WO2023085220A1 - 廃太陽電池の処理方法 - Google Patents

廃太陽電池の処理方法 Download PDF

Info

Publication number
WO2023085220A1
WO2023085220A1 PCT/JP2022/041301 JP2022041301W WO2023085220A1 WO 2023085220 A1 WO2023085220 A1 WO 2023085220A1 JP 2022041301 W JP2022041301 W JP 2022041301W WO 2023085220 A1 WO2023085220 A1 WO 2023085220A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
ceramic support
porous ceramic
porous
Prior art date
Application number
PCT/JP2022/041301
Other languages
English (en)
French (fr)
Inventor
丈晴 山下
大輔 井上
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN202280050440.0A priority Critical patent/CN117651617A/zh
Priority to AU2022386880A priority patent/AU2022386880A1/en
Publication of WO2023085220A1 publication Critical patent/WO2023085220A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/12Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Definitions

  • the present invention relates to a method for processing waste solar cells. More specifically, it efficiently removes resin components such as the back sheet and sealing resin layer from the solar cell module, and recovers valuables such as conductive materials and aluminum frames derived from glass, cells, and electrodes. Regarding the processing method.
  • the structure of a typical solar cell module consists of three layers: tempered glass on the front, a sealing resin layer on the inside, and a back sheet on the back. Wires (interconnectors) that connect the cells are wired in the sealing resin layer. Sealing resins are required to have transparency, flexibility, adhesiveness, tensile strength, weather resistance, etc., and ethylene-vinyl acetate copolymer (hereinafter abbreviated as "EVA”) is generally used. and pressurized to bond the tempered glass, cell and back sheet.
  • EVA ethylene-vinyl acetate copolymer
  • the present applicant also proposed a method for recovering valuables from a solar cell module, in which a porous molded body made of a heat-resistant material on which a transition metal oxide is supported as a catalyst is placed on a porous molded body with the back sheet surface facing downward.
  • a processing method has been proposed in which a solar cell module is placed, and the solar cell module is heated in a heating furnace under an oxidizing atmosphere with an oxygen concentration of 15% or higher to melt the resin component and then burn it (Patent document 1).
  • the inventors have made intensive studies to solve the above problems. As a result, when the entire module is heated on the porous molded body, a predetermined gap is provided between the porous molded body and the module, and hot air is sent from the lower part of the porous molded body to heat the entire module. The inventors have found that it is possible to speed up the temperature rise, improve the processing speed, and shorten the processing time, thereby completing the present invention.
  • a solar cell module (C) having a resin backsheet and a sealing resin layer is heated in a pyrolysis furnace to melt and oxidize the resin component contained in the solar cell module (C).
  • a method for continuously processing waste solar cells comprising a heating step to decompose, comprising: During the heating step, the solar cell module (C) is placed on the porous ceramic support (A) at a distance from the porous ceramic support (A), and the porous ceramic support is In a state where the body (A) is laminated on the porous material (B) supporting the transition metal oxide, hot air is blown from the porous material (B) side to the porous material (B) and the porous ceramic support.
  • a method for treating waste solar cells characterized in that air is supplied to the inside of the body (A) and the gap between the solar cell module (C) and the porous ceramic support (A).
  • air is supplied to the inside of the body (A) and the gap between the solar cell module (C) and the porous ceramic support (A).
  • the number of cells on the surface of the porous ceramic support (A) and the porous material (B) is in the range of 5 to 50 pixels per inch (hereinafter abbreviated as "ppi") [1 ] to [3], the method for treating a waste solar cell according to any one of [5] The method for treating waste solar cells according to any one of [1] to [4], wherein a net-like structure for preventing falling is installed under the solar cell module (C). [6] The method for treating waste solar cells according to any one of [1] to [5], wherein valuables are recovered after the heating step.
  • heat can be efficiently transferred, so the processing speed of waste solar cells can be improved, the processing time can be shortened, and reusable valuables can be efficiently recovered.
  • FIG. 1 is a schematic diagram showing an embodiment of the present invention
  • FIG. It is a schematic diagram which shows another 1 embodiment of this invention.
  • FIG. 4 is a schematic diagram showing yet another embodiment of the present invention; 4 is a graph showing temperature changes at the center under the back sheet of solar cell modules in Examples 1 to 3 and Comparative Example 1.
  • FIG. 10 is a graph showing temperature changes at the center under the back sheet of solar cell modules in Examples 4 to 6.
  • a solar cell module (C) having a resin backsheet and a sealing resin layer is heated in a pyrolysis furnace to give the solar cell module (C)
  • a method for continuously treating waste solar cells including a heating step for melting and oxidatively decomposing the resin component contained therein, During the heating step, the solar cell module (C) is placed on the porous ceramic support (A) at a distance from the porous ceramic support (A), and the porous ceramic support is In a state where the body (A) is laminated on the porous material (B) supporting the transition metal oxide, hot air is blown from the porous material (B) side to the porous material (B) and the porous ceramic support. The air is supplied to the inside of the body (A) and the gap between the solar cell module (C) and the porous ceramic support (A).
  • FIG. 1 shows one embodiment of the present invention.
  • 1 is a porous material (B) supporting a transition metal oxide
  • 2 is a porous ceramic support (A)
  • 3 is a solar cell module (C)
  • 4 is a back sheet
  • 5 is a A sealing resin layer
  • 6 a cell, and 7 tempered glass constitute a solar cell module 3 .
  • a predetermined gap d is provided between the porous ceramic support 2 and the solar cell module 3 .
  • the cell 6 and the tempered glass 7 are collected as valuables.
  • metals and metal oxides constituting electrodes and reflective films are also collected as valuables.
  • the surface glass functions as a surface protective material.
  • any solar cell module having a resin-made back sheet 4 that is not of the double-sided glass type can be used.
  • Specific examples include monocrystalline silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, heterojunction solar cells, CIS solar cells, CIGS solar cells, and CdTe solar cells.
  • such a solar cell module 3 normally includes, for example, a light-transmitting electrode or a line-shaped electrode, a ladder-shaped electrode, a chain-shaped electrode, or a bus bar. Electrodes made by stacking metal foils or metal ribbons are used. Examples of metals include silver, copper, aluminum, and the like. Also, a transparent electrode whose main component is a conductive oxide may be provided.
  • Conductive oxides include indium tin oxide (ITO), aluminum-doped zinc oxide (AZO), boron-doped zinc oxide (BZO), gallium-doped zinc oxide (GZO), indium-doped zinc oxide (IZO), aluminum gallium oxide ( AGO), titanium -doped indium oxide (ITiO), indium gallium zinc oxide (IGZO), and hydrogen-doped indium oxide ( In2O3 ).
  • the solar cell module 3 is configured such that a plurality of cells 6 are sealed with a sealing resin layer 5 between a tempered glass 7 and a back sheet 4 .
  • Thermoplastic resins such as ethylene vinyl acetate (EVA), polyvinyl butyral resin (PVB) and polyolefin resin are used as sealing resins.
  • the sealing resin layer 5 may contain a coloring material such as a white pigment.
  • a white pigment such as titanium oxide has a function of reflecting sunlight to increase incident light to the solar cell module 3 .
  • Such a white pigment may be kneaded with the encapsulating resin, or the encapsulating resin layer 5 may be formed by laminating layers containing the white pigment.
  • the back sheet 4 is a sheet-shaped back surface protective material, and includes a base film of EVA or polyethylene terephthalate resin, or a combination of the base film and a weather-resistant fluoropolymer film such as polyvinyl fluoride (PVF). A laminated film or the like is used.
  • a base film of EVA or polyethylene terephthalate resin or a combination of the base film and a weather-resistant fluoropolymer film such as polyvinyl fluoride (PVF).
  • PVF polyvinyl fluoride
  • an aluminum frame may be attached as a frame (not shown).
  • the aluminum frame since it is not necessary to cut the porous ceramic support 2 according to the size of the aluminum frame and the work becomes simpler, the aluminum frame may be removed before pyrolysis, or the glass may be removed at the time of removal. may be removed after pyrolysis to reduce the likelihood of cracking.
  • a reflective film may be provided on the back surface of the solar cell module opposite to the sunlight incident surface as necessary in order to improve the light receiving efficiency of the cell.
  • a metal film made of a metal such as silver can be used.
  • the heating step in the treatment method of the present invention heats the solar cell module 3 having the resin backsheet 4 and the sealing resin layer 5 in a pyrolysis furnace to remove the resin component contained in the solar cell module 3. Melt and oxidatively decompose. This oxidative decomposition is usually accompanied by combustion of the resin component.
  • the solar cell module 3 is placed on the porous ceramic support 2 with a predetermined gap therebetween, and the porous ceramic support 2 is coated with a transition metal oxide. While placed on the supported porous material 1, it is moved in the furnace from the inlet to the outlet of the pyrolysis furnace. At this time, it is preferable to face the solar cell module 3 to the porous ceramic support 2 with the back sheet 4 facing downward, in terms of collecting valuables and the like.
  • hot air is blown from the porous material 1 side.
  • the hot air passes through the pores of the porous material 1 and the porous ceramic support 2, reaches the gap with the solar cell module 3, collides with the solar cell module 3, and diffuses into the gap d.
  • the plurality of solar cell modules 3 it is preferable to move the plurality of solar cell modules 3 continuously so that there are a plurality of solar cell modules 3 that are being heated in the pyrolysis furnace.
  • the object to be treated comprising the solar cell module 3, the porous ceramic support 2 and the porous material 1 is subjected to heat treatment, it is necessary to prevent them from collapsing or overturning during movement in the furnace. To prevent it, you can put it in a gridded iron tray or the like.
  • the gap d is formed, for example, by installing a spacer member 8 between the porous ceramic support 2 and the solar cell module 3 as shown in FIG. It can be provided by installing the lifting member 9 on the upper part of the pyrolysis furnace.
  • the shape and form of the spacer member 8 are not particularly limited as long as a predetermined gap can be provided. , the solar cell module 3 should be placed so as not to bend.
  • the lifting member 9 is not particularly limited as long as it is configured to lift the solar cell module 3 from above, and a basket material or the like can be used.
  • These members are generally made of refractory materials that do not deform or react when heated, such as inorganic materials such as stainless steel, silica, and alumina.
  • the gap d between the solar cell module 3 and the porous ceramic support 2 is preferably in the range of 3-50 mm, preferably 4-40 mm, more preferably 5-15 mm.
  • the range is selected according to the air permeability of the porous ceramic support 2 and the porous material 1 and the amount of hot air supplied.
  • " ⁇ " indicates "above” - "below”.
  • the resin components such as EVA and PET that constitute the back sheet 4 and the sealing resin layer 5 melt during the heating process, and then flow out toward the porous ceramic support 2 due to the action of gravity.
  • the resin component that melts and flows down has a large contact area with the atmosphere in the heating furnace, and captures components such as white pigment contained as solid content. can do.
  • the resin component that has melted and flowed down passes through the porous ceramic support 2, reaches the porous material 1, is oxidatively decomposed by the supported transition metal oxide, and the decomposed product is burned.
  • the atmosphere in the heating furnace in the heating process be controlled to have an oxygen concentration in the range of 6 vol% or more and less than 15 vol%. This range is desirable because the resin component can be gently and stably burned and removed.
  • the temperature of the pyrolysis furnace is appropriately determined according to the resin forming the back sheet 4 and the sealing resin layer 5, but is preferably 425 to 575°C. If the temperature is 425° C. or higher, the temperature is higher than the thermal decomposition temperature of the resin used for the back sheet 4 and the sealing resin layer 5, and combustion occurs. Further, if the temperature is 575° C. or lower, rapid combustion can be suppressed, and breakage of the glass of the solar cell module 3 can be prevented.
  • a gas furnace, an electric furnace, or the like which is capable of achieving the above temperature and into which the objects to be treated including the porous material 1, the porous ceramic support 2 and the solar cell module 3 can be put.
  • the furnace is not particularly limited, and a known pyrolysis furnace can be used.
  • a hot air supply method includes heating an oxygen-containing gas with a gas burner or the like and supplying the air from the porous material 1 side.
  • the furnace temperature is not particularly limited as long as the furnace temperature can be obtained.
  • the entire furnace interior may be heated together with air supply.
  • the valuable material is at least one selected from the group consisting of glass, cells, conductive materials used for electrodes, aluminum frames, and the like.
  • a net structure for preventing falling may be installed under the solar cell module (C).
  • a mesh structure such as a wire mesh is placed between the solar cell module 3 and the porous ceramic support 2, and even if the resin melts and moves onto the porous ceramic support 2, it remains. It is also effective to collect valuables together with the wire mesh. As a result, after the resin has been melted and burned, the valuables can be efficiently recovered without the glass, cells, etc. falling apart.
  • the porous ceramic support 2 applicable to the present invention is stable at the above temperature (specifically, about 425° C. to 575° C.) and can be used without any limitation as long as it has a porous structure.
  • Specific materials include stable and general materials such as alumina, zirconia, silicon nitride, silicon carbide, cordierite, ferrite, barium titanate, lead zirconate titanate, forsterite, zircon, mullite, steatite, and aluminum nitride. ceramic materials.
  • the pore size of the porous ceramic support 2 is not particularly limited, but is preferably about 0.1 to 5 mm, which facilitates permeation of EVA, PET, etc. when melted at around 450°C.
  • the number of cells on the surface is not particularly limited, but 5 to 50 pixels per inch (hereinafter abbreviated as "ppi") is desirable.
  • ppi pixels per inch
  • the shape of the porous ceramic support 2 is not particularly limited, but in order to prevent the resin used in the solar cell module 3 from dropping from the porous ceramic support 2, a plate-like one is preferably used. be able to.
  • the size of the surface of the porous ceramic support 2 on which the back sheet 4 is mounted is (Area) is preferably as large as possible within the aluminum frame if the aluminum frame is not removed, and is larger than the bottom area of the back sheet 4 if the aluminum frame is removed from the solar cell module 3 . is preferred.
  • the thickness of the porous ceramic support 2 is also not limited at all, but a thickness of about 10 to 60 mm is suitable.
  • porous ceramic support 2 As the porous ceramic support 2 as described above, a ceramic foam made of alumina, silicon carbide and cordierite, a product called a ceramic filter or a ceramic foam filter is suitable.
  • the solar cell module 3 When treating waste solar cells by the method of the present invention, the solar cell module 3 is placed on the porous ceramic support 2 with the back sheet 4 facing downward. By placing the back sheet 4 face down, the resin components constituting the back sheet 4 and the sealing resin layer 5 are melted by heating and then flowed toward the porous ceramic support 2 by the action of gravity. flow out.
  • the porous ceramic support 2 is porous, the resin flowing down has a large contact area with the atmosphere in the pyrolysis furnace. Therefore, the efficiency of combustion by further heating increases, and the generation of "soot" can be suppressed.
  • the transition metal oxide adsorbs oxygen in an oxidized state and converts an aromatic ring produced by oxidative decomposition of an aromatic resin during combustion. It has the ability to decompose organic compounds containing By using such a porous material 1, generation of "soot" can be suppressed.
  • transition metal oxide examples include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, cadmium, Oxide of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury can be used without any restrictions.
  • oxides of the first transition elements of scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel and copper, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium and silver are preferred.
  • Two-transition element oxides lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum , oxides of the third transition element of gold, more preferably transition metals such as rutile-type or anatase-type titanium (IV) oxide, chromium (III) oxide, iron oxide (III) and copper oxide (II) Oxide can be preferably used. These may be in the form of composite oxides.
  • the porous material 1 may be of the same material as the porous ceramic support 2 as long as it is stable at the combustion temperature of the resin component.
  • the shape of the porous material 1 is not particularly limited, and is not particularly limited as long as it can serve as a so-called catalyst carrier. It is more preferable that the material is a compact.
  • the method for supporting the transition metal oxide on the porous material known techniques can be used without any limitation. Specifically, a method of impregnating and supporting the porous material 1 in a solution containing a transition metal oxide using dip coating, wash coating, spray coating, spin coating, or the like is generally used. After that, the simplest method is to remove the solution by heating to the boiling point or higher of the solution. Alternatively, a thermal spraying technique may be used in which a melted transition metal oxide is sprayed onto the porous material 1 .
  • the porous ceramic support 2 is placed on the porous material 1 supporting the transition metal oxide.
  • the loading surface of the porous material 1 is approximately equal to or larger than the bottom area of the porous ceramic support 2. is preferable.
  • the thickness of the porous material 1 is preferably about 10-60 mm.
  • the number of cells on the surface of the porous material 1 is preferably in the range of 5 to 50 pixels per inch (hereinafter abbreviated as "ppi"), like the porous ceramic support 2.
  • the porosity is also not limited at all, but is preferably about 50 to 95% as in the case of the porous ceramic support 2 .
  • those having a three-dimensional skeleton structure with continuous pores can be preferably used.
  • the shelf plate used in the present invention has heat resistance, and any mode is acceptable as long as it can heat the mounted solar cell module 3, the porous ceramic support 2, and the porous material 1.
  • a ceramic shelf plate and a SUS wire mesh can be used.
  • Example 1 As the solar cell module 3, a polycrystalline silicon solar cell "KD270HX-BPEFMS" manufactured by Kyocera was used for evaluation. The electrodes and aluminum frame attached to the back sheet 4 were removed before the heat treatment step.
  • porous ceramic support (A-1) For the ceramic filter as the porous ceramic support 2, (manufacturer: Nippon Crucible (material: silicon carbide) 10 ppi, 300 mm x 400 mm x 15 mmt was used (this is referred to as porous ceramic support (A-1)).
  • a ceramic filter manufactured by Nippon Crucible (material: silicon carbide), 10 ppi, 300 mm x 400 mm x 45 mmt) was used. Co., Ltd.) was suspended in water and stirred, a ceramic filter was immersed in the mixture, dip-coated, and dried at 450° C. to produce a chromium-supporting porous material (B-1).
  • B-1 the weight before coating was 2300 g and after coating and drying was 2859 g.
  • An iron tray of 2,100 mm x 1,210 mm x 50 mm with a grid-like bottom was manufactured, and this chromium-supporting porous material (B-1) was installed.
  • a porous ceramic support (A-1) was placed thereon.
  • a stainless steel lattice spacer (lattice interval: 160 mm, height 10 mm) is placed as a spacer member 8 to provide a predetermined interval.
  • the solar cell module 3 was installed with the back sheet 4 facing downward.
  • a gas furnace was used as the pyrolysis furnace.
  • a tact feed chain blow type hot air circulation heat treatment apparatus having a furnace length of 5,400 mm, a furnace internal width of 2,300 mm, and a furnace internal height of 280 mm was used.
  • a metallic burner MJPE-200K was used for the gas burner, and a mixed gas of LP gas and air was burned and heated.
  • the heated mixed gas was squeezed by a slit from the bottom of the pyrolysis furnace with Adachi Machinery's "6.0-LF limit load fan" (450 m 3 /min, 2.0 kPa, 30 kw) and supplied, and the chromium-supporting porous Hot air was supplied by vigorously blowing onto the material (B-1).
  • Example 2 The same heat treatment as in Example 1 was performed using a stainless lattice-type spacer having a lattice interval of 160 mm and a height of 20 mm as the spacer member 8 instead of the stainless steel lattice-type spacer used in Example 1.
  • Example 3 The same heat treatment as in Example 1 was performed using a stainless lattice-type spacer having a lattice interval of 160 mm and a height of 30 mm instead of the stainless steel lattice-type spacer used in Example 1.
  • Example 1 The heat treatment was performed in the same manner as in Example 1, except that the stainless grid spacer was not used.
  • FIG. 4 shows changes in the temperature inside the furnace with respect to the heating time in the heat treatments of Examples 1 to 3 and Comparative Example 1.
  • Example 4 In Example 1, as the porous ceramic support 2, a ceramic filter made by Nippon Crucible (material: silicon carbide) 7 ppi, 300 mm ⁇ 400 mm ⁇ 15 mmt was used (porous ceramic support (A-2) and do).
  • porous material 1 supporting the catalyst As the porous material 1 supporting the catalyst, (manufacturer: Nippon Crucible (material: silicon carbide, 7 ppi, 300 mm ⁇ 400 mm ⁇ 45 mmt ceramic filter was used, and chromium (III) oxide was used in the same manner as in Example 1.
  • chromium-supporting porous material (B-2) In the chromium-supporting porous material (B-2), the mass before coating was 2300 g, and the mass after coating and drying was 2859 g. Met.
  • This chromium-supporting porous material (B-2) and porous ceramic support (A-2) were installed in the same manner as in Example 1. Furthermore, on the porous ceramic support (A-2), a stainless steel lattice spacer (lattice interval: 160 mm, height 10 mm) is placed as a spacer member 8 to provide a predetermined interval, and on the lattice spacer , the solar cell module 3 was installed with the back sheet 4 facing downward.
  • a gas furnace was used as the pyrolysis furnace.
  • the hot air was supplied by squeezing it from the lower side of the pyrolysis furnace used in Example 1 through a slit and vigorously blowing it onto the chromium-supporting porous material (B-2). Without controlling the oxygen concentration in the pyrolysis furnace, the temperature in the furnace was controlled at 500° C., and heat treatment was performed for 15 minutes.
  • a stainless steel grid spacer instead of the stainless steel grid spacer used in Example 4 as the spacer member 8, a stainless steel grid spacer (grid spacing: 160 mm, height 30 mm) was used, and the same heat treatment as in Example 4 was performed. rice field.
  • a stainless steel grid spacer instead of the stainless steel grid spacer used in Example 4 as the spacer member 8, a stainless steel grid spacer (grid spacing: 160 mm, height 40 mm) was used, and the same heat treatment as in Example 4 was performed. rice field.
  • FIG. 5 shows changes in temperature with respect to heating time in the heating steps of Examples 4-6.
  • Example 4 with a gap of 10 mm had a peak maximum time 30 seconds earlier than Examples 4 and 5.
  • the change is the same when the gap is 30 mm and 40 mm.
  • Porous material 2 Porous ceramic support 3: Solar cell module 4: Back sheet 5: Sealing resin layer 6: Cell 7: Tempered glass 8: Spacer member 9: Lifting member

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

[課題]効率的に廃太陽電池を処理する方法を提供する。 [解決手段]樹脂製のバックシートおよび封止用樹脂層を有する太陽電池モジュール(C)を熱分解炉内で加熱することにより、前記太陽電池モジュール(C)に含まれる樹脂成分を溶融して酸化分解させる加熱工程を含む、廃太陽電池を連続的に処理する方法であって、前記加熱工程の際に、前記太陽電池モジュール(C)を、多孔質セラミック支持体(A)上に、多孔質セラミック支持体(A)から離間して載置し、かつ、前記多孔質セラミック支持体(A)を、遷移金属酸化物を担持させた多孔質材料(B)上に積層した状態で、熱風を、多孔質材料(B)側から、多孔質材料(B)および多孔質セラミック支持体(A)内部および太陽電池モジュール(C)と多孔質セラミック支持体(A)との間隙に送気することを特徴とする、廃太陽電池の処理方法。

Description

廃太陽電池の処理方法
 本発明は、廃太陽電池の処理方法に関する。より詳細には、太陽電池モジュールからバックシートおよび封止用樹脂層等の樹脂成分の除去、およびガラス、セル、電極に由来する導電性材料およびアルミ枠等の有価物の回収を効率的に行う処理方法に関する。
 低炭素社会の実現に向け、太陽光発電を始めとした再生可能エネルギーの活用によるCO2削減の加速化が進行しようとしている。太陽光発電の導入が大幅に進む一方で、太陽電池モジュールの廃棄時におけるリサイクルの課題が指摘されている。
 一般的な太陽電池モジュールの構造は、表面が強化ガラス、内側に封止用樹脂層、裏面がバックシートの3層になっている。封止用樹脂層には、セル同士をつなぐ電線(インタコネクタ)が配線されている。封止用樹脂は、透明性、柔軟性、接着性、引張強度、および耐候性などが要求され、エチレン酢酸ビニル共重合体(以下「EVA」と略す)が一般的に用いられており、加熱および加圧することで強化ガラス、セルおよびバックシートを接着させる役割を果たしている。
 この太陽電池モジュールを酸化性雰囲気下で電気炉等により加熱して、EVAを熱分解させることで封止材を除去して、セル部とガラス基板を分離する、太陽電池モジュールをリサイクルする技術が提案されている。
 本出願人も、太陽電池モジュールから有価物を回収する方法であって、触媒として遷移金属酸化物を担持させた耐熱性材料からなる多孔質成形体の上に前記バックシート面を下側にして太陽電池モジュールを載せて、酸素濃度15%以上の酸化性雰囲気下の加熱炉内で、前記太陽電池モジュールを加熱して樹脂成分を溶融した後、燃焼させる処理方法を提案している(特許文献1参照)。
国際公開第2020/031661号
 特許文献1のように、多孔質成形体の上で、モジュール全体を加熱しようとすると、温度上昇が緩やかであるため、処理時間が長くなるという課題があった。その一方で、処理コストを安くするには、単位時間当たりの処理枚数を多くすることが効率的であり、処理時間の短縮が必要となる。しかしながら、熱分解炉内の温度を高くすることで処理速度を速めようとすると、燃料費など処理コストのアップにつながってしまうという、新たな課題が生じる。
 本発明者らは前記課題を解決するために鋭意検討を行った。その結果、多孔質成形体の上で、モジュール全体を加熱する際に、多孔質成形体とモジュールとの間に所定の隙間を設け、多孔質成形体の下部から熱風を送ることで、モジュール全体の温度上昇を早くすることが可能となり、処理速度を向上し、処理時間の短縮化できることを見出し、本発明を完成するに至った。
 すなわち、本発明の構成は以下の通りである。
[1]樹脂製のバックシートおよび封止用樹脂層を有する太陽電池モジュール(C)を熱分解炉内で加熱することにより、前記太陽電池モジュール(C)に含まれる樹脂成分を溶融して酸化分解させる加熱工程を含む、廃太陽電池を連続的に処理する方法であって、
 前記加熱工程の際に、前記太陽電池モジュール(C)を、多孔質セラミック支持体(A)上に、多孔質セラミック支持体(A)から離間して載置し、かつ、前記多孔質セラミック支持体(A)を、遷移金属酸化物を担持させた多孔質材料(B)上に積層した状態で、熱風を、多孔質材料(B)側から、多孔質材料(B)および多孔質セラミック支持体(A)内部および太陽電池モジュール(C)と多孔質セラミック支持体(A)との間隙に送気することを特徴とする、廃太陽電池の処理方法。
[2]多孔質セラミック支持体(A)と太陽電池モジュール(C)との間にスペーサー部材を設置する、または、太陽電池モジュール(C)の吊り上げ部材を熱分解炉上部に設置することで、太陽電池モジュール(C)と多孔質セラミック支持体(A)とを離間させることを特徴とする[1]に記載の、廃太陽電池の処理方法。
[3]太陽電池モジュール(C)と多孔質セラミック支持体(A)との間隙が、3~50mmの範囲にあることを特徴とする、[1]または[2]に記載の廃太陽電池の処理方法。
[4]多孔質セラミック支持体(A)および多孔質材料(B)の表面のセル数が、5~50pixel per inch(以下「ppi」と略す)の範囲にあることを特徴とする、[1]~[3]のいずれか1項に記載の廃太陽電池の処理方法。
[5]太陽電池モジュール(C)の下に落下防止用の網状構造体が設置されてなる、[1]~[4]のいずれか1項に記載の廃太陽電池の処理方法。
[6]前記加熱工程後に、有価物を回収する、[1]~[5]のいずれか1項に記載の廃太陽電池の処理方法。
 本発明では、熱を効率的に伝えることができるので、廃太陽電池の処理速度を向上でき、処理時間を短縮化できるとともに、再利用可能な有価物を効率的に回収できる。
本発明の一実施態様を示す模式図である。 本発明の別の一実施態様を示す模式図である。 本発明のさらに別の一実施態様を示す模式図である。 実施例1~3および比較例1における太陽電池モジュールのバックシート下中央の温度変化を示すグラフである。 実施例4~6における太陽電池モジュールのバックシート下中央の温度変化を示すグラフである。
 以下、本発明について詳細に説明する。
 本発明に係る廃太陽電池の処理方法は、樹脂製のバックシートおよび封止用樹脂層を有する太陽電池モジュール(C)を熱分解炉内で加熱することにより、前記太陽電池モジュール(C)に含まれる樹脂成分を溶融して酸化分解させる加熱工程を含む、廃太陽電池を連続的に処理する方法であって、
 前記加熱工程の際に、前記太陽電池モジュール(C)を、多孔質セラミック支持体(A)上に、多孔質セラミック支持体(A)から離間して載置し、かつ、前記多孔質セラミック支持体(A)を、遷移金属酸化物を担持させた多孔質材料(B)上に積層した状態で、熱風を、多孔質材料(B)側から、多孔質材料(B)および多孔質セラミック支持体(A)内部および太陽電池モジュール(C)と多孔質セラミック支持体(A)との間隙に送気することを特徴とする。
 図1に本発明の一実施態様を示す。図1中、1は遷移金属酸化物を担持させた多孔質材料(B)、2は多孔質セラミック支持体(A)、3は太陽電池モジュール(C)を示し、4はバックシート、5は封止用樹脂層、6はセル、7は強化ガラスを示し、太陽電池モジュール3を構成する。多孔質セラミック支持体2と太陽電池モジュール3との間に所定の間隙dが設けられる。なお、本発明の一態様では、セル6と強化ガラス7は有価物として回収される。また、図示していないが、電極や反射膜などを構成する金属や金属酸化物なども有価物として回収される。なお表面ガラスは、表面保護材として機能する。
 <太陽電池モジュール3>
 本発明に適用できる太陽電池モジュール3は、両面ガラスタイプではない樹脂製のバックシート4を有する太陽電池モジュールであれば、すべて利用することができる。具体的には、単結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池、ヘテロ接合型太陽電池、CIS太陽電池、CIGS太陽電池、CdTe太陽電池等が挙げられる。
 このような太陽電池モジュール3には、図示していないが、通常、電極としては、例えば、光透過性のある電極又はライン状の電極や、はしご状の電極や鎖状の電極にバスバーとなる金属箔や金属リボンを重ねた電極が用いられる。金属としては、銀、銅、又はアルミニウム等が挙げられる。また、導電性酸化物を主成分とする透明電極が設けられることもある。導電性酸化物としては、酸化インジウムスズ(ITO)、アルミニウムドープ酸化亜鉛(AZO)、ボロンドープ酸化亜鉛(BZO)、ガリウムドープ酸化亜鉛(GZO)、インジウムドープ酸化亜鉛(IZO)、アルミニウムガリウム酸化物(AGO)、チタンドープ酸化インジウム(ITiO)、酸化インジウムガリウム亜鉛(IGZO)及び水素ドープ酸化インジウム(In23)からなる群より選ばれる1種以上の透明導電膜を使用することも可能である。
 太陽電池モジュール3は、強化ガラス7とバックシート4との間に、複数のセル6を封止用樹脂層5で封止するように構成されている。封止用樹脂としては、エチレンビニルアセテート(EVA)、ポリビニルブチラール樹脂(PVB)及びポリオレフィン樹脂など
の熱可塑性樹脂が使用され、封止用樹脂からなるシートによりセル6をラミネートすることにより、セル6が封止されてなる。封止用樹脂層5には、白色顔料等の色材を含んでいてもよい。酸化チタン等の白色顔料は、太陽光を反射して太陽電池モジュール3への入射光を増加させる機能を有する。このような白色顔料は、封止用樹脂に混錬されていたり、白色顔料を含む層を積層して、封止用樹脂層5としてもよい。
 また、バックシート4は、シート状の裏面保護材であり、EVAやポリエチレンテレフタレート樹脂の基材フィルムや、さらに、前記基材フィルムとポリビニルフルオライド(PVF)などの耐候性フッ素高分子フィルムとの積層フィルムなどが使用される。
 さらに、太陽電池モジュール3の周辺部を保護するために、図示しないが、フレームとしてアルミ枠が取り付けられていることもある。アルミ枠については、アルミ枠の大きさに合わせて多孔質セラミック支持体2を切断する必要がなく作業が簡便になるという利点から、熱分解前にアルミ枠を外してもよいし、取り外し時にガラスが割れる可能性を低減するために熱分解後に外してもよい。また、セルへの受光効率を向上させるために必要に応じて反射膜が太陽電池モジュールの太陽光入射面と反対側である裏面に設けられていてもよく、反射膜として具体的にはアルミニウム又は銀等の金属からなる金属膜などが挙げられる。
 <加熱工程>
 本発明の処理方法における加熱工程は、樹脂製のバックシート4および封止用樹脂層5を有する太陽電池モジュール3を熱分解炉内で加熱することにより、太陽電池モジュール3に含まれる樹脂成分を溶融して酸化分解させる。この酸化分解は通常、樹脂成分の燃焼を伴う。
 前記加熱工程では、太陽電池モジュール3を、多孔質セラミック支持体2上に所定の間隙を設けるように、離間して載置し、かつ、前記多孔質セラミック支持体2を、遷移金属酸化物を担持させた多孔質材料1上に載置した状態で、熱分解炉の入口から出口に向かって炉内を移動させる。この際、バックシート4面を下側にして、太陽電池モジュール3を多孔質セラミック支持体2と対向させることが、有価物などの回収という点で好ましい。
 本発明の加熱工程では、熱風を、多孔質材料1側から吹き込む。熱風は多孔質材料1および多孔質セラミック支持体2の細孔を通って、太陽電池モジュール3との間隙に到達して、太陽電池モジュール3と衝突して、間隙d内に拡散する。
 また、処理効率を高めるために、熱分解炉内で加熱されている状態の太陽電池モジュール3が複数存在するように、複数の太陽電池モジュール3を連続的に移動させることが好ましい。なお、太陽電池モジュール3、多孔質セラミック支持体2および多孔質材料1からなる被処理物を加熱処理する際には、炉内の移動においてこれらの載置が崩れたり、転倒したりするのを防止するために、格子が入った鉄製のトレイなどに入れてもよい。
 間隙dは、たとえば、図2に示すように、多孔質セラミック支持体2および太陽電池モジュール3との間にスペーサー部材8を設置するか、あるいは、図3に示すように、太陽電池モジュール3の吊り上げ部材9を熱分解炉上部に設置することで設けることが可能である。
 スペーサー部材8は、所定の間隙を設けることができればその形状や形態は特に制限されず、例えば格子型でもよいし、球体や棒状物などであってもよく、多孔質セラミック支持体2の上に、太陽電池モジュール3がたわまないように載置すればよい。
 また吊り上げ部材9は、上部から太陽電池モジュール3を吊り上げるように構成されていれば特に制限されず、籠材なども使用できる。これらの部材は通常、加熱時に変形や反応しない耐火材料から構成され、たとえばステンレス、シリカやアルミナなどの無機材料から構成される。
 太陽電池モジュール3と多孔質セラミック支持体2との間隙dは、3~50mm、好ましくは4~40mm、さらに好ましくは5~15mmの範囲にあることが好ましい。前記範囲で、多孔質セラミック支持体2および多孔質材料1の通気率や、熱風の送気量に応じて選択される。なお「~」は特段の限定がない限り、以上-以下を示す。
 バックシート4および封止用樹脂層5を構成するEVAおよびPET等の樹脂成分が、加熱工程の際に、溶融し、次いで、重力の作用により多孔質セラミック支持体2の方向へと流れ出る。
 多孔質セラミック支持体2は、多孔質であるため、溶融して流れ落ちてきた樹脂成分は加熱炉内の雰囲気との接触面積が大きくなり、固形分として含まれている白色顔料などの成分を捕捉することができる。
 溶融して流れ落ちてきた樹脂成分は、多孔質セラミック支持体2を通過し、多孔質材料1に到達し、担持された遷移金属酸化物により酸化分解し、分解物が燃焼する。このように構成することで、「すす」の発生を抑制することができる。
 前記酸化分解のため、加熱工程における加熱炉内の雰囲気は酸素濃度6vol%以上、15vol%未満の範囲に制御されることが望ましい。この範囲では、樹脂成分を穏やかに、かつ、安定的に燃焼させて除去することができるので望ましい。
 熱分解炉の温度は、バックシート4や封止用樹脂層5を構成する樹脂に応じて適宜決定されるものであるが、好ましくは425~575℃である。425℃以上であれば、バックシート4や封止用樹脂層5に使用される樹脂の熱分解温度よりも高くなり燃焼が起きる。また575℃以下であれば急激な燃焼を抑制でき、太陽電池モジュール3のガラスが破損することを防ぐことができる。
 前記熱分解炉としては、前記温度を達成可能であり、かつ、多孔質材料1、多孔質セラミック支持体2および太陽電池モジュール3を含む被処理物を投入できるガス炉または電気炉等の熱分解炉であれば特に限定されず、公知の熱分解炉を使用することができる。
 熱風の送気方法としては、酸素含有ガスをガスバーナー等で加熱して、多孔質材料1側より、送気するなどの方法が挙げられる。なお、前記炉内温度を得ることができれば特に限定されないが、例えば、ガス炉の場合、このとき、送気とともに、炉内全体を加熱してもよい。
 本発明の方法では、前記加熱工程後に、前記多孔質セラミック支持体2上に残された有価物を回収することが好ましい。前記有価物は、ガラス、セル、電極に使用された導電性材料およびアルミ枠等からなる群より選ばれる少なくとも1種である。
 本発明の方法では、太陽電池モジュール(C)の下に落下防止用の網状構造体が設置されていてもよい。たとえば太陽電池モジュール3と前記多孔質セラミック支持体2との間に、金網などの網状構造体を設置しておき、樹脂が溶融して多孔質セラミック支持体2上に移動しても、残った有価物を金網ごと回収することも有効である。これにより、樹脂が溶融、燃焼したあとの処理物は、ガラス、セルなどがバラバラになることなく前記有価物を効率的に回収できる。
 <多孔質セラミック支持体2>
 本発明に適用できる多孔質のセラミック支持体2は、前記温度(具体的には425℃~575℃程度)で安定であり、多孔構造を有していれば何ら制限なく使用できる。具体的な材料としてはアルミナ、ジルコニア、窒化ケイ素、炭化ケイ素、コーディエライト、フェライト、チタン酸バリウム、チタン酸ジルコン酸鉛、フォルステライト、ジルコン、ムライト、ステアタイト、窒化アルミニウム等の安定かつ一般的なセラミック材料が挙げられる。
 多孔質セラミック支持体2の孔径は特に制限はないが、450℃付近でEVAおよびPET等が溶融したときに浸み込みやすい0.1~5mm程度が好適である。表面のセル数も特に制限はないが、5~50pixel per inch(以下「ppi」と略す)のものが望ましい。空孔率も何ら制限はないが、50~95%程度のものが望ましい。特に連続気孔の3次元骨格構造のものが好適に使用することができる。
 多孔質セラミック支持体2の形状としても特に制限はないが、太陽電池モジュール3に使用されている樹脂が多孔質セラミック支持体2から落下しないようにするため、板状のものを好適に使用することができる。また、溶融した樹脂成分が前記多孔質セラミック支持体2の外部に漏れ出ることによる「すす」の発生を抑制できる観点から、前記多孔質セラミック支持体2のバックシート4を積載する面の大きさ(面積)は、アルミ枠を外していない場合、アルミ枠内に収まる範囲内で可能な限り大きいことが好ましく、太陽電池モジュール3からアルミ枠を外している場合、バックシート4の底面積より大きい方が好ましい。
 多孔質セラミック支持体2の厚みについても何ら制限はないが、10~60mm程度のものが好適である。
 上記のような多孔質セラミック支持体2としては、アルミナ、炭化ケイ素およびコーディエライト製のセラミックフォーム、セラミックフィルターまたはセラミックフォームフィルターと呼ばれる製品が好適である。
 本発明の方法で廃太陽電池を処理する際に、前記太陽電池モジュール3を、そのバックシート4面を下側にして、前記多孔質セラミック支持体2の上に載置する。バックシート4面を下側にすることにより、バックシート4および封止用樹脂層5を構成する樹脂成分が、加熱により溶融し、次いで、重力の作用により多孔質セラミック支持体2の方向へと流れ出る。
 多孔質セラミック支持体2は、多孔質であることから、流れ落ちてきた樹脂は熱分解炉内の雰囲気との接触面積が大きくなる。そのため、さらなる加熱による燃焼の効率が高くなり、「すす」の発生を抑制することができる。
 <多孔質材料1>
 本発明で用いられる、遷移金属酸化物を担持させた多孔質材料1において、遷移金属酸化物は、酸化状態では酸素を吸着し、芳香族系樹脂が燃焼中に酸化分解されて生じる芳香環を有する有機化合物を分解する能力を有する。このような多孔質材料1を使用することで、「すす」の発生を抑制できる。
 前記遷移金属酸化物としては、例えば、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、カドミウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、金、水銀の酸化物を何ら制限なく使用することができる。
 これらの中でも好ましくはスカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅の第一遷移元素の酸化物、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀の第二遷移元素の酸化物、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、金の第三遷移元素の酸化物が挙げられ、より好ましくはルチル型またはアナターゼ型の酸化チタン(IV)、酸化クロム(III)、酸化鉄(III)および酸化銅(II)等の遷移金属酸化物が好適に利用できる。これらは複合酸化物の状態であってもよい。
 多孔質材料1としては、前記多孔質セラミック支持体2と同じく樹脂成分の燃焼温度で安定であればよく、同様の材質のものが挙げられる。多孔質材料1の形状は特に限定されず、いわゆる触媒の担体とできるものであれば特に限定はされないが、前記太陽電池モジュール3を載置する多孔質セラミック支持体2と同様の板状の多孔質成形体であることがより好ましい。
 前記遷移金属酸化物を多孔質材料1に担持させる方法は、公知の技術が何ら制限なく用いることができる。具体的には、遷移金属酸化物を含む溶液に多孔質材料1をディップコーティング、ウォッシュコーティング、スプレーコーティングまたはスピンコーティングなどを用いて含浸担持させる方法が一般的である。その後、溶液の沸点以上まで加温することにより溶液を除去する方法が最も簡単である。また、遷移金属酸化物を溶融させたものを多孔質材料1に噴射させる溶射技術を利用してもよい。
 本発明では、前記遷移金属酸化物を担持させた多孔質材料1に多孔質セラミック支持体2を載置する。
 前記多孔質材料1の大きさとしては、太陽電池モジュール3を含む被処理物の安定性の観点から、多孔質材料1の積載面が、前記多孔質セラミック支持体2の底面積と同程度以上であると好ましい。前記多孔質材料1の厚みとしては、10~60mm程度のものが好適である。多孔質材料1の表面のセル数は、前記多孔質セラミック支持体2と同様に5~50pixel per inch(以下「ppi」と略す)の範囲にあることが好ましい。空孔率も何ら制限はないが、前記多孔質セラミック支持体2と同様に50~95%程度のものが望ましい。
 特に連続気孔の3次元骨格構造のものが好適に使用することができる。
 以下、本発明の回収方法の実施形態について実施例を参照に説明するが、本発明は以下の実施形態等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。
 なお、本発明で用いた棚板は、耐熱性を有しており、積載された太陽電池モジュール3、多孔質セラミック支持体2および多孔質材料1を加熱することができる態様であればよく、例えば、セラミック製棚板およびSUS製金網が挙げられる。
 [実施例1]
 太陽電池モジュール3としては、京セラ製多結晶シリコン太陽電池「KD270HX-BPEFMS」を用いて評価を行った。なお、バックシート4についている電極およびアルミフレームは加熱処理工程の前に取り除いた。
 多孔質セラミック支持体2としてのセラミックフィルターは、(メーカー:日本ルツボ(材料:炭化ケイ素)10ppi 300mm×400mm×15mmtを用いた(これを多孔質セラミック支持体(A-1)とする)。
 触媒を担持する多孔質材料1は、(メーカー:日本ルツボ (材料:炭化ケイ素)10ppi 300mm×400mm×45mmtのセラミックフィルターを用いた。このセラミックフィルターに、酸化クロム(III)(富士フィルム和光純薬株式会社製)を水に懸濁させながら攪拌し、セラミックフィルターを浸漬させてディップコーティングを行い、450℃で乾燥させて、クロム担持多孔質材料(B-1)を作製した。クロム担持多孔質材料(B-1)では、コーティングする前の質量は、2300gであり、コーティングし、乾燥させた後の質量は2859gであった。
 2,100mm×1,210mm×50mmの底を格子状とした鉄製トレイを製作し、このクロム担持多孔質材料(B-1)を設置した。その上に多孔質セラミック支持体(A-1)を設置した。さらに多孔質セラミック支持体(A-1)の上に、スペーサー部材8としてステンレス製格子型スペーサー(格子の間隔:160mm、高さ10mm)を載せて所定の間隔を設け、格子型スペーサーの上に、前記太陽電池モジュール3を、バックシート4が下側になるように設置した。
 熱分解炉としてはガス炉を使用した。当該ガス炉として、タクト送りチェーンブロー式の炉長5,400mm、炉内幅2,300mm、炉内高さ280mmの熱風循環式熱処理装置を用いた。ガスバーナー部には、メタリックバーナーMJPE-200Kを用い、LPガスと空気の混合ガスを燃焼させて加熱した。加熱した混合ガスを足立機工性「6.0-LFリミットロードファン」(450m3/min、2.0kPa、30kw)で熱分解炉部の下側からスリットで絞って供給し、クロム担持多孔質材料(B-1)に勢いよく吹き付け、熱風の送気を行った。熱分解炉内の酸素濃度を6vol%以上15vol%未満の範囲に制御した。なお、炉内の温度は490℃に制御し、20分間加熱処理を行った。炉内温度の変化を、太陽電池モジュール3のバックシート4下中央の温度で評価した。
[実施例2]
 スペーサー部材8として実施例1で用いたステンレス製格子型スペーサーの代わりに、格子の間隔:160mm、高さ20mmのステンレス製格子型スペーサーを用いて、実施例1と同様の加熱処理を行った。
[実施例3]
 実施例1で用いたステンレス製格子型スペーサーの代わりに、格子の間隔:160mm、高さ30mmのステンレス製格子型スペーサーを用いて、実施例1と同様の加熱処理を行った。
[比較例1]
 ステンレス製格子型スペーサーを使用しない以外は、実施例1と同様の加熱処理を行った。
 図4に、実施例1~3および比較例1の加熱処理における、加熱時間に対する炉内温度の変化を示す。
 いずれも、燃焼に伴う炉内温度のピークが観察されるが、所定の間隙を設けた実施例1~3では、間隙を設けない比較例1と、ピーク時間の差分を評価すると、実施例はいずれも比較例1に比べ炉内温度にピークを生じる時間が早くなることが分かった。具体的に、間隙を設けていない比較例1に比べ、実施例1で126秒、実施例2および3で104秒ピーク時間が早くなり、加熱が短時間で達成され、処理効率が高くなっていることが分かった。
 [実施例4]
 実施例1において、多孔質セラミック支持体2として、セラミックフィルターに、メーカー:日本ルツボ(材料:炭化ケイ素)7 ppi、300mm×400mm×15mmtを用いた(多孔質セラミック支持体(A-2)とする)。
 触媒を担持する多孔質材料1としては、(メーカー:日本ルツボ(材料:炭化ケイ素、7 ppi、300mm×400mm×45mmtのセラミックフィルターを用い、実施例1と同様に、酸化クロム(III)を用いて、クロム担持多孔質材料(B-2)を作製した。クロム担持多孔質材料(B-2)では、コーティングする前の質量は、2300gであり、コーティングし、乾燥させた後の質量は2859gであった。
 このクロム担持多孔質材料(B-2)および多孔質セラミック支持体(A-2)を実施例1と同様に設置した。さらに多孔質セラミック支持体(A-2)の上に、スペーサー部材8としてステンレス製格子型スペーサー(格子の間隔:160mm、高さ10mm)を載せて所定の間隔を設け、格子型スペーサーの上に、前記太陽電池モジュール3を、バックシート4が下側になるように設置した。
 熱分解炉としてはガス炉を使用した。実施例1で用いた熱分解炉部の下側からスリットで絞って供給し、クロム担持多孔質材料(B-2)に勢いよく吹き付け、熱風の送気を行った。熱分解炉内の酸素濃度を制御することなく、炉内の温度は500℃に制御し、15分間加熱処理を行った。
[実施例5]
 スペーサー部材8として実施例4で用いたステンレス製格子型スペーサーの代わりに、(格子の間隔:160mm、高さ30mm)のステンレス製格子型スペーサーを用いて、実施例4と同様の加熱処理を行った。
[実施例6]
 スペーサー部材8として実施例4で用いたステンレス製格子型スペーサーの代わりに、(格子の間隔:160mm、高さ40mm)のステンレス製格子型スペーサーを用いて、実施例4と同様の加熱処理を行った。
 図5に、実施例4~6の加熱工程における、加熱時間に対する温度の変化を示す。
 その結果、間隙が10mmの実施例4は、実施例4および5よりピーク最大となる時間が、30秒早いことが分かった。間隙が30mmと40mmは同じ変化であり、これ以上、間隙を離しても変わらないと考えられる。
 このことから、間隔を高くしても、太陽電池モジュールへ当たる風量が変わらずに、熱分解時間に差がないと考えられ、最適な間隔を設ける意義が高いことが分かった。
 1:多孔質材料
 2:多孔質セラミック支持体
 3:太陽電池モジュール
 4:バックシート
 5:封止用樹脂層
 6:セル
 7:強化ガラス
 8:スペーサー部材
 9:吊り上げ部材

Claims (6)

  1.  樹脂製のバックシートおよび封止用樹脂層を有する太陽電池モジュール(C)を熱分解炉内で加熱することにより、前記太陽電池モジュール(C)に含まれる樹脂成分を溶融して酸化分解させる加熱工程を含む、廃太陽電池を連続的に処理する方法であって、
     前記加熱工程の際に、前記太陽電池モジュール(C)を、多孔質セラミック支持体(A)上に、多孔質セラミック支持体(A)から離間して載置し、かつ、前記多孔質セラミック支持体(A)を、遷移金属酸化物を担持させた多孔質材料(B)上に積層した状態で、熱風を、多孔質材料(B)側から、多孔質材料(B)および多孔質セラミック支持体(A)内部および太陽電池モジュール(C)と多孔質セラミック支持体(A)との間隙に送気することを特徴とする、廃太陽電池の処理方法。
  2.  多孔質セラミック支持体(A)と太陽電池モジュール(C)との間にスペーサー部材を設置する、または、太陽電池モジュール(C)の吊り上げ部材を熱分解炉上部に設置することで、太陽電池モジュール(C)と多孔質セラミック支持体(A)とを離間させることを特徴とする請求項1に記載の、廃太陽電池の処理方法。
  3.  太陽電池モジュール(C)と多孔質セラミック支持体(A)との間隙が、3~50mmの範囲にあることを特徴とする請求項1に記載の廃太陽電池の処理方法。
  4.  多孔質セラミック支持体(A)および多孔質材料(B)の表面のセル数が、5~50pixel per inch(以下「ppi」と略す)の範囲にあることを特徴とする請求項1に記載の廃太陽電池の処理方法。
  5.  太陽電池モジュール(C)の下に落下防止用の網状構造体が設置されてなる、請求項1に記載の廃太陽電池の処理方法。
  6.  前記加熱工程後に、有価物を回収する、請求項1~5のいずれか1項に記載の廃太陽電池の処理方法。
PCT/JP2022/041301 2021-11-12 2022-11-07 廃太陽電池の処理方法 WO2023085220A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280050440.0A CN117651617A (zh) 2021-11-12 2022-11-07 废太阳能电池的处理方法
AU2022386880A AU2022386880A1 (en) 2021-11-12 2022-11-07 Waste solar cell processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-185122 2021-11-12
JP2021185122A JP2023072515A (ja) 2021-11-12 2021-11-12 廃太陽電池の処理方法

Publications (1)

Publication Number Publication Date
WO2023085220A1 true WO2023085220A1 (ja) 2023-05-19

Family

ID=86336046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041301 WO2023085220A1 (ja) 2021-11-12 2022-11-07 廃太陽電池の処理方法

Country Status (4)

Country Link
JP (1) JP2023072515A (ja)
CN (1) CN117651617A (ja)
AU (1) AU2022386880A1 (ja)
WO (1) WO2023085220A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013146649A (ja) * 2012-01-17 2013-08-01 Shinshu Univ プラスチックまたはプラスチック複合材料の処理方法及び処理装置
JP2016172246A (ja) * 2015-03-17 2016-09-29 国立大学法人信州大学 合わせガラスからガラスを回収する方法及び回収するための処理装置
JP2016190177A (ja) * 2015-03-31 2016-11-10 国立大学法人信州大学 太陽電池パネルから有価物を回収する方法及び回収するための処理装置
WO2020031661A1 (ja) 2018-08-06 2020-02-13 株式会社トクヤマ 太陽電池モジュールから有価物を回収する方法
JP2020189267A (ja) * 2019-05-21 2020-11-26 株式会社ジンテク 種々の廃ポリマー、廃金属、および廃有機・無機物を含む混合物の処理方法と処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013146649A (ja) * 2012-01-17 2013-08-01 Shinshu Univ プラスチックまたはプラスチック複合材料の処理方法及び処理装置
JP2016172246A (ja) * 2015-03-17 2016-09-29 国立大学法人信州大学 合わせガラスからガラスを回収する方法及び回収するための処理装置
JP2016190177A (ja) * 2015-03-31 2016-11-10 国立大学法人信州大学 太陽電池パネルから有価物を回収する方法及び回収するための処理装置
WO2020031661A1 (ja) 2018-08-06 2020-02-13 株式会社トクヤマ 太陽電池モジュールから有価物を回収する方法
JP2020189267A (ja) * 2019-05-21 2020-11-26 株式会社ジンテク 種々の廃ポリマー、廃金属、および廃有機・無機物を含む混合物の処理方法と処理装置

Also Published As

Publication number Publication date
CN117651617A (zh) 2024-03-05
JP2023072515A (ja) 2023-05-24
AU2022386880A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
JP7108037B2 (ja) 太陽電池モジュールから有価物を回収する方法
JP6596735B2 (ja) 太陽電池モジュールから有価物を回収する方法及び回収するための処理装置
JP6596732B2 (ja) 太陽電池パネルから有価物を回収する方法及び回収するための処理装置
JP5584015B2 (ja) 光電変換装置
JP5014350B2 (ja) 太陽電池素子およびその製造方法
WO2010125728A1 (ja) 太陽電池セルおよびその製造方法
AU2006346135B2 (en) Dye-sensitized solar cell, and electrode and laminated film therefor
JP5539299B2 (ja) 太陽電池モジュールの製造方法
EP2858125B1 (en) Method for disassembling photovoltaic module
WO2023085220A1 (ja) 廃太陽電池の処理方法
TW201005979A (en) Assembly line for photovoltaic devices
WO2012063744A1 (ja) 太陽電池保護シート及びその製造方法、太陽電池用バックシート、並びに太陽電池モジュール
WO2022004781A1 (ja) 廃太陽電池の処理方法
KR20030007848A (ko) 제거 가능한 최상층을 갖는 태양 전지 유닛
JP2014000513A (ja) ガラスパネルの分離方法および熱処理装置
JPH06132552A (ja) 光起電力素子とその製造方法
JP5007492B2 (ja) 中間転写媒体の製造方法、酸化物半導体電極の製造方法、および色素増感型太陽電池の製造方法
JP2007018951A (ja) 色素増感型太陽電池用電極
JP4815838B2 (ja) 色素増感型太陽電池用積層体、耐熱基板付色素増感型太陽電池用基材、色素増感型太陽電池用基材、および色素増感型太陽電池セル
JP4915076B2 (ja) 酸化物半導体電極の製造方法
JP2007149600A (ja) 色素増感型太陽電池用積層フィルムおよびそれを用いた色素増感型太陽電池用電極
JP5114837B2 (ja) 酸化物半導体電極、およびこれを用いた色素増感型太陽電池セル
JP2011086449A (ja) 色素増感型太陽電池用電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892719

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280050440.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022386880

Country of ref document: AU

Ref document number: AU2022386880

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022386880

Country of ref document: AU

Date of ref document: 20221107

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022892719

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022892719

Country of ref document: EP

Effective date: 20240612