WO2024051073A1 - 一种柔性光纤带及带状光缆 - Google Patents

一种柔性光纤带及带状光缆 Download PDF

Info

Publication number
WO2024051073A1
WO2024051073A1 PCT/CN2023/073751 CN2023073751W WO2024051073A1 WO 2024051073 A1 WO2024051073 A1 WO 2024051073A1 CN 2023073751 W CN2023073751 W CN 2023073751W WO 2024051073 A1 WO2024051073 A1 WO 2024051073A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
array
arrangement
arrangement surface
connection part
Prior art date
Application number
PCT/CN2023/073751
Other languages
English (en)
French (fr)
Inventor
缪威玮
周华
谭枫
缪小明
沈柳柳
钱慧慧
缪斌
蔡洁
缪芬艳
Original Assignee
江苏中天科技股份有限公司
中天科技摩洛哥有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏中天科技股份有限公司, 中天科技摩洛哥有限公司 filed Critical 江苏中天科技股份有限公司
Priority to GBGB2313291.3A priority Critical patent/GB202313291D0/en
Publication of WO2024051073A1 publication Critical patent/WO2024051073A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • G02B6/08Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images with fibre bundle in form of plate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles

Definitions

  • the present application relates to the technical field of optical cables, and in particular to a flexible optical fiber ribbon and a ribbon optical cable.
  • optical fiber provides advantages over conventional communication lines.
  • Fiber optic communications networks can transmit significantly more information at significantly higher speeds than traditional wired networks.
  • optical fiber ribbons with windable functions have emerged.
  • the so-called optical fiber ribbon with the winding function refers to a plurality of optical fibers arranged vertically adjacent in parallel, and a curable adhesive is sprayed on the upper surface formed by a plurality of optical fibers arranged longitudinally through a nozzle. After the adhesive is cured That is, a flexible optical fiber ribbon is formed, which can be curled or folded in the width direction of the optical fiber ribbon.
  • the flexibility and solidity of the optical fiber ribbon are both determined by the trajectory and amount of the adhesive, they are two contradictory indicators. Improper setting of the trajectory of the adhesive will not only increase the working accuracy requirements of the nozzle, but also increase the working accuracy of the nozzle. It may also increase the rigidity of the fiber optic ribbon excessively and reduce the flexibility.
  • the existing flexible optical fiber ribbons propose to provide adhesives on both sides, the tracks are simple, excessively increasing the rigidity of the optical fiber ribbons and losing the flexibility of the optical fiber ribbons.
  • the present invention provides a flexible optical fiber ribbon and a ribbon optical cable.
  • the flexible optical fiber ribbon of the present application not only has good stability, but also improves the flexibility of the optical fiber ribbon.
  • embodiments of the present application provide a flexible optical fiber ribbon, including an optical fiber array formed by a plurality of optical fibers arranged adjacent and parallel in the same plane; the front arrangement surface and the back arrangement surface of the optical fiber arrangement are along the optical fiber array respectively.
  • Connecting parts are arranged at intervals in the length direction of the arrangement, the connecting parts are linear and inclined, and the connecting parts of the front arrangement surface and/or the back arrangement surface are distributed at uneven intervals; the material of the connecting parts is resin, The resin viscosity of the front connection part is higher than that of the back connection part, and the resin tensile strength of the front connection part is higher than the resin tensile strength of the back connection part.
  • the density of front connections is greater than the density of back connections.
  • connection portions of the front arrangement surface and/or the back arrangement surface include short connection portions and long connection portions.
  • the short connecting portion is disposed at the edge of the optical fiber array surface, and the long connecting portion is bonded across the optical fiber array.
  • the tracks of the front connecting portion and the back connecting portion are arranged periodically, and the arrangement period is the same.
  • a track period of the connection portion includes a long connection portion array and a short connection portion array, the long connection portion array includes at least one long connection portion, and the short connection portion array includes at least one short connection portion.
  • at least one of the short connection portion arrays on the front arrangement surface or the back arrangement surface is disposed on both sides of the long connection portion array along the length direction of the optical fiber arrangement, and the short connection portion array is on the optical fiber.
  • the upper edge of the arrangement and the lower edge of the optical fiber arrangement are alternately distributed; in one track period, the connection parts on the same arrangement surface are arranged in parallel, and the connection parts of the front arrangement surface and the back arrangement surface are inclined In the opposite direction.
  • the arrangement density of the short connection portions on the front arrangement surface and/or the back arrangement surface is greater than the arrangement density of the long connection portions.
  • embodiments of the present application also provide a flexible optical fiber ribbon, including an optical fiber array formed by a plurality of optical fibers arranged adjacent and parallel in the same plane; the front arrangement surface and the back arrangement surface of the optical fiber arrangement are respectively along the Connecting parts are arranged at intervals in the length direction of the optical fiber arrangement; the connecting parts are linearly arranged at an angle, and the connecting parts are made of resin.
  • the resin viscosity of the front connecting part is higher than the resin viscosity of the back connecting part.
  • the resin of the front connecting part is made of resin.
  • the tensile strength is higher than the resin tensile strength of the back connection part;
  • the connection part of the front arrangement surface and/or the back arrangement surface includes an array of short connection parts and an array of long connection parts, and at least one of the front arrangement surface or the back arrangement surface has The short connection part array and the long connection part array are alternately arranged along the length direction of the optical fiber arrangement.
  • the long connection portion array includes at least one long connection portion arranged across the bonded optical fibers
  • the short connection portion array includes at least one short connection located only at the edge of the optical fiber arrangement surface. department.
  • the trajectories of the short connecting portion array and the long connecting portion array are periodically arranged, and the arrangement period is the same.
  • the connecting portions on the same arrangement surface are arranged in parallel, and the regular arrangement surface and the regular arrangement surface are arranged in parallel.
  • the connecting portions of the back arrangement surfaces have opposite inclination directions.
  • a ribbon optical cable which includes an optical fiber bundle unit, a sponge tape, a loose tube, and an outer sheath in order from the inside to the outside.
  • the optical fiber bundle unit includes a twisted arrangement.
  • the optical fiber bundle includes a wound arrangement of flexible optical fiber ribbons as in any of the above embodiments; the optical fiber bundle unit and the The spaces between the sponge tapes and the optical fiber bundle units are also filled with water-blocking yarns; the sponge tapes longitudinally cover the optical fiber bundle units and the water-blocking yarns; several symmetrically embedded layers are symmetrically embedded in the outer sheath wall. Enhancements.
  • the front connection part and the back connection part are made of resin materials with different tensile strength and viscosity.
  • the resin viscosity of the front connection part is higher than the viscosity of the resin in the back connection part.
  • the tensile strength of the resin in the front connection part is The tensile strength is higher than that of the back connection resin.
  • the density of the connections set at the edge of the optical fiber array is greater than the density of the connectors in the middle of the optical fiber array. This design has enhanced adhesion to the edge optical fibers, making the edge optical fibers more stable than the middle. When the optical fiber ribbon is curled toward the back or It can effectively prevent edge fibers from loosening when folded.
  • the number of front connection parts is larger than that of the back connection part, which is more conducive to the curling or folding of the optical fiber ribbon to the back, and the bonding force of the middle optical fibers on the front arrangement surface is strengthened, improving the stability of the flexible optical fiber ribbon.
  • Figure 1 shows a schematic structural diagram of a flexible optical fiber ribbon of the present application
  • Figure 2a shows a schematic structural diagram 2 of a flexible optical fiber ribbon of the present application
  • Figure 2b shows the structural schematic diagram 3 of a flexible optical fiber ribbon of the present application
  • Figure 2c shows a schematic structural diagram 4 of a flexible optical fiber ribbon of the present application
  • Figure 3a shows a schematic structural diagram 5 of a flexible optical fiber ribbon of the present application
  • Figure 3b shows a schematic structural diagram 6 of a flexible optical fiber ribbon of the present application
  • Figure 3c shows a schematic structural diagram of a flexible optical fiber ribbon of the present application
  • Figure 4 shows a schematic structural diagram of a ribbon optical cable of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • the flexible optical fiber ribbon of this embodiment includes several optical fibers 11 arranged side by side on the same plane to form an optical fiber array, where different optical fibers in the optical fiber array can be provided with different colors.
  • the front arrangement surface A of the optical fiber arrangement is provided with longitudinally spaced front long connection portions 12, and the back arrangement surface B is provided with longitudinally spaced back long connection portions 14.
  • the solid lines in Figure 1 indicate the front long connection portions 12 of the front arrangement surface.
  • the dotted line represents the long back connecting portion 14 of the back arrangement surface.
  • the front long connection part 12 and the back long connection part 14 are in the shape of a straight line with a certain inclination angle, and are unevenly distributed on the optical fiber arrangement.
  • the front long connection part 12 and the back long connection part 14 have the same length, inclination angle and inclination direction, and at this inclination angle, the distance between the optical fiber welds on the same connection part is 10-15 mm.
  • the front long connection portions 12 and the back long connection portions 14 have different distribution densities.
  • the front long connection portions 12 are arranged at a higher density than the back long connection portions 14. That is, the front long connection portions 12 are arranged in greater number than the back long connection portions 14. many.
  • the front connection part and the back connection part are made of different tensile strength and viscosity resin materials.
  • the resin viscosity of the front connection part is higher than that of the back part.
  • the viscosity of the connecting part resin is high, and the tensile strength of the front connecting part resin is higher than the tensile strength of the back connecting part resin.
  • the viscosity of the front resin is 100-2000 cps higher than the viscosity of the back resin, and the stretch degree of the front resin is 5-20 MPa higher than the stretch degree of the back resin.
  • the front connection part resin has a viscosity of 5500-6500 cps and a tensile strength of 35-45 MPa at 25°C;
  • the back connection part resin has a viscosity of 4500-5500 cps and a tensile strength of 25-35 MPa at 25°C.
  • the difference between the flexible optical fiber ribbon structure of this embodiment and Embodiment 1 is that the tracks of the connecting parts are different.
  • the density of the short connecting parts arranged at the edge of the optical fiber array is greater than the density of the long connecting parts arranged across the optical fibers.
  • the flexible optical fiber ribbon of this embodiment includes a plurality of optical fibers 11 arranged side by side on the same plane to form an optical fiber array.
  • the front arrangement surface of the optical fiber array is provided with longitudinally spaced front long connection portions 12 and front short connection portions 13, and the back surface is provided with longitudinal separations.
  • the back long connection part 14 and the back short connection part 15 are in the shape of a straight line with a certain tilt angle and are unevenly distributed on the optical fiber arrangement.
  • the lengths of the connecting parts are different, with long connecting parts and short connecting parts.
  • the long connecting part is bonded to the entire optical fiber array, and the short connecting part is bonded to the edge fibers of the optical fiber array.
  • the density of the short connecting parts is It is greater than the density of long connecting parts, that is, the number of connecting parts bonded to edge optical fibers is greater than the number of connecting parts bonded to intermediate optical fibers.
  • the front arrangement surface of the optical fiber array is provided with 1 front long connection part 12 and 4 front short connection parts 13, of which 2 front short connection parts are provided.
  • the connection part 13 is provided at the upper edge C of the optical fiber array, and the other two front short connection parts 13 are provided at the lower edge D of the optical fiber arrangement.
  • the front long connection part 12 and the front short connection part 13 are both arranged in parallel.
  • One back long connection part 14 and four back short connection parts 15 are provided on the back surface of the optical fiber array. Two of the back short connection parts 15 are provided on the upper edge of the optical fiber array, and the other two back short connection parts 15 are provided on the back surface of the optical fiber array.
  • the back long connection part 14 and the back short connection part 15 are both arranged in parallel.
  • the front connection part and the back connection part are printed on the same plane, the front long connection part 12 and the back long connection part 14 are arranged axially symmetrically, and the front short connection part 13 and the back short connection part 15 on the same side where the optical fibers are arranged are axially symmetrical.
  • Set up, and the front connection part and the back connection part are connected end to end at the edge of the optical fiber arrangement to form several V shapes.
  • the front arrangement surface of the optical fiber arrangement is provided with 2 front long connection parts 12 and 4 front short connection parts 13, of which 2 front short connection parts 13 are provided.
  • the connection part 13 is provided at the upper edge of the optical fiber array, and the other two front short connection parts 13 are provided at the lower edge of the optical fiber arrangement, the front long connection part 12 and the front short connection part 13 are set up in parallel.
  • Two back long connection parts 14 and four back short connection parts 15 are provided on the back surface of the optical fiber array. Two of the back short connection parts 15 are provided on the upper edge of the optical fiber array, and the other two back short connection parts 15 are provided on the back surface of the optical fiber array.
  • the back long connection part 14 and the back short connection part 15 are both arranged in parallel.
  • the front connection part and the back connection part are printed on the same plane, the front long connection part 12 and the back long connection part 14 are arranged axially symmetrically, and the front short connection part 13 and the back short connection part 15 on the same side where the optical fibers are arranged are axially symmetrical.
  • the edge fiber is designed to strengthen the bonding force
  • the bonding force in the middle position is appropriately strengthened to effectively prevent the edge fibers from loosening.
  • the strength of the optical fiber ribbon is ensured and the middle fiber is prevented from falling off.
  • one front long connection part 12, one front short connection part 13, and one front short connection part 13 are provided on the front arrangement surface of the optical fiber array.
  • the front long connection part 12 and the front short connection part 13 are both arranged in parallel.
  • the back side of the optical fiber array is provided with one back long connection part 14 and one back short connection part 15.
  • the back short connection part 15 is provided at the edge of the optical fiber arrangement on the other side opposite to the front short connection part 13.
  • the back long connection part 14 and the back side The short connecting parts 15 are all arranged in parallel.
  • the front long connection part 12 and the back long connection part 14 are arranged axially symmetrically, and the front long connection part 12 and the back long connection part 14 form a V at the edge of the optical fiber array. shape.
  • the long connections form an N shape. Designed with enhanced adhesion for edge fibers, it can effectively prevent edge fibers from loosening when the fiber ribbon is curled or folded toward the back.
  • the spacing density of long connecting parts and short connecting parts is the same, which simplifies the manufacturing process and improves production efficiency.
  • the difference between the flexible optical fiber ribbon structure of this embodiment and the second embodiment lies in the different trajectories of the connecting parts.
  • the density of the short connecting parts arranged at the edge of the optical fiber array is greater than the density of the long connecting parts arranged across the optical fibers.
  • the front connecting parts are smaller than the long connecting parts arranged across the optical fibers. There are more connections on the back.
  • the front arrangement surface of the optical fiber array is provided with 2 front long connection parts 12 and 4 front short connection parts 13, of which 2 front short connection parts 13 are provided.
  • the connection part 13 is provided at the upper edge of the optical fiber array, and the other two front short connection parts 13 are provided at the lower edge of the optical fiber arrangement.
  • the front long connection part 12 and the front short connection part 13 are both arranged in parallel.
  • One back long connection part 14 and four back short connection parts 15 are provided on the back of the optical fiber array. Two of the back short connection parts 15 are provided on the upper edge of the optical fiber array, and the other two back short connection parts 15 are provided on the back side of the optical fiber array.
  • the short surface connection part 15 is provided at the lower edge of the optical fiber array, and the back long connection part 14 and the back short connection part 15 are both arranged in parallel.
  • the front connection part and the back connection part are printed on the same plane, the front long connection part 12 and the back long connection part 14 are arranged axially symmetrically, and the front short connection part 13 and the back short connection part 15 on the same side where the optical fibers are arranged are axially symmetrical.
  • the edge fiber is designed with enhanced adhesive force, which can effectively prevent the edge fiber from loosening when the optical fiber ribbon is curled or folded toward the back.
  • the number of front connection parts is greater than the number of back connection parts, which is more conducive to the curling or folding of the optical fiber ribbon to the back, and the bonding force of the middle optical fiber on the front surface is strengthened, improving the stability of the flexible optical fiber ribbon.
  • the front alignment surface of the optical fiber array is provided with 2 front long connection parts 12 and 4 front short connection parts 13, of which 2 front short connection parts 13 are provided.
  • the connection part 13 is provided at the upper edge of the optical fiber array, and the other two front short connection parts 13 are provided at the lower edge of the optical fiber arrangement.
  • the front long connection part 12 and the front short connection part 13 are both arranged in parallel.
  • Two back long connection portions 14 are provided on the back arrangement surface of the optical fiber arrangement, and the long back connection portions 14 are also arranged in parallel.
  • the front long connection part 12 and the back long connection part 14 are arranged axially symmetrically, and the front long connection part 12 and the back long connection part 14 end at the edge of the optical fiber array.
  • the connections form a V shape, and in successive cycles, the long connections form an N shape.
  • one front long connection part 12 and two front short connection parts 13 are provided on the front alignment surface of the optical fiber arrangement, of which one front short connection part is provided.
  • the front long connection part 12 and the front short connection part 13 are both arranged in parallel.
  • a back long connection part 14 is provided on the back arrangement surface of the optical fiber array, and the long back connection parts 14 are all arranged in parallel.
  • the front connection part and the back connection part are printed on the same plane, the front long connection part 12 and the back long connection part 14 are arranged axially symmetrically, and the front long connection part 12 and the back long connection part 14 end at the edge of the optical fiber array.
  • the connections form a V shape, and in successive cycles, the long connections form an N shape.
  • this embodiment provides a ribbon optical cable, which includes an optical fiber bundle unit 20 , a sponge tape 40 , a loose tube 50 , and an outer sheath 60 in order from the inside to the outside.
  • the optical fiber bundle unit includes a twisted A plurality of optical fiber bundles arranged together and a colored wire 21 wound around the plurality of optical fiber bundles arranged in a twisted manner.
  • the optical fiber bundle includes a plurality of flexible optical fiber ribbons 10 arranged in a winding arrangement.
  • the space between the fiber bundle unit 20 and the sponge tape 40 and the space between the fiber bundle units 20 is also filled with water-blocking yarn 30; the sponge tape 40 longitudinally covers the fiber bundle unit 20 and the water-blocking yarn.
  • Yarn 30; several reinforcements 70 are symmetrically embedded in the wall of the outer sheath 60.
  • the structure of the flexible optical fiber ribbon 10 is the same as the structure of the "flexible optical fiber ribbon" described in the above embodiment.
  • the flexible optical fiber ribbon 10 includes a plurality of optical fibers 11 arranged side by side on the same plane to form an optical fiber array; the normal arrangement surface of the optical fiber array Vertically spaced front connection portions are provided, and longitudinally spaced back connection portions are provided on the back arrangement surface of the optical fiber array.
  • the connection portions are in the shape of a straight line with a certain tilt angle and are unevenly distributed on the optical fiber array.
  • the connecting parts of the front and back arrangement surfaces are made of resin materials with different tensile strength and viscosity.
  • the resin viscosity of the front connection part is higher than that of the back connection part, and the tensile strength of the front connection part resin is higher than that of the back connection part.
  • the tensile strength of the resin is high.
  • the loose tube 50 of the ribbon optical cable is made of PBT, so that the loose tube 50 has good temperature characteristics, tensile strength and stability, and the loose tube 50 has good bending performance and strength.
  • the outer sheath 60 of the ribbon optical cable is made of polyethylene sheath or flame-retardant polyethylene, which is not only environmentally friendly but also has good flame-retardant properties.
  • the reinforcing member 70 is made of FRP or KFRP, has tensile protection function, has high strength and good process performance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

一种柔性光纤带(10)及带状光缆,柔性光纤带(10)包括在同一平面并排配置形成光纤排列的若干光纤(11),光纤排列的正排列面(A)和背排列面(B)分别设置纵向间隔的连接部(12、13、14、15);连接部(12、13、14、15)呈一定的倾斜角度的直线形状,并在光纤排列上不均匀分布;正面连接部(12、13)和背面连接部(14、15)材质均采用树脂材质,正面连接部(12、13)树脂的粘度比背面连接部(14、15)树脂的粘度高,正面连接部(12、13)树脂的拉伸强度比背面连接部(14、15)树脂的拉伸强度高。正面连接部(12、13)树脂和背面连接部(14、15)树脂分别采用不同的抗拉强度与粘合度树脂材料来进行控制,适用于光纤带(10)向背面卷曲或折叠的情形,确保光纤带(10)在卷绕过程中粘结点不脱落、光纤不散带。

Description

一种柔性光纤带及带状光缆
本申请要求于2022年09月06日提交中国专利局、申请号为202211085562.1、申请名称为“一种柔性光纤带及带状光缆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光缆技术领域,尤其涉及一种柔性光纤带及带状光缆。
背景技术
随着电子信息技术的发展和人们对沟通交流需求的增加,光纤提供了优于常规通信线路的优点。与传统的有线网络相比,光纤通信网络可以以显著提高的速度传输显著增多的信息。在世界范围内,通过光缆传输的数据量持续增长。由于云计算的扩展,在数据中心中尤其如此,这要求在有限的物理空间中接收和传输数据。因此,对高纤维数和高纤维密度的光缆的需求不断增长。随着高纤维数的需求日益加强,具备可卷绕功能的光纤带应运而生。所谓的具备可卷绕功能的光纤带是指若干根光纤沿纵向相邻地平行排列后,通过喷嘴将可固化的粘接剂喷涂在若干光纤纵向排列后形成的上表面,粘接剂固化后即形成柔性光纤带,可在光纤带宽度方向上卷曲或折叠。
然而,光纤带的柔性和坚固性虽然都是由粘接剂的轨迹以及量决定的,但是却是两个对立矛盾的指标,粘接剂的轨迹设置不当的话不仅会增加喷嘴的工作精度要求,而且可能会过分增加光纤带的坚固性而减少柔性。此外,虽然目前现有的柔性光纤带有提出双面设置粘接剂,但是其轨迹简单,过分增加了光纤带的坚固性而损失了光纤带的柔性。
发明内容
本发明为了解决现有技术中存在的问题,提供一种柔性光纤带及带状光缆。本申请的柔性光纤带即具有良好的稳定性,又提高了光纤带的柔性。
第一方面,本申请实施例提供了一种柔性光纤带,包括由若干光纤在同一平面相邻平行排列形成的光纤排列;所述光纤排列的正排列面和背排列面上分别沿所述光纤排列的长度方向间隔设置连接部,所述连接部为倾斜设置的直线形,且所述正排列面和/或背排列面的连接部为不均匀间隔分布;所述连接部材质均为树脂,正面连接部的树脂粘度比背面连接部的树脂粘度高,正面连接部的树脂抗拉强度比背面连接部的树脂抗拉强度高。
在一些实施例中,正面连接部的密度大于背面连接部的密度。
在一些实施例中,正排列面和/或背排列面的连接部包括短连接部和长连接部。
在一些实施例中,短连接部设置在所述光纤排列面的边缘位置,长连接部横跨粘接所述光纤排列。
在一些实施例中,所述正面连接部和所述背面连接部的轨迹为周期排列,并且排列周期相同。
在一些实施例中,在连接部的一个轨迹周期内包括长连接部阵列和短连接部阵列,所述长连接部阵列包括至少一条长连接部,所述短连接部阵列包括至少一条短连接部;在一个轨迹周期内,正排列面或背排列面中至少一面的短连接部阵列设置在长连接部阵列的沿所述光纤排列长度方向的两侧,所述短连接部阵列在所述光纤排列的上侧边缘和在所述光纤排列的下侧边缘交替分布;在一个轨迹周期内,同一排列面上的连接部平行设置,所述正排列面和所述背排列面的连接部的倾斜方向相反。
在一些实施例中,正排列面和/或背排列面上短连接部的设置密度大于长连接部的设置密度。
第二方面,本申请实施例还提供了一种柔性光纤带,包括由若干光纤在同一平面相邻平行排列形成的光纤排列;所述光纤排列的正排列面和背排列面上分别沿所述光纤排列的长度方向间隔设置连接部;所述连接部为倾斜设置的直线形,所述连接部材质均为树脂,正面连接部的树脂粘度比背面连接部的树脂粘度高,正面连接部的树脂抗拉强度比背面连接部的树脂抗拉强度高;所述正排列面和/或背排列面的连接部包括短连接部阵列和长连接部阵列,正排列面或背排列面中至少一面的短连接部阵列和长连接部阵列沿所述光纤排列长度方向交替排列。
在一些实施例中,所述长连接部阵列包括至少一条横跨粘接所述光纤排列的长连接部,所述短连接部阵列包括至少一条仅设置在所述光纤排列面边缘位置的短连接部。
在一些实施例中,所述短连接部阵列和长连接部阵列的轨迹为周期排列,并且排列周期相同,在一个轨迹周期内同一排列面上的连接部平行设置,所述正排列面和所述背排列面的连接部的倾斜方向相反。
第三方面,本申请实施例提供了一种带状光缆,其包括由内至外依次包括光纤束单元、海绵包带、松套管、外护套,所述光纤束单元包括绞合设置的若干光纤束和绕扎在所述绞合设置的若干光纤束上的色线,所述光纤束包括卷绕设置的如上述任一项实施例中的柔性光纤带;所述光纤束单元和所述海绵包带之间以及所述光纤束单元之间的空间还填充阻水纱;海绵包带纵包包覆所述光纤束单元和阻水纱;在所述外护套壁内对称嵌入若干增强件。
与现有技术相比,本申请所能达到的有益效果:
1.本申请所提供的柔性光纤带,正面连接部和背面连接部采用不同的抗拉强度与粘度树脂材料,正面连接部的树脂粘度比背面连接部树脂的粘度高,正面连接部树脂的拉伸强度比背面连接部树脂的拉伸强度高。当光纤带向背面卷曲或折叠时,正面连接部具有更高的拉伸度,保证光纤带被卷绕或折叠成预定的形状,而连接部不会由于张力过大而脱落。
2.设置在光纤排列边缘的连接部密度大于光纤排列中间的连接部密度,这种对边缘光纤有加强粘接力的设计,使得边缘光纤的稳定性高于中间,当光纤带向背面卷曲或折叠时可以有效阻止边纤的松散。
3.设置在正面连接部比背面连接部设置的数量更多,更利于光纤带向背面卷曲或折叠,且正排列面的中间光纤粘结力被加强,提高柔性光纤带的稳定性。
为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施 例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了本申请一种柔性光纤带的结构示意图一;
图2a示出了本申请一种柔性光纤带的结构示意图二;
图2b示出了本申请一种柔性光纤带的结构示意图三;
图2c示出了本申请一种柔性光纤带的结构示意图四;
图3a示出了本申请一种柔性光纤带的结构示意图五;
图3b示出了本申请一种柔性光纤带的结构示意图六;
图3c示出了本申请一种柔性光纤带的结构示意图七;
图4示出了本申请一种带状光缆的结构示意图。
为了使所在技术领域人员能更准确、清楚地理解及实施本申请,下面结合说明书附图对于附图标记作进一步说明,图中:10-柔性光纤带,11-光纤,12-正面长连接部,13-正面短连接部,14-背面长连接部,15-背面短连接部,20-光纤束单元,21-色线,30-阻水纱,40-海绵包带,50-松套管,60-外护套,70-增强件,A-正排列面,B-背排列面,C-上侧边缘,D-下侧边缘,T-一个轨迹周期。
具体实施方式
本申请的说明书和权利要求书及所述附图中的术语“包含”与“包括”、“含有”或“特征在于”同义,并且是包括端点在内或是开放式的,并且不排除额外的未叙述的要素或方法步骤。“包含”是权利要求语言中使用的技术术语,意思指存在所述要素,但也可以增加其它要素并且仍形成在所述权利要求范围内的构造或方法。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释,此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所 有其他实施例,都属于本申请保护的范围。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图以及具体实施例对本发明进行详细说明。
实施例一
如图1所示,本实施例的柔性光纤带,包括在同一平面并排配置形成光纤排列的若干光纤11,其中光纤排列中的不同光纤可以设置有不同的颜色。所述光纤排列的正排列面A设置纵向间隔的正面长连接部12,背排列面B设置纵向间隔的背面长连接部14,如图1中实线表示的是正排列面的正面长连接部12,虚线表示的是背排列面的背面长连接部14。所述正面长连接部12和背面长连接部14呈一定倾斜角度的直线形状,并在所述光纤排列上不均匀分布。在本实施例中,正面长连接部12和背面长连接部14长度、倾斜角度及倾斜方向一致,且在该倾斜角度下,同一条连接部上光纤焊缝之间的距离为10-15mm。所述正面长连接部12与背面长连接部14分布密度不同,正面长连接部12比背面长连接部14设置的密度更大,即正面长连接部12比背面长连接部14设置的数量更多。当光纤带向背面卷曲或折叠时,由于背面长连接部14较少,光纤带更易向背面卷曲,光纤带的柔性达到最佳。
同时,为确保光纤带在卷绕过程中粘结点不脱露导致光纤散带,所述正面连接部和背面连接部采用不同的抗拉强度与粘度树脂材料,正面连接部的树脂粘度比背面连接部树脂的粘度高,正面连接部树脂的拉伸强度比背面连接部树脂的拉伸强度高。
在一些实施例中,正面树脂的粘度比背面树脂的粘度高100-2000cps,正面树脂的拉伸度比背面树脂的拉伸度高5-20Mpa。优选的,正面连接部树脂在25℃时的粘度为5500~6500cps,抗拉强度35~45MPa;背面连接部树脂在25℃时的粘度为4500~5500cps,抗拉强度25~35MPa。当光纤带向背面卷曲或折叠时,正面长连接部12具有更高的拉伸度,保证光纤 带被卷绕或折叠成预定的形状,而连接部不会由于张力过大而脱落。
实施例二
本实施例的柔性光纤带结构与实施例一的不同之处在于连接部的轨迹不同,设置在光纤排列边缘的短连接部密度大于横跨光纤排列的长连接部密度。
本实施例的柔性光纤带,包括在同一平面并排配置形成光纤排列的若干光纤11,所述光纤排列的正排列面设置纵向间隔的正面长连接部12和正面短连接部13,背面设置纵向间隔的背面长连接部14和背面短连接部15,所述连接部呈一定倾斜角度的直线形状,并在所述光纤排列上不均匀分布。在本实施例中,连接部的长度不同,具有长连接部和短连接部,所述长连接部粘接整个光纤排列,所述短连接部粘接光纤排列的边缘光纤,短连接部的密度大于长连接部的密度,即粘接边缘光纤的连接部比粘接中间光纤的连接部设置的数量更多。
本实施例中,如图2a所示,在其中一个连接部轨迹周期T内,光纤排列的正排列面设置有1条正面长连接部12,4条正面短连接部13,其中2条正面短连接部13设置在光纤排列的上侧边缘C,另外2条正面短连接部13设置在光纤排列的下侧边缘D,正面长连接部12和正面短连接部13均平行设置。在光纤排列的背排列面设置1条背面长连接部14,4条背面短连接部15,其中2条背面短连接部15设置在光纤排列的上侧边缘,另外2条背面短连接部15设置在光纤排列的下侧边缘,背面长连接部14和背面短连接部15均平行设置。当正面连接部和背面连接部印射在同一平面时,正面长连接部12和背面长连接部14为轴对称设置,光纤排列同一侧的正面短连接部13和背面短连接部15为轴对称设置,且正面连接部和背面连接部在光纤排列的边缘首尾相接形成若干V形。这种针对边缘光纤有加强粘接力的设计,使得边缘光纤的稳定性高于中间,当光纤带向背面卷曲或折叠时可以有效阻止边纤的松散。
在一些实施例中,如图2b所示,在其中一个连接部轨迹周期内,光纤排列的正排列面设置有2条正面长连接部12,4条正面短连接部13,其中2条正面短连接部13设置在光纤排列的上侧边缘,另外2条正面短连接部13设置在光纤排列的下侧边缘,正面长连接部12和正面短连接部13 均平行设置。在光纤排列的背排列面设置2条背面长连接部14,4条背面短连接部15,其中2条背面短连接部15设置在光纤排列的上侧边缘,另外2条背面短连接部15设置在光纤排列的下侧边缘,背面长连接部14和背面短连接部15均平行设置。当正面连接部和背面连接部印射在同一平面时,正面长连接部12和背面长连接部14为轴对称设置,光纤排列同一侧的正面短连接部13和背面短连接部15为轴对称设置,且在光纤排列的边缘形成若干V形,在光纤排列中间形成若干X形。针对边缘光纤有加强粘接力的设计的同时,适当加强中间位置的粘结力,可以有效阻止边纤的松散,同时,当受到外力时,保证光纤带的强度,避免中间光纤脱落。
在一些实施例中,如图2c所示,在其中一个连接部轨迹周期内,光纤排列的正排列面设置1条正面长连接部12,1条正面短连接部13,正面短连接部13设置在光纤排列的一侧,正面长连接部12和正面短连接部13均平行设置。光纤排列的背面设置1条背面长连接部14,1条背面短连接部15,背面短连接部15设置在与正面短连接部13相对的另一侧光纤排列边缘,背面长连接部14和背面短连接部15均平行设置。当正面连接部和背面连接部印射在同一平面时,正面长连接部12和背面长连接部14为轴对称设置,且正面长连接部12和背面长连接部14在光纤排列的边缘形成V形。在连续周期中,长连接部形成N形。针对边缘光纤有加强粘接力的设计,当光纤带向背面卷曲或折叠时可以有效阻止边纤的松散。同时,长连接部和短连接部间隔密度相同,在制造时,简化工艺,提高生产效率。
实施例三
本实施例的柔性光纤带结构与实施例二的不同之处在于连接部的轨迹不同,设置在光纤排列边缘的短连接部密度大于横跨光纤排列的长连接部密度,同时,正面连接部比背面连接部设置的数量更多。
在本实施例中,如图3a所示,在其中一个连接部轨迹周期内,光纤排列的正排列面设置有2条正面长连接部12,4条正面短连接部13,其中2条正面短连接部13设置在光纤排列的上侧边缘,另外2条正面短连接部13设置在光纤排列的下侧边缘,正面长连接部12和正面短连接部13均平行设置。在光纤排列的背面设置1条背面长连接部14,4条背面短连接部15,其中2条背面短连接部15设置在光纤排列的上侧边缘,另外2条背 面短连接部15设置在光纤排列的下侧边缘,背面长连接部14和背面短连接部15均平行设置。当正面连接部和背面连接部印射在同一平面时,正面长连接部12和背面长连接部14为轴对称设置,光纤排列同一侧的正面短连接部13和背面短连接部15为轴对称设置,在光纤排列的边缘形成若干V形,在光纤排列中间形成一个X形。
在本实施例中,针对边缘光纤有加强粘接力的设计,当光纤带向背面卷曲或折叠时可以有效阻止边纤的松散。同时,正面连接部的数量大于背面连接部的数量,更利于光纤带向背面卷曲或折叠,且正排列面的中间光纤粘结力被加强,提高柔性光纤带的稳定性。
在一些实施例中,如图3b所示,在其中一个连接部轨迹周期内,光纤排列的正排列面设置有2条正面长连接部12,4条正面短连接部13,其中2条正面短连接部13设置在光纤排列的上侧边缘,另外2条正面短连接部13设置在光纤排列的下侧边缘,正面长连接部12和正面短连接部13均平行设置。在光纤排列的背排列面设置2条背面长连接部14,背面长连接部14也均平行设置。当正面连接部和背面连接部印射在同一平面时,正面长连接部12和背面长连接部14为轴对称设置,且正面长连接部12和背面长连接部14在光纤排列的边缘收尾相接形成V形,在连续周期中,长连接部形成N形。
在一些实施例中,如图3c所示,在其中一个连接部轨迹周期内,光纤排列的正排列面设置1条正面长连接部12,2条正面短连接部13,其中1条正面短连接部13设置在光纤排列的上侧边缘,另外1条正面短连接部13设置在光纤排列的下侧边缘,正面长连接部12和正面短连接部13均平行设置。光纤排列的背排列面设置1条背面长连接部14,背面长连接部14均平行设置。当正面连接部和背面连接部印射在同一平面时,正面长连接部12和背面长连接部14为轴对称设置,且正面长连接部12和背面长连接部14在光纤排列的边缘收尾相接形成V形,在连续周期中,长连接部形成N形。
实施例四
如图4所示,本实施例提供了一种带状光缆,由内至外依次包括光纤束单元20、海绵包带40、松套管50、外护套60。所述光纤束单元包括绞 合设置的若干光纤束和绕扎在所述绞合设置的若干光纤束上的色线21,所述光纤束包括若干卷绕设置的柔性光纤带10。所述光纤束单元20和所述海绵包带40之间以及所述光纤束单元20之间的空间还填充阻水纱30;海绵包带40纵包包覆所述光纤束单元20和阻水纱30;在所述外护套60壁内对称嵌入若干增强件70。
所述柔性光纤带10的结构与上述实施例中描述的“柔性光纤带”的结构相同,柔性光纤带10包括在同一平面并排配置形成光纤排列的若干光纤11;所述光纤排列的正排列面设置纵向间隔的正面连接部,光纤排列的背排列面设置纵向间隔的背面连接部,所述连接部呈一定倾斜角度的直线形状,并在所述光纤排列上不均匀分布。且所述正排列面和背排列面的连接部采用不同的抗拉强度与粘度树脂材料,正面连接部的树脂粘度比背面连接部树脂的粘度高,正面连接部树脂的拉伸强度比背面连接部树脂的拉伸强度高。当光纤带向背面卷曲或折叠时,正面长连接部12具有更高的拉伸度,光纤带更易向背面卷曲,保证光纤带被卷绕或折叠成预定的形状,而连接部不会由于张力过大而脱落。
所述带状光缆的松套管50的材质为PBT,使松套管50具备较好的温度特性、拉伸强度和稳定性,使松套管50具有良好的弯曲性能和强度。
所述带状光缆的外护套60为聚乙烯护套或阻燃聚乙烯材质,不仅环保而且阻燃性能较好。
所述增强件70为FRP或KFRP材质,具备抗拉保护作用,不仅强度高而且工艺性能好。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (11)

  1. 一种柔性光纤带,包括由若干光纤在同一平面相邻平行排列形成的光纤排列;所述光纤排列的正排列面和背排列面上分别沿所述光纤排列的长度方向间隔设置连接部,其特征在于,所述连接部为倾斜设置的直线形,且所述正排列面和/或背排列面的连接部为不均匀间隔分布;所述连接部材质均为树脂,正面连接部的树脂粘度比背面连接部的树脂粘度高,正面连接部的树脂抗拉强度比背面连接部的树脂抗拉强度高。
  2. 根据权利要求1所述的柔性光纤带,其特征在于,所述正面连接部的密度大于背面连接部的密度。
  3. 根据权利要求1所述的柔性光纤带,其特征在于,所述正排列面和/或背排列面的连接部包括短连接部和长连接部。
  4. 根据权利要求3所述的柔性光纤带,其特征在于,短连接部设置在所述光纤排列面边缘位置,长连接部横跨粘接所述光纤排列。
  5. 根据权利要求4所述的柔性光纤带,其特征在于,所述正面连接部和所述背面连接部的轨迹为周期排列,并且排列周期相同。
  6. 根据权利要求5所述的柔性光纤带,其特征在于,在连接部的一个轨迹周期内包括长连接部阵列和短连接部阵列,所述长连接部阵列包括至少一条长连接部,所述短连接部阵列包括至少一条短连接部;
    在一个轨迹周期内,正排列面或背排列面中至少一面的短连接部阵列设置在长连接部阵列的沿所述光纤排列长度方向的两侧,所述短连接部阵列在所述光纤排列的上侧边缘和在所述光纤排列的下侧边缘交替分布;
    在一个轨迹周期内同一排列面上的连接部平行设置,所述正排列面和所述背排列面的连接部的倾斜方向相反。
  7. 根据权利要求3-6中任一项所述的柔性光纤带,其特征在于,所述正排列面和/或背排列面上短连接部的设置密度大于长连接部的设置密度。
  8. 一种柔性光纤带,包括由若干光纤在同一平面相邻平行排列形成的光纤排列;所述光纤排列的正排列面和背排列面上分别沿所述光纤排列的长度方向间隔设置连接部;其特征在于,所述连接部为倾斜设置的直线形,所述连接部材质均为树脂,正面连接部的树脂粘度比背面连接部的树脂粘度高, 正面连接部的树脂抗拉强度比背面连接部的树脂抗拉强度高;
    所述正排列面和/或背排列面的连接部包括短连接部阵列和长连接部阵列,正排列面或背排列面中至少一面的短连接部阵列和长连接部阵列沿所述光纤排列长度方向交替排列。
  9. 根据权利要求8所述的柔性光纤带,其特征在于,所述长连接部阵列包括至少一条横跨粘接所述光纤排列的长连接部,所述短连接部阵列包括至少一条仅设置在所述光纤排列面边缘位置的短连接部。
  10. 根据权利要求8所述的柔性光纤带,其特征在于,所述短连接部阵列和长连接部阵列的轨迹为周期排列,并且排列周期相同,在一个轨迹周期内同一排列面上的连接部平行设置,所述正排列面和所述背排列面的连接部的倾斜方向相反。
  11. 一种带状光缆,其特征在于,由内至外依次包括光纤束单元、包带、松套管、外护套,所述光纤束单元包括绞合设置的若干光纤束和绕扎在所述绞合设置的若干光纤束上的色线,所述光纤束包括卷绕设置的如权利要求1-10任一项中所述的柔性光纤带;
    所述光纤束单元和所述包带之间以及所述光纤束单元之间的空间还填充阻水纱;包带纵包包覆所述光纤束单元和阻水纱;在所述外护套壁内对称嵌入若干加强件。
PCT/CN2023/073751 2022-09-06 2023-01-30 一种柔性光纤带及带状光缆 WO2024051073A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GBGB2313291.3A GB202313291D0 (en) 2022-09-06 2023-01-30 Not published

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211085562.1A CN115144956B (zh) 2022-09-06 2022-09-06 一种柔性光纤带及带状光缆
CN202211085562.1 2022-09-06

Publications (1)

Publication Number Publication Date
WO2024051073A1 true WO2024051073A1 (zh) 2024-03-14

Family

ID=83415216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073751 WO2024051073A1 (zh) 2022-09-06 2023-01-30 一种柔性光纤带及带状光缆

Country Status (2)

Country Link
CN (1) CN115144956B (zh)
WO (1) WO2024051073A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115144956B (zh) * 2022-09-06 2022-11-04 江苏中天科技股份有限公司 一种柔性光纤带及带状光缆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234122A (ja) * 2011-05-09 2012-11-29 Fujikura Ltd 光ユニット
US20190250347A1 (en) * 2018-01-15 2019-08-15 Prysmian S.P.A. Flexible Optical-Fiber Ribbon
CN110989115A (zh) * 2019-12-13 2020-04-10 南京华信藤仓光通信有限公司 可卷绕光纤带及其制造方法
WO2022009798A1 (ja) * 2020-07-10 2022-01-13 古河電気工業株式会社 光ファイバテープ心線、光ファイバケーブル
CN115144957A (zh) * 2022-09-06 2022-10-04 江苏中天科技股份有限公司 一种可定向卷绕式柔性光纤带及其光缆
CN115144956A (zh) * 2022-09-06 2022-10-04 江苏中天科技股份有限公司 一种柔性光纤带及带状光缆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001663A1 (ja) * 2008-06-30 2010-01-07 日本電信電話株式会社 光ファイバケーブル及び光ファイバテープ
JP5469044B2 (ja) * 2010-12-02 2014-04-09 古河電気工業株式会社 光ファイバテープ心線の製造方法及び製造装置
JP5391296B2 (ja) * 2012-03-02 2014-01-15 株式会社フジクラ 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
US20230367088A1 (en) * 2020-09-16 2023-11-16 Sumitomo Electric Industries, Ltd. Optical fiber ribbon and sub-tape-type optical fiber ribbon
CN113325532B (zh) * 2021-05-25 2022-03-01 长飞光纤光缆股份有限公司 一种层绞式光纤带光缆及生产工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234122A (ja) * 2011-05-09 2012-11-29 Fujikura Ltd 光ユニット
US20190250347A1 (en) * 2018-01-15 2019-08-15 Prysmian S.P.A. Flexible Optical-Fiber Ribbon
CN110989115A (zh) * 2019-12-13 2020-04-10 南京华信藤仓光通信有限公司 可卷绕光纤带及其制造方法
WO2022009798A1 (ja) * 2020-07-10 2022-01-13 古河電気工業株式会社 光ファイバテープ心線、光ファイバケーブル
CN115144957A (zh) * 2022-09-06 2022-10-04 江苏中天科技股份有限公司 一种可定向卷绕式柔性光纤带及其光缆
CN115144956A (zh) * 2022-09-06 2022-10-04 江苏中天科技股份有限公司 一种柔性光纤带及带状光缆

Also Published As

Publication number Publication date
CN115144956B (zh) 2022-11-04
CN115144956A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2024051073A1 (zh) 一种柔性光纤带及带状光缆
CN100520468C (zh) 引入线光缆和在该光缆中使用的frp制抗张力体
CN115144957B (zh) 一种可定向卷绕式柔性光纤带及其光缆
US4329018A (en) Optical telecommunications cable
WO2020095958A1 (ja) 光ファイバケーブル
JP2775966B2 (ja) 光ファイバユニット
US11886026B2 (en) Optical fiber ribbon, optical fiber cable, and connector-equipped optical fiber cord
CN115524784B (zh) 自装配超密堆叠光纤带、其制备方法、光单元及光纤带缆
CN115616723B (zh) 一种气吹光缆及其制造方法
CN113341521B (zh) 一种骨架式混合光缆
CN113341520B (zh) 一种中心束管式大芯数带状光缆
CN209803414U (zh) 一种适用于气吹敷设的光缆
CN211348767U (zh) 一种等时延柔软铠装光缆
CN201812071U (zh) 一种adss光缆
CN215833665U (zh) 扇形松套结构的缆芯及光纤带光缆
CN115542488A (zh) 带全干式带状光缆及其加工方法
CN213069262U (zh) 光纤束管以及光缆
JP7135744B2 (ja) 光ファイバケーブル
CN217060591U (zh) 带状光缆
JPS61232408A (ja) ル−スチユ−ブ心線及びその製造方法
CN217007802U (zh) 一种具有软包覆结构的opgw光缆
WO2023127421A1 (ja) 光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法
CN216052342U (zh) 一种绝缘效果好的光缆
JP3354325B2 (ja) 多心光ファイバケーブル
JP2001350069A (ja) 光ファイバケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23861785

Country of ref document: EP

Kind code of ref document: A1