WO2022202100A1 - シリコン酸窒化膜の成膜方法及び薄膜トランジスタの製造方法 - Google Patents

シリコン酸窒化膜の成膜方法及び薄膜トランジスタの製造方法 Download PDF

Info

Publication number
WO2022202100A1
WO2022202100A1 PCT/JP2022/007958 JP2022007958W WO2022202100A1 WO 2022202100 A1 WO2022202100 A1 WO 2022202100A1 JP 2022007958 W JP2022007958 W JP 2022007958W WO 2022202100 A1 WO2022202100 A1 WO 2022202100A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gas
silicon oxynitride
flow rate
forming
Prior art date
Application number
PCT/JP2022/007958
Other languages
English (en)
French (fr)
Inventor
敏彦 酒井
靖典 安東
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to CN202280020052.8A priority Critical patent/CN116982142A/zh
Priority to KR1020237031266A priority patent/KR20230138552A/ko
Publication of WO2022202100A1 publication Critical patent/WO2022202100A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to a method for forming a silicon oxynitride film and a method for manufacturing a thin film transistor using the film forming method.
  • IGZO In--Ga--Zn--O-based oxide semiconductor for a semiconductor layer (channel layer)
  • a thin film transistor is known in which a protective layer made of a silicon oxide film containing fluorine and an insulating layer such as a gate insulating layer are formed so as to be adjacent to an oxide semiconductor.
  • a protective layer made of a silicon oxide film containing fluorine and an insulating layer such as a gate insulating layer are formed so as to be adjacent to an oxide semiconductor.
  • an insulating layer made of a fluorine-containing silicon oxide film is formed on an oxide semiconductor by a plasma CVD method using SiCl 4 gas, SiF 4 gas, and oxygen gas as process gases. Have been described.
  • Patent Document 1 has the problem of high manufacturing costs because it uses relatively expensive SiCl 4 gas as the process gas. Therefore, it is conceivable to reduce the manufacturing cost by forming an insulating layer using only SiF 4 gas and oxygen gas without using expensive SiCl 4 as a process gas. There is a problem that the formation of the silicon oxynitride film on the substrate becomes unstable (that is, the film adhesion is poor).
  • the present invention has been made to solve the above-described problems at once, and in a film formation method for forming a silicon oxynitride film on an oxide semiconductor, the cost is reduced and the film formation stability is improved.
  • the main task is to
  • the film forming method of the present invention is a film forming method for forming a silicon oxynitride film on an oxide semiconductor. It is characterized in that the film is formed by a plasma CVD method by supplying a process gas, and in the supplied process gas, the ratio of the flow rate of nitrogen gas to the total flow rate of nitrogen gas and oxygen gas is 93% or more.
  • a relatively inexpensive gas is used as the process gas in the plasma CVD method without using expensive SiCl 4 , so material costs can be reduced.
  • the ratio of the flow rate of nitrogen gas to the total flow rate of nitrogen gas and oxygen gas supplied as process gases is set to 93% or more.
  • a film can be stably formed on a semiconductor. As a result, the yield can be improved and the manufacturing cost can be further reduced.
  • the inventors of the present invention have I will explain the mechanism considered by them. That is, in the film forming method of the present invention, the ratio of the flow rate of nitrogen gas to the total flow rate of nitrogen gas and oxygen gas supplied as process gases is 93% or more, so that oxygen gas (binding energy: 5.16 eV) It is believed that the decomposition of Si—F (bond energy: 5.72 eV), which has a large bond energy and is difficult to decompose, is promoted, and the formation of a silicon oxynitride film starting from silicon atoms is facilitated.
  • oxygen gas has a high electronegativity and acts as an additive gas for gas containing fluorine (F), which is thought to facilitate etching of the outermost surface of the substrate.
  • F gas containing fluorine
  • both surface reactions of film formation and etching progress in parallel, but since etching becomes relatively difficult by increasing the ratio of nitrogen gas, the silicon oxynitride film, which has good insulating properties, is oxidized. Therefore, it is thought that the film can be stably formed on the material semiconductor. Note that the description of this mechanism is not intended to limit the technical scope of the present invention.
  • the ratio of the flow rate of nitrogen gas to the total flow rate of nitrogen gas and oxygen gas is 96% or more.
  • the leakage current density is 1 ⁇ 10 ⁇ 5 A/cm 2 or less
  • the dielectric breakdown electric field strength is 3 MV/cm.
  • a specific embodiment of the oxide semiconductor that more remarkably exhibits the effect of the film forming method of the present invention is one composed of In--Ga--Zn--O.
  • the film forming method of the present invention can be used to manufacture a thin film transistor using a substrate having a low melting point such as a resin.
  • the film forming method of the present invention it is possible to manufacture a thin film transistor having an insulating layer exhibiting good insulating performance even in such a low-temperature treatment.
  • a method for manufacturing a thin film transistor according to the present invention is a method for manufacturing a thin film transistor having an oxide semiconductor made of In--Ga--Zn--O as a channel layer, comprising: a semiconductor layer forming step of forming the oxide semiconductor by sputtering; and an insulating layer forming step of forming an insulating layer made of a silicon oxynitride film on the oxide semiconductor by the film forming method described above. According to such a method for manufacturing a thin film transistor, it is possible to obtain the same effect as the film forming method of the present invention described above.
  • FIG. 2 is a diagram schematically showing the configuration of a bottom-gate thin film transistor according to this embodiment
  • FIG. 4 is a diagram schematically showing a manufacturing process of the thin film transistor of the same embodiment
  • FIG. 4 is a diagram schematically showing the configuration of a plasma processing apparatus used in the plasma processing step of the thin film transistor of the same embodiment
  • FIG. 10 is a diagram schematically showing the configuration of a top-gate thin film transistor according to another embodiment
  • 4 is a graph showing the relationship between the ratio of nitrogen gas flow rate and the stability of film formation in an experimental example.
  • 7 is a graph showing the relationship between the ratio of the nitrogen gas flow rate, the film formation rate, and the refractive index in the experimental example.
  • 4 is a graph showing the relationship between the ratio of nitrogen gas flow rate and insulating properties in an experimental example.
  • a thin film transistor and a method for manufacturing the same according to one embodiment of the present invention will be described below.
  • the thin film transistor 1 of this embodiment is a so-called bottom gate type TFT, and uses an oxide semiconductor for the channel. Specifically, as shown in FIG. 1, it has a substrate 2, a gate electrode 3, a gate insulating layer 4, a semiconductor layer 5, a source electrode 6 and a drain electrode 7, and a protective layer 8, They are formed in this order from the substrate 2 side.
  • the protective layer 8 corresponds to the "insulating layer" in the claims.
  • the substrate 2 is made of any material that allows light to pass through. ) or a glass material.
  • the gate electrode 3 controls the carrier density in the semiconductor layer 5 by the gate voltage applied to the thin film transistor 1 .
  • the gate electrode 3 is made of any material having high conductivity, and is made of one or more metals selected from, for example, Si, Al, Mo, Cr, Ta, Ti, Pt, Au, Ag, and the like. may be In addition, the conductivity of metal oxides such as Al-Nd, Ag alloy, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), zinc indium oxide (IZO), In-Ga-Zn-O (IGZO) It may consist of a membrane.
  • the gate electrode 3 may be composed of a single layer structure or a laminated structure of two or more layers of these conductive films.
  • the gate insulating layer 4 is made of any insulating material having high insulating properties, and is selected from, for example, SiOx , SiNx , SiON, Al2O3 , Y2O3 , Ta2O5 , Hf2 , and the like. It may be an insulating film that includes one or more oxides that are The gate insulating layer 4 may have a single-layer structure or a laminated structure of two or more layers of these conductive films.
  • the semiconductor layer (channel layer) 5 passes the current flowing between the source electrode 6 and the drain electrode 7 .
  • the semiconductor layer 5 of the present embodiment is made of an oxide semiconductor, and contains, as a main component, an oxide of at least one element selected from, for example, In, Ga, Zn, Sn, Al, Ti, and the like. . Specific examples of materials constituting the semiconductor layer 5 include In--Ga--Zn--O (IGZO), In--Al--Mg--O, In--Al--Zn--O, In--Hf--Zn--O, etc. is mentioned.
  • the semiconductor layer 5 is composed of an amorphous oxide semiconductor film.
  • the semiconductor layer 5 of the present embodiment has a single-layer structure, but is not limited to this, and may have a laminated structure in which a plurality of layers having different compositions and crystallinities are laminated.
  • the source electrode 6 and the drain electrode 7 are formed apart from each other so as to partially cover the surface of the semiconductor layer 5 .
  • the source electrode 6 and the drain electrode 7 are made of a highly conductive material so as to function as electrodes.
  • the source electrode 6 and the drain electrode 7 may have a single-layer structure made of a single material, or may have a laminated structure in which a plurality of layers made of different materials are laminated.
  • the protective layer (passivation layer) 8 covers and protects the surface (channel region) of the semiconductor layer 5 exposed between the source electrode 6 and the drain electrode 7, and is made of an insulating material. .
  • the protective layer 8 is provided in contact with at least the surface of the semiconductor layer 5 .
  • the protective layer 8 of this embodiment is provided so as to further cover the surfaces of the source electrode 6 and the drain electrode 7 .
  • the protective layer 8 is composed of a fluorine-containing silicon oxynitride film (SiON:F).
  • This fluorine-containing silicon oxynitride film preferably has a leakage current density of 1 ⁇ 10 ⁇ 5 A/cm 2 or less and a dielectric breakdown field strength of 3 MV/cm or more. ⁇ 7 A/cm 2 or less, and a dielectric breakdown field strength of 8 MV/cm or more is more preferable.
  • a second film made of, for example, a fluorine-containing silicon oxide film (SiN:F), a fluorine-containing silicon oxide film (SiO:F), a silicon nitride film (SiNx), a silicon oxide film (SiOx), or the like is formed on the protective layer 8.
  • a protective layer of may be further provided as required.
  • the method of manufacturing the thin film transistor 1 of this embodiment includes a gate electrode forming process, a gate insulating layer forming process, a semiconductor layer forming process, a source/drain electrode forming process, a plasma treatment process, and a protective layer forming process.
  • the protective layer forming step corresponds to the "insulating layer forming step" in the claims. Each step will be described below.
  • the method of forming the gate electrode 3 is not particularly limited, and may be formed by a known method such as a vacuum deposition method.
  • the gate insulating layer 4 is formed to cover the surfaces of the substrate 2 and the gate electrode 3 .
  • a method for forming the gate insulating layer 4 is not particularly limited, and it may be formed by a known method.
  • the semiconductor layer 5 is formed on the gate insulating layer 4 .
  • This semiconductor layer 5 may be formed by a known method.
  • the semiconductor layer 5 may be formed by sputtering a conductive oxide sintered body such as InGaZnO as a target using inductively coupled plasma.
  • the semiconductor layer 5 made of an oxide semiconductor may be formed by another method without being limited to this.
  • the source electrode 6 and the drain electrode 7 are formed on the semiconductor layer 5 .
  • the source electrode 6 and the drain electrode 7 can be formed by a known method using, for example, RF magnetron sputtering.
  • the source electrode 6 and the drain electrode 7 are formed on the surface of the semiconductor layer 5 so as to be spaced apart from each other and partially expose the surface of the semiconductor layer 5 .
  • the surface of the semiconductor layer 5 may be subjected to plasma treatment (pre-film formation treatment).
  • this plasma processing may be performed using an inductively coupled plasma processing apparatus 100 as illustrated in FIG.
  • the plasma processing apparatus 100 includes a vacuum vessel 20 inside which is formed a processing chamber 10 which is evacuated and into which a process gas G is introduced; an antenna 30 provided outside the processing chamber 10; and a high frequency power supply 40 that applies a high frequency (13.56 MHz).
  • a high frequency is applied from the high frequency power supply 40 to the antenna 30
  • a high frequency magnetic field generated from the antenna 30 is formed in the processing chamber 10 to generate an induced electric field, thereby generating an inductively coupled plasma P.
  • the ratio of the flow rate of nitrogen gas to the total flow rate of nitrogen gas and oxygen gas (N 2 /N 2 +O 2 ) is preferably 70% or more, more preferably 80% or more. More preferably, it is 90% or more.
  • N 2 /N 2 +O 2 the ratio of the flow rate of nitrogen gas to the total flow rate of nitrogen gas and oxygen gas
  • this step is preferably performed at a substrate temperature as low as 150° C. or higher and 300° C. or lower.
  • the treatment time for the plasma treatment is not particularly limited, but from the viewpoint of further reducing the fixed charge density in the protective layer 8, it is preferably 15 seconds or more and 45 seconds or less.
  • the RF power, the film-forming pressure, the absolute amount of the process gas, and the like may be appropriately set.
  • the flow rate of each gas supplied into the processing chamber 10 is controlled by a mass flow controller provided in the gas flow path. That is, the "flow rate" referred to here means a set value in a flow control device such as a mass flow controller (the same applies to other processes).
  • a protective layer 8 is formed to cover the surface of the semiconductor layer 5 exposed between the source electrode 6 and the drain electrode 7, as shown in FIG. do.
  • the protective layer 8 is formed by plasma CVD (chemical vapor deposition) using the above-described plasma processing apparatus (hereinafter also referred to as plasma CVD apparatus) 100, for example.
  • plasma CVD apparatus plasma processing apparatus
  • the protective layer forming step is performed while maintaining the plasma generated in the processing chamber 10 of the plasma CVD apparatus 100 in the plasma processing step.
  • SiF 4 (silicon tetrafluoride) gas, nitrogen gas, oxygen gas, and hydrogen gas are supplied as process gases into the processing chamber 10, and a high frequency is applied to the antenna 30 in this state. to generate an inductively coupled plasma.
  • the ratio of the flow rate of nitrogen gas to the total flow rate of nitrogen gas and oxygen gas is 93% or more, and 96% or more. is preferred.
  • the upper limit of the ratio is not particularly limited, it is preferably 100%.
  • the flow rate of the oxygen gas intentionally supplied into the processing chamber 10 is 0 ccm, but even in this case, the process gas inevitably contains oxygen gas. Therefore, a fluorine-containing silicon oxynitride film can be formed. Moreover, this step is preferably performed at a substrate temperature as low as 150° C. or higher and 300° C. or lower. In addition, the RF power, the film-forming pressure, the absolute amount of the process gas, and the like may be appropriately set.
  • a fluorine-containing silicon oxide film SiN:F
  • a fluorine-containing silicon oxide film SiO:F
  • a silicon nitride film SiNx
  • a silicon oxide film SiOx
  • a second protective layer may be deposited. Film formation of this protective layer can be performed using the plasma CVD apparatus 100 similarly to the protective layer 8 .
  • heat treatment may be performed in an atmosphere containing oxygen under atmospheric pressure.
  • the furnace temperature in the heat treatment is not particularly limited, and is, for example, 150° C. or higher and 300° C. or lower.
  • the heat treatment time is not particularly limited, and is, for example, 1 hour or more and 3 hours or less.
  • the thin film transistor 1 of the present embodiment can be obtained.
  • the plasma CVD method is used to protect the thin film transistor 1 by using a relatively inexpensive gas as a process gas without using expensive SiCl 4 .
  • Forming the layer 8 reduces material costs. Further, the ratio of the flow rate of nitrogen gas to the total flow rate of nitrogen gas and oxygen gas supplied as process gases is set to 93% or more.
  • the protective layer 8 composed of an oxide semiconductor can be stably formed on the semiconductor layer 5 composed of an oxide semiconductor. As a result, the yield can be improved and the manufacturing cost can be further reduced.
  • the thin film transistor 1 of the above-described embodiment is a bottom gate type in which the gate electrode 3, the gate insulating layer 4 and the semiconductor layer 5 are stacked in order from the substrate 2 side, but the present invention is not limited to this.
  • the thin film transistor 1 may be of a top gate type in which a semiconductor layer 5, a gate insulating layer 4, and a gate electrode 3 are stacked in order from the substrate 2 side.
  • the gate insulating layer 4 laminated on the semiconductor layer 5 corresponds to the "insulating layer" in the claims.
  • the gate insulating layer 4 is composed of a fluorine-containing silicon oxynitride film (SiON:F), has a leakage current density of 1 ⁇ 10 ⁇ 5 A/cm 2 or less, and has a dielectric breakdown electric field strength of 3 MV/cm 2 . More preferably, it has a leakage current density of 1 ⁇ 10 ⁇ 7 A/cm 2 or less and a dielectric breakdown field strength of 8 MV/cm or more.
  • SiON:F fluorine-containing silicon oxynitride film
  • the manufacturing method is to perform the semiconductor layer forming step, the source/drain electrode forming step, the plasma processing step, the gate insulating layer forming step, and the gate electrode forming step in this order.
  • the gate insulating layer forming step corresponds to the "insulating layer forming step" in the claims. Therefore, in this embodiment, the gate insulating layer forming step is performed by plasma CVD using SiF 4 (silicon tetrafluoride) gas, nitrogen gas, oxygen gas and hydrogen gas as process gases.
  • SiF 4 silicon tetrafluoride
  • the surface of the oxide semiconductor layer 5 is plasma-treated after forming the oxide semiconductor layer 5 and before forming the insulating layer (protective layer 8) thereon, but the present invention is not limited to this. .
  • an insulating layer (protective layer 8) may be formed on the surface of the oxide semiconductor layer 5 without performing plasma treatment on the surface.
  • the semiconductor layer 5 is made of an oxide semiconductor in the above embodiment, it is not limited to this. In other embodiments, the semiconductor layer 5 may consist of any semiconductor material, for example amorphous Si or polycrystalline Si.
  • Example 1 Relationship between nitrogen gas flow rate ratio in process gas and film formation stability The relationship between (also referred to as (N 2 +O 2 )) and the stability of film formation over an oxide semiconductor was evaluated.
  • the ratio of N 2 /(N 2 +O 2 ) in the process gas to be supplied is changed (from 0% to 100%), and the silicon substrate and the IGZO film are separated. A fluorine-containing silicon oxynitride film was formed on each surface. Then, the ratio of the film thickness on the IGZO film to the film thickness on the Si substrate (hereinafter also referred to as film thickness ratio) was measured.
  • each fluorine-containing silicon oxynitride film was formed by supplying SiF 4 , N 2 , O 2 and H 2 as process gases into the processing chamber of a plasma CVD apparatus, RF power: 20 kW (0.48 W/ cm 2 ), pressure during film formation: 10 Pa, and set temperature: 200°C.
  • the flow rates of the supplied gases were set to SiF 4 : 500 sccm, H 2 : 900 sccm, and N 2 +O 2 : 3000 sccm.
  • the film thickness of the fluorine-containing silicon oxynitride film after film formation was measured with a spectroscopic ellipsometer (FE-5000S, manufactured by Otsuka Electronics Co., Ltd.). The measurement results are shown in FIG.
  • the film thickness ratio is less than 0.9 or more than 1.1. Film formation was unstable.
  • N 2 /(N 2 +O 2 ) in the process gas is in the range of 93% or more (93.3%, 96.7%, 100%)
  • the film thickness ratio is 0.9 or more. It was 1.1 or less (that is, the film thickness difference was within 10%), and a fluorine-containing silicon oxynitride film could be stably formed on the IGZO film.
  • Example 2 Relationship between nitrogen gas flow rate ratio in process gas, film formation rate, and refractive index Next, the ratio of the nitrogen gas flow rate to the total flow rate of nitrogen gas and oxygen gas in the process gas in the plasma CVD method. , the deposition rate and the refractive index of the fluorine-containing silicon oxynitride film over the oxide semiconductor.
  • the N 2 /(N 2 +O 2 ) in the process gas was set to 93% or more (specifically, 93.3%, 96.7%, 100%) and on the IGZO film
  • the film formation rate and the refractive index were measured for the three samples on which the film was formed.
  • the film formation rate of each sample was calculated by dividing the film thickness measured by the spectroscopic ellipsometer by the film formation time.
  • the refractive index of each sample was also measured by the above spectroscopic ellipsometer. The results are shown in FIG.
  • a fluorine-containing silicon oxynitride film was formed on a Si substrate using the plasma CVD apparatus described above, and an aluminum electrode was formed on this fluorine-containing silicon oxynitride film to prepare a sample.
  • three types (93.3%, 96.7%, 100%) in which N 2 /(N 2 +O 2 ) in the process gas supplied when forming the fluorine-containing silicon oxynitride film are changed. created a sample of As for each type of sample, as shown in FIG. 7, a total of six samples were prepared by changing conditions such as RF power, pressure and temperature during film formation, and process gas flow rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

酸化物半導体の上に酸窒化シリコン膜を成膜する成膜方法であって、前記酸窒化シリコン膜を、SiFガス、窒素ガス、酸素ガス及び水素ガスをプロセスガスとして供給して行うプラズマCVD法により成膜し、前記供給するプロセスガスにおいて、窒素ガスと酸素ガスの合計流量に対する窒素ガスの流量の割合が93%以上であることを特徴とする成膜方法である。

Description

シリコン酸窒化膜の成膜方法及び薄膜トランジスタの製造方法
 本発明は、シリコン酸窒化膜の成膜方法及び当該成膜方法を用いた薄膜トランジスタの製造方法に関するものである。
 近年、In-Ga-Zn-O系(IGZO)の酸化物半導体を半導体層(チャネル層)に用いた薄膜トランジスタの開発が活発に行われている。このような薄膜トランジスタとしては、フッ素含有酸化シリコン膜からなる保護層やゲート絶縁層等の絶縁層を酸化物半導体に隣接させるように形成するものが知られている。例えば、特許文献1には、SiClガスとSiFガスと酸素ガスとをプロセスガスとして用いたプラズマCVD法により、フッ素含有酸化シリコン膜からなる絶縁層を酸化物半導体の上に形成するものが記載されている。
特開2018-195610号公報
 しかしながら、特許文献1に開示される製造方法は、比較的高価なSiClガスをプロセスガスとして用いるため製造コストが高くつくという問題がある。そこでプロセスガスとして高価なSiClを用いず、SiFガスと酸素ガスのみを用いて絶縁層を成膜することにより製造コストを低減することも考えられるが、この場合には、酸化物半導体上への酸窒化シリコン膜の成膜が不安定になる(すなわち膜付きが悪い)という問題がある。
 本発明は上記した課題を一挙に解決すべくなされたものであり、酸化物半導体の上に酸窒化シリコン膜を成膜する成膜方法において、低コスト化を図るとともに、成膜安定性を向上させることを主たる課題とするものである。
 すなわち本発明の成膜方法は、酸化物半導体の上に酸窒化シリコン膜を成膜する成膜方法であって、前記酸窒化シリコン膜を、SiFガス、窒素ガス、酸素ガス及び水素ガスをプロセスガスとして供給して行うプラズマCVD法により成膜し、前記供給するプロセスガスにおいて、窒素ガスと酸素ガスの合計流量に対する窒素ガスの流量の割合が93%以上であることを特徴とする。
 このような成膜方法であれば、プラズマCVD法におけるプロセスガスとして、高価なSiClを用いることなく比較的な安価なガスを用いるので、材料コストを低減できる。さらに、プロセスガスとして供給する窒素ガスと酸素ガスの合計流量に対する窒素ガスの流量の割合を93%以上とし、その割合を非常に高くすることにより、絶縁性の良好な酸窒化シリコン膜を酸化物半導体上に安定して成膜することができる。これにより歩留まりが向上し、製造コストをより一層低減させることができる。
 本発明の成膜方法により酸化物半導体膜上に酸窒化シリコン膜を安定して成膜できる理由については未だ不明な点もあるが、現在までに得られている知見を基に、本発明者らが考えるメカニズムについて説明する。すなわち、本発明の成膜方法では、プロセスガスとして供給する窒素ガスと酸素ガスの合計流量に対する窒素ガスの流量の割合を93%以上とすることにより、酸素ガス(結合エネルギー:5.16eV)より結合エネルギーが大きく、分解されにくいSi-F(結合エネルギー:5.72eV)の分解が促進され、シリコン原子を起点とした酸窒化シリコン膜の成膜が進みやすくなると考えられる。また、酸素ガスは電気陰性度が高く、フッ素(F)を含むガスの添加ガスとして作用し、基板の最表面がエッチングされやすくなると考えられる。CVDプロセスにおいては、成膜およびエッチングの両表面反応が並行して進行するが、窒素ガスの比率を高めることによって相対的にエッチングが進みにくくなるため、絶縁性の良好な酸窒化シリコン膜を酸化物半導体上に安定して成膜することができると考えられる。なお、このメカニズムについての説明は本発明の技術的範囲を制限することを目的とするものではないことに留意されたい。
 また前記成膜方法は、前記供給するプロセスガスにおいて、窒素ガスと酸素ガスの合計流量に対する窒素ガスの流量の割合が96%以上であることが好ましい。
 このようにすれば、酸窒化シリコン膜の絶縁性能をより一層向上することができる。
 また前記成膜方法により成膜される酸窒化シリコン膜の具体的態様として、リーク電流密度が1×10-5A/cm以下であり、絶縁破壊電界強度(最大電界強度)が3MV/cm以上のものが挙げられる。
 本発明の成膜方法の効果をより顕著に奏する前記酸化物半導体の具体的態様として、In-Ga-Zn-Oにより構成されているものが挙げられる。
 また本発明の成膜方法の効果をより顕著に奏する態様としては、プラズマCVD法による前記酸窒化シリコン膜の成膜を300℃以下で行うものが挙げられる。
 このような低温であれば、本発明の成膜方法を、樹脂等の融点が低い基板を用いた薄膜トランジスタの製造に利用することができる。本発明の成膜方法を用いれば、このような低温処理においても良好な絶縁性能を発揮する絶縁層を備える薄膜トランジスタを製造できる。
 また本発明の薄膜トランジスタの製造方法は、In-Ga-Zn-Oからなる酸化物半導体をチャネル層とする薄膜トランジスタの製造方法であって、スパッタリングにより前記酸化物半導体を形成する半導体層形成工程と、前記した成膜方法により前記酸化物半導体の上に酸窒化シリコン膜から成る絶縁層を成膜する絶縁層形成工程とを有することを特徴とする。
 このような薄膜トランジスタの製造方法によれば、前記した本発明の成膜方法と同様の作用効果を奏することができる。
 このように構成した本発明によれば、酸化物半導体の上に酸窒化シリコン膜を成膜する成膜方法において、低コスト化を図るとともに、成膜安定性を向上させることができる。
本実施形態のボトムゲート型の薄膜トランジスタの構成を模式的に示す図。 同実施形態の薄膜トランジスタの製造工程を模式的に示す図。 同実施形態の薄膜トランジスタのプラズマ処理工程で用いられるプラズマ処理装置の構成を模式的に示す図。 他の実施形態のトップゲート型の薄膜トランジスタの構成を模式的に示す図。 実験例における、窒素ガス流量の割合と成膜の安定性との関係を示すグラフ。 実験例における、窒素ガス流量の割合と成膜レート及び屈折率との関係を示すグラフ。 実験例における、窒素ガス流量の割合と絶縁性との関係を示すグラフ。
 以下に、本発明の一実施形態に係る薄膜トランジスタ及びその製造方法について説明する。
<1.薄膜トランジスタ>
 本実施形態の薄膜トランジスタ1は所謂ボトムゲート型のTFTであり、酸化物半導体をチャネルに用いたものである。具体的には図1に示すように、基板2と、ゲート電極3と、ゲート絶縁層4と、半導体層5と、ソース電極6及びドレイン電極7と、保護層8とを有しており、基板2側からこの順に形成されている。なおこの実施形態では、保護層8が特許請求の範囲でいう“絶縁層”に相当する。以下、各部について詳述する。
 基板2は光を透過できるような任意の材料から構成されており、例えば、ポリエチレンテレフタレート(PET)、ポリエチレナフタレート(PEN)、ポリエーテルサルフォン(PES)、アクリル、ポリイミド等のプラスチック(合成樹脂)等の樹脂材料やガラス材料によって構成されてよい。
 ゲート電極3は、薄膜トランジスタ1に印加されるゲート電圧によって半導体層5中のキャリア密度を制御するものである。このゲート電極3は、高い導電性を有する任意の材料から構成されており、例えばSi、Al、Mo、Cr、Ta、Ti、Pt、Au、Ag等から選択される1種以上の金属から構成されてよい。また、Al-Nd、Ag合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)、In-Ga-Zn-O(IGZO)等の金属酸化物の導電性膜から構成されてよい。ゲート電極3は、これらの導電性膜の単層構造又は2層以上の積層構造から構成されてもよい。
 ゲート絶縁層4は高い絶縁性を有する任意の絶縁材料から構成されており、例えば、SiO、SiN、SiON、Al、Y、Ta、Hf等から選択される1つ以上の酸化物を含む絶縁膜であってよい。ゲート絶縁層4は、これらの導電性膜を単層構造又は2層以上の積層構造としたものであってよい。
 半導体層(チャネル層)5は、ソース電極6とドレイン電極7間を流れる電流を通過させるものである。本実施形態の半導体層5は、酸化物半導体からなるものであり、例えばIn、Ga、Zn、Sn、Al、Ti等から選択される少なくとも1種の元素の酸化物を主成分として含んでいる。半導体層5を構成する材料の具体例としては、例えば、In-Ga-Zn-O(IGZO)、In-Al-Mg-O、In-Al-Zn-O又はIn-Hf-Zn-O等が挙げられる。この半導体層5は非晶質(アモルファス)の酸化物半導体膜により構成されている。本実施形態の半導体層5は単層構造であるが、これに限らず、組成や結晶性が互いに異なる複数の層を重ねて構成した積層構造であってもよい。
 ソース電極6及びドレイン電極7は、半導体層5の表面を部分的に覆うように、互いに離間して形成されている。ソース電極6及びドレイン電極7は、ゲート電極3と同様に、電極として機能するように高い導電性を有する材料から構成されている。ソース電極6及びドレイン電極7は、単一の材料からなる単層構造でよく、互いに異なる材料からなる複数の層を重ねた積層構造であってもよい。
 保護層(パッシベーション層)8は、ソース電極6とドレイン電極7の間から露出する半導体層5の表面(チャネル領域)を覆って保護するものであり、絶縁性の材料により構成されたものである。保護層8は、少なくとも半導体層5の表面に接触して設けられている。本実施形態の保護層8は、ソース電極6及びドレイン電極7の表面を更に覆うように設けられている。
 具体的にこの保護層8は、フッ素含有酸窒化シリコン膜(SiON:F)により構成されている。このフッ素含有酸窒化シリコン膜は、リーク電流密度が1×10-5A/cm以下であり、絶縁破壊電界強度が3MV/cm以上のものであることが好ましく、リーク電流密度が1×10-7A/cm以下であり、絶縁破壊電界強度が8MV/cm以上のものであることがより好ましい。
 なお保護層8の上には、例えばフッ素含有シリコン酸化膜(SiN:F)、フッ素含有シリコン酸化膜(SiO:F)、シリコン窒化膜(SiNx)、シリコン酸化膜(SiOx)等からなる第2の保護層が、必要に応じて更に設けられてもよい。
<2.薄膜トランジスタの製造方法>
 次に、上述した構造の薄膜トランジスタ1の製造方法を、図2を参照して説明する。
 本実施形態の薄膜トランジスタ1の製造方法は、ゲート電極形成工程、ゲート絶縁層形成工程、半導体層形成工程、ソース・ドレイン電極形成工程、プラズマ処理工程及び保護層形成工程を含む。なおこの実施形態では、保護層形成工程が特許請求の範囲でいう“絶縁層形成工程”に相当する。以下、各工程について説明する。
(1)ゲート電極形成工程
 まず図2の(a)に示すように、例えばPET等の樹脂材料からなる基板2を準備し、基板2の表面にゲート電極3を形成する。ゲート電極3の形成方法は特に制限されず、例えば真空蒸着法等の既知の方法により形成してよい。
(2)ゲート絶縁層形成工程
 次に、図2の(b)に示すように、基板2及びゲート電極3の表面を覆うようにゲート絶縁層4を形成する。ゲート絶縁層4の形成方法は特に限定されず、既知の方法により形成してよい。
(3)半導体層形成工程
 次に、図2の(c)に示すように、ゲート絶縁層4上に半導体層5を形成する。この半導体層5は、既知の方法により形成してよい。例えば、誘導結合型のプラズマを用いて、InGaZnO等の導電性酸化物焼結体をターゲットとしてスパッタリングすることにより半導体層5を形成してよい。なおこれに限らず、他の方法により酸化物半導体からなる半導体層5を形成してもよい。
(4)ソース・ドレイン電極形成工程
 次に、図2の(d)に示すように、半導体層5上にソース電極6及びドレイン電極7を形成する。ソース電極6およびドレイン電極7の形成は、例えば、RFマグネトロンスパッタリング等を用いた既知の方法により形成することができる。ソース電極6及びドレイン電極7は、半導体層5の表面上で互いに離間し、半導体層5の表面の一部を露出させるように形成される。
(5)プラズマ処理工程
 ここで、半導体層5の表面に保護層8を形成する前に、半導体層5の表面に対してプラズマ処理(成膜前処理)を行ってもよい。具体的にこのプラズマ処理は、図3に例示するような誘導結合型のプラズマ処理装置100を用いて行ってよい。具体的にプラズマ処理装置100は、真空排気され且つプロセスガスGが導入される処理室10が内側に形成された真空容器20と、処理室10の外部に設けられたアンテナ30と、アンテナ30に高周波(13.56MHz)を印加する高周波電源40とを備えている。高周波電源40からアンテナ30に高周波を印加すると、アンテナ30から発生した高周波磁場が処理室10内に形成されることで誘導電界が発生し、これにより誘導結合型のプラズマPが生成される。
 具体的にこの工程では、少なくとも窒素ガスと酸素ガスとをプロセスガスとして処理室10内に供給し、この状態でアンテナ30に高周波を印加して誘導結合型のプラズマを生じさせる。ここで供給するプロセスガスは、窒素ガスと酸素ガスの合計流量に対する窒素ガスの流量の割合(N/N+O)が、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましい。窒素ガスの流量割合が大きいほど、後で形成する保護層8中の固定電荷密度を小さくできるので好ましい。またこの工程は、基板温度を150℃以上300℃以下の低温で行うことが好ましい。プラズマ処理を行う処理時間は特に限定されないが、保護層8中の固定電荷密度をより小さくする観点から15秒以上45秒以下が好ましい。その他、RFパワー、成膜時圧力、プロセスガスの絶対量等は適宜設定されてよい。なお、処理室10内に供給される各ガスの流量は、ガス流路に設けたマスフローコントローラにより制御される。すなわち、ここでいう「流量」とは、マスフローコント―ラ等の流量制御機器における設定値を意味する(他の工程でも同じである。)。
(6)保護層形成工程
 プラズマ処理工程の後、図2の(e)に示すように、ソース電極6及びドレイン電極7の間から露出する半導体層5の表面を覆うように保護層8を形成する。この保護層8の形成は、例えば前記したプラズマ処理装置(以下、プラズマCVD装置ともいう)100を用いてプラズマCVD法(化学気相成長法)を用いて行われる。ここでは、プラズマ処理工程においてプラズマCVD装置100の処理室10内に生成したプラズマを維持した状態で保護層形成工程に移行するようにしている。
 具体的にこの保護層形成工程では、プロセスガスとして、SiF(四フッ化シリコン)ガス、窒素ガス、酸素ガス及び水素ガスを処理室10内に供給し、この状態でアンテナ30に高周波を印加して誘導結合型のプラズマを生じさせる。ここで本実施形態では、供給するプロセスガスにおいて、窒素ガスと酸素ガスの合計流量に対する窒素ガスの流量の割合(N/N+O)が93%以上であり、96%以上であることが好ましい。また当該割合の上限は特に限らないが100%であることが好ましい。なお、流量割合が100%である場合、処理室10内に意図的に供給する酸素ガスの流量は0ccmとなるが、この場合でも、プロセスガス中には酸素ガスが不可避的に含まれており、そのためフッ素含有シリコン酸窒化膜を成膜することができる。またこの工程は、基板温度を150℃以上300℃以下の低温で行うことが好ましい。その他、RFパワー、成膜時圧力、プロセスガスの絶対量等は適宜設定されてよい。
 必要に応じて、保護層8の上に、例えばフッ素含有シリコン酸化膜(SiN:F)、フッ素含有シリコン酸化膜(SiO:F)、シリコン窒化膜(SiNx)、シリコン酸化膜(SiOx)等からなる第2の保護層を成膜してもよい。この保護層の成膜は、保護層8と同様に、プラズマCVD装置100を用いて行うことができる。
(7)熱処理工程
 必要に応じて酸素を含む大気圧下の雰囲気中で熱処理を行ってもよい。熱処理における炉内温度は特に限定されず、例えば150℃以上300℃以下である。また熱処理時間は特に限定されず、例えば1時間以上3時間以下である。
 以上により、本実施形態の薄膜トランジスタ1を得ることができる。
<3.本実施形態の効果>
 このように構成した本実施形態の薄膜トランジスタ1の製造方法であれば、保護層形成工程において、プロセスガスとして、高価なSiClを用いることなく比較的な安価なガスを用いてプラズマCVD法により保護層8を形成するので、材料コストを低減できる。そしてさらに、プロセスガスとして供給する窒素ガスと酸素ガスの合計流量に対する窒素ガスの流量の割合を93%以上とし、その割合を非常に高くしているので、絶縁性の良好な酸窒化シリコン膜から成る保護層8を酸化物半導体から成る半導体層5上に安定して成膜することができる。これにより歩留まりが向上し、製造コストをより一層低減させることができる。
<4.その他の変形実施形態>
 なお、本発明は前記実施形態に限られるものではない。
 前記実施形態の薄膜トランジスタ1は、ゲート電極3、ゲート絶縁層4及び半導体層5が基板2側から順に積層されたボトムゲート型のものであったがこれに限らない。他の実施形態では、図4に示すように、薄膜トランジスタ1は、半導体層5、ゲート絶縁層4、及びゲート電極3が基板2側から順に積層されたトップゲート型のものであってもよい。この場合には、半導体層5上に積層されるゲート絶縁層4が特許請求の範囲でいう“絶縁層”に相当する。この場合、ゲート絶縁層4はフッ素含有酸窒化シリコン膜(SiON:F)により構成されており、リーク電流密度が1×10-5A/cm以下であり、絶縁破壊電界強度が3MV/cm以上のものであることが好ましく、リーク電流密度が1×10-7A/cm以下であり、絶縁破壊電界強度が8MV/cm以上のものであることがより好ましい。
 また薄膜トランジスタ1がトップゲート型である場合、その製造方法は、前記した半導体層形成工程、ソース・ドレイン電極形成工程、プラズマ処理工程、ゲート絶縁層形成工程及びゲート電極形成工程をこの順に行うことで行われる。この場合には、ゲート絶縁層形成工程が特許請求の範囲でいう“絶縁層形成工程”に相当する。
 そのためこの実施形態では、ゲート絶縁層形成工程は、SiF(四フッ化ケイ素)ガス、窒素ガス、酸素ガス及び水素ガスをプロセスガスとして用いて、プラズマCVD法により行われる。具体的な方法は、前記した保護層形成工程と同様である。
 前記実施形態では、酸化物半導体層5を形成した後、この上に絶縁層(保護層8)を形成する前に、酸化物半導体層5の表面にプラズマ処理を施していたがこれに限らない。他の実施形態では、酸化物半導体層5の表面にプラズマ処理を行うことなく、その表面に絶縁層(保護層8)を形成してもよい。
 前記実施形態では、半導体層5は酸化物半導体からなるものであったが、これに限らない。他の実施形態は、半導体層5は、例えばアモルファスSiや多結晶Si等、任意の半導体材料により構成されてもよい。
 その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
 以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することが勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
<実験例1>プロセスガスにおける窒素ガス流量の割合と成膜の安定性との関係性
 プラズマCVD法におけるプロセスガス中の窒素ガスと酸素ガスの合計流量に対する窒素ガスの流量の割合(N/(N+O)とも記載する)と、酸化物半導体上への成膜の安定性との関係を評価した。
 具体的にこの実施例では、前記したプラズマCVD装置を用いて、供給するプロセスガスにおけるN/(N+O)を変化させて(0%から100%まで)、シリコン基板とIGZO膜のそれぞれの表面にフッ素含有酸窒化シリコン膜を成膜した。そして、Si基板上の膜厚に対するIGZO膜上の膜厚の比率(以下、膜厚比ともいう)を測定した。
 具体的に各フッ素含有酸窒化シリコン膜の成膜は、プラズマCVD装置の処理室内に、SiF、N、O及びHをプロセスガスとして供給し、RFパワー:20kW(0.48W/cm)、成膜時の圧力:10Pa、設定温度:200℃の条件で行った。ここで、供給する各ガス流量は、SiF:500sccm、H:900sccm、N+O:3000sccm、となるようにした。そして成膜後のフッ素含有酸窒化シリコン膜の膜厚は、分光エリプソメーター(大塚電子製、FE-5000S)により測定した。測定結果を図5に示す。
 図5から分かるように、プロセスガス中のN/(N+O)を0%~50%の範囲で行ったものは、膜厚比が0.9未満、あるいは1.1超となり、成膜が不安定であった。
 一方で、プロセスガス中のN/(N+O)を93%以上の範囲で行ったもの(93.3%、96.7%、100%)は、膜厚比が0.9以上1.1以下(すなわち、膜厚の差が10%以内)であり、IGZO膜上に安定してフッ素含有酸窒化シリコン膜を成膜できた。
<実験例2>プロセスガスにおける窒素ガス流量の割合と成膜レート及び屈折率との関係性
 次に、プラズマCVD法におけるプロセスガス中の窒素ガスと酸素ガスの合計流量に対する窒素ガスの流量の割合と、酸化物半導体上へのフッ素含有酸窒化シリコン膜の成膜レート及び屈折率との関係を評価した。
 具体的には、実験例1においてプロセスガス中のN/(N+O)を93%以上(具体的には、93.3%、96.7%、100%)にしてIGZO膜上に成膜を行った3つのサンプルについて、その成膜レートと屈折率とを測定した。具体的に、各サンプルの成膜レートは、分光エリプソメーターにより測定した膜厚を成膜時間で除することで算出した。各サンプルの屈折率も、上記分光エリプソメーターにより測定した。その結果を図6に示す。
 図6に示すように、プロセスガス中のN/(N+O)を93%以上としても、成膜レートが25nm/min以上であり良好であることが分かった。また、プロセスガス中のN/(N+O)を93%以上の範囲で、窒素ガス流量の増加に伴い屈折率が顕著に増加しており、窒化が急激に進むことが分かった。
<実験例3>プロセスガスにおける窒素ガス流量の割合と絶縁性との関係性
 次に、プラズマCVD法におけるプロセスガス中の窒素ガスと酸素ガスの合計流量に対する窒素ガスの流量の割合と、酸化物半導体膜上に成膜したフッ素含有酸窒化シリコン膜の絶縁性との関係を評価した。
 具体的にこの実施例では、前記したプラズマCVD装置を用いてSi基板上にフッ素含有酸窒化シリコン膜を成膜し、このフッ素含有酸窒化シリコン膜上にアルミニウム電極を形成してサンプルを作成した。ここで、フッ素含有酸窒化シリコン膜を成膜する際に、供給するプロセスガスにおけるN/(N+O)を変化させた3種類(93.3%、96.7%、100%)のサンプルを作成した。また各種類のサンプルは、図7に示すように、RFパワー、成膜時の圧力及び温度、プロセスガス流量等の条件を変えて、合計6つのサンプルを作成した。そして、抵抗加熱真空蒸着法により、成膜面上に約1mmφのAl含有電極を形成し、デジタル超高抵抗/微小電流計(アドバンテスト製、R8340A)によって、膜厚方向における電流電圧測定を行い、I-V曲線を得た。そのI-V曲線から、各サンプルのリーク電流密度(印加電界3MV/cmにおける電流密度)と絶縁破壊電界(リーク電流密度が1×10-5A/cmとなる電界強度)を求めた。その結果を図7に示す。
 図7に示すように、プロセスガス中のN/(N+O)が93%以上であるフッ素含有酸窒化シリコン膜を有するサンプルはいずれも、絶縁破壊電界が3MV/cm以上、かつリーク電流密度が1×10-5A/cm以下であり、優れた絶縁性が得られることを確認した。特にプロセスガス中のN/(N+O)が96%以上であるフッ素含有酸窒化シリコン膜を有するサンプルは、絶縁破壊電界が8MV/cm以上、かつリーク電流密度が1×10-7A/cm以下であり、より優れた絶縁性が得られることを確認した。
 1  ・・・薄膜トランジスタ
 2  ・・・基板
 3  ・・・ゲート電極
 4  ・・・ゲート絶縁層
 5  ・・・半導体層
 6  ・・・ソース電極
 7  ・・・ドレイン電極
 8  ・・・保護層

Claims (6)

  1.  酸化物半導体の上に酸窒化シリコン膜を成膜する成膜方法であって、
     前記酸窒化シリコン膜を、SiFガス、窒素ガス、酸素ガス及び水素ガスをプロセスガスとして供給して行うプラズマCVD法により成膜し、
     前記供給するプロセスガスにおいて、窒素ガスと酸素ガスの合計流量に対する窒素ガスの流量の割合が93%以上であることを特徴とする成膜方法。
  2.  前記供給するプロセスガスにおいて、窒素ガスと酸素ガスの合計流量に対する窒素ガスの流量の割合が96%以上である請求項1に記載の成膜方法。
  3.  前記酸窒化シリコン膜が、リーク電流密度が1×10-5A/cm以下であり、絶縁破壊電界強度が3MV/cm以上のものである請求項1又は2に記載の成膜方法。
  4.  酸化物半導体がIn-Ga-Zn-Oにより構成されている請求項1~3のいずれか一項に記載の成膜方法。
  5.  前記プラズマCVD法による前記酸窒化シリコン膜の成膜を300℃以下で行う請求項1~4のいずれか一項に記載の成膜方法。
  6.  In-Ga-Zn-Oからなる酸化物半導体をチャネル層とする薄膜トランジスタの製造方法であって、
     スパッタリングにより前記酸化物半導体を形成する半導体層形成工程と、
     請求項1~5のいずれか一項に記載の成膜方法により、前記酸化物半導体の上に酸窒化シリコン膜から成る絶縁層を成膜する絶縁層形成工程と、を有することを特徴とする薄膜トランジスタの製造方法。
PCT/JP2022/007958 2021-03-23 2022-02-25 シリコン酸窒化膜の成膜方法及び薄膜トランジスタの製造方法 WO2022202100A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280020052.8A CN116982142A (zh) 2021-03-23 2022-02-25 氮氧化硅膜的成膜方法及薄膜晶体管的制造方法
KR1020237031266A KR20230138552A (ko) 2021-03-23 2022-02-25 실리콘 산질화막의 성막 방법 및 박막 트랜지스터의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-048568 2021-03-23
JP2021048568A JP2022147359A (ja) 2021-03-23 2021-03-23 シリコン酸窒化膜の成膜方法及び薄膜トランジスタの製造方法

Publications (1)

Publication Number Publication Date
WO2022202100A1 true WO2022202100A1 (ja) 2022-09-29

Family

ID=83395588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007958 WO2022202100A1 (ja) 2021-03-23 2022-02-25 シリコン酸窒化膜の成膜方法及び薄膜トランジスタの製造方法

Country Status (4)

Country Link
JP (1) JP2022147359A (ja)
KR (1) KR20230138552A (ja)
CN (1) CN116982142A (ja)
WO (1) WO2022202100A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299913A (ja) * 2006-04-28 2007-11-15 Toppan Printing Co Ltd 薄膜トランジスタ及びその製造方法
JP2012094757A (ja) * 2010-10-28 2012-05-17 Fujifilm Corp 薄膜トランジスタおよびその製造方法
JP2014007396A (ja) * 2012-05-31 2014-01-16 Semiconductor Energy Lab Co Ltd 半導体装置
JP2014030002A (ja) * 2012-06-29 2014-02-13 Semiconductor Energy Lab Co Ltd 半導体装置
JP2014039019A (ja) * 2012-07-20 2014-02-27 Semiconductor Energy Lab Co Ltd 半導体装置および半導体装置の作製方法
JP2014225651A (ja) * 2013-04-26 2014-12-04 株式会社半導体エネルギー研究所 半導体装置及びその作製方法
JP2016213452A (ja) * 2015-04-28 2016-12-15 株式会社半導体エネルギー研究所 半導体装置およびその作製方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6924943B2 (ja) 2017-05-12 2021-08-25 東京エレクトロン株式会社 成膜方法及び成膜装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299913A (ja) * 2006-04-28 2007-11-15 Toppan Printing Co Ltd 薄膜トランジスタ及びその製造方法
JP2012094757A (ja) * 2010-10-28 2012-05-17 Fujifilm Corp 薄膜トランジスタおよびその製造方法
JP2014007396A (ja) * 2012-05-31 2014-01-16 Semiconductor Energy Lab Co Ltd 半導体装置
JP2014030002A (ja) * 2012-06-29 2014-02-13 Semiconductor Energy Lab Co Ltd 半導体装置
JP2014039019A (ja) * 2012-07-20 2014-02-27 Semiconductor Energy Lab Co Ltd 半導体装置および半導体装置の作製方法
JP2014225651A (ja) * 2013-04-26 2014-12-04 株式会社半導体エネルギー研究所 半導体装置及びその作製方法
JP2016213452A (ja) * 2015-04-28 2016-12-15 株式会社半導体エネルギー研究所 半導体装置およびその作製方法

Also Published As

Publication number Publication date
CN116982142A (zh) 2023-10-31
KR20230138552A (ko) 2023-10-05
JP2022147359A (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
TWI392022B (zh) Semiconductor device manufacturing apparatus and method
US8927330B2 (en) Methods for manufacturing a metal-oxide thin film transistor
KR20080076747A (ko) 산화물 반도체층 형성 방법 및 이를 이용한 반도체 소자제조방법
JP6689140B2 (ja) 成膜方法およびtftの製造方法
JP5723584B2 (ja) 半導体装置
JP2008078511A (ja) 絶縁膜の成膜方法
WO2022202100A1 (ja) シリコン酸窒化膜の成膜方法及び薄膜トランジスタの製造方法
WO2013051644A1 (ja) 絶縁膜およびその製造方法
JP7060366B2 (ja) 薄膜デバイス
TWI779254B (zh) 薄膜電晶體的製造方法
WO2022130912A1 (ja) 薄膜トランジスタの製造方法
JP5112668B2 (ja) 半導体装置の製法
WO2022004838A1 (ja) 薄膜トランジスタ
US10748759B2 (en) Methods for improved silicon nitride passivation films
JP7317282B2 (ja) 薄膜トランジスタの製造方法
TWI835033B (zh) 氧化物半導體的成膜方法及薄膜電晶體的製造方法
KR101970548B1 (ko) 산화물 절연막, 산화물 반도체 박막트랜지스터 소자 및 그 제조방법
TWI756757B (zh) 薄膜電晶體的製造方法
JP7247546B2 (ja) 薄膜トランジスタの製造方法
JP7462438B2 (ja) 酸化物半導体薄膜及びそれを用いた薄膜トランジスタ、並びにそれらを形成するためのスパッタリングターゲット
KR20080076698A (ko) 산화물 반도체 타겟
Ahn et al. Effects of Hydrogen Doping on a-GIZO Thin-Film Transistors With Hafnium Dioxide Gate Insulators Formed by Atomic Layer Deposition at Different Temperatures
JP2021190590A (ja) 酸化物半導体の成膜方法及び薄膜トランジスタの製造方法
TWI451501B (zh) 金屬氧化物半導體電晶體的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774898

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280020052.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237031266

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237031266

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774898

Country of ref document: EP

Kind code of ref document: A1