WO2022000881A1 - 羧酸类化合物、其制备方法及应用 - Google Patents

羧酸类化合物、其制备方法及应用 Download PDF

Info

Publication number
WO2022000881A1
WO2022000881A1 PCT/CN2020/123531 CN2020123531W WO2022000881A1 WO 2022000881 A1 WO2022000881 A1 WO 2022000881A1 CN 2020123531 W CN2020123531 W CN 2020123531W WO 2022000881 A1 WO2022000881 A1 WO 2022000881A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
carboxylic acid
acid compound
extractant
salt
Prior art date
Application number
PCT/CN2020/123531
Other languages
English (en)
French (fr)
Inventor
王雪
Original Assignee
北京博萃循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京博萃循环科技有限公司 filed Critical 北京博萃循环科技有限公司
Priority to AU2020456448A priority Critical patent/AU2020456448B2/en
Priority to JP2023518324A priority patent/JP2023528091A/ja
Priority to EP20943432.3A priority patent/EP4177241A4/en
Priority to KR1020227045095A priority patent/KR20230015426A/ko
Priority to US18/012,259 priority patent/US20230312449A1/en
Priority to CA3183753A priority patent/CA3183753A1/en
Publication of WO2022000881A1 publication Critical patent/WO2022000881A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/125Saturated compounds having only one carboxyl group and containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/367Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/32Carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/32Carboxylic acids
    • C22B3/326Ramified chain carboxylic acids or derivatives thereof, e.g. "versatic" acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a carboxylic acid compound, its preparation method and application.
  • Nickel-cobalt-manganese ternary cathode material has good cycle performance, stable structure and high cost performance. It is a new type of lithium-ion battery cathode material.
  • the main raw materials of ternary cathode material precursor products are nickel salt, cobalt salt and manganese salt.
  • Cobalt is mostly associated with nickel, and most of them appear at the same time in minerals, such as in nickel laterite.
  • waste residues containing valuable metals such as nickel and cobalt are generated, such as waste power battery materials, nickel-cobalt-containing waste residues, waste catalysts, etc.
  • Most of these waste residues also contain high manganese at the same time, which has a high recovery value. They can be recycled for the preparation of nickel-cobalt-manganese ternary precursors.
  • Solvent extraction technology is an effective technology for separating and extracting various metals from solution. It has the advantages of high separation efficiency, simple process and equipment, continuous operation, and easy automatic control. It has been continuously concerned and developed by many researchers. With the urgency of environmental protection and resource recycling, higher requirements are also placed on the energy consumption, acid consumption, sewage and production capacity of the extraction system. Therefore, it is necessary to improve the extraction efficiency, separation effect and solubility of the extractant. and other properties to meet environmental and economic requirements.
  • cation exchange extractants such as acidic phosphoric acid extractants P204, P507, C272, neutral complex extractants TBP, chelating extractants LiX84 and carboxylic acid extractants Versatic10, Versatic911, etc., have been widely used due to their good extraction and separation effects. Applied to the separation and purification of metal elements.
  • the cobalt sulfate solution is extracted; the pH of the C272 raffinate is adjusted to be 5-5.5, the Ni is extracted from the raffinate with P507, and the P507-loaded organic phase is back extracted with sulfuric acid to obtain a nickel sulfate solution.
  • the present invention provides a carboxylic acid compound, a preparation method and application thereof.
  • the carboxylic acid compound is used as an extractant, has good selectivity to ions (especially nickel, cobalt, and manganese ions), low back extraction acidity, and has the advantages of low water solubility, high stability, and low cost.
  • the present invention solves the above technical problems through the following technical solutions.
  • the present invention provides a carboxylic acid compound or its salt as shown in formula I:
  • R 1 and R 2 are independently C 3 -C 12 straight-chain or branched-chain alkyl groups.
  • R 1 is a C 4 -C 9 straight chain or branched chain alkyl; more preferably, R 1 is a C 4 -C 9 straight chain alkyl group, such as n-butyl, n-pentyl, n-hexyl or n-octyl.
  • R 2 is a C 3 -C 10 straight or branched chain alkyl; more preferably, R 2 is a C 6 -C 8 straight or branched chain; for example, n-hexyl, n-octyl or isooctyl (eg
  • the sum of carbon numbers of R 1 and R 2 is 10-20, for example, n is 12, 14 or 16.
  • the carboxylic acid compound shown in formula I is selected from any of the following compounds:
  • the salt of the carboxylic acid compound shown in formula I is generally prepared by reacting the carboxylic acid compound shown in formula I with a base, for example, the carboxylic acid compound shown in formula I is prepared by reacting The compound and the base are prepared by reacting with a molar ratio of 1:1.
  • the alkali can be a conventional alkali in the art, such as alkali metal hydroxide or ammonia water, or sodium hydroxide, potassium hydroxide or ammonia water, whereby the salt of the carboxylic acid compound can be sodium salt, potassium salt or Ammonium salt.
  • the conditions of the preparation method of the salt of the carboxylic acid compound shown in formula I can be the conventional conditions of the acid-base salt formation reaction conventional in the art.
  • the carboxylic acid compound shown in formula I can be extracted from nature or synthesized by conventional methods, and the extractant can be one of the carboxylic acid compounds shown in formula I when used for extraction or a mixture thereof (eg, two or more).
  • the present invention also provides a method for preparing the carboxylic acid compound shown in formula I, which comprises: in a solvent, under the action of a base, carrying out the reaction between the compound shown in formula II and the compound shown in formula III reaction, you can;
  • the halogen is fluorine, chlorine, bromine or iodine, such as chlorine or bromine, and another example is bromine.
  • the solvent may be a solvent commonly used in such reactions in the art, such as an ether solvent, and the ether solvent is, for example, tetrahydrofuran.
  • the amount of the solvent can be the conventional amount of this type of reaction in the art, as long as it does not affect the reaction.
  • the volume-to-mass ratio of the solvent to the compound represented by formula III ranges from 1 to 10 mL/g, for example, 5.3, 6.25, 7.0, 7.1 or 7.7 mL/g.
  • the base can be a base commonly used in such reactions in the art, such as an alkali metal or an alkali metal hydride, such as sodium or sodium hydride.
  • the amount of the base can be the conventional amount used for this type of reaction in the art, for example, the molar ratio of the base to the compound represented by formula II is (1-1.5): 1, for example 1.1:1, 1.2:1 or 1.35:1.
  • the molar ratio of the compound represented by the formula II to the compound represented by the formula III can be a conventional ratio of such reactions in the field, preferably 1:(1-1.5), for example 1:1.1 or 1:1.2.
  • the temperature of the reaction can be a conventional temperature in this type of reaction in the art, and in the present invention, it is preferably 60-70°C.
  • the progress of the reaction can be detected by conventional monitoring methods in the art (such as TLC, HPLC or NMR), generally when the compound shown in formula II disappears or no longer reacts as the reaction end point.
  • the reaction time can be 6 to 12 hours, for example, 10 hours.
  • the present invention also provides the use of the carboxylic acid compound represented by formula I or its salt as an extractant.
  • the extractant may be one of the carboxylic acid compounds shown in formula I or a mixture thereof (for example, two or more), for example, any one of the following compounds or a mixture thereof (e.g. two or more):
  • the carboxylic acid compound represented by formula I or its salt is used as an extractant for extraction and separation of metal ions.
  • the metal ion is one of Ni 2+ , Co 2+ and Mn 2+ or a mixture thereof (for example, two or more), and the metal ion may also include, for example, Fe 3+ , Al 3+ , One of Cu 2+ , Zn 2+ , Cd 2+ and Ca 2+ or a mixture thereof (eg, two or more), the metal ions may further include other ions such as Mg 2+ , Li + and the like.
  • the metal ions are "at least one of Ni 2+ , Co 2+ and Mn 2+ “ and "Fe 3+ , Al 3+ , Cu 2+ , Zn 2+ , Cd 2+ , Ca 2+ , At least one of Mg2+ and Li +" mix.
  • the metal ions are Ni 2+ , Co 2+ , Mn 2+ , Fe 3+ , Al 3+ , Cu 2+ , Zn 2+ , Cd 2+ , Ca 2+ , Mg 2+ and Li + the mix of.
  • the metal ions can be derived from waste lithium-ion battery cathode materials, nickel laterite or nickel-cobalt-containing waste residues.
  • the carboxylic acid compound shown in formula I or its salt is used as an extractant for extracting and separating metals in waste lithium-ion battery cathode materials, nickel laterite or nickel-cobalt-containing waste residues ion.
  • the present invention also provides an extraction composition comprising an extractant and a diluent, the extractant comprising the above-mentioned carboxylic acid compound shown in formula I and/or the above-mentioned carboxylic acid compound shown in formula I Salt.
  • the molar ratio of the carboxylic acid compound shown in formula I and the salt of the carboxylic acid compound shown in formula I is (0.4-9): 1 ( For example 1:1).
  • the extracting agent includes the carboxylic acid compound shown in formula I and the salt of the carboxylic acid compound shown in formula I, and the carboxylic acid compound shown in formula I
  • the molar ratio of the shown carboxylic acid compound to the salt of the carboxylic acid compound shown in formula I is (0.4-9):1.
  • the diluent can be a diluent commonly used in the art, preferably, the diluent is a solvent oil (for example, No. 200 solvent oil or No. 260 solvent oil), kerosene, Escaid 110, hexane One of alkane, heptane and dodecane (such as n-dodecane) or a mixture thereof (such as two or more); more preferably, the diluent is mineral spirits (such as No. 260 mineral spirits), dodecane Alane (eg n-dodecane) and Escaid 110 or a mixture thereof (eg, two or more).
  • the diluent is a solvent oil (for example, No. 200 solvent oil or No. 260 solvent oil), kerosene, Escaid 110, hexane One of alkane, heptane and dodecane (such as n-dodecane) or a mixture thereof (such as two or more); more
  • the amount of the diluent is not particularly limited, as long as it does not affect the extraction and back-extraction performance of the extraction composition.
  • the volume ratio is 0.1 mol/L to 1.5 mol/L, preferably 0.16 mol/L to 0.85 mol/L, such as 0.16 mol/L, 0.33 mol/L or 0.6 mol/L.
  • the present invention also provides an extraction method, which comprises the following steps: extracting the organic phase containing the extractant relative to the aqueous phase containing metal ions to obtain the organic phase containing metal ions;
  • the extractant includes the above-mentioned carboxylic acid compound shown in formula I and/or the salt of the above-mentioned carboxylic acid compound shown in formula I;
  • the metal ions include Ni 2+ , Co 2+ , Mn 2+ , Fe 3+ , Al 3+ , Cu 2+ , Zn 2+ , Cd 2+ and Ca 2+ One or a mixture thereof (eg, two or more).
  • the metal ions may further include other ions such as Mg 2+ , Li + and the like.
  • the metal ions can be derived from waste lithium-ion battery cathode materials, nickel laterite or nickel-cobalt-containing waste residues.
  • the metal ions are "at least one of Ni 2+ , Co 2+ and Mn 2+ " and "Fe 3+ , Al 3+ , Cu 2+ , Zn 2+ , Cd 2+ , Ca 2 + , Mg 2+ and Li + at least one "mixture.
  • the metal ions are Ni 2+ , Co 2+ , Mn 2+ , Fe 3+ , Al 3+ , Cu 2+ , Zn 2+ , Cd 2+ , Ca 2+ , Mg 2+ and Li + mix.
  • the molar ratio of the carboxylic acid compound shown in formula I and the salt of the carboxylic acid compound shown in formula I is (0.4-9) :1 (eg 1:1).
  • the extractant includes the carboxylic acid compound shown in formula I and the salt of the carboxylic acid compound shown in formula I, such as
  • the molar ratio of the carboxylic acid compound represented by formula I and the salt of the carboxylic acid compound represented by formula I is (0.4-9):1.
  • the organic phase containing the extractant further comprises a diluent.
  • the diluent can be a commonly used diluent in the art, preferably, the diluent is mineral spirits (such as No. 200 mineral spirits or No. 260 mineral spirits), kerosene, Escaid 110, hexane, heptane and dodecane One or a mixture (such as two or more) of alkanes (such as n-dodecane); more preferably, the diluent is mineral spirits (such as No. 260 mineral spirits), dodecane (such as n-dodecane) ) and Escaid 110 or a mixture thereof (eg, two or more).
  • the diluent is mineral spirits (such as No. 200 mineral spirits or No. 260 mineral spirits), kerosene, Escaid 110, hexane, heptane and dodecane One or a mixture (such as two or more) of alkane
  • the amount of the diluent may not be specifically limited, as long as it does not affect the extraction and back-extraction performance of the organic phase containing the extractant.
  • the extractant and The molar volume ratio of the diluent is 0.1 mol/L to 1.5 mol/L, preferably 0.16 mol/L to 0.85 mol/L, such as 0.16 mol/L, 0.33 mol/L or 0.6 mol/L.
  • the volume ratio of the organic phase containing the extractant and the aqueous phase containing the metal ions can be the ratio used for conventional extraction in the field; preferably, the organic phase containing the extractant and the
  • the volume ratio of the metal ion-containing aqueous phase is 1:(1-10), more preferably 1:(1-5), such as 1:1, 1:2 or 1:4.
  • mass transfer is performed by shaking.
  • the extraction temperature can be conventionally used for such extraction in the field, preferably 10°C to 50°C, more preferably 25°C to 40°C.
  • the extraction time can be a conventional time in the art, preferably 5-60 minutes, such as 15 minutes or 30 minutes.
  • the present invention also provides a back extraction method, which comprises the following steps: mixing the organic phase containing metal ions obtained by the above extraction method with an aqueous acid solution.
  • the metal ions supported in the metal ion-containing organic phase are transferred into the aqueous phase to obtain a metal ion-rich aqueous phase and a regenerated organic phase.
  • the molar concentration of the acid aqueous solution can be the molar concentration commonly used in this type of back extraction in the field, preferably 0.5 mol/L to 5 mol/L, more preferably 1 to 3 mol/L , such as 1 mol/L or 2 mol/L, the molar concentration refers to the ratio of the amount of the acid substance to the total volume of the acid aqueous solution.
  • the acid in the acid aqueous solution may be a conventional acid in the art, preferably an inorganic acid.
  • the inorganic acid is preferably one or more of hydrochloric acid, sulfuric acid, phosphoric acid and nitric acid, more preferably sulfuric acid.
  • the volume ratio of the metal ion-containing organic phase to the acid aqueous solution can be a conventional ratio in the field, preferably (1-50):1, more preferably (10). ⁇ 20):1, such as 10:1 or 15:1.
  • the shaking is for mass transfer, so that the organic phase and the water phase are mixed uniformly, and other conventional operations in the field, such as stirring, can also be used instead.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the separation coefficient is high, the acidity of back extraction is low, the loading rate is high ( saturated capacity for Ni 2+ ⁇ 16g/L), and the back extraction rate is high ( A stripping rate>99%);
  • the carboxylic acid compounds of the present invention have high stability and low water solubility as extractants (the extracted oil content is less than or equal to 75 mg/L when the equilibrium pH of the extraction system is 7.23), which makes the extraction process stable, can reduce environmental pollution, reduce cost;
  • the carboxylic acid compound of the present invention has low cost and great application prospect, and can be used in various systems such as ternary battery recovery and battery-grade nickel sulfate preparation.
  • Fig. 1 is the extraction rate E%-pH curve of compound BC196 for each ion.
  • the organic phase refers to an organic phase comprising an extractant and a diluent, wherein the extractant includes the carboxylic acid compound shown in formula I and/or the salt of the carboxylic acid compound shown in formula I.
  • the water phase refers to the water phase containing metal ions, wherein, the water phase containing metal ions can be prepared by conventional methods, for example, including the following steps: dissolving a certain quality of salt in deionized water, and diluting to the desired concentration. .
  • the phase ratio (O:A) represents the volume ratio of the organic phase to the aqueous phase.
  • “Saponification” refers to the conversion of hydrogen ions in the extractant into alkali metal ions and/or NH 4 + (the converted alkali metal ions and/or NH 4 + are exchanged with the extracted metal ions in the aqueous phase to achieve The function of extraction), and the step of saponification is as follows: the organic phase is mixed with the aqueous alkali solution.
  • the aqueous alkali solution used in the saponification can be an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide or an aqueous ammonia solution.
  • Formula (1) the volume of the base added to an aqueous solution of an alkali V, C is the concentration of the alkali in the alkali aqueous solution of the base, V is the volume of the organic phase there, C there is extractant concentration in the organic phase.
  • the content of metal ions in the aqueous phase is determined by inductively coupled plasma optical emission spectrometry (ICP-OES), and then the content of metal ions in the organic phase is obtained by subtraction.
  • ICP-OES inductively coupled plasma optical emission spectrometry
  • the distribution ratio D is the metal ion content in the equilibrium organic phase and the metal ion content in the equilibrium aqueous phase after one extraction is completed (the metal ion content in the equilibrium aqueous phase is detected by inductively coupled plasma optical emission spectrometry (ICP-OES), and then the difference The ratio of the metal ion content in the equilibrium organic phase) is obtained by subtraction, namely
  • C org represents the metal ion concentration in the equilibrium organic phase after one extraction
  • C aq represents the metal ion concentration in the equilibrium aqueous phase after one extraction
  • C' aq represents the metal ion concentration in the aqueous phase before one extraction.
  • the extraction rate E is the percentage of the amount of the extracted substance transferred from the aqueous phase into the organic phase in the extraction process to the total amount of the extracted substance in the original aqueous phase, namely:
  • C aq represents the concentration of metal ions in the equilibrium water phase after one extraction is completed
  • C' aq represents the concentration of metal ions in the water phase before one extraction.
  • the separation coefficient ⁇ refers to the ratio of the distribution ratio of the two substances to be separated between the two phases during extraction and separation under certain conditions, also known as the extraction separation factor.
  • the structure of compound BC196 is: (acid content 98%) (acid content refers to extractant purity).
  • Compound BC196 was dissolved in the diluent, namely No. 260 solvent oil, and prepared into a 0.6mol/L organic phase containing 0.02mol/L Cu 2+ , Zn 2+ , Fe 3+ , Al 3+ , Cd 2+ , Ni 2+ A mixed sulfate solution of , Co 2+ , Mn 2+ , Ca 2+ , Mg 2+ and Li + was used as the aqueous phase.
  • the organic phase was saponified with 11.9 mol/L sodium hydroxide aqueous solution, the saponification rate was 0% to 70%, the initial pH of the water phase remained unchanged at 2.08, and the volume ratio of the organic phase to the water phase after different degrees of saponification was 1
  • the aqueous phase was extracted under the condition of : 1, the equilibration time was 15 min, and the temperature was 25 °C.
  • the extraction sequence of compound BC196 for each ion is Fe 3+ , Cu 2+ , Ca 2+ , Al 3+ , Cd 2+ , Zn 2+ , Ni 2+ , Co 2+ , Mn 2+ , Mg 2+ , Li + , when the equilibrium pH value is 4.5, the extraction rate of compound BC196 to Zn is about 65%, and the extraction rate of Ni, Co, Mn is between 25% and 45%, while Almost no extraction of Mg; it can be seen from Table 2 that the separation coefficients of Zn and Ni, Co, and Mn are 2.21, 3.10, and 4.31, respectively, and the separation coefficients of Ni, Co, Mn and Mg are 45.34, 32.33, and 23.25, respectively.
  • the compound BC196 The extraction of nickel-cobalt-manganese is before magnesium ions, and the separation degree of nickel-cobalt-manganese from impurity metal ions such as magnesium and zinc is high.
  • the compound BC196 has better selectivity for ions, and can realize the simultaneous recovery of nickel, cobalt and manganese, and is feasible in the recovery of lithium-ion battery cathode materials. application value.
  • Compound BC196 is dissolved in dodecane and is formulated into 0.33mol/L organic phase, the water phase is the Ni 2+ sulfate solution containing 0.02mol/L as feed liquid, and the organic phase is saponified with 9mol/L ammonia water, and the ratio of saponification is 50%, the saponified organic phase is extracted with a ratio of 1:4, the equilibration time is 15min, and the temperature is 25°C. A Ni-loaded organic phase was obtained, and the Ni content in the Ni-loaded organic phase was 0.08 mol/L.
  • Ni-loaded organic phase was back-extracted with 1 mol/L sulfuric acid aqueous solution. During back-extraction, the ratio was 10:1, and the back-extraction rate was >99%.
  • the organic phase of P507 loaded with Ni is generally back-extracted with 2 mol/L sulfuric acid, and the one-time back-extraction rate is about 85%.
  • compound BC195 (acid content 95%).
  • Compound BC195 was dissolved in Escaid 110, prepared into 0.16mol/L organic phase, prepared 0.02mol/L Ni 2+ sulfate solution as feed liquid, and saponified the organic phase with 10mol/L NaOH aqueous solution, and the saponification ratio was 50% , the organic phase after saponification is extracted with a ratio of 1:2 to the feed liquid, the equilibrium time is 15min, and the temperature is 25°C. A Ni-loaded organic phase was obtained, and the Ni content in the Ni-loaded organic phase was 0.04 mol/L.
  • Ni-loaded organic phase was back-extracted with 1 mol/L sulfuric acid aqueous solution. During back-extraction, the ratio was 15:1, and the back-extraction rate was >99%.
  • the organic phase of P507 loaded with Ni is generally back-extracted with 2 mol/L sulfuric acid, and the one-time back-extraction rate is about 85%.
  • Extractant BC199 is obtained by mixing the following compounds in a molar ratio of 1:1:1:1:
  • BC199 extractant and diluent Escaid 110 configured to 0.6mol / L solution as the organic phase, the concentration of each compound in the organic phase was 0.15mol / L, the aqueous phase was 0.2mol / L NiSO 4 solution, take a 250mL Separation funnel, add 100mL organic phase, add 10mol/L sodium hydroxide aqueous solution for saponification, saponification ratio is 24%, add 100mL water phase after saponification, extract equilibrium 30min, temperature is 25 °C.
  • Oil content test Take 50mL of the above-equilibrated water phase and add it to a 100mL separatory funnel, then add an appropriate amount of HCl to make the pH value of the water phase less than or equal to 2.
  • the difference from Effect Example 5 is that the extractant BC199 was replaced by the extractant CA12 (commercially available, with an acid content of 98%), and the solubility of the extractant CA12 in the extraction system was tested.
  • the diluent blank that is, no extraction agent is added, and other operating steps are the same as those in Effect Example 5
  • the water phase are equilibrated with an oil content of 45 mg/L
  • the equilibrium pH of the extraction agent BC199 in the extraction system is 8.20.
  • the extracted oil content was about 120 mg/L
  • the extracted oil content of CA12 was about 6000 mg/L when the equilibrium pH of the extraction system was 8.09.
  • the results show that the dissolution loss of CA12 in the extraction system is very large, which is easy to cause unstable process operation.
  • the extractant BC199 is used for the extraction and separation of metal ions, it solves the problem of high solubility of the extractant in the water phase and greatly reduces the process cost. And the process can run stably.
  • Compound BC195 and diluent Escaid110 were prepared into a 0.62mol/L solution, the aqueous phase was a high magnesium nickel chloride feed solution containing 1.33g/L Ni and 4g/L Mg, take a 250mL separating funnel, add 100mL organic phase, Add 10 mol/L sodium hydroxide aqueous solution for saponification, the saponification ratio is 24%, add 100 mL of water phase after saponification, extract equilibrium for 30 min, and the temperature is 25 °C.
  • Oil content test separate the water phase and add H 2 SO 4 .
  • the [H + ] concentration of the water phase solution is about 1 mol/L.
  • Extracted with CH 2 Cl 2 (30 mL ⁇ 3) collected the CH 2 Cl 2 layer, dried with 1 g of anhydrous Na 2 SO 4 to remove the water in CH 2 Cl 2 , filtered, and the filtrate was rotary evaporated, and then dried with an oil pump for 30 min.
  • the oil content extracted by CH 2 Cl 2 in the system was obtained by weighing the flasks before and after rotary evaporation.
  • the diluent blank no extraction agent is added, and other operation steps are the same as those in Effect Example 6) and the water phase equilibrate with the extracted oil content of 45 mg/L, and compound BC195 when the equilibrium pH of the extraction system is about 7.2
  • the content of the extracted oil is about 75mg/L, while the content of CA12 oil is about 4180mg/L, and the dissolution loss of CA12 in the extraction system is very large.
  • the compound BC195 is used for the extraction and separation of metal ions, it solves the problem that the extractant has a large solubility in the water phase, the process is stable, and the operation cost is reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供一种式(I)的羧酸类化合物、其制备方法及应用。该羧酸类化合物在应用于金属离子的萃取分离时,分离系数高、反萃酸度低、负载率高、反萃率高,且稳定性高、水溶性低,使得萃取工艺稳定,可减少环境污染、降低成分,可用于三元电池回收、电池级硫酸镍制备等多种体系。

Description

羧酸类化合物、其制备方法及应用
本申请要求申请日为2020/6/28的中国专利申请2020105996029的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种羧酸类化合物、其制备方法及应用。
背景技术
近年来,随着电动汽车的快速发展和推广,锂离子电池的需求规模也不断扩大。镍钴锰三元正极材料循环性能好、结构稳定、性价比高,是新型锂离子电池正极材料,而三元正极材料前驱体产品的主要原料为镍盐、钴盐、锰盐。
钴多数与镍相伴而生,在矿物中大多同时出现,如在镍红土矿中。在很多行业会产生含镍、钴等有价金属的废渣,例如废旧动力电池材料、含镍钴废渣、废催化剂等,这些废渣中多数还同时含有较高的锰,具有很高的回收价值,可以将它们进行回收用于制备镍钴锰三元前驱体。
溶剂萃取技术是从溶液中分离提取各种金属的有效技术,它具有分离效率高、工艺和设备简单、操作连续化、易于实现自动控制等优点,一直以来被众多研究者持续关注并不断发展。随着环境保护和资源循环利用的迫切性,对萃取体系的能耗、酸耗、排污和产能等也提出了更高的要求,因此,有必要提高萃取剂的萃取效率、分离效果和溶解性等性能以适应环境和经济要求。
常用的阳离子交换萃取剂如酸性磷酸类萃取剂P204、P507、C272、中性络合萃取剂TBP、螯合萃取剂LiX84和羧酸类萃取剂Versatic10、Versatic911等,因萃取分离效果好已被广泛应用于金属元素分离与提纯。专利CN109449523A公开了一种废旧锂离子电池综合回收方法,其先调节料液 pH=4.2~4.5,采用P204对料液进行萃取,得P204萃余液和负载有机相,采用硫酸反萃负载有机相得硫酸锰;调节所述P204萃余液pH=4.5~5,采用C272对所述P204萃余液进行萃取,得C272萃余液和负载有机相,采用硫酸对所述C272负载有机相进行反萃得硫酸钴溶液;调整C272萃余液pH=5~5.5,采用P507对该萃余液进行萃取Ni,采用硫酸反萃P507负载有机相得硫酸镍溶液。但这些萃取剂在分离过程中也存在明显的缺点:P507/P204用于镍钴的分离,但在锂离子电池正极材料回收方面,不能同步提取镍钴锰,分别回收镍钴锰工艺成本高,且反萃酸度高,污染严重;C272在萃取镍元素前优先萃取钙镁,操作工序复杂,除杂成本高;Versatic10萃取剂在水相中的溶解较大,易造成工艺不稳定和环境污染。
发明内容
针对现有技术的不足,本发明提供一种羧酸类化合物、其制备方法及应用。所述羧酸类化合物用作萃取剂,对离子(尤其是镍钴锰离子)具有较好的选择性,反萃酸度低,且具有水溶性低、稳定性高、成本低等优点。
本发明通过以下技术方案解决上述技术问题。
本发明提供了一种如式I所示的羧酸类化合物或其盐:
Figure PCTCN2020123531-appb-000001
其中,R 1和R 2独立地为C 3~C 12直链或支链烷基。
其中,较佳地,R 1为C 4~C 9直链或支链烷基;更佳地,R 1为C 4~C 9直链烷基,例如正丁基、正戊基、正己基或正辛基。
其中,较佳地,R 2为C 3~C 10直链或支链烷基;更佳地,R 2为C 6~C 8直链或支链烷基;例如正己基、正辛基或异辛基(例如
Figure PCTCN2020123531-appb-000002
Figure PCTCN2020123531-appb-000003
其中,较佳地,R 1和R 2的碳数总和n为10~20,例如n为12、14或16。
其中,较佳地,所述如式I所示的羧酸类化合物选自如下任一化合物:
Figure PCTCN2020123531-appb-000004
其中,所述如式I所示的羧酸类化合物的盐一般是通过将如式I所示的羧酸类化合物与碱进行反应制备得到,例如将所述如式I所示的羧酸类化合物与碱以摩尔比为1:1的比例,进行反应制备得到。所述碱可为本领域常规的碱,例如碱金属氢氧化物或氨水,又如氢氧化钠、氢氧化钾或氨水,由此所述羧酸类化合物的盐可为钠盐、钾盐或铵盐。
其中,所述如式I所示的羧酸类化合物的盐的制备方法的条件可为本领域常规的酸碱成盐反应的常规条件。
其中,所述如式I所示的羧酸类化合物可从自然界物中提取或通过常规方法合成,用于萃取时萃取剂可为所述如式I所示的羧酸类化合物中的一种或其混合(例如两种以上)。
本发明还提供了所述如式I所示的羧酸类化合物的制备方法,其包括:溶剂中,在碱的作用下,将如式II所示的化合物与如式III所示的化合物进行反应,即可;
Figure PCTCN2020123531-appb-000005
其中,X为卤素,R 1和R 2的定义如前所述。
所述制备方法中,较佳地,所述卤素为氟、氯、溴或碘,例如氯或溴,再例如溴。
所述制备方法中,所述溶剂可为本领域此类反应常用的溶剂,例如醚类溶剂,所述醚类溶剂例如为四氢呋喃。
所述制备方法中,所述溶剂的用量可为本领域此类反应的常规用量,以不影响反应的进行即可。例如,所述溶剂与所述如式III所示的化合物的体积质量比的用量范围为1~10mL/g,例如5.3、6.25、7.0、7.1或7.7mL/g。
所述制备方法中,所述碱可为本领域此类反应常用的碱,例如碱金属或者碱金属氢化物,例如钠或氢化钠。
所述制备方法中,所述碱的用量可为本领域此类反应的常规用量,例如,所述碱与所述如式II所示的化合物的摩尔比为(1~1.5):1,例如1.1:1、1.2:1或1.35:1。
所述制备方法中,所述如式II所示的化合物与所述如式III所示的化合物的摩尔比可为本领域此类反应的常规比例,优选为1:(1~1.5),例如1:1.1或1:1.2。
所述制备方法中,所述反应的温度可为本领域此类反应中常规的温度,本发明中较佳地为60~70℃。
所述制备方法中,所述反应的进程可采用本领域中的常规监测方法(例如TLC、HPLC或NMR)进行检测,一般以所述的如式II所示的化合物消失或不再反应时作为反应终点。所述的反应的时间可为6~12小时,例如10h。
本发明还提供了所述如式I所示的羧酸类化合物或其盐作为萃取剂的应用。
所述应用中,所述萃取剂可为所述如式I所示的羧酸类化合物中的一种或其混合(例如两种以上),例如选自如下化合物中的任意一种或其混合(例如两种以上):
Figure PCTCN2020123531-appb-000006
所述应用中,所述如式I所示的羧酸类化合物或其盐作为萃取剂用于萃取分离金属离子。较佳地,所述金属离子为Ni 2+、Co 2+和Mn 2+中的一种或其混合(例如两种以上),所述金属离子还可包含例如Fe 3+、Al 3+、Cu 2+、Zn 2+、Cd 2+和Ca 2+中的一种或其混合(例如两种以上),所述金属离子还可进一步包含例如Mg 2+、Li +等其它离子。例如,所述金属离子为“Ni 2+、Co 2+和Mn 2+中至少一种”与“Fe 3+、Al 3+、Cu 2+、Zn 2+、Cd 2+、Ca 2+、Mg 2+和Li +中至少一种”的混合。再例如,所述金属离子为Ni 2+、Co 2+、Mn 2+、Fe 3+、Al 3+、Cu 2+、Zn 2+、Cd 2+、Ca 2+、Mg 2+和Li +的混合。较佳地,所述金属离子可来源于废锂离子电池正极材料、镍红土矿或含镍钴废渣。因此,在本发明一优选方案中,所述如式I所示的羧酸类化合物或其盐作为萃取剂用于萃取分离废锂离子电池正极材料、镍红土矿或含镍钴废渣中的金属离子。
本发明还提供了一种萃取组合物,其包括萃取剂和稀释剂,所述萃取剂包括上述如式I所示的羧酸类化合物和/或上述如式I所示的羧酸类化合物的盐。
所述萃取组合物中,较佳地,所述如式I所示的羧酸类化合物和所述如 式I所示的羧酸类化合物的盐的摩尔比为(0.4~9):1(例如1:1)。
所述萃取组合物中,较佳地,所述萃取剂包括所述如式I所示的羧酸类化合物和所述如式I所示的羧酸类化合物的盐,所述如式I所示的羧酸类化合物和所述如式I所示的羧酸类化合物的盐的摩尔比为(0.4~9):1。
所述萃取组合物中,所述稀释剂可为本领域常用的稀释剂,较佳地,所述稀释剂为溶剂油(例如200号溶剂油或260号溶剂油)、煤油、Escaid 110、己烷、庚烷和十二烷(例如正十二烷)中的一种或其混合(例如两种以上);更佳地,所述稀释剂为溶剂油(例如260号溶剂油)、十二烷(例如正十二烷)和Escaid 110中的一种或其混合(例如两种以上)。
所述萃取组合物中,所述稀释剂的用量可不作具体限定,只要不影响所述萃取组合物的萃取和反萃取性能即可,较佳地,所述萃取剂和所述稀释剂的摩尔体积比为0.1mol/L~1.5mol/L,优选0.16mol/L~0.85mol/L,例如0.16mol/L、0.33mol/L或0.6mol/L。
本发明还提供了一种萃取方法,其包括如下步骤:将含萃取剂的有机相对含金属离子的水相进行萃取,得含金属离子的有机相;
所述含萃取剂的有机相中,所述萃取剂包括上述如式I所示的羧酸类化合物和/或上述如式I所示的羧酸类化合物的盐;
所述含金属离子的水相中,所述金属离子包括Ni 2+、Co 2+、Mn 2+、Fe 3+、Al 3+、Cu 2+、Zn 2+、Cd 2+和Ca 2+中的一种或其混合(例如两种以上)。
所述含金属离子的水相中,所述金属离子还可包含例如Mg 2+、Li +等其它离子。较佳地,所述金属离子可来源于废锂离子电池正极材料、镍红土矿或含镍钴废渣。较佳地,所述金属离子为“Ni 2+、Co 2+和Mn 2+中至少一种”与“Fe 3+、Al 3+、Cu 2+、Zn 2+、Cd 2+、Ca 2+、Mg 2+和Li +中至少一种”的混合。例如,所述金属离子为Ni 2+、Co 2+、Mn 2+、Fe 3+、Al 3+、Cu 2+、Zn 2+、Cd 2+、Ca 2+、Mg 2+和Li +的混合。
所述含萃取剂的有机相中,较佳地,所述如式I所示的羧酸类化合物和 所述如式I所示的羧酸类化合物的盐的摩尔比为(0.4~9):1(例如1:1)。
所述含萃取剂的有机相中,较佳地,所述萃取剂包括所述如式I所示的羧酸类化合物和所述如式I所示的羧酸类化合物的盐,所述如式I所示的羧酸类化合物和所述如式I所示的羧酸类化合物的盐的摩尔比为(0.4~9):1。
所述萃取方法中,较佳地,所述含萃取剂的有机相还包括稀释剂。所述稀释剂可为本领域常用的稀释剂,较佳地,所述稀释剂为溶剂油(例如200号溶剂油或260号溶剂油)、煤油、Escaid 110、己烷、庚烷和十二烷(例如正十二烷)中的一种或其混合(例如两种以上);更佳地,所述稀释剂为溶剂油(例如260号溶剂油)、十二烷(例如正十二烷)和Escaid 110中的一种或其混合(例如两种以上)。所述稀释剂的用量可不作具体限定,只要不影响所述含萃取剂的有机相的萃取和反萃取性能即可,较佳地,所述含萃取剂的有机相中,所述萃取剂和所述稀释剂的摩尔体积比为0.1mol/L~1.5mol/L,优选0.16mol/L~0.85mol/L,例如0.16mol/L、0.33mol/L或0.6mol/L。
所述萃取方法中,所述含萃取剂的有机相和所述含金属离子的水相的体积比可为本领域常规萃取所用比例;较佳地,所述含萃取剂的有机相和所述含金属离子的水相的体积比为1:(1~10),更佳地为1:(1~5),例如1:1、1:2或1:4。
所述萃取方法中,较佳地,通过振荡传质。
所述萃取方法中,较佳地,所述萃取的温度可为本领域此类萃取常规所用,较佳地为10℃~50℃,更佳地为25℃~40℃。所述萃取的时间可为本领域常规的时间,较佳地为5~60分钟,例如15分钟或30分钟。
本发明还提供了一种反萃方法,其包括如下步骤:将经上述萃取方法获得的含金属离子的有机相与酸的水溶液混合,即可。
所述反萃方法中,所述含金属离子的有机相中负载的金属离子转入水相,得富金属离子的水相和再生有机相。
所述反萃方法中,所述酸的水溶液的摩尔浓度可为本领域此类反萃常用 的摩尔浓度,较佳地为0.5mol/L~5mol/L,更佳地为1~3mol/L,例如1mol/L或2mol/L,所述的摩尔浓度是指所述的酸的物质的量占所述的酸的水溶液总体积的比。
所述反萃方法中,所述酸的水溶液中的酸可为本领域常规的酸,较佳地为无机酸。所述的无机酸较佳地为盐酸、硫酸、磷酸和硝酸中的一种或多种,更佳地为硫酸。
所述反萃方法中,所述的含金属离子的有机相与所述酸的水溶液的体积比可为本领域常规比例,较佳地为(1~50):1,更佳地为(10~20):1,例如10:1或15:1。
本发明中,所述振荡是为了传质需要,使有机相和水相混合均匀,还可采用本领域其他常规操作如搅拌等操作替代。
在不违背本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
(1)本发明羧酸类化合物在应用于金属离子的萃取分离时,分离系数高,反萃酸度低,负载率高(对Ni 2+的饱和容量≥16g/L),反萃率高(一次反萃率>99%);
(2)本发明羧酸类化合物作为萃取剂稳定性高、水溶性低(在萃取体系平衡pH为7.23时所提取出油含量≤75mg/L),使得萃取工艺稳定,可以减少环境污染、降低成本;
(3)本发明羧酸类化合物成本低,有重大的应用前景,可用于三元电池回收、电池级硫酸镍制备等多种体系。
附图说明
图1为化合物BC196对各个离子的萃取率E%-pH曲线。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
以下实施例实验所用涉及来源信息:
有机相是指包含萃取剂和稀释剂的有机相,其中,所述的萃取剂包括如式I所示的羧酸类化合物和/或如式I所示的羧酸类化合物的盐。
水相是指含金属离子的水相,其中,所述含金属离子的水相可按常规方法制备,例如包括下列步骤:将一定质量的盐溶解于去离子水中,稀释到所需浓度即可。
相比(O:A)代表有机相与水相体积比。
“皂化”是指将萃取剂中的氢离子转化为碱金属离子和/或NH 4 +(转化后的碱金属离子和/或NH 4 +与水相中被萃取的金属离子进行交换,从而实现萃取的作用),皂化的步骤为:将有机相与碱的水溶液混合即可。较佳地,所述皂化使用的碱的水溶液可为氢氧化钠的水溶液、氢氧化钾的水溶液或氨水。
皂化的比例指的是萃取剂中碱金属和/或NH 4 +占原有的氢离子的比例,即η=(V ×C )/(V ×C )       (1)
式(1)中,V 为加入的碱的水溶液的体积,C 为加入的碱的水溶液中碱的浓度,V 为有机相的体积,C 为有机相中萃取剂的浓度。
本发明实施例中,水相中金属离子含量通过电感耦合等离子体发射光谱法(ICP-OES)测定,然后用差减法求得有机相中金属离子含量。
酸含量的电位滴定,按照文献:袁承业,胡水生;有机磷化合物的研究XVI:磷化合物的长碳链烷基及烷氧基的σ p常数与基团连通性[J].化学学报,1986,44,590-596,进行;电位滴定仪:瑞士万通907Titrando。本发明实施例使用酸含量来表示萃取剂的纯度。
分配比D为一次萃取完成后平衡有机相中金属离子含量与平衡水相中金属离子含量(平衡水相中金属离子含量通过电感藕合等离子体发射光谱法(ICP-OES)检测,然后用差减法求得平衡有机相中金属离子含量)的比值,即
D=C org/C aq=(C’ aq-C aq)/C aq        (2)
式(2)中,C org表示一次萃取完成后平衡有机相中金属离子浓度;C aq表示一次萃取完成后平衡水相中金属离子浓度;C’ aq表示一次萃取前水相中金属离子浓度。
萃取率E为萃取过程中被萃取物质由水相转入有机相的量占被萃取物质在原水相中总量的百分比,即:
E=100%×(C’ aq-C aq)/C’ aq       (3)
式(3)中,C aq表示一次萃取完成后平衡水相中金属离子浓度;C’ aq表示一次萃取前水相中金属离子浓度。
分离系数β是指在一定条件下进行萃取分离时,两种待分离物质在两相间的分配比的比值,又称为萃取分离因数。
以下实施例中没有提供制备方法的原料均市售可得。
实施例1
Figure PCTCN2020123531-appb-000007
在三口烧瓶中加入50g异辛醇,225mL四氢呋喃(THF),8.8g钠粒,在60~70℃反应6h,有大量白色固体生成,少量钠粒剩余;在60℃时滴加40mL含8mol/L 2-溴辛酸的THF溶液并继续在60℃反应4h;冷却后,旋蒸除THF后,往浓缩液加200mL水和200mL乙酸乙酯(EA),震荡分层,取水层;水层用盐酸酸化至pH≈1,乙酸乙酯萃取,水洗有机相2次,旋干 得65g浅黄色产品,即化合物BC195。 1H NMR(400MHz,CDCl 3)δ4.1(1H),3.52(1H),3.35(1H),1.82(2H),1.54(3H),1.20-1.31(14H),0.91(6H),0.87(3H); 13C NMR(101MHz,CDCl 3)δ171(s),79(s),72(s),36(s),32(s),29(s),26-28(m),22–23(m),14(s),11(s);MS[M-H] -:271.
实施例2
Figure PCTCN2020123531-appb-000008
在三口烧瓶中加入28.6g异辛醇,200mL四氢呋喃(THF),8.8g 60%氢化钠(分散在矿物油中),在60~70℃反应6h,有大量白色固体生成,少量钠粒剩余;在60℃时滴加20mL 10mol/L 2-溴己酸的THF溶液并继续在60℃反应4h;冷却后,旋蒸除THF后,往浓缩液加200mL水和200mL乙酸乙酯(EA),震荡分层,取水层;水层用盐酸酸化至pH≈1,乙酸乙酯萃取,水洗有机相2次,旋干得38g浅黄色产品,即化合物BC196。 1H NMR(400MHz,CDCl 3)δ3.97(1H),3.41(1H),3.26(1H),1.70(2H),1.45(3H),1.05-1.24(10H),0.91(9H); 13C NMR(101MHz,CDCl3)δ175(s),82(s),76(s),40(s),32(s),30(s),29(s),27(s),22–23(m),14(s),11(s);MS[M-H] -:243.
实施例3
Figure PCTCN2020123531-appb-000009
在三口烧瓶中加入32g正辛醇,200mL四氢呋喃(THF),5.7g钠粒,在60~70℃反应6h,有大量白色固体生成,少量钠粒剩余;在60℃时分别滴加20mL 10mol/L 2-溴己酸的THF溶液并继续在60℃反应4h;冷却后,旋蒸除THF后,往浓缩液加200mL水和200mL乙酸乙酯(EA),震荡分层,取水层;水层用盐酸酸化至pH≈1,乙酸乙酯萃取,水洗有机相2次,旋干得到目标化合物,即化合物BC191。
化合物BC191  1H NMR(400MHz,CDCl 3)δ12.53(1H),4.01(1H),3.32(2H),1.65(2H),1.20-1.32(16H),0.89(6H); 13C NMR(101MHz,CDCl 3)δ173(s),81(s),65(s),32-30(m),22–23(m),14(s);MS[M-H] -:243。
实施例4
Figure PCTCN2020123531-appb-000010
在三口烧瓶中加入32g正辛醇,加入200mL四氢呋喃(THF),5.7g钠粒,在60~70℃反应6h,有大量白色固体生成,少量钠粒剩余;在60℃时分别滴加22mL 10mol/L 2-溴辛酸的THF溶液并继续在60℃反应4h;冷却后,旋蒸除THF后,往浓缩液加200mL水和200mL乙酸乙酯(EA),震荡分层,取水层;水层用盐酸酸化至pH≈1,乙酸乙酯萃取,水洗有机相2次,旋干得到目标化合物,即化合物BC192。
化合物BC192  1H NMR(400MHz,CDCl 3)δ11.54(1H),3.98(1H),3.30(2H),1.63(2H),1.42-1.44(4H),1.20-1.32(16H),0.89(6H);MS[M-H] -:271。
实施例5
Figure PCTCN2020123531-appb-000011
在三口烧瓶中分别加入28g正己醇,加入200mL四氢呋喃(THF),6.4g钠粒,在60~70℃反应6h,有大量白色固体生成,少量钠粒剩余;在60℃时分别滴加20mL 10mol/L 2-溴己酸的THF溶液并继续在60℃反应4h;冷却后,旋蒸除THF后,往浓缩液加200mL水和200mL乙酸乙酯(EA),震荡分层,取水层;水层用盐酸酸化至pH≈1,乙酸乙酯萃取,水洗有机相2次,旋干得到目标化合物,即化合物BC193。
化合物BC193  1H NMR(400MHz,CDCl 3)δ12.34(1H),3.89(1H),3.29(2H),1.61(2H),1.20-1.32(10H),0.89(6H);MS[M-H] -:215.
实施例6
Figure PCTCN2020123531-appb-000012
在三口烧瓶中加入28g正己醇,加入200mL四氢呋喃(THF),6.4g钠粒,在60~70℃反应6h,有大量白色固体生成,少量钠粒剩余;在60℃时分别滴加22mL 10mol/L 2-溴辛酸的THF溶液并继续在60℃反应4h;冷却后,旋蒸除THF后,往浓缩液加200mL水和200mL乙酸乙酯(EA),震荡分层,取水层;水层用盐酸酸化至pH≈1,乙酸乙酯萃取,水洗有机相2次,旋干得到目标化合物,即化合物BC194。
化合物BC194  1H NMR(400MHz,CDCl 3)δ12.86(1H),4.04(1H),3.37(2H),1.67(2H),1.42-1.44(8H),1.20-1.32(8H),0.89(6H);MS[M-H] -:215.
效果实施例1 化合物BC196的萃取性能
化合物BC196的结构为:
Figure PCTCN2020123531-appb-000013
(酸含量98%)(酸含量指萃取剂纯度)。
化合物BC196溶解于稀释剂即260号溶剂油,配制成0.6mol/L有机相,配置含0.02mol/L Cu 2+、Zn 2+、Fe 3+、Al 3+、Cd 2+、Ni 2+、Co 2+、Mn 2+、Ca 2+、Mg 2+和Li +的混合硫酸盐溶液作为水相。先采用11.9mol/L氢氧化钠水溶液对有机相进行皂化,皂化率为0%~70%,水相初始pH保持不变为2.08,不同程度皂化后的有机相与水相的体积比在1:1的条件下对水相进行萃取,平衡时间为15min,温度为25℃。
萃取后,将萃取率与平衡pH作图,得到化合物BC196对各个离子的萃取率E%-pH曲线,结果如图1和表1所示,化合物BC196对于各离子之间的分离系数如表2所示。
表1:化合物BC196对各离子的萃取率E%
Figure PCTCN2020123531-appb-000014
表2:化合物BC196对各离子之间的分离系数
Figure PCTCN2020123531-appb-000015
Figure PCTCN2020123531-appb-000016
由图1和表1可知,化合物BC196对各离子的萃取顺序分别为Fe 3+、Cu 2+、Ca 2+、Al 3+、Cd 2+、Zn 2+、Ni 2+、Co 2+、Mn 2+、Mg 2+、Li +,当平衡pH值为4.5时,化合物BC196对Zn的萃取率约为65%,对Ni、Co、Mn的萃取率在25%~45%之间,而对Mg几乎不萃;由表2可知,Zn与Ni、Co、Mn的分离系数分别为2.21、3.10、4.31,Ni、Co、Mn与Mg的分离系数分别为45.34、32.33、23.25,可见化合物BC196对镍钴锰的萃取在镁离子之前,且镍钴锰与镁、锌等杂质金属离子分离度高。综合以上结果表明,与已报道的萃取剂P204、P507和C272相比,化合物BC196对离子具有较好的选择性,能实现镍钴锰同步回收,在锂离子电池正极材料的回收方面有可行性的应用价值。
效果对比例1
与效果实施例1的区别在于,将化合物BC196替换为萃取剂CA12(市售,酸含量98%),结果如表3所示。
表3:化合物BC196和CA12对各离子的分离系数
Figure PCTCN2020123531-appb-000017
由表3可知,相同实验条件下,与CA12相比,化合物BC196对各离子 的分离系数较高,高约20~30%。在pH值约为4.5条件下,化合物BC196对Ni/Mg和Ni/Zn的分离系数分别为45.34和2.21,而CA12对Ni/Mg和Ni/Zn的分离系数分别为31.98和1.66,由此说明化合物BC196相比于CA12对离子有更好的分离效果。
效果实施例2 化合物BC196负载金属离子后的反萃性能
化合物BC196溶解于十二烷配制成0.33mol/L有机相,水相为含0.02mol/L的Ni 2+硫酸盐溶液作为料液,用9mol/L氨水对有机相进行皂化,皂化的比例为50%,皂化后的有机相以相比1:4对该料液进行萃取,平衡时间为15min,温度为25℃。得负载Ni的有机相,该负载Ni的有机相中Ni的含量为0.08mol/L。
用1mol/L硫酸水溶液对该负载Ni的有机相进行反萃,反萃时,相比为10:1,反萃率>99%。
而负载Ni的P507有机相一般用2mol/L硫酸反萃,一次反萃率约85%。上述结果表明本发明的羧酸化合物应用于萃取金属离子时,在较低反萃酸度的前提下能够获得较高的反萃率。
效果实施例3 化合物BC196对Ni 2+饱和容量测试
实验方法:将化合物BC196溶解于十二烷中,配制成0.6mol/L有机相。配制50g/L的NiSO 4水溶液作为水相。
取一个50mL分液漏斗,加入10mL有机相,用10mol/L的NaOH水溶液进行皂化,皂化的比例为60%,皂化后的有机相无需分相,直接加入10mL的水相,振荡混合15min;分出水相,再加入新鲜50g/L的NiSO 4水溶液(10mL),振荡混合15min;重复前述操作直至水相中离子浓度不在发生变化,此时有机相中金属的浓度为萃取剂的饱和容量。反萃有机相得化合物BC196对Ni 2+的饱和容量为16g/L。
效果实施例4 化合物BC195负载金属离子后的反萃性能
化合物BC195的结构为:
Figure PCTCN2020123531-appb-000018
(酸含量95%)。
化合物BC195溶解于Escaid 110,配制成0.16mol/L有机相,配制0.02mol/L的Ni 2+硫酸盐溶液作为料液,用10mol/L NaOH水溶液对有机相进行皂化,皂化的比例为50%,皂化后的有机相以相比1:2对该料液进行萃取,平衡时间为15min,温度为25℃。得负载Ni的有机相,该负载Ni的有机相中Ni的含量为0.04mol/L。
用1mol/L硫酸水溶液对该负载Ni的有机相进行反萃,反萃时,相比为15:1,反萃率>99%。
而负载Ni的P507有机相一般用2mol/L硫酸反萃,一次反萃率约85%。上述结果表明本发明的羧酸化合物应用于萃取金属离子时,在较低反萃酸度的前提下能够获得较高的反萃率。
效果实施例5 萃取剂BC199和萃取剂CA12在萃取体系中的溶解性实验
萃取剂BC199由以下化合物以摩尔比为1:1:1:1混合得到:
Figure PCTCN2020123531-appb-000019
Figure PCTCN2020123531-appb-000020
(酸含量99%)。
萃取:将萃取剂BC199与稀释剂Escaid 110配置成0.6mol/L溶液作为有机相,各化合物在有机相中的浓度为0.15mol/L,水相为0.2mol/L NiSO 4水溶液,取一个250mL分液漏斗,加入100mL有机相,加入10mol/L氢氧化钠水溶液进行皂化,皂化比例为24%,皂化后加入水相100mL,萃取平衡30min,温度为25℃。
油含量测试:取50mL上述平衡后的水相加入到100mL分液漏斗中,再加入适量HCl使水相pH值小于等于2即可,用移液枪准确量取25mL四氟乙烯至分液漏斗中,震荡10min后静置,将分液漏斗下部四氯乙烯放入锥形瓶内,往锥形瓶内加入约1g/L无水硫酸钠,震荡,观察硫酸钠不结块确保四氯乙烯中水分可以去除干净。以四氯乙烯做空白组,采用红外测油仪测定样品中油含量。
效果对比例2
与效果实施例5的区别在于,将萃取剂BC199替换为萃取剂CA12(市售,酸含量98%),测试萃取剂CA12在萃取体系中的溶解性。
效果实施例5和效果对比例2的测试结果如表4所示。
表4:萃取剂BC199和CA12在萃取体系中的溶解度
  CA12 萃取剂BC199 稀释剂空白
体系平衡pH 8.09 8.20 -
有机溶解量mg/L 6000 120 45
通过以上实验可知,稀释剂空白(即不添加萃取剂,其他操作步骤均与效果实施例5相同)与水相平衡后所提取出油含量45mg/L,萃取剂BC199在萃取体系平衡pH为8.20时所提取出油含量约为120mg/L,而CA12在萃 取体系平衡pH为8.09时所提取出油含量约为6000mg/L。结果表明在萃取体系中CA12的溶解损失很大,易造成工艺运行不稳定,而萃取剂BC199用于金属离子萃取分离时,解决了萃取剂在水相中溶解度较大的问题,大大降低工艺成本且工艺能稳定运行。
效果实施例6
将化合物BC195与稀释剂Escaid110配置成0.62mol/L溶液,水相为含1.33g/L Ni和4g/L Mg的高镁氯化镍料液,取一个250mL分液漏斗,加入100mL有机相,加入10mol/L氢氧化钠水溶液进行皂化,皂化比例为24%,皂化后加入水相100mL,萃取平衡30min,温度为25℃。
油含量测试:分出水相加入H 2SO 4,此时水相溶液[H +]浓度约为1mol/L。用CH 2Cl 2萃取(30mL×3),萃取收集CH 2Cl 2层,用1g无水Na 2SO 4干燥除CH 2Cl 2中的水,过滤,滤液旋蒸,再用油泵干燥30min。通过称量旋蒸前后烧瓶的重量得出体系CH 2Cl 2萃取出的油含量。
效果对比例3
与效果实施例6的区别在于,将化合物BC195替换为萃取剂CA12(市售,酸含量98%)。
效果实施例6和效果对比例3的测试结果如表5所示。
表5:化合物BC195和化合物CA12在萃取体系中的溶解度
  CA12 化合物BC195 稀释剂空白
平衡pH 7.15 7.23 -
有机溶解量(mg/L) 4180 75 45
通过以上实验可知,稀释剂空白(不添加萃取剂,其他操作步骤均与效果实施例6相同)与水相平衡后所提取出油含量45mg/L,化合物BC195在萃取体系平衡pH约为7.2时所提取出油含量在75mg/L左右,而CA12油 含量在4180mg/L左右,萃取体系中CA12的溶解损失很大。化合物BC195用于金属离子萃取分离时,解决了萃取剂在水相中溶解度较大的问题,工艺稳定,降低运行成本。

Claims (15)

  1. 一种如式I所示的羧酸类化合物或其盐:
    Figure PCTCN2020123531-appb-100001
    其中,R 1和R 2独立地为C 3~C 12直链或支链烷基。
  2. 如权利要求1所述的如式I所示的羧酸类化合物或其盐,其特征在于,R 1为C 4~C 9直链或支链烷基;
    和/或,R 2为C 3~C 10直链或支链烷基;
    和/或,所述如式I所示的羧酸类化合物的盐通过将所述如式I所示的羧酸类化合物与碱以摩尔比为1:1的比例,进行反应制备得到。
  3. 如权利要求2所述的如式I所示的羧酸类化合物或其盐,其特征在于,R 1为C 4~C 9直链烷基,例如正丁基、正戊基、正己基或正辛基;
    和/或,R 2为C 6~C 8直链或支链烷基;例如正己基、正辛基或异辛基(例如
    Figure PCTCN2020123531-appb-100002
    );
    和/或,R 1和R 2的碳数总和n为10~20,例如n为12、14或16。
  4. 如权利要求1~3中至少一项所述的如式I所示的羧酸类化合物或其盐,其特征在于,所述如式I所示的羧酸类化合物选自如下任一化合物:
    Figure PCTCN2020123531-appb-100003
    Figure PCTCN2020123531-appb-100004
  5. 如权利要求1~4中至少一项所述的如式I所示的羧酸类化合物的制备方法,其特征在于,包括:溶剂中,在碱的作用下,将如式II所示的化合物与如式III所示的化合物进行反应,即可;
    Figure PCTCN2020123531-appb-100005
    其中,X为卤素,R 1和R 2的定义如权利要求1~4中至少一项所述。
  6. 如权利要求5所述的如式I所示的羧酸类化合物的制备方法,其特征在于,所述卤素为氟、氯、溴或碘,例如氯或溴,再例如溴;
    和/或,所述溶剂为醚类溶剂,所述醚类溶剂例如为四氢呋喃;
    和/或,所述溶剂与所述如式III所示的化合物的体积质量比的用量范围为1~10mL/g,例如5.3、6.25、7.0、7.1或7.7mL/g;
    和/或,所述碱为碱金属或者碱金属氢化物,例如钠或氢化钠;
    和/或,所述碱与所述如式II所示的化合物的摩尔比为(1~1.5):1,例如1.1:1、1.2:1或1.35:1;
    和/或,所述如式II所示的化合物与所述如式III所示的化合物的摩尔比为1:(1~1.5),例如1:1.1或1:1.2;
    和/或,所述反应的温度为60~70℃;
    和/或,所述的反应的时间为6~12小时,例如10h。
  7. 如权利要求1~4中至少一项所述的如式I所示的羧酸类化合物或其盐作为萃取剂的应用。
  8. 如权利要求7所述的如式I所示的羧酸类化合物或其盐作为萃取剂的应用,其特征在于,所述萃取剂为所述如式I所示的羧酸类化合物中的一种或其混合;
    和/或,所述如式I所示的羧酸类化合物或其盐作为萃取剂用于萃取分离金属离子;较佳地,所述金属离子为Ni 2+、Co 2+和Mn 2+中的一种或其混合,所述金属离子还可包含Fe 3+、Al 3+、Cu 2+、Zn 2+、Cd 2+和Ca 2+中的一种或其混合,所述金属离子还可进一步包含Mg 2+和/或Li +
  9. 如权利要求8所述的如式I所示的羧酸类化合物或其盐作为萃取剂的应用,所述萃取剂选自如下化合物中的任意一种或其混合:
    Figure PCTCN2020123531-appb-100006
    和/或,当所述如式I所示的羧酸类化合物或其盐作为萃取剂用于萃取分离金属离子时,所述金属离子为“Ni 2+、Co 2+和Mn 2+中至少一种”与“Fe 3+、Al 3+、Cu 2+、Zn 2+、Cd 2+、Ca 2+、Mg 2+和Li +中至少一种”的混合;较佳地,所述金属离子为Ni 2+、Co 2+、Mn 2+、Fe 3+、Al 3+、Cu 2+、Zn 2+、Cd 2+、Ca 2+、Mg 2+和Li +的混合。
  10. 一种萃取组合物,其特征在于,包括萃取剂和稀释剂,所述萃取剂包括如权利要求1~4中至少一项所述的如式I所示的羧酸类化合物和/或如权利要求1~4中至少一项所述的如式I所示的羧酸类化合物的盐。
  11. 如权利要求10所述的萃取组合物,其特征在于,所述如式I所示的 羧酸类化合物和所述如式I所示的羧酸类化合物的盐的摩尔比为(0.4~9):1,例如1:1;较佳地,所述萃取剂包括所述如式I所示的羧酸类化合物和所述如式I所示的羧酸类化合物的盐,更佳地,所述如式I所示的羧酸类化合物和所述如式I所示的羧酸类化合物的盐的摩尔比为(0.4~9):1;
    和/或,所述稀释剂为溶剂油(例如200号溶剂油或260号溶剂油)、煤油、Escaid 110、己烷、庚烷和十二烷(例如正十二烷)中的一种或其混合;较佳地,所述稀释剂为溶剂油(例如260号溶剂油)、十二烷(例如正十二烷)和Escaid 110中的一种或其混合;
    和/或,所述萃取剂和所述稀释剂的摩尔体积比为0.1mol/L~1.5mol/L,优选0.16mol/L~0.85mol/L,例如0.16mol/L、0.33mol/L或0.6mol/L。
  12. 一种萃取方法,其特征在于,包括如下步骤:将含萃取剂的有机相对含金属离子的水相进行萃取,得含金属离子的有机相;
    所述含萃取剂的有机相中,所述萃取剂包括如权利要求1~4中至少一项所述的如式I所示的羧酸类化合物和/或如权利要求1~4中至少一项所述的如式I所示的羧酸类化合物的盐;
    所述含金属离子的水相中,所述金属离子包括Ni 2+、Co 2+、Mn 2+、Fe 3+、Al 3+、Cu 2+、Zn 2+、Cd 2+和Ca 2+中的一种或其混合。
  13. 如权利要求12所述的萃取方法,其特征在于,所述金属离子为“Ni 2+、Co 2+和Mn 2+中至少一种”与“Fe 3+、Al 3+、Cu 2+、Zn 2+、Cd 2+、Ca 2+、Mg 2+和Li +中至少一种”的混合;较佳地,所述金属离子为Ni 2+、Co 2+、Mn 2+、Fe 3+、Al 3+、Cu 2+、Zn 2+、Cd 2+、Ca 2+、Mg 2+和Li +的混合;
    和/或,所述含萃取剂的有机相中,所述如式I所示的羧酸类化合物和所述如式I所示的羧酸类化合物的盐的摩尔比为(0.4~9):1,例如1:1;较佳地,所述萃取剂包括所述如式I所示的羧酸类化合物和所述如式I所示的羧酸类化合物的盐;更佳地,所述如式I所示的羧酸类化合物和所述如式I所示的羧酸类化合物的盐的摩尔比为(0.4~9):1;
    和/或,所述含萃取剂的有机相还包括稀释剂,所述稀释剂为溶剂油(例如200号溶剂油或260号溶剂油)、煤油、Escaid 110、己烷、庚烷和十二烷(例如正十二烷)中的一种或其混合;较佳地,所述稀释剂为溶剂油(例如260号溶剂油)、十二烷(例如正十二烷)和Escaid 110中的一种或其混合;
    所述萃取剂和所述稀释剂的摩尔体积比为0.1mol/L~1.5mol/L,优选0.16mol/L~0.85mol/L,例如0.16mol/L、0.33mol/L或0.6mol/L;
    和/或,所述含萃取剂的有机相和所述含金属离子的水相的体积比为1:(1~10),较佳地为1:(1~5),例如1:1、1:2或1:4;
    和/或,所述萃取方法中,通过振荡传质;
    和/或,所述萃取的温度为10℃~50℃,较佳地为25℃~40℃;
    和/或,所述萃取的时间为5~60分钟,例如15分钟或30分钟。
  14. 一种反萃方法,其特征在于,包括如下步骤:将经如权利要求12或13所述的萃取方法获得的含金属离子的有机相与酸的水溶液混合,即可。
  15. 如权利要求14所述的反萃方法,其特征在于,所述酸的水溶液的摩尔浓度为0.5mol/L~5mol/L,较佳地为1~3mol/L,例如1mol/L或2mol/L;
    和/或,所述酸的水溶液中的酸为无机酸,所述的无机酸较佳地为盐酸、硫酸、磷酸和硝酸中的一种或多种,更佳地为硫酸;
    和/或,所述的含金属离子的有机相与所述酸的水溶液的体积比为(1~50):1,更佳地为(10~20):1,例如10:1或15:1。
PCT/CN2020/123531 2020-06-28 2020-10-26 羧酸类化合物、其制备方法及应用 WO2022000881A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2020456448A AU2020456448B2 (en) 2020-06-28 2020-10-26 Carboxylic acid compound, and preparation method therefor and application thereof
JP2023518324A JP2023528091A (ja) 2020-06-28 2020-10-26 カルボン酸類化合物、その調製方法及び使用
EP20943432.3A EP4177241A4 (en) 2020-06-28 2020-10-26 CARBOXYLIC ACID COMPOUND, PREPARATION METHOD AND USE THEREOF
KR1020227045095A KR20230015426A (ko) 2020-06-28 2020-10-26 카르복실산계 화합물, 그의 제조방법 및 응용
US18/012,259 US20230312449A1 (en) 2020-06-28 2020-10-26 Carboxylic acid compound, and preparation method therefor and application thereof
CA3183753A CA3183753A1 (en) 2020-06-28 2020-10-26 Carboxylic acid compound, and preparation method therefor and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010599602.9A CN111592459B (zh) 2020-06-28 2020-06-28 羧酸类化合物、其制备方法及应用
CN202010599602.9 2020-06-28

Publications (1)

Publication Number Publication Date
WO2022000881A1 true WO2022000881A1 (zh) 2022-01-06

Family

ID=72189200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123531 WO2022000881A1 (zh) 2020-06-28 2020-10-26 羧酸类化合物、其制备方法及应用

Country Status (8)

Country Link
US (1) US20230312449A1 (zh)
EP (1) EP4177241A4 (zh)
JP (1) JP2023528091A (zh)
KR (1) KR20230015426A (zh)
CN (1) CN111592459B (zh)
AU (1) AU2020456448B2 (zh)
CA (1) CA3183753A1 (zh)
WO (1) WO2022000881A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592459B (zh) * 2020-06-28 2021-10-15 北京博萃循环科技有限公司 羧酸类化合物、其制备方法及应用
CN114134341B (zh) * 2020-09-04 2023-01-13 苏州博萃循环科技有限公司 一种含镍钴锰的料液中镍钴锰的回收方法
CN114150152B (zh) * 2020-09-04 2023-08-29 北京博萃循环科技有限公司 一种镍钴锰酸锂及其制备方法
CN114134322B (zh) * 2020-09-04 2023-03-14 苏州博萃循环科技有限公司 一种从含铜锰钙锌混合溶液中分离铜锰的方法
CN114182109A (zh) * 2020-09-14 2022-03-15 北京博萃循环科技有限公司 一种镍钴料液萃取除杂工艺及其装置
CN114196827A (zh) * 2020-09-18 2022-03-18 苏州博萃循环科技有限公司 一种镍和锂的分离方法及其应用
CN112442596B (zh) * 2020-10-21 2022-11-08 北京博萃循环科技有限公司 一种羧酸类萃取剂对电池中间料液中镍钴锰的分离回收方法
CN112342387A (zh) * 2020-10-21 2021-02-09 北京博萃循环科技有限公司 一种镍和镁的分离方法及其应用
CN112281001B (zh) * 2020-10-22 2022-09-06 北京博萃循环科技有限公司 一种利用含锰废液制备锰盐的方法
CN112342393B (zh) * 2020-10-29 2022-10-18 湖南邦普循环科技有限公司 采用萃取法除三元电池材料浸出液中铝的方法
CN114457245B (zh) * 2020-11-10 2023-10-13 北京博萃循环科技有限公司 一种从氢氧化镍钴制备硫酸镍与硫酸钴的方法
CN112458281A (zh) * 2020-11-24 2021-03-09 北京博萃循环科技有限公司 一种利用含镍镁废液制备镍盐的方法
CN112538569B (zh) * 2020-11-24 2024-02-20 北京博萃循环科技有限公司 一种从含镍钴锰的料液中分离镍钴锰的方法
CN112457188B (zh) * 2020-11-24 2022-07-08 苏州博萃循环科技有限公司 一种羧酸类化合物及其制备方法与应用
CN112575193A (zh) * 2020-11-24 2021-03-30 北京博萃循环科技有限公司 一种铜和锰的分离方法及其应用
CN112442605A (zh) * 2020-11-24 2021-03-05 北京博萃循环科技有限公司 一种分离镍和镁的方法及其应用
CN114540613A (zh) * 2020-11-27 2022-05-27 北京博萃循环科技有限公司 一种从红土镍矿中分离镍和钴的方法
CN114561541A (zh) * 2020-11-27 2022-05-31 北京博萃循环科技有限公司 一种电池正极片浸出液中同步回收镍钴锰的方法
CN112501445B (zh) * 2020-11-27 2023-01-24 北京博萃循环科技有限公司 一种制备电池级镍钴锰的方法
CN112458314B (zh) * 2020-11-30 2022-07-26 北京博萃循环科技有限公司 一种镍钴与钙镁分离的方法
CN112320860B (zh) * 2020-11-30 2023-02-17 北京博萃循环科技有限公司 一种提纯硫酸镍的方法
CN112430733A (zh) * 2020-11-30 2021-03-02 北京博萃循环科技有限公司 一种处理红土镍矿的方法
CN112522517A (zh) * 2020-11-30 2021-03-19 北京博萃循环科技有限公司 一种回收镍钴锰锂的方法
CN114645143B (zh) * 2020-12-21 2023-10-20 北京博萃循环科技有限公司 一种红土镍矿中镍钴铜锰的分离方法
CN112593080A (zh) * 2020-12-21 2021-04-02 北京博萃循环科技有限公司 一种火法-湿法联合处理红土镍矿的方法
CN114085994A (zh) * 2021-11-09 2022-02-25 苏州博萃循环科技有限公司 一种从废镍氢电池中回收有价金属的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1084574A (zh) * 1993-07-23 1994-03-30 中国科学院上海有机化学研究所 分离稀土金属的萃取剂
CN1100408A (zh) * 1993-06-01 1995-03-22 小野药品工业株式会社 戊酸衍生物
JPH083100A (ja) * 1994-06-20 1996-01-09 New Japan Chem Co Ltd 2−オキシ脂肪酸類の製造方法
WO2001077086A1 (en) * 2000-04-11 2001-10-18 Dupont Pharmaceuticals Company SUBSTITUTED LACTAMS AS INHIBITORS OF Aβ PROTEIN PRODUCTION
CN109449523A (zh) 2018-10-31 2019-03-08 天齐锂业资源循环技术研发(江苏)有限公司 一种废旧锂离子电池的综合回收方法
CN111592459A (zh) * 2020-06-28 2020-08-28 北京博萃循环科技有限公司 羧酸类化合物、其制备方法及应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2525249A (en) * 1949-01-12 1950-10-10 Polymerisable Products Ltd Making alkoxy isobutyric acids and derivatives thereof
US3884947A (en) * 1970-09-30 1975-05-20 Cities Service Oil Service Com Hydrocarbon fuel compositions
JPS5592343A (en) * 1979-01-06 1980-07-12 Yoshio Katsuta Preparation of optically active substituted isovaleric acid
JPS5726602A (en) * 1980-12-01 1982-02-12 Dainippon Jiyochiyuugiku Kk Insecticide containing isovaleric ester derivative
CN110042234B (zh) * 2019-01-29 2021-08-03 厦门稀土材料研究所 一种萃取剂及其制备方法与应用
CN111020188B (zh) * 2019-12-04 2021-09-14 厦门稀土材料研究所 一种萃取剂及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1100408A (zh) * 1993-06-01 1995-03-22 小野药品工业株式会社 戊酸衍生物
CN1084574A (zh) * 1993-07-23 1994-03-30 中国科学院上海有机化学研究所 分离稀土金属的萃取剂
JPH083100A (ja) * 1994-06-20 1996-01-09 New Japan Chem Co Ltd 2−オキシ脂肪酸類の製造方法
WO2001077086A1 (en) * 2000-04-11 2001-10-18 Dupont Pharmaceuticals Company SUBSTITUTED LACTAMS AS INHIBITORS OF Aβ PROTEIN PRODUCTION
CN109449523A (zh) 2018-10-31 2019-03-08 天齐锂业资源循环技术研发(江苏)有限公司 一种废旧锂离子电池的综合回收方法
CN111592459A (zh) * 2020-06-28 2020-08-28 北京博萃循环科技有限公司 羧酸类化合物、其制备方法及应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE REGISTRY 8 April 2019 (2019-04-08), ANONYMOUS : "Hexanoic acid, 4,4-dimethyl-2-(1-methylethoxy)- (CA INDEX NAME)", XP055883688, retrieved from STN Database accession no. 2303058-87-7 *
GUEST HERBERT H, GODDARD CHARLES M, WILLIAMS COMPANY J B: "The Chlorination of Certain Long Chain Esters", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 66, 1 December 1944 (1944-12-01), pages 2074 - 2075, XP055883685, ISSN: 0002-7863 *
KODAMA, SHINTARO: "Rotatory Power of Alkylleucic Acids and Allied Compounds", JOURNAL OF THE CHEMICAL SOCIETY OF JAPAN, vol. 43, 31 December 1922 (1922-12-31), JP, pages 704 - 734, XP009533212, ISSN: 0369-4208 *
See also references of EP4177241A4
YUAN CHENGYEHU SHUISHENG: "Studies on Organophosphorus Compounds XVI. Substituent Constants c for Long Chain Alkyl and Alkoxyl Groups and their Correlation with Group Connectivity [J", ACTA CHIMICA SINICA, vol. 44, 1986, pages 590 - 596

Also Published As

Publication number Publication date
CN111592459B (zh) 2021-10-15
EP4177241A4 (en) 2024-07-17
KR20230015426A (ko) 2023-01-31
JP2023528091A (ja) 2023-07-03
CN111592459A (zh) 2020-08-28
AU2020456448A1 (en) 2023-02-02
EP4177241A1 (en) 2023-05-10
AU2020456448B2 (en) 2023-12-07
US20230312449A1 (en) 2023-10-05
CA3183753A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2022000881A1 (zh) 羧酸类化合物、其制备方法及应用
WO2022110821A1 (zh) 一种羧酸类化合物及其制备方法与应用
JP5279942B1 (ja) コバルト抽出方法
CN111041203B (zh) 一种用于镍锂分离的混合萃取剂及分离方法
WO2021238738A1 (zh) 一种羧酸类化合物作为萃取剂的应用和金属离子萃取方法
CN112522517A (zh) 一种回收镍钴锰锂的方法
US20230332269A1 (en) Method for recycling nickel, cobalt and manganese from feed liquid containing nickel, cobalt and manganese
CN114457245B (zh) 一种从氢氧化镍钴制备硫酸镍与硫酸钴的方法
CN112501445B (zh) 一种制备电池级镍钴锰的方法
CN112342387A (zh) 一种镍和镁的分离方法及其应用
JP5734268B2 (ja) ニッケル抽出方法
Xu et al. Mextral® 6103H/naphthenic acid/TOPO synergistic extraction system for recovery of nickel and cobalt from nickel laterite
WO2013069563A1 (ja) コバルト抽出方法
CN112458281A (zh) 一种利用含镍镁废液制备镍盐的方法
CN112458314B (zh) 一种镍钴与钙镁分离的方法
CN111747985B (zh) 一种苯氧基双羧酸型功能化离子液体的制备及应用
CN114134323A (zh) 一种分离铜和锰的工艺方法及其应用
CN111129634B (zh) 失效三元锂离子电池正极材料分离回收方法
CN107619950B (zh) 一种萃取组合物、萃取体系及其应用
CN112725626B (zh) 一种萃取有机进料制备电池级镍钴锰的方法
CN114150155B (zh) 一种同时回收电池级钴盐、镍盐萃取工艺优化方法
CN112442605A (zh) 一种分离镍和镁的方法及其应用
WO2020063913A1 (zh) 氟化钪的制备方法
CN118685636A (zh) 一种用于从高钠含锂废水中萃取锂的萃取体系及萃取方法
CN106632465A (zh) 一种(2‑乙基己基)(2,4,4’‑三甲基戊基)次膦酸的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023518324

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3183753

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2020456448

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20227045095

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020456448

Country of ref document: AU

Date of ref document: 20201026

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020943432

Country of ref document: EP

Effective date: 20230130