WO2022004781A1 - 廃太陽電池の処理方法 - Google Patents

廃太陽電池の処理方法 Download PDF

Info

Publication number
WO2022004781A1
WO2022004781A1 PCT/JP2021/024728 JP2021024728W WO2022004781A1 WO 2022004781 A1 WO2022004781 A1 WO 2022004781A1 JP 2021024728 W JP2021024728 W JP 2021024728W WO 2022004781 A1 WO2022004781 A1 WO 2022004781A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
ceramic support
furnace
pyrolysis furnace
Prior art date
Application number
PCT/JP2021/024728
Other languages
English (en)
French (fr)
Inventor
優 笹井
丈晴 山下
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2022534076A priority Critical patent/JPWO2022004781A1/ja
Priority to EP21833797.0A priority patent/EP4176984A1/en
Priority to KR1020227044450A priority patent/KR20230031216A/ko
Priority to AU2021300100A priority patent/AU2021300100A1/en
Priority to CN202180045297.1A priority patent/CN115769384A/zh
Priority to US18/013,077 priority patent/US20230241655A1/en
Publication of WO2022004781A1 publication Critical patent/WO2022004781A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B2101/00Type of solid waste
    • B09B2101/15Electronic waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0496Pyrolysing the materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Definitions

  • the present invention relates to a method for treating a waste solar cell. More specifically, the present invention relates to a method of removing resin components such as a back sheet and a sealing resin layer from a solar cell module and separating them into glass, cells, silver, an aluminum frame and the like to recover valuable resources.
  • the structure of a general solar cell module consists of three layers: tempered glass on the front surface, a resin layer for encapsulation on the inside, and a back sheet on the back surface.
  • An electric wire (interconnector) connecting the solar cells to each other is wired in the sealing resin layer.
  • the sealing resin is required to have transparency, flexibility, adhesiveness, tensile strength, weather resistance, etc., and an ethylene-vinyl acetate copolymer (hereinafter abbreviated as "EVA”) is generally used and heated. And by pressurizing, it serves to bond tempered glass, cells and backsheets.
  • EVA ethylene-vinyl acetate copolymer
  • a preheating decomposition unit set at 300 to 400 ° C. by transporting it to a continuous heat treatment furnace in which the oxygen concentration in the furnace is maintained at 1.0% by volume or more and 3.0% by volume or less. Then, the acetic acid gas, which is a kind of EVA decomposition gas, is released and removed, and then the EVA decomposition gas other than acetic acid is desorbed in the heat treatment section set at 400 to 550 ° C.
  • a method for recovering a solar cell element constituent material which comprises a step of separating the cell portion and the glass substrate by removing the above (see Patent Document 3).
  • the applicant is a method of recovering valuable resources from a solar cell module having a resin back sheet and a sealing resin layer, in which the back sheet surface is placed on a heat-resistant porous molded body.
  • the load containing the solar cell module and the porous molded body is heated to remove the resin component.
  • a method including a heating step of melting and then burning is proposed (see Patent Document 4).
  • the oxygen concentration is controlled to be very low so as not to cause a rapid combustion reaction, and the resin component such as EVA is thermally decomposed under two-step heating conditions.
  • the oxygen concentration and temperature control in the furnace under the conditions of Patent Document 3 are complicated, and it cannot be said that it is a simple method because it has a very skill in operation.
  • PVF vinyl fluoride having weather resistance
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • Patent Document 3 for lowering the oxygen concentration, even if EVA can be thermally decomposed, PET is not completely pyrolyzed. Therefore, when a solar cell module using a PET-containing backsheet is heat-treated, it is full of soot. In addition, inorganic powders such as titanium oxide and calcium carbonate contained in the back sheet remain, so more advanced separation technology is required to recycle valuable resources.
  • the present invention provides a method for continuously treating waste solar cells by stable temperature control in order to recycle valuable resources contained in a solar cell module having a resin back sheet or the like. Make it an issue.
  • the solar cell module is placed on a porous ceramic support, and the ceramic support is placed on a porous material carrying a transition metal oxide, and the thermal decomposition is performed.
  • heat treatment is continuously performed, and by controlling the oxygen concentration in the combustion part at the stage of oxidative decomposition of the resin component to a specific range, the resin component can be controlled.
  • it can be burned and removed gently and stably, and as a result, it can be processed with stable temperature control, and the present invention has been completed.
  • a method of continuously treating waste solar cells comprising a step, wherein the heating step places the solar cell module on a porous ceramic support (A) and the ceramic support.
  • A) is carried out by moving the inside of the pyrolysis furnace from the inlet to the outlet of the pyrolysis furnace in a state of being placed on the porous material (B) carrying the transition metal oxide.
  • the inside of the pyrolysis furnace includes a heating unit at a stage where the temperature of the solar cell module rises and a combustion unit at a stage where the resin component is oxidatively decomposed, and the oxygen concentration in the combustion unit is 6 vol% or more and 15 vol% or more.
  • the present invention relates to a method for treating a waste solar cell, which comprises controlling to a range of less than.
  • the resin components such as EVA and PET melted before ignition infiltrate into the heat-resistant porous molded product to expand the surface area and burn gently, so that a rapid combustion reaction does not occur and the product is stable. Can be burned.
  • a solar cell module having a resin back sheet and a sealing resin layer is heated in a thermal decomposition furnace to melt the resin component contained in the solar cell module. It is a method of continuously treating waste solar cells, which includes a heating step of oxidative decomposition. In the heating step, the solar cell module is placed on the porous ceramic support (A), and the ceramic support (A) is supported by the transition metal oxide (B).
  • It is performed by moving the inside of the pyrolysis furnace from the inlet to the outlet of the pyrolysis furnace in a state of being placed on the pyrolysis furnace, and the inside of the pyrolysis furnace is at a stage where the temperature of the solar cell module rises. It includes a temperature rising unit and a combustion unit at a stage where the resin component is oxidatively decomposed, and is characterized in that the oxygen concentration in the combustion unit is controlled in the range of 6 vol% or more and less than 15 vol%.
  • a solar cell module having a resin back sheet and a sealing resin layer is heated in a pyrolysis furnace to melt and oxidize the resin component contained in the solar cell module. This is the process of disassembling.
  • the solar cell module is placed on the porous ceramic support (A), and the ceramic support (A) is supported by the transition metal oxide (B).
  • the inside of the furnace is moved from the inlet to the outlet of the pyrolysis furnace.
  • it is preferable to continuously move the plurality of solar cell modules so that there are a plurality of solar cell modules in a state of being heated in the pyrolysis furnace.
  • the ceramic support (A) and the porous material (B) When the object to be treated made of the solar cell module, the ceramic support (A) and the porous material (B) is heat-treated, these placements may collapse or tip over when moving in the furnace. In order to prevent this, it may be placed in an iron tray containing a grid.
  • the inside of the pyrolysis furnace includes a temperature raising part at the stage where the temperature of the solar cell module rises and a combustion part at the stage where the resin component is oxidatively decomposed (combusted).
  • the inlet side of the pyrolysis furnace becomes the temperature rising part and the outlet side becomes the combustion part, but as the solar cell module moves from the inlet side to the outlet side in the furnace, the temperature rises and the resin component melts.
  • the boundary between the temperature rise part and the combustion part in the pyrolysis furnace does not need to be clear.
  • Combustion in the present invention is an oxidation reaction in which organic substances such as EVA and PET contained in the back sheet and the sealing resin layer constituting the solar cell module react with oxygen in the atmosphere.
  • the combustion temperature is appropriately determined according to the resin constituting the back sheet, but is preferably 425 to 575 ° C. If the temperature is 425 ° C. or higher, the temperature becomes higher than the thermal decomposition temperature of EVA and PET and combustion occurs. Further, if the temperature is 575 ° C. or lower, rapid combustion can be suppressed and the glass of the solar cell module can be prevented from being damaged.
  • the melting starts to occur at a temperature lower than the combustion temperature.
  • the combustion temperature it is common to raise the temperature of the solar cell module from the room temperature before entering the pyrolysis furnace, and the melting temperature can be obtained in this raising process.
  • the heating in the heating step should be performed in the pyrolysis furnace in consideration of the treatment of exhaust gas and the like.
  • the pyrolysis furnace includes a gas furnace or an electric furnace that can obtain the combustion temperature and can charge an object to be processed including a porous material (B), a ceramic support (A) and a solar cell module.
  • the pyrolysis furnace is not particularly limited as long as it is a pyrolysis furnace, and a known pyrolysis furnace can be used.
  • the method for heating the inside of the pyrolysis furnace is not particularly limited as long as the combustion temperature can be obtained.
  • a method of heating an oxygen-containing gas with a gas burner or the like to circulate the inside of the pyrolysis furnace can be mentioned.
  • the oxygen-containing gas include a mixed gas of air and a combustible gas such as LP gas and city gas.
  • the resin component in the heating step, by controlling the oxygen concentration in the combustion portion to a range of 6 vol% or more and less than 15 vol%, the resin component can be gently and stably burned and removed.
  • the lower limit of the oxygen concentration is preferably 7 vol%, more preferably 8 vol%, and the upper limit is preferably 14.8 vol%, more preferably 14.5 vol%. Even if the oxygen concentration momentarily deviates from the above range, if the oxygen concentration can be immediately controlled within the above range, there is no particular problem in terms of operation.
  • the method for controlling the oxygen concentration in the combustion unit is not particularly limited, but for example, in the case of a gas furnace using a mixed gas of LP gas and air as the oxygen-containing gas, air is mixed according to the oxygen concentration in the combustion unit. The proportion can be adjusted.
  • the valuable resource is preferably at least one selected from the group consisting of glass, cells, silver, an aluminum frame and the like.
  • the silver is derived from, for example, an electrode or the like.
  • the resin melted during combustion is formed between the solar cell module and the ceramic support (A) before the heat treatment to form the ceramic support (A). It is also effective to install a wire mesh or the like that does not prevent the movement of the metal net, and collect the treated valuables together with the wire mesh. This is because the processed product after the resin, which is the sealing band, is melted and burned, is in a state where the glass, cells, etc. are separated on the ceramic support, which makes it difficult to recover.
  • the solar cell module applicable to the present invention can be any solar cell module having a resin back sheet that is not a double-sided glass type. Specific examples thereof include single crystal silicon solar cells, polycrystal silicon solar cells, amorphous silicon solar cells, heterojunction solar cells, CIS solar cells, CIGS solar cells, and CdTe solar cells.
  • the aluminum frame of the solar cell module the aluminum frame may be removed before thermal decomposition because it is not necessary to cut the ceramic support (A) according to the size of the aluminum frame and the work is simplified. , May be removed after pyrolysis to reduce the possibility of the glass breaking during removal.
  • the porous ceramic support (A) applicable to the present invention is stable at a combustion temperature (specifically, about 425 ° C to 575 ° C) described later, and can be used without any limitation as long as it has a porous structure. .. Specific materials include alumina, zirconia, silicon nitride, silicon carbide, cordierite, ferrite, barium titanate, lead zirconate titanate, forsterite, zircon, mulite, steatite, and aluminum nitride, which are stable and general. Ceramic material can be mentioned.
  • the pore size of the porous material is not particularly limited, but it is preferably about 0.1 to 5 mm, which easily penetrates when EVA, PET, etc. are melted at around 450 ° C.
  • the number of cells on the surface is not particularly limited, but 5 to 50 pixels per inch (hereinafter abbreviated as "ppi") is desirable.
  • ppi pixels per inch
  • a three-dimensional skeletal structure having continuous pores can be preferably used.
  • the shape of the ceramic support (A) is not particularly limited, but a plate-shaped one can be preferably used because the resin used in the solar cell is arranged so as not to fall. Further, from the viewpoint of suppressing the generation of "soot" due to the molten resin component leaking to the outside of the ceramic support (A), the size of the surface on which the back sheet of the ceramic support (A) is loaded ( Area) is preferably as large as possible within the range that fits within the aluminum frame when the aluminum frame is not removed (see Fig. 1), and the bottom area of the backsheet when the aluminum frame is removed from the solar cell module. Larger is preferable (see FIG. 2).
  • the thickness of the ceramic support (A) there is no limitation on the thickness of the ceramic support (A), but a ceramic support (A) having a thickness of about 10 to 60 mm is preferable.
  • a product called a ceramic foam, a ceramic filter or a ceramic foam filter made of alumina, silicon carbide and cordierite is suitable.
  • the solar cell module When treating the waste solar cell by the method of the present invention, the solar cell module is placed on the ceramic support (A) with its backsheet side facing down. By placing the backsheet surface on the lower side, the resin components constituting the backsheet and the sealing resin layer are melted by heating, and then flow out toward the ceramic support (A) by the action of gravity.
  • the ceramic support (A) is porous, the resin that has flowed down has a large contact area with the atmosphere in the pyrolysis furnace. Therefore, the efficiency of combustion due to further heating is increased, and the generation of "soot" can be suppressed.
  • the transition metal oxide adsorbs oxygen in the oxidized state, and the aromatic resin is oxidatively decomposed during combustion to generate an aromatic fragrance. It has the ability to decompose organic compounds having a ring.
  • chromium (III) oxide is in a reduced state at room temperature and is bright green, but when heated to 400 ° C. or higher in the presence of oxygen, it adsorbs oxygen and changes its color to black-green, which is in an oxidized state.
  • the resin constituting the back sheet is an aromatic resin such as PET (a resin having an aromatic group as a part of the repeating unit), "soothing" is generated. It is preferable to allow the transition metal oxide to be present in the furnace from the viewpoint of suppressing the above-mentioned.
  • transition metal oxide examples include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, ittrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver and cadmium.
  • titanium vanadium
  • chromium manganese
  • iron cobalt
  • nickel oxides of the first transition elements of copper, ittrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium and silver.
  • Oxides of two transition elements lanthanum, cerium, placeodim, neodym, promethium, samarium, europium, gadrinium, terbium, dysprosium, formium, erbium, turium, itterbium, lutetium, hafnium, tantalum, tungsten, renium, osmium, iridium, platinum.
  • Oxides of the third transition element of gold more preferably rutyl-type or anatase-type transition metals such as titanium oxide (IV), chromium (III) oxide, iron (III) oxide and copper (II) oxide. Oxides can be preferably used. These may be in the form of composite oxides.
  • the transition metal oxide is supported on the porous material (B) and is present in the furnace.
  • the porous material (B) the same material as the ceramic support (A) may be used as long as it is stable at the combustion temperature of the resin component.
  • the shape of the porous material (B) is not particularly limited, and is not particularly limited as long as it can be used as a carrier for a so-called catalyst, but it has a plate-like shape similar to that of the ceramic support (A) on which the solar cell module is placed. It is more preferable that it is a porous molded product.
  • a known technique can be used without any limitation. Specifically, a method of impregnating and supporting a porous material in a solution containing a transition metal oxide by using dip coating, wash coating, spray coating, spin coating or the like is common. After that, the simplest method is to remove the solution by heating it to the boiling point or higher of the solution. Further, a thermal spraying technique in which a molten metal oxide is sprayed onto a porous material may be used.
  • the ceramic support (A) on which the solar cell module is mounted is placed on the porous material (B) carrying the transition metal oxide.
  • the porous material (B) carrying the transition metal oxide is not in direct contact with the solar cell module, and in particular, it is arranged below the solar cell module so as not to be in direct contact with it. It is more preferable to have the above-mentioned aspect. This is because the porous material (B) is less likely to be contaminated by non-combustible components such as fillers contained in the back sheet of the solar cell module, and the transition metal oxide is supported on the porous material (B). This is because it is not necessary to perform a reproduction process or the like when the above is repeatedly used.
  • the loading surface of the porous material (B) is the bottom area of the ceramic support (A). It is preferable that the content is about the same or higher.
  • the thickness of the porous material (B) is preferably about 10 to 60 mm.
  • Example 1 Using the pyrolysis furnace 20 as shown in FIG. 3, the object 23 including the solar cell module 7 is chained in the furnace from the left side (inlet side) to the right side (outlet side) of the pyrolysis furnace unit 22. The heat treatment was performed by moving it on the conveyor 24. As the solar cell module 7, an experiment was conducted using a REC "REC solar panel” (cell type: REC PE polycrystalline solar cell, size: 1,665 mm ⁇ 991 mm ⁇ 38 mm). The aluminum frame 10, the junction box and the connector were removed using a scraper and a hammer before the heat treatment to prevent the glass from being scratched.
  • REC solar panel cell type: REC PE polycrystalline solar cell, size: 1,665 mm ⁇ 991 mm ⁇ 38 mm.
  • the aluminum frame 10, the junction box and the connector were removed using a scraper and a hammer before the heat treatment to prevent the glass from being scratched.
  • FCF-2 made of silicon carbide 10 ppi 400 mm ⁇ 300 mm ⁇ 30 mmt (vacancy ratio 87.8%) manufactured by Seisen Filter was used.
  • Wako 1st grade chromium oxide (III) (manufactured by Wako Pure Chemical Industries, Ltd.) is stirred while suspended in water, the above ceramic filter is immersed in it for dip coating, and it is dried at 450 ° C to make a porous material (porous material).
  • B) 1 was obtained.
  • the mass before coating was 1,480 g, and the mass after coating and drying was 1,790 g.
  • a gas furnace was used as the pyrolysis furnace 20.
  • a hot air circulation type heat treatment apparatus having a tact feed chain blow type furnace length of 5,400 mm, a furnace inner width of 2,300 mm, and a furnace inner height of 280 mm was used.
  • a metallic burner MJPE-200K was used for the gas burner section 21, and a mixed gas of LP gas and air was burned and heated.
  • the heated mixed gas is supplied by squeezing it from the lower side of the pyrolysis furnace unit 22 with a "6.0-LF limit load fan" (450 m 3 / min, 2.0 kPa, 30 kW) manufactured by Adachi Kiko, and supplying it as a porous material.
  • (B) 1 was vigorously sprayed to enable heat exchange, and a part of the circulated heating gas was exhausted.
  • the object 23 made of the solar cell module 7, the ceramic support (A) 2, and the porous material (B) 1 prepared as described above is placed from the inlet side to the outlet side of the pyrolysis furnace portion 22.
  • Each of the three sections in the furnace was held for 6.5 minutes and tact-fed, and heat treatment was performed in the pyrolysis furnace 20 for a total of 19.5 minutes.
  • the inlet side is the temperature rising unit 27, and the zone in which the resin component contained in the solar cell module 7 burns is the combustion unit 28.
  • a thermocouple thermometer was inserted into the center of the upper part of the ceramic support (A) 2 in the middle stage to measure the temperature of the object to be processed 23.
  • the oxygen concentration measuring unit 26 adjusts the ratio of air in the mixed gas to be supplied so that the oxygen concentration of the combustion unit 28 is in the range of 6 vol% or more and less than 15 vol%, and the heat treatment is performed in the combustion unit 28.
  • the heating temperature and supply amount of the mixed gas to be supplied were adjusted so that the temperature of the object 23 was 470 ° C. or higher.
  • the temperature inside the furnace is 470.
  • Stable control was possible in the range of ⁇ 530 ° C. That is, it was found that in a low oxygen atmosphere, stable temperature control and treatment of the object to be processed 23 are possible by gentle combustion without flame.
  • the tempered glass 6 could be recovered without breaking, and the cell 5 and the inorganic powder could also be recovered. Further, no soot adhered to the ceramic filter in the lowermost stage used as the porous material (B) 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Photovoltaic Devices (AREA)
  • Processing Of Solid Wastes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明の廃太陽電池の処理方法は、樹脂製のバックシート等を有する太陽電池モジュールを熱分解炉内で加熱することにより、太陽電池モジュールに含まれる樹脂成分を溶融して酸化分解させる加熱工程を含む、廃太陽電池を連続的に処理する方法であって、加熱工程が、太陽電池モジュールを、多孔質のセラミック支持体(A)上に載置し、かつ、セラミック支持体(A)を、遷移金属酸化物を担持させた多孔質材料(B)上に載置した状態で、熱分解炉の入口から出口に向かって炉内を移動させることにより行われること、および熱分解炉内が、太陽電池モジュールの温度が上昇する段階の昇温部と、樹脂成分が酸化分解する段階の燃焼部とを含み、燃焼部における酸素濃度を6vol%以上15vol%未満の範囲に制御することを特徴とする。

Description

廃太陽電池の処理方法
 本発明は、廃太陽電池の処理方法に関する。より詳細には、太陽電池モジュールからバックシートおよび封止用樹脂層等の樹脂成分を除去し、ガラス、セル、銀およびアルミ枠等に分離して有価物を回収する方法に関する。
 低炭素社会の実現に向け、太陽光発電を始めとした再生可能エネルギーの活用によるCO2削減の加速化が進行しようとしている。太陽光発電の導入が大幅に進む一方で、太陽電池モジュールの廃棄時におけるリサイクルの課題が指摘されている。
 一般的な太陽電池モジュールの構造は、表面が強化ガラス、内側に封止用樹脂層、裏面がバックシートの3層になっている。封止用樹脂層には、太陽電池セル同士をつなぐ電線(インタコネクタ)が配線されている。封止用樹脂は、透明性、柔軟性、接着性、引張強度、および耐候性などが要求され、エチレン酢酸ビニル共重合体(以下「EVA」と略す)が一般的に用いられており、加熱および加圧することで強化ガラス、セルおよびバックシートを接着させる役割を果たしている。この太陽電池モジュールを酸化性雰囲気下で電気炉等により加熱していくと、80~120℃でEVAが溶融し、350℃付近でEVAの脱酢酸反応が起こり、450℃付近で主鎖であるポリエチレン部分の熱分解反応が急激に起こる。このように熱分解させて、太陽電池モジュールをリサイクルする技術が開示されている(特許文献1、2参照)。
 しかし、450℃付近の熱分解反応は爆発的に起こるので、1m×2m程度の大きさの太陽電池モジュールを熱分解することは、火災の原因にもなり、大規模化には不向きであった。この技術課題を解決するために、炉内の酸素濃度を1.0体積%以上3.0体積%以下に保持した連続式熱処理炉に搬送し、300~400℃に設定された予備加熱分解部にてEVA分解ガスの一種である酢酸ガスを放出除去し、続いて400~550℃に設定された熱処理部にて酢酸以外のEVA分解ガスを脱離させて前記太陽電池素子からEVA封止材を除去して、セル部とガラス基板を分離する工程を含む太陽電池素子構成材料の回収方法が開示されている(特許文献3参照)。
 さらに、本出願人は、樹脂製のバックシートおよび封止用樹脂層を有する太陽電池モジュールから有価物を回収する方法であって、耐熱性の多孔質成形体の上に前記バックシート面を下側にして太陽電池モジュールを積載する積載工程と、酸素濃度15%以上の酸化性雰囲気下の加熱炉内で、前記太陽電池モジュールと前記多孔質成形体を含む積載物を加熱して樹脂成分を溶融した後、燃焼させる加熱工程とを含む方法を提案している(特許文献4参照)。
特開平11-165150号公報 特開2007-59793号公報 特開2014-108375号公報 国際公開第2020/031661号
高分子論文集、Vol.64.No.9(2007)
 特許文献3で提示されている方法では、急激な燃焼反応を起こさせないように酸素濃度を非常に低く制御して2段階の加熱条件でEVA等の樹脂成分を熱分解させている。しかし、特許文献3の条件での炉内の酸素濃度や温度制御は複雑であり、非常に運転に技術を有するため簡便な方法とはいえない。
 また、特許文献1~3が出願された初期の太陽電池のバックシートの材質は、耐候性を有するポリフッ化ビニル(以下「PVF」と略す)がほとんどであったが、現在ではより安価なポリエチレンテレフタレート(以下「PET」と略す)が主流となり、PET単層や、PVFまたはポリフッ化ビニリデン(以下「PVDF」と略す)等のフッ素系樹脂でラミネートしたPVF/PET、PVDF/PET、PVF/PET/PVF、PVDF/PET/PVDFのような2層または3層のバックシートも多く使用され、PETを使用しているバックシートがほとんどを占めている。
 PVFやPVDFのようなフッ素系樹脂は、EVAと同じような温度で熱分解するため、従来の熱分解方法でも問題はないが、PETは250℃で溶融し、400℃付近から熱分解が始まり、ベンゼン環とエステル基を有するため、熱分解反応が多岐にわたる。ベンゼン環同士が複雑に結合した炭化物も副生し、真っ黒な「すす」ができてしまうことがあり、「すす」が付着したガラスは、再利用することが困難である。また、850℃で燃焼させた場合であっても、この「すす」の残渣量が9%残るということも報告されている(非特許文献1参照)。
 したがって、酸素濃度を下げる特許文献3の技術では、EVAは熱分解できたとしてもPETは完全には熱分解されないため、PET入りバックシートが使用された太陽電池モジュールを加熱処理すると「すす」だらけになってしまうとともに、バックシートに含まれていた酸化チタンや炭酸カルシウム等の無機粉体も残留するため、有価物をリサイクルするにはさらに高度な分離技術が必要となっていた。
 一方で、特許文献4の方法では、炉内に遷移金属酸化物を担持させた耐熱性材料を配置することにより、PET等の芳香族系樹脂を燃焼させた際の「すす」の発生を抑制することが可能となり、太陽電池モジュールにおいて再利用できる有価物を容易に回収できる処理することが可能となった。しかしながら、酸素濃度15%以上の酸化性雰囲気で太陽電池モジュールを連続式で加熱処理をしようとすると、炎を伴った爆発的な燃焼による温度の急上昇により、温度制御が上限に大きく振れてしまい、安定的な処理が難しく、その結果、処理コストが上昇したり、処理が不完全となったりするという、バッチ式での処理では露見しなかった新たな課題が判明した。
 以上より、本発明は、樹脂製のバックシート等を有する太陽電池モジュールに含まれる有価物をリサイクルするために、安定的な温度制御により廃太陽電池を連続式で処理する方法を提供することを課題とする。
 本発明者らは前記課題を解決するために鋭意検討を行った。その結果、太陽電池モジュールを、多孔質のセラミック支持体上に載置し、かつ、前記セラミック支持体を、遷移金属酸化物を担持させた多孔質材料上に載置した状態で、前記熱分解炉の入口から出口に向かって炉内を移動させることにより連続式で加熱処理を行うとともに、樹脂成分が酸化分解する段階の燃焼部における酸素濃度を特定の範囲に制御することで、樹脂成分を穏やかに、かつ、安定的に燃焼させて除去することができ、その結果、安定的な温度制御で処理できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、樹脂製のバックシートおよび封止用樹脂層を有する太陽電池モジュールを熱分解炉内で加熱することにより、前記太陽電池モジュールに含まれる樹脂成分を溶融して酸化分解させる加熱工程を含む、廃太陽電池を連続的に処理する方法であって、前記加熱工程が、前記太陽電池モジュールを、多孔質のセラミック支持体(A)上に載置し、かつ、前記セラミック支持体(A)を、遷移金属酸化物を担持させた多孔質材料(B)上に載置した状態で、前記熱分解炉の入口から出口に向かって炉内を移動させることにより行われること、および前記熱分解炉内が、前記太陽電池モジュールの温度が上昇する段階の昇温部と、前記樹脂成分が酸化分解する段階の燃焼部とを含み、前記燃焼部における酸素濃度を6vol%以上15vol%未満の範囲に制御することを特徴とする廃太陽電池の処理方法に関する。
 本発明では、発火する前に溶融したEVAおよびPET等の樹脂成分が耐熱性の多孔質成形体に浸み込むことで表面積が広がり、穏やかに燃焼するため、急激な燃焼反応が起こらず、安定的に燃焼させることができる。また、PET等の芳香族系樹脂を燃焼させた際の「すす」の発生を抑制することが可能となり、太陽電池モジュールにおいて再利用できる有価物を容易に回収できる。
本発明の一実施態様を示す模式図(アルミ枠あり)である。 本発明の一実施態様を示す模式図(アルミ枠なし)である。 実施例および比較例で用いた熱分解炉の概略を示す模式図である。 実施例および比較例における炉内温度および酸素濃度の変化を示すグラフである。
 以下、本発明について詳細に説明する。
 本発明に係る廃太陽電池の処理方法は、樹脂製のバックシートおよび封止用樹脂層を有する太陽電池モジュールを熱分解炉内で加熱することにより、前記太陽電池モジュールに含まれる樹脂成分を溶融して酸化分解させる加熱工程を含む、廃太陽電池を連続的に処理する方法であって、
 前記加熱工程が、前記太陽電池モジュールを、多孔質のセラミック支持体(A)上に載置し、かつ、前記セラミック支持体(A)を、遷移金属酸化物を担持させた多孔質材料(B)上に載置した状態で、前記熱分解炉の入口から出口に向かって炉内を移動させることにより行われること、および
 前記熱分解炉内が、前記太陽電池モジュールの温度が上昇する段階の昇温部と、前記樹脂成分が酸化分解する段階の燃焼部とを含み、前記燃焼部における酸素濃度を6vol%以上15vol%未満の範囲に制御することを特徴とする。
 <加熱工程>
 本発明の処理方法における加熱工程は、樹脂製のバックシートおよび封止用樹脂層を有する太陽電池モジュールを熱分解炉内で加熱することにより、太陽電池モジュールに含まれる樹脂成分を溶融して酸化分解させる工程である。
 前記加熱工程では、太陽電池モジュールを、多孔質のセラミック支持体(A)上に載置し、かつ、前記セラミック支持体(A)を、遷移金属酸化物を担持させた多孔質材料(B)上に載置した状態(図1参照)で、熱分解炉の入口から出口に向かって炉内を移動させる。この際、バックシート面を下側にして、太陽電池モジュールをセラミック支持体(A)上に載置することが好ましい。また、廃太陽電池の処理効率を高めるために、熱分解炉内で加熱されている状態の太陽電池モジュールが複数存在するように、複数の太陽電池モジュールを連続的に移動させることが好ましい。なお、太陽電池モジュール、セラミック支持体(A)および多孔質材料(B)からなる被処理物を加熱処理する際には、炉内の移動においてこれらの載置が崩れたり、転倒したりするのを防止するために、格子が入った鉄製のトレイなどに入れてもよい。
 前記加熱工程において、熱分解炉内は、太陽電池モジュールの温度が上昇する段階の昇温部と、前記樹脂成分が酸化分解(燃焼)する段階の燃焼部とを含む。通常、熱分解炉の入口側が昇温部となり、出口側が燃焼部となるが、太陽電池モジュールが炉内の入口側から出口側に移動するに従い、温度が上昇して前記樹脂成分が溶融し、酸化分解するのであれば、熱分解炉内における昇温部と燃焼部の境界は明確である必要はない。
 本発明における燃焼とは、太陽電池モジュールを構成するバックシートおよび封止用樹脂層等に含まれるEVAおよびPET等のような有機物が雰囲気中の酸素と反応する酸化反応のことである。
 従って、燃焼温度は、バックシートを構成する樹脂に応じて適宜決定されるものであるが、好ましくは425~575℃である。425℃以上であれば、EVAおよびPETの熱分解温度よりも高くなり燃焼が起きる。また575℃以下であれば急激な燃焼を抑制でき、太陽電池モジュールのガラスが破損することを防ぐことができる。
 なお前記溶融は、前記燃焼温度より低い温度で起きはじめる。前記燃焼温度を得るためには、太陽電池モジュールの温度を熱分解炉に入る前の室温から昇温していくことが一般的であり、この昇温過程で溶融温度を得ることができる。
 前記加熱工程における加熱は、排ガスの処理等を考慮して熱分解炉内で行うべきである。前記熱分解炉としては、前記燃焼温度を得ることができ、かつ、多孔性材料(B)、セラミック支持体(A)および太陽電池モジュールを含む被処理物を投入できるガス炉または電気炉等の熱分解炉であれば特に限定されず、公知の熱分解炉を使用することができる。
 熱分解炉内を加熱する方法としては、前記燃焼温度を得ることができれば特に限定されないが、例えば、ガス炉の場合、酸素含有ガスをガスバーナー等で加熱して熱分解炉内を循環させる方法が挙げられる。酸素含有ガスとしては、例えば、LPガスや都市ガスなどの燃焼性ガスと空気との混合ガスなどが挙げられる。
 前記加熱工程において、前記燃焼部における酸素濃度を6vol%以上15vol%未満の範囲に制御することにより、樹脂成分を穏やかに、かつ、安定的に燃焼させて除去することができる。前記酸素濃度の下限値は、好ましくは7vol%、より好ましくは8vol%であり、上限値は、好ましくは14.8vol%、より好ましくは14.5vol%である。なお、酸素濃度が瞬間的に前記範囲から外れたとしても、すぐに前記範囲に制御できれば、操業的には特に問題にはならない。
 前記燃焼部における酸素濃度の制御方法としては、特に限定されないが、例えば、酸素含有ガスとしてLPガスと空気の混合ガスを用いたガス炉の場合、燃焼部における酸素濃度に応じて、空気の混合割合を調節することができる。
 本発明の方法では、前記加熱工程後に、前記セラミック支持体(A)上に残された有価物を回収することが好ましい。前記有価物は、好ましくはガラス、セル、銀およびアルミ枠等からなる群より選ばれる少なくとも1種である。なお、前記銀は、例えば電極等に由来するものである。
 本発明の方法では、前記有価物を効率的に回収するために、熱処理の前に太陽電池モジュールと前記セラミック支持体(A)との間に、燃焼時に溶融した樹脂がセラミック支持体(A)に移動するのを妨げないような金網などを設置して、処理後の有価物を金網ごと回収することも有効である。なぜならば、封止帯である樹脂が溶融、燃焼したあとの処理物は、ガラス、セルなどがセラミック支持体上にバラバラになった状態となってしまい回収が難しくなるからである。
 <太陽電池モジュール>
 本発明に適用できる太陽電池モジュールは、両面ガラスタイプではない樹脂製のバックシートを有する太陽電池モジュールであれば、すべて利用することができる。具体的には、単結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池、ヘテロ接合型太陽電池、CIS太陽電池、CIGS太陽電池、CdTe太陽電池等が挙げられる。太陽電池モジュールのアルミ枠については、アルミ枠の大きさに合わせてセラミック支持体(A)を切断する必要がなく作業が簡便になるという利点から、熱分解前にアルミ枠を外してもよいし、取り外し時にガラスが割れる可能性を低減するために熱分解後に外してもよい。
 <セラミック支持体(A)>
 本発明に適用できる多孔質のセラミック支持体(A)は、後述する燃焼温度(具体的には425℃~575℃程度)で安定であり、多孔構造を有していれば何ら制限なく使用できる。具体的な材料としては、アルミナ、ジルコニア、窒化ケイ素、炭化ケイ素、コーディエライト、フェライト、チタン酸バリウム、チタン酸ジルコン酸鉛、フォルステライト、ジルコン、ムライト、ステアタイト、窒化アルミニウム等の安定かつ一般的なセラミック材料が挙げられる。
 多孔質材料の孔径は特に制限はないが、450℃付近でEVAおよびPET等が溶融したときに浸み込みやすい0.1~5mm程度が好適である。表面のセル数も特に制限はないが、5~50pixel per inch(以下「ppi」と略す)のものが望ましい。空孔率も何ら制限はないが、50~95%程度のものが望ましい。特に連続気孔の3次元骨格構造のものが好適に使用することができる。
 セラミック支持体(A)の形状としても特に制限はないが、太陽電池に使用されている樹脂が落下しないように配置するため、板状のものを好適に使用することができる。また、溶融した樹脂成分が前記セラミック支持体(A)の外部に漏れ出ることによる「すす」の発生を抑制できる観点から、前記セラミック支持体(A)のバックシートを積載する面の大きさ(面積)は、アルミ枠を外していない場合、アルミ枠内に収まる範囲内で可能な限り大きいことが好ましく(図1参照)、太陽電池モジュールからアルミ枠を外している場合、バックシートの底面積より大きい方が好ましい(図2参照)。
 セラミック支持体(A)の厚みについても何ら制限はないが、10~60mm程度のものが好適である。
 上記のようなセラミック支持体(A)としては、アルミナ、炭化ケイ素およびコーディエライト製のセラミックフォーム、セラミックフィルターまたはセラミックフォームフィルターと呼ばれる製品が好適である。
 本発明の方法で廃太陽電池を処理する際に、前記太陽電池モジュールを、そのバックシート面を下側にして、前記セラミック支持体(A)の上に載置する。バックシート面を下側にすることにより、バックシートおよび封止用樹脂層を構成する樹脂成分が、加熱により溶融し、次いで、重力の作用によりセラミック支持体(A)の方向へと流れ出る。
 セラミック支持体(A)は、多孔質であることから、流れ落ちてきた樹脂は熱分解炉内の雰囲気との接触面積が大きくなる。そのため、さらなる加熱による燃焼の効率が高くなり、「すす」の発生を抑制することができる。
 <多孔質材料(B)>
 本発明で用いられる、遷移金属酸化物を担持させた多孔質材料(B)において、遷移金属酸化物は、酸化状態では酸素を吸着し、芳香族系樹脂が燃焼中に酸化分解されて生じる芳香環を有する有機化合物を分解する能力を有する。例えば、酸化クロム(III)は、室温では還元状態となり鮮緑色であるが、酸素のある状況下で400℃以上に加熱すると、酸素を吸着し酸化状態である黒緑色に変色する。
 本発明者等は、前記セラミック支持体(A)(例えば、セラミックフィルター)と同様のセラミック支持体に酸化クロム(III)をコーティングさせて炉内に配置したところ、セラミックフィルターに付着する「すす」がほとんど発生しないことを発見した。これは、芳香環を有する有機化合物が遷移金属酸化物により分解されることにより、「すす」の発生が抑制されたと考えられる。この現象は、酸化鉄(III)、酸化銅(II)および酸化チタン(IV)等においても同じ現象が起こることがわかった。
 以上のことから、バックシートを構成する樹脂の少なくとも一部が、PET等のような芳香族系樹脂(繰り返し単位の一部として芳香族基を有する樹脂)である場合に、「すす」の発生を抑制できる観点から、炉内に前記遷移金属酸化物を存在させておくことが好適である。
 前記遷移金属酸化物としては、例えば、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、カドミウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、金、水銀の酸化物を何ら制限なく使用することができる。
 これらの中でも好ましくはスカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅の第一遷移元素の酸化物、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀の第二遷移元素の酸化物、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、金の第三遷移元素の酸化物が挙げられ、より好ましくはルチル型またはアナターゼ型の酸化チタン(IV)、酸化クロム(III)、酸化鉄(III)および酸化銅(II)等の遷移金属酸化物が好適に利用できる。これらは複合酸化物の状態であってもよい。
 前記遷移金属酸化物は、接触面積を大きくするため、多孔質材料(B)に担持させて炉内に存在させておくことが好適である。当該多孔質材料(B)としては、前記セラミック支持体(A)と同じく樹脂成分の燃焼温度で安定であればよく、同様の材質のものが挙げられる。多孔質材料(B)の形状は特に限定されず、いわゆる触媒の担体とできるものであれば特に限定はされないが、前記太陽電池モジュールを載置するセラミック支持体(A)と同様の板状の多孔質成形体であることがより好ましい。
 前記遷移金属酸化物を多孔質材料に担持させる方法は、公知の技術が何ら制限なく用いることができる。具体的には、遷移金属酸化物を含む溶液に多孔質材料をディップコーティング、ウォッシュコーティング、スプレーコーティングまたはスピンコーティングなどを用いて含浸担持させる方法が一般的である。その後、溶液の沸点以上まで加温することにより溶液を除去する方法が最も簡単である。また、遷移金属酸化物を溶融させたものを多孔質材料に噴射させる溶射技術を利用してもよい。
 本発明では、前記遷移金属酸化物を担持させた多孔質材料(B)に、太陽電池モジュールを載置したセラミック支持体(A)を載置する。
 なお、遷移金属酸化物を担持させた多孔質材料(B)を、太陽電池モジュールに直接接触させないような態様とすることが好ましく、特に太陽電池モジュールよりも下側に配置して直接接触させないような態様とすることがより好ましい。なぜならば、太陽電池モジュールのバックシートなどに含まれる充填材等の非燃焼性成分による多孔質材料(B)への汚染を生じにくくさせ、遷移金属酸化物を担持させた多孔質材料(B)を繰り返し使用する際に、再生処理等をする必要が無くなるためである。
 前記多孔質材料(B)の大きさとしては、太陽電池モジュールを含む被処理物の安定性の観点から、多孔質材料(B)の積載面が、前記セラミック支持体(A)の底面積と同程度以上であると好ましい。前記多孔質材料(B)の厚みとしては、10~60mm程度のものが好適である。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。
 [実施例1]
 図3に示すような熱分解炉20を用いて、太陽電池モジュール7を含む被処理物23を、熱分解炉部22の左側(入口側)から右側(出口側)に向かって炉内をチェーンコンベア24で移動させることにより加熱処理を行った。
 太陽電池モジュール7としては、REC製「RECソーラパネル」(セルタイプ:REC PE 多結晶太陽電池セル、サイズ:1,665mm×991mm×38mm)を用いて実験を行った。アルミ枠10、ジャンクションボックスおよびコネクターは、加熱処理の前にスクレイパーとハンマーを用いてガラスが傷つかないように取り除いた。
 セラミック支持体(A)2としてのセラミックフィルターは、聖泉フィルター製 FCF-2(炭化ケイ素製)10ppi 400mm×300mm×30mmt(空孔率87.8%)を用いた。
 和光1級 酸化クロム(III)(富士フイルム和光純薬株式会社製)を水に懸濁させながら攪拌し、上記セラミックフィルターを浸漬させてディップコーティングを行い、450℃で乾燥させて多孔質材料(B)1を得た。コーティングする前の質量は1,480gであり、コーティングして乾燥させた後の質量は1,790gであった。
 格子が入った2,100mm×1,210mm×50mmの鉄製トレイを製作し、酸化クロムをコーティングさせたセラミックフィルター21枚を使用して、最下段に2,100mm×1,200mm×30mmtの多孔質材料(B)1を設置した。その上の中段に400mm×300mm×30mmtのセラミックフィルター21枚を使用して2,100mm×1,200mm×30mmtのセラミック支持体(A)2を設置した。さらにその上に、前記太陽電池モジュール7を、バックシート3が下側になるように設置した。
 熱分解炉20としてはガス炉を使用した。当該ガス炉として、タクト送りチェーンブロー式の炉長5,400mm、炉内幅2,300mm、炉内高さ280mmの熱風循環式熱処理装置を用いた。ガスバーナー部21にはメタリックバーナーMJPE―200Kを用い、LPガスと空気の混合ガスを燃焼させて加熱した。加熱した混合ガスを足立機工製「6.0‐LFリミットロードファン」(450m3/分、2.0kPa、30kW)で熱分解炉部22の下側からスリットで絞って供給し、多孔質材料(B)1に勢いよく吹き付け、熱交換できるようにし、循環された加熱ガスの一部を排気した。
 上記のようにして準備した、太陽電池モジュール7、セラミック支持体(A)2および多孔質材料(B)1からなる被処理物23を、熱分解炉部22の入口側から出口側に向かって炉内の3区間を、それぞれ6.5分間保持させてタクト送りし、合計19.5分間、熱分解炉20で加熱処理を行った。入口側が昇温部27となり、太陽電池モジュール7に含まれる樹脂成分が燃焼するゾーンが燃焼部28となる。なお、中段のセラミック支持体(A)2の上部中心に熱電対式温度計を差し込んで、被処理物23の温度の測定を行った。
 加熱処理は、酸素濃度測定部26により燃焼部28の酸素濃度を6vol%以上15vol%未満の範囲となるように、供給する混合ガスにおける空気の割合を調整し、かつ、燃焼部28における被処理物23の温度が470℃以上となるように、供給する混合ガスの加熱温度および供給量を調整した。
 上記のようにして加熱処理を行った結果、図4に示すように、加熱処理時の燃焼部28における酸素濃度を6vol%以上15vol%未満の範囲に制御することにより、炉内の温度は470~530℃の範囲で安定的に制御することができた。すなわち、低酸素雰囲気下では、炎を伴わない緩やかな燃焼により安定的な温度制御および被処理物23の処理が可能であることが判明した。加熱処理後、強化ガラス6は割れることなく回収でき、セル5および無機粉体も回収できた。さらに、多孔質材料(B)1として用いた最下段のセラミックフィルターに「すす」の付着がみられなかった。
 [比較例1]
 酸素濃度測定部26により燃焼部28の酸素濃度を15vol%以上の条件に変更したこと以外は実施例1と同様にして、太陽電池モジュール7を含む被処理物23の加熱処理を行った。その結果、図4に示すように、炎を伴った爆発的な燃焼により炉内温度が急上昇したため、供給ガスの供給量を抑制させるなどの対応が必要となった。すなわち、通常の酸素雰囲気下では、炉内温度を安定的に制御することが難しく、その結果、処理コストが上昇することが判明した。
 1:遷移金属酸化物を担持させた多孔質材料(B)
 2:多孔質のセラミック支持体(A)
 3:バックシート
 4:封止用樹脂層(EVA)
 5:セル
 6:強化ガラス
 7:太陽電池モジュール(X)
 8:棚板または金網
 9:ガス炉または電気炉
10:アルミ枠
20:熱分解炉
21:ガスバーナー部
22:熱分解炉部
23:被処理物
24:チェーンコンベア
25:温度測定部
26:酸素濃度測定部
27:昇温部
28:燃焼部

Claims (3)

  1.  樹脂製のバックシートおよび封止用樹脂層を有する太陽電池モジュールを熱分解炉内で加熱することにより、前記太陽電池モジュールに含まれる樹脂成分を溶融して酸化分解させる加熱工程を含む、廃太陽電池を連続的に処理する方法であって、
     前記加熱工程が、前記太陽電池モジュールを、多孔質のセラミック支持体(A)上に載置し、かつ、前記セラミック支持体(A)を、遷移金属酸化物を担持させた多孔質材料(B)上に載置した状態で、前記熱分解炉の入口から出口に向かって炉内を移動させることにより行われること、および
     前記熱分解炉内が、前記太陽電池モジュールの温度が上昇する段階の昇温部と、前記樹脂成分が酸化分解する段階の燃焼部とを含み、前記燃焼部における酸素濃度を6vol%以上15vol%未満の範囲に制御することを特徴とする廃太陽電池の処理方法。
  2.  前記熱分解炉内で加熱されている状態の前記太陽電池モジュールが複数存在する、請求項1に記載の廃太陽電池の処理方法。
  3.  前記加熱工程後に、前記セラミック支持体(A)上に残された有価物を回収する、請求項1または2記載の廃太陽電池の処理方法。
PCT/JP2021/024728 2020-07-01 2021-06-30 廃太陽電池の処理方法 WO2022004781A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022534076A JPWO2022004781A1 (ja) 2020-07-01 2021-06-30
EP21833797.0A EP4176984A1 (en) 2020-07-01 2021-06-30 Waste solar cell processing method
KR1020227044450A KR20230031216A (ko) 2020-07-01 2021-06-30 폐태양전지의 처리 방법
AU2021300100A AU2021300100A1 (en) 2020-07-01 2021-06-30 Waste solar cell processing method
CN202180045297.1A CN115769384A (zh) 2020-07-01 2021-06-30 废太阳能电池的处理方法
US18/013,077 US20230241655A1 (en) 2020-07-01 2021-06-30 Waste Photovoltaic Module Processing Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-114353 2020-07-01
JP2020114353 2020-07-01

Publications (1)

Publication Number Publication Date
WO2022004781A1 true WO2022004781A1 (ja) 2022-01-06

Family

ID=79316329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024728 WO2022004781A1 (ja) 2020-07-01 2021-06-30 廃太陽電池の処理方法

Country Status (7)

Country Link
US (1) US20230241655A1 (ja)
EP (1) EP4176984A1 (ja)
JP (1) JPWO2022004781A1 (ja)
KR (1) KR20230031216A (ja)
CN (1) CN115769384A (ja)
AU (1) AU2021300100A1 (ja)
WO (1) WO2022004781A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188791A1 (ja) * 2022-03-31 2023-10-05 株式会社トクヤマ 太陽電池モジュールリサイクルシステムおよび太陽電池モジュールリサイクル方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11165150A (ja) 1997-07-21 1999-06-22 Angewandte Solarenergie Ase Gmbh 合わせガラスの構成部材の分離方法
JP2007059793A (ja) 2005-08-26 2007-03-08 Showa Shell Sekiyu Kk Cis系薄膜太陽電池モジュールの構成部材回収方法
JP2011080664A (ja) * 2009-10-06 2011-04-21 Takusen Ito 廃棄物の熱分解、炭化・ガス化方法及び装置
JP2014108375A (ja) 2012-11-30 2014-06-12 Shinryo Corp 太陽電池素子構成材料の回収方法
JP2016190177A (ja) * 2015-03-31 2016-11-10 国立大学法人信州大学 太陽電池パネルから有価物を回収する方法及び回収するための処理装置
WO2020031661A1 (ja) 2018-08-06 2020-02-13 株式会社トクヤマ 太陽電池モジュールから有価物を回収する方法
JP2020142218A (ja) * 2019-03-08 2020-09-10 株式会社綿谷製作所 太陽電池パネルの分解装置及び太陽電池パネルの分解方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11165150A (ja) 1997-07-21 1999-06-22 Angewandte Solarenergie Ase Gmbh 合わせガラスの構成部材の分離方法
JP2007059793A (ja) 2005-08-26 2007-03-08 Showa Shell Sekiyu Kk Cis系薄膜太陽電池モジュールの構成部材回収方法
JP2011080664A (ja) * 2009-10-06 2011-04-21 Takusen Ito 廃棄物の熱分解、炭化・ガス化方法及び装置
JP2014108375A (ja) 2012-11-30 2014-06-12 Shinryo Corp 太陽電池素子構成材料の回収方法
JP2016190177A (ja) * 2015-03-31 2016-11-10 国立大学法人信州大学 太陽電池パネルから有価物を回収する方法及び回収するための処理装置
WO2020031661A1 (ja) 2018-08-06 2020-02-13 株式会社トクヤマ 太陽電池モジュールから有価物を回収する方法
JP2020142218A (ja) * 2019-03-08 2020-09-10 株式会社綿谷製作所 太陽電池パネルの分解装置及び太陽電池パネルの分解方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAPANESE JOURNAL OF POLYMER SCIENCE AND TECHNOLOGY, vol. 64, no. 9, 2007

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188791A1 (ja) * 2022-03-31 2023-10-05 株式会社トクヤマ 太陽電池モジュールリサイクルシステムおよび太陽電池モジュールリサイクル方法

Also Published As

Publication number Publication date
EP4176984A1 (en) 2023-05-10
JPWO2022004781A1 (ja) 2022-01-06
CN115769384A (zh) 2023-03-07
AU2021300100A1 (en) 2023-02-02
KR20230031216A (ko) 2023-03-07
US20230241655A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
CN112469514B (zh) 从太阳能电池组件回收有价物质的方法
JP6596732B2 (ja) 太陽電池パネルから有価物を回収する方法及び回収するための処理装置
JP6596735B2 (ja) 太陽電池モジュールから有価物を回収する方法及び回収するための処理装置
JP5904487B2 (ja) プラスチックまたはプラスチック複合材料の処理方法及び処理装置
WO2022004781A1 (ja) 廃太陽電池の処理方法
CN104226020B (zh) 一种具有催化功能的复合型纳米滤料及其制备方法和应用
JP2014108375A (ja) 太陽電池素子構成材料の回収方法
CN102416401A (zh) 热高速离心分解回收光伏组件工艺及其设备
CN110627186A (zh) 利用经修饰的钴氧化物催化过硫酸盐产生单线态氧的废水处理方法
TWI272644B (en) Method and apparatus for manufacturing plasma display panel
JP5688200B2 (ja) 貴金属の回収方法及び燃焼装置
JPH11165150A (ja) 合わせガラスの構成部材の分離方法
JP6593585B2 (ja) 合わせガラスからガラスを回収する方法及び回収するための処理装置
KR101553475B1 (ko) 플라즈마를 이용하여 구리함유폐기물로부터 유가금속을 회수하는 방법
WO2023085220A1 (ja) 廃太陽電池の処理方法
CN101391864A (zh) 基板热处理炉
JP5108354B2 (ja) 高純度シリコンの製造方法
KR20230029852A (ko) 유기물 함유 스크랩에서 비철금속, 특히 흑동 및/또는 원료 구리의 수득 방법
CN107166403B (zh) 一种贵金属碳催化剂焚烧炉及焚烧工艺
FR2805919A1 (fr) Procede de traitement du graphite utilise dans les reacteurs nucleaires
CN117298853A (zh) 一种含汞物料微波-光氧化协同汞烟气分离净化系统及方法
JPS6070014A (ja) 生鮮植物貯蔵装置
JP2014094328A (ja) アルミニウム層含有包装材からのアルミニウム回収方法及びそれを用いたアルミニウム回収装置
CN102978409A (zh) 一种从废炭基触媒中回收重金属钯的方法
FR2967523A1 (fr) Procede de desorption thermique de radionucleides et/ou de metaux lourds fixes dans un support lignocellulosique, dispositif adapte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534076

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021300100

Country of ref document: AU

Date of ref document: 20210630

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021833797

Country of ref document: EP

Effective date: 20230201