WO2022009798A1 - 光ファイバテープ心線、光ファイバケーブル - Google Patents

光ファイバテープ心線、光ファイバケーブル Download PDF

Info

Publication number
WO2022009798A1
WO2022009798A1 PCT/JP2021/025149 JP2021025149W WO2022009798A1 WO 2022009798 A1 WO2022009798 A1 WO 2022009798A1 JP 2021025149 W JP2021025149 W JP 2021025149W WO 2022009798 A1 WO2022009798 A1 WO 2022009798A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core wire
tape core
connecting portion
resin
Prior art date
Application number
PCT/JP2021/025149
Other languages
English (en)
French (fr)
Inventor
徹也 安冨
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to EP21838281.0A priority Critical patent/EP4180850A4/en
Publication of WO2022009798A1 publication Critical patent/WO2022009798A1/ja
Priority to US18/081,998 priority patent/US20230123198A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements
    • G02B6/4433Double reinforcement laying in straight line with optical transmission element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/448Ribbon cables

Definitions

  • the present invention relates to an optical fiber tape core wire or the like having a small transmission loss.
  • an optical fiber tape core wire in which multiple optical fibers are arranged in parallel and bonded is used for storage in a cable and simplification of work.
  • the optical fiber tape core wire one in which parallel optical fibers are fixed with a resin over the entire length is used, and one in which optical fibers are intermittently bonded to each other in the longitudinal direction (for example, Patent Document 1).
  • a coating roll is used.
  • the coating roll is a roll having a hollow inside, and a plurality of coating holes are formed on the outer peripheral surface of the coating roll.
  • the coating hole is not formed by, for example, one continuous long hole, but a plurality of small holes arranged in a row in the circumferential direction.
  • the coating holes communicate the space inside the coating roll with the outside.
  • Adhesive resin is continuously supplied to the inside of the coating roll.
  • a die is provided inside the coating roll.
  • the adhesive resin held on the inner surface of the coating roll is pushed into the gap between the die and the inner surface of the coating roll, and when the coating hole is located on the outer peripheral side of the die, the adhesive resin is released by the die. It is pushed out from the coating hole.
  • the adhesive resin extruded from the coating hole is applied between the optical fibers sent in contact with the coating roll. At this time, the adhesive resin applied from the upper part of the optical fiber flows to the lower side of the optical fiber due to gravity, surface tension, or the like. Therefore, the adhesive resin is applied to the front and back surfaces of the optical fiber. In this way, even if the optical fibers are arranged in parallel and the adhesive resin is applied from one side thereof, the adhesive resin flows through the gaps between the optical fibers and the adhesive resin also rotates on the other side, so that the optical fibers are securely connected to each other. be able to.
  • the adhesive resin coated by the coating roll is cured.
  • the optical fiber tape core wire is manufactured.
  • the adhesive resin when the adhesive resin is extruded from the coating roll having the coating holes and the adhesive resin is applied between the optical fibers, the adhesive resin does not become a constant coating amount with respect to the longitudinal direction of the connecting portion, and the coating amount is the longitudinal direction. It tends to be uneven.
  • the amount of the adhesive resin applied is non-uniform in this way, the amount of shrinkage is also non-uniform in the longitudinal direction of the connecting portion, which tends to be a factor of bending force.
  • the conventional optical fiber cable has ITU-T (International Telecommunication Union Telecommunication). Standardization Sector) G.
  • Optical fibers categorized as 657 have been used. Since this optical fiber has a small increase in loss when bent, there is almost no influence of the bending force as described above, and the deterioration of transmission loss is small.
  • ITU-T G. which is relatively inexpensive.
  • the optical fiber categorized as 654.E has an increase in transmission loss due to bending in ITU-T G. Large compared to optical fiber categorized as 657. Therefore, when these optical fibers are used, there is a problem that the transmission loss increases due to the above-mentioned bending force.
  • the present invention has been made in view of such a problem, and provides an optical fiber tape core wire or the like capable of suppressing an increase in loss even when an optical fiber having a relatively large increase in transmission loss due to bending is used.
  • the purpose is to do.
  • the first invention is an optical fiber tape core wire in which a plurality of optical fibers are connected in parallel, and adjacent optical fibers are intermittently connected by a connecting portion in the longitudinal direction.
  • the optical fiber tape core wire is characterized in that the amount of resin in the connecting portion is not uniform in the longitudinal direction of the optical fiber, and the young ratio of the resin in the connecting portion is 130 MPa or less.
  • the Young's modulus of the resin in the connecting portion is 80 MPa or less.
  • the optical fibers adjacent to each other from both the upper and lower sides of the optical fiber tape core wire may be connected by a resin.
  • the connecting portion may be formed with a non-uniform amount of resin on the upper and lower surfaces of the optical fiber tape core wire.
  • the amount of resin has periodicity in the longitudinal direction of the optical fiber, but may not be uniform.
  • the connecting portion may be composed of a plurality of small adhesive portions, and the plurality of small adhesive portions may be connected and continuous.
  • the first invention by intentionally reducing the Young's modulus of the resin at the connecting portion, it is possible to reduce the influence of bending stress on the optical fiber caused by the non-uniformity of the shrinkage amount of the resin depending on the site. .. Therefore, it is possible to apply an inexpensive optical fiber.
  • the optical fiber tape core wire according to the first invention is used, and a cable core in which a plurality of the optical fiber tape core wires are twisted and an outer cover provided so as to cover the cable core.
  • It is an optical fiber cable characterized by comprising.
  • the maximum transmission loss at a wavelength of 1550 nm is less than 0.27 dB / km.
  • the optical fiber is ITU-T G. 654. It may be an optical fiber categorized as E.
  • the second invention it is possible to suppress an increase in loss due to non-uniform shrinkage of the resin at the connecting portion depending on the site. Therefore, a relatively inexpensive optical fiber or an optical fiber that enables longer-distance transmission can also be used.
  • ITU-T G. which has a large increase in transmission loss due to bending. Even if an optical fiber categorized as 654.E is used, the maximum transmission loss at a wavelength of 1550 nm can be less than 0.27 dB / km.
  • an optical fiber tape core wire or the like capable of suppressing an increase in loss even if an optical fiber having a relatively large increase in transmission loss due to bending is used.
  • FIG. 2B is a sectional view taken along line AA.
  • FIG. 1 is a cross-sectional view of the optical fiber cable 1.
  • the optical fiber cable 1 is a slotless cable that does not use a slot, and is composed of a tension member 9, an outer cover 13, a cable core 15, and the like.
  • the cable core 15 is formed by twisting a plurality of optical fiber units 5. Further, the optical fiber unit 5 is formed by twisting a plurality of optical fiber tape core wires 3 together.
  • the optical fiber tape core wire 3 is an intermittently bonded optical fiber tape core wire that is intermittently bonded in the longitudinal direction. The details of the optical fiber tape core wire 3 will be described later.
  • a presser winding 7 is provided on the outer periphery of the plurality of optical fiber tape core wires 3.
  • the presser roll 7 is a tape-shaped member, a non-woven fabric, or the like, and is arranged so as to collectively cover the outer periphery of a plurality of optical fiber tape core wires 3 by, for example, vertical attachment. That is, on the outer periphery of the plurality of optical fiber tape core wires 3 so that the longitudinal direction of the presser winding 7 substantially coincides with the axial direction of the optical fiber cable 1 and the width direction of the presser winding 7 is the circumferential direction of the optical fiber cable 1. It is attached vertically.
  • the cable core 15 includes the presser winding 7 wound around the plurality of optical fiber tape core wires 3.
  • tension members 9 are provided on both sides of the cable core 15. That is, a pair of tension members 9 are provided at positions facing each other across the cable core 15, and a tear string 11 is provided so as to face each other across the cable core 15 in a direction substantially orthogonal to the facing direction of the tension members 9. Be done.
  • An outer cover 13 is provided on the outer circumference of the cable core 15.
  • the tension member 9 and the tear string 11 are embedded in the outer cover 13. That is, the outer cover 13 is provided so as to cover the cable core 15, the tension member 9, and the like.
  • the outer shape of the outer cover 13 is substantially circular.
  • the jacket 13 is, for example, a polyolefin-based resin.
  • FIG. 2A is a perspective view showing an intermittent adhesive type optical fiber tape core wire 3
  • FIG. 2B is a plan view.
  • the optical fiber tape core wire 3 is configured by connecting a plurality of single core optical fibers 4 in a parallel state.
  • the optical fiber tape core wire 3 is arranged in parallel by forming a coating hole in the coating roll and extruding the adhesive resin from the inside of the coating roll, for example, as described in Japanese Patent Application Laid-Open No. 2016-80849.
  • the optical fibers 4 are adhered to each other at predetermined intervals from the upper surface of the fiber.
  • the number of optical fibers constituting the optical fiber tape core wire 3 is not limited to the illustrated example.
  • the adjacent optical fibers 4 are intermittently bonded to each other at the connecting portion 19 at a predetermined interval in the longitudinal direction of the optical fiber tape core wire 3. Further, it is desirable that the connecting portions 19 adjacent to each other in the width direction are arranged so as to be offset from each other in the longitudinal direction of the optical fiber tape core wire 3. For example, it is desirable that the connecting portions 19 adjacent to each other are formed with a deviation of half a pitch in the longitudinal direction of the optical fiber tape core wire 3.
  • the length and pitch of the connecting portion 19 are not limited to the illustrated example.
  • FIG. 3A is an enlarged view of the vicinity of the connecting portion 19.
  • the connecting portion 19 is composed of a plurality of small adhesive portions 17.
  • the small adhesive portion 17 is formed intermittently in the longitudinal direction of the optical fiber tape core wire 3 at a predetermined pitch in a dot shape, for example, and has a periodic structure.
  • each small adhesive portion 17 with respect to the longitudinal direction of the optical fiber tape core wire 3 is smaller than the pitch of the small adhesive portions 17 in the connecting portion 19. Therefore, the small adhesive portions 17 are separated from each other in the longitudinal direction of the optical fiber 4, and a non-adhesive portion is formed between the small adhesive portions 17. That is, in the optical fiber tape core wire 3, the adjacent optical fibers 4 are intermittently connected by the connecting portion 19 in the longitudinal direction, and the amount of resin in the connecting portion 19 is not uniform in the longitudinal direction of the optical fiber 4. .. That is, in the connecting portion 19, the amount of resin has periodicity in the longitudinal direction of the optical fiber 4, but is not uniform.
  • FIG. 3B is a sectional view taken along line AA of FIG. 2B.
  • the connecting portion 19 adjacent optical fibers 4 are connected by resin from both the upper and lower sides of the optical fiber tape core wire 3.
  • the amount of resin applied differs between the upper surface side and the lower surface side of the optical fiber tape core wire 3. That is, the amount of resin in the connecting portion 19 is not only non-uniform depending on the portion in the longitudinal direction of the optical fiber 4, but also non-uniform in the upper and lower surfaces of the optical fiber tape core wire 3.
  • the resin constituting the connecting portion 19 is, for example, an ultraviolet curable resin. Further, the Young's modulus of the resin in the connecting portion of the resin constituting the connecting portion 19 is preferably 130 MPa or less, and more preferably 80 MPa or less. If the Young's modulus of the resin is too high, the rigidity of the connecting portion 19 becomes large, so that the stress on the optical fiber 4 when the resin shrinks becomes large.
  • the connecting portion 19 itself is easily deformed, so that the stress on the optical fiber 4 can be suppressed to a low level.
  • the connecting portion 19 small adhesive portion 17
  • the Young's modulus of the resin constituting the connecting portion 19 is 40 MPa or more.
  • the Young's modulus of the resin constituting the connecting portion 19 is not more than a predetermined value, the shrinkage amount of the resin varies depending on the portion in the longitudinal direction of the connecting portion 19 and the front and back surfaces. Even if it occurs, the influence on the optical fiber 4 can be reduced. Therefore, even if an inexpensive optical fiber 4 is used, an increase in transmission loss can be suppressed.
  • the present invention is not limited to this.
  • a plurality of small adhesive portions 17 may be connected and continuous in the connecting portion 19. That is, also in this case, as shown in detail in FIG. 4B, in the connecting portion 19, the amount of resin differs with respect to the longitudinal direction of the optical fiber 4 and is non-uniform, but the portion having a large amount of resin and the portion having a small amount of resin. Has periodicity.
  • the adhesive is applied in such a form that a plurality of small adhesive portions 17 are connected and continuous, or the viscosity of the adhesive, the application interval of the small adhesive portions 17, and the coating are used.
  • the time to cure is controlled so that the small adhesive portions 17 are connected by the flow, but can be obtained by controlling the conditions so that the curing is started before the small adhesive portion 17 flows to a completely uniform width.
  • the amount of resin in the connecting portion 19 is not uniform in the longitudinal direction of the optical fiber 4, but if the Young's modulus of the resin constituting the connecting portion 19 is low, the connecting portion 19 itself Since the deformation is easy, the stress on the optical fiber 4 can be suppressed to a low level.
  • optical fiber tape core wire 3a can be manufactured by the same method as the above-mentioned optical fiber tape core wire 3.
  • the form of the coating holes formed on the coating roll may be changed, or by using a coating roll having a plurality of small holes and increasing the coating amount of the resin, the adjacent small adhesive portions 17 can be attached to each other. You may try to connect.
  • the resin does not necessarily have to be applied so that the plurality of small adhesive portions 17 are separated from each other or are continuous.
  • the connecting portion 19 may be configured with a substantially constant width instead of being composed of a plurality of small adhesive portions 17. Even in this case, the width of the connecting portion 19 becomes narrow at the front and rear ends of the connecting portion 19, and the amount of resin in the connecting portion 19 is non-uniform in the longitudinal direction of the optical fiber 4, but the resin constituting the connecting portion 19 If the Young's modulus is low, the connecting portion 19 itself is easily deformed, so that the stress on the optical fiber 4 can be suppressed to a low level.
  • the coating layer is often thinned to have an outer diameter of 200 ⁇ m with respect to the optical fiber having a core wire diameter of about 250 ⁇ m.
  • the coating layer is made thin in this way, it is easily bent to a diameter smaller than that of an optical fiber having a core wire diameter of 250 ⁇ m.
  • the Young's modulus of the resin constituting the connecting portion 19 is low, the connecting portion 19 itself is easily deformed, so that the stress on the optical fiber 4 can be suppressed to a low level.
  • the influence of stress from the connecting portion 19 to the optical fiber 4 may increase.
  • the Young's modulus of the resin constituting the connecting portion 19 is low, the connecting portion 19 itself is easily deformed, so that the stress on the optical fiber 4 can be suppressed to a low level.
  • optical fiber tape core wires were created and evaluated for maximum transmission loss and cracks in the connection part. Two types of optical fibers were used as the optical fibers constituting the optical fiber tape core wire.
  • ITU-T G As an optical fiber with a small increase in transmission loss due to stress, ITU-T G. A categorized optical fiber was used for 657. ITU-T G. The optical fiber categorized as 657 has a mode field diameter of 8.6 ⁇ m and is a colored core wire having a diameter of 255 um obtained by coloring an optical fiber wire having a diameter of 245 um.
  • ITU-T G An optical fiber categorized into 654.E (Terawave ULL fiber manufactured by OFS) was used.
  • the optical fiber categorized into 654.E has a mode field diameter of 12.4 ⁇ m and is a colored core wire having a diameter of 255 um obtained by coloring an optical fiber wire having a diameter of 245 um.
  • optical fiber tape core wire was prepared by a method of applying an adhesive resin using a coating roll as described in JP-A-2016-80849 described above.
  • the diameter of the discharge hole on the coating roll was 0.3 mm, and the hole pitch was 0.4 mm. Further, by adjusting the amount of resin, when viewed from the upper surface of the tape coated with the connecting resin, the small adhesive portions are separated from each other (see FIG. 2B) and the small adhesive portions are continuous (FIG. 4A). ) And created.
  • the maximum width of the applied resin (W in FIG. 3A) was about 0.15 mm.
  • the maximum width of the applied resin (W1 in FIG. 4B) is about 0.2 mm, and the resins applied adjacent to each other are connected.
  • the width of the site (W2 in FIG. 4B) was about 0.12 mm.
  • an adhesive resin for adhering optical fibers to each other an optical fiber tape core wire having 8 cores was prepared using a resin having a Young's modulus level.
  • the Young's modulus of the adhesive resin was measured as follows.
  • a 10 cm square glass substrate was placed on a spin coater, the raw material was spread on it, and the rotation speed was controlled so as to be about 5 to 10 um.
  • the glass substrate was placed in a purge box to create a nitrogen atmosphere, and an ultraviolet light was irradiated with an ultraviolet light at an illuminance of 1000 mW / cm 2 and an irradiation amount of 1000 mJ / cm 2 using an ultraviolet lamp to prepare a sheet.
  • the sheet was held in a 50% RH atmosphere at 25 ° C. for 12 hours, and then the sample was punched into a straight dumbbell shape having a length of 75 mm and a width of 10 mm.
  • the obtained sample was pulled at a tensile speed of 1 mm / min at a marked line of 25 mm, and Young's modulus was calculated from the tensile force at 2.5% strain.
  • Ten optical fiber tape cores obtained were twisted together to form an 80-core optical fiber unit wrapped with a 2 mm wide plastic tape.
  • 25 80-core optical fiber units are supplied, twisted together, water-absorbent non-woven fabric is vertically attached, rolled with a forming jig, and nylon presser thread is wound around the 2000-core cable. Created the core.
  • the outer cover material was low density polyethylene (LLDPE).
  • the outer cover thickness was 3.0 mm.
  • the minimum diameter of the turn sheave in the pass line through which the optical fiber tape core wire passes during the manufacture of the above-mentioned optical fiber unit and the turn sheave in the pass line through which the optical fiber unit passes during the manufacture of the cable core is ⁇ 100 mm. As the minimum diameter of the turn sheave becomes smaller, a large bending force is generated in the optical fiber tape core wire in the manufacturing process, and the connecting portion is likely to be cracked.
  • the transmission loss at a wavelength of 1550 nm was measured for each of the obtained optical fiber cables. Further, the optical fiber tape core wire was taken out from the inside of the optical fiber cable, and it was confirmed whether or not the connecting portion was cracked in the optical fiber tape core wire 10 m. Those in which the connecting portions of the same row are broken in two or more consecutive directions in the longitudinal direction were rejected. The results are shown in Tables 1 and 2.
  • Comparative Examples 1 and 2 in which the Young's modulus of the adhesive resin was less than 40 MPa, two continuous cracks of the adhesive resin occurred. Further, in Comparative Examples 3 and 4, the adhesive resin did not crack twice continuously, but the Young's modulus of the adhesive resin exceeded 130 MPa, so that the maximum transmission loss was 0.27 dB / km or more. In addition, ITU-T G. In the case of the categorized optical fiber in 657, the maximum transmission loss was less than 0.23 dB / km even if the Young's modulus of the adhesive resin exceeded 130 MPa.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Communication Cables (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

光ファイバテープ心線(3)は、複数の単心の光ファイバ(4)が並列されて連結されて構成される。それぞれ隣り合う光ファイバ(4)同士が、光ファイバテープ心線(3)の長手方向に所定の間隔をあけて間欠的に連結部(19)で接着される。また、幅方向に隣り合う連結部(19)同士は、光ファイバテープ心線(3)の長手方向に対してずれて配置される。光ファイバテープ心線(3)は、隣接する光ファイバ(4)が、長手方向に間欠的に連結部(19)で連結されており、連結部(19)の樹脂量が、光ファイバ(4)の長手方向に均一ではない。また、連結部(19)を構成する樹脂の連結部の樹脂のヤング率は130MPa以下であることが望ましく、80MPa以下であることがさらに望ましい。

Description

光ファイバテープ心線、光ファイバケーブル
 本発明は、伝送損失の小さな光ファイバテープ心線等に関するものである。
 大容量のデータを高速で伝送するための光ファイバとして、ケーブルへの収納や作業の簡易化のため、複数本の光ファイバが並列に配置されて接着された光ファイバテープ心線が用いられている。光ファイバテープ心線は、並列した光ファイバを全長にわたって樹脂で固着されたものが用いられている他、光ファイバ同士が長手方向に間欠的に接着されたものがある(例えば特許文献1)。
 また、このような光ファイバテープ心線を製造する方法として、複数の塗布孔を有する塗布ロールから樹脂を押出して光ファイバ間に接着樹脂を塗布する方法がある(例えば特許文献2)。
特開2010-8923号公報 特開2016-80849号公報
 特許文献2に記載の方法では、塗布ロールが用いられる。塗布ロールは、内部が中空のロールであり、塗布ロールの外周面には、複数の塗布孔が形成される。塗布孔は、例えば、連続した一つの長穴ではなく、複数の小孔が周方向に一列に整列して構成される。塗布孔は、塗布ロールの内部の空間と外部とを連通する。
 塗布ロールの内部には、接着樹脂が連続的に供給される。塗布ロールの内部には、ダイスが設けられる。塗布ロールが回転することで、塗布ロールの内面に保持された接着樹脂が、ダイスと塗布ロールの内面との隙間に押し込まれ、ダイスの外周側に塗布孔が位置すると、ダイスによって、接着樹脂が塗布孔から外部に押し出される。
 塗布孔から押し出された接着樹脂は、塗布ロールと接触して送られる光ファイバ同士の間に塗布される。この際、光ファイバの上部から塗布された接着樹脂は、重力や表面張力等によって、光ファイバの下部側に流れる。したがって、光ファイバの表裏に接着樹脂が塗布される。このように、光ファイバを並列させて、その片側から接着樹脂を塗布しても、光ファイバの隙間を接着樹脂が流れて反対側にも接着樹脂が回るため、光ファイバ同士を確実に連結することができる。
 塗布ロールを通過した光ファイバに、例えば紫外線を照射することにより、塗布ロールで塗布された接着樹脂が硬化する。以上により光ファイバテープ心線が製造される。
 しかし、上記の方法では、光ファイバの上下面で樹脂の塗布量に差が生じる。接着樹脂は、紫外線で硬化する際に、体積がわずかに収縮するため、光ファイバテープ心線の上下面で接着樹脂の塗布量に差があると、樹脂の収縮量の違いが発生する。このように、接着樹脂が多い面側の収縮量が大きくなると、光ファイバテープ心線に曲げ力が生じる。
 また、塗布孔を有する塗布ロールから接着樹脂を押出して光ファイバ間に接着樹脂を塗布すると、連結部の長手方向に対して、接着樹脂が一定の塗布量とはならず、塗布量が長手方向に不均一となりやすい。このように接着樹脂の塗布量が不均一となると、連結部の長手方向に対しても収縮量が不均一となるため、曲げ力の要因となりやすい。
 一方、従来の光ファイバケーブルにはITU-T(International Telecommunication Union Telecommunication
Standardization Sector) G.657にカテゴライズされる光ファイバが用いられてきた。この光ファイバは、曲げられた際の損失増加が少ないため、上述したような曲げ力の影響がほぼなく、伝送損失の悪化は小さかった。
 これに対し、比較的コストが安価なITU-T G.652にカテゴライズされる光ファイバ、あるいは、長距離伝送を可能とするコア径を大きくしたITU-T G.654.Eにカテゴライズされる光ファイバは、曲げに対する伝送損失の増加がITU-T G.657にカテゴライズされる光ファイバと比較して大きい。このため、これらの光ファイバを用いると、上述した曲げ力によって、伝送損失が高くなるという問題がある。
 本発明は、このような問題に鑑みてなされたもので、曲げに対する伝送損失の増加が比較的大きな光ファイバを用いても、損失増加を抑制することが可能な光ファイバテープ心線等を提供することを目的とする。
 前述した目的を達するために第1の発明は、複数の光ファイバが並列して連結された光ファイバテープ心線であって、隣接する光ファイバが、長手方向に間欠的に連結部で連結されており、前記連結部の樹脂量が、前記光ファイバの長手方向に均一でなく、前記連結部の樹脂のヤング率が130MPa以下であることを特徴とする光ファイバテープ心線である。
 前記連結部の樹脂のヤング率が80MPa以下であることがさらに望ましい。
 前記連結部は、前記光ファイバテープ心線の上下両面から隣接する前記光ファイバが樹脂で連結されていてもよい。
 前記連結部は、前記光ファイバテープ心線の上下面で樹脂量が不均一に形成されてもよい。
 前記連結部において、樹脂量が、前記光ファイバの長手方向に周期性を持つが均一でなくてもよい。
 前記連結部は、複数の小接着部によって構成され、前記複数の小接着部は、つながって連続していてもよい。
 第1の発明によれば、あえて連結部の樹脂のヤング率を小さくすることで、部位による樹脂の収縮量の不均一を起因とする、光ファイバへの曲げ応力の影響を小さくすることができる。このため、より安価な光ファイバも適用が可能となる。
 第2の発明は、第1の発明にかかる光ファイバテープ心線が用いられ、複数本の前記光ファイバテープ心線が撚り合わせられたケーブルコアと、前記ケーブルコアを覆うように設けられる外被と、を具備することを特徴とする光ファイバケーブルである。
 波長1550nmにおける最大伝送損失が、0.27dB/km未満であることが望ましい。
 前記光ファイバは、ITU-T G.654.Eにカテゴライズされる光ファイバであってもよい。
 第2の発明によれば、部位による連結部の樹脂の収縮量の不均一に起因する損失増加を抑制することができる。このため、比較的安価な光ファイバや、より長距離伝送を可能とする光ファイバも用いることができる。
 特に、曲げに対する伝送損失の増加の大きいITU-T G.654.Eにカテゴライズされる光ファイバを用いても、波長1550nmにおける最大伝送損失が0.27dB/km未満とすることができる。
 本発明によれば、曲げに対する伝送損失の増加が比較的大きな光ファイバを用いても、損失増加を抑制することが可能な光ファイバテープ心線等を提供することができる。
光ファイバケーブル1の断面図。 光ファイバテープ心線3を示す斜視図。 光ファイバテープ心線3を示す平面図。 連結部19の拡大図。 図2BのA-A線断面図。 光ファイバテープ心線3aを示す平面図。 連結部19の拡大図。 光ファイバテープ心線3bを示す平面図。
 以下、図面を参照しながら、本発明の実施形態について説明する。図1は、光ファイバケーブル1の断面図である。光ファイバケーブル1は、スロットを用いないスロットレス型ケーブルであり、テンションメンバ9、外被13、ケーブルコア15等により構成される。
 ケーブルコア15は、複数の光ファイバユニット5が撚り合わせられて形成される。また、光ファイバユニット5は、複数本の光ファイバテープ心線3が撚り合わせられて形成される。なお、光ファイバテープ心線3は、長手方向に対して間欠的に接着された、間欠接着型の光ファイバテープ心線である。光ファイバテープ心線3の詳細については後述する。
 複数の光ファイバテープ心線3の外周には、押さえ巻き7が設けられる。押さえ巻き7は、テープ状の部材や不織布等であり、例えば縦添えによって複数の光ファイバテープ心線3の外周を一括して覆うように配置される。すなわち、押さえ巻き7の長手方向が光ファイバケーブル1の軸方向と略一致し、押さえ巻き7の幅方向が光ファイバケーブル1の周方向となるように複数の光ファイバテープ心線3の外周に縦添えされる。なお、複数本の光ファイバテープ心線3の周囲に巻き付けられた押さえ巻き7を含めてケーブルコア15とする。
 光ファイバケーブル1の長手方向に垂直な断面図において、ケーブルコア15の両側方にはテンションメンバ9が設けられる。すなわち、一対のテンションメンバ9がケーブルコア15を挟んで対向する位置に設けられるまた、テンションメンバ9の対向方向と略直交する方向に、ケーブルコア15を挟んで対向するように引き裂き紐11が設けられる。
 ケーブルコア15の外周には、外被13が設けられる。テンションメンバ9および引き裂き紐11は、外被13に埋設される。すなわち、ケーブルコア15及びテンションメンバ9等を覆うように外被13が設けられる。外被13の外形は略円形である。外被13は、例えばポリオレフィン系の樹脂である。
 図2Aは、間欠接着型の光ファイバテープ心線3を示す斜視図であり、図2Bは平面図である。光ファイバテープ心線3は、複数の単心の光ファイバ4が並列した状態で連結されて構成される。光ファイバテープ心線3は、例えば、特開2016-80849号に記載されたように、塗布ロールに塗布孔を形成し、接着樹脂を塗布ロールの内部から押し出すことで、並列された光ファイバ4の上面から光ファイバ4同士の間に、所定の間隔で接着される。なお、光ファイバテープ心線3を構成する光ファイバの本数は、図示した例には限られない。
 それぞれ隣り合う光ファイバ4同士が、光ファイバテープ心線3の長手方向に所定の間隔をあけて間欠的に連結部19で接着される。また、幅方向に隣り合う連結部19同士は、光ファイバテープ心線3の長手方向に対してずれて配置されることが望ましい。例えば、互いに隣り合う連結部19が、光ファイバテープ心線3の長手方向に半ピッチずれて形成されることが望ましい。なお、連結部19の長さおよびピッチは図示した例には限られない。
 図3Aは、連結部19近傍の拡大図である。連結部19は、複数の小接着部17によって構成される。小接着部17は、例えば点状に所定のピッチで光ファイバテープ心線3の長手方向に断続的に形成され、周期性をもつ構成になっている。
 なお、光ファイバテープ心線3の長手方向に対するそれぞれの小接着部17の接着長さは、連結部19内における小接着部17のピッチよりも小さい。したがって、小接着部17同士は、光ファイバ4の長手方向に分離され、小接着部17同士の間には、非接着部が形成される。すなわち、光ファイバテープ心線3は、隣接する光ファイバ4が、長手方向に間欠的に連結部19で連結されており、連結部19の樹脂量が、光ファイバ4の長手方向に均一ではない。すなわち、連結部19において、樹脂量が、光ファイバ4の長手方向に周期性を持つが均一でない。
 図3Bは、図2BのA-A線断面図である。連結部19では、光ファイバテープ心線3の上下両面から、隣接する光ファイバ4が樹脂で連結されている。この際、連結部19において、光ファイバテープ心線3の上面側と下面側とで、樹脂の塗布量が異なる。すなわち、連結部19の樹脂量は、光ファイバ4の長手方向に対して部位によって不均一であるだけでなく、光ファイバテープ心線3の上下面でも不均一である。
 なお、連結部19を構成する樹脂は、例えば紫外線硬化樹脂である。また、連結部19を構成する樹脂の連結部の樹脂のヤング率は130MPa以下であることが望ましく、80MPa以下であることがさらに望ましい。樹脂のヤング率が高すぎると、連結部19の剛性が大きくなるため、樹脂が収縮した際の光ファイバ4への応力が大きくなる。
 一方、連結部19を構成する樹脂のヤング率が低ければ、連結部19自体の変形が容易であるため、光ファイバ4への応力を低く抑制することができる。しかし、連結部19を構成する樹脂のヤング率が低すぎると、連結部19(小接着部17)の割れ等の恐れがある。このため、連結部19を構成する樹脂としては、ヤング率が40MPa以上であることが望ましい。
 以上説明したように、本実施形態によれば、連結部19を構成する樹脂のヤング率が所定以下であるため、連結部19の長手方向の部位や、表裏によって、樹脂の収縮量にばらつきが生じるような場合でも、光ファイバ4への影響を小さくすることができる。このため、安価な光ファイバ4を用いても、伝送損失の増加を抑制することができる。
 なお、上述した実施形態では、連結部19の長手方向に対して、小接着部17が断続的に配置される例を示したが、これには限られない。例えば、図4Aに示す光ファイバテープ心線3aのように、連結部19において、複数の小接着部17がつながって連続していてもよい。すなわち、この場合も、図4Bに詳細に示すように、連結部19において、樹脂量が、光ファイバ4の長手方向に対して異なり、不均一であるが、樹脂量の多い部分と少ない部分とは周期性を持つ。このような連結部19は、例えば、複数の小接着部17がつながって連続したような形態で接着剤を塗布するか、又は、接着剤の粘度と小接着部17の塗布間隔及び、塗布から硬化までの時間を制御して、小接着部17が流動によってつながるが、完全に均一幅に流動する前に、硬化が開始されるように条件を制御することで得ることができる。このような光ファイバテープ心線3でも連結部19の樹脂量は、光ファイバ4の長手方向で不均一であるが、連結部19を構成する樹脂のヤング率が低ければ、連結部19自体の変形が容易であるため、光ファイバ4への応力を低く抑制することができる。
 なお、このような光ファイバテープ心線3aは、前述した光ファイバテープ心線3と同様の方法で製造することができる。例えば、塗布ロールに形成される塗布孔の形態を変更してもよいし、複数の小孔を有する塗布ロールを用いて、樹脂の塗布量を多くすることで、隣り合う小接着部17同士がつながるようにしてもよい。
 また、連結部19において、必ずしも複数の小接着部17が互い分離又は連続するように樹脂が塗布されていなくてもよい。例えば、図5に示す光ファイバテープ心線3bのように、連結部19を複数の小接着部17で構成せずに、略一定の幅で構成してもよい。この場合でも、連結部19の前後端において、連結部19の幅が狭くなり、連結部19の樹脂量は、光ファイバ4の長手方向で不均一であるが、連結部19を構成する樹脂のヤング率が低ければ、連結部19自体の変形が容易であるため、光ファイバ4への応力を低く抑制することができる。
 なお、通常、光ファイバ4としては、心線径が約250μmのものが使われるが、心線径200μmのものでも良い。このような外径200μmの光ファイバ4は、心線径が約250μmの光ファイバに対して、被覆層を薄くして外径を200μmにする場合が多い。このように被覆層を薄くすると、心線径250μmの光ファイバよりも小さな径に曲げられやすくなる。しかし、連結部19を構成する樹脂のヤング率が低ければ、連結部19自体の変形が容易であるため、光ファイバ4への応力を低く抑制することができる。
 また、3456心、6912心と光ファイバの高密度化が進むほど、連結部19から光ファイバ4への応力の影響が大きくなる可能性がある。この際、連結部19を構成する樹脂のヤング率が低ければ、連結部19自体の変形が容易であるため、光ファイバ4への応力を低く抑制することができる。
 複数の間欠接着型の光ファイバテープ心線を作成し、最大伝送損失と連結部の割れについて評価した。光ファイバテープ心線を構成する光ファイバとしては、2つのタイプを用いた。
 応力に対する伝送損失の増加量が少ない光ファイバとしては、ITU-T G.657にカテゴライズ光ファイバを用いた。ITU-T G.657にカテゴライズされる光ファイバは、モードフィールド径が8.6μmであり、245um径の光ファイバ素線を着色した直径255umの着色心線である。
 これに対し、ITU-T G.654.Eにカテゴライズされる光ファイバ(OFS社製Terawave ULLファイバ)を用いた。ITU-T G.654.Eにカテゴライズされる光ファイバは、モードフィールド径は12.4μmであり、245um径の光ファイバ素線を着色した、直径255umの着色心線である。
 着色心線8本を間欠的に接着し、8心の間欠接着型の光ファイバテープ心線を作成した。なお、光ファイバテープ心線は、前述した特開2016-80849号公報に記載されたように、塗布ロールを用いて接着樹脂を塗布する方法で作成した。
 なお、塗布ロール上の吐出穴は、径を0.3mmとし、穴ピッチを0.4mmとした。また、樹脂量を調整することで、連結樹脂が塗布されたテープ上面から見た際に、小接着部が互いに分離したもの(図2B参照)と、小接着部同士が連続したもの(図4A)とを作成した。
 なお、小接着部同士が分離する場合には、塗布された樹脂の最大幅(図3AのW)は約0.15mmであった。一方、長手方向に隣り合う小接着部同士が連続する場合には、塗布された樹脂の最大幅(図4BのW1)が約0.2mmであり、隣り合って塗布された樹脂がつながっている部位の幅(図4BのW2)が約0.12mmであった。
 光ファイバ同士を接着するための接着樹脂として、ヤング率の水準を振ったものを用いて、それぞれ8心の光ファイバテープ心線を作成した。接着樹脂のヤング率は以下のように測定した。
 まず、10cm角のガラス基板をスピンコータに設置しその上に原材料を広げ、5~10um程度になるように回転スピードをコントロールして塗布した。そのガラス基板をパージボックスに入れ、窒素雰囲気を作り、紫外線ランプを用いて紫外線光を照度1000mW/cmで、照射量1000mJ/cmで照射し、シートを作成した。シートは、25℃50%RH雰囲気下で12時間状態調整した中で保持した後、長さ75mm、幅10mmのストレートダンベル状にサンプルを打ち抜いた。得られたサンプルを、標線25mmで引張り速度1mm/minで引張り、2.5%歪みにおける引っ張り力からヤング率を計算した。
 得られた光ファイバテープ心線を10本撚り合わせ、2mm幅のプラスチックテープを巻付けた80心の光ファイバユニットを構成した。また、80心の光ファイバユニットを25本サプライし、撚り合わせた上で、吸水性不織布を縦添えし、フォーミング治具で丸めた上に、ナイロン製の押え糸を巻付け、2000心のケーブルコアを作成した。
 こうして作成したケーブルコアと、φ1.8mmの鋼線を使用したテンションメンバと、外被を切裂く切裂き紐とを、外被材にて円筒状にシースし、光ファイバケーブルを作成した。外被材は低密度ポリエチレン(LLDPE)とした。なお、外被厚は3.0mmとした。
 上述した光ファイバユニットの製造時における光ファイバテープ心線の通過するパスライン中のターンシーブと、ケーブルコア製造時に光ファイバユニットが通過するパスライン中のターンシーブの最小径はφ100mmとした。なお、このターンシーブの最小径が小さくなるほど、製造工程における光ファイバテープ心線に大きな曲げ力が生じ、連結部の割れが生じやすくなる。
 得られたそれぞれの光ファイバケーブルについて、波長1550nmにおける伝送損失を測定した。また、光ファイバケーブル内から光ファイバテープ心線を取り出して、光ファイバテープ心線10mのなかの、連結部の割れの有無を確認した。長手方向で同じ列の連結部が2連続以上で割れているものを不合格とした。結果を表1、表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~実施例7は、いずれも、接着樹脂の2連続割れが生じず、曲げに対する伝送損失の増加の大きいITU-T G.654.Eにカテゴライズされる光ファイバを用いても、0.27dB/km以上の最大伝送損失の発生も見られなかった。特に、接着樹脂のヤング率が80MPa以下(41MPa、55MPa、77MPa)である実施例1、2、4、5、7は、0.23dB/km以上の最大伝送損失の発生も見られなかった。
 一方、接着樹脂のヤング率が40MPa未満の比較例1、2は、接着樹脂の2連続割れが生じた。また、比較例3、4は、接着樹脂の2連続割れは生じないが、接着樹脂のヤング率が130MPaを超えているため、最大伝送損失が0.27dB/km以上となった。なお、ITU-T G.657にカテゴライズ光ファイバであれば、接着樹脂のヤング率が130MPaを超えていても、最大伝送損失は0.23dB/km未満となった。
 以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
1………光ファイバケーブル
3、3a、3b………光ファイバテープ心線
4………光ファイバ
5………光ファイバユニット
7………押さえ巻き
9………テンションメンバ
11………引き裂き紐
13………外被
15………ケーブルコア
17………小接着部
19………連結部

Claims (9)

  1.  複数の光ファイバが並列して連結された光ファイバテープ心線であって、
     隣接する光ファイバが、長手方向に間欠的に連結部で連結されており、前記連結部の樹脂量が、前記光ファイバの長手方向に均一でなく、前記連結部の樹脂のヤング率が130MPa以下であることを特徴とする光ファイバテープ心線。
  2.  前記連結部の樹脂のヤング率が80MPa以下であることを特徴とする請求項1記載の光ファイバテープ心線。
  3.  前記連結部は、前記光ファイバテープ心線の上下両面から隣接する前記光ファイバが樹脂で連結されていることを特徴とする請求項1記載の光ファイバテープ心線。
  4.  前記連結部は、前記光ファイバテープ心線の上下面で樹脂量が不均一に形成されることを特徴とする請求項3記載の光ファイバテープ心線。
  5.  前記連結部において、樹脂量が、前記光ファイバの長手方向に周期性を持つが均一でないことを特徴とする請求項1記載の光ファイバテープ心線。
  6.  前記連結部は、複数の小接着部によって構成され、前記複数の小接着部は、つながって連続していることを特徴とする請求項1記載の光ファイバテープ心線。
      
  7.  請求項1から請求項6のいずれかに記載の光ファイバテープ心線が用いられ、
     複数本の前記光ファイバテープ心線が撚り合わせられたケーブルコアと、
     前記ケーブルコアを覆うように設けられる外被と、
     を具備することを特徴とする光ファイバケーブル。
     
  8.  波長1550nmにおける最大伝送損失が、0.27dB/km未満であることを特徴とする請求項7記載の光ファイバケーブル。
  9.  前記光ファイバは、ITU-T G.654.Eにカテゴライズされる光ファイバであることを特徴とする請求項7に記載の光ファイバケーブル。
PCT/JP2021/025149 2020-07-10 2021-07-02 光ファイバテープ心線、光ファイバケーブル WO2022009798A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21838281.0A EP4180850A4 (en) 2020-07-10 2021-07-02 FIBER OPTIC RIBBON CORE WIRE AND FIBER OPTIC CABLE
US18/081,998 US20230123198A1 (en) 2020-07-10 2022-12-15 Optical fiber ribbon and optical fiber cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-119436 2020-07-10
JP2020119436A JP7084449B2 (ja) 2020-07-10 2020-07-10 光ファイバテープ心線、光ファイバケーブル

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/081,998 Continuation US20230123198A1 (en) 2020-07-10 2022-12-15 Optical fiber ribbon and optical fiber cable

Publications (1)

Publication Number Publication Date
WO2022009798A1 true WO2022009798A1 (ja) 2022-01-13

Family

ID=79552611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025149 WO2022009798A1 (ja) 2020-07-10 2021-07-02 光ファイバテープ心線、光ファイバケーブル

Country Status (5)

Country Link
US (1) US20230123198A1 (ja)
EP (1) EP4180850A4 (ja)
JP (1) JP7084449B2 (ja)
TW (1) TWI802927B (ja)
WO (1) WO2022009798A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144956A (zh) * 2022-09-06 2022-10-04 江苏中天科技股份有限公司 一种柔性光纤带及带状光缆
CN115144957A (zh) * 2022-09-06 2022-10-04 江苏中天科技股份有限公司 一种可定向卷绕式柔性光纤带及其光缆
GB2626059A (en) * 2022-09-06 2024-07-10 Jiangsu Zhongtian Technology Co Ltd Flexible optical fiber ribbon and ribbon optical fiber cable

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022059654A1 (ja) * 2020-09-16 2022-03-24

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258431A (ja) * 1998-03-13 1999-09-24 Hitachi Cable Ltd 光ファイババンドル及び光ファイバケーブル
JP2010008923A (ja) 2008-06-30 2010-01-14 Nippon Telegr & Teleph Corp <Ntt> 光ファイバケーブル
JP2011185992A (ja) * 2010-03-04 2011-09-22 Fujikura Ltd 光ファイバ素線テープ心線の製造方法及び光ファイバ素線テープ心線の製造装置
JP2016080849A (ja) 2014-10-16 2016-05-16 古河電気工業株式会社 光ファイバテープ心線の製造方法、光ファイバテープ心線の製造装置
JP2017062431A (ja) * 2015-09-25 2017-03-30 住友電気工業株式会社 光ファイバテープ心線
WO2017094560A1 (ja) * 2015-12-01 2017-06-08 古河電気工業株式会社 光ファイバテープ心線及び光ファイバケーブル
JP2017223730A (ja) * 2016-06-13 2017-12-21 住友電気工業株式会社 光ファイバケーブル
JP2018205689A (ja) * 2017-06-02 2018-12-27 株式会社フジクラ 光ファイバケーブル
JP2019523460A (ja) * 2016-07-27 2019-08-22 プリズミアン ソチエタ ペル アツィオーニ フレキシブル光ファイバリボン
CN111175887A (zh) * 2020-02-13 2020-05-19 江苏亨通光电股份有限公司 光纤带、光缆以及光纤带的制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2820691B2 (ja) * 1988-03-31 1998-11-05 株式会社フジクラ 分割型光ファイバテープ
JPH10160987A (ja) * 1996-12-02 1998-06-19 Sumitomo Electric Ind Ltd 光ファイバユニットおよび光ケーブル
AU2003231524A1 (en) 2002-05-17 2003-12-02 Sumitomo Electric Industries, Ltd. Tape-like optical fiber core, production method therefor, tape core-carrying connector, tape core-carrying optical fiber array, and optical wiring system
JP5391296B2 (ja) * 2012-03-02 2014-01-15 株式会社フジクラ 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
EP3330760A4 (en) * 2015-07-31 2019-03-27 Sumitomo Electric Industries, Ltd. FIBER OPTIC CABLE
US10989888B2 (en) * 2016-02-02 2021-04-27 Ofs Fitel, Llc Flexible ribbon structure and method for making
JP6188097B2 (ja) 2016-05-20 2017-08-30 日本電信電話株式会社 間欠接着型光ファイバテープおよびこれを用いた光ケーブル
EP3497498B1 (en) * 2016-08-08 2020-05-13 Corning Optical Communications LLC Flexible optical fiber ribbon with intermittently bonded polymer layers
JP6777820B2 (ja) * 2017-07-03 2020-10-28 日本電信電話株式会社 光ファイバ及び光伝送システム
AU2018401778C1 (en) * 2018-01-15 2024-08-08 Prysmian S.P.A. A method for producing a flexible optical fiber ribbon and said ribbon.
US11256051B2 (en) * 2018-01-15 2022-02-22 Prysmian S.P.A. Flexible optical-fiber ribbon
US11592631B2 (en) * 2020-03-04 2023-02-28 Sterlite Technologies Limited Optical fibre ribbon having bond shape

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11258431A (ja) * 1998-03-13 1999-09-24 Hitachi Cable Ltd 光ファイババンドル及び光ファイバケーブル
JP2010008923A (ja) 2008-06-30 2010-01-14 Nippon Telegr & Teleph Corp <Ntt> 光ファイバケーブル
JP2011185992A (ja) * 2010-03-04 2011-09-22 Fujikura Ltd 光ファイバ素線テープ心線の製造方法及び光ファイバ素線テープ心線の製造装置
JP2016080849A (ja) 2014-10-16 2016-05-16 古河電気工業株式会社 光ファイバテープ心線の製造方法、光ファイバテープ心線の製造装置
JP2017062431A (ja) * 2015-09-25 2017-03-30 住友電気工業株式会社 光ファイバテープ心線
WO2017094560A1 (ja) * 2015-12-01 2017-06-08 古河電気工業株式会社 光ファイバテープ心線及び光ファイバケーブル
JP2017223730A (ja) * 2016-06-13 2017-12-21 住友電気工業株式会社 光ファイバケーブル
JP2019523460A (ja) * 2016-07-27 2019-08-22 プリズミアン ソチエタ ペル アツィオーニ フレキシブル光ファイバリボン
JP2018205689A (ja) * 2017-06-02 2018-12-27 株式会社フジクラ 光ファイバケーブル
CN111175887A (zh) * 2020-02-13 2020-05-19 江苏亨通光电股份有限公司 光纤带、光缆以及光纤带的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4180850A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144956A (zh) * 2022-09-06 2022-10-04 江苏中天科技股份有限公司 一种柔性光纤带及带状光缆
CN115144957A (zh) * 2022-09-06 2022-10-04 江苏中天科技股份有限公司 一种可定向卷绕式柔性光纤带及其光缆
CN115144956B (zh) * 2022-09-06 2022-11-04 江苏中天科技股份有限公司 一种柔性光纤带及带状光缆
CN115144957B (zh) * 2022-09-06 2022-11-04 江苏中天科技股份有限公司 一种可定向卷绕式柔性光纤带及其光缆
WO2024051073A1 (zh) * 2022-09-06 2024-03-14 江苏中天科技股份有限公司 一种柔性光纤带及带状光缆
GB2626059A (en) * 2022-09-06 2024-07-10 Jiangsu Zhongtian Technology Co Ltd Flexible optical fiber ribbon and ribbon optical fiber cable

Also Published As

Publication number Publication date
US20230123198A1 (en) 2023-04-20
TWI802927B (zh) 2023-05-21
JP2022016133A (ja) 2022-01-21
EP4180850A4 (en) 2024-07-31
EP4180850A1 (en) 2023-05-17
JP7084449B2 (ja) 2022-06-14
TW202208911A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2022009798A1 (ja) 光ファイバテープ心線、光ファイバケーブル
US11169342B2 (en) Flexible optical-fiber ribbon
US10598888B2 (en) Intermittent connection type optical fiber ribbon having improved density, manufacturing method of the ribbon, optical fiber cable, and optical cable fiber code
TWI678566B (zh) 間歇連結型光纖帶及間歇連結型光纖帶的製造方法
CN100371754C (zh) 光纤维带缆芯线
WO2004008215A1 (ja) 光ファイバテープ心線およびその製造方法
US11656417B2 (en) Flexible optical-fiber ribbon
WO2005101080A1 (ja) 光ファイバテープユニット及び光ファイバケーブル
JPWO2019088256A1 (ja) 光ファイバユニットおよび光ファイバケーブル
WO2012036031A1 (ja) プラスチック光ファイバユニット、およびそれを用いたプラスチック光ファイバケーブル
JP7247040B2 (ja) 光ファイバテープ心線
KR20070105388A (ko) 컴팩트한 광섬유 케이블
JP2021189231A (ja) 光ファイバ心線、光ファイバテープ心線及び光ファイバケーブル
JP3346254B2 (ja) 光ファイバ心線
JP7479225B2 (ja) 光ファイバテープ心線、光ファイバケーブル
JP3008863B2 (ja) 光ファイバユニット
JP2023028559A (ja) 間欠接着型光ファイバテープ心線、光ファイバケーブル
JPH0622804Y2 (ja) テープ状光フアイバ心線
JP2003021764A (ja) 光ファイバテープ心線
JP2520883B2 (ja) 光フアイバテ−プ心線の製造方法
JP2004045937A (ja) 光ファイバテープ心線
JPH02208241A (ja) 樹脂被覆光フアイバの製造方法
JP2001174680A (ja) テープ状光ファイバ心線及びその製造方法
JP2003095705A (ja) リボン光ファイバ
JPH11311724A (ja) 光ファイバユニットおよび光ファイバケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021838281

Country of ref document: EP

Effective date: 20230210

NENP Non-entry into the national phase

Ref country code: DE