WO2021238738A1 - 一种羧酸类化合物作为萃取剂的应用和金属离子萃取方法 - Google Patents

一种羧酸类化合物作为萃取剂的应用和金属离子萃取方法 Download PDF

Info

Publication number
WO2021238738A1
WO2021238738A1 PCT/CN2021/094590 CN2021094590W WO2021238738A1 WO 2021238738 A1 WO2021238738 A1 WO 2021238738A1 CN 2021094590 W CN2021094590 W CN 2021094590W WO 2021238738 A1 WO2021238738 A1 WO 2021238738A1
Authority
WO
WIPO (PCT)
Prior art keywords
extraction
extractant
organic phase
carboxylic acid
optionally
Prior art date
Application number
PCT/CN2021/094590
Other languages
English (en)
French (fr)
Inventor
王雪
Original Assignee
北京博萃循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京博萃循环科技有限公司 filed Critical 北京博萃循环科技有限公司
Priority to KR1020227045096A priority Critical patent/KR20230015427A/ko
Priority to CA3179893A priority patent/CA3179893A1/en
Priority to EP21813087.0A priority patent/EP4159881A4/en
Priority to US17/927,036 priority patent/US20230243016A1/en
Priority to AU2021280800A priority patent/AU2021280800B2/en
Publication of WO2021238738A1 publication Critical patent/WO2021238738A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/126Acids containing more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0015Obtaining aluminium by wet processes
    • C22B21/0023Obtaining aluminium by wet processes from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/32Carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B58/00Obtaining gallium or indium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • This application belongs to the technical field of hydrometallurgy, and relates to an application of carboxylic acid compound as an extractant and a metal ion extraction method, for example, it relates to an application of a carboxylic acid compound as an extractant in hydrometallurgy and a metal ion extraction method .
  • Solvent extraction has the advantages of good selectivity, high metal recovery rate, and fast mass transfer rate. It is an important link in the enrichment, refining, separation, and purification of valuable metals such as non-ferrous metals and rare earth elements in industry. It has been studied by many People continue to pay attention and continue to develop. However, with the urgency of environmental protection and resource recycling, higher requirements have been placed on the performance of the extraction system, such as energy consumption, acid consumption, sewage discharge and production capacity. In order to meet higher demands, extractants with better performance have always been available. Strong realistic demand.
  • P507/P204 hydrochloric acid system is widely used for the separation of rare earths, but the P507/P204 hydrochloric acid system has poor regeneration performance for heavy rare earths, high acidity of stripping, and serious pollution;
  • C272 is used for separation of nickel and cobalt, but for new lithium ion batteries In terms of the recovery of nickel diamond manganese ternary cathode material, C272 has a complicated process because it preferentially extracts calcium and magnesium before extracting nickel; the performance of "naphthenic acid" can no longer meet the requirements of extracting and purifying yttrium from rare earth mixtures, and research and development capabilities are needed.
  • Alternative extractant for naphthenic acid; amine extractant such as N1923, N235, etc. will extract acid during the extraction of metals, easily forming three phases, and the process is not easy to control.
  • carboxylic acid for extracting metal ions Compared with phosphorus and amine extractants, the most obvious characteristics of carboxylic acid for extracting metal ions are low price, abundant source, low acid consumption, and more environmentally friendly. In recent years, a variety of carboxylic acid extractants have been reported to be used For the extraction of metals. For example, tertiary carbon carboxylic acid Versatic 10 and Versatic 911 (CN110029226A is a method for recovering valuable metals from waste ternary lithium ion cathode materials), neodecanoic acid and alkoxy acetic acid (CN93112500.6 extractant for separation of rare earth metals) ).
  • carboxylic acid extractants have unique advantages in many aspects, but the currently reported carboxylic acid extractants have greatly restricted them due to their solubility and stability. Application or development, so the new high-efficiency carboxylic acid extractant has great application prospects and has great economic, environmental and social value.
  • One of the objectives of this application is to provide an application of carboxylic acid compounds as extractants, especially to provide an application of carboxylic acid compounds as extractants in hydrometallurgy.
  • the carboxylic acid compound is used as an extractant, has good selectivity to ions, low acidity for stripping, and has the advantages of high stability, low water solubility, and low cost.
  • This application provides an application of a carboxylic acid compound as an extractant, and the carboxylic acid compound has a structure shown in formula I;
  • the carboxylic acid extractant represented by formula I can be extracted from nature or synthesized by conventional methods, and the extractant can be a mixture of one or more carboxylic acids when used for extraction.
  • the compound of formula I can be prepared by referring to the Jones oxidation reaction, that is, a reaction in which chromic acid oxidizes the alcohol corresponding to the compound of formula I into carboxylic acid and ketone in acetone.
  • the oxidant in this reaction is also called Jones reagent, which is a solution of chromium trioxide in concentrated sulfuric acid.
  • Jones reagent which is a solution of chromium trioxide in concentrated sulfuric acid.
  • the m and n are each independently an integer of 2-20, such as 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, etc.
  • the m and n are each independently an integer of 2-10.
  • the carboxylic acid compound includes any one or a combination of at least two of the following compounds:
  • the carboxylic acid compound is applied to the extraction and separation of metal ions.
  • the extractant described in formula I can be used to extract metal ions.
  • the compound of formula I is characterized by the secondary carbon at the ⁇ position of the carboxyl group, which is different from the primary carbon carboxylic acid at the ⁇ position and the tertiary carbon carboxylic acid at the ⁇ position.
  • the presence of acid and secondary carbon carboxylic acid brings proper steric hindrance and good ion selectivity, so as to achieve effective extraction and separation of metal ions.
  • the metal ion includes Fe 3+ , Al 3+ , Cu 2+ , Zn 2+ , Cd 2+ , Ni 2+ , Co 2+ , Mn 2+ , Ca 2+ , Mg 2+ , Li + , Na + , K + , Cr 3+ , Ga 3+ , In 3+ , Ti 4+ , Sc 3+ , Y 3+ , La 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Sm 3 + , Eu 3+ , Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Tm 3+ , Yb 3+ or Lu 3+ any one or a combination of at least two.
  • the metal ions include non-ferrous metal ions and/or rare earth metal ions.
  • the anions compatible with the metal ions in the extracted liquid include any one or a combination of at least two of Cl — , SO 4 2 — or NO 3 —.
  • the carboxylic acid compound is applied to the extraction and separation of metal ions in waste lithium ion battery cathode materials, nickel-cobalt-containing waste slag, or nickel laterite ore.
  • the second objective of this application is to provide an extraction organic phase, which contains the carboxylic acid compound represented by formula I;
  • the extracted organic phase further contains a diluent.
  • the extracted organic phase further contains a diluent
  • the diluent may optionally include any one or at least two of mineral spirits, kerosene, toluene, Escaid 110, hexane, heptane, or dodecane Combination;
  • the mineral spirits include No. 200 or No. 260 mineral spirits (ie sulfonated kerosene), and the dodecane is n-dodecane.
  • the concentration of the carboxylic acid compound represented by formula I is 0.1 to 2.0 mol/L, for example, 0.2 mol/L, 0.3 mol/L, 0.4 mol/L, 0.8 mol/L , 1.0mol/L, 2.0mol/L, etc.
  • the third objective of the present application is to provide a metal ion extraction method, which includes the following steps:
  • the extracted organic phase containing the metal ions described in the second objective is used for extraction, and the obtained loaded organic phase is back-extracted to obtain a metal ion-enriched solution and a regenerated organic phase.
  • the stripping agent for the stripping includes hydrochloric acid and/or sulfuric acid.
  • the concentration of hydrochloric acid used in the back extraction is 1 to 4 mol/L, such as 1.5 mol/L, 2 mol/L, 2.5 mol/L, 3 mol/L, 3.5 mol/L, and the like.
  • the concentration of sulfuric acid used in the back extraction is 0.5-4 mol/L, for example, 1 mol/L, 2 mol/L, 3 mol/L, and the like.
  • the volume ratio (O/A) of the extracted organic phase and the extracted phase is 1:10-10:1, such as 2:9, 3:8, 4:7, 5:6, 6:5, 7:4, 8:3, 9:2, etc.
  • the volume ratio (O/A) of the loaded organic phase and the stripping agent is 1:10-10:1, such as 2:9, 3:8, 4:7, 5:6, 6:5 , 7:4, 8:3, 9:2, etc., back extraction one or more times.
  • the carboxylic acid compound represented by formula I has high stability and low water solubility (the extracted oil content is about 100mg/L when the equilibrium pH of the extraction system is 8-9), which makes the extraction process stable and can reduce the environment Pollution and cost reduction;
  • the extractant shown in formula I has low cost and great application prospects, and can be used in various systems such as ternary battery recovery and battery-grade nickel sulfate preparation.
  • Figure 1 is an E%-pH curve of the extraction rate of each ion by the extractant 191 in Example 1.
  • Fig. 2 is an E%-pH curve of the extraction rate of each ion by the extractant 195 in Example 2.
  • Fig. 3 is an E%-pH curve of the extraction rate of each ion by the extractant 196 under the condition of O/A of 5:1 in Example 3.
  • Figure 4 is the E%-pH curve of the extraction rate of each ion by the extractant 196 under the condition of O/A of 8:1 in Example 3.
  • FIG. 5 is the E%-pH curve of the extraction rate of each ion by the extractant 196 in Example 4.
  • Fig. 6 is an E%-pH curve of the extraction rate of nickel and magnesium ions by the extractant 191 in Example 5.
  • Figure 7 is the E%-pH curve of the extraction rate of stearic acid for each ion in Comparative Example 4.
  • the water phase is prepared according to a conventional method, and the preparation method is to weigh a certain quality of salt (the choice of salt depends on the acid used for back extraction, for example, if sulfuric acid is used for back extraction, the selected iron sulfate is dissolved). Dilute it to a certain concentration in deionized water.
  • spontaneousification refers to the conversion of hydrogen ions in the carboxylic acid extractant into alkali metal ions and/or NH 4 + (exchange with metal ions to achieve the effect of extraction), and the saponification ratio refers to The proportion of alkali metal and/or NH 4 + in the original hydrogen ion is as follows: the organic phase is mixed with the aqueous alkali solution.
  • the molar concentration of the aqueous solution of the alkali is 6 mol/L to 14 mol/L, and the alkali can be a conventional alkali in the art, preferably an inorganic alkali and/or an organic alkali.
  • the inorganic base is preferably sodium hydroxide and/or potassium hydroxide.
  • the organic base is preferably ammonia water.
  • the concentration of metal ions in the water phase is analyzed by inductively coupled plasma emission spectrometry (ICP-OES), and the concentration of metal ions in the organic phase is calculated by subtraction.
  • ICP-OES inductively coupled plasma emission spectrometry
  • the raw materials not provided for the preparation method in the following examples are all commercially available.
  • Extractant 191 is dissolved in dodecane to prepare 0.2mol/L organic phase, and 0.01mol/L Cu 2+ , Zn 2+ , Cd 2+ , Ni 2+ , Co 2+ , Mn 2+ , Ca 2 are respectively prepared + , Mg 2+ , and Li + sulfate solutions are used as the water phase.
  • the pH is controlled by 6mol/L sodium hydroxide saponification (Table 1).
  • Table 1 the extraction rate E%-pH curve of the extractant 191 for each ion is obtained.
  • Figure 1 the separation coefficient of the extractant 191 for each ion is shown in Table 2.
  • the extraction agent 191 extracts and separates the separation of the ions Cu 2+ , Zn 2+ , Cd 2+ , Ni 2+ , Co 2+ , Mn 2+ , Ca 2+ , Mg 2+ , Li +
  • the coefficients are all greater than 1, and separation can be achieved.
  • Figure 1 shows that the extraction sequence of the extractant 191 for nickel and cobalt ions is earlier than that of calcium and magnesium, and the separation coefficient of nickel, cobalt and magnesium is high. Therefore, the extractant can be used to separate non-ferrous metal ions from impurity metal ions.
  • the extractant 195 was dissolved in toluene to prepare a 0.1mol/L organic phase, and 0.005mol/L Fe 3+ , Ga 3+ , In 3+ , Sc 3+ , Cr 3+ , Al 3+ , Lu 3+ ,
  • the chloride salt solution of Ho 3+ and Gd 3+ is used as the water phase.
  • the pH is controlled by 8mol/L sodium hydroxide saponification (Table 3).
  • the extraction rate E%-pH curve of the extractant 195 for each ion is obtained. (figure 2).
  • the extractant 195 extracts and separates the ions Fe 3+ , Ga 3+ , In 3+ , Sc 3+ , Cr 3+ , Al 3+ , Lu 3+ , Ho 3+ , Gd 3+
  • the separation coefficients are greater than 1, which can effectively separate the rare earth ions, indicating that the extractant can be used to separate rare earth ions.
  • Extractant 196 is dissolved in Escaid 110 to prepare 0.6mol/L organic phase.
  • the battery material liquid contains Ni(46.20g/L), Co(20.56g/L), Mn(23.93g/L), Ca(0.43g/L) L), Mg (0.21g/L), under the condition that the ratio of the organic phase (O) to the water phase (A) is 5:1 and 8:1, the pH is controlled by 10mol/L NaOH saponification, after extraction , The extraction rate E%-pH curve of each ion of extractant 196 is obtained ( Figure 3 and Figure 4).
  • Figures 3 and 4 show that 196 selectively extracts Ni, Co, and Mn in the battery material-liquid system when the pH is less than 7.2, and the separation from Ca and Mg is relatively high; when the O/A is 8:1, When pH>6.8 ( Figure 4), the Ni, Co, and Mn in the battery liquid can be almost completely extracted, while the extraction rate of Ca and Mg is low.
  • This experiment proves that the extractant 196 has feasible application value in the recovery of battery nickel-cobalt-manganese ternary cathode materials.
  • Extraction agent 196 for the extraction performance of rare earth ions is
  • the extractant 196 is dissolved in dodecane to prepare a 2mol/L organic phase, with mixed ions La 3+ , Ce 3+ , Nd 3+ , Y 3+ , Yb 3+ chloride salt solution, and the concentration of each ion is 0.01 mol /L.
  • the pH is controlled by saponification of 10mol/L ammonia water.
  • the extraction rate E%-pH curve of the extractant 196 for each ion is obtained, as shown in Figure 5. .
  • the extractant 191 is dissolved in dodecane to prepare 0.31mol/L organic phase.
  • the aqueous phase is a high magnesium nickel chloride feed liquid containing 1.33g/L Ni and 4g/L Mg, and the organic phase is 1:1 Under the comparative conditions, the pH was controlled by 10mol/L NaOH saponification. After extraction, the extraction rate E%-pH curve of the extractant 191 for nickel and magnesium ions was obtained, as shown in Figure 6.
  • Extraction agent 199 for the extraction performance of rare earth ions is a compound having the following properties:
  • Extractant 199 is a mixed type extractant composed of the following four compounds:
  • the volume ratio of the above four compounds in the extractant 199 is 1:1:1:1, and the acid content is 92.6%.
  • Extractant 199 is dissolved in dodecane to prepare 0.2mol/L organic phase, and mixed ions La 3+ , Ce 3+ , Nd 3+ , Y 3+ , Yb 3+ nitrate solution, the concentration of each ion is 0.01 mol /L.
  • the extraction rate of each ion is shown in Table 5:
  • the extractant 199 first extracts rare earth ions other than Y 3+ , which is expected to replace naphthenic acid with unstable structure and performance.
  • Extractant 192 is dissolved in dodecane to prepare 0.6mol/L organic phase, and 0.30mol/L Lu 3+ chloride salt solution is prepared, and saponified 60% with 9mol/L ammonia water is extracted to obtain 192 organic phase with 0.10mol/L Lu
  • the organic phase is back-extracted with 1.0mol/L hydrochloric acid under the condition that the organic phase is 1:1 compared with the water phase, and the back-extraction rate is >99%, while the Lu-loaded P507 organic phase generally uses 4mol/L Hydrochloric acid stripping, the stripping rate at one time is about 80%.
  • the above results prove that when the carboxylic acid compound represented by formula I is applied to extract rare earth metals, a higher stripping rate can be obtained under the premise of lower stripping acidity.
  • the extractant 194 and the diluent Escaid 110 are configured into a 0.62mol/L solution, the water phase is 0.2mol/L NiSO 4 solution, a 250mL separatory funnel is added, 100mL organic phase is added, and 14mol/L sodium hydroxide is added for saponification 70%, add 100 mL of the water phase, and extract and equilibrate for 30 min.
  • Oil content test Separate the water phase and add H 2 SO 4 , at this time the concentration of the water phase solution [H + ] is about 1mol/L. It was extracted with CH 2 Cl 2 (30 mL ⁇ 3), the CH 2 Cl 2 layer was collected by extraction, dried with 1 g anhydrous Na 2 SO 4 to remove the water in CH 2 Cl 2 , filtered, the filtrate was rotary evaporated, and then dried with an oil pump for 30 min. The oil content extracted by the system CH 2 Cl 2 is obtained by weighing the weight of the flask before and after the rotary steaming.
  • Example 9 The difference from Example 9 is that the extractant 194 is replaced with the extractant Versatic 10 (commercially available, with an acid content of 98%).
  • Example 9 The test results of Example 9 and Comparative Example 1 are shown in Table 6.
  • the extracted oil content is about 100mg/L
  • the extracted oil content of Versatic 10 is about 6000mg/L when the equilibrium pH of the extraction system is about 8.
  • the dissolution loss of Versatic 10 in the extraction system is very large, which is easy to cause process operation. Unstable.
  • the carboxylic acid compound represented by formula I is used for extraction and separation of metal ions, it solves the problem of greater solubility of the extractant in the water phase, the process is stable, and the operating cost can be reduced by about 60 times.
  • the water phase is a high magnesium nickel chloride feed liquid containing 1.33g/L Ni and 4g/L Mg, take a 250mL separatory funnel, add 100mL organic phase , Add 10mol/L sodium hydroxide to saponify 24%, add 100mL of the water phase, and extract and equilibrate for 30min.
  • Oil content test Separate the water phase and add H 2 SO 4 , at this time the concentration of the water phase solution [H + ] is about 1mol/L. It was extracted with CH 2 Cl 2 (30 mL ⁇ 3), the CH 2 Cl 2 layer was collected by extraction, dried with 1 g anhydrous Na 2 SO 4 to remove the water in CH 2 Cl 2 , filtered, the filtrate was rotary evaporated, and then dried with an oil pump for 30 min. The oil content extracted by the system CH 2 Cl 2 is obtained by weighing the weight of the flask before and after the rotary steaming.
  • Example 10 The difference from Example 10 is that the extractant 195 is replaced with the extractant Versatic 911 (commercially available, with an acid content of 98%).
  • Example 10 The test results of Example 10 and Comparative Example 2 are shown in Table 7.
  • the diluent blank (without adding the extractant, the other operating steps are the same as in Example 10) and the water phase are equilibrated with the extracted oil content of 46mg/L, and the extractant 195 at the equilibrium pH of the extraction system is about 7.3.
  • the extracted oil content is around 75mg/L, while the Versatic 911 oil content is around 4680mg/L.
  • the dissolution loss of Versatic 911 in the extraction system is very large.
  • the carboxylic acid compound represented by formula I is used for extraction and separation of metal ions, it solves the problem of greater solubility of the extractant in the water phase, stabilizes the process, and reduces operating costs.
  • Example 1 The difference from Example 1 is that the extractant 191 is replaced with the extractant Versatic 10 (commercially available, with an acid content of 98%).
  • Example 1 The test results of Example 1 and Comparative Example 3 are shown in Table 8.
  • Example 3 The difference from Example 3 is that the extractant 196 is substituted for eighteen carbon-branched stearic acid (CORDA isostearic acid 3501, Prisorine 3501), and the extractant is dissolved in Escaid 110 to prepare 0.6mol/L organic phase, battery material liquid contains Ni(46.20g/L), Co(20.56g/L), Mn(23.93g/L), Ca(0.43g/L), Mg(0.21g/L) ), under the condition that the ratio of the organic phase (O) to the water phase (A) is 8:1, the pH is controlled by saponification of 10mol/L NaOH, after extraction, the extraction rate E of isostearic acid for each ion is obtained %-PH curve ( Figure 7).
  • CORDA isostearic acid 3501, Prisorine 3501 the extractant is dissolved in Escaid 110 to prepare 0.6mol/L organic phase
  • battery material liquid contains Ni(46.20g/L), Co(20.56g
  • Example 3 The difference from Example 3 is that the extractant 196 is replaced with sixteen-carbon linear palmitic acid, and the other steps and parameters are the same. The result shows that palmitic acid has a poor solubility in Escaid 110, and extraction experiments cannot be performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

本文公开了一种羧酸类化合物作为萃取剂的应用和金属离子萃取方法,所述羧酸类化合物具有式I所示的结构。式I所示的萃取剂的特点于羧基α位的仲碳,区别于α位的伯碳羧酸和α位的叔碳羧酸,仲碳羧酸的存在带来了恰当的位阻,对离子有较好的选择性,用于金属离子的萃取分离时,分离系数高,反萃酸度低,负载率高;并且,式I的羧酸类化合物稳定性高、水溶性低,使得萃取工艺稳定,可以减少环境污染、降低成本,具有重大的应用前景。

Description

一种羧酸类化合物作为萃取剂的应用和金属离子萃取方法 技术领域
本申请属于湿法冶金技术领域,涉及一种羧酸类化合物作为萃取剂的应用和金属离子萃取方法,例如涉及一种羧酸类化合物作为萃取剂在湿法冶金中的应用和金属离子萃取方法。
背景技术
溶剂萃取法有选择性好、金属回收率高、传质速率快等优点,是工业上有色金属和稀土元素等有价金属富集、精炼、分离、纯化等的重要环节,一直以来被众多研究者持续关注并不断发展。但随着环境保护和资源循环利用的迫切性,对萃取体系的能耗、酸耗、排污和产能等性能提出了更高的要求,为了适应更高的需求,性能更优异的萃取剂一直有着强大的现实需求。
尽管现今溶剂萃取领域有磷类、胺类、羧酸类等大量萃取剂,但随着社会的发展,现有萃取剂的性能已经不能适应新的原料、待分离组分、环境或经济成本的要求。因此改善现有萃取体系或开发新的萃取体系的相关研究备受重视。例如:P507/P204盐酸体系广泛用于稀土的分离,但P507/P204盐酸体系对重稀土的再生性能差,反萃酸度高,污染严重;C272用于镍钴的分离,但对于新型锂离子电池镍钻锰三元正极材料的回收方面,C272因在萃取镍前优先萃取钙镁,所以工序复杂;“环烷酸”的性能已不能满足从稀土混合物中萃取分离纯化钇的要求,需要研发能替代环烷酸的萃取剂;胺类萃取剂如N1923,N235等萃取金属过程中会萃取酸,易形成三相,工艺不好控制。
相对于磷类和胺类萃取剂,羧酸类用于萃取金属离子最明显的特点是价格低廉、来源丰富、酸耗低,对环境更友好,近年来多种羧酸类萃取剂被报道用 于金属的萃取。例如,叔碳羧酸Versatic 10和Versatic 911(CN110029226A一种从废旧三元锂离子正极材料中回收有价金属方法)等、新癸酸及烃氧基乙酸(CN93112500.6分离稀土金属的萃取剂)。但Versatic 10、Versatic 911和新癸酸在萃取时无论用于镍钴锰等有色金属的萃取还是用于稀土的萃取,萃取剂在水相中的溶解都较大,造成工艺不稳定、环境污染、成本高、产品提纯困难等;烃氧基乙酸被尝试用于替代环烷酸从稀土元素混合物提取分离钇(Y3 +),但在萃取时会与相改良剂醇发生酯化反应(Yanliang Wang Deqian Li et al.Separation and Purification Technology 82(2011)197–201),有效的萃取剂浓度会逐渐降低,目前还没有实现工业化应用。
上述表明,同磷类、胺类萃取剂相比羧酸类萃取剂具有多方面的独特优势,但目前被报道的羧酸类萃取剂由于其溶解性、稳定性等方面的原因大大限制了其应用或发展,因此新型高效羧酸类萃取剂有重大的应用前景,具有极大的经济、环境和社会价值。
发明内容
本申请的目的之一在于提供一种羧酸类化合物作为萃取剂的应用,尤其在于提供一种羧酸类化合物作为萃取剂在湿法冶金中的应用。所述羧酸类化合物用作萃取剂,对离子具有较好的选择性,反萃酸度低,且具有稳定性高、水溶性低、成本低等优点。
为达此目的,本申请采用如下技术方案:
本申请提供一种羧酸类化合物作为萃取剂的应用,所述羧酸类化合物具有式I所示的结构;
Figure PCTCN2021094590-appb-000001
式I中,10≤m+n≤22,例如11、12、13、14、15、16、17、18、19、20、21等,且m和n均为正整数。
所述式I所示的羧酸类萃取剂可从自然界物中提取或通过常规方法合成,用于萃取时萃取剂可为一种或多种羧酸的混合物。
示例性的,式I化合物可以参照琼斯氧化反应的方法进行制备,即铬酸在丙酮中将式I化合物对应的醇氧化为羧酸和酮的反应。该反应中的氧化剂也称琼斯试剂,即三氧化铬在浓硫酸中的溶液。式I化合物合成路线如下:
Figure PCTCN2021094590-appb-000002
可选地,10≤m+n≤20。
可选地,所述m和n各自独立地为2~20的整数,例如3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19等。
可选地,所述m和n各自独立地为2~10的整数。
可选地,所述羧酸类化合物包括如下化合物中的任意一种或至少两种组合:
Figure PCTCN2021094590-appb-000003
可选地,所述羧酸类化合物应用于金属离子的萃取分离。
本申请可选将式I所述的萃取剂用于萃取金属离子,这是由于式I化合物的特点于羧基α位的仲碳,区别于α位的伯碳羧酸和α位的叔碳羧酸,仲碳羧酸的存在带来了恰当的位阻,对离子有较好的选择性,从而实现金属离子有效的萃取分离。
可选地,所述金属离子包括Fe 3+、Al 3+、Cu 2+、Zn 2+、Cd 2+、Ni 2+、Co 2+、Mn 2+、Ca 2+、Mg 2+、Li +、Na +、K +、Cr 3+、Ga 3+、In 3+、Ti 4+、Sc 3+、Y 3+、La 3+、Ce 3+、Pr 3+、Nd 3+、Sm 3+、Eu 3+、Gd 3+、Tb 3+、Dy 3+、Ho 3+、Er 3+、Tm 3+、Yb 3+或Lu 3+中的任意一种或至少两种组合。
在不违背本领域常识的基础上,萃取分离上述元素会有料液中常规离子相伴,以上各可选条件,可任意组合,即得本申请各较佳实例。
可选地,所述金属离子包括有色金属离子和/或稀土金属离子。
可选地,所述萃取分离中,被萃取料液中与所述金属离子配伍的阴离子包括Cl 、SO 4 2—或NO 3 中的任意一种或至少两种组合。
可选地,所述羧酸类化合物应用于废锂离子电池正极材料、含镍钴废渣或镍红土矿中金属离子的萃取分离。
本申请的目的之二在于提供一种萃取有机相,所述萃取有机相中含有式I所示的羧酸类化合物;
Figure PCTCN2021094590-appb-000004
式I中,10≤m+n≤22,例如11、12、13、14、15、16、17、18、19、20、21等,且m和n均为正整数。
可选地,所述萃取有机相中还含有稀释剂。
可选地,所述萃取有机相中还含有稀释剂,可选所述稀释剂包括溶剂油、煤油、甲苯、Escaid 110、己烷、庚烷或十二烷中的任意一种或至少两种组合;所述溶剂油包括200号或260号溶剂油(即磺化煤油),所述的十二烷为正十二烷。
可选地,所述萃取有机相中,式I所示的羧酸类化合物的浓度为0.1~2.0mol/L,例如0.2mol/L、0.3mol/L、0.4mol/L、0.8mol/L、1.0mol/L、2.0mol/L等。
本申请的目的之三在于提供一种金属离子萃取方法,所述萃取方法包括如下步骤:
采用含有目的之二所述的萃取有机相对含有金属离子的萃取相进行萃取,对得到的负载有机相进行反萃,得到金属离子富集溶液和再生有机相。
可选地,所述反萃的反萃剂包括盐酸和/或硫酸。
可选地,所述反萃所用盐酸浓度为1~4mol/L,例如1.5mol/L、2mol/L、2.5mol/L、3mol/L、3.5mol/L等。
可选地,所述反萃所用硫酸浓度为0.5~4mol/L,例如1mol/L、2mol/L、3mol/L等。
可选地,所述萃取有机相和萃取相的体积比(O/A)为1:10~10:1,例如2:9、3:8、4:7、5:6、6:5、7:4、8:3、9:2等。
可选地,所述负载有机相和反萃剂的体积比(O/A)为1:10~10:1,例如2:9、3:8、4:7、5:6、6:5、7:4、8:3、9:2等,反萃一次或多次。
相较于现有技术,本申请具有如下有益效果:
(1)式I所示的萃取剂在应用于金属离子的萃取分离时,分离系数高(与Versatic 10相比,分离系数高约20~30%),反萃酸度低(1.0mol/L盐酸进行反萃的反萃率>99%),负载率高(对Ni 2+的饱和容量约为16.9g/L)等;
(2)式I所示的羧酸类化合物稳定性高、水溶性低(在萃取体系平衡pH=8~9时所提取出油含量在100mg/L左右),使得萃取工艺稳定,可以减少环境污染、降低成本;
(3)式I所示的萃取剂成本低,有重大的应用前景,可用于三元电池回收、电池级硫酸镍制备等多种体系。
附图说明
图1是实施例1中萃取剂191对各个离子的萃取率E%‐pH曲线。
图2是实施例2中萃取剂195对各个离子的萃取率E%‐pH曲线。
图3是实施例3中O/A为5:1条件下萃取剂196对各个离子的萃取率E%‐pH曲线。
图4是实施例3中O/A为8:1条件下萃取剂196对各个离子的萃取率E%‐pH曲线。
图5是实施例4中萃取剂196对各个离子的萃取率E%‐pH曲线。
图6是实施例5中萃取剂191对镍和镁离子的萃取率E%‐pH曲线。
图7是对比例4中硬脂酸对各个离子的萃取率E%‐pH曲线。
具体实施方式
为便于理解本申请,本申请列举实施例如下。本领域技术人员应该明了,所述实施例仅是帮助理解本申请,不应视为对本申请的具体限制。
以下实施例实验所用涉及来源信息:
产品酸含量的电位滴定,按照文献:袁承业,胡水生;有机磷化合物的研究XVI磷化合物的长碳链烷基及烷氧基的σ p常数与集团连通性[J].化学学报,1986,44,590‐596,进行;电位滴定仪:瑞士万通907Titrando。
本申请实施例中,水相按常规方法制备,制备方法为称取一定质量的盐(盐的选择根据反萃所用的酸而定,例如反萃使用硫酸,则选择的硫酸盐铁),溶于去离子水中,稀释到一定的浓度即可。
本申请实施例中,“皂化”是指将羧酸萃取剂中的氢离子转化为碱金属离子和/或NH 4 +(与金属离子进行交换,实现萃取的作用),皂化的比例指的是碱金属和/或NH 4 +占原有的氢离子的比例,其步骤为:将有机相与碱的水溶液混合即可。所述的碱的水溶液的摩尔浓度为6mo1/L~14mol/L,所述的碱可为本领域常规的碱,较佳地为无机碱和/或有机碱。所述的无机碱较佳地为氢氧化钠和/或氢氧化钾。所述的有机碱较佳地为氨水。
本申请实施例中,萃取后,水相中金属离子浓度使用电感藕合等离子体发射光谱法(ICP‐OES)分析,有机相中金属离子浓度通过差减法计算。
以下实施例中没有提供制备方法的原料均市售可得。
以下合成例1示例性地给出式I所示的羧酸类化合物的具体制备方法和表征数据。
合成例1
萃取剂196的合成:
步骤:在圆底烧瓶中加入153g十六醇(约200mL),加入1.5倍体积300mL丙酮,缓慢加入琼斯试剂,开始温度8℃,加入后溶液变为绿色,待温度上升为14℃,降低滴加速度,温度恒定为14℃,温度下降为13℃时,加快滴加速 度,并不断搅拌,温度上升说明反应还在继续,同时可以观察溶液不分相,加冰后温度稳定在15℃,加快搅拌,温度会继续上升,停止搅拌温度在19℃稳定,点板得到产物,产物用二氯甲烷溶解,再分别用稀酸、稀碱以及蒸馏水洗涤,油水分离后旋蒸二氯甲烷,得到萃取剂196。
表征数据: 13C NMR(101MHz,CDCl3)δ183.50(s),77.43–76.83(m),76.67(s),45.65(s),32.31–31.38(m),29.37(dd,J=25.0,8.9Hz),27.35(d,J=3.4Hz),22.63(d,J=5.9Hz),14.02(d,J=4.4Hz);1H NMR(400MHz,cdcl3)δ2.24(1H),1.70(4H),1.45(20H),0.85(6H);MS:256.2.
实施例1
萃取剂191对有色金属离子的萃取性能:
萃取剂191结构为:
Figure PCTCN2021094590-appb-000005
(m=10,n=6,酸含量90%)。
萃取剂191溶解于十二烷配制成0.2mol/L有机相,分别配置0.01mol/L的Cu 2+、Zn 2+、Cd 2+、Ni 2+、Co 2+、Mn 2+、Ca 2+、Mg 2+、Li +的硫酸盐溶液作为水相。在有机相比水相为1:1的相比的条件下,通过6mol/L氢氧化钠皂化控制pH(表1),萃取后,得到萃取剂191对各个离子的萃取率E%‐pH曲线(图1),萃取剂191对于各离子之间的分离系数如表2所示。
表1:萃取剂191对各离子萃取pH 1/2
  Cu 2+ Zn 2+ Cd 2+ Ni 2+ Co 2+ Mn 2+ Ca 2+ Mg 2+ Li +
pH 1/2 4.49 5.91 6.38 6.85 7.00 7.01 7.32 7.59 9.75
表2:萃取剂191对各离子之间的分离系数
  Cu 2+ Zn 2+ Cd 2+ Ni 2+ Co 2+ Mn 2+ Ca 2+
Zn 2+ 691.83            
Cd 2+ 6025.60 8.71          
Ni 2+ 52480.75 75.86 8.71        
Co 2+ 104712.85 151.36 17.38 2.00      
Mn 2+ 109647.82 158.49 18.20 2.09 1.05    
Ca 2+ 457088.19 660.69 75.86 8.71 4.37 4.17  
Mg 2+ 1584893.19 2290.87 263.03 30.20 15.14 14.45 3.47
由表2可知,萃取剂191萃取分离各离子Cu 2+、Zn 2+、Cd 2+、Ni 2+、Co 2+、Mn 2+、Ca 2+、Mg 2+、Li +之间的分离系数都大于1,可以实现分离。
图1显示萃取剂191对镍钴离子的萃取顺序先于钙镁,且镍钴与镁分离系数高,因此该萃取剂可应用于有色金属离子与杂质金属离子分离。
实施例2
萃取剂195对三价离子的萃取性能:
萃取剂195的结构为:
Figure PCTCN2021094590-appb-000006
(m=7,n=5,酸含量93%)。
萃取剂195溶解于甲苯配制成0.1mol/L有机相,分别配置0.005mol/L的Fe 3+、Ga 3+、In 3+、Sc 3+、Cr 3+、Al 3+、Lu 3+、Ho 3+、Gd 3+的氯化盐溶液作为水相。在有机相比水相为1:1的相比的条件下,通过8mol/L氢氧化钠皂化控制pH(表3),萃取后,得到萃取剂195对各个离子的萃取率E%‐pH曲线(图2)。
表3:萃取剂195对各离子萃取pH 1/2
  Fe 3+ Ga 3+ In 3+ Sc 3+ Cr 3+ Al 3+ Lu 3+ Ho 3+ Gd 3+
pH 1/2 1.94 2.60 2.69 2.97 3.03 3.60 5.06 5.26 5.46
表4:萃取剂195对各离子之间的分离系数
  Fe 3+ Ga 3+ In 3+ Sc 3+ Cr 3+ Lu 3+ Ho 3+
Ga 3+ 95.50            
In 3+ 177.83 1.86          
Sc 3+ 1230.27 12.88 6.92        
Cr 3+ 1862.09 19.50 10.47 1.51      
Al 3+ 95499.26 1000.00 537.03 77.62 51.29    
Ho 3+ / / / / / 3.98  
Gd 3+ / / / / / 15.85 3.98
由图2和表4可知,萃取剂195萃取分离各离子Fe 3+、Ga 3+、In 3+、Sc 3+、Cr 3+、Al 3+、Lu 3+、Ho 3+、Gd 3+之间的分离系数都大于1,能将各个稀土离子有效分离,说明该萃取剂可应用于分离稀土离子。
实施例3
萃取剂196对电池料液中Ni/Co/Mn/Ca/Mg混合离子的萃取性能:
萃取剂196的结构为:
Figure PCTCN2021094590-appb-000007
(m=6,n=8所对应的化合物,通过醇的氧化获得,酸含量97%)。
萃取剂196溶解于Escaid 110配制成0.6mol/L有机相,电池料液中含有Ni(46.20g/L),Co(20.56g/L),Mn(23.93g/L),Ca(0.43g/L),Mg(0.21g/L),在有机相(O)比水相(A)为5:1和8:1的相比的条件下,通过10mol/L的NaOH皂化控制pH,萃取后,得到萃取剂196对各个离子的萃取率E%‐pH曲线(图3 和图4)。
图3和图4中显示,196在电池料液体系中,在pH<7.2时选择性的萃取Ni、Co、Mn,与Ca、Mg的分离度较高;当O/A为8:1、pH>6.8时(图4),可将电池料液中的Ni、Co、Mn几乎完全萃取,同时Ca、Mg的萃取率较低。此实验证明,萃取剂196在电池镍钴锰三元正极材料的回收方面有可行性的应用价值。
实施例4
萃取剂196对稀土离子萃取性能:
萃取剂196溶解于十二烷配制成2mol/L有机相,配置混合离子La 3+、Ce 3+、Nd 3+、Y 3+、Yb 3+氯化盐溶液,各个离子的浓度为0.01mol/L。在有机相比水相为1:1的相比的条件下,通过10mol/L氨水皂化控制pH,萃取后,得到萃取剂196对各个离子的萃取率E%‐pH曲线,如图5所示。
由图5可以看出,萃取剂196对稀土离子的萃取能力从重稀土到轻稀土逐渐减弱,萃取顺序同P507一致,可实现对稀土离子的分离。
实施例5
萃取剂191对高镁氯化镍料液的萃取:
萃取剂191溶解于十二烷配制成0.31mol/L有机相,水相为含1.33g/L Ni和4g/L Mg的高镁氯化镍料液,在有机相比水相为1:1的相比的条件下,通过10mol/L NaOH皂化控制pH,萃取后,得到萃取剂191对镍和镁离子的萃取率E%‐pH曲线,如图6所示。
由图6可知,萃取剂191对镍的萃取顺序在镁之前,镍和镁的分离系数大约为833,由此说明萃取剂191可实现对镍和镁的分离。
实施例6
萃取剂199对稀土离子萃取性能:
萃取剂199为一种混合型萃取剂,由如下四种化合物组成:
Figure PCTCN2021094590-appb-000008
(m为8,n为2,m+n=10)、
Figure PCTCN2021094590-appb-000009
(m为7,n为9,m+n=16)、
Figure PCTCN2021094590-appb-000010
(m为10,n为8,m+n=18)、
Figure PCTCN2021094590-appb-000011
(m为10,n为10,m+n=20)。
萃取剂199中上述四种化合物的体积比为1:1:1:1,酸含量92.6%。
萃取剂199溶解于十二烷配制成0.2mol/L有机相,配置混合离子La 3+、Ce 3+、Nd 3+、Y 3+、Yb 3+硝酸盐溶液,各个离子的浓度为0.01mol/L。相比O/A为1:1,通过10mol/L氢氧化钾皂化30%,对各离子的萃取率如下表5:
表5:萃取剂199对各离子的萃取率
  Nd 3+ Ce 3+ Yb 3+ La 3+ Y 3+
pH=3.89 23.58 17.26 13.87 10.58 9.47
由表5可以看出,萃取剂199则是先萃取除Y 3+以外的稀土离子,有望替代结构和性能不稳定的环烷酸。
实施例7
萃取剂196对Ni 2+饱和容量测试:
实验方法:取一个50mL分液漏斗,加入0.6mol/L的196‐十二烷有机相10mL,用10mol/L的NaOH皂化60%,加入50g/L的NiSO 4水相10mL,振荡混合15min;分出水相,再加入新鲜50g/L的NiSO 4水相10mL,振荡混合15min; 重复前述操作直至水相中离子浓度不在发生变化,此时有机相中金属的浓度为萃取剂的饱和容量。反萃有机相得萃取剂196对Ni 2+的饱和容量约为16.9g/L。
实施例8
萃取剂192负载稀土离子后的反萃性能:
萃取剂192的结构为:
Figure PCTCN2021094590-appb-000012
(m=8,n=2,通过醇的氧化获得,酸含量95%)。
萃取剂192溶解于十二烷配制成0.6mol/L有机相,配置0.30mol/L的Lu 3+氯化盐溶液,用9mol/L氨水皂化60%萃取得负载0.10mol/L Lu的192有机相,在有机相比水相为1:1的相比的条件下用1.0mol/L盐酸对有机相进行反萃,反萃率>99%,而负载Lu的P507有机相一般用4mol/L盐酸反萃,一次反萃率约80%。上述结果证明式I所示的羧酸化合物应用于萃取稀土金属时,在较低反萃酸度的前提下能够获得较高的反萃率。
萃取剂194和萃取剂Versatic 10在萃取体系中的溶解性实验(实施例9和对比例1):
实施例9
萃取剂194的结构为:
Figure PCTCN2021094590-appb-000013
(m=6,n=6,通过醇的氧化获得,酸含量99%)。
萃取:将萃取剂194与稀释剂Escaid 110配置成0.62mol/L溶液,水相为0.2mol/L NiSO 4溶液,取一个250mL分液漏斗,加入100mL有机相,加入14mol/L氢氧化钠皂化70%,加入水相100mL,萃取平衡30min。
油含量测试:分出水相加入H 2SO 4,此时水相溶液[H +]浓度约为1mol/L。用CH 2Cl 2萃取(30mL×3),萃取收集CH 2Cl 2层,用1g无水Na 2SO 4干燥除CH 2Cl 2中的水,过滤,滤液旋蒸,再用油泵干燥30min。通过称量旋蒸前后烧瓶的重量得出体系CH 2Cl 2萃取出的油含量。
对比例1
与实施例9的区别在于,将萃取剂194替换为萃取剂Versatic 10(市售,酸含量98%)。
实施例9和对比例1的测试结果如表6所示。
表6:萃取剂194和Versatic 10在萃取体系中的溶解度
Figure PCTCN2021094590-appb-000014
通过以上实验可知,稀释剂空白(不添加萃取剂,其他操作步骤均与实施例8相同)与水相平衡后所提取出油含量46mg/L,萃取剂194在萃取体系平衡pH=8~9时所提取出油含量在100mg/L左右,而Versatic 10在萃取体系平衡pH约为8时所提取出油含量在6000mg/L左右,萃取体系中Versatic 10的溶解损失很大,易造成工艺运行不稳定。式I所示的羧酸类化合物用于金属离子萃取分离时,解决了萃取剂在水相中溶解度较大的问题,工艺运行稳定,运行成本可以降低约60倍。
萃取剂195和萃取剂Versatic 911在萃取体系中的溶解性实验(实施例10和对比例2):
实施例10
将萃取剂195与稀释剂Escaid110配置成0.62mol/L溶液,水相为含1.33g/L Ni和4g/L Mg的高镁氯化镍料液,取一个250mL分液漏斗,加入100mL有机相,加入10mol/L氢氧化钠皂化24%,加入水相100mL,萃取平衡30min。
油含量测试:分出水相加入H 2SO 4,此时水相溶液[H +]浓度约为1mol/L。用CH 2Cl 2萃取(30mL×3),萃取收集CH 2Cl 2层,用1g无水Na 2SO 4干燥除CH 2Cl 2中的水,过滤,滤液旋蒸,再用油泵干燥30min。通过称量旋蒸前后烧瓶的重量得出体系CH 2Cl 2萃取出的油含量。
对比例2
与实施例10的区别在于,将萃取剂195替换为萃取剂Versatic 911(市售,酸含量98%)。
实施例10和对比例2的测试结果如表7所示。
表7:萃取剂195和versatic 911在萃取体系中的溶解度
Figure PCTCN2021094590-appb-000015
通过以上实验可知,稀释剂空白(不添加萃取剂,其他操作步骤均与实施例10相同)与水相平衡后所提取出油含量46mg/L,萃取剂195在萃取体系平衡pH约为7.3时所提取出油含量在75mg/L左右,而Versatic 911油含量在4680mg/L左右,萃取体系中Versatic 911的溶解损失很大。式I所示的羧酸类化合物用于金属离子萃取分离时,解决了萃取剂在水相中溶解度较大的问题,工艺稳定,降低运行成本。
对比例3
与实施例1的区别在于,将萃取剂191替换为萃取剂Versatic 10(市售,酸含量98%)。
实施例1和对比例3的测试结果如表8所示。
表8:萃取剂191和Versatic 10对各离子的分离系数
Figure PCTCN2021094590-appb-000016
由表8可知,相同实验条件下,与Versatic 10相比,萃取剂191对各离子的分离系数较高,高约20~30%。在半萃pH下,萃取剂191对Ni/Mg和Ni/Zn的分离系数分别为30.2和75.86,而Versatic 10对Ni/Mg和Ni/Zn的分离系数分别为23.00和57.89,由此说明萃取剂191相比于Versatic 10对离子有更好的分离效果。
对比例4
与实施例3的区别在于,将萃取剂196替换十八个碳带支链的硬脂酸(英国禾大(CORDA)异硬脂酸3501,Prisorine 3501),该萃取剂溶解于Escaid 110配制成0.6mol/L有机相,电池料液中含有Ni(46.20g/L),Co(20.56g/L),Mn(23.93g/L),Ca(0.43g/L),Mg(0.21g/L),在有机相(O)比水相(A)为8:1的相比的条件下,通过10mol/L的NaOH皂化控制pH,萃取后,得到异硬脂酸对各个离子的萃取率E%‐pH曲线(图7)。观察实验现象,该萃取剂在电池料液体系中,当水相平衡pH大于5.33时,分相现象变差,水相呈浑浊粘稠状态,有机相颜色逐渐为无色;由图7可知,当水相平衡pH大于5.33时,该 萃取剂对金属离子的萃取能力下降,以上结果表明萃取剂硬脂酸在电池镍钴锰三元正极材料的回收方面可行性不好。
对比例5
与实施例3的区别在于,将萃取剂196替换为十六个碳直链的软脂酸,其他步骤和参数均相同,结果表明软脂酸在Escaid 110中溶解度不好,无法进行萃取实验。
申请人声明,本申请通过上述实施例来说明本申请的详细方法,但本申请并不局限于上述详细方法,即不意味着本申请必须依赖上述详细方法才能实施。

Claims (10)

  1. 一种羧酸类化合物作为萃取剂的应用,其中,所述羧酸类化合物具有式I所示的结构:
    Figure PCTCN2021094590-appb-100001
    式I中,10≤m+n≤22,且m和n均为正整数。
  2. 根据权利要求1所述的应用,其中,10≤m+n≤20。
  3. 根据权利要求1或2所述的应用,其中,所述m和n各自独立地为2~20的整数。
  4. 根据权利要求1~3中任一项所述的应用,其中,所述m和n各自独立地为2~10的整数。
  5. 根据权利要求1~3中任一项所述的应用,其中,所述羧酸类化合物包括如下化合物中的任意一种或至少两种组合:
    Figure PCTCN2021094590-appb-100002
  6. 根据权利要求1~5中任一项所述的应用,其中,所述羧酸类化合物应用于金属离子的萃取分离;
    可选地,所述金属离子包括Fe 3+、Al 3+、Cu 2+、Zn 2+、Cd 2+、Ni 2+、Co 2+、Mn 2+、Ca 2+、Mg 2+、Li +、Na +、K +、Cr 3+、Ga 3+、In 3+、Ti 4+、Sc 3+、Y 3+、La 3+、Ce 3+、Pr 3+、 Nd 3+、Sm 3+、Eu 3+、Gd 3+、Tb 3+、Dy 3+、Ho 3+、Er 3+、Tm 3+、Yb 3+或Lu 3+中的任意一种或至少两种组合。
  7. 根据权利要求6所述的应用,其中,所述金属离子包括有色金属离子和/或稀土金属离子。
  8. 根据权利要求6或7所述的应用,其中,所述萃取分离中,被萃取料液中与所述金属离子配伍的阴离子包括Cl 、SO 4 2—或NO 3 中的任意一种或至少两种组合;
    可选地,所述羧酸类化合物应用于废锂离子电池正极材料、含镍钴废渣或镍红土矿中金属离子的萃取分离。
  9. 一种萃取有机相,其中,所述萃取有机相中含有式I所示的羧酸类化合物;
    Figure PCTCN2021094590-appb-100003
    式I中,10≤m+n≤22,且m和n均为正整数;
    可选地,所述萃取有机相中还含有稀释剂;
    可选地,所述萃取有机相中,式I所示的羧酸类化合物的浓度为0.1~2.0mol/L。
  10. 一种金属离子萃取方法,其包括如下步骤:
    采用权利要求9所述的萃取有机相对含有金属离子的萃取相进行萃取,对得到的负载有机相进行反萃,得到金属离子富集溶液和再生有机相;
    可选地,所述反萃的反萃剂包括盐酸和/或硫酸;
    可选地,所述反萃所用盐酸浓度为1~4mol/L;
    可选地,所述反萃所用硫酸浓度为0.5~4mol/L;
    可选地,所述萃取有机相和萃取相的体积比为1:10~10:1;
    可选地,所述负载有机相和反萃剂的体积比为1:10~10:1。
PCT/CN2021/094590 2020-05-27 2021-05-19 一种羧酸类化合物作为萃取剂的应用和金属离子萃取方法 WO2021238738A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227045096A KR20230015427A (ko) 2020-05-27 2021-05-19 추출제로서의 카르복실산계 화합물의 응용 및 금속 이온 추출방법
CA3179893A CA3179893A1 (en) 2020-05-27 2021-05-19 Applications of carboxylic compound serving as extracting agent and metal ion extraction method
EP21813087.0A EP4159881A4 (en) 2020-05-27 2021-05-19 APPLICATIONS OF CARBOXYLIC COMPOUND AS EXTRACTION AGENT AND METHOD FOR EXTRACTION OF METAL IONS
US17/927,036 US20230243016A1 (en) 2020-05-27 2021-05-19 Applications of carboxylic compound serving as extracting agent and metal ion extraction method
AU2021280800A AU2021280800B2 (en) 2020-05-27 2021-05-19 Applications of carboxylic compound serving as extracting agent and metal ion extraction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010463421.3A CN113736995A (zh) 2020-05-27 2020-05-27 一种羧酸类化合物作为萃取剂的应用和金属离子萃取方法
CN202010463421.3 2020-05-27

Publications (1)

Publication Number Publication Date
WO2021238738A1 true WO2021238738A1 (zh) 2021-12-02

Family

ID=78723880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094590 WO2021238738A1 (zh) 2020-05-27 2021-05-19 一种羧酸类化合物作为萃取剂的应用和金属离子萃取方法

Country Status (7)

Country Link
US (1) US20230243016A1 (zh)
EP (1) EP4159881A4 (zh)
KR (1) KR20230015427A (zh)
CN (1) CN113736995A (zh)
AU (1) AU2021280800B2 (zh)
CA (1) CA3179893A1 (zh)
WO (1) WO2021238738A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261647A (zh) * 2022-08-05 2022-11-01 成都理工大学 吗啉羧酸离子液体及其萃取分离钐的方法
CN116555568A (zh) * 2023-05-17 2023-08-08 四川长晏科技有限公司 一种在强酸性体系中萃取金属离子的方法
CN117758068A (zh) * 2024-02-22 2024-03-26 中国恩菲工程技术有限公司 一种石煤制备硫酸氧钒的方法
WO2024108267A1 (en) * 2022-11-25 2024-05-30 Element 25 Limited Process for the extraction of manganese

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3507645A (en) * 1967-02-27 1970-04-21 Shell Oil Co Separation process
SU465900A1 (ru) * 1973-02-27 1978-07-30 Московский Ордена Трудового Красного Знамени Институт Физической Химии Ан Ссср Способ разделени редкоземельных элементов
US4169809A (en) * 1978-04-14 1979-10-02 Halcon Research & Development Corporation Extractive purification of carboxylic acids containing monovalent and trivalent thallium carboxylates
CN101665426A (zh) * 2009-09-29 2010-03-10 上海立科化学科技有限公司 制备2-烷基羧酸的方法
CN110029226A (zh) 2019-05-05 2019-07-19 中南大学 一种从废旧三元锂离子正极材料中回收有价金属方法
CN110339592A (zh) * 2019-07-22 2019-10-18 山东大学 基于脂肪酸的重金属离子萃取剂及制备方法与萃取方法
CN110408777A (zh) * 2019-07-25 2019-11-05 厦门熙途科技有限公司 一种脂肪酸萃取金属离子的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1524775A (en) * 1977-05-05 1978-09-13 Kagna S S And others method of preparing a higher branched saturated carboxylic acid
CA1095731A (en) * 1977-12-28 1981-02-17 Juraj Babjak Stripping of cobalt from nickel-cobalt loaded organic
AU779001B2 (en) * 2000-07-19 2004-12-23 Canopean Pty Ltd Process for the extraction of metals
AUPQ886300A0 (en) * 2000-07-19 2000-08-10 Canopean Pty Ltd Process for extraction of metals
WO2006029439A1 (en) * 2004-09-13 2006-03-23 Canopean Pty. Ltd Process for preparing nickel loaded organic extractant solution
CN101260466B (zh) * 2007-02-08 2010-07-14 有研稀土新材料股份有限公司 一种有机萃取剂的预处理方法及其应用
KR101394646B1 (ko) * 2012-08-27 2014-05-13 한국지질자원연구원 혼합 추출제의 스크린 효과에 의한 코발트의 추출거동 억제 및 망간의 선택적인 회수방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3507645A (en) * 1967-02-27 1970-04-21 Shell Oil Co Separation process
SU465900A1 (ru) * 1973-02-27 1978-07-30 Московский Ордена Трудового Красного Знамени Институт Физической Химии Ан Ссср Способ разделени редкоземельных элементов
US4169809A (en) * 1978-04-14 1979-10-02 Halcon Research & Development Corporation Extractive purification of carboxylic acids containing monovalent and trivalent thallium carboxylates
CN101665426A (zh) * 2009-09-29 2010-03-10 上海立科化学科技有限公司 制备2-烷基羧酸的方法
CN110029226A (zh) 2019-05-05 2019-07-19 中南大学 一种从废旧三元锂离子正极材料中回收有价金属方法
CN110339592A (zh) * 2019-07-22 2019-10-18 山东大学 基于脂肪酸的重金属离子萃取剂及制备方法与萃取方法
CN110408777A (zh) * 2019-07-25 2019-11-05 厦门熙途科技有限公司 一种脂肪酸萃取金属离子的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ACTA CHIMICA SINICA, vol. 44, 1986, pages 590 - 596
See also references of EP4159881A4
YANLIANG WANG DEQIAN ET AL., SEPARATION AND PURIFICATION TECHNOLOGY, vol. 82, 2011, pages 197 - 201

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261647A (zh) * 2022-08-05 2022-11-01 成都理工大学 吗啉羧酸离子液体及其萃取分离钐的方法
WO2024108267A1 (en) * 2022-11-25 2024-05-30 Element 25 Limited Process for the extraction of manganese
CN116555568A (zh) * 2023-05-17 2023-08-08 四川长晏科技有限公司 一种在强酸性体系中萃取金属离子的方法
CN117758068A (zh) * 2024-02-22 2024-03-26 中国恩菲工程技术有限公司 一种石煤制备硫酸氧钒的方法
CN117758068B (zh) * 2024-02-22 2024-06-04 中国恩菲工程技术有限公司 一种石煤制备硫酸氧钒的方法

Also Published As

Publication number Publication date
EP4159881A1 (en) 2023-04-05
KR20230015427A (ko) 2023-01-31
EP4159881A4 (en) 2024-08-14
CN113736995A (zh) 2021-12-03
US20230243016A1 (en) 2023-08-03
AU2021280800B2 (en) 2024-06-13
CA3179893A1 (en) 2021-12-02
AU2021280800A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
WO2021238738A1 (zh) 一种羧酸类化合物作为萃取剂的应用和金属离子萃取方法
KR20230015426A (ko) 카르복실산계 화합물, 그의 제조방법 및 응용
CN111020188B (zh) 一种萃取剂及其制备方法与应用
WO2022110821A1 (zh) 一种羧酸类化合物及其制备方法与应用
TW201945055A (zh) 錯合反應協同溶劑萃取回收金屬之方法
CN107815542A (zh) 一种用于酸性溶液中镍选择性萃取的协同萃取剂及方法
CN110042234A (zh) 一种萃取剂及其制备方法与应用
CN112342387A (zh) 一种镍和镁的分离方法及其应用
Su et al. An efficient and sustainable [P6, 6, 6, 14] 2 [BDOAC] ionic liquid based extraction–precipitation strategy for rare earth recovery
CN107557598A (zh) 制备钒电解液的方法
WO2019114815A1 (zh) 一种锂元素的萃取溶剂及其萃取方法
JP5734268B2 (ja) ニッケル抽出方法
US3936494A (en) Naphthenohydroxamic acid preparation
Xu et al. Mextral® 6103H/naphthenic acid/TOPO synergistic extraction system for recovery of nickel and cobalt from nickel laterite
PH12016502610B1 (en) Ion exchange resin and method for adsorbing and separating metal
CN116356142A (zh) 一种双吡啶基萃取剂及其制备方法和作为镍钴萃取剂的应用
AU2021344703B2 (en) Method for separating nickel from lithium, and application thereof
JPH11179104A (ja) 遷移金属抽出剤及び遷移金属抽出方法
CN111747985B (zh) 一种苯氧基双羧酸型功能化离子液体的制备及应用
JP7578803B2 (ja) カルボン酸類化合物、その調製方法及び使用
CN112725626B (zh) 一种萃取有机进料制备电池级镍钴锰的方法
CN112442605A (zh) 一种分离镍和镁的方法及其应用
CN115261647A (zh) 吗啉羧酸离子液体及其萃取分离钐的方法
CN118480697A (zh) 协同萃取剂及其制备和在镍和/或钴萃取中的应用
CN116240377A (zh) 一种提高二硫代膦酸类萃取剂萃取及反萃性能的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3179893

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227045096

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021813087

Country of ref document: EP

Effective date: 20230102

ENP Entry into the national phase

Ref document number: 2021280800

Country of ref document: AU

Date of ref document: 20210519

Kind code of ref document: A