得られた樹脂は、比較的低分子量で低粘度であることから、これを用いたリソグラフィー下層膜形成材料は埋め込み特性や膜表面の平坦性が比較的に有利に高められ得ると評価された。また、本実施形態に係る樹脂は、高い耐熱性を有するので、高温ベーク条件でも使用することができると評価された。これらの点を確認するべく、下層膜用途を想定し、以下の評価を行った。
[実施例38~43、比較例5及び6]
(リソグラフィー下層膜形成用組成物の調製)
 合成実施例1~合成実施例5で得られた樹脂、及び合成比較例1で得られた樹脂を用いて、表20に示す割合で、リソグラフィー下層膜形成用組成物をそれぞれ調製した。また、実施例群1の合成比較例2で得られた樹脂をC-1(以下、実施例群2において、「比較合成例2で得られた樹脂」と略記する場合がある。)として用い、表20に示す割合で、リソグラフィー下層膜形成用組成物を調製した(比較例5)。次に、これらのリソグラフィー下層膜形成用組成物をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を作製した。なお、表20中のリソグラフィー下層膜形成用組成物の各成分のうち、酸発生剤、架橋剤及び溶媒については以下のものを用いた。表20中、数値は、各成分の配合量(質量部)を示した。
 酸発生剤
  DTDPI:ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(みどり化学(株)製)
 架橋剤
  ニカラック:(株)三和ケミカル製 ニカラックMX270(商品名)
 有機溶媒
  シクロヘキサノン(関東化学株式会社製)
  PGMEA:プロピレングリコールモノメチルエーテルアセテート(東京化成工業株式会社製)
 次に、それぞれの下層膜について、下記に示す条件でエッチング試験を行い、そのときのエッチングレートを測定し、以下の手順でエッチング耐性を評価した。それらの評価結果を表20に示す。
(エッチング試験)
  エッチング装置:サムコ(株)製 RIE-10NR(商品名)
  出力:50W
  圧力:20Pa
  時間:2min
  エッチングガス
  Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
(エッチング耐性の評価)
 エッチング耐性の評価は、以下の手順で行った。まず、表20の実施例38において、合成実施例1で得られた樹脂(RCA-1)の代わりに、ノボラック樹脂(群栄化学工業(株)製PSM4357(商品名))を用いること以外は、表20における実施例38と同様にして、リソグラフィー下層膜形成用組成物を調製した。その後、この組成物を用いて、前記条件と同様にして、ノボラック樹脂の下層膜を作製した。このノボラック樹脂の下層膜について、前記の条件でエッチング試験を行い、そのときのエッチングレートを測定した。このノボラック樹脂の下層膜におけるエッチングレートを基準として、以下の評価基準にて、実施例38~実施例43、比較例5及び6のそれぞれの下層膜について、エッチング耐性を評価した。それらの結果を表20に示す。
 [評価基準]
 A:ノボラック樹脂の下層膜に比べてエッチングレートが、-20%未満である
 B:ノボラック樹脂の下層膜に比べてエッチングレートが、-20%~0%である
 C:ノボラック樹脂の下層膜に比べてエッチングレートが、+0%を超える
Figure JPOXMLDOC01-appb-T000118
 表20に示すように、実施例38~43では、ノボラック樹脂の下層膜、比較例5及び6の樹脂に比べて優れたエッチングレートが発揮されることがわかった。なお、比較例5及び比較例6の樹脂では、ノボラック樹脂の下層膜のエッチングレートが同等あるいは劣ることがわかった。
[実施例44~49、及び比較例7]
 次に、実施例38~実施例43、及び比較例5で得られたリソグラフィー下層膜形成用組成物のそれぞれを、膜厚80nmの60nm間隔の1:1のラインアンドスペースにて、SiO基板上に回転塗布して、空気雰囲気下において、240℃で60秒間加熱し、400℃で60秒間ベークすることにより、90nmの下層膜を形成した。
(埋め込み性の評価)
 得られた下層膜をそれぞれ用いて、以下の手順で埋め込み性の評価した。すなわち、得られた下層膜のそれぞれについて、断面を切り出し、電子線顕微鏡((株)日立ハイテクノロジー製S-4800(商品名))にて観察し、以下の評価基準に従って、埋め込み性を評価した。それらの評価結果を表21に示す。
 [評価基準]
 A:60nm間隔の1:1のラインアンドスペースのSiO基板の凹凸部分に欠陥がなく、下層膜が埋め込まれている。
 C:60nm間隔の1:1のラインアンドスペースのSiO基板の凹凸部分に欠陥があり、下層膜が埋め込まれていない。
Figure JPOXMLDOC01-appb-T000119
 表21に示すように、実施例44~49では、埋め込み性が良好であることがわかった。一方、比較例7では、SiO基板の凹凸部分に欠陥が見られ埋め込み性が劣ることがわかった。
[実施例50~55、及び比較例8]
 次に、実施例38~43で得られたリソグラフィー下層膜形成用組成物のそれぞれを、膜厚300nmのSiO基板上に回転塗布して、窒素雰囲気下において、240℃で60秒間加熱し、さらに400℃で120秒間ベークすることにより、膜厚85nmの下層膜を形成した。この下層膜上に、ArFエキシマレーザー用レジスト溶液Aを塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。
 なお、ArFエキシマレーザー用レジスト溶液Aとしては、下記のようにして得られた式(16)の化合物を5質量部と、トリフェニルスルホニウムノナフルオロブタンスルホナート(TPS-109(商品名)、みどり化学(株)製)を1質量部と、トリブチルアミン(関東化学株式会社製)を2質量部と、PGMEA(関東化学(株)製)を92質量部とを配合して調製したものを用いた。
 また、式(16)の化合物は、次のように調製した。すなわち、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、及びアゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。このようにして得られる樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて下記式(16)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000120
 式(16)中、40、40、20とあるのは、各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。
 次いで、電子線描画装置((株)エリオニクス製;ELS-7500(商品名)、50keV)を用いて、それぞれ、得られたレジスト下層膜上に形成されたフォトレジスト層を、45nm、50nm、及び80nmの、それぞれの間隔にて、1:1のラインアンドスペース設定にて電子線を照射し、露光した。その後、115℃で90秒間ベーク(PEB)し、2.38質量%のテトラメチルアンモニウムヒドロキシド(TMAH)のアルカリ現像液に60秒間浸漬して現像することにより、ポジ型のレジストパターンを得た。
[比較例8]
 下層膜の形成を行わず、膜厚300nmのSiO2基板上に直接フォトレジスト膜を形成したこと以外は、実施例50~55と同様にして、ポジ型のレジストパターンを得た。
[評価]
 実施例50~55、及び比較例8のそれぞれについて、得られた45nmL/S(1:1)のレジストパターンと、得られた50nmL/S(1:1)のレジストパターンと、80nmL/S(1:1)のレジストパターンとをそれぞれ用いて、それぞれの形状(欠陥)を(株)日立製作所製電子顕微鏡(S-4800、商品名)を用いて観察した。現像後のレジストパターンの形状については、パターン倒れがなく、矩形性が良好なものを良好とし、そうでないものを不良として評価した。また、観察の結果、パターン倒れが無く、矩形性が良好なパターン形状を描画可能な最小の線幅を解像性として評価の指標とした。さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を感度として、評価の指標とした。それらの結果を表22に示す。
Figure JPOXMLDOC01-appb-T000121
 表22に示すように、実施例50~55におけるレジストパターンは、比較例8に比して、解像性及び感度ともに有意に優れていることが確認された。また、現像後のレジストパターン形状もパターン倒れがなく、矩形性が良好であることが確認された。さらに、現像後のレジストパターン形状の相違から、実施例50~55におけるリソグラフィー下層膜形成材料は、フォトレジスト層との密着性がよいことが示された。
[実施例56]
 実施例38で得られたリソグラフィー下層膜形成用組成物を膜厚300nmのSiO基板上に回転塗布して、窒素雰囲気下において、240℃で60秒間加熱し、さらに400℃で120秒間ベークすることにより、膜厚90nmのリソグラフィー下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの珪素含有中間層膜を形成した。さらに、この珪素含有中間層膜上に、前記ArFエキシマレーザー用レジスト溶液Aを塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、特開2007-226170号公報の<合成例1>に記載の珪素原子含有ポリマーを用いた。
 次いで、電子線描画装置((株)エリオニクス製;ELS-7500(商品名)、50keV)を用いて、珪素含有中間層膜上に形成されたフォトレジスト層の一部をマスクして、マスク以外の部分を、45nm間隔の1:1のラインアンドスペース設定にて電子線を照射し、露光した。その後、115℃で90秒間ベーク(PEB)し、2.38質量%のテトラメチルアンモニウムヒドロキシド(TMAH)のアルカリ現像液で60秒間浸漬して現像することにより、45nm間隔のL/S(1:1)のポジ型のレジストパターンを得た。
 その後、エッチング装置(サムコ(株)製 RIE-10NR(商品名))を用いて、下記の条件にて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行い、続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工を行い、続いて、得られた下層膜パターンをマスクにしたSiO基板のドライエッチング加工を行った。
 各々のエッチング条件は、下記に示すとおりである。
 ・レジストパターンの珪素含有中間層膜へのエッチング条件
  出力:50W
  圧力:20Pa
  時間:1min
  エッチングガス
  Arガス流量:CFガス流量:Oガス流量=50:8:2(sccm)
 ・珪素含有中間膜パターンのリソグラフィー下層膜へのエッチング条件
  出力:50W
  圧力:20Pa
  時間:2min
  エッチングガス
  Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
 ・リソグラフィー下層膜パターンのSiO膜へのエッチング条件
  出力:50W
  圧力:20Pa
  時間:2min
  エッチングガス
  Arガス流量:C12ガス流量:Cガス流量:Oガス流量=50:4:3:1(sccm)
[評価]
 上記のようにして得られたパターン断面(すなわち、エッチング後のSiO基板の形状)を、(株)日立製作所製電子顕微鏡(S-4800、商品名)を用いて観察した。その結果、本実施形態の下層膜を用いた実施例は、多層レジスト加工におけるエッチング後のSiO基板の形状は矩形であり、欠陥も認められず良好であることが確認された。
[実施例57~61、比較例9及び10]
(多層ポリフェノール樹脂からなる膜の作製)
 合成実施例1~合成実施例5、合成比較例1及び2で得られた樹脂のそれぞれを、溶媒としてシクロヘキサノンに溶解して固形分濃度10質量%の樹脂溶液をそれぞれ調製した。
 得られた樹脂溶液のそれぞれをスピンコーターLithiusPro(東京エレクトロン(株)製、商品名)を用いて12インチシリコンウエハ上に、200nmの膜厚となるように回転数を調整しながら成膜し、その後、ベーク温度を250℃1分の条件でベーク処理して、樹脂からなる膜を積層した基板を作成した。得られた基板のそれぞれを更に高温処理可能なホットプレートを使用し、350℃で1分の条件でベークすることで硬化した樹脂膜を得た。この際、得られた硬化膜をPGMEA槽に1分間浸漬する前後の膜厚の変化が3%以下であれば、硬化したと判断した。硬化が不十分と判断される場合は硬化温度を50℃づつ変更して硬化する温度を検討し、硬化する温度範囲の中で一番温度が低い条件にて硬化するベーク処理を行った。
(光学特性値の評価)
 得られた硬化膜のそれぞれについて、分光エリプソメトリーVUV-VASE(J.A.Woollam製、商品名)を用いて、以下の評価基準で光学特性値(光学定数として、屈折率nと、消衰係数k)の評価を行った。それらの結果を表23に示す。なお、屈折率nが1.4以上であると解像性に有利であることを意味し、消衰係数が0.5未満でと、ラフネスに有利であることを意味する。また、光学特性値の評価では、比較例9として、合成比較例1を用いて得られた硬化膜を用いた。比較例10は、合成比較例2を用いて得られた硬化膜であり、次の耐熱性試験の評価に用いた。
 [評価基準]屈折率n
 A:1.4以上
 C:1.4未満
 [評価基準]消衰係数k
 A:0.5未満
 C:0.5以上
Figure JPOXMLDOC01-appb-T000122
 表23に示すように、本実施形態における多環ポリフェノール樹脂を用いることで、n値が高く、k値の低い硬化膜が得られることから、ArFエキシマレーザーの露光で使用する波長193nmにおいて、定在波の影響を抑制し、パターンの解像性とラフネスを改善できるため、好適に露光できることがわかった。
[実施例62~66、比較例11及び12]
 実施例62~65、比較例9及び10で得られた硬化膜のそれぞれを用いて、ランプアニール炉を用いた耐熱性評価を行った。
(硬化膜の耐熱性評価)
 耐熱性は、それぞれの硬化膜について、窒素雰囲気下、450℃で加熱を継続し、加熱開始からの経過時間が4分と10分間との膜厚変化率をそれぞれ求めた。また、硬化膜を用いて、窒素雰囲気下、550℃で加熱を継続し、加熱開始からの経過時間が4分と10分との間での膜厚変化率をそれぞれ求めた。これらの膜厚変化率を硬化膜の耐熱性の指標として評価した。なお、膜厚は、干渉膜厚計(大塚電子社製OPTM-A1(商品名))社で計測して、膜厚の変動値を、加熱開始からの経過時間が4分における膜の膜厚に対する、加熱開始からの経過時間が10分における膜の膜厚の比を膜厚変化率(百分率%)として求め、以下の評価基準で評価した。それらの結果を表24に示す。
 [評価基準]
 A:膜厚変化率が、10%未満である
 B:膜厚変化率が、10%以上15%未満である
 C:膜厚変化率が、15%を超える
Figure JPOXMLDOC01-appb-T000123
[実施例67~71、比較例13及び14]
(多層ポリフェノール樹脂からなる膜の作製)
 合成実施例1~合成実施例5、合成比較例1及び2で得られた樹脂のそれぞれを、溶媒としてシクロヘキサノンに溶解して固形分濃度10質量%の樹脂溶液をそれぞれ調製した。
(PE-CVD成膜評価)
<酸化シリコン膜>
 12インチシリコンウエハに熱酸化処理を実施し、シリコン酸化膜を有する基板を得た。この基板上に、得られた樹脂溶液のそれぞれを用いて、回転塗布することで、空気雰囲気下で、240℃で60秒間加熱し、さらに400℃で120秒間ベークすることにより、100nmの厚みで下層膜を作製した。下層膜上に、成膜装置TELINDY(東京エレクトロン(株)製、商品名)を用い、原料としてTEOS(テトラエチルシロキサン、多摩化学工業社製)を使用し、基板温度300℃にて膜厚70nmの酸化シリコン膜を成膜した。得られた酸化シリコン膜を積層した下層膜付きシリコンウエハについて、Surfscan SP-5(商品名、KLA-Tencor社製)を用いて欠陥数をカウントすることで成膜を評価とした。評価は、最上層の酸化膜について、21nm以上となる欠陥の個数をカウントし、得られた欠陥数を用いて、以下の評価基準で行った。それらの結果を表25に示す。
 [評価基準]
 A:欠陥数 < 20個
 B:20個 ≦ 欠陥数 < 50個
 C:50個 ≦ 欠陥数 < 100個
 D:100個 ≦ 欠陥数 < 1000個
 E:1000個 ≦ 欠陥数 < 5000個
 F:5000個 ≦ 欠陥数
<SiN膜>
 前記と同様の方法により、酸化シリコン膜上に、厚みが100nmの下層膜が積層された基板をそれぞれ作製した。その後、下層膜上に、成膜装置TELINDY(東京エレクトロン(株)製、商品名)を用い、原料としてSiHガス(モノシラン、三井化学社製)と、アンモニアガス(大陽日酸社製)を使用し、基板温度350℃にて膜厚40nm、屈折率1.94、及び膜応力-54MPaのSiN膜を成膜した。得られたSiN膜を積層した下層膜付きシリコンウエハについて、Surfscan SP-5(商品名、KLA-Tencor社製)を用いて欠陥数をカウントすることで、成膜を評価した。評価は、前記と同様に、欠陥数をカウントして、前記の評価基準に従って行った。
Figure JPOXMLDOC01-appb-T000124
 表25に示すように、実施例67~71の下層膜上に形成された酸化シリコン酸化膜、又はSiN膜は、21nm以上となる欠陥の個数が20個以上50個未満(B評価)であり、比較例13及び14の欠陥の個数に比べ、少なくなることが示された。
[実施例72~76、比較例15及び16]
 合成実施例1~合成実施例5、合成比較例1及び2で得られた樹脂のそれぞれを、溶媒としてシクロヘキサノンに溶解して固形分濃度10質量%の樹脂溶液をそれぞれ調製した。
 12インチシリコンウエハに熱酸化処理を実施し、シリコン酸化膜を有する基板を得た。この基板上に、得られた樹脂溶液のそれぞれを用いて、回転塗布することで、大気圧下で、240℃で60秒間加熱し、さらに400℃で120秒間ベークすることにより、100nmの厚みで硬化膜を作製した。それぞれの硬化膜に対して、窒素雰囲気下で、高温処理可能なホットプレートにより600℃で4分間、加熱によるアニーリング処理を行い、アニーリングされた硬化膜が積層されたシリコンウエハを得た。
<炭素含有率の測定>
 アニーリングされた硬化膜をそれぞれ削り出し、ヤナコテクニカルサイエンス社製 ヤナコCHNコーダー MT-5(商品名)を用いて、元素分析を行い、硬化膜中に含まれる炭素含率(%)を求めた。
<高温処理後のエッチング評価>
 前記で得られた、アニーリングされた硬化膜が積層されたシリコンウエハのそれぞれに対して、エッチング装置TELIUS(商品名、東京エレクトロン(株)製)を用いて、エッチングガスとしてCF/Arを用いた条件、及びCl/Arを用いた条件にてエッチング処理を行い、エッチングレートの評価を行った。なお、エッチングレートの評価は、リファレンスとしてSU8(日本化薬(株)製、エポキシ樹脂)をシリコン酸化膜上に回転塗布し、空気雰囲気下で、250℃で1分間加熱し、更に、高温処理可能なホットプレートにより、窒素雰囲気下で、600℃で4分間、加熱によるアニーリング処理して作製した200nmの厚みを有する硬化膜を用い、この硬化膜に対するエッチングレートの速度比を相対値として求め、以下の基準に従って評価した。
 [評価基準]
 A:SU8硬化膜に比べてエッチングレートが、20%未満である。
 B:SU8硬化膜に比べてエッチングレートが、20%以上である。
Figure JPOXMLDOC01-appb-T000125
[実施例77~82]
<品質評価>
 合成実施例1、合成実施例3又は合成実施例5で得られた多環ポリフェノール樹脂について、精製処理前後での品質評価を実施した。評価は、次のように行い、多環ポリフェノール樹脂を用いてシリコンウエハ上に成膜した硬化膜を、ドライエッチングによりシリコンウエハまでエッチングしたのち、シリコンウエハ上の欠陥数をカウントした。なお、エッチングを阻害する異物などが硬化膜に含まれる場合、その異物がある部分においてはエッチングが均一に行われないため、欠陥として検出される。異物は、主に酸化剤由来の金属と推定される。
 すなわち、合成実施例1~合成実施例5で得られた樹脂のそれぞれを、溶媒としてシクロヘキサノンに溶解して固形分濃度10質量%の樹脂溶液をそれぞれ調製した。12インチシリコンウエハに熱酸化処理を実施し、100nmの厚みのシリコン酸化膜を有する基板を得た。この基板上に、前記で得られた樹脂溶液のそれぞれを用いて、、窒素雰囲気下で、100nmの厚みとなるようにスピンコート及び加熱条件を調整して成膜した後、150℃ベークで1分間、続いて350℃ベークで1分間を行うことで、硬化膜付きシリコンウエハを作製した。得られた硬化膜付きシリコンウエハについて、エッチング装置としてTELIUS(商品名、東京エレクトロン(株)製)を用いて、エッチングガスとしてCF/O/Arを用いて、硬化膜をエッチングし、シリコン酸化膜の基板表面を露出させた。更に、エッチングガスとしてCF/Arを用いて、シリコン酸化膜を100nmエッチングし、エッチングしたシリコンウエハを作製した。
 得られたエッチングウエハについて、欠陥検査装置SP5(商品名、KLA-tencor(株)製)を用いて欠陥数をカウントして、品質を評価した。評価は、シリコンウエハについて、19nm以上とする欠陥の個数をカウントし、得られた欠陥数を用いて、以下の評価基準で行った。それらの結果を表27に示す。
 [評価基準]
 A:欠陥数 < 20個
 B:20個 ≦ 欠陥数 < 50個
 C:50個 ≦ 欠陥数 < 100個
 D:100個 ≦ 欠陥数 < 1000個
 E:1000個 ≦ 欠陥数 < 5000個
 F:5000個 ≦ 欠陥数
[実施例77]RCA-1の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られた樹脂(RCA-1)をシクロヘキサノンに溶解させた溶液(10質量%)を150g仕込み、攪拌しながら80℃まで加熱した。次いで、シュウ酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相とに分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びシクロヘキサノンを濃縮留去した。その後、ELグレードのシクロヘキサノン(関東化学(株)製試薬)で希釈し、10質量%に濃度調製を行うことにより、金属残留量が低減されたRCA-1のシクロヘキサノン溶液を得た。
 得られたRCA-1のシクロヘキサノン溶液を日本インテグリス(株)製の公称孔径が3nmのUPEフィルター(商品名:マイクロガード)により0.5MPaの条件で濾過した溶液サンプルを作製した。
 前記の固形分濃度10質量%の樹脂溶液に代わりに、この溶液サンプル(10質量%)を用いて、前記と同様にして、硬化膜付きシリコンウエハを作製した。その後、この硬化膜付きシリコンウエハを用いて、前記と同様にして、エッチングを行い、品質評価を行った。その結果を表27に示す。
[実施例78]RCR-2の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例3で得られた樹脂(RCR-2)をPGMEAに溶解させた溶液(10質量%)を140g仕込み、攪拌しながら60℃まで加熱した。次いで、シュウ酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相とに分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びPGMEAを濃縮留去した。その後、ELグレードのPGMEA(関東化学(株)製試薬)で希釈し、10質量%に濃度調製を行うことにより、金属残留量が低減されたRCR-2のPGMEA溶液を得た。
 得られたRCR-2のPGMEA溶液を日本インテグリス(株)製の公称孔径が3nmのUPEフィルター(商品名:マイクロガード)により0.5MPaの条件で濾過した溶液サンプルを作製した。
 前記の固形分濃度10質量%の樹脂溶液に代わりに、この溶液サンプル(10質量%)を用いて、前記と同様にして、硬化膜付きシリコンウエハを作製した。その後、この硬化膜付きシリコンウエハを用いて、前記と同様にして、エッチングを行い、品質評価を行った。その結果を表27に示す。
[実施例79]フィルター通液による精製
 クラス1000のクリーンブース内にて、1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られた樹脂(RCA-1)をシクロヘキサノンに溶解させた濃度10質量%の溶液を500g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを100mL/分で通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで100mL/分の流量で公称孔径が0.01μmのナイロン製中空糸膜フィルター((株)キッツマイクロフィルター製、商品名:ポリフィックスナイロンシリーズ)に濾過圧が0.5MPaの条件となるように加圧濾過にて通液した。濾過後の樹脂溶液をELグレードのシクロヘキサノン(関東化学(株)製試薬)で希釈し、10質量%に濃度調製を行うことにより、金属残留量が低減されたRCA-1のシクロヘキサノン溶液を得た。
 得られたRCA-1のシクロヘキサノン溶液を日本インテグリス(株)製の公称孔径3nmのUPEフィルター(商品名:マイクロガード)により0.5MPaの条件で濾過した溶液サンプルを作製した。
 前記の固形分濃度10質量%の樹脂溶液に代わりに、この溶液サンプル(10質量%)を用いて、前記と同様にして、硬化膜付きシリコンウエハを作製した。その後、この硬化膜付きシリコンウエハを用いて、前記と同様にして、エッチングを行い、品質評価を行った。その結果を表27に示す。
[実施例80]
 フィルターによる精製工程として、日本ポール(株)製のIONKLEEN(商品名)、日本ポール(株)製のナイロンフィルター(商品名:ウルチプリーツ P-ナイロン)、更に日本インテグリス(株)製の公称孔径3nmのUPEフィルター(商品名:マイクロガード)をこの順番に直列に接続し、フィルターラインとして構築した。公称孔径が0.01μmのナイロン製中空糸膜フィルターの代わりに、作製したフィルターラインを使用した以外は、実施例79と同様にして、濾過圧が0.5MPaの条件となるように加圧濾過により通液した。その後、樹脂溶液をELグレードのシクロヘキサノンで希釈し、10質量%に濃度調製を行うことにより、金属残留量が低減されたRCA-1のシクロヘキサノン溶液を得た。
 得られたRCA-1のシクロヘキサノン溶液を日本インテグリス(株)製の公称孔径3nmのUPEフィルター(商品名:マイクロガード)により0.5MPaの条件で濾過し溶液サンプルを作製した。
 前記の固形分濃度10質量%の樹脂溶液に代わりに、この溶液サンプル(10質量%)を用いて、前記と同様にして、硬化膜付きシリコンウエハを作製した。その後、この硬化膜付きシリコンウエハを用いて、前記と同様にして、エッチングを行い、品質評価を行った。その結果を表27に示す。
[実施例81]
 実施例77で得られた溶液サンプルを、さらに実施例80で作成したフィルターラインを使用して濾過圧が0.5MPaの条件となるように加圧濾過し、溶液サンプルを作製した。
 前記の固形分濃度10質量%の樹脂溶液に代わりに、この溶液サンプル(10質量%)を用いて、前記と同様にして、硬化膜付きシリコンウエハを作製した。その後、この硬化膜付きシリコンウエハを用いて、前記と同様にして、エッチングを行い、品質評価を行った。その結果を表27に示す。
[実施例82]
 合成実施例1で得られた樹脂(RCA-1)の代わりに、合成実施例5で得られた樹脂(RCN-2)を用いて、実施例81と同様の方法により溶液サンプルを作製した。
 前記の固形分濃度10質量%の樹脂溶液に代わりに、この溶液サンプル(10質量%)を用いて、前記と同様にして、硬化膜付きシリコンウエハを作製した。その後、この硬化膜付きシリコンウエハを用いて、前記と同様にして、エッチングを行い、品質評価を行った。その結果を表27に示す。
Figure JPOXMLDOC01-appb-T000126
[実施例83~88、及び比較例17]
(光学部材形成用組成物の調製)
 実施例38~43、及び比較例5で得られたリソグラフィー下層膜形成組成物のそれぞれと、同じ組成を有する光学部材形成用組成物を調製した。
 (屈折率及び透明性)
 得られた光学部材形成用組成物のそれぞれを、膜厚300nmのSiO基板上に回転塗布して、窒素雰囲気下において、260℃で300秒間加熱し、さらに400℃で120秒間ベークすることにより、膜厚100nmの光学部材用の硬化膜を形成した。次いで、J.A.WoollamJapan(株)製 真空紫外域多入射角分光エリプソメーター(VUV-VASE、商品名)を用いて、得られた硬化膜について、それぞれ633nmの波長における屈折率及び透明性試験を行い、以下の基準に従って、屈折率及び透明性を評価した。それらの評価結果を表28に示す。なお、屈折率が1.65以上であると集光効率が高いことを意味し、消衰定数が0.03未満でと、透明性に優れることを意味する。
 [屈折率の評価基準]
 A:屈折率が1.65以上
 C:屈折率が1.65未満
 [透明性の評価基準]
 A:消衰定数が0.03未満
 C:消衰定数が0.03以上
Figure JPOXMLDOC01-appb-T000127
 表28に示すように、実施例83~88の光学部材形成用組成物から得られる硬化膜は、屈折率が高いのみならず、吸光係数が低く、透明性に優れることが分かった。一方で、比較例17の組成物から得られる硬化膜は、光学部材としての性能に劣ることが分かった。
[実施例群3]
[合成例1]BisP-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に、2,2’-ビフェノール(東京化成工業社製)37.2g(200mmol)と、4-ビフェニルアルデヒド(三菱瓦斯化学社製)18.2g(100mmol)と、1,4-ジオキサン200mLとを仕込み、95%の硫酸10mLを加えて、100℃で6時間撹拌して反応を行った。つぎに、24%水酸化ナトリウム水溶液にて反応液を中和し、純水100gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(BisP-1)22.3gを得た。
 なお、400MHz-H-NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。
 H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.1(4H,O-H)、7.0~7.9(23H,Ph-H)、5.5(1H,C-H)
 また、LC-MS分析により、分子量が下記化学構造相当の536であることが確認された。
Figure JPOXMLDOC01-appb-C000128
[合成例2~5]BisP-2~BisP-5の合成
 ビフェニルアルデヒドの代わりに、ベンズアルデヒド、p-メチルベンズアルデヒド、1-ナフトアルデヒド、又は2-ナフトアルデヒドを用いて、それ以外は合成例1と同様に行ない、それぞれ、下記式で表される目的化合物(BisP-2)、(BisP-3)、(BisP-4)、(BisP-5)を得た。
Figure JPOXMLDOC01-appb-C000129
[合成実施例1]RBisP-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に、BisP-1を56g(105mmol)とフタル酸モノブチル銅とを10.1g(20mmol)仕込み、溶媒として1-ブタノールを100mL加えて、反応液を100℃で6時間撹拌して反応を行った。冷却後に析出物を濾過し、得られた粗体を酢酸エチル100mLに溶解させた。つぎに塩酸5mLを加え、室温で攪拌後、炭酸水素ナトリウムで中和処理を行った。酢酸エチル溶液を濃縮し、メタノール200mLを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を乾燥させることにより、下記式で表される構造を有する目的樹脂(RBisP-1)34.0gを得た。
 得られた樹脂について、上述の方法によりポリスチレン換算分子量を測定した結果、Mn:1074、Mw:1388、Mw/Mn:1.29であった。
 得られた樹脂について、上述の測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式の化学構造を有することを確認した。
 δ(ppm)9.1(4H,O-H)、7.0~7.9(21H,Ph-H)、5.5(1H,C-H)
Figure JPOXMLDOC01-appb-C000130
[合成実施例2~6]RBisP-2~RBisP-5、RBP-1の合成
 BisP-1の代わりに、BisP-2、BisP-3、BisP-4、BisP-5、2,2’-ビフェノールを用いて、それ以外は合成実施例1と同様に行ない、それぞれ、下記式で表される目的化合物(RBisP-2)、(RBisP-3)、(RBisP-4)、(RBisP-5)、(RBP-1)を得た。
 なお、下記RBisP-2~RBisP-5、及びRBP-1において、400MHz-H-NMRにより以下のピークが見出され、各々下記式の化学構造を有することを確認した。さらに、得られた各樹脂について、上述の方法によりポリスチレン換算分子量を測定した結果を併せて示す。
(RBisP-2)
 Mn:1988、Mw:2780、Mw/Mn:1.40
 δ(ppm)9.1(4H,O-H)、7.0~7.9(17H,Ph-H)、5.5(1H,C-H)、2.1(12H,-CH
(RBisP-3)
 Mn:2120、Mw:2898、Mw/Mn:1.37
 δ(ppm)9.1(4H,O-H)、7.0~7.9(16H,Ph-H)、5.5(1H,C-H)、2.1(3H,-CH
(RBisP-4)
 Mn:1802、Mw:2642、Mw/Mn:1.47
 δ(ppm)9.1(4H,O-H)、7.0~7.9(19H,Ph-H)、5.5(1H,C-H)
(RBisP-5)
 Mn:1846、Mw:2582、Mw/Mn:1.40
 δ(ppm)9.1(4H,O-H)、7.0~7.9(19H,Ph-H)、5.5(1H,C-H)
 δ(ppm)9.4(4H,O-H)、7.2~8.5(15H,Ph-H)、5.6(1H,C-H)、2.1(12H,-CH
(RBP-1)
 Mn:1228、Mw:1598、Mw/Mn:1.30
 δ(ppm)9.3(2H,O-H)、7.0~7.9(4H,Ph-H)
Figure JPOXMLDOC01-appb-C000131
[比較合成例1]
 実施例群1の合成比較例1で得られたNBisN-1を実施例群3の合成比較例1で得られた樹脂として用いた。
[比較合成例2]
 実施例群1の合成比較例2で得られたCR-1を実施例群3の合成比較例2で得られた樹脂として用いた。
[比較合成例3]RBisP-6の合成
 2,2’-ビフェノールの代わりに、4,4’-ビフェノールを用いて、それ以外は合成実施例1と同様に行ない、それぞれ、下記式で表される目的化合物(BisP-6)を得た。
Figure JPOXMLDOC01-appb-C000132
 BisP-1の代わりに、BisP-6を用いて、それ以外は合成実施例1と同様に行ない、下記式で表される目的化合物(RBisP-6)を得た。
Figure JPOXMLDOC01-appb-C000133
[実施例1~5-1,比較例1]
 合成例1~合成例5、及び比較合成例1で得られた樹脂を用いて、以下に示す評価方法によって、耐熱性を評価した結果を表29に示す。
<熱分解温度の測定>
 エスアイアイ・ナノテクノロジー社製EXSTAR6000TG/DTA装置を使用し、試料約5mgをアルミニウム製非密封容器に入れ、窒素ガス(30mL/min)気流中昇温速度10℃/minで700℃まで昇温した。その際、10質量%の熱減量が観測される温度を熱分解温度(Tg)とし、以下の基準で耐熱性を評価した。
 評価A:熱分解温度が430℃以上
 評価B:熱分解温度が320℃以上430℃未満
 評価C:熱分解温度が320℃未満
Figure JPOXMLDOC01-appb-T000134
 表29から明らかなように、実施例1~実施例5-1で用いた樹脂は、耐熱性が良好であるが、比較例1で用いた樹脂は、耐熱性が劣ることが確認できた。
[実施例6~10、比較例2]
(リソグラフィー用下層膜形成用組成物の調製)
 表30に示す組成となるように、リソグラフィー用下層膜形成用組成物を調製した。つぎに、これらのリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布し、その後、窒素雰囲気下において、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200~250nmの下層膜を各々作製した。
 つぎに、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表30に示す。なお、評価方法の詳細は後述する。
<エッチング試験>
  エッチング装置:サムコインターナショナル社製「RIE-10NR」
  出力:50W
  圧力:20Pa
  時間:2min
  エッチングガス
  Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
(エッチング耐性の評価)
 エッチング耐性の評価は、以下の手順で行った。まず、ノボラック(群栄化学社製「PSM4357」)を用いること以外は、前記条件と同様にしてノボラックの下層膜を作製した。このノボラックの下層膜を対象として、上述のエッチング試験を行い、そのときのエッチングレートを測定した。
 つぎに、実施例6~実施例10-1及び比較例2の下層膜について、前記エッチング試験を同様に行い、エッチングレートを測定した。ノボラックの下層膜のエッチングレートを基準として、以下の評価基準で各実施例及び比較例のエッチング耐性を評価した。
 [評価基準]
 A:ノボラックの下層膜に比べてエッチングレートが、-20%未満
 B:ノボラックの下層膜に比べてエッチングレートが、-20%以上0%以下
 C:ノボラックの下層膜に比べてエッチングレートが、+0%超
Figure JPOXMLDOC01-appb-T000135
 実施例6~実施例10-1では、ノボラックの下層膜及び比較例2の樹脂に比べて優れたエッチングレートが発揮されることがわかった。一方、比較例2の樹脂では、ノボラックの下層膜に比べてエッチングレートが同等であることがわかった。
《多環ポリフェノール樹脂(を含む組成物)の精製》
 多環ポリフェノール樹脂(を含む組成物)の精製前後の金属含有量と溶液の保存安定性を以下の方法で評価を行った。
<各種金属含有量測定>
 ICP-MS(Inductively Coupled Plasma Mass Spectrometry)を用いて以下の測定条件にて、以下の実施例、比較例によって得られた各種樹脂のプロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液中の金属含有量を測定した。
  装置:アジレント社製AG8900
  温度:25℃
  環境:クラス100クリーンルーム
<保存安定性評価>
 以下の実施例、比較例によって得られたPGMEA溶液を23℃にて240時間保持した後の溶液の濁度(HAZE)を色差・濁度計を用いて測定し、以下の基準にて溶液の保存安定性を評価した。
  装置:色差・濁度計COH400(日本電色(株)製)
  光路長:1cm
  石英セル使用
[評価基準]
   0≦HAZE≦1.0 :良好
 1.0<HAZE≦2.0 :可
 2.0<HAZE     :不良
[実施例11] RBisP-1の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られたRBisP-1をPGMEAに溶解させた溶液(10質量%)を150g仕込み、攪拌しながら80℃まで加熱した。ついで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分間静置した。これにより油相と水相とに分離したのち、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びPGMEAを濃縮留去した。その後、ELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRBisP-1のPGMEA溶液を得た。
[参考例1] RBisP-1の超純水による精製
 蓚酸水溶液の代わりに、超純水を用いる以外は実施例11と同様に実施し、10質量%に濃度調整を行うことにより、RBisP-1のPGMEA溶液を得た。
 処理前のRBisP-1の10質量%PGMEA溶液、実施例11及び参考例1において得られた溶液について、各種金属含有量をICP-MSによって測定した。測定結果を表31に示す。
[実施例12] RBisP-2の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例2で得られたRBisP-2をPGMEAに溶解させた溶液(10質量%)を140g仕込み、攪拌しながら60℃まで加熱した。ついで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分間静置した。これにより油相と水相とに分離したのち、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分間静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びPGMEAを濃縮留去した。その後、ELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRBisP-2のPGMEA溶液を得た。
[参考例2] RBisP-2の超純水による精製
 蓚酸水溶液の代わりに、超純水を用いる以外は実施例12と同様に実施し、10質量%に濃度調整を行うことにより、RBisP-2のPGMEA溶液を得た。
 処理前のRBisP-2の10質量%PGMEA溶液、実施例12及び参考例2において得られた溶液について、各種金属含有量をICP-MSによって測定した。測定結果を表31に示す。
[実施例13] フィルター通液による精製
 クラス1000のクリーンブース内にて、1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られた樹脂(RBisP-1)をプロピレングリコールモノメチルエーテル(PGME)に溶解させた濃度10質量%の溶液を500g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから前記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分100mLの流量で公称孔径が0.01μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックスナイロンシリーズ)に通液した。得られたRBisP-1の溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン(株)製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表31に示す。
[実施例14]
 公称孔径が0.01μmのポリエチレン(PE)製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックス)を使用した以外は、実施例13と同様に通液し、得られたRBisP-1溶液の各種金属含有量をICP-MSによって測定した。測定結果を表31に示す。
[実施例15]
 公称孔径が0.04μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックス)を使用した以外は、実施例13と同様に通液し、得られたRBisP-1溶液の各種金属含有量をICP-MSによって測定した。測定結果を表31に示す。
[実施例16]
 公称孔径が0.2μmのゼータプラスフィルター40QSH(スリーエム(株)製、イオン交換能あり)を使用した以外は、実施例13と同様に通液し、得られたRBisP-1溶液の各種金属含有量をICP-MSによって測定した。測定結果を表31に示す。
[実施例17]
 公称孔径が0.2μmのゼータプラスフィルター020GN(スリーエム(株)製、イオン交換能あり、ゼータプラスフィルター40QSHとはろ過面積及びろ材厚みが異なる)を使用した以外は、実施例13と同様に通液し、得られたRBisP-1溶液をICP-MSによって分析した。測定結果を表31に示す。
[実施例18]
 実施例13における樹脂(RBisP-1)の代わりに、合成実施例2で得られた樹脂(RBisP-2)を使用した以外は、実施例13と同様に通液し、得られたRBisP-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表31に示す。
[実施例19]
 実施例14における樹脂(RBisP-1)の代わりに、合成実施例2で得られた樹脂(RBisP-2)を使用した以外は、実施例14と同様に通液し、得られたRBisP-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表31に示す。
[実施例20]
 実施例15における化合物(RBisP-1)の代わりに、合成実施例2で得られた樹脂(RBisP-2)を使用した以外は、実施例15と同様に通液し、得られたRBisP-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表31に示す。
[実施例21]
 実施例16における化合物(RBisP-1)の代わりに、合成実施例2で得られた樹脂(RBisP-2)を使用した以外は、実施例16と同様に通液し、得られたRBisP-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表31に示す。
(実施例22)
 実施例17における化合物(RBisP-1)の代わりに、合成実施例2で得られた樹脂(RBisP-2)を使用した以外は、実施例17と同様に通液し、得られたRBisP-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表31に示す。
[実施例23]酸洗浄、フィルター通液併用1
 クラス1000のクリーンブース内にて、300mL容量の四つ口フラスコ(底抜き型)に、実施例18によって得られた金属含有量の低減されたRBisP-1の10質量%PGMEA溶液を140g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから前記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分10mLの流量で公称孔径が0.01μmのイオン交換フィルター(日本ポール社製、商品名:イオンクリーンシリーズ)に通液した。その後、回収された該溶液を前記300mL容量の四つ口フラスコに戻し、フィルターを公称口径1nmの高密度PE製フィルター(日本インテグリス社製)に変え、同様にポンプ通液を実施した。得られたRBisP-1の溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン(株)製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表31に示す。
[実施例24]酸洗浄、フィルター通液併用2
 クラス1000のクリーンブース内にて、300mL容量の四つ口フラスコ(底抜き型)に、実施例18によって得られた金属含有量の低減されたRBisP-1の10質量%PGMEA溶液を140g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから前記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分10mLの流量で公称孔径が0.01μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックス)に通液した。その後、回収された該溶液を前記300mL容量の四つ口フラスコに戻し、フィルターを公称口径1nmの高密度PE製フィルター(日本インテグリス社製)に変え、同様にポンプ通液を実施した。得られたRBisP-1の溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン(株)製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表31に示す。
[実施例25]酸洗浄、フィルター通液併用3
 実施例23で使用したRBisP-1の10質量%PGMEA溶液を実施例19によって得られたRBisP-2の10質量%PGMEA溶液に変えた以外は実施例23と同様の操作を行い、金属量の低減されたRBisP-2の10質量%PGMEA溶液を回収した。得られた溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン(株)製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表31に示す。
[実施例26]酸洗浄、フィルター通液併用4
 実施例24で使用したRBisP-1の10質量%PGMEA溶液を実施例19によって得られたRBisP-2の10質量%PGMEA溶液に変えた以外は実施例24と同様の操作を行い、金属量の低減されたRBisP-2の10質量%PGMEA溶液を回収した。得られた溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン(株)製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表31に示す。
Figure JPOXMLDOC01-appb-T000136
 表31に示すように、各種精製方法によって、酸化剤に由来する金属を低減することにより、本実施形態における樹脂溶液の保存安定性が良好となることが確認された。
 特に酸洗浄方法とイオン交換フィルター或いはナイロンフィルターを使用することで、イオン性の金属を効果的に低減し、高精細な高密度ポリエチレン製の微粒子除去フィルターを併用することで、劇的な金属除去効果を得ることができる。
[実施例27~32-1、比較例3]
<レジスト性能>
 合成実施例1~合成実施例6及び比較合成例1で得られた樹脂を用いて、下記のレジスト性能評価を行った結果を表32に示す。
(レジスト組成物の調製)
 前記で合成した各樹脂を用いて、表32に示す配合でレジスト組成物を調製した。なお、表32中のレジスト組成物の各成分のうち、酸発生剤(C)、酸拡散制御剤(E)及び溶媒については、以下のものを用いた。
 酸発生剤(C)
  P-1:トリフェニルベンゼンスルホニウム トリフルオロメタンスルホネート(みどり化学(株))
 酸架橋剤(G)
  C-1:ニカラックMW-100LM(三和ケミカル(株))
 酸拡散制御剤(E)
  Q-1:トリオクチルアミン(東京化成工業(株))
 溶媒
  S-1:プロピレングリコールモノメチルエーテル(東京化成工業(株))
(レジスト組成物のレジスト性能の評価方法)
 均一なレジスト組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ60nmのレジスト膜を形成した。得られたレジスト膜に対して、電子線描画装置(「ELS-7500」、(株)エリオニクス社製)を用いて、50nm間隔の1:1のラインアンドスペース設定の電子線を照射した。当該照射後に、レジスト膜を、それぞれ所定の温度で、90秒間加熱し、テトラメチルアンモニウムヒドロキシド(TMAH)2.38質量%アルカリ現像液に60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄、乾燥して、ポジ型のレジストパターンを形成した。形成されたレジストパターンについて、ラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製「S-4800」)により観察し、レジスト組成物の電子線照射による反応性を評価した。
Figure JPOXMLDOC01-appb-T000137
 レジストパターン評価については、実施例27~実施例32-1では50nm間隔の1:1のラインアンドスペース設定の電子線を照射することにより、良好なレジストパターンを得た。なお、ラインエッジラフネスはパターンの凹凸が5nm未満を良好とした。一方、比較例3では良好なレジストパターンを得ることはできなかった。
 このように本実施形態の要件を満たす樹脂を用いた場合は、当該要件を満たさない比較例3の樹脂(NBisN-1)に比べて、また良好なレジストパターン形状を付与できる。上述の本実施形態の要件を満たす限り、実施例に記載した樹脂以外についても同様の効果を示す。
[実施例33~37-1、比較例4]
(感放射線性組成物の調製)
 表33記載の配合で成分を調合し、均一溶液としたのち、得られた均一溶液を、孔径0.1μmのテフロン(登録商標)製メンブランフィルターで濾過して、感放射線性組成物を調製した。調製した各々の感放射線性組成物について以下の評価を行った。
Figure JPOXMLDOC01-appb-T000138
 なお、比較例4におけるレジスト基材(成分(A))として、次のものを用いた。
  PHS-1:ポリヒドロキシスチレン Mw=8000(シグマ-アルドリッチ社)
 また、光活性化合物(B)として、次のものを用いた。
  B-1:下記化学構造式(G)のナフトキノンジアジド系感光剤(製品名「4NT-300」、東洋合成工業(株))
 さらに、溶媒として、次のものを用いた。
  S-1:プロピレングリコールモノメチルエーテル(東京化成工業(株))
Figure JPOXMLDOC01-appb-C000139
<感放射線性組成物のレジスト性能の評価>
 前記で得られた感放射線性組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ200nmのレジスト膜を形成した。該レジスト膜に対して、紫外線露光装置(ミカサ製マスクアライナMA-10)を用いて紫外線を露光した。紫外線ランプは超高圧水銀ランプ(相対強度比はg線:h線:i線:j線=100:80:90:60)を使用した。照射後に、レジスト膜を、110℃で90秒間加熱し、TMAH2.38質量%アルカリ現像液に60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄し、乾燥して、5μmのポジ型のレジストパターンを形成した。
 形成されたレジストパターンにおいて、得られたラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製「S-4800」)により観察した。ラインエッジラフネスはパターンの凹凸が5nm未満を良好とした。
 実施例33~実施例37における感放射線性組成物を用いた場合は、解像度5μmの良好なレジストパターンを得ることができた。また、そのパターンのラフネスも小さく良好であった。
 一方、比較例4における感放射線性組成物を用いた場合は、解像度5μmの良好なレジストパターンを得ることができた。しかしながら、そのパターンのラフネスは大きく不良であった。
 上述のように、実施例33~実施例37-1における感放射線性組成物は、比較例4における感放射線性組成物に比べて、ラフネスが小さく、かつ良好な形状のレジストパターンを形成することができることがわかった。上述の本実施形態の要件を満たす限り、実施例に記載した以外の感放射線性組成物も同様の効果を示す。
 なお、合成実施例1~合成実施例6で得られた樹脂は、比較的に低分子量で低粘度であることから、これを用いたリソグラフィー用下層膜形成材料は埋め込み特性や膜表面の平坦性が比較的に有利に高められ得ると評価された。また、熱分解温度はいずれも150℃以上(評価A)であり、高い耐熱性を有するので、高温ベーク条件でも使用することができると評価された。これらの点を確認するべく、下層膜用途を想定し、以下の評価を行った。
[実施例38~43-1、比較例5~6]
(リソグラフィー用下層膜形成用組成物の調製)
 表34に示す組成となるように、リソグラフィー用下層膜形成用組成物を調製した。つぎに、これらのリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。酸発生剤、架橋剤及び有機溶媒については以下のものを用いた。
  酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
  架橋剤:三和ケミカル社製 「ニカラックMX270」(ニカラック)
  有機溶媒:シクロヘキサノン
       プロピレングリコールモノメチルエーテルアセテート(PGMEA)
 つぎに、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表34に示す。なお、評価方法の詳細は後述する。
<エッチング試験>
  エッチング装置:サムコインターナショナル社製 RIE-10NR
  出力:50W
  圧力:20Pa
  時間:2min
  エッチングガス
  Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
<エッチング耐性の評価>
 エッチング耐性の評価は、以下の手順で行った。まず、ノボラック(群栄化学社製「PSM4357」)を用いること以外は、前記条件と同様にしてノボラックの下層膜を作製した。このノボラックの下層膜を対象として、上述のエッチング試験を行い、そのときのエッチングレートを測定した。
 つぎに、実施例24~29と比較例5~6の下層膜について、前記エッチング試験を同様に行い、エッチングレートを測定した。ノボラックの下層膜のエッチングレートを基準として、以下の評価基準で各実施例及び比較例のエッチング耐性を評価した。
 [評価基準]
 A:ノボラックの下層膜に比べてエッチングレートが、-20%未満
 B:ノボラックの下層膜に比べてエッチングレートが、-20%以上0%以下
 C:ノボラックの下層膜に比べてエッチングレートが、+0%超
Figure JPOXMLDOC01-appb-T000140
 実施例38~43-1では、ノボラックの下層膜及び比較例5~6の樹脂に比べて優れたエッチングレートが発揮されることがわかった。一方、比較例5或いは比較例6の樹脂では、ノボラックの下層膜に比べてエッチングレートが同等或いは劣ることがわかった。
[実施例44~49-1、比較例7]
 つぎに、実施例38~実施例43-1,比較例5で調製したリソグラフィー用下層膜形成用組成物を膜厚80nmの60nmラインアンドスペースのSiO基板上に塗布して、240℃で60秒間ベークすることにより90nmの下層膜を形成した。
(埋め込み性の評価)
 埋め込み性の評価は、以下の手順で行った。前記条件で得られた膜の断面を切り出し、電子線顕微鏡にて観察し、埋め込み性を評価した。評価結果を表35に示す。
 [評価基準]
  A:60nmラインアンドスペースのSiO基板の凹凸部分に欠陥無く下層膜が埋め込まれている。
  C:60nmラインアンドスペースのSiO基板の凹凸部分に欠陥があり下層膜が埋め込まれていない。
Figure JPOXMLDOC01-appb-T000141
 実施例44~49-1では、埋め込み性が良好であることがわかった。一方、比較例7では、SiO基板の凹凸部分に欠陥が見られ埋め込み性が劣ることがわかった。
[実施例50~55-1]
 つぎに、実施例38~43-1で調製したリソグラフィー用下層膜形成用組成物を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚85nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。
 なお、ArFレジスト溶液としては、下記式(16)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
 下記式(16)の化合物は、次のように調製した。すなわち、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。このようにして得られる生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて下記式(16)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000142
(式(16)中、40、40、20とあるのは、各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。)
 ついで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。
[比較例8]
 下層膜の形成を行わないこと以外は、実施例50と同様にしてフォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。
<レジストパターンの評価>
 実施例50~55-1及び比較例8のそれぞれについて、得られた45nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの形状を(株)日立製作所製電子顕微鏡「S-4800」を用いて観察した。現像後のレジストパターンの形状については、パターン倒れがなく、矩形性が良好なものを「良好」とし、そうでないものを「不良」として評価した。また、当該観察の結果、パターン倒れが無く、矩形性が良好な最小の線幅を解像性として評価の指標とした。さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を感度として、評価の指標とした。その結果を表36に示す。
Figure JPOXMLDOC01-appb-T000143
 表36から明らかなように、実施例50~55-1におけるレジストパターンは、比較例8に比して、解像性及び感度ともに有意に優れていることが確認された。また、現像後のレジストパターン形状もパターン倒れがなく、矩形性が良好であることが確認された。さらに、現像後のレジストパターン形状の相違から、実施例38~実施例43-1におけるリソグラフィー用下層膜形成組成物は、レジスト材料との密着性がよいことが示された。さらに実施例50~55-1は比較例8Aに比して解像性が優れていた。
[実施例56]
 実施例38で調製したリソグラフィー用下層膜形成用組成物を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚90nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、前記ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、特開2007-226170号公報<合成例1>に記載の珪素原子含有ポリマー(ポリマー1)を用いた。
 ついで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、45nmL/S(1:1)のポジ型のレジストパターンを得た。
 その後、サムコインターナショナル社製「RIE-10NR」を用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行った。続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO膜のドライエッチング加工とを順次行った。
 各々のエッチング条件は、下記に示すとおりである。
・レジストパターンのレジスト中間層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:1min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:8:2(sccm)
・レジスト中間膜パターンのレジスト下層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
・レジスト下層膜パターンのSiO膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:C12ガス流量:Cガス流量:Oガス流量
          =50:4:3:1(sccm)
<パターン形状の評価>
 上述のようにして得られた実施例56のパターン断面(エッチング後のSiO膜の形状)を、(株)日立製作所製電子顕微鏡「S-4800」を用いて観察したところ、本発明の下層膜を用いた実施例は、多層レジスト加工におけるエッチング後のSiO膜の形状は矩形であり、欠陥も認められず良好であることが確認された。
<樹脂膜(樹脂単独膜)の特性評価>
<樹脂膜の作製>
[実施例A01]
 溶媒としてPGMEAを用い、合成実施例1の樹脂RBisP-1を溶解して固形分濃度10質量%の樹脂溶液を調製した(実施例A01の樹脂溶液)。
 調製した樹脂溶液をスピンコーターLithiusPro(東京エレクトロン社製)を用いて12インチシリコンウエハ上に成膜し、200nmの膜厚となるように回転数を調整しながら成膜後、ベーク温度を250℃1分の条件でベーク処理して合成実施例1の樹脂からなる膜を積層した基板を作製した。作製した基板を更に高温処理可能なホットプレートを使用し、350℃、1分間の条件でベークすることで硬化した樹脂膜を得た。この際、得られた硬化した樹脂膜をPGMEA槽に1分間浸漬する前後の膜厚変化が3%以下であれば、硬化したと判断した。硬化が不十分と判断される場合は硬化温度を50℃ずつ変更して硬化する温度を調査し、硬化する温度範囲の中で一番温度が低い条件で硬化するベーク処理を行った。
<光学特性値評価>
 作製した樹脂膜について、「分光エリプソメトリーVUV-VASE」(J.A.Woollam社製)を用いて光学特性値(光学定数として、屈折率nと、消衰係数k)の評価を行った。
[実施例A02~実施例A06及び比較例A01]
 使用した樹脂をRBisP-1から表37に示す樹脂に変更したこと以外は実施例A01と同様にして樹脂膜を作製し、光学特性値評価を実施した。
[評価基準]屈折率n
 A:1.4以上
 C:1.4未満
[評価基準]消衰係数k
 A:0.5未満
 C:0.5以上
Figure JPOXMLDOC01-appb-T000144
 実施例A01~A06の結果から、本実施形態の多環ポリフェノール樹脂を含む膜形成用組成物によりArF露光で使用する波長193nmにおけるn値が高くk値の低い樹脂膜を形成できることがわかった。
<硬化膜の耐熱性評価>
[実施例B01]
 実施例A01で作製した樹脂膜について、ランプアニール炉を用いた耐熱性評価を行った。耐熱処理条件としては窒素雰囲気下450℃で加熱を継続し、加熱開始からの経過時間4分間後及び10分間後の膜厚を比較した膜厚変化率を求めた。また、窒素雰囲気下550℃で加熱を継続し、加熱開始からの経過時間4分間後及び550℃10分間後の膜厚を比較した膜厚変化率を求めた。これらの膜厚変化率を硬化膜耐熱性の指標として評価した。耐熱試験前後の膜厚は、干渉膜厚計で計測して膜厚の変動値を耐熱試験処理前の膜厚に対する比を膜厚変化率(百分率%)として求めた。
 [評価基準]
 A:膜厚変化率が、10%未満
 B:膜厚変化率が、10%以上15%以下
 C:膜厚変化率が、15%超
[実施例B02~実施例B06、比較例B01~比較例B02]
 使用した樹脂をRBisP-1から表38に示す樹脂に変更したこと以外は実施例B01と同様にして耐熱性評価を実施した。
Figure JPOXMLDOC01-appb-T000145
 実施例B01~B06の結果から、比較例B01及びB02に比して、本実施形態の多環ポリフェノール樹脂を含む膜形成用組成物により550℃の温度においても膜厚変化が少ない耐熱性の高い樹脂膜を形成できることがわかった。
[実施例C01]
<PE-CVD成膜評価>
 12インチシリコンウエハに熱酸化処理を実施し、得られたシリコン酸化膜を有する基板上に、実施例A01と同様の方法により、実施例A01の樹脂溶液を用いて100nmの厚みで樹脂膜を作製した。当該樹脂膜上に、成膜装置TELINDY(東京エレクトロン社製)を用い、原料としてTEOS(テトラエチルシロキサン)を使用し、基板温度300℃にて膜厚70nmの酸化シリコン膜の成膜を行った。作製した酸化シリコン膜を積層した硬化膜付きウエハについて、更に欠陥検査装置「SP5」(KLA-Tencor社製)を用いて欠陥検査を行い、21nm以上となる欠陥の個数を指標として、下記の基準に従い、成膜した酸化膜の欠陥数の評価を行った。
(基準)
A 欠陥数 ≦ 20個
B 20個 < 欠陥数 ≦ 50個
C 50個 < 欠陥数 ≦ 100個
D 100個 < 欠陥数 ≦ 1000個
E 1000個 < 欠陥数 ≦ 5000個
F 5000個 < 欠陥数
<SiN膜評価>
 前記と同様の方法により12インチシリコンウエハ上に100nmの厚みで熱酸化処理されたシリコン酸化膜を有する基板上に作製した硬化膜上に、成膜装置TELINDY(東京エレクトロン社製)を用い、原料としてSiH(モノシラン)、アンモニアを使用し、基板温度350℃にて膜厚40nm、屈折率1.94、膜応力-54MPaのSiN膜の成膜を行った。作製したSiN膜を積層した硬化膜付きウエハについて、更に欠陥検査装置「SP5」(KLA-tencor社製)を用いて欠陥検査を行い、21nm以上となる欠陥の個数を指標として、下記基準に従い、成膜した酸化膜の欠陥数の評価を行った。
(基準)
A 欠陥数 ≦ 20個
B 20個 < 欠陥数 ≦ 50個
C 50個 < 欠陥数 ≦ 100個
D 100個 < 欠陥数 ≦ 1000個
E 1000個 < 欠陥数 ≦ 5000個
F 5000個 < 欠陥数
[実施例C02~実施例C06及び比較例C01~比較例C02]
 使用した樹脂をRBisP-1から表39に示す樹脂に変更したこと以外は実施例C01と同様にして膜の欠陥評価を実施した。
Figure JPOXMLDOC01-appb-T000146
 実施例C01~C06の樹脂膜上に形成されたシリコン酸化膜又はSiN膜は21nm以上となる欠陥の個数が50個以下(B評価以上)であり、比較例C01又はC02の欠陥の個数に比べ、少なくなることが示された。
[実施例D01]
<高温処理後のエッチング評価>
 12インチシリコンウエハに熱酸化処理を実施し、得られたシリコン酸化膜を有する基板上に、実施例A01と同様の方法により、実施例A01の樹脂溶液を用いて100nmの厚みで樹脂膜を作製した。当該樹脂膜に対して、更に窒素雰囲気下で高温処理可能なホットプレートにより600℃4分間の条件で加熱によるアニーリング処理を行い、アニーリングされた樹脂膜が積層されたウエハを作製した。作製したアニーリングされた樹脂膜を削り出し、元素分析により炭素含率を求めた。
 更に、12インチシリコンウエハに熱酸化処理を実施し、得られたシリコン酸化膜を有する基板上に、実施例A01と同様の方法により、実施例A01の樹脂溶液を用いて100nmの厚みで樹脂膜を作製した。当該樹脂膜について、更に窒素雰囲気下で600℃・4分間の条件で加熱によりアニーリングされた樹脂膜を形成したのち、該基板をエッチング装置「TELIUS」(東京エレクトロン社製)を用い、エッチングガスとしてCF/Arを用いた条件、及びCl/Arを用いた条件でエッチング処理を行い、エッチングレートの評価を行った。エッチングレートの評価はリファレンスとして日本化薬社製のフォトレジスト「SU8 3000」を250℃で1分間アニーリング処理して作製した200nm膜厚の樹脂膜を用い、SU8 3000に対するエッチングレートの速度比を相対値として求めて、下記評価基準に従って、評価した。
 [評価基準]
 A:SU8 3000の樹脂膜に比べてエッチングレートが、-20%未満
 B:SU8 3000の樹脂膜に比べてエッチングレートが、-20%以上0%以下
 C:SU8 3000の樹脂膜に比べてエッチングレートが、+0%超
(実施例D02~実施例D06、比較例D01~比較例D02)
 使用した樹脂をRBisP-1から表40に示す樹脂に変更したこと以外は実施例D01と同様にしてエッチングレート評価を実施した。
Figure JPOXMLDOC01-appb-T000147
 実施例D01~D06の結果から、比較例D01及びD02に比して、本実施形態の多環ポリフェノール樹脂を含む組成物を用いた場合、高温処理後のエッチング耐性に優れた樹脂膜を形成できることがわかった。
[精製処理前後の欠陥評価]
<積層膜でのエッチング欠陥評価>
 以下において合成実施例で得られた多環ポリフェノール樹脂について、精製処理前後での品質評価を実施した。すなわち、後述する精製処理前後の各々において、多環ポリフェノール樹脂を用いてウエハ上に成膜した樹脂膜をエッチングにより基板側に転写したのち、欠陥評価を行うことで評価した。
 12インチシリコンウエハに熱酸化処理を実施し、100nmの厚みのシリコン酸化膜を有する基板を得た。当該基板上に、多環ポリフェノール樹脂の樹脂溶液を100nmの厚みとなるようにスピンコート条件を調整して成膜後、150℃ベーク1分、続いて350℃ベーク1分間を行うことで多環ポリフェノール樹脂を熱酸化膜付きシリコン上に積層した積層基板を作製した。
 エッチング装置として「TELIUS」(東京エレクトロン社製)を用い、CF/O/Arの条件で樹脂膜をエッチングし、酸化膜表面の基板を露出させた。更にCF/Arのガス組成比にて酸化膜を100nmエッチングする条件でエッチング処理を行い、エッチングしたウエハを作製した。
 作製したエッチングウエハを欠陥検査装置「SP5」(KLA-tencor社製)にて19nm以上の欠陥数を測定し、下記基準に従い、積層膜でのエッチング処理による欠陥評価として実施した。
(基準)
A 欠陥数 ≦ 20個
B 20個 < 欠陥数 ≦ 50個
C 50個 < 欠陥数 ≦ 100個
D 100個 < 欠陥数 ≦ 1000個
E 1000個 < 欠陥数 ≦ 5000個
F 5000個 < 欠陥数
[実施例E01] RBisP-1の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られたRBisP-1をPGMEAに溶解させた溶液(10質量%)を150g仕込み、攪拌しながら80℃まで加熱した。ついで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分間静置した。これにより油相と水相に分離したのち、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分間静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びPGMEAを濃縮留去した。その後、ELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRBisP-1のPGMEA溶液を得た。調製した多環ポリフェノール樹脂溶液を日本インテグリス社製の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作製した。
 当該精製処理前後の各々の溶液サンプルについて、上述のようにウエハ上に樹脂膜を成膜し、樹脂膜をエッチングにより基板側に転写したのち、積層膜でのエッチング欠陥評価を実施した。
[実施例E02] RBisP-2の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例2で得られたRBisP-2をPGMEAに溶解させた溶液(10質量%)を140g仕込み、攪拌しながら60℃まで加熱した。ついで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相とに分離したのち、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びPGMEAを濃縮留去した。その後、ELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRBisP-2のPGMEA溶液を得た。作製した多環ポリフェノール樹脂溶液を日本インテグリス社製の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作製した後、実施例E01と同様に積層膜でのエッチング欠陥評価を実施した。
[実施例E03] フィルター通液による精製
 クラス1000のクリーンブース内にて、1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られた樹脂(RBisP-1)をプロピレングリコールモノメチルエーテル(PGME)に溶解させた濃度10質量%の溶液を500g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから前記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分100mLの流量で公称孔径が0.01μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックスナイロンシリーズ)に濾過圧が0.5MPaの条件となるように加圧濾過にて通液した。濾過後の樹脂溶液をELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRBisP-1のPGMEA溶液を得た。調製した多環ポリフェノール樹脂溶液を日本インテグリス社製の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作製した後、実施例E01と同様に積層膜でのエッチング欠陥評価を実施した。なお、酸素濃度はアズワン(株)製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。
[実施例E04]
 フィルターによる精製工程として、日本ポール社製の「IONKLEEN」、日本ポール社製の「ナイロンフィルター」、更に日本インテグリス社製の公称孔径3nmのUPEフィルターをこの順番に直列に接続し、フィルターラインとして構築した。0.1μmのナイロン製中空糸膜フィルターの代わりに、作製したフィルターラインを使用した以外は、実施例E03と同様にして濾過圧が0.5MPaの条件となるように加圧濾過により通液した。ELグレードのPGMEA(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRBisP-1のPGMEA溶液を得た。調製した多環ポリフェノール樹脂溶液を日本インテグリス社製の公称孔径3nmのUPEフィルターにより濾過圧が0.5MPaの条件となるように加圧濾過した溶液サンプルを作製した後、実施例E01と同様に積層膜でのエッチング欠陥評価を実施した。
[実施例E05]
 実施例E01で調製した溶液サンプルを、さらに実施例E04で作製したフィルターラインを使用して濾過圧が0.5MPaの条件となるように加圧濾過した溶液サンプルを作製した後、実施例E01と同様に積層膜でのエッチング欠陥評価を実施した。
[実施例E06]
 合成実施例2で合成したRBisP-2について、実施例E05と同様の方法により精製した溶液サンプルを調製した後、実施例E01と同様に積層膜でのエッチング欠陥評価を実施した。
[実施例E06-1] 
 合成実施例6で合成したRBP-1について、実施例E05と同様の方法により精製した溶液サンプルを調製した後、実施例E01と同様に積層膜でのエッチング欠陥評価を実施した。
[実施例E07]
 合成実施例3で合成したRBisP-3について、実施例E05と同様の方法により精製した溶液サンプルを調製した後、実施例E01と同様に積層膜でのエッチング欠陥評価を実施した。
 実施例E01~実施例E07の評価結果を表41に示す。
Figure JPOXMLDOC01-appb-T000148
 実施例E01~E07の結果から、本実施形態の多環ポリフェノール樹脂を含む組成物を用いた場合、精製処理前の多環ポリフェノール樹脂を用いた場合に比して、さらに、得られる樹脂膜の品質が向上していることがわかった
[実施例57~62-1、比較例9]
 上述の各実施例38~43-1及び比較例5で調製したリソグラフィー用下層膜形成材料の溶液と同組成の光学部材形成用組成物を膜厚300nmのSiO基板上に塗布して、260℃で300秒間ベークすることにより、膜厚100nmの光学部材用の膜を形成した。ついで、ジェー・エー・ウーラム・ジャパン社製 真空紫外域多入射角分光エリプソメーター「VUV-VASE」を用いて、633nmの波長における屈折率及び透明性試験を行い、以下の基準に従って屈折率及び透明性を評価した。評価結果を表42に示す。
[屈折率の評価基準]
 A:屈折率が1.65以上
 C:屈折率が1.65未満
[透明性の評価基準]
 A:吸光定数が0.03未満
 C:吸光定数が0.03以上
Figure JPOXMLDOC01-appb-T000149
 実施例57~62-1の光学部材形成用組成物では、屈折率が高いのみならず、吸光係数が低く、透明性に優れることが分かった。一方で、比較例9の組成物は光学部材としての性能に劣ることが分かった。
[実施例群4]
(合成実施例1)RHE-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に、下記式で表されるインドール(東京化成工業社製)11.7g(100mmol)とフタル酸モノブチル銅を10.1g(20mmol)仕込み、溶媒としてクロロホルムを100mL加えて、反応液を61℃で6時間撹拌して反応を行った。
Figure JPOXMLDOC01-appb-C000150
 次いで、冷却後に析出物を濾過し、得られた粗体をトルエン100mLに溶解させた。次に塩酸5mLを加え、室温で攪拌後、炭酸水素ナトリウムで中和処理を行った。トルエン溶液を濃縮し、メタノール200mLを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を乾燥させることにより、下記式で表される構造を有する重合体(RHE-1)34.0gを得た。
 得られた重合体について、上記の方法によりポリスチレン換算分子量を測定した結果、Mn:1068、Mw:1340、Mw/Mn:1.25であった。
 得られた重合体について、上記の測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式の化学構造を有することを確認した。
 δ(ppm)10.1(1H,N-H)、6.4~7.6(4H,Ph-H);Ph-Hは芳香環のプロトンを示す。
Figure JPOXMLDOC01-appb-C000151
(合成実施例2~6)RHE-2~RHE-6の合成
 合成実施例2~6では、合成実施例1で使用したインドールの代わりに、それぞれ、2-フェニルベンゾオキサゾール、2-フェニルベンゾチアゾール、カルバゾール、ジベンゾチオフェンを使用したことを除き、合成実施例1と同様に重合体を合成した。
Figure JPOXMLDOC01-appb-C000152
 すなわち、合成実施例2~6では、それぞれ、下記式で表される目的化合物(RHE-2)、(RHE-3)、(RHE-4)、(RHE-5)、(RHE-6)を得た。
Figure JPOXMLDOC01-appb-C000153
 なお、下記RHE-2~RHE-6において、400MHz-H-NMRにより以下のピークが見出され、各々上記式の化学構造を有することを確認した。さらに、得られた各重合体について、上述の方法によりポリスチレン換算分子量を測定した結果を併せて示す。
RHE-2
 Mn:1088、Mw:1280、Mw/Mn:1.18
 δ(ppm)7.3~8.2(7H,Ph-H)
RHE-3
 Mn:1120、Mw:1398、Mw/Mn:1.24
 δ(ppm)7.5~8.2(7H,Ph-H)
RHE-4
 Mn:1102、Mw:1242、Mw/Mn:1.13
δ(ppm)12.1(1H,N-H)、7.2~8.2(6H,Ph-H)
RHE-5
 Mn:1146、Mw:1382、Mw/Mn:1.21
δ(ppm)7.4~8.5(6H,Ph-H)
RHE-6
 Mn:1028、Mw:1298、Mw/Mn:1.26
δ(ppm)7.3~8.0(6H,Ph-H)
[比較合成例1]
 実施例群1の合成比較例1で得られたNBisN-1を実施例群4の合成比較例1で得られた樹脂として用いた。
[比較合成例2]
 実施例群1の合成比較例2で得られたCR-1を実施例群4の合成比較例2で得られた樹脂として用いた。
[実施例1~5-1]
 合成実施例1~合成実施例6、及び比較合成例1で得られた重合体を用いて、以下に示す評価方法によって、耐熱性を評価した結果を表43に示す。
<熱分解温度の測定>
 エスアイアイ・ナノテクノロジー社製EXSTAR6000TG/DTA装置を使用し、試料約5mgをアルミニウム製非密封容器に入れ、窒素ガス(30mL/min)気流中昇温速度10℃/minで700℃まで昇温した。その際、10重量%の熱減量が観測される温度を熱分解温度(Tg)とし、以下の基準で耐熱性を評価した。
 評価A:熱分解温度が430℃以上
 評価B:熱分解温度が320℃以上
 評価C:熱分解温度が320℃未満
<溶解性の測定>
 23℃にて、各例で得られた重合体をシクロヘキサノン(CHN)に対して5質量%溶液になるよう溶解させた。その後、10℃にて30日間静置したときのCHN溶液の外観を以下の基準にて評価した。
 評価A:目視にて析出物がないことを確認した。
 評価C:目視にて析出物があることを確認した。
Figure JPOXMLDOC01-appb-T000154
 表43から明らかなように、実施例1~実施例5-1で用いた重合体は、耐熱性が良好であるが、比較例1で用いた重合体は、耐熱性が劣ることが確認できた。また、いずれの重合体も、溶解性が良好であることが確認できた。
[実施例6~10-1、比較例2]
(リソグラフィー用下層膜形成用組成物の調製)
 表44に示す組成となるように、リソグラフィー用下層膜形成用組成物を調製した。次に、これらのリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布し、その後、窒素雰囲気下において、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200~250nmの下層膜を各々作製した。
 次に、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表44に示す。なお、評価方法の詳細は後述する。
<エッチング試験>
  エッチング装置:サムコインターナショナル社製「RIE-10NR」
  出力:50W
  圧力:20Pa
  時間:2min
  エッチングガス
  Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
(エッチング耐性の評価)
 エッチング耐性の評価は、以下の手順で行った。まず、ノボラック(群栄化学社製「PSM4357」)を用いること以外は、上記条件と同様にしてノボラックの下層膜を作製した。このノボラックの下層膜を対象として、上記のエッチング試験を行い、そのときのエッチングレートを測定した。
 次に、実施例6~実施例10-1及び比較例2の下層膜について、ノボラックの下層膜と同様の条件で作製し、上記エッチング試験を同様に行い、そのときのエッチングレートを測定した。ノボラックの下層膜のエッチングレートを基準として、以下の評価基準で各実施例及び比較例のエッチング耐性を評価した。
 [評価基準]
 A:ノボラックの下層膜に比べてエッチングレートが、-20%未満
 B:ノボラックの下層膜に比べてエッチングレートが、-20%以上0%以下
 C:ノボラックの下層膜に比べてエッチングレートが、+0%超
Figure JPOXMLDOC01-appb-T000155
 実施例6~実施例10-1では、ノボラックの下層膜及び比較例2の重合体に比べて優れたエッチングレートが発揮されることがわかった。一方、比較例2の重合体では、ノボラックの下層膜に比べてエッチングレートが同等であることがわかった。
[実施例11~26、参考例1~2]重合体の精製
 重合体の精製前後の金属含有量と溶液の保存安定性を以下の方法で評価を行った。
<各種金属含有量測定>
 ICP-MS(Inductively Coupled Plasma Mass Spectrometry)を用いて以下の測定条件にて、以下の実施例、比較例によって得られた各種重合体のプロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液中の金属含有量を測定した。
  装置:アジレント社製AG8900
  温度:25℃
  環境:クラス100クリーンルーム
<保存安定性評価>
 以下の各例によって得られたPGMEA溶液を23℃にて240時間保持した後の溶液の濁度(HAZE)を色差・濁度計を用いて測定し、以下の基準にて溶液の保存安定性を評価した。
  装置:色差・濁度計COH400(日本電色(株)製)
  光路長:1cm
  石英セル使用
[評価基準]
   0≦HAZE≦1.0 :良好
 1.0<HAZE≦2.0 :可
 2.0<HAZE     :不良
(実施例11) RHE-1の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られたRHE-1をCHNに溶解させた溶液(10質量%)を150g仕込み、攪拌しながら80℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分間静置した。これにより油相と水相とに分離したのち、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びCHNを濃縮留去した。その後、ELグレードのCHN(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRHE-1のCHN溶液を得た。
(参考例1) RHE-1の超純水による精製
 蓚酸水溶液の代わりに、超純水を用いる以外は実施例11と同様に実施し、10質量%に濃度調整を行うことにより、RHE-1のCHN溶液を得た。
 処理前のRHE-1の10質量%CHN溶液、実施例11及び参考例1において得られた溶液について、各種金属含有量をICP-MSによって測定した。測定結果を表45に示す。
(実施例12) RHE-2の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例2で得られたRHE-2をCHNに溶解させた溶液(10質量%)を140g仕込み、攪拌しながら60℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分間静置した。これにより油相と水相とに分離したのち、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びCHNを濃縮留去した。その後、ELグレードのCHN(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRHE-2のCHN溶液を得た。
(参考例2) RHE-2の超純水による精製
 蓚酸水溶液の代わりに、超純水を用いる以外は実施例12と同様に実施し、10質量%に濃度調整を行うことにより、RHE-2のCHN溶液を得た。
 処理前のRHE-2の10質量%CHN溶液、実施例12及び参考例2において得られた溶液について、各種金属含有量をICP-MSによって測定した。測定結果を表45に示す。
(実施例13) フィルター通液による精製
 クラス1000のクリーンブース内にて、1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られた重合体(RHE-1)をCHNに溶解させた濃度10質量%の溶液を500g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分100mLの流量で公称孔径が0.01μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックスナイロンシリーズ)に通液した。得られたRHE-1の溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン(株)製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表45に示す。
(実施例14)
 公称孔径が0.01μmのポリエチレン(PE)製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックス)を使用した以外は、実施例13と同様に通液し、得られたRHE-1の溶液の各種金属含有量をICP-MSによって測定した。測定結果を表45に示す。
(実施例15)
 公称孔径が0.04μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックス)を使用した以外は、実施例13と同様に通液し、得られたRHE-1の各種金属含有量をICP-MSによって測定した。測定結果を表45に示す。
(実施例16)
 公称孔径が0.2μmのゼータプラスフィルター40QSH(スリーエム(株)製、イオン交換能あり)を使用した以外は、実施例13と同様に通液し、得られたRHE-1溶液の各種金属含有量をICP-MSによって測定した。測定結果を表45に示す。
(実施例17)
 公称孔径が0.2μmのゼータプラスフィルター020GN(スリーエム(株)製、イオン交換能あり、ゼータプラスフィルター40QSHとはろ過面積及びろ材厚みが異なる)を使用した以外は、実施例13と同様に通液し、得られたRHE-1溶液の各種金属含有量をICP-MSによって測定した。測定結果を表45に示す。
(実施例18)
 実施例13における重合体(RHE-1)の代わりに、合成実施例2で得られた重合体(RHE-2)を使用した以外は、実施例13と同様に通液し、得られたRHE-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表45に示す。
(実施例19)
 実施例14における重合体(RHE-1)の代わりに、合成実施例2で得られた重合体(RHE-2)を使用した以外は、実施例14と同様に通液し、得られたRHE-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表45に示す。
(実施例20)
 実施例15における化合物(RHE-1)の代わりに、合成実施例2で得られた重合体(RHE-2)を使用した以外は、実施例15と同様に通液し、得られたRHE-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表45に示す。
(実施例21)
 実施例16における化合物(RHE-1)の代わりに、合成実施例2で得られた重合体(RHE-2)を使用した以外は、実施例16と同様に通液し、得られたRHE-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表45に示す。
(実施例22)
 実施例17における化合物(RHE-1)の代わりに、合成実施例2で得られた重合体(RHE-2)を使用した以外は、実施例17と同様に通液し、得られたRHE-2溶液の各種金属含有量をICP-MSによって測定した。測定結果を表45に示す。
(実施例23)酸洗浄、フィルター通液併用1
 クラス1000のクリーンブース内にて、300mL容量の四つ口フラスコ(底抜き型)に、実施例11によって得られた金属含有量の低減されたRHE-1の10質量%CHN溶液を140g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分10mLの流量で公称孔径が0.01μmのイオン交換フィルター(日本ポール社製、商品名:イオンクリーンシリーズ)に通液した。その後、回収された該溶液を上記300mL容量の四つ口フラスコに戻し、フィルターを公称口径1nmの高密度PE製フィルター(日本インテグリス社製)に変え、同様にポンプ通液を実施した。得られたRHE-1の溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン(株)製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表45に示す。
(実施例24)酸洗浄、フィルター通液併用2
 クラス1000のクリーンブース内にて、300mL容量の四つ口フラスコ(底抜き型)に、実施例11によって得られた金属含有量の低減されたRHE-1の10質量%CHN溶液を140g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分10mLの流量で公称孔径が0.01μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックス)に通液した。その後、回収された該溶液を上記300mL容量の四つ口フラスコに戻し、フィルターを公称口径1nmの高密度PE製フィルター(日本インテグリス社製)に変え、同様にポンプ通液を実施した。得られたRHE-1の溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン(株)製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表45に示す。
(実施例25)酸洗浄、フィルター通液併用3
 実施例23で使用したRHE-1の10質量%CHN溶液を実施例12によって得られたRHE-2の10質量%CHN溶液に変えた以外は実施例23と同様の操作を行い、金属量の低減されたRHE-2の10質量%PGMEA溶液を回収した。得られた溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン(株)製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表45に示す。
(実施例26)酸洗浄、フィルター通液併用4
 実施例24で使用したRHE-1の10質量%CHN溶液を実施例12によって得られたRHE-2の10質量%CHN溶液に変えた以外は実施例24と同様の操作を行い、金属量の低減されたRHE-2の10質量%PGMEA溶液を回収した。得られた溶液の各種金属含有量をICP-MSによって測定した。なお、酸素濃度はアズワン(株)製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。測定結果を表45に示す。
Figure JPOXMLDOC01-appb-T000156
 表45に示すように、各種精製方法によって、酸化剤に由来する金属を低減することにより、本実施形態における重合体溶液の保存安定性が良好となることが確認された。
 特に酸洗浄方法とイオン交換フィルターあるいはナイロンフィルターを使用することで、イオン性の金属を効果的に低減し、高精細な高密度ポリエチレン製の微粒子除去フィルターを併用することで、劇的な金属除去効果を得ることができる。
[実施例27~32-1、比較例3]
<レジスト性能>
 合成実施例1~合成実施例6及び比較合成例1で得られた重合体を用いて、下記のレジスト性能評価を行った結果を表46に示す。
(レジスト組成物の調製)
 上記で合成した各重合体を用いて、表46に示す配合でレジスト組成物を調製した。なお、表46中のレジスト組成物の各成分のうち、酸発生剤(C)、酸拡散制御剤(E)及び溶媒については、以下のものを用いた。
 酸発生剤(C)
  P-1:トリフェニルベンゼンスルホニウム トリフルオロメタンスルホネート(みどり化学(株))
 酸架橋剤(G)
  C-1:ニカラックMW-100LM(三和ケミカル(株))
 酸拡散制御剤(E)
  Q-1:トリオクチルアミン(東京化成工業(株))
 溶媒
  S-1:CHN(東京化成工業(株))
(レジスト組成物のレジスト性能の評価方法)
 均一なレジスト組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ60nmのレジスト膜を形成した。得られたレジスト膜に対して、電子線描画装置(ELS-7500、(株)エリオニクス社製)を用いて、50nm間隔の1:1のラインアンドスペース設定の電子線を照射した。当該照射後に、レジスト膜を、それぞれ所定の温度で、90秒間加熱し、テトラメチルアンモニウムヒドロキシド(TMAH)2.38質量%のアルカリ現像液に60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄、乾燥して、レジストパターンを形成した。形成されたレジストパターンについて、ラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察し、レジスト組成物の電子線照射による反応性を評価した。
Figure JPOXMLDOC01-appb-T000157
 レジストパターン評価については、実施例27~実施例32-1では50nm間隔の1:1のラインアンドスペース設定の電子線を照射することにより、良好なレジストパターンを得た。なお、ラインエッジラフネスはパターンの凹凸が5nm未満を良好とした。一方、比較例3では良好なレジストパターンを得ることはできなかった。
 このように本実施形態の要件を満たす重合体を用いた場合は、当該要件を満たさない比較例3の重合体(NBisN-1)に比べて、良好なレジストパターン形状を付与できる。前記した本実施形態の要件を満たす限り、実施例に記載した重合体以外についても同様の効果を示す。
[実施例33~37-1、比較例4]
(感放射線性組成物の調製)
 表47記載の配合で成分を調合し、均一溶液としたのち、得られた均一溶液を、孔径0.1μmのテフロン(登録商標)製メンブランフィルターで濾過して、感放射線性組成物を調製した。調製した各々の感放射線性組成物について以下の評価を行った。
Figure JPOXMLDOC01-appb-T000158
 なお、比較例4におけるレジスト基材(成分(A))として、次のものを用いた。
  PHS-1:ポリヒドロキシスチレン Mw=8000(シグマ-アルドリッチ社)
 また、光活性化合物(B)として、次のものを用いた。
  B-1:下記化学構造式(G)のナフトキノンジアジド系感光剤(製品名「4NT-300」、東洋合成工業(株))
 さらに、溶媒として、次のものを用いた。
  S-1:CHN(東京化成工業(株))
Figure JPOXMLDOC01-appb-C000159
<感放射線性組成物のレジスト性能の評価>
 上記で得られた感放射線性組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ200nmのレジスト膜を形成した。該レジスト膜に対して、紫外線露光装置(ミカサ製マスクアライナMA-10)を用いて紫外線を露光した。紫外線ランプは超高圧水銀ランプ(相対強度比はg線:h線:i線:j線=100:80:90:60)を使用した。照射後に、レジスト膜を、110℃で90秒間加熱し、TMAH2.38質量%アルカリ現像液に60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄し、乾燥して、5μmのレジストパターンを形成した。
 形成されたレジストパターンにおいて、得られたラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察した。ラインエッジラフネスはパターンの凹凸が5nm未満を良好とした。
 実施例33~実施例37-1における感放射線性組成物を用いた場合は、解像度5μmの良好なレジストパターンを得ることができた。また、そのパターンのラフネスも小さく良好であった。
 一方、比較例4における感放射線性組成物を用いた場合は、解像度5μmの良好なレジストパターンを得ることができた。しかしながら、そのパターンのラフネスは大きく不良であった。
 上記のように、実施例33~実施例37-1における感放射線性組成物は、比較例4における感放射線性組成物に比べて、ラフネスが小さく、かつ良好な形状のレジストパターンを形成することができることがわかった。上記した本実施形態の要件を満たす限り、実施例に記載した以外の感放射線性組成物も同様の効果を示す。
 なお、合成実施例1~合成実施例6で得られた重合体は、比較的に低分子量で低粘度であることから、これを用いたリソグラフィー用下層膜形成材料は埋め込み特性や膜表面の平坦性が比較的に有利に高められ得ると評価された。また、熱分解温度はいずれも430℃以上(評価A)であり、高い耐熱性を有するので、高温ベーク条件でも使用することができると評価された。これらの点を確認するべく、下層膜用途を想定し、以下の評価を行った。
[実施例38~43、比較例5~6]
(リソグラフィー用下層膜形成用組成物の調製)
 表48に示す組成となるように、リソグラフィー用下層膜形成用組成物を調製した。次に、これらのリソグラフィー用下層膜形成用組成物をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。酸発生剤、架橋剤及び有機溶媒については以下のものを用いた。
  酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
  架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
      本州化学工業社製 TMOM-BP(下記式で表される化合物)
Figure JPOXMLDOC01-appb-C000160
  有機溶媒:CHN,PGMEA
  ノボラック:群栄化学社製 PSM4357
 次に、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表48に示す。なお、評価方法の詳細は後述する。
<エッチング試験>
  エッチング装置:サムコインターナショナル社製 RIE-10NR
  出力:50W
  圧力:20Pa
  時間:2min
  エッチングガス
  Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
<エッチング耐性の評価>
 エッチング耐性の評価は、以下の手順で行った。まず、ノボラック(群栄化学社製「PSM4357」)を用いること以外は、上記条件と同様にしてノボラックの下層膜を作製した。このノボラックの下層膜を対象として、上記のエッチング試験を行い、そのときのエッチングレートを測定した。
 次に、実施例38~43-1と比較例5~6の下層膜を、ノボラックの下層膜と同様の条件で作製し、上記エッチング試験を同様に行い、そのときのエッチングレートを測定した。ノボラックの下層膜のエッチングレートを基準として、以下の評価基準で各実施例及び比較例のエッチング耐性を評価した。
 [評価基準]
 A:ノボラックの下層膜に比べてエッチングレートが、-20%未満
 B:ノボラックの下層膜に比べてエッチングレートが、-20%以上0%以下
 C:ノボラックの下層膜に比べてエッチングレートが、+0%超
Figure JPOXMLDOC01-appb-T000161
 実施例38~43-1では、ノボラックの下層膜及び比較例5~6の下層膜に比べて優れたエッチングレートが発揮されることがわかった。一方、比較例5あるいは比較例6の下層膜では、ノボラックの下層膜に比べてエッチングレートが同等或いは劣ることがわかった。
[実施例44~49-1、比較例7]
 次に、実施例38~実施例43-1,比較例5で調製したリソグラフィー用下層膜形成用組成物を膜厚80nmの60nmラインアンドスペースのSiO基板上に塗布して、240℃で60秒間ベークすることにより90nmの下層膜を形成した。
(埋め込み性の評価)
 埋め込み性の評価は、以下の手順で行った。上記条件で得られた膜の断面を切り出し、電子線顕微鏡にて観察し、埋め込み性を評価した。評価結果を表49に示す。
 [評価基準]
  A:60nmラインアンドスペースのSiO基板の凹凸部分に欠陥無く下層膜が埋め込まれている。
  C:60nmラインアンドスペースのSiO基板の凹凸部分に欠陥があり下層膜が埋め込まれていない。
Figure JPOXMLDOC01-appb-T000162
 実施例44~49-1では、埋め込み性が良好であることがわかった。一方、比較例7では、SiO基板の凹凸部分に欠陥が見られ埋め込み性が劣ることがわかった。
[実施例50~55-1]
 次に、実施例38~43-1で調製したリソグラフィー用下層膜形成用組成物を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚85nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。
 なお、ArFレジスト溶液としては、下記式(16)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
 下記式(16)の化合物は、次のように調製した。すなわち、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。このようにして得られる生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて下記式(16)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000163
(式(16)中、40、40、20とあるのは、各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。)
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。
[比較例8]
 下層膜の形成を行わないこと以外は、実施例50と同様にしてフォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。
[評価]
 実施例50~55-1及び比較例8のそれぞれについて、得られた45nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの形状を(株)日立製作所製電子顕微鏡「S-4800」を用いて観察した。現像後のレジストパターンの形状については、パターン倒れがなく、矩形性が良好なものを「良好」とし、そうでないものを「不良」として評価した。また、当該観察の結果、パターン倒れが無く、矩形性が良好な最小の線幅を解像性として評価の指標とした。さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を感度として、評価の指標とした。その結果を表50に示す。
Figure JPOXMLDOC01-appb-T000164
 表50から明らかなように、実施例50~55-1におけるレジストパターンは、比較例8に比して、解像性及び感度ともに有意に優れていることが確認された。かかる結果は、ヘテロ原子の影響によるものと考えられる。また、現像後のレジストパターン形状もパターン倒れがなく、矩形性が良好であることが確認された。さらに、現像後のレジストパターン形状の相違から、実施例44~49-1におけるリソグラフィー用下層膜形成組成物は、レジスト材料との密着性がよいことが示された。
[実施例56]
 実施例44で調製したリソグラフィー用下層膜形成用組成物を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚90nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、前記ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、特開2007-226170号公報<合成例1>に記載の珪素原子含有ポリマー(ポリマー1)を用いた。
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、45nmL/S(1:1)のポジ型のレジストパターンを得た。
 その後、サムコインターナショナル社製「RIE-10NR」を用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行った。続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO膜のドライエッチング加工とを順次行った。
 各々のエッチング条件は、下記に示すとおりである。
 レジストパターンのレジスト中間層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:1min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:8:2(sccm)
 レジスト中間膜パターンのレジスト下層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:CFガス流量:Oガス流量=50:5:5(sccm)
 レジスト下層膜パターンのSiO膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:C12ガス流量:Cガス流量:Oガス流量
          =50:4:3:1(sccm)
<パターン形状の評価>
 上記のようにして得られた実施例56のパターン断面(エッチング後のSiO膜の形状)を、(株)日立製作所製電子顕微鏡「S-4800」を用いて観察したところ、本実施形態の下層膜を用いた実施例は、多層レジスト加工におけるエッチング後のSiO膜の形状は矩形であり、欠陥も認められず良好であることが確認された。
<樹脂膜(樹脂単独膜)の特性評価>
<樹脂膜の作製>
(実施例A01)
 溶媒としてPGMEAを用い、合成実施例1のRHE-1を溶解して固形分濃度10質量%の樹脂溶液を調製した(実施例A01の樹脂溶液)。
 調製した樹脂溶液をスピンコーターLithiusPro(東京エレクトロン社製)を用いて12インチシリコンウエハ上に成膜し、200nmの膜厚となるように回転数を調整しながら成膜後、ベーク温度を250℃1分の条件でベーク処理してRHE-1からなる膜を積層した基板を作製した。作製した基板を更に高温処理可能なホットプレートを使用し、350℃、1分の条件でベークすることで硬化した樹脂膜を得た。この際、得られた硬化した樹脂膜をCHN槽に1分間浸漬する前後の膜厚変化が3%以下であれば、硬化したと判断した。硬化が不十分と判断される場合は硬化温度を50℃ずつ変更して硬化する温度を調査し、硬化する温度範囲の中で一番温度が低い条件で硬化するベーク処理を行った。
<光学特性値評価>
 作製した樹脂膜について、分光エリプソメトリーVUV-VASE(J.A.Woollam社製)を用いて光学特性値(光学定数として、屈折率nと、消衰係数k)の評価を行った。
(実施例A02~実施例A06及び比較例A01)
 使用した重合体をRHE-1から表51に示す重合体に変更したこと以外は実施例A01と同様にして樹脂膜を作製し、光学特性値評価を実施した。
[評価基準]屈折率n
 A:1.4以上
 C:1.4未満
[評価基準]消衰係数k
 A:0.5未満
 C:0.5以上
Figure JPOXMLDOC01-appb-T000165
 実施例A01~A06の結果から、本実施形態における重合体を含む膜形成用組成物によりArF露光で使用する波長193nmにおけるn値が高くk値の低い樹脂膜を形成できることがわかった。
<硬化膜の耐熱性評価>
(実施例B01)
 実施例A01で作製した樹脂膜について、ランプアニール炉を用いた耐熱性評価を行った。耐熱処理条件としては窒素雰囲気下450℃で加熱を継続し、加熱開始からの経過時間4分間後及び10分間後の膜厚を比較した膜厚変化率を求めた。また、窒素雰囲気下550℃で加熱を継続し、加熱開始からの経過時間4分間後及び550℃10分間後の膜厚を比較した膜厚変化率を求めた。これらの膜厚変化率を硬化膜耐熱性の指標として評価した。耐熱試験前後の膜厚は、干渉膜厚計で計測して膜厚の変動値を耐熱試験処理前の膜厚に対する比を膜厚変化率(百分率%)として求めた。
 [評価基準]
 A:膜厚変化率が、10%未満
 B:膜厚変化率が、10%以上15%以下
 C:膜厚変化率が、15%超
(実施例B02~実施例B06、比較例B01~比較例B02)
 使用した重合体をRHE-1から表52に示す重合体に変更したこと以外は実施例B01と同様にして耐熱性評価を実施した。
Figure JPOXMLDOC01-appb-T000166
 実施例B01~B06の結果から、比較例B01及びB02に比して、本実施形態の重合体を含む膜形成用組成物により550℃の温度においても膜厚変化が少ない耐熱性の高い樹脂膜を形成できることがわかった。
(実施例C01)
<PE-CVD成膜評価>
 12インチシリコンウエハに熱酸化処理を実施し、得られたシリコン酸化膜を有する基板上に、実施例A01と同様の方法により、実施例A01の樹脂溶液を用いて100nmの厚みで樹脂膜を作製した。当該樹脂膜上に、成膜装置TELINDY(東京エレクトロン社製)を用い、原料としてTEOS(テトラエチルシロキサン)を使用し、基板温度300℃にて膜厚70nmの酸化シリコン膜の成膜を行った。作製した酸化シリコン膜を積層した硬化膜付きウエハについて、更に欠陥検査装置「SP5」(KLA-Tencor社製)を用いて欠陥検査を行い、21nm以上となる欠陥の個数を指標として、下記の基準に従い、成膜した酸化膜の欠陥数の評価を行った。
(基準)
A 欠陥数 ≦ 20個
B 20個 < 欠陥数 ≦ 50個
C 50個 < 欠陥数 ≦ 100個
D 100個 < 欠陥数 ≦ 1000個
E 1000個 < 欠陥数 ≦ 5000個
F 5000個 < 欠陥数
<SiN膜評価>
 上記と同様の方法により12インチシリコンウエハ上に100nmの厚みで熱酸化処理されたシリコン酸化膜を有する基板上に作製した硬化膜上に、成膜装置TELINDY(東京エレクトロン社製)を用い、原料としてSiH(k)、アンモニアを使用し、基板温度350℃にて膜厚40nm、屈折率1.94、膜応力-54MPaのSiN膜の成膜を行った。作製したSiN膜を積層した硬化膜付きウエハについて、更に欠陥検査装置「SP5」(KLA-tencor社製)を用いて欠陥検査を行い、21nm以上となる欠陥の個数を指標として、下記基準に従い、成膜した酸化膜の欠陥数の評価を行った。
(基準)
A 欠陥数 ≦ 20個
B 20個 < 欠陥数 ≦ 50個
C 50個 < 欠陥数 ≦ 100個
D 100個 < 欠陥数 ≦ 1000個
E 1000個 < 欠陥数 ≦ 5000個
F 5000個 < 欠陥数
(実施例C02~実施例C06及び比較例C01~比較例C02)
 使用した樹脂をRBisP-1から表53に示す樹脂に変更したこと以外は実施例C01と同様にして膜の欠陥評価を実施した。
Figure JPOXMLDOC01-appb-T000167
 実施例C01~C06の樹脂膜上に形成されたシリコン酸化膜又はSiN膜は21nm以上となる欠陥の個数が50個以下(B評価以上)であり、比較例C01又はC02の欠陥の個数に比べ、少なくなることが示された。
(実施例D01)
<高温処理後のエッチング評価>
 12インチシリコンウエハに熱酸化処理を実施し、得られたシリコン酸化膜を有する基板上に、実施例A01と同様の方法により、実施例A01の樹脂溶液を用いて100nmの厚みで樹脂膜を作製した。当該樹脂膜に対して、更に窒素雰囲気下で高温処理可能なホットプレートにより600℃4分の条件で加熱によるアニーリング処理を行い、アニーリングされた樹脂膜が積層されたウエハを作製した。作製したアニーリングされた樹脂膜を削り出し、元素分析により炭素含有率を求めた。
 更に、12インチシリコンウエハに熱酸化処理を実施し、得られたシリコン酸化膜を有する基板上に、実施例A01と同様の方法により、実施例A01の樹脂溶液を用いて100nmの厚みで樹脂膜を作製した。当該樹脂膜について、更に窒素雰囲気下で600℃4分間の条件で加熱によりアニーリングされた樹脂膜を形成したのち、該基板をエッチング装置「TELIUS」(東京エレクトロン社製)を用い、エッチングガスとしてCF/Arを用いた条件、及びCl/Arを用いた条件でエッチング処理を行い、エッチングレートの評価を行った。エッチングレートの評価はリファレンスとして日本化薬社製のフォトレジスト「SU8 3000」を250℃1分間アニーリング処理して作製した200nm膜厚の樹脂膜を用い、SU8 3000に対するエッチングレートの速度比を相対値として求めて、下記評価基準に従って、評価した。
 [評価基準]
 A:SU8 3000の樹脂膜に比べてエッチングレートが、-20%未満
 B:SU8 3000の樹脂膜に比べてエッチングレートが、-20%以上0%以下
 C:SU8 3000の樹脂膜に比べてエッチングレートが、+0%超
(実施例D02~実施例D06、参考例D01及び比較例D01~比較例D02)
 使用した重合体をRHE-1から表54に示す重合体に変更したこと以外は実施例D01と同様にしてエッチングレート評価を実施した。
Figure JPOXMLDOC01-appb-T000168
 実施例D01~D06の結果から、比較例D01及びD02に比して、本実施形態の重合体を含む組成物を用いた場合、高温処理後のエッチング耐性に優れた樹脂膜を形成できることがわかった。
[精製処理前後の欠陥評価]
<積層膜でのエッチング欠陥評価>
 以下において合成実施例で得られた重合体について、精製処理前後での品質評価を実施した。すなわち、後述する精製処理前後の各々において、重合体を用いてウエハ上に成膜した樹脂膜をエッチングにより基板側に転写したのち、欠陥評価を行うことで評価した。
 12インチシリコンウエハに熱酸化処理を実施し、100nmの厚みのシリコン酸化膜を有する基板を得た。当該基板上に、重合体の樹脂溶液を100nmの厚みとなるようにスピンコート条件を調整して成膜後、150℃ベーク1分、続いて350℃ベーク1分を行うことで重合体を熱酸化膜付きシリコン上に積層した積層基板を作製した。
 エッチング装置として「TELIUS」(東京エレクトロン社製)を用い、CF4/O2/Arの条件で樹脂膜をエッチングし、酸化膜表面の基板を露出させた。更にCF4/Arのガス組成比にて酸化膜を100nmエッチングする条件でエッチング処理を行い、エッチングしたウエハを作製した。
 作製したエッチングウエハを欠陥検査装置SP5(KLA-tencor社製)にて19nm以上の欠陥数を測定し、下記基準に従い、積層膜でのエッチング処理による欠陥評価として実施した。
(基準)
A 欠陥数 ≦ 20個
B 20個 < 欠陥数 ≦ 50個
C 50個 < 欠陥数 ≦ 100個
D 100個 < 欠陥数 ≦ 1000個
E 1000個 < 欠陥数 ≦ 5000個
F 5000個 < 欠陥数
(実施例E01) RHE-1の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られたRHE-1をCHNに溶解させた溶液(10質量%)を150g仕込み、攪拌しながら80℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相に分離したので、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びCHNを濃縮留去した。その後、ELグレードのCHN(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRHE-1のCHN溶液を得た。作製した重合体溶液を日本インテグリス社製の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作製した。
 当該精製処理前後の各々の溶液サンプルについて、上述のようにウエハ上に樹脂膜を成膜し、樹脂膜をエッチングにより基板側に転写したのち、積層膜でのエッチング欠陥評価を実施した。
(実施例E02) RHE-2の酸による精製
 1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例2で得られたRHE-2をCHNに溶解させた溶液(10質量%)を140g仕込み、攪拌しながら60℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相とに分離したのち、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びCHNを濃縮留去した。その後、ELグレードのCHN(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRHE-2のCHN溶液を得た。作製した重合体溶液を日本インテグリス社製の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作製した後、実施例E01と同様に積層膜でのエッチング欠陥評価を実施した。
(実施例E03) フィルター通液による精製
 クラス1000のクリーンブース内にて、1000mL容量の四つ口フラスコ(底抜き型)に、合成実施例1で得られた樹脂(RHE-1)をCHNに溶解させた濃度10質量%の溶液を500g仕込み、続いて釜内部の空気を減圧除去した後、窒素ガスを導入して大気圧まで戻し、窒素ガスを毎分100mLで通気下、内部の酸素濃度を1%未満に調整した後、攪拌しながら30℃まで加熱した。底抜きバルブから上記溶液を抜き出し、フッ素樹脂製の耐圧チューブを経由してダイヤフラムポンプで毎分100mLの流量で公称孔径が0.01μmのナイロン製中空糸膜フィルター(キッツマイクロフィルター(株)製、商品名:ポリフィックスナイロンシリーズ)に濾過圧が0.5MPaの条件となるように加圧濾過にて通液した。濾過後の樹脂溶液をELグレードのCHN(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRHE-1のCHN溶液を得た。作製した重合体溶液を日本インテグリス社製の公称孔径3nmのUPEフィルターにより0.5MPaの条件で濾過した溶液サンプルを作製した後、実施例E01と同様に積層膜でのエッチング欠陥評価を実施した。なお、酸素濃度はアズワン(株)製の酸素濃度計「OM-25MF10」により測定した(以下も同様)。
(実施例E04)
 フィルターによる精製工程として、日本ポール社製の「IONKLEEN」、日本ポール社製の「ナイロンフィルター」、更に日本インテグリス社製の公称孔径3nmのUPEフィルターをこの順番に直列に接続し、フィルターラインとして構築した。0.1μmのナイロン製中空糸膜フィルターの代わりに、作製したフィルターラインを使用した以外は、実施例E03と同様にして濾過圧が0.5MPaの条件となるように加圧濾過により通液した。ELグレードのCHN(関東化学社製試薬)で希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたRHE-1のCHN溶液を得た。作製した重合体溶液を日本インテグリス社製の公称孔径3nmのUPEフィルターにより濾過圧が0.5MPaの条件となるように加圧濾過した溶液サンプルを作製した後、実施例E01と同様に積層膜でのエッチング欠陥評価を実施した。
(実施例E05)
 実施例E01で作製した溶液サンプルを、さらに実施例E04で作製したフィルターラインを使用して濾過圧が0.5MPaの条件となるように加圧濾過した溶液サンプルを作製した後、実施例E01と同様に積層膜でのエッチング欠陥評価を実施した。
(実施例E06)
 合成実施例2で作製したRHE-2について、実施例E05と同様の方法により精製した溶液サンプルを作製した後、実施例E01と同様に積層膜でのエッチング欠陥評価を実施した。
(実施例E06-1) 
 合成実施例6で作製したRHE-6について、実施例E05と同様の方法により精製した溶液サンプルを作製した後、実施例E01と同様に積層膜でのエッチング欠陥評価を実施した。
(実施例E07)
 合成実施例3で作製したRHE-3について、実施例E05と同様の方法により精製した溶液サンプルを作製した後、積層膜でのエッチング欠陥評価を実施した。
 実施例E01~実施例E07の評価結果を表55に示す。
Figure JPOXMLDOC01-appb-T000169
 実施例E01~E07の結果から、本実施形態の重合体を含む組成物を用いた場合、精製処理前の重合体を用いた場合に比して、さらに、得られる樹脂膜の品質が向上していることがわかった。
[実施例57~62]
 上記の各実施例38~43-1及び比較例5で調製したリソグラフィー用下層膜形成材料の溶液と同組成の光学部材形成用組成物を膜厚300nmのSiO基板上に塗布して、260℃で300秒間ベークすることにより、膜厚100nmの光学部材用の膜を形成した。次いで、ジェー・エー・ウーラム・ジャパン社製 真空紫外域多入射角分光エリプソメーター「VUV-VASE」を用いて、633nmの波長における屈折率及び透明性試験を行い、以下の基準に従って屈折率及び透明性を評価した。評価結果を表56に示す。
[屈折率の評価基準]
 A:屈折率が1.60以上
 C:屈折率が1.60未満
[透明性の評価基準]
 A:消衰定数が0.03未満
 C:消衰定数が0.03以上
Figure JPOXMLDOC01-appb-T000170
 実施例57~62-1の光学部材形成用組成物では、屈折率が高いのみならず、吸光係数が低く、透明性に優れることが分かった。一方で、比較例9の組成物は光学部材としての性能に劣ることが分かった。
 本出願は、2020年7月15日出願の日本特許出願(特願2020-121470号及び特願2020-121269号)、2020年8月7日出願の日本特許出願(特願2020-134481号)、並びに2020年10月22日出願の日本特許出願(特願2020-177396号)に基づくものであり、それらの内容はここに参照として取り込まれる。
 本発明は、特定の骨格を有する芳香族ヒドロキシ化合物同士が架橋基を介さずに連結してなる、すなわち、芳香環が直接結合によって連結してなる、新規な多環ポリフェノール樹脂を提供するものである。かかる多環ポリフェノール樹脂は耐熱性、耐エッチング性、熱フロー性、溶媒溶解性などのに優れており、とりわけ耐熱性、耐エッチング性に優れており、半導体用のコーティング剤、レジスト用材料、半導体下層膜形成材料として使用可能である。
 また本発明は、光学部材、フォトレジストの成分や、電気・電子部品用材料の樹脂原料、光硬化性樹脂等の硬化性樹脂原料、構造用材料の樹脂原料、又は樹脂硬化剤等に用いることのできる組成物として、産業上の利用可能性を有する。
 

Claims (42)

  1.  式(1A)及び(1B)で表される芳香族ヒドロキシ化合物からなる群より選ばれる少なくとも1種のモノマー由来の繰り返し単位を有する重合体であって、
     前記繰り返し単位同士が、芳香環同士の直接結合によって連結している、重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1A)及び(1B)中、Rは各々独立して、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基又は水酸基であり、少なくとも一つのRは水酸基を含む基であり、mは各々独立して1~10の整数である。)
  2.  前記式(1A)及び(1B)で表される芳香族ヒドロキシ化合物が、それぞれ、式(2A)及び(2B)で表される芳香族ヒドロキシ化合物である、請求項1に記載の重合体。
    Figure JPOXMLDOC01-appb-C000002
    (式(2A)及び(2B)中、mは0~10の整数であり、mは0~10の整数であり、少なくともひとつのm又はmは1以上の整数である。)
  3.  前記式(1A)及び(1B)で表される芳香族ヒドロキシ化合物が、それぞれ、式(3A)及び(3B)で表される芳香族ヒドロキシ化合物である、請求項1に記載の重合体。
    Figure JPOXMLDOC01-appb-C000003
    (式(3A)及び(3B)中、m1’は1~10の整数である。)
  4.  下記式(1A)で表される繰り返し単位を有する、重合体。
    Figure JPOXMLDOC01-appb-C000004
     (式(1A)中、
     Aは、置換基を有していてもよい炭素数6~40のアリール基であり、
     Rは、各々独立して、水素原子、置換基を有していてもよい炭素数1~40のアルキル基、又は置換基を有していてもよい炭素数6~40のアリール基であり、
     Rは、各々独立して、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基、又は水酸基であり、
     mは、各々独立して、0~4の整数であり、
     nは、各々独立して、1~3の整数であり、
     pは、2~10の整数であり、
     記号*は、隣接する繰り返し単位との結合箇所を表す。)。
  5.  前記式(1A)で表される繰り返し単位が、式(1-1-1)で表される繰り返し単位及び/又は式(1-1-2)で表される繰り返し単位である、請求項4に記載の重合体。
    Figure JPOXMLDOC01-appb-C000005
     (式(1-1-1)中、R、R、m、n、p、及び記号*は、前記式(1A)と同義である。)
    Figure JPOXMLDOC01-appb-C000006
     (式(1-1-2)中、R、R、m、n、p、及び記号*は、前記式(1A)と同義である。)。
  6.  前記式(1A)で表される繰り返し単位が、式(1-2-1)で表される繰り返し単位~式(1-2-4)で表される繰り返し単位で選ばれる少なくとも1種である、請求項4に記載の重合体。
    Figure JPOXMLDOC01-appb-C000007
     (式(1-2-1)中、R、R、m、p、及び記号*は、前記式(1A)と同義である。)
    Figure JPOXMLDOC01-appb-C000008
     (式(1-2-2)中、R、R、m、p、及び記号*は、前記式(1A)と同義である。)
    Figure JPOXMLDOC01-appb-C000009
     (式(1-2-3)中、R、R、m、p、及び記号*は、前記式(1A)と同義である。)
    Figure JPOXMLDOC01-appb-C000010
     (式(1-2-4)中、R、R、m、p、及び記号*は、前記式(1A)と同義である。)。
  7.  前記Rが、置換基を有していてもよい炭素数が6~40のアリール基である、請求項4~6のいずれか1項に記載の重合体。
  8.  下記式(1A)及び式(2A)で表される芳香族ヒドロキシ化合物で構成される群から選ばれる少なくとも1種に由来する繰り返し単位を含む重合体であって、
     前記繰り返し単位同士が、芳香環同士の直接結合によって連結している、重合体。
    Figure JPOXMLDOC01-appb-C000011
    (式(1A)中、Rは炭素数1~60の2n価の基又は単結合であり、Rは各々独立して、置換基を有していてもよい炭素数1~40のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~40のアルケニル基、置換基を有していてもよい炭素数2~40のアルキニル基、置換基を有していてもよい炭素数1~40のアルコキシ基、ハロゲン原子、チオール基、アミノ基、ニトロ基、シアノ基、ニトロ基、複素環基、カルボキシル基又は水酸基であり、mは各々独立して0~3の整数であり、nは1~4の整数である。式(2A)中、R及びmは前記式(1A)において説明したものと同義である。)
  9.  前記式(1A)で表される芳香族ヒドロキシ化合物が、下記式(1)で表される芳香族ヒドロキシ化合物である、請求項8に記載の重合体。
    Figure JPOXMLDOC01-appb-C000012
    (式(1)中、R、R、m及びnは前記式(1A)において説明したものと同義である。)
  10.  前記式(1)で表される芳香族ヒドロキシ化合物が、下記式(1-1)で表される芳香族ヒドロキシ化合物である、請求項9に記載の重合体。
    Figure JPOXMLDOC01-appb-C000013
    (式(1-1)中、R及びnは前記式(1)において説明したものと同義である。)
  11.  前記Rが、R-Rで表される基であり、前記Rはメチン基であり、前記Rは置換基を有していてもよい炭素数が6~40のアリール基である、請求項8~10のいずれか1項に記載の重合体。
  12.  ヘテロ原子含有芳香族モノマー由来の繰り返し単位を有する重合体であって、
     前記繰り返し単位同士が、前記ヘテロ原子含有芳香族モノマーの芳香環同士の直接結合によって連結している、重合体。
  13.  前記ヘテロ原子含有芳香族モノマーが、複素環式芳香族化合物を含む、請求項12に記載の重合体。
  14.  前記ヘテロ原子含有芳香族モノマーにおけるヘテロ原子が、窒素原子、リン原子及び硫黄原子からなる群より選択される少なくとも1種を含む、請求項12又は13に記載の重合体。
  15.  前記ヘテロ原子含有芳香族モノマーが、置換若しくは非置換の下記式(1-1)で表されるモノマー、又は置換若しくは非置換の下記式(1-2)で表されるモノマーを含む、請求項12~14のいずれか1項に記載の重合体。
    Figure JPOXMLDOC01-appb-C000014
    (前記式(1-1)中、Xは、各々独立して、NRで表される基、硫黄原子、酸素原子又はPRで表される基であり、R及びRは、各々独立して、水素原子、水酸基、置換若しくは非置換の炭素数1~30のアルコキシ基、ハロゲン原子、置換若しくは非置換の炭素数1~30のアルキル基又は置換若しくは非置換の炭素数6~30のアリール基である。)
    Figure JPOXMLDOC01-appb-C000015
    (前記式(1-2)中、
     Q及びQは、単結合、置換若しくは非置換の炭素数1~20のアルキレン基、置換若しくは非置換の炭素数3~20のシクロアルキレン基、置換若しくは非置換の炭素数6~20のアリーレン基、置換若しくは非置換の炭素数2~20のヘテロアリーレン基、置換若しくは非置換の炭素数2~20のアルケニレン基、置換若しくは非置換の炭素数2~20のアルキニレン基、カルボニル基、NRaで表される基、酸素原子、硫黄原子又はPRaで表される基であり、前記Raは、各々独立して、水素原子、置換若しくは非置換の炭素数1~10のアルキル基又はハロゲン原子であり、ここで、前記モノマーにおいてQ及びQの双方が存在する場合、これらの少なくとも一方がヘテロ原子を含み、前記モノマーにおいてQのみが存在する場合、当該Qはヘテロ原子を含み、
     Qは、窒素原子、リン原子又はCRbで表される基であり、ここで、前記モノマーにおいてQはヘテロ原子を含み、
     前記Ra及びRbは、各々独立して、水素原子、置換若しくは非置換の炭素数1~10のアルキル基又はハロゲン原子である。)
  16.  前記式(1-1)中、Rは、置換又は非置換のフェニル基である、請求項15に記載の重合体。
  17.  下記式(2)で表されるモノマー由来の構成単位をさらに有する、請求項12~16のいずれか1項に記載の重合体。
    Figure JPOXMLDOC01-appb-C000016
    (式(2)中、
     Q4及びQ5は、単結合、置換若しくは非置換の炭素数1~20のアルキレン基、置換若しくは非置換の炭素数3~20のシクロアルキレン基、置換若しくは非置換の炭素数6~20のアリーレン基、置換若しくは非置換の炭素数2~20のアルケニレン基、置換若しくは非置換の炭素数2~20のアルキニレン基であり、
     Q6は、CRb’で表される基であり、前記Rbは、水素原子又は置換若しくは非置換の炭素数1~10のアルキル基である。)
  18.  架橋反応性のある化合物に由来する変性部分をさらに有する、請求項1~17のいずれか1項に記載の重合体。
  19.  重量平均分子量が400~100000である、請求項1~18のいずれか1項に記載の重合体。
  20.  1-メトキシ-2-プロパノール及び/又はプロピレングリコールモノメチルエーテルアセテートに対する溶解度が1質量%以上である、請求項1~19のいずれか1項に記載の重合体。
  21.  前記溶解度が10質量%以上である、請求項20に記載の重合体。
  22.  請求項1~21のいずれか1項に記載の重合体を含む、組成物。
  23.  溶媒をさらに含む、請求項22に記載の組成物。
  24.  前記溶媒が、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、シクロペンタノン、乳酸エチル及びヒドロキシイソ酪酸メチルからなる群より選ばれる1種以上を含む、請求項23に記載の組成物。
  25.  不純物金属の含有量が金属種毎に500ppb未満である、請求項22~24のいずれか1項に記載の組成物。
  26.  前記不純物金属が、銅、マンガン、鉄、コバルト、ルテニウム、クロム、ニッケル、スズ、鉛、銀及びパラジウムからなる群より選択される少なくとも1種を含有する、請求項25に記載の組成物。
  27.  前記不純物金属の含有量が、金属種毎に1ppb以下である、請求項25又は26に記載の組成物。
  28.  請求項1~21のいずれか1項に記載の重合体を製造するための方法であって、
     前記繰り返し単位に対応する単量体であって、1種又は2種以上の当該単量体を、酸化剤の存在下で重合させる工程を含む、重合体の製造方法。
  29.  前記酸化剤が、銅、マンガン、鉄、コバルト、ルテニウム、クロム、ニッケル、スズ、鉛、銀及びパラジウムからなる群より選択される少なくとも1種を含有する金属塩類又は金属錯体である、請求項28に記載の重合体の製造方法。
  30.  請求項1~21のいずれか1項に記載の重合体を含む、膜形成用組成物。
  31.  請求項30に記載の膜形成用組成物からなる、レジスト組成物。
  32.  溶媒、酸発生剤及び酸拡散制御剤からなる群より選択される少なくとも1つをさらに含有する、請求項31に記載のレジスト組成物。
  33.  請求項31又は32に記載のレジスト組成物を用いて、基板上にレジスト膜を形成する工程と、
     形成された前記レジスト膜の少なくとも一部を露光する工程と、
     露光した前記レジスト膜を現像してレジストパターンを形成する工程と、
     を含む、レジストパターン形成方法。
  34.  請求項30に記載の膜形成用組成物と、ジアゾナフトキノン光活性化合物と、溶媒と、を含有する感放射線性組成物であって、
     前記溶媒の含有量が、前記感放射線性組成物の総量100質量%に対して20~99質量%であり、
     前記溶媒以外の固形分の含有量が、前記感放射線性組成物の総量100質量%に対して1~80質量%である、感放射線性組成物。
  35.  請求項34に記載の感放射線性組成物を用いて、基板上にレジスト膜を形成する工程と、
     形成された前記レジスト膜の少なくとも一部を露光する工程と、
     露光した前記レジスト膜を現像して、レジストパターンを形成する工程を含む、レジストパターン形成方法。
  36.  請求項30に記載の膜形成用組成物からなる、リソグラフィー用下層膜形成用組成物。
  37.  溶媒、酸発生剤及び架橋剤からなる群より選択される少なくとも1つをさらに含有する、請求項36に記載のリソグラフィー用下層膜形成用組成物。
  38.  請求項36又は37に記載のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程を含む、リソグラフィー用下層膜の製造方法。
  39.  請求項36又は37に記載のリソグラフィー用下層膜形成用組成物を用いて、基板上に、下層膜を形成する工程と、
     前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程と、
     前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程と、
     を有する、レジストパターン形成方法。
  40.  請求項36又は37に記載のリソグラフィー用下層膜形成用組成物を用いて、基板上に下層膜を形成する工程と、
     前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程と、
     前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程と、
     前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程と、
     前記レジストパターンをマスクとして前記中間層膜をエッチングして、中間層膜パターンを形成する工程と、
     前記中間層膜パターンをエッチングマスクとして前記下層膜をエッチングして、下層膜パターンを形成する工程と、
     前記下層膜パターンをエッチングマスクとして前記基板をエッチングして、前記基板にパターンを形成する工程と、
     を有する、回路パターン形成方法。
  41.  請求項30に記載の膜形成用組成物からなる、光学部材形成用組成物。
  42.  溶媒、酸発生剤及び架橋剤からなる群より選択される少なくとも1つをさらに含有する、請求項41に記載の光学部材形成用組成物。
PCT/JP2021/026631 2020-07-15 2021-07-15 重合体、組成物、重合体の製造方法、組成物、膜形成用組成物、レジスト組成物、感放射線性組成物、リソグラフィー用下層膜形成用組成物、レジストパターン形成方法、リソグラフィー用下層膜の製造方法、回路パターン形成方法、及び光学部材形成用組成物 WO2022014679A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/015,818 US20230296982A1 (en) 2020-07-15 2021-07-15 Polymer, composition, method for producing polymer, composition, composition for film formation, resist composition, radiation-sensitive composition, composition for underlayer film formation for lithography, resist pattern formation method, method for producing underlayer film for lithography, circuit pattern formation method, and composition for optical member formation
JP2022536445A JPWO2022014679A1 (ja) 2020-07-15 2021-07-15
CN202180061314.0A CN116194502A (zh) 2020-07-15 2021-07-15 聚合物、组合物、聚合物的制造方法、组合物、膜形成用组合物、抗蚀剂组合物、辐射敏感组合物、光刻用下层膜形成用组合物、抗蚀图案形成方法、光刻用下层膜的制造方法、电路图案形成方法、及光学构件形成用组合物
KR1020227040630A KR20230038645A (ko) 2020-07-15 2021-07-15 중합체, 조성물, 중합체의 제조방법, 조성물, 막형성용 조성물, 레지스트 조성물, 감방사선성 조성물, 리소그래피용 하층막형성용 조성물, 레지스트패턴 형성방법, 리소그래피용 하층막의 제조방법, 회로패턴 형성방법, 및 광학부재형성용 조성물

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020121470 2020-07-15
JP2020121269 2020-07-15
JP2020-121269 2020-07-15
JP2020-121470 2020-07-15
JP2020134481 2020-08-07
JP2020-134481 2020-08-07
JP2020177396 2020-10-22
JP2020-177396 2020-10-22

Publications (1)

Publication Number Publication Date
WO2022014679A1 true WO2022014679A1 (ja) 2022-01-20

Family

ID=79555700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026631 WO2022014679A1 (ja) 2020-07-15 2021-07-15 重合体、組成物、重合体の製造方法、組成物、膜形成用組成物、レジスト組成物、感放射線性組成物、リソグラフィー用下層膜形成用組成物、レジストパターン形成方法、リソグラフィー用下層膜の製造方法、回路パターン形成方法、及び光学部材形成用組成物

Country Status (6)

Country Link
US (1) US20230296982A1 (ja)
JP (1) JPWO2022014679A1 (ja)
KR (1) KR20230038645A (ja)
CN (1) CN116194502A (ja)
TW (1) TW202216835A (ja)
WO (1) WO2022014679A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210113990A (ko) * 2019-01-11 2021-09-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 막형성용 조성물, 레지스트 조성물, 감방사선성 조성물, 아모퍼스막의 제조방법, 레지스트 패턴 형성방법, 리소그래피용 하층막 형성용 조성물, 리소그래피용 하층막의 제조방법 및 회로패턴 형성방법
CN116554444B (zh) * 2023-06-15 2024-03-29 嘉庚创新实验室 用于光刻介质组合物的聚合物以及光刻介质组合物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022500A (en) * 1995-09-27 2000-02-08 The United States Of America As Represented By The Secretary Of The Army Polymer encapsulation and polymer microsphere composites
WO2013024779A1 (ja) * 2011-08-12 2013-02-21 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
JP2017505351A (ja) * 2013-11-28 2017-02-16 ロリク アーゲーRolic Ag 導電性及び半導電性配向材料

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3774668B2 (ja) 2001-02-07 2006-05-17 東京エレクトロン株式会社 シリコン窒化膜形成装置の洗浄前処理方法
JP3914493B2 (ja) 2002-11-27 2007-05-16 東京応化工業株式会社 多層レジストプロセス用下層膜形成材料およびこれを用いた配線形成方法
JP4382750B2 (ja) 2003-01-24 2009-12-16 東京エレクトロン株式会社 被処理基板上にシリコン窒化膜を形成するcvd方法
JP3981030B2 (ja) 2003-03-07 2007-09-26 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法
JP4388429B2 (ja) 2004-02-04 2009-12-24 信越化学工業株式会社 レジスト下層膜材料ならびにパターン形成方法
JP4781280B2 (ja) 2006-01-25 2011-09-28 信越化学工業株式会社 反射防止膜材料、基板、及びパターン形成方法
JP2010138393A (ja) 2008-11-13 2010-06-24 Nippon Kayaku Co Ltd 光学レンズシート用エネルギー線硬化型樹脂組成物及びその硬化物
JP5890984B2 (ja) 2011-08-30 2016-03-22 株式会社フジキン 流体制御装置
JP5821419B2 (ja) 2011-08-30 2015-11-24 富士通株式会社 移動物体検出装置、移動物体検出方法及び移動物体検出用コンピュータプログラム
CN104968637B (zh) 2013-02-08 2017-12-26 三菱瓦斯化学株式会社 烯丙基化合物及其制造方法
JP2015174877A (ja) 2014-03-13 2015-10-05 日産化学工業株式会社 特定の硬化促進触媒を含む樹脂組成物
US10886119B2 (en) 2018-08-17 2021-01-05 Rohm And Haas Electronic Materials Llc Aromatic underlayer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022500A (en) * 1995-09-27 2000-02-08 The United States Of America As Represented By The Secretary Of The Army Polymer encapsulation and polymer microsphere composites
WO2013024779A1 (ja) * 2011-08-12 2013-02-21 三菱瓦斯化学株式会社 リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
JP2017505351A (ja) * 2013-11-28 2017-02-16 ロリク アーゲーRolic Ag 導電性及び半導電性配向材料

Also Published As

Publication number Publication date
US20230296982A1 (en) 2023-09-21
TW202216835A (zh) 2022-05-01
CN116194502A (zh) 2023-05-30
JPWO2022014679A1 (ja) 2022-01-20
KR20230038645A (ko) 2023-03-21

Similar Documents

Publication Publication Date Title
JP2022033731A (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JPWO2019142897A1 (ja) 化合物、樹脂、組成物及びパターン形成方法
WO2022014679A1 (ja) 重合体、組成物、重合体の製造方法、組成物、膜形成用組成物、レジスト組成物、感放射線性組成物、リソグラフィー用下層膜形成用組成物、レジストパターン形成方法、リソグラフィー用下層膜の製造方法、回路パターン形成方法、及び光学部材形成用組成物
WO2022014684A1 (ja) 多環ポリフェノール樹脂、組成物、多環ポリフェノール樹脂の製造方法、膜形成用組成物、レジスト組成物、レジストパターン形成方法、感放射線性組成物、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法、回路パターン形成方法、及び光学部材形成用組成物
JP7061271B2 (ja) 化合物、樹脂、組成物、並びにレジストパターン形成方法及び回路パターン形成方法
JP7068661B2 (ja) 化合物、樹脂、組成物、並びにレジストパターン形成方法及びパターン形成方法
JPWO2020145406A1 (ja) 膜形成用組成物、レジスト組成物、感放射線性組成物、アモルファス膜の製造方法、レジストパターン形成方法、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法及び回路パターン形成方法
WO2020241492A1 (ja) トリアジン骨格を有するプレポリマー、これを含む組成物、レジストパターン形成方法、回路パターン形成方法、及び当該プレポリマーの精製方法
WO2020189712A1 (ja) リソグラフィー用膜形成材料、リソグラフィー用膜形成用組成物、リソグラフィー用下層膜、パターン形成方法、及び精製方法
WO2022009966A1 (ja) 膜形成用組成物、レジスト組成物、感放射線性組成物、アモルファス膜の製造方法、レジストパターン形成方法、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法及び回路パターン形成方法、光学部材形成用組成物、膜形成用樹脂、レジスト樹脂、感放射線性樹脂、リソグラフィー用下層膜形成用樹脂
JP7090843B2 (ja) 化合物、樹脂、組成物、パターン形成方法及び精製方法
WO2018052028A1 (ja) 化合物、樹脂、組成物及びパターン形成方法
WO2020158931A1 (ja) 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び樹脂の精製方法
WO2022158335A1 (ja) 重合体、組成物、重合体の製造方法、膜形成用組成物、レジスト組成物、レジストパターン形成方法、感放射線性組成物、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法、回路パターン形成方法、光学部材形成用組成物
CN116529671A (zh) 多环多酚树脂、组合物、多环多酚树脂的制造方法、膜形成用组合物、抗蚀剂组合物、抗蚀图案形成方法、辐射敏感组合物、光刻用下层膜形成用组合物、光刻用下层膜的制造方法、电路图案形成方法、及光学构件形成用组合物
JP7459789B2 (ja) 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び樹脂の精製方法
JP7139622B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
WO2021039843A1 (ja) リソグラフィー用膜形成組成物、レジストパターン形成方法、回路パターン形成方法及び精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843453

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536445

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21843453

Country of ref document: EP

Kind code of ref document: A1