WO2022004276A1 - 基板処理監視に用いる設定情報の設定方法、基板処理装置の監視方法および基板処理装置 - Google Patents

基板処理監視に用いる設定情報の設定方法、基板処理装置の監視方法および基板処理装置 Download PDF

Info

Publication number
WO2022004276A1
WO2022004276A1 PCT/JP2021/021368 JP2021021368W WO2022004276A1 WO 2022004276 A1 WO2022004276 A1 WO 2022004276A1 JP 2021021368 W JP2021021368 W JP 2021021368W WO 2022004276 A1 WO2022004276 A1 WO 2022004276A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
image data
monitoring
setting
processing
Prior art date
Application number
PCT/JP2021/021368
Other languages
English (en)
French (fr)
Inventor
有史 沖田
英司 猶原
央章 角間
達哉 増井
裕一 出羽
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to KR1020227044196A priority Critical patent/KR20230012578A/ko
Priority to CN202180043923.3A priority patent/CN115769344A/zh
Publication of WO2022004276A1 publication Critical patent/WO2022004276A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles

Definitions

  • This application relates to a method of setting setting information used for board processing monitoring, a method of monitoring a board processing device, and a board processing device.
  • various treatment liquids such as pure water, photoresist liquid and etching liquid are supplied to the substrate to perform various substrate treatments such as cleaning treatment and resist coating treatment.
  • a substrate processing device that discharges a processing liquid from a nozzle onto the surface of the substrate while rotating the substrate in a horizontal posture is widely used.
  • the nozzle is connected to the processing liquid supply source via a pipe, and a valve is provided in the pipe.
  • a valve is provided in the pipe.
  • the substrate processing device is provided with a nozzle moving mechanism for moving the nozzle.
  • the nozzle moving mechanism moves the nozzle between a processing position above the substrate and a standby position outside the substrate.
  • the processing liquid is supplied from the nozzle to the main surface of the substrate. As a result, processing is performed on the substrate.
  • the valve closes and the supply of the treatment liquid is stopped.
  • Patent Document 1 proposes to provide an image pickup means such as a camera to directly monitor the processing liquid discharge from the nozzle.
  • the position of the nozzle can be adopted as the monitoring target in the substrate processing. That is, the substrate processing apparatus may determine whether or not the position of the nozzle is appropriate based on the image data acquired by the image pickup means.
  • the substrate processing apparatus detects the coordinate position of the nozzle in the image data by image processing for the image data including the nozzle stopped at the processing position, and the coordinate position of the nozzle and the preset appropriate position. Based on (set coordinate position), it is determined whether or not the coordinate position of the nozzle is appropriate.
  • This set coordinate position is the coordinate position of the nozzle in the image data captured when the nozzle stops at an appropriate position.
  • This set coordinate position is manually set by an operator, for example, in the installation of a board processing device. Specifically, first, the image data is acquired by the imaging means in a state where the nozzle moving mechanism moves the nozzle to the processing position. The board processing device displays the image data on the display of the user interface. Next, the worker visually recognizes the image data displayed on the display, and inputs the coordinate position of the area including the nozzle in the image data to the user interface. The board processing device sets the coordinate position input to the user interface as the set coordinate position of the nozzle. This makes it possible to set the proper position of the nozzle in the image data.
  • the present application has been made in view of the above problems, and an object thereof is to provide a technique capable of automatically setting an appropriate position of a monitoring target used for monitoring processing.
  • the first aspect of the setting information setting method used for board processing monitoring is the setting method of setting information used for board processing monitoring, in which the moving mechanism for moving the first monitoring object in the board processing device is controlled. , A setup imaging step of moving the first monitoring object to the first stop position, a setup imaging step of taking an image of the first monitoring object by a camera executed in parallel with the setup recipe step, and the setup imaging. Based on the first image data including the first monitored object acquired by the camera in the process and stopped at the first stop position, and the first reference image data indicating at least a part of the first monitored object.
  • the present invention includes a setting step of detecting the position of the first monitored object in the first image data and setting the position as an appropriate position with respect to the first stop position.
  • the second aspect of the setting information setting method used for the substrate processing monitoring is the setting method of the setting information used for the substrate processing monitoring according to the first aspect, and in the setting step, the camera is used in the setup imaging step.
  • the first image data including the first monitoring object stopped at the first stop position is specified based on a control signal to the moving mechanism.
  • the third aspect of the setting information setting method used for the substrate processing monitoring is the setting method of the setting information used for the substrate processing monitoring according to the first or second aspect, and in the setup recipe step, the substrate processing apparatus.
  • the nozzle that supplies the processing liquid to the main surface of the substrate held inside is moved to the first stop position as the first monitoring target.
  • the fourth aspect of the setting information setting method used for the substrate processing monitoring is the setting method of the setting information used for the substrate processing monitoring according to the third aspect, and in the setup recipe step, the nozzle is used as the first.
  • the stop position and the second stop position different from the first stop position are sequentially moved at least in the depth direction when viewed from the camera, and the setting step is acquired by the camera in the setup imaging step and the second stop.
  • the first relative relationship in which the position and size of the ejection determination region are predetermined with respect to the nozzle in the data and the nozzle in the second image data with respect to the size of the nozzle in the first image data includes a determination area setting step of setting a second relative relationship that defines the position and size of the ejection determination area with respect to the nozzle in the second image data based on the magnification of the size.
  • the fifth aspect of the setting information setting method used for the substrate processing monitoring is the setting method of the setting information used for the substrate processing monitoring according to the first or second aspect, and in the setup recipe step, the substrate processing apparatus.
  • the processing cup that surrounds the substrate holding portion inside is moved along the vertical direction as the first monitoring object and stopped at the first stop position.
  • the sixth aspect of the setting information setting method used for the board processing monitoring is the setting method of the setting information used for the board processing monitoring according to any one of the first to third and fifth aspects, and the setup recipe.
  • the first monitored object is sequentially moved to the first stop position and the second stop position different from the first stop position, and in the setting step, it is acquired in the setup imaging step and said.
  • the position of the first monitored object in the second image data is detected based on the second image data including the first monitored object that stops at the second stop position and the first reference image data. , The position is set as an appropriate position regarding the second stop position.
  • the seventh aspect of the setting information setting method used for the board processing monitoring is the setting method of the setting information used for the board processing monitoring according to any one of the first to the sixth aspects, and in the setup recipe step, the setting information is set.
  • a second monitoring object different from the first monitoring object in the substrate processing apparatus is moved to the third stop position, and in the setting step, it is acquired in the setup imaging step and stops at the third stop position.
  • Based on the third image data including the second monitored object and the second reference image data indicating at least a part of the second monitored object the second monitored object in the third image data.
  • the position is detected, and the position is set as an appropriate position with respect to the third stop position of the second monitored object.
  • the first aspect of the monitoring method of the substrate processing apparatus includes a setup process for setting a setting information used for substrate processing monitoring according to any one of the first to seventh aspects, and a substrate holding unit in the substrate processing apparatus.
  • a holding step of holding the substrate a processing recipe step of controlling the moving mechanism while the substrate holding portion holds the substrate, and moving the first monitored object to the first stop position.
  • the processing imaging step in which the camera images the first monitoring object, and the first monitoring object acquired by the camera in the processing imaging step and stopped at the first stop position.
  • the position of the first monitored object in the fourth image data is detected based on the fourth image data including the above and the first reference image data, and the appropriateness of the position is determined with respect to the first stop position.
  • a position monitoring step for determining based on the appropriate position is provided.
  • the first aspect of the substrate processing apparatus is a substrate processing apparatus that processes a substrate, and includes a chamber, a moving mechanism for moving a monitored object in the chamber to a predetermined stop position, and an area including the monitored object.
  • a camera that captures an image and acquires image data, a storage medium that stores reference image data indicating at least a part of the monitored object, and the monitored object that was acquired by the camera and stopped at the stop position. It includes a control unit that detects the position of the monitored object in the image data based on the included image data and the reference image data, and sets the position as an appropriate position with respect to the stop position.
  • the appropriate position can be set automatically.
  • the position of the monitored object can be monitored.
  • ordinal numbers such as “first” or “second” may be used in the description described below, these terms are used to facilitate understanding of the contents of the embodiments. It is used for convenience, and is not limited to the order that can occur due to these ordinal numbers.
  • the expression indicating the shape not only expresses the shape strictly geometrically, but also, for example, to the extent that the same effect can be obtained. It shall also represent a shape having irregularities and chamfers.
  • the expressions “equipped”, “equipped”, “equipped”, “included”, or “have” one component are not exclusive expressions that exclude the existence of other components.
  • the expression “at least one of A, B and C” includes A only, B only, C only, any two of A, B and C, and all of A, B and C.
  • FIG. 1 is a schematic plan view for explaining an example of the internal layout of the substrate processing apparatus 100 according to the present embodiment.
  • the substrate processing apparatus 100 is a single-wafer processing apparatus that processes the substrate W to be processed one by one.
  • the substrate processing apparatus 100 performs a cleaning treatment on the substrate W, which is a silicon substrate having a circular thin plate shape, with a rinsing liquid such as a chemical solution and pure water, and then performs a drying process.
  • a cleaning treatment on the substrate W, which is a silicon substrate having a circular thin plate shape, with a rinsing liquid such as a chemical solution and pure water, and then performs a drying process.
  • a mixed solution of ammonia and hydrogen peroxide solution SC1
  • SC2 mixed aqueous solution of hydrochloric acid and hydrogen peroxide solution
  • DHF solution dilute hydrofluoric acid
  • treatment liquids chemicals, rinses, organic solvents, etc. are collectively referred to as "treatment liquids".
  • the “treatment liquid” includes a chemical solution for removing an unnecessary film, a chemical solution for etching, and the like.
  • the board processing device 100 includes a plurality of processing units 1, a load port LP, an indexer robot 102, a main transfer robot 103, a control unit 9, and a user interface 90.
  • a plurality of load port LPs are arranged side by side.
  • the carrier C is carried into each load port LP.
  • a FOUP Front Opening Unified Pod
  • SMIF Standard Mechanical Inter Face
  • OC Open Cassette
  • the processing unit 1 performs liquid treatment and drying treatment on one substrate W.
  • twelve processing units 1 having the same configuration are arranged.
  • four towers including three processing units 1 each stacked in the vertical direction are arranged so as to surround the circumference of the main transfer robot 103.
  • FIG. 1 schematically shows one of the processing units 1 stacked in three stages.
  • the number of processing units 1 in the substrate processing apparatus 100 is not limited to 12, and may be changed as appropriate.
  • the main transfer robot 103 is installed in the center of four towers in which the processing units 1 are stacked.
  • the main transfer robot 103 carries the substrate W to be processed received from the indexer robot 102 into each processing unit. Further, the main transfer robot 103 carries out the processed substrate W from each processing unit 1 and passes it to the indexer robot 102.
  • the control unit 9 controls the operation of each component of the substrate processing device 100.
  • the user interface 90 includes, for example, a display unit such as a liquid crystal display and an input device such as a mouse and a keyboard. The worker can input various information into the user interface 90. The user interface 90 outputs the input information to the control unit 9.
  • FIG. 2 is a plan view schematically showing an example of the configuration of the processing unit 1.
  • FIG. 3 is a vertical sectional view schematically showing an example of the configuration of the processing unit 1.
  • the processing unit 1 includes a spin chuck 20, which is an example of a substrate holding portion, a first nozzle 30, a second nozzle 60, a third nozzle 65, a processing cup 40, and a camera 70 in the chamber 10. ..
  • the chamber 10 includes a side wall 11 along the vertical direction, a ceiling wall 12 that closes the upper side of the space surrounded by the side wall 11, and a floor wall 13 that closes the lower side.
  • the space surrounded by the side wall 11, the ceiling wall 12, and the floor wall 13 is the processing space.
  • a part of the side wall 11 of the chamber 10 is provided with a carry-in / out entrance for the main transfer robot 103 to carry in / out the substrate W and a shutter for opening / closing the carry-in / out port (both are not shown).
  • a fan filter unit (FFU) 14 for further purifying the air in the clean room in which the substrate processing apparatus 100 is installed and supplying it to the processing space in the chamber 10 is attached to the ceiling wall 12 of the chamber 10. .
  • the fan filter unit 14 includes a fan and a filter (for example, a HEPA (High Efficiency Particulate Air) filter) for taking in the air in the clean room and sending it out into the chamber 10, and the clean air is brought down to the processing space in the chamber 10.
  • a punching plate having a large number of blowout holes may be provided directly under the ceiling wall 12.
  • the spin chuck 20 holds the substrate W in a horizontal posture.
  • the horizontal posture is a posture in which the normal line of the substrate W is along the vertical direction.
  • the spin chuck 20 includes a disk-shaped spin base 21 fixed in a horizontal posture to the upper end of a rotating shaft 24 extending in the vertical direction. Below the spin base 21, a spin motor 22 for rotating the rotating shaft 24 is provided. The spin motor 22 rotates the spin base 21 in a horizontal plane via the rotation shaft 24. Further, a cylindrical cover member 23 is provided so as to surround the spin motor 22 and the rotation shaft 24.
  • the outer diameter of the disk-shaped spin base 21 is slightly larger than the diameter of the circular substrate W held by the spin chuck 20. Therefore, the spin base 21 has an upper surface 21a facing the entire lower surface of the substrate W to be held.
  • a plurality of (four in this embodiment) chuck pins 26 are erected on the peripheral edge of the upper surface 21a of the spin base 21.
  • the plurality of chuck pins 26 are evenly spaced along the circumference corresponding to the peripheral edge of the circular substrate W (at 90 ° intervals for four chuck pins 26 as in the present embodiment). Have been placed.
  • Each chuck pin 26 is provided so as to be driveable between a holding position in contact with the peripheral edge of the substrate W and an open position away from the peripheral edge of the substrate W.
  • the plurality of chuck pins 26 are driven in conjunction with each other by a link mechanism (not shown) housed in the spin base 21.
  • the spin chuck 20 can hold the substrate W above the spin base 21 in a horizontal posture close to the upper surface 21a (FIG. 3). (See), the holding of the substrate W can be released by stopping the plurality of chuck pins 26 at their respective open positions.
  • the lower end of the cover member 23 covering the spin motor 22 is fixed to the floor wall 13 of the chamber 10, and the upper end reaches directly below the spin base 21.
  • a flange-shaped member 25 is provided at the upper end of the cover member 23 so as to project outward substantially horizontally from the cover member 23 and further bend downward to extend.
  • the first nozzle 30 is configured by attaching a discharge head 31 to the tip of the nozzle arm 32.
  • the base end side of the nozzle arm 32 is fixedly connected to the nozzle base 33.
  • the nozzle base 33 is made rotatable around an axis along the vertical direction by a motor (not shown). As the nozzle base 33 rotates, the first nozzle 30 moves in an arc shape in the space above the spin chuck 20 as shown by the arrow AR34 in FIG.
  • the nozzle arm 32, the nozzle base 33, and the motor are examples of the nozzle moving mechanism 37 that moves the first nozzle 30.
  • FIG. 4 is a plan view schematically showing an example of the movement path of the first nozzle 30.
  • the discharge head 31 of the first nozzle 30 moves along the circumferential direction around the nozzle base 33 by the rotation of the nozzle base 33.
  • the first nozzle 30 can be stopped at an appropriate stop position.
  • the first nozzle 30 can be stopped at each of the central position P31, the peripheral position P32, and the standby position P33.
  • the central position P31 is a position where the discharge head 31 faces the central portion of the substrate W held by the spin chuck 20 in the vertical direction.
  • the standby position P33 is a position where the discharge head 31 does not face the substrate W held by the spin chuck 20 in the vertical direction.
  • the standby position P33 may be provided with a standby pod that accommodates the discharge head 31 of the first nozzle 30.
  • the peripheral edge position P32 is a position between the central position P31 and the standby position P33, and the discharge head 31 is a position facing the peripheral edge portion of the substrate W held by the spin chuck 20 in the vertical direction.
  • the first nozzle 30 may discharge the processing liquid onto the upper surface of the rotating substrate W in a state where the first nozzle 30 is located at the peripheral edge position P32.
  • the treatment liquid can be discharged only to the peripheral edge portion of the upper surface of the substrate W, and only the peripheral edge portion of the substrate W can be treated (so-called bevel processing).
  • the first nozzle 30 can reciprocate between the central position P31 and the peripheral position P32, and discharge the processing liquid to the upper surface of the rotating substrate W. Also in this case, the entire surface of the upper surface of the substrate W can be processed.
  • the peripheral edge position P34 is located on the side opposite to the peripheral edge position P32 with respect to the central position P31, and the discharge head 31 is a position facing the peripheral edge portion of the substrate W held by the spin chuck 20 in the vertical direction.
  • the first nozzle 30 may discharge the processing liquid onto the upper surface of the rotating substrate W in a state of being located at the peripheral edge position P34. Also with this, the treatment liquid can be discharged only to the peripheral edge portion of the upper surface of the substrate W, and only the peripheral edge portion of the substrate W can be treated (so-called bevel processing).
  • the first nozzle 30 can reciprocate between the central position P31 and the peripheral position P34, and discharge the processing liquid to the upper surface of the rotating substrate W. Also in this case, the entire surface of the upper surface of the substrate W can be processed.
  • the nozzle base 33 may include a nozzle elevating mechanism (not shown) for elevating and lowering the first nozzle 30.
  • the nozzle elevating mechanism includes, for example, a ball screw mechanism or an elevating mechanism such as an air cylinder.
  • the first nozzle 30 can be stopped at each of the different stop positions in the vertical direction. For example, the first nozzle 30 can be stopped at a stop position vertically above the central position P31.
  • the first nozzle 30 is connected to the processing liquid supply source 36 via the supply pipe 34.
  • a valve 35 is provided in the supply pipe 34. The valve 35 opens and closes the flow path of the supply pipe 34. When the valve 35 opens, the processing liquid supply source 36 supplies the processing liquid to the first nozzle 30 through the supply pipe 34.
  • the first nozzle 30 may be configured to be supplied with a plurality of types of treatment liquids (including at least pure water).
  • the processing unit 1 of the present embodiment is further provided with a second nozzle 60 and a third nozzle 65 in addition to the first nozzle 30.
  • the second nozzle 60 and the third nozzle 65 of the present embodiment have the same configuration as the first nozzle 30 described above. That is, the second nozzle 60 is configured by attaching the discharge head 61 to the tip of the nozzle arm 62.
  • the second nozzle 60 moves in an arc shape in the space above the spin chuck 20 by the nozzle base 63 connected to the base end side of the nozzle arm 62, as shown by the arrow AR64.
  • the relative positional relationship between the central position P61, the peripheral position P62, the standby position P63 and the peripheral edge position P64 located on the movement path of the second nozzle 60 is the central position P31, the peripheral edge position P32, the standby position P33 and the peripheral edge position P34. It is similar to the relative positional relationship.
  • the third nozzle 65 is configured by attaching a discharge head 66 to the tip of the nozzle arm 67.
  • the third nozzle 65 moves in an arc shape in the space above the spin chuck 20 by the nozzle base 68 connected to the base end side of the nozzle arm 67, as shown by the arrow AR69. It moves in an arc shape between the processing position and the standby position outside the processing cup 40.
  • the relative positional relationship between the central position P66, the peripheral position P67, the standby position P68 and the peripheral edge position P69 located on the movement path of the third nozzle 65 is the central position P31, the peripheral edge position P32, the standby position P33 and the peripheral edge position P34. It is similar to the relative positional relationship.
  • the second nozzle 60 and the third nozzle 65 may be able to move up and down.
  • the second nozzle 60 and the third nozzle 65 are moved up and down by a nozzle elevating mechanism (not shown) built in the nozzle base 63 and the nozzle base 68.
  • Each of the second nozzle 60 and the third nozzle 65 is also connected to the processing liquid supply source (not shown) via the supply pipe (not shown) like the first nozzle 30.
  • a valve (not shown) is provided in each supply pipe, and the supply / stop of the processing liquid can be switched by opening and closing the valve.
  • Each of the first nozzle 30, the second nozzle 60, and the third nozzle 65 may be configured to supply a plurality of types of treatment liquids. Further, at least one of the first nozzle 30, the second nozzle 60 and the third nozzle 65 mixes a cleaning liquid such as pure water with a pressurized gas to generate droplets, and the droplets and gas are generated. It may be a two-fluid nozzle that injects a mixed fluid with the substrate W onto the substrate W. Further, the number of nozzles provided in the processing unit 1 is not limited to three, and may be one or more.
  • the processing cup 40 surrounding the spin chuck 20 includes an inner cup 41, an inner cup 42, and an outer cup 43 that can be raised and lowered independently of each other.
  • the inner cup 41 has a shape that surrounds the spin chuck 20 and is substantially rotationally symmetric with respect to the rotation axis CX that passes through the center of the substrate W held by the spin chuck 20.
  • the inner cup 41 includes a bottom portion 44 having an annular shape in a plan view, a cylindrical inner wall portion 45 rising upward from the inner peripheral edge of the bottom portion 44, a cylindrical outer wall portion 46 rising upward from the outer peripheral edge of the bottom portion 44, and an inner wall.
  • the first guide portion 47 that rises from between the portion 45 and the outer wall portion 46 and extends diagonally upward toward the center side (direction approaching the rotation axis CX of the substrate W held by the spin chuck 20) while drawing a smooth arc at the upper end portion.
  • the cylindrical middle wall portion 48 rising upward from between the first guide portion 47 and the outer wall portion 46 are integrally included.
  • the inner wall portion 45 is formed to have a length that allows the inner cup 41 to be accommodated with an appropriate gap between the cover member 23 and the flange-shaped member 25 in a state where the inner cup 41 is most raised.
  • the middle wall portion 48 is housed in a state where the inner cup 41 and the middle cup 42 are closest to each other, while maintaining an appropriate gap between the second guide portion 52 described later of the middle cup 42 and the treatment liquid separation wall 53. It is formed to such a length.
  • the first guide portion 47 has an upper end portion 47b extending diagonally upward on the center side (direction approaching the rotation axis CX of the substrate W) while drawing a smooth arc. Further, between the inner wall portion 45 and the first guide portion 47, there is a waste groove 49 for collecting and disposing of the used treatment liquid. Between the first guide portion 47 and the middle wall portion 48, there is an annular inner recovery groove 50 for collecting and collecting the used treatment liquid. Further, between the inner wall portion 48 and the outer wall portion 46, there is an annular outer recovery groove 51 for collecting and collecting a treatment liquid different from the inner recovery groove 50.
  • the waste groove 49 is connected to an exhaust liquid mechanism (not shown) for discharging the treatment liquid collected in the waste groove 49 and forcibly exhausting the inside of the waste groove 49.
  • an exhaust liquid mechanism (not shown) for discharging the treatment liquid collected in the waste groove 49 and forcibly exhausting the inside of the waste groove 49.
  • four exhaust gas mechanisms are provided at equal intervals along the circumferential direction of the waste groove 49.
  • the inner recovery groove 50 and the outer recovery groove 51 have a recovery mechanism for collecting the treatment liquid collected in the inner recovery groove 50 and the outer recovery groove 51 in a recovery tank provided outside the treatment unit 1. Both are connected (not shown).
  • the bottoms of the inner recovery groove 50 and the outer recovery groove 51 are inclined by a slight angle with respect to the horizontal direction, and the recovery mechanism is connected to the lowest position thereof. As a result, the treatment liquid that has flowed into the inner recovery groove 50 and the outer recovery groove 51 is smoothly recovered.
  • the middle cup 42 has a shape that surrounds the spin chuck 20 and is substantially rotationally symmetric with respect to the rotation axis CX that passes through the center of the substrate W held by the spin chuck 20.
  • the middle cup 42 integrally includes a second guide portion 52 and a cylindrical processing liquid separation wall 53 connected to the second guide portion 52.
  • the second guide portion 52 draws a smooth arc from the lower end portion 52a forming a coaxial cylindrical shape with the lower end portion of the first guide portion 47 and the upper end of the lower end portion 52a on the outside of the first guide portion 47 of the inner cup 41. It has an upper end portion 52b extending diagonally upward on the center side (direction approaching the rotation axis CX of the substrate W), and a folded portion 52c formed by folding the tip end portion of the upper end portion 52b downward.
  • the lower end portion 52a is housed in the inner recovery groove 50 with an appropriate gap between the first guide portion 47 and the middle wall portion 48 in a state where the inner cup 41 and the middle cup 42 are closest to each other.
  • the upper end portion 52b is provided so as to overlap the upper end portion 47b of the first guide portion 47 of the inner cup 41 in the vertical direction, and the first guide portion 47 is in a state where the inner cup 41 and the middle cup 42 are closest to each other. It is close to the upper end portion 47b of the above with a very small distance.
  • the folded portion 52c formed by folding the tip of the upper end portion 52b downward the folded portion 52c is the tip of the upper end portion 47b of the first guide portion 47 in a state where the inner cup 41 and the middle cup 42 are closest to each other. It is said to have a length that overlaps horizontally.
  • the upper end portion 52b of the second guide portion 52 is formed so that the wall thickness becomes thicker toward the lower side, and the treatment liquid separation wall 53 is provided so as to extend downward from the lower end outer peripheral edge portion of the upper end portion 52b. It has a cylindrical shape.
  • the treatment liquid separation wall 53 is housed in the outer recovery groove 51 with an appropriate gap between the inner wall portion 48 and the outer cup 43 in a state where the inner cup 41 and the middle cup 42 are closest to each other.
  • the outer cup 43 surrounds the spin chuck 20 on the outside of the second guide portion 52 of the middle cup 42, and is substantially rotationally symmetric with respect to the rotation axis CX passing through the center of the substrate W held by the spin chuck 20. It has a shape.
  • the outer cup 43 has a function as a third guide portion.
  • the outer cup 43 has a lower end portion 43a coaxially cylindrical with the lower end portion 52a of the second guide portion 52, and a center side (direction approaching the rotation axis CX of the substrate W) while drawing a smooth arc from the upper end of the lower end portion 43a. It has an upper end portion 43b extending diagonally upward and a folded portion 43c formed by folding the tip end portion of the upper end portion 43b downward.
  • the lower end portion 43a has an outer recovery groove with an appropriate gap between the treatment liquid separation wall 53 of the middle cup 42 and the outer wall portion 46 of the inner cup 41 in a state where the inner cup 41 and the outer cup 43 are closest to each other. It is housed in 51. Further, the upper end portion 43b is provided so as to overlap the second guide portion 52 of the middle cup 42 in the vertical direction, and the upper end portion 52b of the second guide portion 52 is in a state where the middle cup 42 and the outer cup 43 are closest to each other. Close to each other with a very small distance.
  • the folded-back portion 43c and the folded-back portion 52c of the second guide portion 52 are in a state where the middle cup 42 and the outer cup 43 are closest to each other. It is formed so as to overlap in the horizontal direction.
  • the inner cup 41, the middle cup 42 and the outer cup 43 can be raised and lowered independently of each other. That is, each of the inner cup 41, the middle cup 42, and the outer cup 43 is individually provided with a cup moving mechanism 59, whereby the inner cup 41, the middle cup 42, and the outer cup 43 are individually and independently raised and lowered.
  • a cup moving mechanism 59 various known mechanisms such as a ball screw mechanism and an air cylinder can be adopted.
  • the partition plate 15 is provided so as to partition the inner space of the chamber 10 up and down around the processing cup 40.
  • the partition plate 15 may be a single plate-shaped member surrounding the processing cup 40, or may be a combination of a plurality of plate-shaped members. Further, the partition plate 15 may be formed with a through hole or a notch penetrating in the thickness direction.
  • the nozzle base 33 of the first nozzle 30 and the nozzle base 63 of the second nozzle 60 may be formed. And a through hole for passing a support shaft for supporting the nozzle base 68 of the third nozzle 65 is formed.
  • the outer peripheral end of the partition plate 15 is connected to the side wall 11 of the chamber 10. Further, the edge portion of the partition plate 15 surrounding the processing cup 40 is formed so as to have a circular shape having a diameter larger than the outer diameter of the outer cup 43. Therefore, the partition plate 15 does not hinder the raising and lowering of the outer cup 43.
  • an exhaust duct 18 is provided in the vicinity of the floor wall 13 which is a part of the side wall 11 of the chamber 10.
  • the exhaust duct 18 is communicated with an exhaust mechanism (not shown).
  • the air that has passed between the processing cup 40 and the partition plate 15 is discharged from the exhaust duct 18 to the outside of the device.
  • the camera 70 is installed in the chamber 10 above the partition plate 15.
  • the camera 70 includes, for example, a CCD (Charge Coupled Device) which is one of solid-state image pickup elements and an optical system such as a lens.
  • the camera 70 is provided to monitor the object to be monitored in the chamber 10, which will be described later. Specific examples of the monitored object will be described in detail later.
  • the camera 70 is arranged at a position including the monitored object in the imaging region. This imaging region includes, for example, a substrate W and a space above the substrate W.
  • the camera 70 captures an imaging region, acquires captured image data, and sequentially outputs the acquired captured image data to the control unit 9.
  • the illumination unit 71 is provided in the chamber 10 at a position above the partition plate 15.
  • the control unit 9 may control the illumination unit 71 so that the illumination unit 71 irradiates light when the camera 70 performs imaging.
  • the hardware configuration of the control unit 9 provided in the board processing device 100 is the same as that of a general computer. That is, the control unit 9 stores various information, a processing unit such as a CPU that performs various arithmetic processes, a temporary storage medium such as a ROM (ReadOnlyMemory) that is a read-only memory for storing a basic program, and various information. It is configured to include a RAM (Random Access Memory), which is a readable and writable memory, and a non-temporary storage medium, such as a magnetic disk for storing control software or data.
  • a processing unit such as a CPU that performs various arithmetic processes
  • a temporary storage medium such as a ROM (ReadOnlyMemory) that is a read-only memory for storing a basic program
  • RAM Random Access Memory
  • non-temporary storage medium such as a magnetic disk for storing control software or data.
  • control unit 9 When the CPU of the control unit 9 executes a predetermined processing program, each operation mechanism of the board processing device 100 is controlled by the control unit 9, and the processing in the board processing device 100 proceeds.
  • the control unit 9 may be realized by a dedicated hardware circuit that does not require software to realize the function.
  • FIG. 5 is a functional block diagram schematically showing an example of the internal configuration of the control unit 9.
  • the control unit 9 includes a monitoring processing unit 91, a setup unit 92, and a processing control unit 93.
  • the processing control unit 93 controls each configuration in the chamber 10. Specifically, the processing control unit 93 controls various valves such as the spin motor 22, valves 35 and 82, the motors and nozzle elevating mechanisms of the nozzle bases 33, 63 and 68, the cup moving mechanism 59 and the fan filter unit 14. do. When the processing control unit 93 controls these configurations according to a predetermined procedure, the processing unit 1 can perform processing on the substrate W.
  • the monitoring processing unit 91 performs monitoring processing on the monitored object based on the captured image data acquired by the camera 70 taking an image of the inside of the chamber 10.
  • the monitoring processing unit 91 monitors the position of the monitored object.
  • the monitoring target for example, various nozzles such as the first nozzle 30, the second nozzle 60, and the third nozzle 65 can be adopted. Further, the monitoring processing unit 91 may monitor the discharge state of the processing liquid from various nozzles. A specific example of the monitoring process will be described in detail later.
  • the setup unit 92 sets the processing information used for the monitoring process. For example, the setup unit 92 sets an appropriate position (hereinafter, referred to as a set coordinate position) of the monitored object in the captured image data. Further, the setup unit 92 can also set a determination area for monitoring the discharge state of the processing liquids of various nozzles in the captured image data. An example of a specific setting method will be described in detail later.
  • FIG. 6 is a flowchart showing an example of the flow of substrate processing.
  • the main transfer robot 103 carries the unprocessed substrate W into the processing unit 1 (step S1: carry-in step).
  • the spin chuck 20 holds the substrate W in a horizontal posture (step S2: holding step).
  • the plurality of chuck pins 26 move to their respective contact positions, so that the plurality of chuck pins 26 hold the substrate W.
  • step S3 rotation step
  • step S4 cup raising step
  • step S5 processing recipe step
  • the cup moving mechanism 59 appropriately switches the cup to be raised according to the type of the processing liquid supplied to the substrate W, but for the sake of simplicity of explanation, the following is described below. , The explanation is omitted.
  • the first nozzle 30, the second nozzle 60, and the third nozzle 65 sequentially discharge the processing liquid onto the upper surface of the rotating substrate W as needed.
  • the first nozzle 30 and the second nozzle 60 discharge the processing liquid in order.
  • the nozzle moving mechanism 37 moves the first nozzle 30 from the standby position P33 to the central position P31.
  • the valve 35 is opened, the processing liquid is discharged from the first nozzle 30 to the upper surface of the substrate W.
  • the treatment liquid that has landed on the upper surface of the substrate W spreads under centrifugal force and scatters outward from the peripheral edge of the substrate W. Thereby, the treatment according to the treatment liquid can be performed on the upper surface of the substrate W.
  • the valve 35 closes. As a result, the discharge of the processing liquid from the first nozzle 30 is stopped.
  • the nozzle moving mechanism 37 moves the first nozzle 30 from the central position P31 to the standby position P33.
  • the nozzle moving mechanism moves the second nozzle 60 from the standby position P63 to the central position P61.
  • the processing liquid is discharged from the second nozzle 60 to the upper surface of the substrate W.
  • the treatment liquid is, for example, a rinse liquid such as pure water.
  • the rinsing liquid flushes the treatment liquid on the upper surface of the substrate W, and the treatment liquid on the upper surface of the substrate W is replaced with the rinsing liquid.
  • the valve closes when a predetermined time has elapsed from the start of supply of the rinse liquid. As a result, the discharge of the rinse liquid from the second nozzle 60 is stopped. Next, the nozzle base 63 moves the second nozzle 60 from the central position P61 to the standby position P63.
  • the first nozzle 30, the second nozzle 60, and the third nozzle 65 may be sequentially moved to a predetermined stop position as needed to discharge the processing liquid.
  • the processing recipe step (step S5) is completed when the discharge of the processing liquid from the first nozzle 30, the second nozzle 60, and the third nozzle 65 is completed.
  • step S6 drying step
  • the spin motor 22 increases the rotation speed of the substrate W to dry the substrate W (so-called spin dry).
  • step S7 cup lowering step
  • step S8 holding release step
  • the holding is released by moving the plurality of chuck pins 26 to their respective open positions.
  • step S9 carry-out step
  • the processing for the substrate W is performed.
  • step S5 the first nozzle 30, the second nozzle 60, and the third nozzle 65 are appropriately moved as needed.
  • the first nozzle 30 moves from the standby position P33 to the central position P31.
  • the first nozzle 30 may shift from the central position P31 and stop due to various factors such as a motor abnormality of the nozzle base 33. In this case, the processing based on the processing liquid from the first nozzle 30 may be improperly terminated.
  • FIG. 7 is a flowchart showing an example of the setup process.
  • the worker inputs necessary items into the user interface 90 (step S11: input process). For example, the worker inputs to specify the first nozzle 30, the second nozzle 60, and the third nozzle 65 as the monitoring target, and inputs to specify a plurality of positions as the stop position of each nozzle. For example, the worker inputs a plurality of stop positions such as the central position P31, the peripheral edge position P32, and the peripheral edge position P34 as the stop positions of the first nozzle 30. The same applies to the second nozzle 60 and the third nozzle 65. The number of stop positions may be changed as appropriate.
  • the worker inputs an input instructing the start of the setup to the user interface 90.
  • the processing control unit 93 causes the camera 70 to start imaging in response to the input of the instruction (step S12: start of the setup imaging process).
  • the camera 70 captures an image pickup region, acquires captured image data, and outputs the captured image data to the control unit 9.
  • the processing control unit 93 controls the nozzle movement mechanism in response to the input of the instruction to sequentially move the first nozzle 30, the second nozzle 60, and the third nozzle 65 to each stop position (step S12). : Setup recipe process).
  • the nozzle moving mechanism 37 sequentially stops the first nozzle 30 at the peripheral position P32, the central position P31, and the peripheral position P34. Specifically, first, the nozzle moving mechanism 37 moves the first nozzle 30 from the standby position P33 to the peripheral position P32, stops it at the peripheral position P32 for a predetermined time, and then moves the first nozzle 30 to the peripheral position.
  • the nozzle moving mechanism 37 stops the first nozzle 30 at all the input stop positions, and then moves the first nozzle 30 to the standby position P33.
  • the processing control unit 93 stops the second nozzle 60 in order at all the stop positions, and then stops the third nozzle 65 in order at all the stop positions.
  • the processing control unit 93 may store in the storage medium the time when each nozzle is stopped at each stop position in the setup recipe process. For example, the processing control unit 93 stores the time when the control signal for stopping the first nozzle 30 at the central position P31 is output to the nozzle movement mechanism 37. Similarly, the processing control unit 93 also stores in the storage medium the time when the control signal for each of the peripheral position P32 and the peripheral position P34 is output. The same applies to the second nozzle 60 and the third nozzle 65.
  • the camera 70 ends the imaging (step S14: the setup imaging process is completed).
  • the camera 70 can image the first nozzle 30, the second nozzle 60, and the third nozzle 65. That is, the plurality of captured image data acquired by the camera 70 includes each of the first nozzle 30, the second nozzle 60, and the third nozzle 65 stopped at each stop position.
  • FIG. 8 is a diagram schematically showing an example of captured image data acquired in the setup imaging process.
  • the captured image data of FIG. 8 includes a discharge head 31 of the first nozzle 30 that stops at the central position P31. That is, FIG. 8 shows the captured image data acquired when the first nozzle 30 is stopped at the central position P31.
  • the setup unit 92 specifies the captured image data (hereinafter referred to as set image data) including each nozzle stopped at each stop position from the plurality of captured image data (step S15: set image data specifying step). For example, the setup unit 92 identifies the setting image data including the first nozzle 30 stopped at the central position P31 based on the control signal output to the nozzle movement mechanism 37. That is, the setup unit 92 reads out from the storage medium the time when the control signal for moving the first nozzle 30 to the central position P31 is output, and based on the time and the acquisition time of the captured image data by the camera 70. , The set image data including the first nozzle 30 stopped at the central position P31 is specified.
  • the setup unit 92 Since the time from when the control signal is output until the first nozzle 30 stops at the center position P31 is predetermined, the setup unit 92 has the first nozzle 30 at the center based on the time when the control signal is output. The period of suspension at position P31 can be determined. The setup unit 92 specifies the captured image data having the acquisition time included in the period as the set image data.
  • the setup unit 92 has set image data including the first nozzle 30 stopped at each of the other stop positions, set image data including the second nozzle 60 stopped at each stop position, and stops at each stop position.
  • the set image data including the third nozzle 65 is specified. If the number of stop positions for each nozzle is the same, the set image data of (number of nozzles) ⁇ (number of stop positions) is specified in the set image data specifying step.
  • the setting board W may be carried into the processing unit 1.
  • the captured image data includes a setting substrate W held by the spin chuck 20.
  • the setting board W does not necessarily have to be carried in.
  • the cup moving mechanism 59 may raise the processing cup 40.
  • the set image data shows the processing cup 40 in the raised state.
  • the processing cup 40 does not necessarily have to rise.
  • the setup unit 92 analyzes the set image data, detects the coordinate position of the nozzle in the set image data, and sets the coordinate position as the set coordinate position (step S17: position setting step).
  • the setup unit 92 receives the setting image data (FIG. 8) including the first nozzle 30 stopped at the central position P31 and the first nozzle 30 (specifically, the ejection head 31) stored in the storage medium in advance.
  • the reference image data RI1 is schematically shown by a virtual line overlaid on the captured image data.
  • the setup unit 92 sets the detected coordinate position as the set coordinate position for the center position P31. Specifically, the setup unit 92 stores the set coordinate position for the center position P31 in the storage medium.
  • the setup unit 92 detects the coordinate position of the first nozzle 30 in the set image data by template matching between the set image data including the first nozzle 30 stopped at each of the other stop positions and the reference image data RI1. Then, the coordinate position is set as the set coordinate position for the stop position. Further, the setup unit 92 sets the coordinate position of the second nozzle 60 based on the setting image data including the second nozzle 60 stopped at each stop position and the reference image data showing a part of the second nozzle 60. Detect and set the coordinate position as the set coordinate position for the stop position. Further, in the same manner, the setup unit 92 sequentially sets the set coordinate positions for each stop position of the third nozzle 65.
  • the set coordinate position for each stop position of the first nozzle 30, the set coordinate position for each stop position of the second nozzle 60, and the set coordinate position for each stop position of the third nozzle 65 are set.
  • step S17 determination area setting step
  • the setup unit 92 automatically identifies the set image data from the plurality of captured image data, and automatically sets the set coordinate position of the monitored object in the set image data. Therefore, the worker does not need to visually recognize the plurality of captured image data and manually specify the set image data, and does not need to manually specify the coordinate position of the first nozzle 30 in the set image data. Therefore, the burden on the worker can be reduced, and the work time required for setup can be shortened. In addition, it is possible to avoid variations in settings due to variations in proficiency among workers.
  • the setup unit 92 automatically sequentially and automatically specifies all of the set image data for each stop position of each nozzle, for example, in response to an input of a setup start instruction by a worker. ..
  • input for specifying the set image data for each stop position of each nozzle For example, the setup unit 92 identifies the set image data in response to an input for specifying the set image data including the first nozzle 30 that stops at the central position P31, and the first nozzle that stops at the peripheral position P32. It is also conceivable to specify the set image data in response to an input for specifying the set image data including 30.
  • such an input is a burden on the worker and prolongs the working time.
  • the setup unit 92 performs the set image data specifying process with the end of the setup imaging process as a trigger, the number of inputs by the worker can be further reduced.
  • the setup unit 92 sequentially sets all the set coordinate positions for each stop position of each nozzle in response to, for example, one input. Therefore, the number of inputs by the worker can be reduced, and the working time can be shortened.
  • the setup unit 92 performs the position setting process with the end of the setting image data specifying process as a trigger, the number of inputs by the worker can be further reduced.
  • the input of the worker may be adopted as a trigger as appropriate.
  • the setting image data specifying process may be started by an input instruction by a worker as a trigger.
  • the setup unit 92 notifies the worker of the end of the setup imaging process via the user interface 90, and the worker receives the notification and inputs an input instructing the start of the set image data specifying process to the user interface 90. conduct.
  • the setup unit 92 may perform the set image data specifying step in response to the input of the instruction.
  • the position setting process may also be started by using an input instruction by a worker as a trigger.
  • the setup unit 92 notifies the worker of the end of the setting image data specifying process via the user interface 90, and the worker receives the notification and inputs an input instructing the start of the position setting process to the user interface 90. conduct.
  • the setup unit 92 may perform the set image data specifying step in response to the input of the instruction.
  • FIG. 9 is a flowchart showing an example of the monitoring process.
  • the camera 70 sequentially captures an imaging region and acquires captured image data (step S21: processed imaging step).
  • the first nozzle 30 discharges the processing liquid onto the upper surface of the substrate W at the central position P31, and then the second nozzle 60 discharges the processing liquid onto the upper surface of the substrate W at the central position P61 (for example,). Rinse liquid) is discharged.
  • the monitoring processing unit 91 monitors the position of each nozzle based on the captured image data acquired by the processing imaging step (step S22: position monitoring step). Specifically, first, the monitoring processing unit 91 receives information indicating the processing procedure from the processing control unit 93, and specifies the period during which the first nozzle 30 moves from the standby position P33 to the central position P31 based on the information. do. The monitoring processing unit 91 detects the coordinate position of the first nozzle 30 in the captured image data by template matching between the captured image data acquired during the period and the reference image data RI1 stored in the storage medium. If the coordinate position of the first nozzle 30 is almost constant in the plurality of captured image data, it can be determined that the first nozzle 30 is stopped at the central position P31, and the coordinate position is set to the stop coordinate position of the first nozzle 30. Equivalent to.
  • the monitoring processing unit 91 reads out the set coordinate position for the central position P31 from the storage medium, and based on the detected stop coordinate position of the first nozzle 30 and the set coordinate position, the position of the first nozzle 30. Judge the suitability of. Specifically, the monitoring processing unit 91 determines whether or not the difference between the stop coordinate position and the set coordinate position is equal to or less than the allowable value.
  • the permissible value is set in advance, for example, and is stored in the storage medium.
  • the monitoring processing unit 91 determines that the first nozzle 30 is appropriately stopped at the central position P31. On the other hand, if the difference is larger than the permissible value, the monitoring processing unit 91 determines that the first nozzle 30 is displaced from the central position P31 and stopped. That is, the monitoring processing unit 91 detects a nozzle position abnormality for the first nozzle 30. The monitoring processing unit 91 may notify the worker of the nozzle position abnormality of the first nozzle 30 via the user interface 90. Further, at this time, the processing control unit 93 may interrupt the processing of the substrate W.
  • the monitoring processing unit 91 also monitors the position of the second nozzle 60 by the same processing as described above. Further, in the processing recipe step (step S5), when the third nozzle 65 discharges the processing liquid onto the upper surface of the substrate W, the monitoring processing unit 91 also monitors the position of the third nozzle 65 by the same processing.
  • the monitoring processing unit 91 can monitor the position of each nozzle in the processing recipe process.
  • the monitoring processing unit 91 also monitors the discharge state of the processing liquid from each nozzle in the processing recipe step (step S5) based on the captured image data (step S23: discharge monitoring step).
  • step S5 discharge monitoring step
  • step S23 discharge monitoring step
  • the monitoring processing unit 91 sets the ejection determination region R1 (see FIG. 8) in the captured image data.
  • the discharge determination region R1 is a region including a region below the tip of the first nozzle 30 in the captured image data, and is a region containing the processing liquid discharged from the tip of the first nozzle 30.
  • the relative positional relationship of the ejection determination region R1 with respect to the coordinate position of the first nozzle 30 is preset and stored in the storage medium. Further, the discharge determination region R1 is preset to a predetermined size, for example, in a rectangular shape extending in the vertical direction. Such a relative relationship indicating a positional relationship, a shape, and a size (hereinafter, referred to as a set relative relationship) is stored in a storage medium.
  • the monitoring processing unit 91 sets the ejection determination area R1 based on the stop coordinate position of the first nozzle 30 detected by the template matching described above and the setting relative relationship stored in the storage medium. As a result, even if the coordinate position of the first nozzle 30 slightly fluctuates in the captured image data, the ejection determination region R1 is set according to the coordinate position. Therefore, the discharge determination region R1 is set so that the processing liquid discharged from the tip of the first nozzle 30 is appropriately included.
  • FIG. 10 is a diagram schematically showing another example of the captured image data acquired in the processed imaging step (step S21).
  • the captured image data of FIG. 10 includes a discharge head 31 of the first nozzle 30 that discharges the processing liquid at the central position P31. That is, FIG. 10 shows the captured image data acquired when the first nozzle 30 discharges the processing liquid at the central position P31.
  • the pixel values in the ejection determination region R1 are when the first nozzle 30 ejects the processing liquid and when the first nozzle 30 does not eject the processing liquid. Is different.
  • the sum of the pixel values in the ejection determination region R1 when the first nozzle 30 is ejecting the processing liquid is the pixel value in the ejection determination region R1 when the first nozzle 30 is not ejecting the processing liquid. It will be larger than the sum of.
  • the monitoring processing unit 91 determines whether or not the first nozzle 30 is discharging the processing liquid based on the pixel value in the discharge determination region R1. As a specific example, the monitoring processing unit 91 determines whether or not the sum of the pixel values in the ejection determination region R1 is equal to or greater than a predetermined ejection reference value, and when the sum is equal to or greater than the ejection reference value, the first is 1 It is determined that the nozzle 30 is discharging the processing liquid. Further, the monitoring processing unit 91 determines that the first nozzle 30 is not discharging the processing liquid when the total is less than the discharge reference value.
  • the determination of the presence or absence of ejection of the processing liquid based on the pixel value in the ejection determination region R1 is not limited to this, and various methods can be adopted.
  • the dispersion of the pixel values in the ejection determination region R1 when the first nozzle 30 is ejecting the processing liquid is larger than the dispersion when the first nozzle 30 is not ejecting the processing liquid. Therefore, the monitoring processing unit 91 may calculate the dispersion and determine whether or not the processing liquid is discharged based on the magnitude of the dispersion. It is also possible to use the standard deviation instead of the variance.
  • the monitoring processing unit 91 performs the above-mentioned processing on each of the captured image data sequentially acquired by the camera 70, so that the start timing at which the first nozzle 30 starts discharging the processing liquid and the first nozzle 30 can detect the end timing at which the discharge of the processing liquid ends. Further, the monitoring processing unit 91 can calculate the discharge time for discharging the processing liquid based on the start timing and the end timing, and monitor whether the discharge time is the specified time. Specifically, when the difference between the discharge time and the specified time is equal to or longer than the allowable time, it is determined that the discharge abnormality has occurred.
  • the permissible time is set in advance, for example, and is stored in the storage medium.
  • the monitoring processing unit 91 monitors the discharge state of the processing liquid from the second nozzle 60 and the third nozzle 65 as necessary by the same processing. For example, when the second nozzle 60 also discharges the processing liquid at the central position P61 in the processing recipe step (step S5), the monitoring processing unit 91 also monitors the discharge state of the processing liquid of the second nozzle 60.
  • the first nozzle 30 may discharge the processing liquid at the peripheral position P32.
  • the monitoring processing unit 91 monitors the discharge state of the processing liquid of the first nozzle 30 at the peripheral position P32. Specifically, first, the monitoring processing unit 91 specifies the period during which the first nozzle 30 moves to the peripheral edge position P32 based on the information indicating the processing procedure received from the processing control unit 93. The monitoring processing unit 91 identifies the captured image data to be stopped at the peripheral position P32 from the captured image data acquired during the period, and detects the stop coordinate position of the first nozzle 30 in the captured image data.
  • the monitoring processing unit 91 sets the ejection determination region R1 based on the stop coordinate position of the first nozzle 30 and the set relative relationship stored in the storage medium, and processes based on the pixel values in the ejection determination region R1. Monitor the liquid discharge status.
  • the monitoring processing unit 91 similarly performs the treatment liquid from each of the second nozzle 60 and the third nozzle 65. Monitor the discharge status.
  • the sizes in the captured image data of the first nozzle 30 stopped at the different first stop position and the second stop position may be different from each other.
  • the sizes in the captured image data of the first nozzle 30 are different from each other.
  • the central position P31, the peripheral edge position P32, and the peripheral edge position P34 are different from each other. Therefore, the sizes in the captured image data of the first nozzle 30 stopped at the central position P31, the peripheral edge position P32, and the peripheral edge position P32 are different from each other.
  • FIG. 11 is a diagram showing a difference in size in the captured image data of the first nozzle 30.
  • the first nozzle 30 on the right side is larger than the first nozzle 30 on the left side. That is, the first nozzle 30 on the right side indicates the first nozzle 30 stopped at a position close to the camera 70 in the depth direction, and the first nozzle 30 on the left side stops at a position far from the camera 70 in the depth direction. 1 nozzle 30 is shown.
  • the processing liquid discharged from the tip of the first nozzle 30 on the left side is shown smaller in the captured image data.
  • the processing liquid discharged from the tip of the first nozzle 30 on the right side is shown larger in the captured image data.
  • the ejection determination region R1 becomes the processing liquid.
  • it may deviate from an appropriate position or may be too large compared to the size of the treatment liquid.
  • the distance between the tip of the first nozzle 30 on the left side and the upper end of the discharge determination region R1 is equal to the distance between the tip of the first nozzle 30 on the right side and the upper end of the discharge determination region R1, and both discharge determination regions R1.
  • the sizes of are also equal to each other.
  • the discharge determination region R1 on the left side is displaced downward from an appropriate position with respect to the processing liquid, and is set larger than the size of the processing liquid.
  • the determination area setting step (step S17) is executed after the position setting step (step S16).
  • the setup unit 92 sets a set relative relationship (position and size) indicating a geometrical relative relationship (position and size) between the set coordinate position of each nozzle and the discharge determination area R1 for each stop position of each nozzle. Set to.
  • the setting relative relationship of the first nozzle 30 with respect to the center position P31 is set in advance and stored in the storage medium.
  • This setting relative relationship is manually set by the worker, for example, as follows.
  • the worker inputs to the user interface 90 instructing the display of the setting image data including the first nozzle 30 stopped at the central position P31.
  • the control unit 9 responds to the input and displays the set image data on the user interface 90.
  • the worker visually recognizes the set image data, and inputs to the user interface 90 to specify the position and size of the discharge determination area R1 in the set image data.
  • the setup unit 92 creates a set relative relationship showing the geometrical relative relationship between the set coordinate position of the first nozzle 30 and the input ejection determination area R1 in the set image data, and stores the set relative relationship. Store in the medium.
  • the setup unit 92 automatically creates a setting relative relationship corresponding to the first nozzle 30 that stops at another stop position based on the setting relative relationship for the center position P31 of the first nozzle 30. Specifically, first, the setup unit 92 detects the size of the first nozzle 30 included in the setting image data including the first nozzle 30 stopped at the peripheral position P32. For example, the setup unit 92 performs template matching using the set image data and the reference image data RI1 of the first nozzle 30. In this template matching, the size of the reference image data RI1 is sequentially changed to specify a region having a high degree of similarity to the reference image data RI1 in the set image data. As a result, it is possible to obtain a magnification M1 with respect to the reference image data RI1 in the region corresponding to the reference image data RI1 in the set image data.
  • FIG. 12 schematically shows an example of the discharge determination region R1 at the central position P31 and the peripheral position P32.
  • the magnification M1 of the size of the first nozzle 30 at the peripheral position P32 with respect to the size of the first nozzle 30 at the central position P31 (that is, the size of the reference image data RI1) is schematically shown by a block arrow. It is shown in.
  • the setup unit 92 sets the size of the discharge determination region R1 for the peripheral position P32 to a value obtained by multiplying the size of the discharge determination region R1 for the central position P31 by the magnification M1. This makes it possible to set the discharge determination region R1 according to the size of the processing liquid in the captured image data.
  • the setup unit 92 may also adjust the relative position of the discharge determination region R1 with respect to the region of the first nozzle 30. For example, the smaller the magnification M1, the closer the position of the discharge determination region R1 is to the first nozzle 30. That is, the smaller the magnification M1, the higher the discharge determination region R1 may be. According to this, the setting relative relationship between the first nozzle 30 and the discharge determination region R1 can be appropriately set according to the magnification M1.
  • the setup unit 92 stores the setting relative relationship for the peripheral edge position P32 in the storage medium.
  • FIG. 13 is a flowchart showing an example of the check process.
  • the camera 70 starts imaging of the imaging region (step S31: start of the check imaging process).
  • the processing control unit 93 stops each of the first nozzle 30, the second nozzle 60, and the third nozzle 65 at each stop position, and discharges the processing liquid at each stop position (step S32: check recipe step).
  • the nozzle moving mechanism 37 moves the first nozzle 30 from the standby position P33 to the peripheral position P32 and stops it at the peripheral position P32.
  • the valve 35 opens, so that the first nozzle 30 discharges the processing liquid.
  • the valve 35 stops the discharge of the processing liquid.
  • the treatment liquid is discharged each time while the first nozzle 30 is stopped at each stop position. The same applies to the second nozzle 60 and the third nozzle 65.
  • the processing control unit 93 stores the time when each nozzle is located at each stop position and the time when the processing liquid is discharged in the storage medium based on the control signal output to the nozzle moving mechanism and the valve.
  • step S33 check imaging process ends. Since the check imaging process by the camera 70 is performed in parallel with the check recipe process, the plurality of captured image data includes each nozzle for discharging the processing liquid at each stop position.
  • the setup unit 92 determines whether or not the set coordinate position and the set relative relationship are appropriately set (step S34: check step). First, the setup unit 92 identifies the captured image data including each nozzle stopped at each stop position based on the acquisition time and the time stored in the storage medium. Further, the setup unit 92 identifies the captured image data including each nozzle that discharges the processing liquid at each stop position based on the acquisition time and the time stored in the storage medium.
  • the setup unit 92 monitors the position of each nozzle and the discharge of the processing liquid in the check recipe process based on the captured image data.
  • the monitoring of the position of each nozzle is performed by the same process as the position monitoring step (step S22), and the monitoring of the nozzle ejection state is performed by the same process as the ejection monitoring step (step S23).
  • the setup unit 92 When the setup unit 92 detects a nozzle position abnormality, it determines that the set coordinate position for the nozzle and the stop position where the nozzle position abnormality is detected is not properly set. At this time, the setup unit 92 notifies the worker via the user interface 90 that the set coordinate position is not properly set for the stop position of the nozzle.
  • the setup unit 92 detects a processing liquid discharge abnormality, it determines that the set relative position for the nozzle and the stop position where the processing liquid discharge abnormality is detected is not properly set. The setup unit 92 notifies the worker via the user interface 90 that the setting relative relationship is not properly set for the stop position of the nozzle.
  • the worker may reset the setting information by executing the setup process again. In this case, it is advisable to reset only the setting information that has not been set properly. For example, in the input process, only the nozzle and the stop position to be reset may be input. Alternatively, the worker may manually reset only the setting information that has not been properly set by using the user interface 90.
  • the first nozzle 30, the second nozzle 60, and the third nozzle 65 are exemplified as an example of the monitoring object moving in the chamber 10.
  • the processing cup 40 may be adopted as a monitoring target.
  • the inner cup 41, the middle cup 42, and the outer cup 43 of the processing cup 40 are moved up and down between the upper position and the lower position by the cup moving mechanism 59.
  • the outer cup 43 will be described for the sake of brevity.
  • the monitoring processing unit 91 monitors the state of the processing cup 40 in the captured image data.
  • the camera 70 captures an image pickup region in a state where the outer cup 43 is raised to an upper position in advance to acquire captured image data, and a part of the outer cup 43 included in the captured image data. (For example, a part of the upper end of the outer cup 43) is stored in the storage medium as reference image data RI2 (see also FIG. 8).
  • the monitoring processing unit 91 detects the coordinate position of the outer cup 43 by template matching between the captured image data acquired in the processing recipe step (step S5) and the reference image data RI2.
  • the monitoring processing unit 91 calculates the difference between the coordinate position of the outer cup 43 and the set coordinate position for the upper position of the outer cup 43, and detects an abnormality in the position of the cup when the difference is equal to or greater than the allowable value. ..
  • the set coordinate position of such an outer cup 43 is also set by the setup process. Specifically, in the setup recipe step (step S12), the cup moving mechanism 59 moves the outer cup 43 from the lower position to the upper position and stops it at the upper position for a predetermined time. Then, in the position setting step (step S14), the setup unit 92 specifies the captured image data including the outer cup 43 that stops at the upper position based on the control signal to the cup moving mechanism 59, and the captured image data and the captured image data. The coordinate position of the outer cup 43 is detected by template matching with the reference image data RI2. The setup unit 92 stores the coordinate position in the storage medium as a set coordinate position for the upper position of the outer cup 43.
  • the set coordinate position of the outer cup 43 can also be set automatically, and the time required for the setup process can be shortened.
  • the middle cup 42 and the inner cup 41 can be set automatically, and the time required for the setup process can be shortened.
  • the substrate processing method and the substrate processing apparatus 100 have been described in detail, but the above description is an example in all aspects, and the substrate processing apparatus is not limited thereto. It is understood that a myriad of variants not illustrated can be envisioned without departing from the scope of this disclosure. The configurations described in the above embodiments and the modifications can be appropriately combined or omitted as long as they do not conflict with each other.
  • the setup process is performed when the board processing device 100 is installed, for example, the setup process may be performed even when a human hand collides with the camera 70 and the posture of the camera 70 changes. .. This is because if the posture of the camera 70 changes, the coordinate position of each nozzle in the captured image data changes.
  • the setup unit 92 may detect the coordinate position of each first nozzle 30 in the setting image data including the plurality of first nozzles 30 stopped at the central position P31, and set each coordinate position as the set coordinate position. good. That is, the set coordinate position is set for each first nozzle 30 with respect to the central position P13. The same applies to other stop positions. Further, the setting relative relationship may be similarly set for each first nozzle 30. The same applies to the second nozzle 60 and the third nozzle 65.
  • the setting information for one processing unit 1 is set in the above-mentioned setup process, the setting information may be set for a plurality of processing units 1 belonging to the board processing apparatus 100.
  • Processing unit 10 Chamber 20 Substrate holding (spin chuck) 30, 60, 65 Monitored object (nozzle) 37 Movement mechanism (nozzle movement mechanism) 40 Observed object (processing cup) 59 Movement mechanism (cup movement mechanism) 9 Control unit 70 Camera 100 Board processing device W board

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Coating Apparatus (AREA)
  • Weting (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

基板処理監視に用いる設定情報の設定方法は、基板処理装置内の第1監視対象物を移動させる移動機構を制御して、前記第1監視対象物を第1停止位置に移動させるセットアップレシピ工程(S12)と、セットアップレシピ工程(S12)と並行して実行され、カメラが第1監視対象物を撮像するセットアップ撮像工程と、セットアップ撮像工程においてカメラによって取得され、第1停止位置で停止する第1監視対象物を含む第1画像データと、第1監視対象物の少なくとも一部を示す第1参照画像データとに基づいて、第1画像データ内における第1監視対象物の位置を検出し、当該位置を前記第1停止位置に関する適正位置として設定する設定工程(S16)と、を備える。

Description

基板処理監視に用いる設定情報の設定方法、基板処理装置の監視方法および基板処理装置
 本願は、基板処理監視に用いる設定情報の設定方法、基板処理装置の監視方法および基板処理装置に関する。
 従来より、半導体デバイスなどの製造工程においては、基板に対して純水、フォトレジスト液およびエッチング液などの種々の処理液を供給して、洗浄処理およびレジスト塗布処理などの種々の基板処理を行っている。このような処理を行う基板処理を行う装置としては、基板を水平姿勢で回転させつつ、その基板の表面にノズルから処理液を吐出する基板処理装置が広く用いられている。
 ノズルは配管を介して処理液供給源に接続され、配管にはバルブが設けられる。バルブが開くことにより、ノズルから処理液が吐出され、バルブが閉じることにより、ノズルから処理液が吐出される。
 また、基板処理装置には、ノズルを移動させるノズル移動機構が設けられる。ノズル移動機構は、ノズルを、基板よりも上方の処理位置と、基板よりも外側の待機位置との間で移動させる。
 ノズルが処理位置で停止した状態でバルブが開くことにより、ノズルから基板の主面に処理液が供給される。これにより、基板に対する処理が行われる。処理液の吐出開始から規定の吐出時間が経過すると、バルブが閉じて処理液の供給が停止する。
 このような基板処理装置において、ノズルから処理液が吐出されているか否かの監視が行われる場合がある。つまり、ノズルからの処理液の吐出状態を監視する場合がある。例えば特許文献1には、カメラなどの撮像手段を設けてノズルからの処理液吐出を直接的に監視することが提案されている。
特開2008-135679号公報
 基板処理における監視対象として、ノズルから吐出される処理液の吐出状態の他に、ノズルの位置を採用することもできる。つまり、基板処理装置は、ノズルの位置が適切であるか否かを、撮像手段によって取得された画像データに基づいて判断する場合もある。
 具体的には、基板処理装置は、処理位置で停止したノズルを含む画像データに対する画像処理により、画像データ内におけるノズルの座標位置を検出し、当該ノズルの座標位置と、予め設定された適正位置(設定座標位置)とに基づいて、当該ノズルの座標位置が適切であるか否かを判断する。
 この設定座標位置は、ノズルが適切な位置に停止したときに撮像された画像データにおいて、当該ノズルの座標位置である。この設定座標位置は、例えば、基板処理装置の据え付け等に、作業員によって手動で設定される。具体的には、まず、ノズル移動機構がノズルを処理位置に移動させた状態で撮像手段によって画像データを取得する。基板処理装置は当該画像データをユーザーインターフェースのディスプレイに表示する。次に、作業員は、ディスプレイに表示された画像データを視認し、画像データにおいてノズルが含まれた領域の座標位置を、ユーザーインターフェースに入力する。基板処理装置は、ユーザーインターフェースに入力された座標位置を、ノズルの設定座標位置として設定する。これにより、画像データにおけるノズルの適正位置を設定することができる。
 しかしながら、このような手動による設定は作業時間の増加を招くうえ、作業員の習熟度の違いにより、設定にばらつきが生じ得る。
 そこで、本願は、上記課題に鑑みてなされたものであり、監視処理に用いられる監視対象の適正位置を自動で設定できる技術を提供することを目的とする。
 基板処理監視に用いる設定情報の設定方法の第1の態様は、基板処理監視に用いる設定情報の設定方法であって、基板処理装置内の第1監視対象物を移動させる移動機構を制御して、前記第1監視対象物を第1停止位置に移動させるセットアップレシピ工程と、前記セットアップレシピ工程と並行して実行され、カメラが前記第1監視対象物を撮像するセットアップ撮像工程と、前記セットアップ撮像工程において前記カメラによって取得され、前記第1停止位置で停止する前記第1監視対象物を含む第1画像データと、前記第1監視対象物の少なくとも一部を示す第1参照画像データとに基づいて、前記第1画像データ内における前記第1監視対象物の位置を検出し、当該位置を前記第1停止位置に関する適正位置として設定する設定工程と、を備える。
 基板処理監視に用いる設定情報の設定方法の第2の態様は、第1の態様にかかる基板処理監視に用いる設定情報の設定方法であって、前記設定工程では、前記セットアップ撮像工程において前記カメラによって順次に取得される複数の画像データのうち、前記第1停止位置で停止した前記第1監視対象物を含む前記第1画像データを、前記移動機構への制御信号に基づいて特定する。
 基板処理監視に用いる設定情報の設定方法の第3の態様は、第1または第2の態様にかかる基板処理監視に用いる設定情報の設定方法であって、前記セットアップレシピ工程では、前記基板処理装置内に保持された基板の主面に処理液を供給するノズルを、前記第1監視対象物として、前記第1停止位置に移動させる。
 基板処理監視に用いる設定情報の設定方法の第4の態様は、第3の態様にかかる基板処理監視に用いる設定情報の設定方法であって、前記セットアップレシピ工程では、前記ノズルを、前記第1停止位置、および、前記カメラから見て少なくとも奥行き方向において前記第1停止位置と異なる第2停止位置に順に移動させ、前記設定工程は、前記セットアップ撮像工程において前記カメラによって取得され、前記第2停止位置で停止した前記ノズルを含む第2画像データと、前記第1参照画像データとに基づいて、前記第2画像データ内における前記ノズルの位置および大きさを検出する検出工程と、前記第1画像データ内の前記ノズルに対して吐出判定領域の位置および大きさが予め規定された第1相対関係と、前記第1画像データ内の前記ノズルの大きさに対する前記第2画像データ内の前記ノズルの大きさの倍率に基づいて、前記第2画像データ内の前記ノズルに対する吐出判定領域の位置および大きさを規定する第2相対関係を設定する判定領域設定工程とを含む。
 基板処理監視に用いる設定情報の設定方法の第5の態様は、第1または第2の態様にかかる基板処理監視に用いる設定情報の設定方法であって、前記セットアップレシピ工程では、前記基板処理装置内の基板保持部を取り囲む処理カップを、前記第1監視対象物として、鉛直方向に沿って移動させて前記第1停止位置で停止させる。
 基板処理監視に用いる設定情報の設定方法の第6の態様は、第1から第3、第5のいずれか一つの態様にかかる基板処理監視に用いる設定情報の設定方法であって、前記セットアップレシピ工程では、前記第1監視対象物を前記第1停止位置、および、前記第1停止位置とは異なる第2停止位置に順次に移動させ、前記設定工程では、前記セットアップ撮像工程において取得され、前記第2停止位置で停止する前記第1監視対象物を含む第2画像データと、前記第1参照画像データとに基づいて、前記第2画像データ内における前記第1監視対象物の位置を検出し、当該位置を前記第2停止位置に関する適正位置として設定する。
 基板処理監視に用いる設定情報の設定方法の第7の態様は、第1から第6のいずれか一つの態様にかかる基板処理監視に用いる設定情報の設定方法であって、前記セットアップレシピ工程では、前記基板処理装置内の前記第1監視対象物とは異なる第2監視対象物を第3停止位置に移動させ、前記設定工程では、前記セットアップ撮像工程において取得され、前記第3停止位置で停止する前記第2監視対象物を含む第3画像データと、前記第2監視対象物の少なくとも一部を示す第2参照画像データとに基づいて、前記第3画像データ内における前記第2監視対象物の位置を検出し、当該位置を前記第2監視対象物の前記第3停止位置に関する適正位置として設定する。
 基板処理装置の監視方法の第1の態様は、第1から第7のいずれか一つの態様にかかる基板処理監視に用いる設定情報の設定方法を行うセットアップ工程と、基板処理装置内の基板保持部が基板を保持する保持工程と、前記基板保持部が前記基板を保持した状態で前記移動機構を制御して、前記第1監視対象物を前記第1停止位置に移動させる処理レシピ工程と、前記処理レシピ工程と並行して、前記カメラが前記第1監視対象物を撮像する処理撮像工程と、前記処理撮像工程において前記カメラによって取得され、前記第1停止位置で停止した前記第1監視対象物を含む第4画像データと、前記第1参照画像データとに基づいて、前記第4画像データ内における前記第1監視対象物の位置を検出し、当該位置の適否を、前記第1停止位置に関する前記適正位置に基づいて判断する位置監視工程と、を備える。
 基板処理装置の第1の態様は、基板に対する処理を行う基板処理装置であって、チャンバーと、チャンバー内の監視対象物を所定の停止位置に移動させる移動機構と、前記監視対象物を含む領域を撮像して画像データを取得するカメラと、前記監視対象物の少なくとも一部を示す参照画像データが記憶された記憶媒体と、前記カメラによって取得され、前記停止位置で停止した前記監視対象物を含む前記画像データと、前記参照画像データとに基づいて、前記画像データ内における前記監視対象物の位置を検出し、当該位置を前記停止位置に関する適正位置として設定する制御部と、を備える。
 基板処理監視に用いる設定情報の設定方法および基板処理装置によれば、適正位置を自動で設定できる。
 基板処理装置の監視方法によれば、監視対象物の位置を監視できる。
基板処理装置の全体構成の一例を概略的に示す図である。 処理ユニットの構成の一例を概略的に示す平面図である。 処理ユニットの構成の一例を概略的に示す側面図である。 ノズルの移動経路の一例を概略的に示す平面図である。 制御部の内部構成の一例を示す機能ブロック図である。 処理ユニットの動作の一例を示すフローチャートである。 セットアップ処理の一例を示すフローチャートである。 撮像画像データの一例を概略的に示す図である。 監視処理の具体的な一例を示すフローチャートである。 撮像画像データの一例を概略的に示す図である。 撮像画像データ内の第1ノズルの大きさを概略的に示す図である。 撮像画像データ内の吐出判定領域R1の一例を概略的に示す図である。 チェック処理の一例を示すフローチャートである。
 以下、添付される図面を参照しながら実施の形態について説明する。なお、図面は概略的に示されるものであり、説明の便宜のため、適宜、構成の省略、または、構成の簡略化がなされるものである。また、図面に示される構成の大きさおよび位置の相互関係は、必ずしも正確に記載されるものではなく、適宜変更され得るものである。
 また、以下に示される説明では、同様の構成要素には同じ符号を付して図示し、それらの名称と機能とについても同様のものとする。したがって、それらについての詳細な説明を、重複を避けるために省略する場合がある。
 また、以下に記載される説明において、「第1」または「第2」などの序数が用いられる場合があっても、これらの用語は、実施の形態の内容を理解することを容易にするために便宜上用いられるものであり、これらの序数によって生じ得る順序などに限定されるものではない。
 相対的または絶対的な位置関係を示す表現(例えば「一方向に」「一方向に沿って」「平行」「直交」「中心」「同心」「同軸」など)は、特に断らない限り、その位置関係を厳密に表すのみならず、公差もしくは同程度の機能が得られる範囲で相対的に角度または距離に関して変位された状態も表すものとする。等しい状態であることを示す表現(例えば「同一」「等しい」「均質」など)は、特に断らない限り、定量的に厳密に等しい状態を表すのみならず、公差もしくは同程度の機能が得られる差が存在する状態も表すものとする。形状を示す表現(例えば、「四角形状」または「円筒形状」など)は、特に断らない限り、幾何学的に厳密にその形状を表すのみならず、同程度の効果が得られる範囲で、例えば凹凸や面取りなどを有する形状も表すものとする。一の構成要素を「備える」「具える」「具備する」「含む」または「有する」という表現は、他の構成要素の存在を除外する排他的表現ではない。「A,BおよびCの少なくともいずれか一つ」という表現は、Aのみ、Bのみ、Cのみ、A,BおよびCのうち任意の2つ、ならびに、A,BおよびCの全てを含む。
 <基板処理装置の全体構成>
 図1は、本実施の形態に関する基板処理装置100の内部のレイアウトの一例を説明するための図解的な平面図である。図1に例が示されるように、基板処理装置100は、処理対象である基板Wを1枚ずつ処理する枚葉式の処理装置である。
 本実施の形態に関する基板処理装置100は、円形薄板状であるシリコン基板である基板Wに対して、薬液および純水などのリンス液を用いて洗浄処理を行った後、乾燥処理を行う。
 上記の薬液としては、例えば、アンモニアと過酸化水素水との混合液(SC1)、塩酸と過酸化水素水との混合水溶液(SC2)、または、DHF液(希フッ酸)などが用いられる。
 以下の説明では、薬液、リンス液および有機溶剤などを総称して「処理液」とする。なお、洗浄処理のみならず、不要な膜を除去するための薬液、または、エッチングのための薬液なども「処理液」に含まれるものとする。
 基板処理装置100は、複数の処理ユニット1と、ロードポートLPと、インデクサロボット102と、主搬送ロボット103と、制御部9と、ユーザーインターフェース90とを備える。
 図1に例示されるように、複数のロードポートLPが並んで配置される。各ロードポートLPには、キャリアCが搬入される。キャリアCとしては、基板Wを密閉空間に収納するFOUP(Front Opening Unified Pod)、SMIF(Standard Mechanical Inter Face)ポッド、または、基板Wを外気にさらすOC(Open Cassette)が採用されてもよい。また、インデクサロボット102は、キャリアCと主搬送ロボット103との間で基板Wを搬送する。
 処理ユニット1は、1枚の基板Wに対して液処理および乾燥処理を行う。本実施の形態に関する基板処理装置100には、同様の構成である12個の処理ユニット1が配置されている。
 具体的には、それぞれが鉛直方向に積層された3個の処理ユニット1を含む4つのタワーが、主搬送ロボット103の周囲を取り囲むようにして配置されている。
 図1では、3段に重ねられた処理ユニット1の1つが概略的に示されている。なお、基板処理装置100における処理ユニット1の数量は、12個に限定されるものではなく、適宜変更されてもよい。
 主搬送ロボット103は、処理ユニット1が積層された4個のタワーの中央に設置されている。主搬送ロボット103は、インデクサロボット102から受け取る処理対象の基板Wをそれぞれの処理ユニット内に搬入する。また、主搬送ロボット103は、それぞれの処理ユニット1から処理済みの基板Wを搬出してインデクサロボット102に渡す。制御部9は、基板処理装置100のそれぞれの構成要素の動作を制御する。
 ユーザーインターフェース90は、例えば液晶ディスプレイ等の表示部と、マウスおよびキーボード等の入力デバイスとを含む。作業員は、ユーザーインターフェース90に種々の情報を入力することができる。ユーザーインターフェース90は、入力された情報を制御部9に出力する。
 以下、基板処理装置100に搭載された12個の処理ユニット1のうちの1つについて説明するが、他の処理ユニット1についても、ノズルの配置関係が異なること以外は、同一の構成を有する。
 <処理ユニット>
 図2は、処理ユニット1の構成の一例を概略的に示す平面図である。また、図3は、処理ユニット1の構成の一例を概略的に示す縦断面図である。
 処理ユニット1は、チャンバー10内に、基板保持部の一例であるスピンチャック20と、第1ノズル30と、第2ノズル60と、第3ノズル65と、処理カップ40と、カメラ70とを含む。
 チャンバー10は、鉛直方向に沿う側壁11、側壁11によって囲まれた空間の上側を閉塞する天井壁12および下側を閉塞する床壁13を含む。側壁11、天井壁12および床壁13によって囲まれた空間が処理空間となる。また、チャンバー10の側壁11の一部には、主搬送ロボット103が基板Wを搬出入するための搬出入口およびその搬出入口を開閉するシャッターが設けられている(いずれも図示省略)。
 チャンバー10の天井壁12には、基板処理装置100が設置されているクリーンルーム内の空気をさらに清浄化してチャンバー10内の処理空間に供給するためのファンフィルタユニット(FFU)14が取り付けられている。ファンフィルタユニット14は、クリーンルーム内の空気を取り込んでチャンバー10内に送り出すためのファンおよびフィルタ(例えばHEPA(High Efficiency Particulate Air)フィルタ)を備えており、チャンバー10内の処理空間に清浄空気のダウンフローを形成する。ファンフィルタユニット14から供給された清浄空気を均一に分散するために、多数の吹出し孔を穿設したパンチングプレートを天井壁12の直下に設けるようにしても良い。
 スピンチャック20は、基板Wを水平姿勢に保持する。水平姿勢とは、基板Wの法線が鉛直方向に沿う姿勢である。スピンチャック20は、鉛直方向に沿って延びる回転軸24の上端に水平姿勢で固定された円板形状のスピンベース21を備える。スピンベース21の下方には回転軸24を回転させるスピンモータ22が設けられる。スピンモータ22は、回転軸24を介してスピンベース21を水平面内にて回転させる。また、スピンモータ22および回転軸24の周囲を取り囲むように筒状のカバー部材23が設けられている。
 円板形状のスピンベース21の外径は、スピンチャック20に保持される円形の基板Wの径よりも若干大きい。よって、スピンベース21は、保持すべき基板Wの下面の全面と対向する上面21aを有している。
 スピンベース21の上面21aの周縁部には複数(本実施形態では4本)のチャックピン26が立設されている。複数のチャックピン26は、円形の基板Wの周縁に対応する円周上に沿って均等な間隔をあけて(本実施形態のように4個のチャックピン26であれば90°間隔にて)配置されている。各チャックピン26は、基板Wの周縁に当接する保持位置と、基板Wの周縁から離れた開放位置と間で駆動可能に設けられている。複数のチャックピン26は、スピンベース21内に収容された図示省略のリンク機構によって連動して駆動される。スピンチャック20は、複数のチャックピン26をそれぞれの当接位置で停止させることにより、当該基板Wをスピンベース21の上方で上面21aに近接した水平姿勢にて保持することができるとともに(図3参照)、複数のチャックピン26をそれぞれの開放位置で停止させることにより、基板Wの保持を解除することができる。
 スピンモータ22を覆うカバー部材23は、その下端がチャンバー10の床壁13に固定され、上端がスピンベース21の直下にまで到達している。カバー部材23の上端部には、カバー部材23から外方へほぼ水平に張り出し、さらに下方に屈曲して延びる鍔状部材25が設けられている。複数のチャックピン26による把持によってスピンチャック20が基板Wを保持した状態にて、スピンモータ22が回転軸24を回転させることにより、基板Wの中心を通る鉛直方向に沿った回転軸線CXまわりに基板Wを回転させることができる。なお、スピンモータ22の駆動は制御部9によって制御される。
 第1ノズル30は、ノズルアーム32の先端に吐出ヘッド31を取り付けて構成されている。ノズルアーム32の基端側はノズル基台33に固定して連結されている。ノズル基台33は図示を省略するモータによって鉛直方向に沿った軸のまわりで回動可能とされている。ノズル基台33が回動することにより、図2中の矢印AR34にて示すように、第1ノズル30はスピンチャック20の上方の空間内で円弧状に移動する。これらノズルアーム32、ノズル基台33およびモータは、第1ノズル30を移動させるノズル移動機構37の一例である。
 図4は、第1ノズル30の移動経路の一例を概略的に示す平面図である。図4に例示されるように、第1ノズル30の吐出ヘッド31は、ノズル基台33の回転により、ノズル基台33を中心とした周方向に沿って移動する。第1ノズル30は適宜の停止位置で停止することができる。図4の例では、第1ノズル30は中央位置P31、周縁位置P32および待機位置P33の各々で停止可能である。
 中央位置P31は、吐出ヘッド31が、スピンチャック20に保持された基板Wの中央部と鉛直方向において対向する位置である。中央位置P31に位置する第1ノズル30が回転中の基板Wの上面に処理液を吐出することにより、基板Wの上面の全面に処理液を供給できる。これにより、基板Wの上面の全面に対して処理を施すことができる。
 待機位置P33は、吐出ヘッド31が、スピンチャック20に保持された基板Wと鉛直方向において対向しない位置である。待機位置P33には、第1ノズル30の吐出ヘッド31を収容する待機ポッドが設けられていても良い。
 周縁位置P32は中央位置P31と待機位置P33との間の位置であり、吐出ヘッド31が、スピンチャック20に保持された基板Wの周縁部と鉛直方向において対向する位置である。第1ノズル30は、周縁位置P32に位置した状態において、回転中の基板Wの上面に処理液を吐出してもよい。これにより、基板Wの上面の周縁部のみに処理液を吐出でき、基板Wの周縁部のみを処理できる(いわゆるベベル処理)。
 また、第1ノズル30は中央位置P31と周縁位置P32との間で往復移動しながら、回転中の基板Wの上面に処理液を吐出することも可能である。この場合にも、基板Wの上面の全面を処理することができる。
 周縁位置P34は中央位置P31に対して周縁位置P32とは反対側に位置しており、吐出ヘッド31が、スピンチャック20に保持された基板Wの周縁部と鉛直方向において対向する位置である。第1ノズル30は、周縁位置P34に位置した状態において、回転中の基板Wの上面に処理液を吐出してもよい。これによっても、基板Wの上面の周縁部のみに処理液を吐出でき、基板Wの周縁部のみを処理できる(いわゆるベベル処理)。
 また、第1ノズル30は中央位置P31と周縁位置P34との間で往復移動しながら、回転中の基板Wの上面に処理液を吐出することも可能である。この場合にも、基板Wの上面の全面を処理することができる。
 また、ノズル基台33には、第1ノズル30を昇降させるノズル昇降機構(不図示)が含まれていてもよい。ノズル昇降機構は例えばボールネジ機構またはエアシリンダ等の昇降機構を含む。ノズル昇降機構が設けられる場合、第1ノズル30は、鉛直方向において異なる停止位置の各々で停止することが可能である。例えば、第1ノズル30は、中央位置P31よりも鉛直方向の上方の停止位置に停止可能である。
 図3に例示されるように、第1ノズル30は供給管34を介して処理液供給源36に接続される。供給管34にはバルブ35が設けられている。バルブ35は供給管34の流路を開閉する。バルブ35が開くことにより、処理液供給源36は供給管34を通じて処理液を第1ノズル30に供給する。なお、第1ノズル30は、複数種の処理液(少なくとも純水を含む)が供給されるように構成されてもよい。
 また、本実施形態の処理ユニット1には、上記第1ノズル30に加えてさらに第2ノズル60および第3ノズル65が設けられている。本実施形態の第2ノズル60および第3ノズル65は、上記の第1ノズル30と同じ構成を有する。すなわち、第2ノズル60は、ノズルアーム62の先端に吐出ヘッド61を取り付けて構成される。第2ノズル60は、ノズルアーム62の基端側に連結されたノズル基台63によって、矢印AR64にて示すように、スピンチャック20の上方の空間を円弧状に移動する。第2ノズル60の移動経路上に位置する中央位置P61、周縁位置P62、待機位置P63および周縁位置P64の相対的な位置関係は、中央位置P31、周縁位置P32、待機位置P33および周縁位置P34の相対的な位置関係と同様である。
 同様に、第3ノズル65は、ノズルアーム67の先端に吐出ヘッド66を取り付けて構成される。第3ノズル65は、ノズルアーム67の基端側に連結されたノズル基台68によって、矢印AR69にて示すように、スピンチャック20の上方の空間を円弧状に移動する。処理位置と処理カップ40よりも外側の待機位置との間で円弧状に移動する。第3ノズル65の移動経路上に位置する中央位置P66、周縁位置P67、待機位置P68および周縁位置P69の相対的な位置関係は、中央位置P31、周縁位置P32、待機位置P33および周縁位置P34の相対的な位置関係と同様である。
 また、第2ノズル60および第3ノズル65は昇降可能であってもよい。例えばノズル基台63およびノズル基台68に内蔵された不図示のノズル昇降機構によって第2ノズル60および第3ノズル65が昇降する。
 第2ノズル60および第3ノズル65の各々も、第1ノズル30と同様に供給管(図示省略)を介して処理液供給源(図示省略)に接続される。各供給管にはバルブ(不図示)が設けられ、バルブが開閉することで処理液の供給/停止が切り替えられる。
 なお、第1ノズル30、第2ノズル60および第3ノズル65の各々は、複数種の処理液が供給されるように構成されてもよい。また、第1ノズル30、第2ノズル60および第3ノズル65の少なくともいずれか一つは、純水などの洗浄液と加圧した気体とを混合して液滴を生成し、その液滴と気体との混合流体を基板Wに噴射する二流体ノズルであっても良い。また、処理ユニット1に設けられるノズルの数は3本に限定されるものではなく、1本以上であれば良い。
 スピンチャック20を取り囲む処理カップ40は、互いに独立して昇降可能な内カップ41、中カップ42および外カップ43を含む。内カップ41は、スピンチャック20の周囲を取り囲み、スピンチャック20に保持された基板Wの中心を通る回転軸線CXに対してほぼ回転対称となる形状を有している。この内カップ41は、平面視円環状の底部44と、底部44の内周縁から上方に立ち上がる円筒状の内壁部45と、底部44の外周縁から上方に立ち上がる円筒状の外壁部46と、内壁部45と外壁部46との間から立ち上がり、上端部が滑らかな円弧を描きつつ中心側(スピンチャック20に保持される基板Wの回転軸線CXに近づく方向)斜め上方に延びる第1案内部47と、第1案内部47と外壁部46との間から上方に立ち上がる円筒状の中壁部48とを一体的に含んでいる。
 内壁部45は、内カップ41が最も上昇された状態で、カバー部材23と鍔状部材25との間に適当な隙間を保って収容されるような長さに形成されている。中壁部48は、内カップ41と中カップ42とが最も近接した状態で、中カップ42の後述する第2案内部52と処理液分離壁53との間に適当な隙間を保って収容されるような長さに形成されている。
 第1案内部47は、滑らかな円弧を描きつつ中心側(基板Wの回転軸線CXに近づく方向)斜め上方に延びる上端部47bを有している。また、内壁部45と第1案内部47との間は、使用済みの処理液を集めて廃棄するための廃棄溝49とされている。第1案内部47と中壁部48との間は、使用済みの処理液を集めて回収するための円環状の内側回収溝50とされている。さらに、中壁部48と外壁部46との間は、内側回収溝50とは種類の異なる処理液を集めて回収するための円環状の外側回収溝51とされている。
 廃棄溝49には、この廃棄溝49に集められた処理液を排出するとともに、廃棄溝49内を強制的に排気するための図示省略の排気液機構が接続されている。排気液機構は、例えば、廃棄溝49の周方向に沿って等間隔で4つ設けられている。また、内側回収溝50および外側回収溝51には、内側回収溝50および外側回収溝51にそれぞれ集められた処理液を処理ユニット1の外部に設けられた回収タンクに回収するための回収機構(いずれも図示省略)が接続されている。なお、内側回収溝50および外側回収溝51の底部は、水平方向に対して微少角度だけ傾斜しており、その最も低くなる位置に回収機構が接続されている。これにより、内側回収溝50および外側回収溝51に流れ込んだ処理液が円滑に回収される。
 中カップ42は、スピンチャック20の周囲を取り囲み、スピンチャック20に保持された基板Wの中心を通る回転軸線CXに対してほぼ回転対称となる形状を有している。この中カップ42は、第2案内部52と、この第2案内部52に連結された円筒状の処理液分離壁53とを一体的に含んでいる。
 第2案内部52は、内カップ41の第1案内部47の外側において、第1案内部47の下端部と同軸円筒状をなす下端部52aと、下端部52aの上端から滑らかな円弧を描きつつ中心側(基板Wの回転軸線CXに近づく方向)斜め上方に延びる上端部52bと、上端部52bの先端部を下方に折り返して形成される折返し部52cとを有している。下端部52aは、内カップ41と中カップ42とが最も近接した状態で、第1案内部47と中壁部48との間に適当な隙間を保って内側回収溝50内に収容される。また、上端部52bは、内カップ41の第1案内部47の上端部47bと上下方向に重なるように設けられ、内カップ41と中カップ42とが最も近接した状態で、第1案内部47の上端部47bに対してごく微小な間隔を保って近接する。さらに、上端部52bの先端を下方に折り返して形成される折返し部52cは、内カップ41と中カップ42とが最も近接した状態で、折返し部52cが第1案内部47の上端部47bの先端と水平方向に重なるような長さとされている。
 また、第2案内部52の上端部52bは、下方ほど肉厚が厚くなるように形成されており、処理液分離壁53は上端部52bの下端外周縁部から下方に延びるように設けられた円筒形状を有している。処理液分離壁53は、内カップ41と中カップ42とが最も近接した状態で、中壁部48と外カップ43との間に適当な隙間を保って外側回収溝51内に収容される。
 外カップ43は、中カップ42の第2案内部52の外側において、スピンチャック20の周囲を取り囲み、スピンチャック20に保持された基板Wの中心を通る回転軸線CXに対してほぼ回転対称となる形状を有している。この外カップ43は、第3案内部としての機能を有する。外カップ43は、第2案内部52の下端部52aと同軸円筒状をなす下端部43aと、下端部43aの上端から滑らかな円弧を描きつつ中心側(基板Wの回転軸線CXに近づく方向)斜め上方に延びる上端部43bと、上端部43bの先端部を下方に折り返して形成される折返し部43cとを有している。
 下端部43aは、内カップ41と外カップ43とが最も近接した状態で、中カップ42の処理液分離壁53と内カップ41の外壁部46との間に適当な隙間を保って外側回収溝51内に収容される。また、上端部43bは、中カップ42の第2案内部52と上下方向に重なるように設けられ、中カップ42と外カップ43とが最も近接した状態で、第2案内部52の上端部52bに対してごく微小な間隔を保って近接する。さらに、上端部43bの先端部を下方に折り返して形成される折返し部43cは、中カップ42と外カップ43とが最も近接した状態で、折返し部43cが第2案内部52の折返し部52cと水平方向に重なるように形成されている。
 また、内カップ41、中カップ42および外カップ43は互いに独立して昇降可能とされている。すなわち、内カップ41、中カップ42および外カップ43のそれぞれには個別にカップ移動機構59が設けられており、それによって別個独立して昇降される。このようなカップ移動機構59としては、例えばボールネジ機構やエアシリンダなどの公知の種々の機構を採用することができる。
 仕切板15は、処理カップ40の周囲においてチャンバー10の内側空間を上下に仕切るように設けられている。仕切板15は、処理カップ40を取り囲む1枚の板状部材であっても良いし、複数の板状部材をつなぎ合わせたものであっても良い。また、仕切板15には、厚さ方向に貫通する貫通孔や切り欠きが形成されていても良く、本実施形態では第1ノズル30のノズル基台33、第2ノズル60のノズル基台63および第3ノズル65のノズル基台68を支持するための支持軸を通すための貫通穴が形成されている。
 仕切板15の外周端はチャンバー10の側壁11に連結されている。また、仕切板15の処理カップ40を取り囲む端縁部は外カップ43の外径よりも大きな径の円形形状となるように形成されている。よって、仕切板15が外カップ43の昇降の障害となることはない。
 また、チャンバー10の側壁11の一部であって、床壁13の近傍には排気ダクト18が設けられている。排気ダクト18は図示省略の排気機構に連通接続されている。ファンフィルタユニット14から供給されてチャンバー10内を流下した清浄空気のうち、処理カップ40と仕切板15と間を通過した空気は排気ダクト18から装置外に排出される。
 カメラ70は、チャンバー10内であって仕切板15よりも上方に設置されている。カメラ70は、例えば固体撮像素子の一つであるCCD(Charge Coupled Device)と、レンズなどの光学系とを含む。カメラ70は、後述するチャンバー10内の監視対象物を監視するために設けられる。監視対象物の具体例については後に詳述する。カメラ70は、監視対象物を撮像領域に含む位置に配置されている。この撮像領域は、例えば、基板W、および、基板Wよりも上方の空間を含む。カメラ70は撮像領域を撮像して撮像画像データを取得し、取得した撮像画像データを順次に制御部9に出力する。
 図3に示されるように、チャンバー10内であって仕切板15よりも上方の位置に、照明部71が設けられている。チャンバー10内が暗室である場合、カメラ70が撮像を行う際に照明部71が光を照射するように、制御部9が照明部71を制御してもよい。
 基板処理装置100に設けられた制御部9のハードウェアとしての構成は一般的なコンピュータと同一である。すなわち、制御部9は、各種演算処理を行うCPUなどの処理部と、基本プログラムを記憶する読み出し専用のメモリであるROM(Read Only Memory)などの一時的な記憶媒体と、各種情報を記憶する読み書き自在のメモリであるRAM(Random Access Memory)および制御用ソフトウェアまたはデータなどを記憶しておく磁気ディスクなどである非一時的な記憶媒体とを備えて構成される。制御部9のCPUが所定の処理プログラムを実行することによって、基板処理装置100の各動作機構が制御部9に制御され、基板処理装置100における処理が進行する。なお、制御部9はその機能の実現にソフトウェアが不要な専用のハードウェア回路によって実現されてもよい。
 図5は、制御部9の内部構成の一例を概略的に示す機能ブロック図である。制御部9は、監視処理部91と、セットアップ部92と、処理制御部93とを含んでいる。
 処理制御部93はチャンバー10内の各構成を制御する。具体的には、処理制御部93は、スピンモータ22、バルブ35,82等の各種バルブ、ノズル基台33,63,68のモータおよびノズル昇降機構、カップ移動機構59ならびにファンフィルタユニット14を制御する。処理制御部93がこれらの構成を所定の手順に沿って制御することにより、処理ユニット1は基板Wに対する処理を行うことができる。
 監視処理部91は、カメラ70がチャンバー10内を撮像して取得した撮像画像データに基づいて、監視対象物に対する監視処理を行う。監視処理部91は監視対象物の位置を監視する。監視対象物としては、例えば、第1ノズル30、第2ノズル60および第3ノズル65等の各種ノズルを採用することができる。また、監視処理部91は、各種ノズルからの処理液の吐出状態を監視してもよい。監視処理の具体的な一例については後に詳述する。
 セットアップ部92は、監視処理に用いる処理情報を設定する。例えば、セットアップ部92は撮像画像データ内における監視対象物の適正位置(以下、設定座標位置と呼ぶ)を設定する。また、セットアップ部92は、各種ノズルの処理液の吐出状態を監視するための判定領域を撮像画像データ内において設定することもできる。具体的な設定方法の一例は後に詳述する。
 <基板処理の流れの一例>
 <全体の流れ>
 図6は、基板処理の流れの一例を示すフローチャートである。まず、主搬送ロボット103が未処理の基板Wを処理ユニット1に搬入する(ステップS1:搬入工程)。次に、スピンチャック20が基板Wを水平姿勢にて保持する(ステップS2:保持工程)。具体的には、複数のチャックピン26がそれぞれの当接位置に移動することにより、複数のチャックピン26が基板Wを保持する。
 次に、スピンモータ22が基板Wの回転を開始する(ステップS3:回転工程)。具体的には、スピンモータ22がスピンチャック20を回転させることにより、スピンチャック20に保持された基板Wを回転させる。次に、カップ昇降機構が処理カップ40を上昇させる(ステップS4:カップ上昇工程)。これにより、処理カップ40が上位置で停止する。
 次に、基板Wに対して処理液を順次に供給する(ステップS5:処理レシピ工程)。なお、この処理レシピ工程(ステップS5)において、カップ移動機構59は、基板Wに供給される処理液の種類に応じて、適宜に上昇させるカップを切り替えるものの、説明の簡単のために、以下では、その説明を省略する。
 処理レシピ工程(ステップS5)においては、第1ノズル30、第2ノズル60および第3ノズル65がそれぞれ必要に応じて、回転中の基板Wの上面に順次に処理液を吐出する。ここでは、一例として、第1ノズル30および第2ノズル60が処理液を順に吐出する。まず、ノズル移動機構37が第1ノズル30を待機位置P33から中央位置P31に移動させる。次に、バルブ35が開くことにより、第1ノズル30から基板Wの上面に処理液が吐出される。基板Wの上面に着液した処理液は遠心力を受けて広がり、基板Wの周縁から外側に飛散する。これにより、処理液に応じた処理を基板Wの上面に対して行うことができる。例えば処理液の供給開始から所定時間が経過すると、バルブ35が閉じる。これにより、第1ノズル30からの処理液の吐出が停止する。次に、ノズル移動機構37は第1ノズル30を中央位置P31から待機位置P33に移動させる。
 続いて、ノズル移動機構(ノズル基台63)が第2ノズル60を待機位置P63から中央位置P61に移動させる。次に、第2ノズル60用のバルブが開くことにより、第2ノズル60から基板Wの上面に処理液が吐出される。基板Wの上面に着液した処理液は遠心力を受けて広がり、基板Wの周縁から外側に飛散する。処理液は例えば純水等のリンス液である。この場合、リンス液が基板Wの上面の処理液を洗い流して、基板Wの上面の処理液がリンス液に置換される。例えばリンス液の供給開始から所定時間が経過すると、バルブが閉じる。これにより、第2ノズル60からのリンス液の吐出が停止する。次に、ノズル基台63は第2ノズル60を中央位置P61から待機位置P63に移動させる。
 第1ノズル30、第2ノズル60および第3ノズル65は必要に応じて順次に所定の停止位置に移動して、処理液を吐出してもよい。第1ノズル30、第2ノズル60および第3ノズル65からの処理液の吐出が終了することにより、処理レシピ工程(ステップS5)が終了する。
 図6を再び参照して、処理レシピ工程(ステップS5)の終了後に、処理ユニット1は、基板Wを乾燥させる(ステップS6:乾燥工程)。例えば、スピンモータ22が基板Wの回転速度を増加させて、基板Wを乾燥させる(いわゆるスピンドライ)。
 次に、カップ移動機構59は処理カップ40を下降させる(ステップS7:カップ下降工程)。
 次に、スピンモータ22はスピンチャック20および基板Wの回転を終了し、スピンチャック20は基板Wの保持を解除する(ステップS8:保持解除工程)。具体的には、複数のチャックピン26がそれぞれの開放位置に移動することで、保持を解除する。
 次に、主搬送ロボット103は、処理済みの基板Wを処理ユニット1から搬出する(ステップS9:搬出工程)。
 以上のようにして、基板Wに対する処理が行われる。
 <監視対象>
 <ノズルの位置>
 上述の処理レシピ工程(ステップS5)において、第1ノズル30、第2ノズル60および第3ノズル65は必要に応じて適宜に移動する。例えば、第1ノズル30は待機位置P33から中央位置P31に移動する。このとき、ノズル基台33のモータ異常等の諸要因により、第1ノズル30が中央位置P31からずれて停止する場合もある。この場合、第1ノズル30からの処理液に基づく処理が不適切に終了し得る。
 そこで、ノズルの位置を監視する。以下、ノズルの位置監視について述べる。
 <セットアップ処理>
 まず、監視処理に用いる設定情報を設定するセットアップ処理について述べる。このセットアップ処理は、例えば、基板処理装置100が設置場所(例えば工場)に設置されるときに行われる。図7は、セットアップ処理の一例を示すフローチャートである。
 まず、作業員は、ユーザーインターフェース90に必要事項を入力する(ステップS11:入力工程)。例えば、作業員は、監視対象物として第1ノズル30、第2ノズル60および第3ノズル65を指定する入力を行い、各ノズルの停止位置として複数の位置を指定する入力を行う。例えば作業員は、第1ノズル30の停止位置として、中央位置P31、周縁位置P32および周縁位置P34などの複数の停止位置を入力する。第2ノズル60および第3ノズル65についても同様である。なお、停止位置の数は適宜に変更されてもよい。
 次に、作業員は、セットアップの開始を指示する入力をユーザーインターフェース90に対して行う。
 処理制御部93は当該指示の入力に応答して、カメラ70に撮像を開始させる(ステップS12:セットアップ撮像工程開始)。カメラ70は撮像領域を撮像して撮像画像データを取得し、当該撮像画像データを制御部9に出力する。
 また、処理制御部93は当該指示の入力に応答して、ノズル移動機構を制御して、第1ノズル30、第2ノズル60および第3ノズル65を順次に各停止位置に移動させる(ステップS12:セットアップレシピ工程)。例えば、ノズル移動機構37は、第1ノズル30を周縁位置P32、中央位置P31および周縁位置P34に順次に停止させる。具体的には、まず、ノズル移動機構37は第1ノズル30を待機位置P33から周縁位置P32に移動させて、所定時間に亘って周縁位置P32で停止させ、その後、第1ノズル30を周縁位置P32から中央位置P31に移動させて、所定時間に亘って中央位置P31で停止させ、その後、第1ノズル30を中央位置P31から周縁位置P34に移動させて、所定時間に亘って周縁位置P34で停止させる。ノズル移動機構37は、第1ノズル30を、入力された全ての停止位置で停止させた後、待機位置P33に移動させる。その後、処理制御部93は、同様にして、第2ノズル60を全ての停止位置で順に停止させ、続いて、第3ノズル65を全ての停止位置で順に停止させる。
 また、処理制御部93は、セットアップレシピ工程において、各ノズルが各停止位置で停止している時刻を記憶媒体に記憶しておくとよい。例えば、処理制御部93は、第1ノズル30を中央位置P31に停止させるための制御信号をノズル移動機構37に出力した時刻を記憶しておく。同様に、処理制御部93は、周縁位置P32および周縁位置P34の各々についての制御信号が出力された時刻も記憶媒体に記憶しておく。第2ノズル60および第3ノズル65についても同様である。
 セットアップレシピ工程が終了すると、カメラ70が撮像を終了する(ステップS14:セットアップ撮像工程終了)。
 セットアップ撮像工程はセットアップレシピ工程と並行して行われるので、カメラ70は第1ノズル30、第2ノズル60および第3ノズル65を撮像することができる。つまり、カメラ70によって取得された複数の撮像画像データには、各停止位置で停止した第1ノズル30、第2ノズル60および第3ノズル65の各々が含まれる。
 図8は、セットアップ撮像工程において取得される撮像画像データの一例を概略的に示す図である。図8の撮像画像データには、中央位置P31で停止する第1ノズル30の吐出ヘッド31が含まれている。つまり、図8は、第1ノズル30が中央位置P31で停止しているときに取得された撮像画像データを示している。
 次に、セットアップ部92は複数の撮像画像データから、各停止位置で停止した各ノズルを含む撮像画像データ(以下、設定画像データと呼ぶ)を特定する(ステップS15:設定画像データ特定工程)。例えば、セットアップ部92は、中央位置P31で停止した第1ノズル30を含む設定画像データを、ノズル移動機構37に出力された制御信号に基づいて特定する。すなわち、セットアップ部92は、第1ノズル30を中央位置P31に移動させるための制御信号が出力された時刻を記憶媒体から読み出し、当該時刻と、カメラ70による撮像画像データの取得時刻とに基づいて、中央位置P31で停止した第1ノズル30を含む設定画像データを特定する。制御信号が出力されてから第1ノズル30が中央位置P31で停止するまでの時間は予め決まっているので、セットアップ部92は、制御信号が出力された時刻に基づいて、第1ノズル30が中央位置P31で停止している期間を求めることができる。セットアップ部92は、当該期間に含まれた取得時刻を有する撮像画像データを、設定画像データとして特定する。
 セットアップ部92は、同様にして、他の各停止位置で停止した第1ノズル30を含む設定画像データ、各停止位置で停止した第2ノズル60を含む設定画像データ、および、各停止位置で停止した第3ノズル65を含む設定画像データを特定する。各ノズルに対する停止位置の数が互いに同じであれば、設定画像データ特定工程において、(ノズルの数)×(停止位置の数)枚の設定画像データが特定される。
 なお、セットアップレシピ工程(ステップS13)では、設定用の基板Wが処理ユニット1に搬入されてもよい。図8の例では、撮像画像データには、スピンチャック20によって保持される設定用の基板Wが含まれている。ただし、セットアップレシピ工程において、必ずしも設定用の基板Wが搬入されていなくてもよい。
 また、セットアップレシピ工程では、カップ移動機構59は処理カップ40を上昇させてもよい。図8の例では、設定画像データには、上昇した状態の処理カップ40が示されている。ただし、セットアップレシピ工程において、処理カップ40は必ずしも上昇していなくてもよい。
 次に、セットアップ部92は設定画像データを解析して、設定画像データ内におけるノズルの座標位置を検出し、当該座標位置を設定座標位置として設定する(ステップS17:位置設定工程)。例えば、セットアップ部92は、中央位置P31で停止した第1ノズル30を含む設定画像データ(図8)と、予め記憶媒体に記憶された第1ノズル30(具体的には、吐出ヘッド31)を示す参照画像データRI1とのテンプレートマッチングにより、設定画像データ内の第1ノズル30の座標位置を検出する。なお、図8の例では、参照画像データRI1を模式的に仮想線で、撮像画像データに重ね合わせて示している。
 セットアップ部92は、検出した座標位置を、中央位置P31についての設定座標位置として設定する。具体的には、セットアップ部92は中央位置P31についての設定座標位置を記憶媒体に記憶させる。
 また、セットアップ部92は、他の各停止位置で停止した第1ノズル30を含む設定画像データと、参照画像データRI1とのテンプレートマッチングにより、設定画像データ内の第1ノズル30の座標位置を検出し、当該座標位置を当該停止位置についての設定座標位置として設定する。また、セットアップ部92は、各停止位置で停止した第2ノズル60を含む設定用画像データと、第2ノズル60の一部を示す参照画像データとに基づいて、第2ノズル60の座標位置を検出し、当該座標位置を当該停止位置についての設定座標位置として設定する。また、セットアップ部92は、同様にして、第3ノズル65の各停止位置についての設定座標位置も順次に設定する。
 これにより、第1ノズル30の各停止位置についての設定座標位置、第2ノズル60の各停止位置についての設定座標位置および第3ノズル65の各停止位置についての設定座標位置が設定される。
 なお、図7の例では、ステップS17(判定領域設定工程)も実行されているものの、この処理については後に述べる。
 以上のように、本セットアップ処理によれば、セットアップ部92は複数の撮像画像データから設定画像データを自動で特定し、当該設定画像データ内における監視対象物の設定座標位置を自動で設定する。よって、作業員は複数の撮像画像データを視認して手動で設定画像データを特定する必要がなく、また、設定画像データ内の第1ノズル30の座標位置を手動で指定する必要もない。したがって、作業員の負担を軽減することができ、セットアップに要する作業時間を短縮させることもできる。また、作業員による習熟度のばらつきに起因した設定のばらつきも回避できる。
 また、本セットアップ処理によれば、セットアップ部92は、例えば作業員によるセットアップの開始指示の入力に応答して、各ノズルの各停止位置についての設定画像データの全てを順次に自動的に特定する。比較のために、設定画像データを特定するための入力を、各ノズルの停止位置ごとに行う場合も考えられる。例えば、セットアップ部92は、中央位置P31で停止する第1ノズル30を含む設定画像データを特定するための入力に応答して、当該設定画像データを特定し、周縁位置P32で停止する第1ノズル30を含む設定画像データを特定するための入力に応答して、当該設定画像データを特定する場合も考えられる。しかしながら、このような入力は作業員の負担であり、作業時間を長引かせる。これに対して、上述の例では、1度の入力で全ての設定画像データが特定されるので、作業員の入力回数を低減させることができ、作業時間を短縮させることができる。なお、セットアップ部92がセットアップ撮像工程の終了をトリガとして、設定画像データ特定工程を行う場合には、作業員による入力回数をさらに低減させることができる。
 また、セットアップ部92は、例えば1度の入力に応答して、各ノズルの各停止位置についての設定座標位置の全てを順次に設定する。よって、作業員の入力回数を低減させることができ、作業時間を短縮させることができる。なお、セットアップ部92が設定画像データ特定工程の終了をトリガとして、位置設定工程を行う場合には、作業員による入力回数をさらに低減させることができる。
 なお、セットアップ処理において、適宜に作業員の入力をトリガとして採用しても構わない。例えば、設定画像データ特定工程は作業員による入力指示をトリガとして開始してもよい。例えば、セットアップ部92はセットアップ撮像工程の終了を、ユーザーインターフェース90を介して作業員に通知し、作業員は当該通知を受けて、設定画像データ特定工程の開始を指示する入力をユーザーインターフェース90に行う。セットアップ部92は当該指示の入力に応答して設定画像データ特定工程を行ってもよい。
 また、位置設定工程(ステップS16)も、作業員による入力指示をトリガとして開始してもよい。例えば、セットアップ部92は設定画像データ特定工程の終了を、ユーザーインターフェース90を介して作業員に通知し、作業員は当該通知を受けて、位置設定工程の開始を指示する入力をユーザーインターフェース90に行う。セットアップ部92は当該指示の入力に応答して設定画像データ特定工程を行ってもよい。
 <監視処理>
 次に、処理レシピ工程(ステップS5)と並行して行われる監視処理の一例について説明する。図9は、監視処理の一例を示すフローチャートである。カメラ70は処理レシピ工程と並行して、撮像領域を順次に撮像して撮像画像データを取得する(ステップS21:処理撮像工程)。上述の例では、処理レシピ工程において、第1ノズル30が中央位置P31で基板Wの上面に処理液を吐出し、その後、第2ノズル60が中央位置P61で基板Wの上面に処理液(例えばリンス液)を吐出する。
 監視処理部91は、処理撮像工程によって取得された撮像画像データに基づいて、各ノズルの位置を監視する(ステップS22:位置監視工程)。具体的には、まず、監視処理部91は、処理制御部93から処理の手順を示す情報を受け取り、第1ノズル30が待機位置P33から中央位置P31に移動する期間を当該情報に基づいて特定する。監視処理部91は、当該期間において取得された撮像画像データと、記憶媒体に記憶された参照画像データRI1とのテンプレートマッチングにより、撮像画像データ内における第1ノズル30の座標位置を検出する。複数の撮像画像データにおいて第1ノズル30の座標位置がほぼ一定であれば、第1ノズル30は中央位置P31で停止していると判断でき、当該座標位置が第1ノズル30の停止座標位置に相当する。
 次に、監視処理部91は、中央位置P31についての設定座標位置を記憶媒体から読み出し、検出された第1ノズル30の停止座標位置と、設定座標位置とに基づいて、第1ノズル30の位置の適否を判断する。具体的には、監視処理部91は停止座標位置と設定座標位置との差が許容値以下であるか否かを判断する。許容値は例えば予め設定されており、記憶媒体に記憶される。
 当該差が許容値以下であれば、監視処理部91は、第1ノズル30が適切に中央位置P31に停止していると判断する。一方で、当該差が許容値よりも大きければ、監視処理部91は、第1ノズル30が中央位置P31からずれて停止していると判断する。つまり、監視処理部91は第1ノズル30についてのノズル位置異常を検出する。監視処理部91はユーザーインターフェース90を介して、第1ノズル30のノズル位置異常を作業員に通知してもよい。また、このとき、処理制御部93は基板Wの処理を中断してもよい。
 監視処理部91は上述と同様の処理により、第2ノズル60の位置も監視する。また、処理レシピ工程(ステップS5)において、第3ノズル65が処理液を基板Wの上面に吐出する場合には、監視処理部91は同様の処理により、第3ノズル65の位置も監視する。
 以上のように、監視処理部91は、処理レシピ工程における各ノズルの位置を監視することができる。
 <吐出監視>
 図9の例では、監視処理部91は、処理レシピ工程(ステップS5)における各ノズルからの処理液の吐出状態も、撮像画像データに基づいて監視する(ステップS23:吐出監視工程)。以下、第1ノズル30を例に挙げて説明する。
 まず、監視処理部91は、撮像画像データにおいて吐出判定領域R1(図8参照)を設定する。吐出判定領域R1は、撮像画像データにおいて第1ノズル30の先端よりも下側の領域を含む領域であり、第1ノズル30の先端から吐出された処理液を含む領域である。
 第1ノズル30の座標位置に対する吐出判定領域R1の相対的な位置関係は予め設定されており、記憶媒体に記憶されている。また、吐出判定領域R1は、例えば縦方向に延在する矩形状の形状で所定サイズに予め設定されている。このような位置関係、形状およびサイズを示す相対関係(以下、設定相対関係と呼ぶ)は記憶媒体に記憶される。
 監視処理部91は、既述のテンプレートマッチングによって検出された第1ノズル30の停止座標位置と、記憶媒体に記憶された設定相対関係とに基づいて、吐出判定領域R1を設定する。これにより、撮像画像データ内において第1ノズル30の座標位置が若干変動しても、当該座標位置に応じて吐出判定領域R1が設定される。したがって、第1ノズル30の先端から吐出される処理液が適切に含まれるように吐出判定領域R1が設定される。
 図10は、処理撮像工程(ステップS21)において取得された撮像画像データの他の一例を概略的に示す図である。図10の撮像画像データには、中央位置P31で処理液を吐出する第1ノズル30の吐出ヘッド31が含まれている。つまり、図10は、第1ノズル30が中央位置P31で処理液を吐出しているときに取得された撮像画像データを示している。
 図8および図10の比較から理解できるように、吐出判定領域R1内の画素値は、第1ノズル30が処理液を吐出したときと、第1ノズル30が処理液を吐出していないときとで相違する。例えば、第1ノズル30が処理液を吐出しているときの吐出判定領域R1内の画素値の総和は、第1ノズル30が処理液を吐出していないときの吐出判定領域R1内の画素値の総和よりも大きくなる。
 そこで、監視処理部91は、第1ノズル30が処理液を吐出しているか否かを吐出判定領域R1内の画素値に基づいて判断する。具体的な一例として、監視処理部91は、吐出判定領域R1内の画素値の総和が所定の吐出基準値以上であるか否かを判断し、当該総和が吐出基準値以上であるときに第1ノズル30が処理液を吐出していると判断する。また、監視処理部91は当該総和が吐出基準値未満であるときに、第1ノズル30が処理液を吐出していないと判断する。
 なお、吐出判定領域R1内の画素値に基づく処理液の吐出の有無判定はこれに限らず、種々の手法を採用できる。例えば、第1ノズル30が処理液を吐出しているときの吐出判定領域R1内の画素値の分散は、第1ノズル30が処理液を吐出していないときの分散よりも大きい。よって、監視処理部91は当該分散を算出し、その分散の大小に基づいて処理液の吐出の有無を判断してもよい。また、分散に替えて標準偏差を採用することも可能である。
 監視処理部91は、カメラ70によって順次に取得された撮像画像データの各々に対して上述の処理を行うことで、第1ノズル30が処理液の吐出を開始する開始タイミング、および、第1ノズル30が処理液の吐出を終了する終了タイミングを検出することができる。また、監視処理部91は開始タイミングおよび終了タイミングに基づいて、処理液が吐出される吐出時間を算出し、当該吐出時間が規定時間となっているかを監視することができる。具体的には、吐出時間と規定時間との差が許容時間以上となっているときに、吐出異常が生じたと判断する。許容時間は例えば予め設定されて、記憶媒体に記憶されている。
 監視処理部91は、同様の処理により、必要に応じて、第2ノズル60および第3ノズル65からの処理液の吐出状態を監視する。例えば、処理レシピ工程(ステップS5)において第2ノズル60も中央位置P61で処理液を吐出する場合、監視処理部91は第2ノズル60の処理液の吐出状態も監視する。
 また、処理レシピ工程(ステップS5)において、第1ノズル30が周縁位置P32で処理液を吐出する場合もあり得る。この場合には、監視処理部91は、周縁位置P32における第1ノズル30の処理液の吐出状態を監視する。具体的には、まず、監視処理部91は、第1ノズル30が周縁位置P32に移動する期間を、処理制御部93から受け取った処理の手順を示す情報に基づいて特定する。監視処理部91は、当該期間において取得された撮像画像データから、周縁位置P32で停止する撮像画像データを特定し、当該撮像画像データ内における第1ノズル30の停止座標位置を検出する。そして、監視処理部91は第1ノズル30の停止座標位置と、記憶媒体に記憶された設定相対関係とに基づいて吐出判定領域R1を設定し、吐出判定領域R1内の画素値に基づいて処理液の吐出状態を監視する。
 第2ノズル60および第3ノズル65がそれぞれ適宜の停止位置で処理液を吐出する場合にも、監視処理部91は同様にして、第2ノズル60および第3ノズル65の各々からの処理液の吐出状態を監視する。
 <判定領域>
 ところで、異なる第1停止位置および第2停止位置で停止した第1ノズル30の撮像画像データ内の大きさは互いに相違し得る。具体的には、第1停止位置および第2停止位置がカメラ70から見た奥行き方向において互いにずれている場合に、第1ノズル30の撮像画像データ内の大きさは互いに相違する。例えば、カメラ70の奥行き方向において、中央位置P31、周縁位置P32および周縁位置P34は互いに相違する。よって、中央位置P31、周縁位置P32および周縁位置P32で停止した第1ノズル30の撮像画像データ内における大きさは、互いに相違する。
 図11は、第1ノズル30の撮像画像データ内の大きさの相違を示す図である。図11では、右側の第1ノズル30が左側の第1ノズル30よりも大きくなっている。つまり、右側の第1ノズル30は、奥行き方向においてカメラ70に近い位置で停止した第1ノズル30を示しており、左側の第1ノズル30は、奥行き方向においてカメラ70から遠い位置で停止した第1ノズル30を示している。
 左側の第1ノズル30はカメラ70から遠い停止位置で停止しているので、左側の第1ノズル30の先端から吐出される処理液は、撮像画像データ内においてより小さく示されている。逆に、右側の第1ノズル30はカメラ70に近い停止位置で停止しているので、右側の第1ノズル30の先端から吐出される処理液は、撮像画像データ内においてより大きく示される。
 このような撮像画像データにおいて、吐出判定領域R1の位置および大きさが停止位置によらず、つまり、第1ノズル30の大きさによらずに設定されると、吐出判定領域R1が処理液に対して適切な位置からずれたり、あるいは、処理液の大きさに比べて大きくなりすぎたりする。図11では、左側の第1ノズル30の先端と吐出判定領域R1の上端との間隔は、右側の第1ノズル30の先端と吐出判定領域R1の上端との間隔と等しく、両吐出判定領域R1の大きさも互いに等しい。この場合、左側の吐出判定領域R1は処理液に対して適切な位置から下方にずれており、また、処理液の大きさに比べて大きく設定される。
 そこで、第1ノズル30に対する吐出判定領域R1の位置および大きさを示す設定相対関係を、停止位置別に設定しておくことが望ましい。
 <判定領域設定工程>
 図7のセットアップ処理の一例では、位置設定工程(ステップS16)の後に判定領域設定工程(ステップS17)が実行される。この判定領域設定工程では、セットアップ部92は、各ノズルの設定座標位置と吐出判定領域R1との幾何学的な相対関係(位置および大きさ)を示す設定相対関係を、各ノズルの停止位置ごとに設定する。
 ただし、第1ノズル30の中央位置P31に対する設定相対関係は予め設定され、記憶媒体に記憶されている。この設定相対関係は、例えば、次のようにして作業員によって手動で設定される。例えば、作業員は、中央位置P31で停止した第1ノズル30を含む設定画像データの表示を指示する入力をユーザーインターフェース90に対して行う。制御部9は当該入力に応答して、当該設定画像データをユーザーインターフェース90に表示させる。作業員は当該設定画像データを視認して、当該設定画像データ内で吐出判定領域R1の位置および大きさを指定する入力をユーザーインターフェース90に対して行う。セットアップ部92は、当該設定画像データにおける第1ノズル30の設定座標位置と、入力された吐出判定領域R1との幾何学的な相対関係を示す設定相対関係を作成し、当該設定相対関係を記憶媒体に記憶させる。
 セットアップ部92は、他の停止位置で停止する第1ノズル30に対応する設定相対関係を、第1ノズル30の中央位置P31についての設定相対関係に基づいて自動で作成する。具体的には、まず、セットアップ部92は、周縁位置P32で停止した第1ノズル30を含む設定画像データに含まれる第1ノズル30の大きさを検出する。例えば、セットアップ部92は、当該設定画像データと第1ノズル30の参照画像データRI1とを用いたテンプレートマッチングを行う。このテンプレートマッチングでは、参照画像データRI1の大きさを順次に変更して、設定画像データ内で参照画像データRI1と類似度の高い領域を特定する。これにより、設定画像データにおいて参照画像データRI1に相当する領域の、参照画像データRI1に対する倍率M1を得ることができる。
 図12は、中央位置P31および周縁位置P32における吐出判定領域R1の一例を概略的に示すである。図12では、中央位置P31での第1ノズル30の大きさ(つまり、参照画像データRI1の大きさ)に対する周縁位置P32での第1ノズル30の大きさの倍率M1が、ブロック矢印で模式的に示されている。
 図12では、周縁位置P32での第1ノズル30の大きさは、中央位置P31での第1ノズル30の大きさよりも小さいので、倍率M1は1よりも小さい。ただし、周縁位置P32が中央位置P31よりもカメラ70に近い場合には、周縁位置P32での第1ノズル30がより大きく映るので、倍率M1は1よりも大きくなる。
 セットアップ部92は、周縁位置P32についての吐出判定領域R1の大きさを、中央位置P31についての吐出判定領域R1の大きさに倍率M1を乗じた値に設定する。これにより、撮像画像データ内における処理液の大きさに応じた吐出判定領域R1を設定することができる。
 また、セットアップ部92は、第1ノズル30の領域に対する吐出判定領域R1の相対的な位置も調整してもよい。例えば倍率M1が小さいほど、吐出判定領域R1の位置を第1ノズル30に近く設定する。つまり、倍率M1が小さいほど、吐出判定領域R1をより上側に設定するとよい。これによれば、第1ノズル30と吐出判定領域R1との設定相対関係を、倍率M1に応じて適切に設定することができる。セットアップ部92は、周縁位置P32についての設定相対関係を記憶媒体に記憶させる。
 第1ノズル30の他の停止位置についても同様であり、また、第2ノズル60および第3ノズル65についても同様である。
 <チェック処理>
 セットアップ処理により設定された設定情報(設定座標位置および設定相対関係)が適切であるか否かを判断するチェック処理を行ってもよい。図13は、チェック処理の一例を示すフローチャートである。まず、カメラ70が撮像領域の撮像を開始する(ステップS31:チェック撮像工程開始)。次に、処理制御部93は、第1ノズル30、第2ノズル60および第3ノズル65の各々を各停止位置で停止させて、各停止位置で処理液を吐出させる(ステップS32:チェックレシピ工程)。例えば、ノズル移動機構37は第1ノズル30を待機位置P33から周縁位置P32に移動させて周縁位置P32で停止させる。第1ノズル30が周縁位置P32で停止しているときに、バルブ35が開くことにより、第1ノズル30が処理液を吐出する。次に、バルブ35が閉じることにより、第1ノズル30が処理液の吐出を停止する。以後、第1ノズル30を各停止位置で停止させつつ、都度、処理液を吐出させる。第2ノズル60および第3ノズル65も同様である。
 処理制御部93は、各ノズルが各停止位置に位置する時刻および処理液を吐出する時刻をノズル移動機構およびバルブに出力される制御信号に基づいて、記憶媒体に記憶しておく。
 次に、カメラ70が撮像を終了する(ステップS33:チェック撮像工程終了)。カメラ70によるチェック撮像工程はチェックレシピ工程と並行して行われるので、複数の撮像画像データには、各停止位置で処理液を吐出する各ノズルが含まれている。
 次に、セットアップ部92は、設定座標位置および設定相対関係が適切に設定されているか否かを判断する(ステップS34:チェック工程)。まず、セットアップ部92は、各停止位置で停止した各ノズルを含む撮像画像データを、その取得時刻と、記憶媒体に記憶された時刻に基づいて特定する。また、セットアップ部92は、各停止位置で処理液を吐出する各ノズルを含む撮像画像データを、その取得時刻と、記憶媒体に記憶された時刻に基づいて特定する。
 次に、セットアップ部92は撮像画像データに基づいて、チェックレシピ工程における各ノズルの位置および処理液の吐出を監視する。各ノズルの位置の監視は、位置監視工程(ステップS22)と同じ処理によって行われ、ノズルの吐出状態の監視は、吐出監視工程(ステップS23)と同じ処理によって行われる。
 セットアップ部92はノズル位置異常を検出すると、そのノズルの位置異常を検出したノズルおよび停止位置についての設定座標位置が適切に設定されていないと判断する。このとき、セットアップ部92は、当該ノズルの当該停止位置について設定座標位置が適切に設定されていない旨をユーザーインターフェース90を介して作業員に通知する。
 また、セットアップ部92は、処理液の吐出異常を検出すると、処理液の吐出異常を検出したノズルおよび停止位置についての設定相対位置が適切に設定されていないと判断する。セットアップ部92は、当該ノズルの当該停止位置について設定相対関係が適切に設定されていない旨をユーザーインターフェース90を介して作業員に通知する。
 作業員は、設定情報が適切に設定されていない旨の通知を認識すると、再度、セットアップ処理を実行することにより、設定情報を再設定してもよい。この場合、適切に設定されていなかった設定情報のみを再設定するとよい。例えば入力工程において、再設定するノズルと停止位置のみを入力してもよい。あるいは、作業員は、適切に設定されていなかった設定情報のみを、ユーザーインターフェース90を用いて手動で再設定してもよい。
 <処理カップ>
 上述の例では、チャンバー10内で移動する監視対象物の一例として、第1ノズル30、第2ノズル60および第3ノズル65を例示した。しかるに、監視対象物として処理カップ40を採用してもよい。この処理カップ40の内カップ41、中カップ42および外カップ43は、カップ移動機構59によって上位置および下位置との間で昇降する。以下では、説明の簡単のために、外カップ43について述べる。
 監視処理部91は、撮像画像データにおいて処理カップ40の状態を監視する。ここでは、具体的には、外カップ43が上位置に上昇した状態での撮像領域をカメラ70が予め撮像して撮像画像データを取得し、その撮像画像データに含まれる外カップ43の一部(例えば、外カップ43の上端の一部)を、参照画像データRI2(図8も参照)として記憶媒体に記憶しておく。
 そして、監視処理部91は、処理レシピ工程(ステップS5)において取得された撮像画像データと、参照画像データRI2とのテンプレートマッチングにより、外カップ43の座標位置を検出する。監視処理部91は、外カップ43の座標位置と、外カップ43の上位置についての設定座標位置との差を算出し、当該差が許容値以上であるときに、カップの位置異常を検出する。
 このような外カップ43の設定座標位置も、セットアップ処理によって設定される。具体的には、セットアップレシピ工程(ステップS12)において、カップ移動機構59が外カップ43を下位置から上位置に移動させて、所定時間に亘って上位置で停止させる。そして、位置設定工程(ステップS14)において、セットアップ部92が、上位置で停止する外カップ43を含む撮像画像データを、カップ移動機構59への制御信号に基づいて特定し、当該撮像画像データと参照画像データRI2とのテンプレートマッチングにより、外カップ43の座標位置を検出する。セットアップ部92は当該座標位置を、外カップ43の上位置についての設定座標位置として記憶媒体に記憶させる。
 これによれば、外カップ43の設定座標位置も自動で設定することができ、セットアップ処理に要する時間を短縮することができる。中カップ42および内カップ41も同様である。
 以上のように、基板処理方法および基板処理装置100は詳細に説明されたが、上記の説明は、全ての局面において、例示であって、この基板処理装置がそれに限定されるものではない。例示されていない無数の変形例が、この開示の範囲から外れることなく想定され得るものと解される。上記各実施の形態および各変形例で説明した各構成は、相互に矛盾しない限り適宜組み合わせたり、省略したりすることができる。
 上述の例では、基板処理装置100の据え付け時にセットアップ処理を行っているものの、例えば、カメラ70に人の手が衝突してカメラ70の姿勢が変化した場合にも、セットアップ処理を行ってもよい。カメラ70の姿勢が変化すれば、撮像画像データ内における各ノズルの座標位置が変化するからである。
 また、上述の例では、ノズルアーム32の先端には、1つの第1ノズル30が取り付けられているものの、複数の第1ノズル30が取り付けられていてもよい。この場合、複数の第1ノズル30は一体に移動する。この場合、入力工程(ステップS11)において、作業員は、ノズルアーム32に取り付けられている複数の第1ノズル30の情報をユーザーインターフェース90に入力する。セットアップ部92は、例えば、中央位置P31で停止した複数の第1ノズル30を含む設定画像データにおける、各第1ノズル30の座標位置を検出し、各座標位置を設定座標位置として設定してもよい。つまり、中央位置P13について第1ノズル30ごとに設定座標位置が設定される。他の停止位置についても同様である。また設定相対関係も同様に第1ノズル30ごとに設定されればよい。第2ノズル60および第3ノズル65も同様である。
 また、上述のセットアップ処理では、1つの処理ユニット1に対する設定情報を設定しているものの、基板処理装置100に属する複数の処理ユニット1に対して設定情報を設定してもよい。
 1 処理ユニット
 10 チャンバー
 20 基板保持(スピンチャック)
 30,60,65 監視対象物(ノズル)
 37 移動機構(ノズル移動機構)
 40 監視対象物(処理カップ)
 59 移動機構(カップ移動機構)
 9 制御部
 70 カメラ
 100 基板処理装置
 W 基板

Claims (9)

  1.  基板処理監視に用いる設定情報の設定方法であって、
     基板処理装置内の第1監視対象物を移動させる移動機構を制御して、前記第1監視対象物を第1停止位置に移動させるセットアップレシピ工程と、
     前記セットアップレシピ工程と並行して実行され、カメラが前記第1監視対象物を撮像するセットアップ撮像工程と、
     前記セットアップ撮像工程において前記カメラによって取得され、前記第1停止位置で停止する前記第1監視対象物を含む第1画像データと、前記第1監視対象物の少なくとも一部を示す第1参照画像データとに基づいて、前記第1画像データ内における前記第1監視対象物の位置を検出し、当該位置を前記第1停止位置に関する適正位置として設定する設定工程と、
    を備える、基板処理監視に用いる設定情報の設定方法。
  2.  請求項1に記載の基板処理監視に用いる設定情報の設定方法であって、
     前記設定工程では、前記セットアップ撮像工程において前記カメラによって順次に取得される複数の画像データのうち、前記第1停止位置で停止した前記第1監視対象物を含む前記第1画像データを、前記移動機構への制御信号に基づいて特定する、基板処理監視に用いる設定情報の設定方法。
  3.  請求項1または請求項2に記載の基板処理監視に用いる設定情報の設定方法であって、
     前記セットアップレシピ工程では、前記基板処理装置内に保持された基板の主面に処理液を供給するノズルを、前記第1監視対象物として、前記第1停止位置に移動させる、基板処理監視に用いる設定情報の設定方法。
  4.  請求項3に記載の基板処理監視に用いる設定情報の設定方法であって、
     前記セットアップレシピ工程では、前記ノズルを、前記第1停止位置、および、前記カメラから見て少なくとも奥行き方向において前記第1停止位置と異なる第2停止位置に順に移動させ、
     前記設定工程は、
     前記セットアップ撮像工程において前記カメラによって取得され、前記第2停止位置で停止した前記ノズルを含む第2画像データと、前記第1参照画像データとに基づいて、前記第2画像データ内における前記ノズルの位置および大きさを検出する検出工程と、
     前記第1画像データ内の前記ノズルに対して吐出判定領域の位置および大きさが予め規定された第1相対関係と、前記第1画像データ内の前記ノズルの大きさに対する前記第2画像データ内の前記ノズルの大きさの倍率に基づいて、前記第2画像データ内の前記ノズルに対する吐出判定領域の位置および大きさを規定する第2相対関係を設定する判定領域設定工程と
    を含む、基板処理監視に用いる設定情報の設定方法。
  5.  請求項1または請求項2に記載の基板処理監視に用いる設定情報の設定方法であって、
     前記セットアップレシピ工程では、前記基板処理装置内の基板保持部を取り囲む処理カップを、前記第1監視対象物として、鉛直方向に沿って移動させて前記第1停止位置で停止させる、基板処理監視に用いる設定情報の設定方法。
  6.  請求項1から請求項3、請求項5のいずれか一つに記載の基板処理監視に用いる設定情報の設定方法であって、
     前記セットアップレシピ工程では、前記第1監視対象物を前記第1停止位置、および、前記第1停止位置とは異なる第2停止位置に順次に移動させ、
     前記設定工程では、前記セットアップ撮像工程において取得され、前記第2停止位置で停止する前記第1監視対象物を含む第2画像データと、前記第1参照画像データとに基づいて、前記第2画像データ内における前記第1監視対象物の位置を検出し、当該位置を前記第2停止位置に関する適正位置として設定する、基板処理監視に用いる設定情報の設定方法。
  7.  請求項1から請求項6のいずれか一つに記載の基板処理監視に用いる設定情報の設定方法であって、
     前記セットアップレシピ工程では、前記基板処理装置内の前記第1監視対象物とは異なる第2監視対象物を第3停止位置に移動させ、
     前記設定工程では、前記セットアップ撮像工程において取得され、前記第3停止位置で停止する前記第2監視対象物を含む第3画像データと、前記第2監視対象物の少なくとも一部を示す第2参照画像データとに基づいて、前記第3画像データ内における前記第2監視対象物の位置を検出し、当該位置を前記第2監視対象物の前記第3停止位置に関する適正位置として設定する、基板処理監視に用いる設定情報の設定方法。
  8.  請求項1から請求項7のいずれか一つに記載の基板処理監視に用いる設定情報の設定方法を行うセットアップ工程と、
     基板処理装置内の基板保持部が基板を保持する保持工程と、
     前記基板保持部が前記基板を保持した状態で前記移動機構を制御して、前記第1監視対象物を前記第1停止位置に移動させる処理レシピ工程と、
     前記処理レシピ工程と並行して、前記カメラが前記第1監視対象物を撮像する処理撮像工程と、
     前記処理撮像工程において前記カメラによって取得され、前記第1停止位置で停止した前記第1監視対象物を含む第4画像データと、前記第1参照画像データとに基づいて、前記第4画像データ内における前記第1監視対象物の位置を検出し、当該位置の適否を、前記第1停止位置に関する前記適正位置に基づいて判断する位置監視工程と、
    を備える、基板処理装置の監視方法。
  9.  基板に対する処理を行う基板処理装置であって、
     チャンバーと、
     チャンバー内の監視対象物を所定の停止位置に移動させる移動機構と、
     前記監視対象物を含む領域を撮像して画像データを取得するカメラと、
     前記監視対象物の少なくとも一部を示す参照画像データが記憶された記憶媒体と、
     前記カメラによって取得され、前記停止位置で停止した前記監視対象物を含む前記画像データと、前記参照画像データとに基づいて、前記画像データ内における前記監視対象物の位置を検出し、当該位置を前記停止位置に関する適正位置として設定する制御部と、
    を備える、基板処理装置。
PCT/JP2021/021368 2020-06-30 2021-06-04 基板処理監視に用いる設定情報の設定方法、基板処理装置の監視方法および基板処理装置 WO2022004276A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227044196A KR20230012578A (ko) 2020-06-30 2021-06-04 기판 처리 감시에 이용하는 설정 정보의 설정 방법, 기판 처리 장치의 감시 방법 및 기판 처리 장치
CN202180043923.3A CN115769344A (zh) 2020-06-30 2021-06-04 用于基板处理监视的设定信息的设定方法、基板处理装置的监视方法以及基板处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020112878A JP7441131B2 (ja) 2020-06-30 2020-06-30 基板処理監視に用いる設定情報の設定方法、基板処理装置の監視方法および基板処理装置
JP2020-112878 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022004276A1 true WO2022004276A1 (ja) 2022-01-06

Family

ID=79315983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021368 WO2022004276A1 (ja) 2020-06-30 2021-06-04 基板処理監視に用いる設定情報の設定方法、基板処理装置の監視方法および基板処理装置

Country Status (5)

Country Link
JP (1) JP7441131B2 (ja)
KR (1) KR20230012578A (ja)
CN (1) CN115769344A (ja)
TW (1) TWI806072B (ja)
WO (1) WO2022004276A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11168078A (ja) * 1997-12-04 1999-06-22 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2018028496A (ja) * 2016-08-19 2018-02-22 株式会社Screenホールディングス 変位検出装置、変位検出方法および基板処理装置
JP2020031103A (ja) * 2018-08-21 2020-02-27 株式会社Screenホールディングス 基板処理方法、基板処理装置および基板処理システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045218B2 (ja) 2006-10-25 2012-10-10 東京エレクトロン株式会社 液処理装置、液処理方法及び記憶媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11168078A (ja) * 1997-12-04 1999-06-22 Dainippon Screen Mfg Co Ltd 基板処理装置
JP2018028496A (ja) * 2016-08-19 2018-02-22 株式会社Screenホールディングス 変位検出装置、変位検出方法および基板処理装置
JP2020031103A (ja) * 2018-08-21 2020-02-27 株式会社Screenホールディングス 基板処理方法、基板処理装置および基板処理システム

Also Published As

Publication number Publication date
CN115769344A (zh) 2023-03-07
JP2022011620A (ja) 2022-01-17
KR20230012578A (ko) 2023-01-26
TW202205492A (zh) 2022-02-01
TWI806072B (zh) 2023-06-21
JP7441131B2 (ja) 2024-02-29

Similar Documents

Publication Publication Date Title
CN108155130B (zh) 基板处理装置以及基板处理方法
JP6278759B2 (ja) 基板処理装置および基板処理方法
JP6423672B2 (ja) 基板処理装置および基板処理方法
WO2021241228A1 (ja) 基板処理方法および基板処理装置
WO2020044884A1 (ja) 可動部位置検出方法、基板処理方法、基板処理装置および基板処理システム
US10651064B2 (en) Substrate treatment device and substrate treatment method
JP2015173204A (ja) 基板処理装置および基板処理方法
WO2022004276A1 (ja) 基板処理監視に用いる設定情報の設定方法、基板処理装置の監視方法および基板処理装置
WO2021251174A1 (ja) 基板処理方法および基板処理装置
JP6397557B2 (ja) 基板処理装置および基板処理方法
JP6353780B2 (ja) 基板処理装置および基板処理方法
JP2021044467A (ja) 検知装置、および、検知方法
JP7248848B2 (ja) 可動部位置検出方法、基板処理方法、基板処理装置および基板処理システム
TWI744972B (zh) 基板處理裝置以及基板處理方法
WO2023100690A1 (ja) 基板処理装置およびガード判定方法
JP2023116089A (ja) 基板処理装置および監視方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21831569

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227044196

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21831569

Country of ref document: EP

Kind code of ref document: A1