WO2022004838A1 - 薄膜トランジスタ - Google Patents

薄膜トランジスタ Download PDF

Info

Publication number
WO2022004838A1
WO2022004838A1 PCT/JP2021/024918 JP2021024918W WO2022004838A1 WO 2022004838 A1 WO2022004838 A1 WO 2022004838A1 JP 2021024918 W JP2021024918 W JP 2021024918W WO 2022004838 A1 WO2022004838 A1 WO 2022004838A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
layer
film transistor
fluorine
thin film
Prior art date
Application number
PCT/JP2021/024918
Other languages
English (en)
French (fr)
Inventor
敏彦 酒井
靖典 安東
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to CN202180043421.0A priority Critical patent/CN115735269A/zh
Priority to KR1020227044924A priority patent/KR20230014743A/ko
Publication of WO2022004838A1 publication Critical patent/WO2022004838A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device

Definitions

  • the present invention relates to a thin film transistor whose channel layer is made of an oxide semiconductor.
  • TFTs thin film transistors
  • oxide semiconductors such as In-Ga-Zn-O system (IGZO) for the channel layer
  • a thin film transistor for example, in Patent Document 1, aluminum oxide having a low film density (2.70 to 2.79 g / cm3) is used as the insulating film constituting the gate insulating layer and the channel protective layer in contact with the channel layer. What is used is disclosed.
  • this thin film transistor by using aluminum oxide having such a small film density as an insulating film, the negative fixed charge density of the insulating film can be increased, thereby shifting the threshold voltage of the thin film transistor in the positive direction and improving reliability. It is stated that it can be done.
  • Patent Document 1 it is necessary to perform sputtering by a sputtering device in order to form an aluminum oxide film.
  • a sputtering device When a sputtering device is used, the inside of the chamber cannot be gas-cleaned. Therefore, for example, when cleaning the inside of the chamber, it is necessary to open it to the atmosphere, which causes a problem that maintenance is prolonged and the production cost is increased.
  • the present invention has been made in view of such problems, and the main object of the present invention is to provide a thin film transistor having high reliability at low cost in the case of using an oxide semiconductor as a channel layer.
  • the thin film transistor according to the present invention has a gate electrode (including a case where a low resistance Si substrate functions as a gate electrode), a gate insulating layer, a channel layer made of an oxide semiconductor, and a surface of the channel layer on the substrate.
  • the channel protection layer is a bottom gate type laminated in this order, and the channel protection layer is composed of a silicon oxide film containing fluorine (hereinafter, also simply referred to as a fluorine-containing silicon oxide film).
  • the silicon oxide film containing fluorine is characterized in that the O / Si ratio, which is the ratio of the number of O atoms (at%) to the number of Si atoms (at%), is 1.94 or more.
  • the channel protection layer in contact with the channel layer is formed of a fluorine-containing silicon oxide film having an O / Si ratio of 1.94 or more, so that the fixed charge of the channel protection layer becomes negative. be able to.
  • the threshold voltage of the thin film transistor can be positively shifted, and its reliability can be improved.
  • a fluorine-containing silicon oxide film as the channel protection layer it can be formed by a CVD (chemical vapor deposition) device capable of gas cleaning, so that the chamber can be cleaned without opening to the atmosphere. be able to. Therefore, the maintenance period can be shortened and the production cost can be reduced as compared with the case of using the sputtering apparatus.
  • the O / Si ratio of the silicon oxide film is larger, the negative fixed charge density can be increased, the threshold voltage of the thin film transistor can be shifted to the positive side, and the reliability can be improved. Therefore, the O / Si ratio of the silicon oxide film is preferably 1.94 or more. As the O / Si ratio is increased, the negative fixed charge density can be increased and the yield can be improved. Therefore, it is more preferable that the O / Si ratio of the silicon oxide film is 1.96 or more so that the fixed charge density is -1 ⁇ 1011 cm-2 or less.
  • the O / Si ratio of the silicon oxide film is preferably 2.00 or less, which is the stoichiometric composition ratio of SiO2.
  • the second channel protective layer made of a silicon nitride film is further laminated on the channel protective layer. Even in such a case, by stacking the channel protection layer having a negative fixed charge on the channel layer, the threshold voltage of the thin film transistor can be positively shifted, and its reliability can be improved.
  • an oxide semiconductor containing In as a main component specifically, IGZO can be mentioned.
  • a channel layer made of an oxide semiconductor, a gate insulating layer, and a gate electrode are laminated in this order on a substrate, and the gate insulating layer is silicon-oxidized containing fluorine.
  • the silicon oxide film composed of a film and containing fluorine is characterized in that the O / Si ratio, which is the ratio of the number of O atoms (at%) to the number of Si atoms (at%), is 1.94 or more. And. Even in such a case, the above-mentioned effect of the present invention can be obtained.
  • the gate insulating layer in contact with the channel layer with a fluorine-containing silicon oxide film having an O / Si ratio of 1.94 or more, the fixed charge of the channel protection layer can be made negative. As a result, the threshold voltage of the thin film transistor can be positively shifted, and its reliability can be improved. Further, by adopting a fluorine-containing silicon oxide film as the gate insulating layer, the film can be formed by a CVD apparatus capable of gas cleaning, so that the chamber can be cleaned without opening to the atmosphere. Therefore, the maintenance period can be shortened and the production cost can be reduced as compared with the case of using the sputtering apparatus.
  • the thin film transistor and the manufacturing method thereof according to the embodiment of the present invention will be described below.
  • the thin film transistor 1 of the present embodiment is a so-called bottom gate type TFT, and uses an oxide semiconductor as a channel. Specifically, as shown in FIG. 1, it has a substrate 2, a gate electrode 3, a gate insulating layer 4, a channel layer 5, a source electrode 6, a drain electrode 7, and a channel protection layer 8. , Are formed in this order from the substrate 2 side.
  • a gate electrode 3 a gate insulating layer 4
  • a channel layer 5 a source electrode 6, a drain electrode 7, and a channel protection layer 8.
  • the substrate 2 is made of an arbitrary material capable of transmitting light, and is, for example, a plastic (synthetic resin) such as polyethylene terephthalate (PET), polyethylene phthalate (PEN), polyether sulfone (PES), acrylic, and polyimide. ) Or glass or the like.
  • a plastic synthetic resin
  • PET polyethylene terephthalate
  • PEN polyethylene phthalate
  • PES polyether sulfone
  • acrylic acrylic
  • polyimide polyimide
  • the gate electrode 3 controls the carrier density in the channel layer 5 by the gate voltage applied to the thin film transistor 1.
  • the gate electrode 3 is made of any material having high conductivity, and is made of one or more metals selected from, for example, Si, Al, Mo, Cr, Ta, Ti, Pt, Au, Ag and the like. May be done. Further, the conductivity of metal oxides such as Al-Nd, Ag alloy, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), and In-Ga-Zn-O (IGZO). It may be composed of a membrane.
  • the gate electrode 3 may be composed of a single-layer structure of these conductive films or a laminated structure of two or more layers.
  • the gate insulating layer 4 is made of any insulating material having high insulating properties, and is selected from, for example, SiOx, SiNx, SiON, Al 2 O 3 , Y 2 O 3 , Ta 2 O 5 , Hf 2 and the like. It may be an insulating film containing one or more oxides.
  • the gate insulating layer 4 may have a single-layer structure or a laminated structure of two or more layers of these conductive films.
  • the channel layer 5 allows the current flowing between the source electrode 6 and the drain electrode 7 to pass through.
  • the channel layer 5 is made of an oxide semiconductor and contains, for example, an oxide of at least one element selected from In, Ga, Zn, Sn, Al, Ti and the like as a main component.
  • Specific examples of the material constituting the channel layer 5 include In-Ga-Zn-O (IGZO), In-Al-Mg-O, In-Al-Zn-O, In-Hf-Zn-O and the like. Can be mentioned.
  • the channel layer 5 is made of an amorphous oxide semiconductor film.
  • the channel layer 5 of the present embodiment has a single-layer structure, but is not limited to this, and may have a laminated structure in which a plurality of layers having different compositions and crystallinities are laminated.
  • the source electrode 6 and the drain electrode 7 are formed so as to be separated from each other so as to partially cover the surface of the channel layer 5. Like the gate electrode 3, the source electrode 6 and the drain electrode 7 are made of a material having high conductivity so as to function as an electrode.
  • the source electrode 6 and the drain electrode 7 may have a single-layer structure made of a single material, or may have a laminated structure in which a plurality of layers made of different materials are stacked.
  • the channel protection layer 8 is an insulating layer that covers and protects the surface (channel region) of the channel layer 5 exposed from between the source electrode 6 and the drain electrode 7.
  • the channel protection layer 8 is provided in contact with at least the surface of the channel layer 5.
  • the channel protection layer 8 of the present embodiment is provided so as to further cover the surfaces of the source electrode 6 and the drain electrode 7.
  • the channel protection layer 8 is made of a material whose fixed charge is negative.
  • the channel protection layer 8 is composed of a fluorine-containing silicon oxide film (SiO: F).
  • This fluorine-containing silicon oxide film is configured so that the O / Si ratio, which is the ratio of the number of O atoms (at%) to the number of Si atoms (at%), is 1.94 or more, whereby negative fixation is achieved. It is designed to have an electric charge.
  • the O / Si ratio is preferably 1.94 or more, more preferably 1.96 or more, while the O / Si ratio is too large over time. Oxygen deficiency may cause the membrane quality to become unstable. Therefore, the O / Si ratio is preferably 2.00 or less.
  • the composition ratio of the fluorine-containing silicon oxide film can be determined by, for example, X-ray Photoelectron Spectroscopy (XPS).
  • XPS X-ray Photoelectron Spectroscopy
  • the O / Si ratio can be calculated from the composition of each element obtained by irradiating the sample surface with X-rays and measuring the area intensity of the peak intensity of the kinetic energy of the photoelectrons emitted from the sample surface. If the layer to be measured is not on the outermost surface, etching with argon ions or the like is performed.
  • FIG. 3 shows the values obtained by XPS, and Si and oxygen were obtained from the peak intensities of Si2p and O1s, respectively.
  • a second channel protection layer made of, for example, a fluorine-containing silicon oxide film (SiN: F) or the like may be further provided on the channel protection layer 8.
  • the method for manufacturing the thin film transistor 1 of the present embodiment includes a gate electrode forming step, a gate insulating layer forming step, a channel layer forming step, a source / drain electrode forming step, and a channel protective layer forming step.
  • a gate electrode forming step includes a gate electrode forming step, a gate insulating layer forming step, a channel layer forming step, a source / drain electrode forming step, and a channel protective layer forming step.
  • each step will be described.
  • a substrate 2 made of, for example, quartz glass is prepared, and the gate electrode 3 is formed on the surface of the substrate 2.
  • the method for forming the gate electrode 3 is not particularly limited, and the gate electrode 3 may be formed by a known method such as a vacuum vapor deposition method.
  • the gate insulating layer 4 is formed so as to cover the surfaces of the substrate 2 and the gate electrode 3.
  • the method for forming the gate insulating layer 4 is not particularly limited, and the gate insulating layer 4 may be formed by a known method.
  • the channel layer 5 is formed on the gate insulating layer 4.
  • the channel layer 5 may be formed by a known method.
  • the channel layer 5 may be formed by sputtering a conductive oxide sintered body such as InGaZnO as a target using plasma.
  • the channel layer 5 made of an oxide semiconductor may be formed by another method.
  • the source electrode 6 and the drain electrode 7 are formed on the channel layer 5.
  • the source electrode 6 and the drain electrode 7 can be formed by a known method using, for example, RF magnetron sputtering or the like.
  • the source electrode 6 and the drain electrode 7 are formed so as to be separated from each other on the surface of the channel layer 5 and to expose a part of the surface of the channel layer 5.
  • Channel protection layer forming step Next, as shown in FIG. 2 (e), the channel protection layer 8 is formed so as to cover the surface of the channel layer 5 exposed from between the source electrode 6 and the drain electrode 7. ..
  • the formation of the channel protection layer 8 is performed by using a CVD method (chemical vapor deposition method) using a CVD apparatus.
  • the channel protection layer 8 is formed by forming a film according to the conditions.
  • the channel protection layer 8 made of a fluorine-containing silicon oxide film having an O / Si ratio of 1.94 or more can be formed on the channel layer 5.
  • the manufacturing conditions of the channel protection layer 8 made of a fluorine-containing silicon oxide film having an O / Si ratio of 1.94 or more are not limited to those described above, but are not limited to those described above, but are the substrate size, RF power, the set temperature of the substrate, and the time of film formation.
  • the pressure and gas flow rate may be changed as appropriate.
  • a second channel protective layer made of a fluorine-containing silicon oxide film (SiN: F) or the like may be formed on the channel protective layer 8.
  • the film formation of this channel protection layer can be performed by using a CVD device in the same manner as in the channel protection layer 8.
  • the heat treatment may be performed in an atmosphere under atmospheric pressure containing oxygen.
  • the temperature inside the furnace in the heat treatment is not particularly limited, and is, for example, 150 ° C. or higher and 300 ° C. or lower.
  • the heat treatment time is not particularly limited, and is, for example, 1 hour or more and 3 hours or less.
  • the thin film transistor 1 of the present embodiment can be obtained.
  • the channel protection layer 8 in contact with the channel layer 5 is formed of a fluorine-containing silicon oxide film having an O / Si ratio of 1.94 or more to form a channel.
  • the fixed charge of the protective layer 8 can be negative.
  • the threshold voltage of the thin film transistor 1 can be positively shifted, and its reliability can be improved.
  • the film can be formed by a CVD (chemical vapor deposition) device capable of gas cleaning during manufacturing, so that the film is open to the atmosphere. The chamber can be cleaned without any hassle. Therefore, the maintenance period can be shortened and the production cost can be reduced as compared with the case of using the sputtering apparatus.
  • the gate insulating layer 4 may be formed by a fluorine-containing silicon oxide film having an O / Si ratio of 1.94 or more.
  • the thin film transistor 1 of the embodiment is a bottom gate type in which the gate electrode 3, the gate insulating layer 4, and the channel layer 5 are laminated in order from the substrate 2 side, but the present invention is not limited to this.
  • the thin film transistor 1 may be a top gate type in which the channel layer 5, the gate insulating layer 4, and the gate electrode 3 are laminated in order from the substrate 2 side.
  • the gate insulating layer 4 is composed of a fluorine-containing silicon oxide film (SiO 2 : F), and the fluorine-containing silicon oxide film has an O atomic number (at%) with respect to the Si atom number (at%).
  • the O / Si ratio, which is the ratio of, is preferably 1.94 or more.
  • sample preparation Specifically, four samples were prepared in which fluorine-containing silicon oxide films having different O / Si ratios were formed on a silicon substrate. In each sample, a silicon nitride film was further formed on the fluorine-containing silicon oxide film.
  • the film formation of the fluorine-containing silicon oxide film on the substrate and the film formation of the silicon nitride film on the fluorine-containing silicon oxide film were carried out by the plasma CVD method by the method described in the above-mentioned channel protection layer forming step.
  • the procedure was carried out under the conditions of 500/3000/900 sccm and a pressure of 10 Pa at the time of film formation.
  • the O / Si ratios in the fluorine-containing silicon oxide film were calculated for the four prepared samples by XPS analysis using an X-ray photoelectron spectroscopy analyzer. It was .96.
  • the fixed charge density of each sample was measured. Specifically, a sample to be a fluorine-containing silicon nitride film / fluorine-containing silicon oxide film laminated film / Si substrate is prepared, and an aluminum-containing electrode is formed to contact each of the fluorine-containing silicon nitride film and the Si substrate. , The fixed charge density of each sample was calculated by obtaining the flat band shift amount from the CV measurement. The results are shown in FIG.
  • sample preparation Specifically, based on the above-mentioned manufacturing method, two samples of a bottom gate type thin film transistor using a low resistance silicon substrate as a gate electrode were prepared (FIGS. 5 and 7). In each case, a gate insulating layer made of a thermal silicon oxide film is provided on a gate electrode of a low resistance silicon substrate, a channel layer made of an oxide semiconductor (specifically, IGZO1114) is provided on the gate insulating layer, and a channel layer made of an oxide semiconductor (specifically, IGZO1114) is provided on the gate insulating layer.
  • a source electrode and a drain electrode Mo: 80 nm, Pt: 20 nm
  • a channel protection layer made of a fluorine-containing silicon oxide film (SiO: F) is provided so as to cover the channel layer, the source electrode, and the drain electrode, and a second protection made of a fluorine-containing silicon nitride film (SiN: F) is provided on the channel protection layer. Further layers were provided.
  • a channel protection layer was formed by a plasma CVD method using a plasma CVD apparatus. Specifically, using a plasma CVD device, the pressure inside the vacuum vessel is reduced to 10 Pa, high-frequency power of 20 kW is supplied to the electrodes, the substrate temperature is heated to 200 ° C., and SiF 4 , O are used as raw material gases. 2 and H 2 were supplied.
  • the flow rates of the raw material gases SiF 4 , O 2 and H 2 were set to 100 sccm, 5000 sccm and 900 sccm, respectively.
  • a comparative example sample as shown in FIG.
  • the flow rates of SiF 4 , O 2 and H 2 were set to 200 sccm, 1000 sccm and 900 sccm, respectively. In this way, a channel protection layer made of a fluorine-containing silicon oxide film was formed on the channel layer.
  • a channel protection layer was formed by a plasma CVD method using a plasma CVD apparatus. Specifically, using a plasma CVD device, the pressure inside the vacuum vessel is reduced to 10 Pa, high-frequency power of 40 kW is supplied to the electrodes, the substrate temperature is heated to 200 ° C., and SiF 4 , N 2 are used as raw material gases. the and H 2, were supplied 500 sccm, 3000 sccm, a flow rate of 900 sccm. In this way, a second protective layer made of a fluorine-containing silicon nitride film was formed on the channel protective layer.
  • the O / Si ratio of the fluorine-containing silicon oxide film constituting the channel protection layer was calculated for the two prepared samples by XPS analysis using an X-ray photoelectron spectroscopy analyzer. It was .96, and it was 1.80 in the thin film transistor of the comparative example sample.

Abstract

チャネル層として酸化物半導体を用いるものにおいて、高い信頼性を有する薄膜トランジスタを低コストで提供する。基板上に、ゲート電極と、ゲート絶縁層と、酸化物半導体から成るチャネル層と、前記チャネル層の表面を保護するチャネル保護層とがこの順に積層されたボトムゲート型の薄膜トランジスタであって、前記チャネル保護層がフッ素を含有するシリコン酸化膜から構成されており、前記フッ素を含有するシリコン酸化膜は、Si原子数(at%)に対するO原子数(at%)の比であるO/Si比が1.94以上である薄膜トランジスタ。

Description

薄膜トランジスタ
  本発明は、チャネル層が酸化物半導体からなる薄膜トランジスタに関するものである。
  近年、In-Ga-Zn-O系(IGZO)等の酸化物半導体をチャネル層に用いた薄膜トランジスタ(TFT)の開発が活発に行われている。
  このような薄膜トランジスタとして、例えば特許文献1には、チャネル層に接触するゲート絶縁層やチャネル保護層を構成する絶縁膜として、膜密度が小さい(2.70~2.79g/cm3)酸化アルミニウムを用いるものが開示されている。この薄膜トランジスタでは、このような膜密度が小さい酸化アルミニウムを絶縁膜とすることで、絶縁膜の負の固定電荷密度を大きくでき、これにより薄膜トランジスタの閾値電圧を正方向へシフトさせ、信頼性を向上できることが記載されている。
特開2011-222767号公報
  しかしながら特許文献1に開示される薄膜トランジスタでは、酸化アルミニウム膜を成膜するためには、スパッタリング装置によりスパッタリングを行う必要がある。スパッタリング装置を用いる場合、チャンバー内をガスクリーニングすることができない。そのため、例えばチャンバー内をクリーニングする際には大気開放が必要となり、メンテナンスが長期化し、その生産コストが増大するという問題がある。
  本発明はこのような問題に鑑みてなされたものであり、チャネル層として酸化物半導体を用いるものにおいて、高い信頼性を有する薄膜トランジスタを低コストで提供することを主たる課題とするものである。
  すなわち本発明に係る薄膜トランジスタは、基板上に、ゲート電極(低抵抗Si基板がゲート電極として機能する場合も含む)と、ゲート絶縁層と、酸化物半導体から成るチャネル層と、前記チャネル層の表面を保護するチャネル保護層とがこの順に積層されたボトムゲート型のものであって、前記チャネル保護層がフッ素を含有するシリコン酸化膜(以下、単にフッ素含有シリコン酸化膜ともいう)から構成されており、前記フッ素を含有するシリコン酸化膜は、Si原子数(at%)に対するO原子数(at%)の比であるO/Si比が1.94以上であることを特徴とする。
  このような構成であれば、チャネル層に接触するチャネル保護層を、O/Si比が1.94以上であるフッ素含有シリコン酸化膜により構成することにより、チャネル保護層の固定電荷を負にすることができる。これにより、薄膜トランジスタの閾値電圧を正にシフトさせることができ、その信頼性を向上することができる。
  さらに、チャネル保護層としてフッ素含有シリコン酸化膜を採用することで、ガスクリーニングが可能なCVD(化学気相成長)装置によりこれを成膜することができるので、大気開放することなくチャンバーをクリーニングすることができる。そのため、スパッタリング装置を用いる場合に比べてメンテナンス期間を短縮でき、その生産コストを低減することができる。
  前記シリコン酸化膜のO/Si比が大きいほど、負の固定電荷密度を大きくでき、薄膜トランジスタの閾値電圧をより正側にシフトでき、信頼性を向上できる。
  そのため、前記シリコン酸化膜のO/Si比は、1.94以上であることが好ましい。このO/Si比を大きくするほど、負の固定電荷密度をより大きくでき、歩留まりを向上することができる。そのため、固定電荷密度が-1×1011cm-2以下となるよう、シリコン酸化膜のO/Si比は1.96以上であることがより好ましい。
  一方で、前記シリコン酸化膜のO/Si比が大きすぎると、経時的な酸素抜けにより、膜質が不安定となる恐れがある。
  そのため、前記シリコン酸化膜のO/Si比はSiO2の化学量論的組成比である2.00以下であることが好ましい。
  薄膜トランジスタの防湿性を向上させる観点から、前記チャネル保護層の上に、シリコン窒化膜から構成される第2チャネル保護層がさらに積層されていることが好ましい。
  このような場合でも、負の固定電荷を有するチャネル保護層を、チャネル層の上に積層することにより、薄膜トランジスタの閾値電圧を正にシフトさせることができ、その信頼性を向上することができる。
  前記チャネル層を構成する酸化物半導体の具体的態様として、Inを主成分とする酸化物半導体、具体的にはIGZOを挙げることができる。
  また本発明の薄膜トランジスタは、基板上に、酸化物半導体から成るチャネル層と、ゲート絶縁層と、ゲート電極とがこの順に積層されたものであって、前記ゲート絶縁層がフッ素を含有するシリコン酸化膜から構成されており、前記フッ素を含有するシリコン酸化膜は、Si原子数(at%)に対するO原子数(at%)の比であるO/Si比が1.94以上であることを特徴とする。
  このようなものであっても、上記した本発明の効果を奏することができる。すなわち、チャネル層に接触するゲート絶縁層を、O/Si比が1.94以上であるフッ素含有シリコン酸化膜により構成することにより、チャネル保護層の固定電荷を負にすることができる。これにより、薄膜トランジスタの閾値電圧を正にシフトさせることができ、その信頼性を向上することができる。さらに、ゲート絶縁層としてフッ素含有シリコン酸化膜を採用することで、ガスクリーニングが可能なCVD装置によりこれを成膜することができるので、大気開放することなくチャンバーをクリーニングすることができる。そのため、スパッタリング装置を用いる場合に比べてメンテナンス期間を短縮でき、その生産コストを低減することができる。
  このように構成した本発明によれば、チャネル層として酸化物半導体を用いるものにおいて、高い信頼性を有する薄膜トランジスタを低コストで提供することができる。
本実施形態の薄膜トランジスタの構成を模式的に示す断面図である。 同実施形態の薄膜トランジスタの製造工程を模式的に示す断面図である。 他の実施形態の薄膜トランジスタの構成を模式的に示す断面図である。 実験例におけるフッ素含有シリコン酸化膜のO/Si比と固定電荷密度との関係を示すグラフ。 実験例における実施例サンプルである薄膜トランジスタの構成を説明する模式図。 実験例における実施例サンプルである薄膜トランジスタの伝達特性を示すグラフ。 実験例における比較例サンプルである薄膜トランジスタの構成を説明する模式図。 実験例における比較例サンプルである薄膜トランジスタの伝達特性を示すグラフ。
  以下に、本発明の一実施形態に係る薄膜トランジスタ及びその製造方法について説明する。
<1.薄膜トランジスタ>
  本実施形態の薄膜トランジスタ1は所謂ボトムゲート型のTFTであり、酸化物半導体をチャネルに用いたものである。具体的には図1に示すように、基板2と、ゲート電極3と、ゲート絶縁層4と、チャネル層5と、ソース電極6及びドレイン電極7と、チャネル保護層8とを有しており、基板2側からこの順に形成されている。以下、各部について詳述する。
  基板2は光を透過できるような任意の材料から構成されており、例えば、ポリエチレンテレフタレート(PET)、ポリエチレナフタレート(PEN)、ポリエーテルサルフォン(PES)、アクリル、ポリイミド等のプラスチック(合成樹脂)やガラス等によって構成されてよい。
  ゲート電極3は、薄膜トランジスタ1に印加されるゲート電圧によってチャネル層5中のキャリア密度を制御するものである。このゲート電極3は、高い導電性を有する任意の材料から構成されており、例えばSi、Al、Mo、Cr、Ta、Ti、Pt、Au、Ag等から選択される1種以上の金属から構成されてよい。また、Al-Nd、Ag合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)、In-Ga-Zn-O(IGZO)等の金属酸化物の導電性膜から構成されてよい。ゲート電極3は、これらの導電性膜の単層構造又は2層以上の積層構造から構成されてもよい。
  ゲート絶縁層4は高い絶縁性を有する任意の絶縁材料から構成されており、例えば、SiOx、SiNx、SiON、Al、Y、Ta、Hf等から選択される1つ以上の酸化物を含む絶縁膜であってよい。ゲート絶縁層4は、これらの導電性膜を単層構造又は2層以上の積層構造としたものであってよい。
  チャネル層5は、ソース電極6とドレイン電極7間を流れる電流を通過させるものである。チャネル層5は、酸化物半導体からなるものであり、例えばIn、Ga、Zn、Sn、Al、Ti等から選択される少なくとも1種の元素の酸化物を主成分として含んでいる。チャネル層5を構成する材料の具体例としては、例えば、In-Ga-Zn-O(IGZO)、In-Al-Mg-O、In-Al-Zn-O又はIn-Hf-Zn-O等が挙げられる。このチャネル層5は非晶質(アモルファス)の酸化物半導体膜により構成されている。本実施形態のチャネル層5は単層構造であるが、これに限らず、組成や結晶性が互いに異なる複数の層を重ねて構成した積層構造であってもよい。
  ソース電極6及びドレイン電極7は、チャネル層5の表面を部分的に覆うように、互いに離間して形成されている。ソース電極6及びドレイン電極7は、ゲート電極3と同様に、電極として機能するように高い導電性を有する材料から構成されている。ソース電極6及びドレイン電極7は、単一の材料からなる単層構造でよく、互いに異なる材料からなる複数の層を重ねた積層構造であってもよい。
  チャネル保護層8は、ソース電極6とドレイン電極7の間から露出するチャネル層5の表面(チャネル領域)を覆って保護する絶縁性のものである。チャネル保護層8は、少なくともチャネル層5の表面に接触して設けられている。本実施形態のチャネル保護層8は、ソース電極6及びドレイン電極7の表面を更に覆うように設けられている。
  このチャネル保護層8は、その固定電荷が負である材料から構成されている。具体的にこのチャネル保護層8は、フッ素含有シリコン酸化膜(SiO:F)により構成されている。このフッ素含有シリコン酸化膜は、Si原子数(at%)に対するO原子数(at%)の比であるO/Si比が1.94以上となるように構成されており、これにより負の固定電荷を有するようにしている。負の固定電荷を大きくする観点から、O/Si比は1.94以上であることが好ましく、1.96以上であることがより好ましい一方で、O/Si比が大きすぎると、経時的な酸素抜けにより、膜質が不安定となることがある。そのため、O/Si比は、2.00以下であることが好ましい。
  フッ素含有シリコン酸化膜の組成比は、例えば、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)によって求めることができる。試料表面にX線を照射し、試料表面から放出される光電子の運動エネルギーのピーク強度の面積強度を計測することで得られる各元素の組成から、O/Si比を算出することができる。なお、測定対象の層が最表面にない場合は、アルゴンイオン等によるエッチングを行う。図3は、XPSにより求められた値であり、Siおよび酸素はそれぞれ、Si2pおよびO1sのピーク強度から求めた。
  なおチャネル保護層8の上には、例えばフッ素含有シリコン酸化膜(SiN:F)等からなる第2のチャネル保護層が、必要に応じて更に設けられてもよい。
<2.薄膜トランジスタの製造方法>
  次に、上述した構造の薄膜トランジスタ1の製造方法を、図2を参照して説明する。
  本実施形態の薄膜トランジスタ1の製造方法は、ゲート電極形成工程、ゲート絶縁層形成工程、チャネル層形成工程、ソース・ドレイン電極形成工程、及びチャネル保護層形成工程を含む。以下、各工程について説明する。
(1)ゲート電極形成工程
  まず図2の(a)に示すように、例えば石英ガラスからなる基板2を準備し、基板2の表面にゲート電極3を形成する。ゲート電極3の形成方法は特に制限されず、例えば真空蒸着法等の既知の方法により形成してよい。
(2)ゲート絶縁層形成工程
  次に、図2の(b)に示すように、基板2及びゲート電極3の表面を覆うようにゲート絶縁層4を形成する。ゲート絶縁層4の形成方法は特に限定されず、既知の方法により形成してよい。
(3)チャネル層形成工程
  次に、図2の(c)に示すように、ゲート絶縁層4上にチャネル層5を形成する。このチャネル層5は、既知の方法により形成してよい。例えば、プラズマを用いて、InGaZnO等の導電性酸化物焼結体をターゲットとしてスパッタリングすることによりチャネル層5を形成してよい。なおこれに限らず、他の方法により、酸化物半導体からなるチャネル層5を形成してもよい。
(4)ソース・ドレイン電極形成工程
  次に、図2の(d)に示すように、チャネル層5上にソース電極6及びドレイン電極7を形成する。ソース電極6およびドレイン電極7の形成は、例えば、RFマグネトロンスパッタリング等を用いた既知の方法により形成することができる。ソース電極6及びドレイン電極7は、チャネル層5の表面上で互いに離間し、チャネル層5の表面の一部を露出させるように形成される。
(5)チャネル保護層形成工程
  次に、図2の(e)に示すように、ソース電極6及びドレイン電極7の間から露出するチャネル層5の表面を覆うようにチャネル保護層8を形成する。このチャネル保護層8の形成は、CVD装置を用いたCVD法(化学気相成長法)を用いて行われる。
  例えば、G6基板サイズ(1500×1850mm)のCVD装置において、RFパワー20kW、基板の設定温度200℃、ガス流量SiF/O/H=100/5000/900sccm、成膜時の圧力10Paの条件により成膜することによりチャネル保護層8を形成する。このような方法により、O/Si比が1.94以上であるフッ素含有シリコン酸化膜からなるチャネル保護層8をチャネル層5上に形成することができる。なお、O/Si比が1.94以上であるフッ素含有シリコン酸化膜からなるチャネル保護層8の製造条件は、上記したものに限らず、基板サイズ、RFパワー、基板の設定温度、成膜時圧力、ガス流量は適宜変更されてもよい。
  必要に応じて、チャネル保護層8の上に、フッ素含有シリコン酸化膜(SiN:F)等からなる第2のチャネル保護層を成膜してもよい。このチャネル保護層の成膜は、チャネル保護層8と同様に、CVD装置を用いて行うことができる。
(6)熱処理工程
  必要に応じて酸素を含む大気圧下の雰囲気中で熱処理を行ってもよい。熱処理における炉内温度は特に限定されず、例えば150℃以上300℃以下である。また熱処理時間は特に限定されず、例えば1時間以上3時間以下である。
  以上により、本実施形態の薄膜トランジスタ1を得ることができる。
<3.本実施形態の効果>
  このように構成した本実施形態の薄膜トランジスタ1であれば、チャネル層5に接触するチャネル保護層8を、O/Si比が1.94以上であるフッ素含有シリコン酸化膜により構成することにより、チャネル保護層8の固定電荷を負にすることができる。これにより、薄膜トランジスタ1の閾値電圧を正にシフトさせることができ、その信頼性を向上することができる。さらに、チャネル保護層8としてフッ素含有シリコン酸化膜を採用することで、製造の際にはガスクリーニングが可能なCVD(化学気相成長)装置によりこれを成膜することができるので、大気開放することなくチャンバーをクリーニングすることができる。そのため、スパッタリング装置を用いる場合に比べてメンテナンス期間を短縮でき、その生産コストを低減することができる。
<4.その他の変形実施形態>
  なお、本発明は前記実施形態に限られるものではない。
  例えば、他の実施形態の薄膜トランジスタ1では、チャネル保護層8に加えて、ゲート絶縁層4が、O/Si比が1.94以上のフッ素含有シリコン酸化膜によりこうせいされていてもよい。
  前記実施形態の薄膜トランジスタ1は、ゲート電極3、ゲート絶縁層4及びチャネル層5が基板2側から順に積層されたボトムゲート型のものであったがこれに限らない。他の実施形態では、薄膜トランジスタ1は、チャネル層5、ゲート絶縁層4、及びゲート電極3が基板2側から順に積層されたトップゲート型のものであってもよい。この場合には、ゲート絶縁層4がフッ素含有シリコン酸化膜(SiO:F)により構成されており、このフッ素含有シリコン酸化膜は、Si原子数(at%)に対するO原子数(at%)の比であるO/Si比が1.94以上であることが好ましい。
  その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
  以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することが勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
<1.フッ素含有シリコン酸化膜のO/Si比と、固定電荷密度との関係性>
  フッ素含有シリコン酸化膜のO/Si比と、その固定電荷密度との関係性を評価した。
(サンプル作製)
  具体的には、O/Si比が互いに異なるフッ素含有シリコン酸化膜をシリコン基板上に成膜した4つのサンプルを準備した。いずれのサンプルも、フッ素含有シリコン酸化膜の上に、更にシリコン窒化膜を成膜した。基板上へのフッ素含有シリコン酸化膜の成膜と、フッ素含有シリコン酸化膜上へのシリコン窒化膜の成膜は、前記したチャネル保護層形成工程に記載した方法により、プラズマCVD法により行った。
  具体的には、シリコン基板上へのフッ素含有シリコン酸化膜の成膜は、G6基板サイズ(1500×1850mm)のCVD装置を用いて、RFパワー20kW、基板の設定温度200℃、ガス流量SiF/O/H=100/5000/900sccm、成膜時の圧力10Paの条件により行った。
  具体的には、シリコン窒化膜の成膜は、G6基板サイズ(1500×1850mm)のCVD装置を用いて、RFパワー40kW、基板の設定温度200℃、ガス流量SiF/N/H=500/3000/900sccm、成膜時の圧力10Paの条件により行った。
  作製した4つのサンプルについて、X線光電子分光分析装置を用いたXPS分析により、フッ素含有シリコン酸化膜中のO/Si比を算出したところ、それぞれ1.80、1.83、1.90、1.96であった。
(固定電荷密度の測定)
  次に各サンプルの固定電荷密度を測定した。具体的には、フッ素含有シリコン窒化膜/フッ素含有シリコン酸化膜積層膜/Si基板となるサンプルを作製し、さらに、フッ素含有シリコン窒化膜およびSi基板それぞれにコンタクトする、アルミニウム含有の電極を形成し、CV測定から、フラットバンドシフト量を求めることにより、各サンプルの固定電荷密度を算出した。その結果を図4に示す。
  図4に示すように、フッ素含有シリコン酸化膜のO/Si比を1.94以上にすることにより、サンプルの固定電荷が負になることが分かった。
<2.薄膜トランジスタのチャネル保護層の組成と伝達特性の関係性>
  次に、薄膜トランジスタのチャネル保護層の組成と、伝達特性との関係を評価した。
(サンプル作製)
  具体的には、前記した製造方法に基づいて、低抵抗シリコン基板をゲート電極として使用したボトムゲート型の薄膜トランジスタのサンプルを2つ作成した(図5、図7)。いずれも、低抵抗シリコン基板のゲート電極の上に、熱酸化シリコン膜からなるゲート絶縁層を設け、その上に酸化物半導体(具体的にはIGZO1114)からなるチャネル層を設け、その上に、ソース電極及びドレイン電極(Mo:80nm、Pt:20nm)を設けた。そして、チャネル層、ソース電極及びドレイン電極を覆うように、フッ素含有シリコン酸化膜(SiO:F)からなるチャネル保護層を設け、そのうえに、フッ素含有シリコン窒化膜(SiN:F)からなる第2保護層を更に設けた。
  いずれのサンプルも、プラズマCVD装置を用いたプラズマCVD法によりチャネル保護層を成膜した。具体的には、プラズマCVD装置を用いて、真空容器内の圧力を10Paまで減圧し、電極に20kWの高周波電力を供給し、基板温度を200℃まで加熱し、原料ガスとして、SiF、O及びHを供給した。ここで、一方のサンプル(実施例サンプルという)では、図5に示すように、原料ガスであるSiF、O及びHの流量をそれぞれ100sccm、5000sccm、900sccmとした。他方のサンプル(比較例サンプルという)では、図7に示すように、SiF、O及びHの流量をそれぞれ200sccm、1000sccm、900sccmとした。このようにして、フッ素含有シリコン酸化膜から成るチャネル保護層をチャネル層の上に形成した。
  またいずれのサンプルも、プラズマCVD装置を用いたプラズマCVD法によりチャネル保護層を成膜した。具体的には、プラズマCVD装置を用いて、真空容器内の圧力を10Paまで減圧し、電極に40kWの高周波電力を供給し、基板温度を200℃まで加熱し、原料ガスとしてSiF、N及びHを、それぞれ500sccm、3000sccm、900sccmの流量で供給した。このようにして、フッ素含有シリコン窒化膜からなる第2保護層をチャネル保護層の上に成膜した。
  作製した2つのサンプルに対して、X線光電子分光分析装置を用いたXPS分析により、チャネル保護層を構成するフッ素含有シリコン酸化膜のO/Si比を算出したところ、実施例サンプルの薄膜トランジスタでは1.96であり、比較例サンプルの薄膜トランジスタでは1.80であった。
(ゲート閾値電圧Vthの測定)
  作成した2つのサンプルに対して、ドレイン電流-ゲート電圧特性(Id-Vg特性)の測定を行った。その結果を図6及び図8に示す。図6から分かるように、チャネル保護層を構成するフッ素含有シリコン酸化膜のO/Si比が1.94以上である実施例サンプルでは、正のゲート閾値電圧Vth(ドレイン電流Id=1nAにおけるゲート電圧Vg)を有する相対的に信頼性の高い薄膜トランジスタが得られることが分かった。一方で図8から分かるように、チャネル保護層を構成するフッ素含有シリコン酸化膜のO/Si比が1.94未満である比較例サンプルでは、負のゲート閾値電圧Vthを有する相対的に信頼性の低い薄膜トランジスタが得られることが分かった。
  1    ・・・薄膜トランジスタ
  2    ・・・基板
  3    ・・・ゲート電極
  4    ・・・ゲート絶縁層
  5    ・・・チャネル層
  6    ・・・ソース電極
  7    ・・・ドレイン電極
  8    ・・・チャネル保護層

Claims (6)

  1.   基板上に、ゲート電極と、ゲート絶縁層と、酸化物半導体から成るチャネル層と、前記チャネル層の表面を保護するチャネル保護層とがこの順に積層されたボトムゲート型の薄膜トランジスタであって、
      前記チャネル保護層がフッ素を含有するシリコン酸化膜から構成されており、
      前記フッ素を含有するシリコン酸化膜は、Si原子数(at%)に対するO原子数(at%)の比であるO/Si比が1.94以上である薄膜トランジスタ。
  2.   前記フッ素を含有するシリコン酸化膜は、O/Si比が1.96以上である請求項1に記載の薄膜トランジスタ。
  3.   前記フッ素を含有するシリコン酸化膜は、O/Si比が2.00以下である請求項1又は2に記載の薄膜トランジスタ。
  4.   前記チャネル保護層の上に、シリコン窒化膜から構成される第2チャネル保護層がさらに積層されている請求項1~3のいずれか一項に記載の薄膜トランジスタ。
  5.   前記チャネル層を構成する酸化物半導体がIGZOである請求項1~4のいずれか一項に記載の薄膜トランジスタ。
  6.   基板上に、酸化物半導体から成るチャネル層と、ゲート絶縁層と、ゲート電極とがこの順に積層されたトップゲート型の薄膜トランジスタであって、
      前記ゲート絶縁層がフッ素を含有するシリコン酸化膜から構成されており、
      前記フッ素を含有するシリコン酸化膜は、Si原子数(at%)に対するO原子数(at%)の比であるO/Si比が1.94以上である薄膜トランジスタ。
PCT/JP2021/024918 2020-07-01 2021-07-01 薄膜トランジスタ WO2022004838A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180043421.0A CN115735269A (zh) 2020-07-01 2021-07-01 薄膜晶体管
KR1020227044924A KR20230014743A (ko) 2020-07-01 2021-07-01 박막 트랜지스터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-113766 2020-07-01
JP2020113766A JP7418703B2 (ja) 2020-07-01 2020-07-01 薄膜トランジスタ

Publications (1)

Publication Number Publication Date
WO2022004838A1 true WO2022004838A1 (ja) 2022-01-06

Family

ID=79316311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024918 WO2022004838A1 (ja) 2020-07-01 2021-07-01 薄膜トランジスタ

Country Status (4)

Country Link
JP (1) JP7418703B2 (ja)
KR (1) KR20230014743A (ja)
CN (1) CN115735269A (ja)
WO (1) WO2022004838A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109078A (ja) * 2009-10-21 2011-06-02 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
JP2011119355A (ja) * 2009-12-01 2011-06-16 Sony Corp 薄膜トランジスタならびに表示装置および電子機器
JP2012182388A (ja) * 2011-03-02 2012-09-20 Toshiba Corp 薄膜トランジスタ及びその製造方法、表示装置
JP2015012131A (ja) * 2013-06-28 2015-01-19 東京エレクトロン株式会社 多層保護膜の形成方法及び多層保護膜の形成装置
JP2016082241A (ja) * 2014-10-20 2016-05-16 株式会社半導体エネルギー研究所 半導体装置およびその作製方法、ならびにモジュールおよび電子機器
JP2016111324A (ja) * 2014-09-02 2016-06-20 株式会社神戸製鋼所 薄膜トランジスタ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222767A (ja) 2010-04-09 2011-11-04 Sony Corp 薄膜トランジスタならびに表示装置および電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109078A (ja) * 2009-10-21 2011-06-02 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
JP2011119355A (ja) * 2009-12-01 2011-06-16 Sony Corp 薄膜トランジスタならびに表示装置および電子機器
JP2012182388A (ja) * 2011-03-02 2012-09-20 Toshiba Corp 薄膜トランジスタ及びその製造方法、表示装置
JP2015012131A (ja) * 2013-06-28 2015-01-19 東京エレクトロン株式会社 多層保護膜の形成方法及び多層保護膜の形成装置
JP2016111324A (ja) * 2014-09-02 2016-06-20 株式会社神戸製鋼所 薄膜トランジスタ
JP2016082241A (ja) * 2014-10-20 2016-05-16 株式会社半導体エネルギー研究所 半導体装置およびその作製方法、ならびにモジュールおよび電子機器

Also Published As

Publication number Publication date
CN115735269A (zh) 2023-03-03
JP7418703B2 (ja) 2024-01-22
KR20230014743A (ko) 2023-01-30
JP2022012152A (ja) 2022-01-17

Similar Documents

Publication Publication Date Title
JP7143461B2 (ja) 半導体装置
Esro et al. High‐mobility ZnO thin film transistors based on solution‐processed hafnium oxide gate dielectrics
JP5241143B2 (ja) 電界効果型トランジスタ
JP5127183B2 (ja) アモルファス酸化物半導体膜を用いた薄膜トランジスタの製造方法
JP5780902B2 (ja) 半導体薄膜、薄膜トランジスタ及びその製造方法
WO2012091126A1 (ja) 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
KR101927579B1 (ko) 전이금속 디칼코게나이드 박막 트랜지스터 및 그 제조방법
US8927330B2 (en) Methods for manufacturing a metal-oxide thin film transistor
TW201138106A (en) Transistor
JPWO2010098101A1 (ja) トランジスタ、トランジスタの製造方法及びその製造装置
Xia et al. Characteristics of elevated-metal metal-oxide thin-film transistors based on indium-tin-zinc oxide
WO2010098100A1 (ja) トランジスタ、トランジスタの製造方法及びその製造装置
JP5856559B2 (ja) 薄膜トランジスタの半導体層用酸化物薄膜の製造方法
WO2022004838A1 (ja) 薄膜トランジスタ
JP5645737B2 (ja) 薄膜トランジスタ構造および表示装置
KR20150136726A (ko) 산화물 반도체 박막 트랜지스터의 제조방법
TWI779254B (zh) 薄膜電晶體的製造方法
WO2022130912A1 (ja) 薄膜トランジスタの製造方法
WO2022202100A1 (ja) シリコン酸窒化膜の成膜方法及び薄膜トランジスタの製造方法
CN110062961B (zh) 半导体器件及其制造方法
TWI451501B (zh) 金屬氧化物半導體電晶體的製造方法
KR101437779B1 (ko) 산화물 반도체층을 갖는 박막트랜지스터 및 이의 제조방법
JP2014082424A (ja) 半導体装置の製造方法
JP2020088152A (ja) 薄膜トランジスタの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227044924

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21834195

Country of ref document: EP

Kind code of ref document: A1