WO2021260936A1 - 電池システム、制御装置及び制御方法 - Google Patents
電池システム、制御装置及び制御方法 Download PDFInfo
- Publication number
- WO2021260936A1 WO2021260936A1 PCT/JP2020/025318 JP2020025318W WO2021260936A1 WO 2021260936 A1 WO2021260936 A1 WO 2021260936A1 JP 2020025318 W JP2020025318 W JP 2020025318W WO 2021260936 A1 WO2021260936 A1 WO 2021260936A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switches
- state
- battery
- control unit
- battery units
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M10/4264—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/441—Methods for charging or discharging for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/509—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
- H01M50/512—Connection only in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
- H02J7/0019—Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0031—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
- H02J7/0032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits disconnection of loads if battery is not under charge, e.g. in vehicle if engine is not running
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0063—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0068—Battery or charger load switching, e.g. concurrent charging and load supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/345—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a battery system, a control device and a control method.
- a secondary battery that charges and discharges by moving metal ions between a positive electrode and a negative electrode exhibits a high voltage and a high energy density
- a lithium ion secondary battery is typically used.
- an active material capable of holding lithium is introduced into the positive electrode and the negative electrode, and charging / discharging is performed by exchanging lithium ions between the positive electrode active material and the negative electrode active material.
- Patent Document 1 discloses a high-power lithium metal anode secondary battery using an ultrathin lithium metal anode.
- Patent Document 2 discloses a lithium secondary battery in which a lithium metal is formed on a negative electrode current collector in which metal particles are formed.
- a secondary battery that holds a carrier metal by precipitating a carrier metal such as lithium on the surface of the negative electrode is an inactivated carrier in which dendrite (potential from the negative electrode is not applied) on the surface of the negative electrode by repeating charging and discharging. Metal) is easily formed. Therefore, the capacity is likely to decrease and the cycle characteristics are not sufficient.
- An object of the present invention is to provide a battery system, a control device, and a control method capable of improving the cycle characteristics of a secondary battery that holds a carrier metal by precipitating the carrier metal on the surface of the negative electrode.
- the battery system corresponds to a plurality of battery units and a plurality of battery units, each of which includes at least one battery cell containing no negative electrode active material in the negative electrode and is arranged so as to be connectable in parallel with each other.
- a plurality of switches provided separately and capable of switching between a first state in which the battery unit is connected to the charging path or the discharging path and a second state in which the battery unit is not connected to either the charging path or the discharging path.
- a charge control unit that executes charge control of a plurality of battery units by controlling the switching of a plurality of switches
- a discharge control unit that executes discharge control of a plurality of battery units by controlling the switching of a plurality of switches.
- the charge control unit sets a selected switches (a is an integer of 2 or more) in the first state at the same time among the plurality of switches, and a among the plurality of switches.
- the discharge control unit includes a first switch control unit that simultaneously puts a switch other than the switches into the second state, and the discharge control unit simultaneously performs the first b switches (b is an integer smaller than a) selected from the plurality of switches. It includes a second switch control unit that puts a state into a state and simultaneously puts a switch other than the b switch among a plurality of switches into the second state.
- a battery unit in the battery unit configured to include the secondary battery containing no negative electrode active material in the negative electrode, in the charge control, a battery unit is connected to the charge path by the first switch control unit.
- the second switch control unit discharges b battery units, which are less than a. Therefore, the charge rate of each battery cell decreases and the discharge rate increases. This improves the cycle characteristics of each battery cell.
- the present invention it is possible to provide a battery system, a control device, and a control method capable of improving the cycle characteristics of a secondary battery that holds a carrier metal by precipitating the carrier metal on the surface of the negative electrode.
- FIG. 1 is a block diagram showing an example of a schematic configuration of a battery system 1 according to an embodiment of the present invention.
- the battery system 1 includes, for example, a battery pack 100, a charger 200, a load 300, and a battery management system (BMS) 400.
- the battery pack 100 includes a plurality of secondary battery cells 10 arranged so as to be connectable in parallel with each other.
- the secondary battery cell 10 included in the battery pack 100 can be connected to the charger 200, for example, and can be charged by the charging current supplied by the charger 200 under the control of the BMS 400.
- the secondary battery cell 10 included in the battery pack 100 is connected to the load 300, for example, and can supply a current to the load 300 under the control of the BMS 400.
- the battery pack 100 includes, for example, a plurality of battery units 110, a switch 120 provided for each battery unit 110, a current sensor 130 provided for each battery unit, a voltage sensor 140, a converter 150, and a buffer capacitor 160. And include.
- the plurality of battery units 110 are arranged so as to be connectable to each other in parallel.
- the number of battery units 110 included in the battery pack 100 is not particularly limited.
- the battery unit 110 includes at least one secondary battery cell 10 connected in parallel with each other.
- each battery unit 110 includes three secondary battery cells 10.
- the secondary battery cell 10 may be configured by a single unit battery cell, or may be configured by connecting a plurality of unit battery cells in series.
- the configuration of the secondary battery cell 10 may be adjusted according to, for example, the load 300.
- the secondary battery cells 10 included in the battery unit 110 may have the same characteristics or may have different characteristics. The details of the configuration of the secondary battery cell 10 will be described later.
- the switch 120 is composed of semiconductor switch elements such as field effect transistors and MOSFETs. One end of the switch 120 is connected to one end of the battery unit 110. The other end of the switch 120 is connected to the charger 200 and / or the load 300 via the converter 150.
- the switch 120 has a state in which the battery unit 110 is connected to the charging path and / or the discharging path (first state) based on the control signal supplied from the BMS 400, and the battery unit 110 is connected to both the charging path and the discharging path. It is possible to switch between the non-connected state (second state).
- the charging path is a current supply path (charging path) from the charger 200.
- the discharge path is a current supply path (discharge path) to the load 300.
- the current sensor 130 is connected in series with the battery unit 110.
- the current sensor 130 detects the current flowing through the battery unit 110 and supplies the current value to the BMS 400.
- the voltage sensor 140 is connected in parallel to a plurality of battery units 110.
- the voltage sensor 140 detects the voltage across each battery unit 110 and supplies the voltage value to the BMS 400.
- the buffer capacitor 160 can reduce the charging current of the battery unit 110 by absorbing at least a part of the current supplied from the charger 300 to the battery unit 110 based on the control signal supplied from the BMS 400. .. This makes it possible to keep the charging rate of the battery unit 110 low even when the supply current of the charger 200 is large.
- the converter 150 steps down the voltage on the battery unit 110 side and applies it to the load 300 side based on the control signal supplied from the BMS 400, thereby reducing the discharge current of the battery unit 110 and supplying the converter 150 to the load 300. Can be done. This makes it possible to keep the discharge rate of the battery unit 110 high even when the required current of the load 300 is small.
- the charger 200 is provided with, for example, a charging connector to which a charging plug connected to an external power source can be connected, and is configured to convert the power supplied from the external power source into the charging power of the secondary battery cell 10.
- the current sensor 201 is connected in series with the charger 200, detects the current (supply current) from the charger 200 to the battery pack 100, and supplies the current value to the BMS 400.
- the load 300 is not particularly limited, but may be configured as, for example, a drive device for an electric vehicle (electric vehicle, hybrid vehicle) or the like.
- the current sensor 301 is connected in series with the load 300, detects the current (load current) from the battery pack 100 to 300, and supplies the current value to the BMS 400.
- the BMS 400 is a controller including, for example, a memory 401 and a CPU 402, and controls charging and discharging of the secondary battery cell 10 included in the battery pack 100.
- the memory 401 is composed of, for example, a RAM, a ROM, a semiconductor memory, a magnetic disk device, an optical disk device, etc., and stores a driver program, an operating system program, an application program, data, etc. used for processing by the CPU 402.
- the various programs may be installed in the storage unit 22 from a computer-readable portable recording medium such as a CD-ROM or a DVD-ROM using a known setup program or the like.
- the CPU 402 includes one or more processors and their peripheral circuits, and controls the overall operation of the BMS 400 in an integrated manner.
- the CPU 402 executes processing based on a program (operating system program, driver program, application program, etc.) stored in the memory 401.
- FIG. 2 is a diagram showing an example of a schematic configuration of the secondary battery cell 10.
- a positive electrode 11, a negative electrode 12 having no negative electrode active material, a separator 13 arranged between the positive electrode 11 and the negative electrode 12, and the like are sealed in the exterior body 14.
- the pouch cell is configured so that the positive electrode terminal 15 and the negative electrode terminal 16 connected to the positive electrode 11 and the negative electrode 12, respectively, extend to the outside of the exterior body 14 and can be connected to an external circuit.
- the upper surface and the lower surface of the secondary battery cell 10 are flat surfaces, and the shape thereof is not limited to this, and may be any shape (for example, circular shape, etc.) depending on the application and the like. can.
- the positive electrode 11 is not particularly limited as long as it is generally used for a secondary battery, but a known material can be appropriately selected depending on the use of the secondary battery and the type of carrier metal. From the viewpoint of increasing the stability and output voltage of the secondary battery, the positive electrode 11 preferably has a positive electrode active material.
- the positive electrode active material is a substance for retaining metal ions on the positive electrode and serves as a host material for metal ions.
- the material of the positive electrode active material is not particularly limited, and examples thereof include metal oxides and metal phosphates.
- the metal oxide is not particularly limited, and examples thereof include a cobalt oxide-based compound, a manganese oxide-based compound, and a nickel oxide-based compound.
- the metal phosphate is not particularly limited, and examples thereof include iron phosphate compounds and cobalt phosphate compounds.
- the positive electrode active material is referred to as, for example, lithium nickel cobalt aluminum oxide (NCA, LiNiCoAlO 2 ), lithium nickel cobalt magnesium oxide (LiNiCoMnO 2 , NCM), and the element ratio. It may be referred to as NCM622, NCM523, NCM811, etc.), lithium cobaltate (LCO, LiCoO 2 ), lithium iron phosphate (LFP, LiFePO 4 ), and the like.
- the positive electrode active material as described above one type may be used alone or two or more types may be used in combination.
- the content of the positive electrode active material may be, for example, 50% by mass or more and 100% by mass or less with respect to the entire positive electrode 11.
- the positive electrode 11 may contain a component other than the positive electrode active material.
- Such components include, but are not limited to, known conductive aids, binders, solid polymer electrolytes, and inorganic solid electrolytes.
- the positive electrode 11 may include a binder.
- a binder for example, a fluorine-based binder, an aqueous-based binder, and an imide-based binder are used.
- a binder include polyvinylidene fluoride (PvDF), a mixture of styrene-butadiene rubber and carboxymethyl cellulose (SBR-CMC), polyacrylic acid (PAA), lithium polyacrylate (Li-PAA), and polyimide. (PI), polyamide-imide (PAI), aramid and the like are used.
- the binder content may be, for example, 0.5% by mass and 30% by mass or less with respect to the entire positive electrode 11.
- the positive electrode 11 may contain a conductive auxiliary agent.
- the conductive auxiliary agent include carbon black, acetylene black (AB), carbon nanofiber (VGCF), single-walled carbon nanotube (SWCNT), and multi-walled carbon nanotube (MWCNT).
- the content of the conductive auxiliary agent may be, for example, 0.5% by mass and 30% by mass or less with respect to the entire positive electrode 11.
- the weight per unit area of the positive electrode 11 is, for example, 10-40 mg / cm 2 .
- the thickness of the positive electrode active material layer 12 is, for example, 30 to 150 ⁇ m.
- the density of the positive electrode 11 is, for example, 2.5 to 4.5 g / ml.
- the area capacity of the positive electrode 11 is, for example, 1.0 to 10.0 mAh / cm 2 .
- the area of the positive electrode 11 is preferably 10 cm 2 or more and 300 cm 2 or less, more preferably 20 cm 2 or more and 250 cm 2 or less, and further preferably 50 cm 2 or more and 200 cm 2 or less.
- the thickness (length in the vertical direction) of the positive electrode 11 is preferably 20 ⁇ m or more and 150 ⁇ m or less, more preferably 40 ⁇ m or more and 120 ⁇ m or less, and further preferably 50 ⁇ m or more and 100 ⁇ m or less.
- the negative electrode 12 does not have a negative electrode active material. It is difficult to increase the energy density of a battery having a negative electrode having a negative electrode active material due to the presence of the negative electrode active material.
- the secondary battery cell 10 of the present embodiment includes the negative electrode 12 having no negative electrode active material, such a problem does not occur. That is, the secondary battery cell 10 has a high energy density because metal is deposited on the surface of the negative electrode 12 and the deposited metal is dissolved to perform charging and discharging.
- the "negative electrode active material” means a material for holding a metal ion that becomes a charge carrier in a battery or a metal corresponding to the metal ion (hereinafter, referred to as "carrier metal") in the negative electrode 12, and is a carrier metal. It may be paraphrased as a host substance. The mechanism of such holding is not particularly limited, and examples thereof include intercalation, alloying, and occlusion of metal clusters.
- the negative electrode active material is typically a substance for retaining lithium metal or lithium ions in the negative electrode 12.
- the negative electrode active material is not particularly limited, and examples thereof include carbon-based substances, metal oxides, metals, alloys, and the like.
- the carbon-based material is not particularly limited, and examples thereof include graphene, graphite, hard carbon, mesoporous carbon, carbon nanotubes, and carbon nanohorns.
- the metal oxide is not particularly limited, and examples thereof include titanium oxide-based compounds, tin oxide-based compounds, and cobalt oxide-based compounds.
- the metal or alloy is not particularly limited as long as it can be alloyed with the carrier metal, and examples thereof include silicon, germanium, tin, lead, aluminum, gallium, and alloys containing these.
- the negative electrode 12 is not particularly limited as long as it does not have a negative electrode active material and can be used as a current collector, but for example, Cu, Ni, Ti, Fe, and other metals that do not react with Li, and , These alloys, as well as those consisting of at least one selected from the group consisting of stainless steel (SUS).
- SUS stainless steel
- various conventionally known types of SUS can be used.
- the negative electrode material as described above one type may be used alone or two or more types may be used in combination.
- the “metal that does not react with Li” means a metal that does not react with lithium ions or lithium metal to alloy under the operating conditions of the secondary battery cell 10.
- the negative electrode 12 is preferably a lithium-free electrode. According to such an aspect, the secondary battery cell 10 is more excellent in safety and productivity because it is not necessary to use a highly flammable lithium metal in the production.
- the negative electrode 12 is more preferably selected from the group consisting of Cu, Ni, and alloys thereof, and stainless steel (SUS). It consists of one kind. From the same viewpoint, the negative electrode 12 is more preferably made of Cu, Ni, or an alloy made of these, and particularly preferably made of Cu or Ni.
- the negative electrode does not have a negative electrode active material can also be said to be “zero anode” or “anode-free", and the content of the negative electrode active material in the negative electrode is 10% by mass or less with respect to the entire negative electrode. Means.
- the content of the negative electrode active material in the negative electrode is preferably 5.0% by mass or less, more preferably 1.0% by mass or less, still more preferably 0.1% by mass or less, and particularly preferably 0. It is 0% by mass or less.
- the negative electrode 12 preferably has an adhesive layer formed on the surface thereof to enhance the adhesiveness between the deposited carrier metal and the negative electrode. According to such an embodiment, when a carrier metal, particularly a lithium metal, is deposited on the negative electrode 12, the adhesiveness between the negative electrode 12 and the precipitated metal can be further improved. As a result, the peeling of the precipitated metal from the negative electrode 12 can be suppressed, so that the cycle characteristics of the secondary battery cell 10 are improved.
- Examples of the adhesive layer include metals other than the negative electrode, alloys thereof, and carbon-based substances.
- examples of adhesive layers include Au, Ag, Pt, Sb, Pb, In, Sn, Zn, Bi, Al, Ni, Cu, graphene, graphite, hard carbon, and mesoporous. Examples thereof include carbon, carbon nanotubes, and carbon nanohorns.
- the thickness of the adhesive layer is not particularly limited, but is preferably 1 nm or more and 300 nm or less, and more preferably 50 nm or more and 150 nm or less. When the adhesive layer has the above aspect, the adhesiveness between the negative electrode 12 and the precipitated metal can be improved.
- the adhesive layer corresponds to the above-mentioned negative electrode active material
- the adhesive layer is 10% by mass or less, preferably 5.0% by mass or less, and more preferably 1.0% by mass or less with respect to the negative electrode. More preferably, it is 0.1% by mass or less.
- the area of the negative electrode 12 is preferably larger than the area of the positive electrode 11, and for example, the four sides thereof are slightly larger than the positive electrode 11 (for example, about 0.5 to 1.0 mm).
- the thickness (length in the vertical direction) of the negative electrode 12 is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 1 ⁇ m or less.
- the separator 13 is a member that separates the positive electrode 11 and the negative electrode 12 to prevent a short circuit, and secures the ionic conductivity of metal ions serving as charge carriers between the positive electrode 11 and the negative electrode 12, and is a member that does not react with metal ions. Consists of. When an electrolytic solution is used, the separator 13 also plays a role of holding the electrolytic solution.
- the separator 13 preferably has a separator base material and a separator coating layer that covers the surface of the separator base material.
- the separator base material is not limited as long as it plays the above role, but is composed of, for example, porous polyethylene (PE), polypropylene (PP), or a laminated structure thereof.
- the area of the separator 13 is preferably larger than the area of the positive electrode 11 and the negative electrode 12, and the thickness is preferably, for example, 5 to 20 ⁇ m.
- the separator coating layer may cover both sides of the separator base material or only one side.
- the separator coating layer secures ionic conductivity without reacting with metal ions serving as charge carriers, and firmly adheres the separator base material to the layers adjacent to the top and bottom.
- the separator coating layer is not limited as long as it has such properties, but for example, polyvinylidene fluoride (PvDF), a mixture of styrene-butadiene rubber and carboxymethyl cellulose (SBR-CMC), polyacrylic acid (PAA), and the like. It is composed of a binder composed of lithium polyacrylic acid (Li-PAA), polyimide (PI), polyamideimide (PAI), aramid and the like.
- inorganic particles such as silica, alumina, titania, zirconia, magnesium oxide, and magnesium hydroxide may be added to the binder.
- the secondary battery cell 10 may have an electrolytic solution.
- the electrolytic solution is immersed in the separator 13.
- This electrolytic solution is a solution having ionic conductivity made by dissolving an electrolyte in a solvent and acts as a conductive path for lithium ions. Therefore, by having the electrolytic solution, the internal resistance of the secondary battery cell 10 is reduced, and the energy density and the cycle characteristics can be improved.
- a lithium salt is preferably used as the electrolyte.
- the lithium salt is not particularly limited, but is limited to LiPF6, LiBF4, lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), lithium bis (fluorosulfonyl) imide (LiFSI), LiClO4, lithium bisoxalate boron (LiBOB), and lithium.
- Bis (pentafluoroethanesulfonyl) imide (LiBETI) can be mentioned.
- LiFSI is preferable as the lithium salt from the viewpoint of further improving the cycle characteristics of the battery 1.
- the above lithium salts may be used alone or in combination of two or more.
- the solvent is not particularly limited, but is, for example, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), 1,2-dimethoxyethane (DME), diethyl carbonate (DEC), ⁇ -butyrolactone (GBL). ), 1,3-Dioxolane (DOL), and fluoroethylene carbonate (FEC).
- EC ethylene carbonate
- PC propylene carbonate
- DMC dimethyl carbonate
- DME 1,2-dimethoxyethane
- DEC diethyl carbonate
- GBL ⁇ -butyrolactone
- DOL 1,3-Dioxolane
- FEC fluoroethylene carbonate
- the exterior body 14 accommodates the positive electrode 11, the negative electrode 12, the separator 13, the electrolytic solution, and the like of the secondary battery cell 10 and seals them tightly.
- a laminated film is used as the material.
- One end of the positive electrode terminal 15 is connected to the upper surface of the positive electrode 11 (the surface opposite to the surface facing the separator 13), extends to the outside of the exterior body 14, and the other end is connected to an external circuit (not shown). Will be done.
- One end of the negative electrode terminal 16 is connected to the lower surface of the negative electrode 12 (the surface opposite to the surface facing the separator 13), extends to the outside of the exterior body 14, and the other end is connected to an external circuit (not shown). Will be done.
- the material of the positive electrode terminal 15 and the negative electrode terminal 16 is not particularly limited as long as it is conductive, and examples thereof include Al and Ni.
- FIG. 3 is a diagram showing an example of the experimental result.
- the rows indicate the charge rate and the columns indicate the discharge rate.
- the numerical value in each cell indicates the number of cycles in which the capacity retention rate is less than 90%.
- the carrier metal is deposited on the surface of the negative electrode 12 by charging, and the deposited carrier is deposited by discharging.
- the metal melts.
- the lower the charging rate the slower the precipitation reaction of the carrier metal in the negative electrode 12, and the precipitation of the inactivated carrier metal is suppressed.
- the higher the discharge rate the more intense the dissolution reaction of the carrier metal in the negative electrode 12, and the more the formation of the inactivated carrier metal is suppressed.
- the ratio of the discharge rate to the charge rate (value obtained by dividing the discharge rate by the charge rate) is preferably larger. More specifically, the ratio of the discharge rate to the charge rate is preferably 1 or more, more preferably 1.5 or more, further preferably 2 or more, still more preferably 3 or more, still more preferably 5 or more.
- FIG. 4 is a block diagram showing an example of the functional configuration of the BMS 400.
- the BMS 400 controls, for example, the switch 120 so that the charge rate is low in the charge control, and the switch 120 so that the discharge rate is high in the discharge control. Etc. can be controlled.
- the BMS 400 includes, for example, a charge state calculation unit 410, a setting storage unit 420, a charge control unit 430, and a discharge control unit 440. These functional modules included in the BMS 400 are realized by the CPU 402 executing the program stored in the memory 401. Further, the BMS 400 includes, for example, a setting storage unit 420. The setting storage unit 420 is configured as a part of the memory 402.
- the charge state calculation unit 411 charges the secondary battery cell 10 based on, for example, the current value of the battery unit 110 acquired from the current sensor 130 and the voltage value of the battery unit 110 acquired from the voltage sensor 140 at predetermined intervals.
- the state is calculated, and the calculated charge state is supplied to the charge control unit 430 and / or the discharge control unit 440 and the like.
- the state of charge may be arbitrary information indicating the state of charge of the secondary battery cell 10, and includes, for example, an SOC (State of Charge) indicating the current remaining capacity with respect to the fully charged capacity as a percentage. But it may be.
- the setting storage unit 420 stores various setting items related to control by the BMS 400.
- the setting storage unit 420 stores a charging plan that defines the specific contents of the charging control of the secondary battery cell 10.
- the setting storage unit 420 stores a discharge plan that defines the specific contents of the discharge control of the secondary battery cell 10.
- the charge control unit 430 executes charge control based on, for example, a charge plan stored in the setting storage unit 420.
- the charge control unit 430 includes, for example, a first switch control unit 431 and a buffer capacitor control unit 432.
- the first switch control unit 431 supplies a control signal to each of the switches 120 included in the battery pack 100 to switch each switch 120 between the first state and the second state, thereby switching the battery. It is possible to control the charging of each battery unit 110 included in the pack 100. For example, the first switch control unit 431 puts a selected switch 120 among the plurality of switches 120 into the first state at the same time, and switches 120 other than the a switch 120 among the plurality of switches 120. It is possible to put it in the second state at the same time. At this time, the battery unit 110 corresponding to each of the a switches 120 in the first state is connected to the charging path, and the battery unit 110 corresponding to each of the switches 120 other than the a switches 120 is connected to the charging path. Not connected.
- a is an integer of 2 or more, and can be set as an integer larger than b (the number of switches 120 that are simultaneously in the first state in discharge control), which will be described later. Therefore, the charging rate of each secondary battery cell 10 becomes low.
- the first switch control unit 431 switches one switch 120 selected from the a switches 120 in the first state from the first state to the second state, and , One switch 120 selected from the switches 120 other than the a switch 120 in the second state is switched to the first state.
- the selection criteria are not particularly limited, but may include, for example, the charging state of the switch 120, the order of the switches 120 preset in the discharge charging plan, and the like.
- the first switching condition may include that the state of charge of at least one of the battery units 110 associated with the a switches 120 in the first state is equal to or higher than the second threshold value. Further, the first switching condition may be provided with a plurality of second threshold values.
- the first switching condition may include that a predetermined time has elapsed since at least one of the a switches 120 in the first state switched from the second state to the first state. Further, the first switching condition may be defined by combining a plurality of the above-mentioned conditions.
- the buffer capacitor control unit 432 absorbs at least a part of the supply current to supply the current supplied to the battery unit 110.
- the buffer capacitor 160 can be controlled to reduce.
- the first threshold value may be arbitrarily set, but for example, the desired charging rate (for example, 0.1 C) of the secondary battery cell 10 is multiplied by a (for example, 3) described above. It may be set to the obtained value (for example, 0.3C).
- the size of the buffer capacitor 160 that reduces the charging current of the battery unit 110 is not particularly limited, but for example, the buffer capacitor 160 may reduce the charging current to the first threshold value described above. As a result, the charging rate of the secondary battery cell 10 becomes the desired charging rate.
- the discharge control unit 440 executes discharge control, for example, based on the discharge plan stored in the setting storage unit 420.
- the discharge control unit 440 includes, for example, a second switch control unit 441 and a converter control unit 442.
- the second switch control unit 441 supplies a control signal to each of the switches 120 included in the battery pack 100 to switch each switch 120 between the first state and the second state, thereby switching the battery. It is possible to control the discharge of each battery unit 110 included in the pack 100. For example, the second switch control unit 441 puts the b switches 120 selected from the plurality of switches 120 into the first state at the same time, and sets the switches 120 other than the b switches 120 among the plurality of switches 120 at the same time. It is possible to put it in the second state at the same time.
- the battery unit 110 corresponding to each of the b switches 120 in the first state is connected to the discharge path, and the battery unit 110 corresponding to each of the switches 120 other than the b switches 120 is connected to the discharge path. Not connected.
- the discharge current supplied from the battery pack 100 to the load 300 is supplied from the b battery units 110 connected to the discharge path among the plurality of battery units 110.
- b is an integer and can be set as an integer smaller than a (the number of switches 120 that are simultaneously in the first state in charge control). Therefore, the discharge rate of each secondary battery cell 10 becomes high. It was
- the second switch control unit 441 switches one switch 120 selected from the b switches 120 in the first state from the first state to the second state, and , One switch 120 selected from the switches 120 other than the b switches 120 in the second state is switched to the first state.
- the selection criteria are not particularly limited, but may include, for example, the charging state of the switch 120, the order of the switches 120 preset in the discharge plan, and the like.
- the second switching condition may include that the state of charge of at least one of the battery units 110 associated with the b switches 120 in the first state is equal to or less than the fourth threshold value. Further, the second switching condition may be provided with a plurality of fourth threshold values.
- the second switching condition may include that a predetermined time has elapsed since at least one of the b switches 120 in the first state switched from the second state to the first state. Further, the second switching condition may be defined by combining a plurality of the above-mentioned conditions.
- the converter control unit 442 steps down the voltage on the battery unit 110 side and applies it to the load 300 side to discharge the battery unit 110.
- the converter 150 can be controlled so as to reduce the voltage and supply the load 300.
- the third threshold value may be arbitrarily set, but may be set to, for example, a desired discharge rate (for example, 0.3C) of the secondary battery cell 10.
- the magnitude of the converter 150 reducing the discharge current of the battery unit 110 is not particularly limited, but for example, the converter 150 may reduce the discharge current to the above-mentioned third threshold value. As a result, the discharge rate of the secondary battery cell 10 becomes a desired discharge rate.
- FIG. 5 is a diagram showing an example of an operation flow of charge control by the BMS 400.
- the operation process is mainly executed by the charge control unit 430 based on the charge plan stored in the setting storage unit 412.
- the charge state calculation unit 411 calculates the charge state of the battery unit at predetermined intervals, and then transmits the charge state to the charge control unit 430.
- the buffer capacitor control unit 432 acquires the current value of the supply current of the charger 200 from the current sensor 201, and then determines whether or not the supply current is equal to or greater than the first threshold value included in the charging plan. If it is determined that the acquired supply current of the charger 200 is not equal to or higher than the first threshold value (S101; No), the process proceeds to S103.
- the buffer capacitor control unit 432 supplies the control signal to the buffer capacitor 160 to supply the supply current. It is reduced and supplied to each battery unit 110.
- the first switch control unit 431 determines whether or not all the battery units 110 have been charged based on the charge state of the battery unit 110 supplied from the charge state calculation unit 411. For example, when the state of charge of the battery unit 110 is equal to or higher than a predetermined threshold value (fifth threshold value), it is determined that the battery unit 110 has been charged.
- the fifth threshold value is not particularly limited, but may be, for example, 80%, 85%, 90%, 95%, 99%, or the like.
- the first switch control unit 431 supplies control signals to all the switches 120 included in the battery pack 100 to all the switches. Switch 120 to the second state. As a result, all the switches 120 are in the second state, and the process is completed.
- the first switch control unit 431 charges with S103 among the switches 120 included in the battery pack 100 based on the charging plan.
- a (a is an integer of 2 or more) switches 120 are selected from the switches 120 corresponding to the battery unit 110 whose state is not determined to be equal to or higher than a predetermined threshold value (fifth threshold value).
- the selection criteria are not particularly limited, but may include, for example, the charging state of the switch 120, the order of the switches 120 preset in the charging plan, and the like.
- the first switch control unit 431 switches the selected a switches 120 to the first state, and switches the switches 120 other than the a switches 120 to the second state. As a result, the charging current supplied to the battery pack 100 is supplied to the a switches 120 in the first state.
- the first switch control unit 431 continues charging until a predetermined first switching condition is satisfied.
- the predetermined first switching condition may include, for example, that the charge state of the battery unit 110 associated with the switch 120 in the first state becomes a predetermined threshold value (second threshold value) or more. .. Further, the predetermined first switching condition may include, for example, that a predetermined time has elapsed since any switch 120 in the first state was switched from the second state to the first state.
- FIG. 6 is a diagram showing an example of an operation flow of discharge control by the BMS 400.
- the operation process is mainly executed by the discharge control unit 440 based on the discharge plan stored in the setting storage unit 412.
- the charge state calculation unit 411 calculates the charge state of the battery unit at predetermined intervals, and then transmits the charge state to the discharge control unit 440.
- the converter control unit 442 acquires the current value of the required current of the load 300 from the current sensor 301, and then determines whether or not the required current is equal to or less than the second threshold value included in the discharge plan. When it is determined that the acquired required current of the load 300 is not equal to or less than the third threshold value (S201; No), the process proceeds to S203.
- the second switch control unit 441 determines whether or not all the battery units 110 have been discharged based on the charge state of the battery unit 110 supplied from the charge state calculation unit 411. For example, when the state of charge of the battery unit 110 is equal to or less than a predetermined threshold value (sixth threshold value), it is determined that the battery unit 110 has been discharged.
- the sixth threshold value is not particularly limited, but may be, for example, 1%, 3%, 5%, 10%, 20%, 30%, 40%, 50%, or the like.
- the second switch control unit 441 supplies control signals to all the switches 120 included in the battery pack 100 to all the switches. Switch 120 to the second state. As a result, all the switches 120 are in the second state, and the process is completed.
- the second switch control unit 441 charges with S203 among the switches 120 included in the battery pack 100 based on the discharge plan. From the switches 120 corresponding to the battery unit 110 whose state is not determined to be equal to or less than a predetermined threshold value (sixth threshold value), b switches 120 (b is an integer smaller than a) are selected.
- the selection criteria are not particularly limited, but may include, for example, the charging state of the switch 120, the order of the switches 120 preset in the discharge plan, and the like.
- the second switch control unit 441 switches the selected b switches 120 to the first state, and switches the switches 120 other than the b switches 120 to the second state. As a result, the discharge current supplied from the battery pack 100 to the load 300 is supplied from the b switches 120 in the first state.
- the second switch control unit 441 continues discharging until a predetermined second switching condition is satisfied.
- the predetermined second switching condition may include, for example, that the charge state of the battery unit 110 associated with the switch 120 in the first state is equal to or less than a predetermined threshold value (fourth threshold value). .. Further, the predetermined second switching condition may include, for example, that a predetermined time has elapsed since any switch 120 in the first state switched from the second state to the first state.
- the secondary battery cell may have a solid electrolyte layer instead of a separator.
- FIG. 7 is a schematic cross-sectional view of the secondary battery cell 10A according to the modified example.
- the secondary battery cell 10A is a solid-state battery in which a fixed electrolyte layer 17 is formed between a positive electrode 11, a negative electrode, and 13.
- the secondary battery cell 10A is the secondary battery cell 10 (FIG. 2) according to the embodiment, in which the separator 13 is changed to the solid electrolyte layer 17 and does not have an exterior body.
- the physical pressure applied from the electrolyte to the surface of the negative electrode tends to differ depending on the location due to the fluctuation of the liquid.
- the secondary battery cell 10A includes the solid electrolyte layer 17, the pressure applied to the surface of the negative electrode 12 becomes more uniform, and the shape of the carrier metal deposited on the surface of the negative electrode 12 becomes more uniform. Can be done. As a result, the carrier metal deposited on the surface of the negative electrode 12 is further suppressed from growing in a dendrite shape, so that the cycle characteristics of the secondary battery (secondary battery cell 10A) are further improved.
- the solid electrolyte layer 17 a known material can be appropriately selected depending on the use of the secondary battery and the type of carrier metal.
- the solid electrolyte 17 preferably has ionic conductivity and no electron conductivity.
- the internal resistance of the secondary battery cell 10A can be reduced, and a short circuit inside the secondary battery cell 10A can be suppressed.
- the energy density, capacity, and cycle characteristics of the secondary battery (secondary battery cell 10A) can be improved.
- Examples of the solid electrolyte layer 17 include those containing a resin and a salt.
- a resin is not particularly limited, but for example, a resin having an ethylene oxide unit in the main chain and / or the side chain, an acrylic resin, a vinyl resin, an ester resin, a nylon resin, a polysiloxane, a polyphosphazene, and a polyvinylidenefro.
- Examples thereof include ride, polymethylmethacrylate, polyamide, polyimide, aramid, polylactic acid, polyethylene, polystyrene, polyurethane, polypropylene, polybutylene, polyacetal, polysulfone, polytetrafluoroethylene and the like.
- the above resins may be used alone or in combination of two or more.
- the salt contained in the solid electrolyte layer 17 is not particularly limited, and examples thereof include salts of Li, Na, K, Ca, and Mg.
- the lithium salt is not particularly limited, but LiI, LiCl, LiBr, LiF, LiBF 4 , LiPF 6 , LiAsF 6 , LiSO 3 CF 3 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN. (SO 2 CF 3 CF 3 ) 2 , LiB (O 2 C 2 H 4 ) 2 , LiB (O 2 C 2 H 4 ) F 2 , LiB (OCOCF 3 ) 4 , LiNO 3 , and Li 2 SO 4 etc. Can be mentioned.
- As the above-mentioned lithium salts one kind is used alone or two or more kinds are used in combination.
- the content ratio of the resin and the lithium salt in the solid electrolyte layer is determined by the ratio of the oxygen atom of the resin to the lithium atom of the lithium salt ([Li] / [O]).
- the content ratio of the resin to the lithium salt is such that the above ratio ([Li] / [O]) is preferably 0.02 or more and 0.20 or less, more preferably 0.03 or more and 0. It is adjusted to be 15 or less, more preferably 0.04 or more and 0.12 or less.
- the solid electrolyte layer 17 may contain components other than the above resin and salt.
- it may contain an electrolytic solution similar to the electrolytic solution that can be contained in the secondary battery cell 10.
- it is preferable to seal the secondary battery cell 10A with an exterior body.
- the solid electrolyte layer 17 preferably has a certain thickness from the viewpoint of reliably separating the positive electrode and the negative electrode, while the thickness is constant from the viewpoint of increasing the energy density of the secondary battery (secondary battery cell 10A). It is preferable to suppress it to the following.
- the average thickness of the solid electrolyte layer 17 is preferably 5 ⁇ m to 20 ⁇ m, more preferably 7 ⁇ m to 18 ⁇ m or less, and further preferably 10 ⁇ m to 15 ⁇ m.
- solid electrolyte includes a gel electrolyte.
- the gel electrolyte is not particularly limited, and examples thereof include those containing a polymer, an organic solvent, and a lithium salt.
- the polymer in the gel electrolyte is not particularly limited, and examples thereof include a copolymer of polyethylene and / or polyethylene oxide, polyvinylidene fluoride, and a copolymer of polyvinylidene fluoride and hexafluoropropylene.
- the secondary battery cell 10 may have a current collector arranged so as to be in contact with the positive electrode or the negative electrode.
- the positive electrode terminal and the negative electrode terminal are connected to the current collector.
- the current collector is not particularly limited, and examples thereof include a current collector that can be used as a negative electrode material.
- the negative electrode and the positive electrode themselves act as current collectors.
- a plurality of negative electrodes, a separator or a solid electrolyte layer, and a positive electrode may be laminated to improve the capacity and output voltage of the battery.
- the number of layers is, for example, 3 or more, preferably 10 to 30.
- high energy density means that the total volume or capacity per total mass of the battery is high, but it is preferably 800 Wh / L or more or 350 Wh / kg or more, and more preferably 900 Wh or more. It is / L or more or 400 Wh / kg or more, and more preferably 1000 Wh / L or more or 450 Wh / kg or more.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
図1は、本発明の実施形態に係る電池システム1の概略構成の一例を示すブロック図である。
図2は、2次電池セル10の概略構成の一例を示す図である。図2に示すように、2次電池セル10は、正極11、負極活物質を有しない負極12及び正極11と負極12との間に配置されたセパレータ13等が外装体14内に封止されたパウチセルであり、正極11及び負極12にそれぞれ接続された正極端子15、負極端子16が外装体14の外部に延出して外部回路に接続できるように構成されている。2次電池セル10の上面及び下面は平面であり、その形状は、方形であるが、これに限定されるものではなく、用途等に応じて任意の形状(例えば、円形等)にすることができる。
正極11としては、一般的に2次電池に用いられるものであれば、特に限定されないが、2次電池の用途及びキャリア金属の種類によって、公知の材料を適宜選択することができる。2次電池の安定性及び出力電圧を高める観点から、正極11は、好ましくは正極活物質を有する。
負極12は、負極活物質を有しないものである。負極活物質を有する負極を備える電池は、その負極活物質の存在に起因して、エネルギー密度を高めることが困難である。一方、本実施形態の2次電池セル10は負極活物質を有しない負極12を備えるため、そのような問題が生じない。すなわち2次電池セル10は、金属が負極12の表面に析出し、及び、その析出した金属が溶解することによって充放電が行われるため、エネルギー密度が高い。
セパレータ13は、正極11と負極12を隔離して短絡を防ぎつつ、正極11と負極12との間の電荷キャリアとなる金属イオンのイオン伝導性を確保する部材であり、金属イオンと反応しない部材により構成される。電解液を用いる場合には、セパレータ13は当該電解液を保持する役割も担う。
2次電池セル10は、電解液を有していてもよい。電解液は、セパレータ13に浸漬させる。この電解液は、電解質を溶媒に溶解させて作った、イオン伝導性を有する溶液であり、リチウムイオンの導電経路として作用する。このため、電解液を有することにより、2次電池セル10の内部抵抗が低下し、エネルギー密度及びサイクル特性を向上できる。
外装体14は、2次電池セル10の正極11,負極12、セパレータ13、電解液等を収容して密閉封止するものであり、材料としては、例えば、ラミネートフィルムが用いられる。
正極端子15は、一端が正極11の上面(セパレータ13に対向する面と反対側の面)に接続され、外装体14の外部に延出して、他端が外部回路(図示せず)に接続される。負極端子16は、一端が負極12の下面(セパレータ13に対向する面と反対側の面)に接続され、外装体14の外部に延出して、他端が外部回路(図示せず)に接続される。正極端子15、負極端子16の材料としては、導電性のあるものであれば特に限定されないが、例えば、Al、Ni等が挙げられる。
ここで、図2に示された構成を有する2次電池セル10を製作した上で、充電レート及び放電レートを様々な値に設定して充放電サイクルを繰り返す実験を行った。製作した2次電池セル10の概要は、以下のとおりである。正極には、面積約16cm2、厚さ約75μmのLiNi2-xAlxO2(x=0.01~0.5)を用いた。負極には、面積約25cm2、厚さ約8μmの銅箔(Cu箔)を用いた。セパレータには、PvDFをコートした微多孔性ポリエチレンフィルムを用いた。電解液には、体積比80%のジメトキシエタン(DME)と、体積比20%のフッ素化エーテルとに、1molのLiN(SO2F)2を混合したものを用いた。
図4は、BMS400の機能構成の一例を示すブロック図である。本実施形態に係るBMS400は、上述の実験結果等を踏まえて、例えば、充電制御においては充電レートが低くなるようにスイッチ120等を制御し、放電制御においては放電レートが高くなるようにスイッチ120等を制御することが可能である。
充電状態算出部411は、例えば所定の周期毎に、電流センサ130から取得した電池ユニット110の電流値及び電圧センサ140から取得した電池ユニット110の電圧値に基づいて、2次電池セル10の充電状態を算出し、算出した充電状態を充電制御部430及び/又は放電制御部440等に供給する。ここで、充電状態は、2次電池セル10の充電の状態を示す任意の情報であってよいが、例えば、満充電容量に対する現在の残容量を百分率で示したSOC(State of Charge)を含んでもよい。
設定記憶部420は、BMS400による制御に関する各種の設定事項を記憶する。例えば、設定記憶部420は、2次電池セル10の充電制御の具体的内容を規定した充電計画を記憶する。また、例えば、設定記憶部420は、2次電池セル10の放電制御の具体的内容を規定した放電計画を記憶する。これら充電計画及び放電計画は、それぞれ任意に設定可能であってよい。
充電制御部430は、例えば設定記憶部420に記憶された充電計画に基づいて、充電制御を実行する。充電制御部430は、例えば、第1スイッチ制御部431と、バッファキャパシタ制御部432とを含む。
(充電制御)
図5は、BMS400による充電制御の動作フローの一例を示す図である。当該動作処理は、主に充電制御部430が、設定記憶部412に記憶された充電計画に基づいて実行する。
まず、バッファキャパシタ制御部432は、充電器200の供給電流の電流値を電流センサ201から取得した上で、当該供給電流が充電計画に含まれる第1閾値以上であるか否かを判定する。取得された充電器200の供給電流が第1閾値以上でないと判定された場合(S101;No)、処理はS103に進む。
取得された充電器200の供給電流が第1閾値以上であると判定された場合(S101;Yes)、バッファキャパシタ制御部432は、バッファキャパシタ160に制御信号を供給することにより、当該供給電流を低減させて各電池ユニット110に供給する。
次に、第1スイッチ制御部431は、充電状態算出部411から供給される電池ユニット110の充電状態に基づいて、全ての電池ユニット110が充電済みか否かを判定する。例えば、電池ユニット110の充電状態が所定の閾値(第5閾値)以上である場合、当該電池ユニット110については充電済みであると判定する。当該第5閾値は特に限定されないが、例えば、80%、85%、90%、95%、99%等であってよい。
全ての電池ユニット110が充電済みと判定された場合(S103;Yes)、第1スイッチ制御部431は、電池パック100が含む全てのスイッチ120に対して制御信号を供給することにより、全てのスイッチ120を第2状態に切り替える。これにより、当該全てのスイッチ120が第2状態となり、処理が終了する。
全ての電池ユニット110が充電済みであると判定されなかった場合(S103;No)、第1スイッチ制御部431は、充電計画に基づいて、電池パック100に含まれるスイッチ120のうち、S103で充電状態が所定の閾値(第5閾値)以上であると判定されなかった電池ユニット110に対応するスイッチ120からa個(aは2以上の整数)のスイッチ120を選択する。当該選択の基準は特に限定されないが、例えば、スイッチ120の充電状態、充電計画において予め設定されたスイッチ120の序列等を含んでもよい。
次に、第1スイッチ制御部431は、選択されたa個のスイッチ120を第1状態に切り替え、当該a個のスイッチ120以外のスイッチ120を第2状態に切り替える。これにより、電池パック100に供給される充電電流は、第1状態である当該a個のスイッチ120に供給される。
次に、第1スイッチ制御部431は、所定の第1切替条件が満たされるまで、充電を継続する。所定の第1切替条件が満たされると判定された場合(S107;Yes)、処理はステップS103に戻る。上述したとおり、所定の第1切替条件は、例えば、第1状態にあるスイッチ120に対応付けられた電池ユニット110の充電状態が所定の閾値(第2閾値)以上となったことを含んでもよい。また、所定の第1切替条件は、例えば、第1状態にあるいずれかのスイッチ120が第2状態から第1状態に切り替わってから所定時間が経過したことを含んでもよい。
図6は、BMS400による放電制御の動作フローの一例を示す図である。当該動作処理は、主に放電制御部440が、設定記憶部412に記憶された放電計画に基づいて実行する。
まず、コンバータ制御部442は、負荷300の要求電流の電流値を電流センサ301から取得した上で、当該要求電流が放電計画に含まれる第2閾値以下であるか否かを判定する。取得された負荷300の要求電流が第3閾値以下でないと判定された場合(S201;No)、処理はS203に進む。
取得された負荷300の要求電流が第3閾値以下であると判定された場合(S201;Yes)、コンバータ制御部442は、コンバータ150に制御信号を供給することにより、各電池ユニット110からの放電電流を増加させて負荷300に供給する。
次に、第2スイッチ制御部441は、充電状態算出部411から供給される電池ユニット110の充電状態に基づいて、全ての電池ユニット110が放電済みか否かを判定する。例えば、電池ユニット110の充電状態が所定の閾値(第6閾値)以下である場合、当該電池ユニット110については放電済みであると判定する。当該第6閾値は特に限定されないが、例えば、1%、3%、5%、10%、20%、30%、40%、50%等であってよい。
全ての電池ユニット110が放電済みと判定された場合(S203;Yes)、第2スイッチ制御部441は、電池パック100が含む全てのスイッチ120に対して制御信号を供給することにより、全てのスイッチ120を第2状態に切り替える。これにより、当該全てのスイッチ120が第2状態となり、処理が終了する。
全ての電池ユニット110が放電済みであると判定されなかった場合(S203;No)、第2スイッチ制御部441は、放電計画に基づいて、電池パック100に含まれるスイッチ120のうち、S203で充電状態が所定の閾値(第6閾値)以下であると判定されなかった電池ユニット110に対応するスイッチ120からb個(bはaより小さい整数)のスイッチ120を選択する。当該選択の基準は特に限定されないが、例えば、スイッチ120の充電状態、放電計画において予め設定されたスイッチ120の序列等を含んでもよい。
次に、第2スイッチ制御部441は、選択されたb個のスイッチ120を第1状態に切り替え、当該b個のスイッチ120以外のスイッチ120を第2状態に切り替える。これにより、電池パック100から負荷300に供給される放電電流は、第1状態である当該b個のスイッチ120から供給される。
次に、第2スイッチ制御部441は、所定の第2切替条件が満たされるまで、放電を継続する。所定の第2切替条件が満たされると判定された場合(S207;Yes)、処理はステップS203に戻る。上述したとおり、所定の第2切替条件は、例えば、第1状態にあるスイッチ120に対応付けられた電池ユニット110の充電状態が所定の閾値(第4閾値)以下となったことを含んでもよい。また、所定の第2切替条件は、例えば、第1状態にあるいずれかのスイッチ120が第2状態から第1状態に切り替わってから所定時間が経過したことを含んでもよい。
上記実施形態は、本発明を説明するための例示であり、本発明をその実施形態のみに限定する趣旨ではなく、本発明は、その要旨を逸脱しない限り、様々な変形が可能である。
Claims (16)
- 負極に負極活物質を含まない電池セルを少なくとも1つ含み、互いに並列に接続可能に配置された複数の電池ユニットと、
前記複数の電池ユニットの各々に対応付けて設けられ、電池ユニットが充電経路又は放電経路に接続された第1状態と、電池ユニットが充電経路及び放電経路のいずれにも接続されない第2状態との間を切り替え可能な複数のスイッチと、
前記複数のスイッチの切り替えを制御することにより、前記複数の電池ユニットの充電制御を実行する充電制御部と、
前記複数のスイッチの切り替えを制御することにより、前記複数の電池ユニットの放電制御を実行する放電制御部と、
を備える電池システムであって、
前記充電制御部は、前記複数のスイッチのうち選択されたa個(aは2以上の整数)のスイッチを同時に前記第1状態にし、且つ、前記複数のスイッチのうち前記a個のスイッチ以外のスイッチを同時に前記第2状態にする第1スイッチ制御部を含み、
前記放電制御部は、前記複数のスイッチのうち選択されたb個(bはaより小さい整数)のスイッチを同時に前記第1状態にし、且つ前記複数のスイッチのうち前記b個のスイッチ以外のスイッチを同時に前記第2状態にする第2スイッチ制御部を含む、電池システム。 - 前記複数の電池ユニットに対して直列に接続されるバッファキャパシタと、
前記複数の電池ユニットに接続される充電器から供給される供給電流が第1閾値以上である場合、前記供給電流の少なくとも一部を吸収することにより前記複数の電池ユニットに供給される電流を低減させるように前記バッファキャパシタを制御する、バッファキャパシタ制御部と、を更に備える、請求項1に記載の電池システム。 - 前記バッファキャパシタは、前記供給電流を前記第1閾値に低減する、請求項2に記載の電池システム。
- 前記第1スイッチ制御部は、所定の第1切替条件が満たされた場合、前記第1状態にある前記a個のスイッチから選択された1つのスイッチを前記第1状態から前記第2状態に切り替え、且つ、前記第2状態にある前記a個のスイッチ以外の前記スイッチから選択された1つのスイッチを前記第1状態に切り替える、請求項1から3のいずれか一項に記載の電池システム。
- 前記所定の第1切替条件は、前記第1状態にある前記a個のスイッチに対応付けられた少なくともいずれかの電池ユニットの充電状態が第2閾値以上となったことを含む、請求項4に記載の電池システム。
- 前記所定の第1切替条件は、前記第1状態にある前記a個のスイッチの少なくともいずれかが前記第2状態から前記第1状態に切り替わってから所定時間が経過したことを含む、請求項4又は5に記載の電池システム。
- 前記複数の電池ユニットに対して直列に接続されるコンバータと、
前記複数の電池ユニットに接続される負荷の要求電流が第3閾値以下である場合、前記複数の電池ユニット側の電圧を降圧して前記負荷側に印加することにより、前記複数の電池ユニットの放電電流を低減させて前記負荷に供給させるように前記コンバータを制御する、コンバータ制御部と、を更に備える、請求項1から6のいずれか一項に記載の電池システム。 - 前記コンバータは、前記複数の電池ユニットの放電電流が前記第3閾値となるように、前記複数の電池ユニット側の電圧を降圧して前記負荷側に印加する、請求項7に記載の電池システム。
- 前記第2スイッチ制御部は、所定の第2切替条件が満たされた場合、前記第1状態にある前記b個のスイッチから選択された1つのスイッチを前記第1状態から前記第2状態に切り替え、且つ、前記第2状態にある前記b個のスイッチ以外の前記スイッチから選択された1つのスイッチを前記第1状態に切り替える、請求項1から8のいずれか一項に記載の電池システム。
- 前記所定の第2切替条件は、前記第1状態にある前記b個のスイッチに対応付けられた少なくともいずれかの電池ユニットの充電状態が第4閾値以下となったことを含む、請求項9に記載の電池システム。
- 前記所定の第2切替条件は、前記第1状態にある前記b個のスイッチの少なくともいずれかが前記第2状態から前記第1状態に切り替わってから所定時間が経過したことを含む、請求項9又は10に記載の電池システム。
- 前記複数の電池ユニットの数は、3以上である、請求項1から11のいずれか一項に記載の電池システム。
- 前記複数の電池ユニットの各々は、互いに並列に接続された3個の前記電池セルを含む、請求項1から12のいずれか一項に記載の電池システム。
- 前記充電制御における各電池セルに対する充電レートに対する、前記放電制御における各電池セルに対する放電レートの割合は、2以上である、請求項1から13のいずれか一項に記載の電池システム。
- 負極に負極活物質を含まない電池セルを少なくとも1つ含み、互いに並列に接続可能に配置された複数の電池ユニットと、
前記複数の電池ユニットの各々に対応付けて設けられ、電池ユニットが充電経路又は放電経路に接続された第1状態と、電池ユニットが充電経路及び放電経路のいずれにも接続されない第2状態との間を切り替え可能な複数のスイッチと、を備える電池システムの制御装置であって、
前記複数のスイッチの切り替えを制御することにより、前記複数の電池ユニットの充電制御を実行する充電制御部と、
前記複数のスイッチの切り替えを制御することにより、前記複数の電池ユニットの放電制御を実行する放電制御部と、を備え、
前記充電制御部は、前記複数のスイッチのうち選択されたa個(aは2以上の整数)のスイッチを同時に前記第1状態にし、且つ、前記複数のスイッチのうち前記a個のスイッチ以外のスイッチを同時に前記第2状態にする第1スイッチ制御部を含み、
前記放電制御部は、前記複数のスイッチのうち選択されたb個(bはaより小さい整数)のスイッチを同時に前記第1状態にし、且つ前記複数のスイッチのうち前記b個のスイッチ以外のスイッチを同時に前記第2状態にする第2スイッチ制御部を含む、制御装置。 - 負極に負極活物質を含まない電池セルを少なくとも1つ含み、互いに並列に接続可能に配置された複数の電池ユニットと、
前記複数の電池ユニットの各々に対応付けて設けられ、電池ユニットが充電経路又は放電経路に接続された第1状態と、電池ユニットが充電経路及び放電経路のいずれにも接続されない第2状態との間を切り替え可能な複数のスイッチと、を備える電池システムの制御方法であって、
前記複数のスイッチの切り替えを制御することにより、前記複数の電池ユニットの充電制御を実行する充電ステップと、
前記複数のスイッチの切り替えを制御することにより、前記複数の電池ユニットの放電制御を実行する放電ステップと、を備え、
前記充電ステップは、前記複数のスイッチのうち選択されたa個(aは2以上の整数)のスイッチを同時に前記第1状態にし、且つ、前記複数のスイッチのうち前記a個のスイッチ以外のスイッチを前記第2状態にする第1スイッチ制御ステップを含み、
前記放電ステップは、前記複数のスイッチのうち選択されたb個(bはaより小さい整数)のスイッチを同時に前記第1状態にし、且つ前記複数のスイッチのうち前記b個のスイッチ以外のスイッチを前記第2状態にする第2スイッチ制御ステップを含む、制御方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080102427.6A CN115769457A (zh) | 2020-06-26 | 2020-06-26 | 电池系统、控制装置和控制方法 |
JP2022532221A JP7488605B2 (ja) | 2020-06-26 | 2020-06-26 | 電池システム、制御装置及び制御方法 |
EP20942298.9A EP4175117A4 (en) | 2020-06-26 | 2020-06-26 | BATTERY SYSTEM, CONTROL DEVICE AND CONTROL METHOD |
PCT/JP2020/025318 WO2021260936A1 (ja) | 2020-06-26 | 2020-06-26 | 電池システム、制御装置及び制御方法 |
KR1020237000271A KR20230019959A (ko) | 2020-06-26 | 2020-06-26 | 전지 시스템, 제어 장치 및 제어 방법 |
US18/085,816 US20230120526A1 (en) | 2020-06-26 | 2022-12-21 | Battery system, control device, and control method |
JP2024073392A JP2024099772A (ja) | 2020-06-26 | 2024-04-30 | 電池システム、制御装置及び制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/025318 WO2021260936A1 (ja) | 2020-06-26 | 2020-06-26 | 電池システム、制御装置及び制御方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/085,816 Continuation US20230120526A1 (en) | 2020-06-26 | 2022-12-21 | Battery system, control device, and control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021260936A1 true WO2021260936A1 (ja) | 2021-12-30 |
Family
ID=79282206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/025318 WO2021260936A1 (ja) | 2020-06-26 | 2020-06-26 | 電池システム、制御装置及び制御方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230120526A1 (ja) |
EP (1) | EP4175117A4 (ja) |
JP (2) | JP7488605B2 (ja) |
KR (1) | KR20230019959A (ja) |
CN (1) | CN115769457A (ja) |
WO (1) | WO2021260936A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012023615A (ja) * | 2010-07-15 | 2012-02-02 | Panasonic Corp | ダイレクトサンプリング回路 |
JP2015012712A (ja) * | 2013-06-28 | 2015-01-19 | 株式会社東芝 | 蓄電システムの制御装置及び制御方法 |
JP2017117636A (ja) * | 2015-12-24 | 2017-06-29 | トヨタ自動車株式会社 | 二次電池を再利用するための処理方法 |
JP2019517722A (ja) | 2016-06-08 | 2019-06-24 | ソリッドエナジー システムズ,エルエルシー | 高エネルギー密度、高出力密度、高容量及び室温対応「アノードフリー」二次電池 |
JP2019537226A (ja) | 2017-06-21 | 2019-12-19 | エルジー・ケム・リミテッド | リチウム二次電池 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW544986B (en) * | 2000-11-28 | 2003-08-01 | Delta Electronics Inc | Switchable battery charger |
JP4572850B2 (ja) * | 2006-03-24 | 2010-11-04 | 株式会社日立製作所 | 電源制御装置 |
EP2738908A1 (en) * | 2011-07-28 | 2014-06-04 | Sanyo Electric Co., Ltd | Battery system, battery control device, electric vehicle, mobile body, and power source device |
TWI537849B (zh) * | 2013-04-30 | 2016-06-11 | 台灣立凱綠能移動股份有限公司 | 大型電動車電源架構及其電池箱輪休排序控制方法 |
EP2950435B1 (fr) * | 2014-05-26 | 2017-01-04 | EM Microelectronic-Marin SA | Dispositif électronique comprenant un générateur d'énergie à très basse tension alimentant une batterie |
JP6314701B2 (ja) * | 2014-07-01 | 2018-04-25 | 日産自動車株式会社 | 蓄電器接続状態制御装置 |
JP6790072B2 (ja) * | 2016-03-30 | 2020-11-25 | 三洋電機株式会社 | 電源システム、制御システムおよび電源システムの電力制御方法 |
CN112514196A (zh) * | 2018-07-31 | 2021-03-16 | 赛昂能源有限公司 | 多路复用的充放电电池管理系统 |
US11024877B2 (en) * | 2018-12-04 | 2021-06-01 | TeraWatt Technology Inc. | Anode-free solid-state battery cells with anti-dendrite and interface adhesion controlled functional layers |
-
2020
- 2020-06-26 WO PCT/JP2020/025318 patent/WO2021260936A1/ja unknown
- 2020-06-26 JP JP2022532221A patent/JP7488605B2/ja active Active
- 2020-06-26 EP EP20942298.9A patent/EP4175117A4/en active Pending
- 2020-06-26 CN CN202080102427.6A patent/CN115769457A/zh active Pending
- 2020-06-26 KR KR1020237000271A patent/KR20230019959A/ko unknown
-
2022
- 2022-12-21 US US18/085,816 patent/US20230120526A1/en active Pending
-
2024
- 2024-04-30 JP JP2024073392A patent/JP2024099772A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012023615A (ja) * | 2010-07-15 | 2012-02-02 | Panasonic Corp | ダイレクトサンプリング回路 |
JP2015012712A (ja) * | 2013-06-28 | 2015-01-19 | 株式会社東芝 | 蓄電システムの制御装置及び制御方法 |
JP2017117636A (ja) * | 2015-12-24 | 2017-06-29 | トヨタ自動車株式会社 | 二次電池を再利用するための処理方法 |
JP2019517722A (ja) | 2016-06-08 | 2019-06-24 | ソリッドエナジー システムズ,エルエルシー | 高エネルギー密度、高出力密度、高容量及び室温対応「アノードフリー」二次電池 |
JP2019537226A (ja) | 2017-06-21 | 2019-12-19 | エルジー・ケム・リミテッド | リチウム二次電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4175117A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4175117A1 (en) | 2023-05-03 |
EP4175117A4 (en) | 2023-08-02 |
KR20230019959A (ko) | 2023-02-09 |
JPWO2021260936A1 (ja) | 2021-12-30 |
JP7488605B2 (ja) | 2024-05-22 |
CN115769457A (zh) | 2023-03-07 |
JP2024099772A (ja) | 2024-07-25 |
US20230120526A1 (en) | 2023-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6892492B2 (ja) | 二次電池、電池パック及び車両 | |
EP3457468B1 (en) | Positive electrode, secondary battery, battery pack, and vehicle | |
EP2503628B1 (en) | Current collector for bipolar secondary battery | |
JP6870914B2 (ja) | 非水電解質電池、電池パック及び車両 | |
CN100401557C (zh) | 非水电解质二次电池 | |
JP6214985B2 (ja) | 組電池、電池パック及び自動車 | |
JP2013077421A (ja) | 非水電解質二次電池 | |
JP5411813B2 (ja) | 非水電解質二次電池及びそれを有する電池システム | |
CN112514130A (zh) | 锂离子二次电池 | |
JP5856611B2 (ja) | 特定のバイポーラ構造を有するリチウム電気化学アキュムレータ | |
CN111276667A (zh) | 预锂化硅和氧化硅电极的方法 | |
TWI442616B (zh) | 混成型儲能元件 | |
CN111095617A (zh) | 锂离子二次电池用负极和包含所述负极的锂离子二次电池 | |
US20230238539A1 (en) | Lithium secondary battery, and anode free battery | |
US20230273267A1 (en) | Deterioration state estimation device, deterioration state estimation method, program, and power supply device for anode-free lithium battery equipped with same | |
JP2012185911A (ja) | リチウムイオン二次電池用複合正極活物質及びこれを用いたリチウムイオン二次電池 | |
WO2021260936A1 (ja) | 電池システム、制御装置及び制御方法 | |
JP6735036B2 (ja) | リチウムイオン二次電池 | |
JP2006092973A (ja) | 非水電解質二次電池 | |
US20230335752A1 (en) | Battery system, charging device, and charging method | |
JP7359490B2 (ja) | 2次電池 | |
WO2022091407A1 (ja) | リチウム2次電池 | |
US20240154177A1 (en) | Lithium secondary battery | |
JP7359491B2 (ja) | 電池及びその製造方法 | |
WO2021229680A1 (ja) | 電池及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20942298 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022532221 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20237000271 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020942298 Country of ref document: EP Effective date: 20230126 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |