WO2021260936A1 - 電池システム、制御装置及び制御方法 - Google Patents

電池システム、制御装置及び制御方法 Download PDF

Info

Publication number
WO2021260936A1
WO2021260936A1 PCT/JP2020/025318 JP2020025318W WO2021260936A1 WO 2021260936 A1 WO2021260936 A1 WO 2021260936A1 JP 2020025318 W JP2020025318 W JP 2020025318W WO 2021260936 A1 WO2021260936 A1 WO 2021260936A1
Authority
WO
WIPO (PCT)
Prior art keywords
switches
state
battery
control unit
battery units
Prior art date
Application number
PCT/JP2020/025318
Other languages
English (en)
French (fr)
Inventor
寿一 新井
健 緒方
Original Assignee
TeraWatt Technology株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TeraWatt Technology株式会社 filed Critical TeraWatt Technology株式会社
Priority to CN202080102427.6A priority Critical patent/CN115769457A/zh
Priority to JP2022532221A priority patent/JP7488605B2/ja
Priority to EP20942298.9A priority patent/EP4175117A4/en
Priority to PCT/JP2020/025318 priority patent/WO2021260936A1/ja
Priority to KR1020237000271A priority patent/KR20230019959A/ko
Publication of WO2021260936A1 publication Critical patent/WO2021260936A1/ja
Priority to US18/085,816 priority patent/US20230120526A1/en
Priority to JP2024073392A priority patent/JP2024099772A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4264Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • H02J7/0032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits disconnection of loads if battery is not under charge, e.g. in vehicle if engine is not running
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery system, a control device and a control method.
  • a secondary battery that charges and discharges by moving metal ions between a positive electrode and a negative electrode exhibits a high voltage and a high energy density
  • a lithium ion secondary battery is typically used.
  • an active material capable of holding lithium is introduced into the positive electrode and the negative electrode, and charging / discharging is performed by exchanging lithium ions between the positive electrode active material and the negative electrode active material.
  • Patent Document 1 discloses a high-power lithium metal anode secondary battery using an ultrathin lithium metal anode.
  • Patent Document 2 discloses a lithium secondary battery in which a lithium metal is formed on a negative electrode current collector in which metal particles are formed.
  • a secondary battery that holds a carrier metal by precipitating a carrier metal such as lithium on the surface of the negative electrode is an inactivated carrier in which dendrite (potential from the negative electrode is not applied) on the surface of the negative electrode by repeating charging and discharging. Metal) is easily formed. Therefore, the capacity is likely to decrease and the cycle characteristics are not sufficient.
  • An object of the present invention is to provide a battery system, a control device, and a control method capable of improving the cycle characteristics of a secondary battery that holds a carrier metal by precipitating the carrier metal on the surface of the negative electrode.
  • the battery system corresponds to a plurality of battery units and a plurality of battery units, each of which includes at least one battery cell containing no negative electrode active material in the negative electrode and is arranged so as to be connectable in parallel with each other.
  • a plurality of switches provided separately and capable of switching between a first state in which the battery unit is connected to the charging path or the discharging path and a second state in which the battery unit is not connected to either the charging path or the discharging path.
  • a charge control unit that executes charge control of a plurality of battery units by controlling the switching of a plurality of switches
  • a discharge control unit that executes discharge control of a plurality of battery units by controlling the switching of a plurality of switches.
  • the charge control unit sets a selected switches (a is an integer of 2 or more) in the first state at the same time among the plurality of switches, and a among the plurality of switches.
  • the discharge control unit includes a first switch control unit that simultaneously puts a switch other than the switches into the second state, and the discharge control unit simultaneously performs the first b switches (b is an integer smaller than a) selected from the plurality of switches. It includes a second switch control unit that puts a state into a state and simultaneously puts a switch other than the b switch among a plurality of switches into the second state.
  • a battery unit in the battery unit configured to include the secondary battery containing no negative electrode active material in the negative electrode, in the charge control, a battery unit is connected to the charge path by the first switch control unit.
  • the second switch control unit discharges b battery units, which are less than a. Therefore, the charge rate of each battery cell decreases and the discharge rate increases. This improves the cycle characteristics of each battery cell.
  • the present invention it is possible to provide a battery system, a control device, and a control method capable of improving the cycle characteristics of a secondary battery that holds a carrier metal by precipitating the carrier metal on the surface of the negative electrode.
  • FIG. 1 is a block diagram showing an example of a schematic configuration of a battery system 1 according to an embodiment of the present invention.
  • the battery system 1 includes, for example, a battery pack 100, a charger 200, a load 300, and a battery management system (BMS) 400.
  • the battery pack 100 includes a plurality of secondary battery cells 10 arranged so as to be connectable in parallel with each other.
  • the secondary battery cell 10 included in the battery pack 100 can be connected to the charger 200, for example, and can be charged by the charging current supplied by the charger 200 under the control of the BMS 400.
  • the secondary battery cell 10 included in the battery pack 100 is connected to the load 300, for example, and can supply a current to the load 300 under the control of the BMS 400.
  • the battery pack 100 includes, for example, a plurality of battery units 110, a switch 120 provided for each battery unit 110, a current sensor 130 provided for each battery unit, a voltage sensor 140, a converter 150, and a buffer capacitor 160. And include.
  • the plurality of battery units 110 are arranged so as to be connectable to each other in parallel.
  • the number of battery units 110 included in the battery pack 100 is not particularly limited.
  • the battery unit 110 includes at least one secondary battery cell 10 connected in parallel with each other.
  • each battery unit 110 includes three secondary battery cells 10.
  • the secondary battery cell 10 may be configured by a single unit battery cell, or may be configured by connecting a plurality of unit battery cells in series.
  • the configuration of the secondary battery cell 10 may be adjusted according to, for example, the load 300.
  • the secondary battery cells 10 included in the battery unit 110 may have the same characteristics or may have different characteristics. The details of the configuration of the secondary battery cell 10 will be described later.
  • the switch 120 is composed of semiconductor switch elements such as field effect transistors and MOSFETs. One end of the switch 120 is connected to one end of the battery unit 110. The other end of the switch 120 is connected to the charger 200 and / or the load 300 via the converter 150.
  • the switch 120 has a state in which the battery unit 110 is connected to the charging path and / or the discharging path (first state) based on the control signal supplied from the BMS 400, and the battery unit 110 is connected to both the charging path and the discharging path. It is possible to switch between the non-connected state (second state).
  • the charging path is a current supply path (charging path) from the charger 200.
  • the discharge path is a current supply path (discharge path) to the load 300.
  • the current sensor 130 is connected in series with the battery unit 110.
  • the current sensor 130 detects the current flowing through the battery unit 110 and supplies the current value to the BMS 400.
  • the voltage sensor 140 is connected in parallel to a plurality of battery units 110.
  • the voltage sensor 140 detects the voltage across each battery unit 110 and supplies the voltage value to the BMS 400.
  • the buffer capacitor 160 can reduce the charging current of the battery unit 110 by absorbing at least a part of the current supplied from the charger 300 to the battery unit 110 based on the control signal supplied from the BMS 400. .. This makes it possible to keep the charging rate of the battery unit 110 low even when the supply current of the charger 200 is large.
  • the converter 150 steps down the voltage on the battery unit 110 side and applies it to the load 300 side based on the control signal supplied from the BMS 400, thereby reducing the discharge current of the battery unit 110 and supplying the converter 150 to the load 300. Can be done. This makes it possible to keep the discharge rate of the battery unit 110 high even when the required current of the load 300 is small.
  • the charger 200 is provided with, for example, a charging connector to which a charging plug connected to an external power source can be connected, and is configured to convert the power supplied from the external power source into the charging power of the secondary battery cell 10.
  • the current sensor 201 is connected in series with the charger 200, detects the current (supply current) from the charger 200 to the battery pack 100, and supplies the current value to the BMS 400.
  • the load 300 is not particularly limited, but may be configured as, for example, a drive device for an electric vehicle (electric vehicle, hybrid vehicle) or the like.
  • the current sensor 301 is connected in series with the load 300, detects the current (load current) from the battery pack 100 to 300, and supplies the current value to the BMS 400.
  • the BMS 400 is a controller including, for example, a memory 401 and a CPU 402, and controls charging and discharging of the secondary battery cell 10 included in the battery pack 100.
  • the memory 401 is composed of, for example, a RAM, a ROM, a semiconductor memory, a magnetic disk device, an optical disk device, etc., and stores a driver program, an operating system program, an application program, data, etc. used for processing by the CPU 402.
  • the various programs may be installed in the storage unit 22 from a computer-readable portable recording medium such as a CD-ROM or a DVD-ROM using a known setup program or the like.
  • the CPU 402 includes one or more processors and their peripheral circuits, and controls the overall operation of the BMS 400 in an integrated manner.
  • the CPU 402 executes processing based on a program (operating system program, driver program, application program, etc.) stored in the memory 401.
  • FIG. 2 is a diagram showing an example of a schematic configuration of the secondary battery cell 10.
  • a positive electrode 11, a negative electrode 12 having no negative electrode active material, a separator 13 arranged between the positive electrode 11 and the negative electrode 12, and the like are sealed in the exterior body 14.
  • the pouch cell is configured so that the positive electrode terminal 15 and the negative electrode terminal 16 connected to the positive electrode 11 and the negative electrode 12, respectively, extend to the outside of the exterior body 14 and can be connected to an external circuit.
  • the upper surface and the lower surface of the secondary battery cell 10 are flat surfaces, and the shape thereof is not limited to this, and may be any shape (for example, circular shape, etc.) depending on the application and the like. can.
  • the positive electrode 11 is not particularly limited as long as it is generally used for a secondary battery, but a known material can be appropriately selected depending on the use of the secondary battery and the type of carrier metal. From the viewpoint of increasing the stability and output voltage of the secondary battery, the positive electrode 11 preferably has a positive electrode active material.
  • the positive electrode active material is a substance for retaining metal ions on the positive electrode and serves as a host material for metal ions.
  • the material of the positive electrode active material is not particularly limited, and examples thereof include metal oxides and metal phosphates.
  • the metal oxide is not particularly limited, and examples thereof include a cobalt oxide-based compound, a manganese oxide-based compound, and a nickel oxide-based compound.
  • the metal phosphate is not particularly limited, and examples thereof include iron phosphate compounds and cobalt phosphate compounds.
  • the positive electrode active material is referred to as, for example, lithium nickel cobalt aluminum oxide (NCA, LiNiCoAlO 2 ), lithium nickel cobalt magnesium oxide (LiNiCoMnO 2 , NCM), and the element ratio. It may be referred to as NCM622, NCM523, NCM811, etc.), lithium cobaltate (LCO, LiCoO 2 ), lithium iron phosphate (LFP, LiFePO 4 ), and the like.
  • the positive electrode active material as described above one type may be used alone or two or more types may be used in combination.
  • the content of the positive electrode active material may be, for example, 50% by mass or more and 100% by mass or less with respect to the entire positive electrode 11.
  • the positive electrode 11 may contain a component other than the positive electrode active material.
  • Such components include, but are not limited to, known conductive aids, binders, solid polymer electrolytes, and inorganic solid electrolytes.
  • the positive electrode 11 may include a binder.
  • a binder for example, a fluorine-based binder, an aqueous-based binder, and an imide-based binder are used.
  • a binder include polyvinylidene fluoride (PvDF), a mixture of styrene-butadiene rubber and carboxymethyl cellulose (SBR-CMC), polyacrylic acid (PAA), lithium polyacrylate (Li-PAA), and polyimide. (PI), polyamide-imide (PAI), aramid and the like are used.
  • the binder content may be, for example, 0.5% by mass and 30% by mass or less with respect to the entire positive electrode 11.
  • the positive electrode 11 may contain a conductive auxiliary agent.
  • the conductive auxiliary agent include carbon black, acetylene black (AB), carbon nanofiber (VGCF), single-walled carbon nanotube (SWCNT), and multi-walled carbon nanotube (MWCNT).
  • the content of the conductive auxiliary agent may be, for example, 0.5% by mass and 30% by mass or less with respect to the entire positive electrode 11.
  • the weight per unit area of the positive electrode 11 is, for example, 10-40 mg / cm 2 .
  • the thickness of the positive electrode active material layer 12 is, for example, 30 to 150 ⁇ m.
  • the density of the positive electrode 11 is, for example, 2.5 to 4.5 g / ml.
  • the area capacity of the positive electrode 11 is, for example, 1.0 to 10.0 mAh / cm 2 .
  • the area of the positive electrode 11 is preferably 10 cm 2 or more and 300 cm 2 or less, more preferably 20 cm 2 or more and 250 cm 2 or less, and further preferably 50 cm 2 or more and 200 cm 2 or less.
  • the thickness (length in the vertical direction) of the positive electrode 11 is preferably 20 ⁇ m or more and 150 ⁇ m or less, more preferably 40 ⁇ m or more and 120 ⁇ m or less, and further preferably 50 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode 12 does not have a negative electrode active material. It is difficult to increase the energy density of a battery having a negative electrode having a negative electrode active material due to the presence of the negative electrode active material.
  • the secondary battery cell 10 of the present embodiment includes the negative electrode 12 having no negative electrode active material, such a problem does not occur. That is, the secondary battery cell 10 has a high energy density because metal is deposited on the surface of the negative electrode 12 and the deposited metal is dissolved to perform charging and discharging.
  • the "negative electrode active material” means a material for holding a metal ion that becomes a charge carrier in a battery or a metal corresponding to the metal ion (hereinafter, referred to as "carrier metal") in the negative electrode 12, and is a carrier metal. It may be paraphrased as a host substance. The mechanism of such holding is not particularly limited, and examples thereof include intercalation, alloying, and occlusion of metal clusters.
  • the negative electrode active material is typically a substance for retaining lithium metal or lithium ions in the negative electrode 12.
  • the negative electrode active material is not particularly limited, and examples thereof include carbon-based substances, metal oxides, metals, alloys, and the like.
  • the carbon-based material is not particularly limited, and examples thereof include graphene, graphite, hard carbon, mesoporous carbon, carbon nanotubes, and carbon nanohorns.
  • the metal oxide is not particularly limited, and examples thereof include titanium oxide-based compounds, tin oxide-based compounds, and cobalt oxide-based compounds.
  • the metal or alloy is not particularly limited as long as it can be alloyed with the carrier metal, and examples thereof include silicon, germanium, tin, lead, aluminum, gallium, and alloys containing these.
  • the negative electrode 12 is not particularly limited as long as it does not have a negative electrode active material and can be used as a current collector, but for example, Cu, Ni, Ti, Fe, and other metals that do not react with Li, and , These alloys, as well as those consisting of at least one selected from the group consisting of stainless steel (SUS).
  • SUS stainless steel
  • various conventionally known types of SUS can be used.
  • the negative electrode material as described above one type may be used alone or two or more types may be used in combination.
  • the “metal that does not react with Li” means a metal that does not react with lithium ions or lithium metal to alloy under the operating conditions of the secondary battery cell 10.
  • the negative electrode 12 is preferably a lithium-free electrode. According to such an aspect, the secondary battery cell 10 is more excellent in safety and productivity because it is not necessary to use a highly flammable lithium metal in the production.
  • the negative electrode 12 is more preferably selected from the group consisting of Cu, Ni, and alloys thereof, and stainless steel (SUS). It consists of one kind. From the same viewpoint, the negative electrode 12 is more preferably made of Cu, Ni, or an alloy made of these, and particularly preferably made of Cu or Ni.
  • the negative electrode does not have a negative electrode active material can also be said to be “zero anode” or “anode-free", and the content of the negative electrode active material in the negative electrode is 10% by mass or less with respect to the entire negative electrode. Means.
  • the content of the negative electrode active material in the negative electrode is preferably 5.0% by mass or less, more preferably 1.0% by mass or less, still more preferably 0.1% by mass or less, and particularly preferably 0. It is 0% by mass or less.
  • the negative electrode 12 preferably has an adhesive layer formed on the surface thereof to enhance the adhesiveness between the deposited carrier metal and the negative electrode. According to such an embodiment, when a carrier metal, particularly a lithium metal, is deposited on the negative electrode 12, the adhesiveness between the negative electrode 12 and the precipitated metal can be further improved. As a result, the peeling of the precipitated metal from the negative electrode 12 can be suppressed, so that the cycle characteristics of the secondary battery cell 10 are improved.
  • Examples of the adhesive layer include metals other than the negative electrode, alloys thereof, and carbon-based substances.
  • examples of adhesive layers include Au, Ag, Pt, Sb, Pb, In, Sn, Zn, Bi, Al, Ni, Cu, graphene, graphite, hard carbon, and mesoporous. Examples thereof include carbon, carbon nanotubes, and carbon nanohorns.
  • the thickness of the adhesive layer is not particularly limited, but is preferably 1 nm or more and 300 nm or less, and more preferably 50 nm or more and 150 nm or less. When the adhesive layer has the above aspect, the adhesiveness between the negative electrode 12 and the precipitated metal can be improved.
  • the adhesive layer corresponds to the above-mentioned negative electrode active material
  • the adhesive layer is 10% by mass or less, preferably 5.0% by mass or less, and more preferably 1.0% by mass or less with respect to the negative electrode. More preferably, it is 0.1% by mass or less.
  • the area of the negative electrode 12 is preferably larger than the area of the positive electrode 11, and for example, the four sides thereof are slightly larger than the positive electrode 11 (for example, about 0.5 to 1.0 mm).
  • the thickness (length in the vertical direction) of the negative electrode 12 is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 1 ⁇ m or less.
  • the separator 13 is a member that separates the positive electrode 11 and the negative electrode 12 to prevent a short circuit, and secures the ionic conductivity of metal ions serving as charge carriers between the positive electrode 11 and the negative electrode 12, and is a member that does not react with metal ions. Consists of. When an electrolytic solution is used, the separator 13 also plays a role of holding the electrolytic solution.
  • the separator 13 preferably has a separator base material and a separator coating layer that covers the surface of the separator base material.
  • the separator base material is not limited as long as it plays the above role, but is composed of, for example, porous polyethylene (PE), polypropylene (PP), or a laminated structure thereof.
  • the area of the separator 13 is preferably larger than the area of the positive electrode 11 and the negative electrode 12, and the thickness is preferably, for example, 5 to 20 ⁇ m.
  • the separator coating layer may cover both sides of the separator base material or only one side.
  • the separator coating layer secures ionic conductivity without reacting with metal ions serving as charge carriers, and firmly adheres the separator base material to the layers adjacent to the top and bottom.
  • the separator coating layer is not limited as long as it has such properties, but for example, polyvinylidene fluoride (PvDF), a mixture of styrene-butadiene rubber and carboxymethyl cellulose (SBR-CMC), polyacrylic acid (PAA), and the like. It is composed of a binder composed of lithium polyacrylic acid (Li-PAA), polyimide (PI), polyamideimide (PAI), aramid and the like.
  • inorganic particles such as silica, alumina, titania, zirconia, magnesium oxide, and magnesium hydroxide may be added to the binder.
  • the secondary battery cell 10 may have an electrolytic solution.
  • the electrolytic solution is immersed in the separator 13.
  • This electrolytic solution is a solution having ionic conductivity made by dissolving an electrolyte in a solvent and acts as a conductive path for lithium ions. Therefore, by having the electrolytic solution, the internal resistance of the secondary battery cell 10 is reduced, and the energy density and the cycle characteristics can be improved.
  • a lithium salt is preferably used as the electrolyte.
  • the lithium salt is not particularly limited, but is limited to LiPF6, LiBF4, lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), lithium bis (fluorosulfonyl) imide (LiFSI), LiClO4, lithium bisoxalate boron (LiBOB), and lithium.
  • Bis (pentafluoroethanesulfonyl) imide (LiBETI) can be mentioned.
  • LiFSI is preferable as the lithium salt from the viewpoint of further improving the cycle characteristics of the battery 1.
  • the above lithium salts may be used alone or in combination of two or more.
  • the solvent is not particularly limited, but is, for example, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), 1,2-dimethoxyethane (DME), diethyl carbonate (DEC), ⁇ -butyrolactone (GBL). ), 1,3-Dioxolane (DOL), and fluoroethylene carbonate (FEC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • DME 1,2-dimethoxyethane
  • DEC diethyl carbonate
  • GBL ⁇ -butyrolactone
  • DOL 1,3-Dioxolane
  • FEC fluoroethylene carbonate
  • the exterior body 14 accommodates the positive electrode 11, the negative electrode 12, the separator 13, the electrolytic solution, and the like of the secondary battery cell 10 and seals them tightly.
  • a laminated film is used as the material.
  • One end of the positive electrode terminal 15 is connected to the upper surface of the positive electrode 11 (the surface opposite to the surface facing the separator 13), extends to the outside of the exterior body 14, and the other end is connected to an external circuit (not shown). Will be done.
  • One end of the negative electrode terminal 16 is connected to the lower surface of the negative electrode 12 (the surface opposite to the surface facing the separator 13), extends to the outside of the exterior body 14, and the other end is connected to an external circuit (not shown). Will be done.
  • the material of the positive electrode terminal 15 and the negative electrode terminal 16 is not particularly limited as long as it is conductive, and examples thereof include Al and Ni.
  • FIG. 3 is a diagram showing an example of the experimental result.
  • the rows indicate the charge rate and the columns indicate the discharge rate.
  • the numerical value in each cell indicates the number of cycles in which the capacity retention rate is less than 90%.
  • the carrier metal is deposited on the surface of the negative electrode 12 by charging, and the deposited carrier is deposited by discharging.
  • the metal melts.
  • the lower the charging rate the slower the precipitation reaction of the carrier metal in the negative electrode 12, and the precipitation of the inactivated carrier metal is suppressed.
  • the higher the discharge rate the more intense the dissolution reaction of the carrier metal in the negative electrode 12, and the more the formation of the inactivated carrier metal is suppressed.
  • the ratio of the discharge rate to the charge rate (value obtained by dividing the discharge rate by the charge rate) is preferably larger. More specifically, the ratio of the discharge rate to the charge rate is preferably 1 or more, more preferably 1.5 or more, further preferably 2 or more, still more preferably 3 or more, still more preferably 5 or more.
  • FIG. 4 is a block diagram showing an example of the functional configuration of the BMS 400.
  • the BMS 400 controls, for example, the switch 120 so that the charge rate is low in the charge control, and the switch 120 so that the discharge rate is high in the discharge control. Etc. can be controlled.
  • the BMS 400 includes, for example, a charge state calculation unit 410, a setting storage unit 420, a charge control unit 430, and a discharge control unit 440. These functional modules included in the BMS 400 are realized by the CPU 402 executing the program stored in the memory 401. Further, the BMS 400 includes, for example, a setting storage unit 420. The setting storage unit 420 is configured as a part of the memory 402.
  • the charge state calculation unit 411 charges the secondary battery cell 10 based on, for example, the current value of the battery unit 110 acquired from the current sensor 130 and the voltage value of the battery unit 110 acquired from the voltage sensor 140 at predetermined intervals.
  • the state is calculated, and the calculated charge state is supplied to the charge control unit 430 and / or the discharge control unit 440 and the like.
  • the state of charge may be arbitrary information indicating the state of charge of the secondary battery cell 10, and includes, for example, an SOC (State of Charge) indicating the current remaining capacity with respect to the fully charged capacity as a percentage. But it may be.
  • the setting storage unit 420 stores various setting items related to control by the BMS 400.
  • the setting storage unit 420 stores a charging plan that defines the specific contents of the charging control of the secondary battery cell 10.
  • the setting storage unit 420 stores a discharge plan that defines the specific contents of the discharge control of the secondary battery cell 10.
  • the charge control unit 430 executes charge control based on, for example, a charge plan stored in the setting storage unit 420.
  • the charge control unit 430 includes, for example, a first switch control unit 431 and a buffer capacitor control unit 432.
  • the first switch control unit 431 supplies a control signal to each of the switches 120 included in the battery pack 100 to switch each switch 120 between the first state and the second state, thereby switching the battery. It is possible to control the charging of each battery unit 110 included in the pack 100. For example, the first switch control unit 431 puts a selected switch 120 among the plurality of switches 120 into the first state at the same time, and switches 120 other than the a switch 120 among the plurality of switches 120. It is possible to put it in the second state at the same time. At this time, the battery unit 110 corresponding to each of the a switches 120 in the first state is connected to the charging path, and the battery unit 110 corresponding to each of the switches 120 other than the a switches 120 is connected to the charging path. Not connected.
  • a is an integer of 2 or more, and can be set as an integer larger than b (the number of switches 120 that are simultaneously in the first state in discharge control), which will be described later. Therefore, the charging rate of each secondary battery cell 10 becomes low.
  • the first switch control unit 431 switches one switch 120 selected from the a switches 120 in the first state from the first state to the second state, and , One switch 120 selected from the switches 120 other than the a switch 120 in the second state is switched to the first state.
  • the selection criteria are not particularly limited, but may include, for example, the charging state of the switch 120, the order of the switches 120 preset in the discharge charging plan, and the like.
  • the first switching condition may include that the state of charge of at least one of the battery units 110 associated with the a switches 120 in the first state is equal to or higher than the second threshold value. Further, the first switching condition may be provided with a plurality of second threshold values.
  • the first switching condition may include that a predetermined time has elapsed since at least one of the a switches 120 in the first state switched from the second state to the first state. Further, the first switching condition may be defined by combining a plurality of the above-mentioned conditions.
  • the buffer capacitor control unit 432 absorbs at least a part of the supply current to supply the current supplied to the battery unit 110.
  • the buffer capacitor 160 can be controlled to reduce.
  • the first threshold value may be arbitrarily set, but for example, the desired charging rate (for example, 0.1 C) of the secondary battery cell 10 is multiplied by a (for example, 3) described above. It may be set to the obtained value (for example, 0.3C).
  • the size of the buffer capacitor 160 that reduces the charging current of the battery unit 110 is not particularly limited, but for example, the buffer capacitor 160 may reduce the charging current to the first threshold value described above. As a result, the charging rate of the secondary battery cell 10 becomes the desired charging rate.
  • the discharge control unit 440 executes discharge control, for example, based on the discharge plan stored in the setting storage unit 420.
  • the discharge control unit 440 includes, for example, a second switch control unit 441 and a converter control unit 442.
  • the second switch control unit 441 supplies a control signal to each of the switches 120 included in the battery pack 100 to switch each switch 120 between the first state and the second state, thereby switching the battery. It is possible to control the discharge of each battery unit 110 included in the pack 100. For example, the second switch control unit 441 puts the b switches 120 selected from the plurality of switches 120 into the first state at the same time, and sets the switches 120 other than the b switches 120 among the plurality of switches 120 at the same time. It is possible to put it in the second state at the same time.
  • the battery unit 110 corresponding to each of the b switches 120 in the first state is connected to the discharge path, and the battery unit 110 corresponding to each of the switches 120 other than the b switches 120 is connected to the discharge path. Not connected.
  • the discharge current supplied from the battery pack 100 to the load 300 is supplied from the b battery units 110 connected to the discharge path among the plurality of battery units 110.
  • b is an integer and can be set as an integer smaller than a (the number of switches 120 that are simultaneously in the first state in charge control). Therefore, the discharge rate of each secondary battery cell 10 becomes high. It was
  • the second switch control unit 441 switches one switch 120 selected from the b switches 120 in the first state from the first state to the second state, and , One switch 120 selected from the switches 120 other than the b switches 120 in the second state is switched to the first state.
  • the selection criteria are not particularly limited, but may include, for example, the charging state of the switch 120, the order of the switches 120 preset in the discharge plan, and the like.
  • the second switching condition may include that the state of charge of at least one of the battery units 110 associated with the b switches 120 in the first state is equal to or less than the fourth threshold value. Further, the second switching condition may be provided with a plurality of fourth threshold values.
  • the second switching condition may include that a predetermined time has elapsed since at least one of the b switches 120 in the first state switched from the second state to the first state. Further, the second switching condition may be defined by combining a plurality of the above-mentioned conditions.
  • the converter control unit 442 steps down the voltage on the battery unit 110 side and applies it to the load 300 side to discharge the battery unit 110.
  • the converter 150 can be controlled so as to reduce the voltage and supply the load 300.
  • the third threshold value may be arbitrarily set, but may be set to, for example, a desired discharge rate (for example, 0.3C) of the secondary battery cell 10.
  • the magnitude of the converter 150 reducing the discharge current of the battery unit 110 is not particularly limited, but for example, the converter 150 may reduce the discharge current to the above-mentioned third threshold value. As a result, the discharge rate of the secondary battery cell 10 becomes a desired discharge rate.
  • FIG. 5 is a diagram showing an example of an operation flow of charge control by the BMS 400.
  • the operation process is mainly executed by the charge control unit 430 based on the charge plan stored in the setting storage unit 412.
  • the charge state calculation unit 411 calculates the charge state of the battery unit at predetermined intervals, and then transmits the charge state to the charge control unit 430.
  • the buffer capacitor control unit 432 acquires the current value of the supply current of the charger 200 from the current sensor 201, and then determines whether or not the supply current is equal to or greater than the first threshold value included in the charging plan. If it is determined that the acquired supply current of the charger 200 is not equal to or higher than the first threshold value (S101; No), the process proceeds to S103.
  • the buffer capacitor control unit 432 supplies the control signal to the buffer capacitor 160 to supply the supply current. It is reduced and supplied to each battery unit 110.
  • the first switch control unit 431 determines whether or not all the battery units 110 have been charged based on the charge state of the battery unit 110 supplied from the charge state calculation unit 411. For example, when the state of charge of the battery unit 110 is equal to or higher than a predetermined threshold value (fifth threshold value), it is determined that the battery unit 110 has been charged.
  • the fifth threshold value is not particularly limited, but may be, for example, 80%, 85%, 90%, 95%, 99%, or the like.
  • the first switch control unit 431 supplies control signals to all the switches 120 included in the battery pack 100 to all the switches. Switch 120 to the second state. As a result, all the switches 120 are in the second state, and the process is completed.
  • the first switch control unit 431 charges with S103 among the switches 120 included in the battery pack 100 based on the charging plan.
  • a (a is an integer of 2 or more) switches 120 are selected from the switches 120 corresponding to the battery unit 110 whose state is not determined to be equal to or higher than a predetermined threshold value (fifth threshold value).
  • the selection criteria are not particularly limited, but may include, for example, the charging state of the switch 120, the order of the switches 120 preset in the charging plan, and the like.
  • the first switch control unit 431 switches the selected a switches 120 to the first state, and switches the switches 120 other than the a switches 120 to the second state. As a result, the charging current supplied to the battery pack 100 is supplied to the a switches 120 in the first state.
  • the first switch control unit 431 continues charging until a predetermined first switching condition is satisfied.
  • the predetermined first switching condition may include, for example, that the charge state of the battery unit 110 associated with the switch 120 in the first state becomes a predetermined threshold value (second threshold value) or more. .. Further, the predetermined first switching condition may include, for example, that a predetermined time has elapsed since any switch 120 in the first state was switched from the second state to the first state.
  • FIG. 6 is a diagram showing an example of an operation flow of discharge control by the BMS 400.
  • the operation process is mainly executed by the discharge control unit 440 based on the discharge plan stored in the setting storage unit 412.
  • the charge state calculation unit 411 calculates the charge state of the battery unit at predetermined intervals, and then transmits the charge state to the discharge control unit 440.
  • the converter control unit 442 acquires the current value of the required current of the load 300 from the current sensor 301, and then determines whether or not the required current is equal to or less than the second threshold value included in the discharge plan. When it is determined that the acquired required current of the load 300 is not equal to or less than the third threshold value (S201; No), the process proceeds to S203.
  • the second switch control unit 441 determines whether or not all the battery units 110 have been discharged based on the charge state of the battery unit 110 supplied from the charge state calculation unit 411. For example, when the state of charge of the battery unit 110 is equal to or less than a predetermined threshold value (sixth threshold value), it is determined that the battery unit 110 has been discharged.
  • the sixth threshold value is not particularly limited, but may be, for example, 1%, 3%, 5%, 10%, 20%, 30%, 40%, 50%, or the like.
  • the second switch control unit 441 supplies control signals to all the switches 120 included in the battery pack 100 to all the switches. Switch 120 to the second state. As a result, all the switches 120 are in the second state, and the process is completed.
  • the second switch control unit 441 charges with S203 among the switches 120 included in the battery pack 100 based on the discharge plan. From the switches 120 corresponding to the battery unit 110 whose state is not determined to be equal to or less than a predetermined threshold value (sixth threshold value), b switches 120 (b is an integer smaller than a) are selected.
  • the selection criteria are not particularly limited, but may include, for example, the charging state of the switch 120, the order of the switches 120 preset in the discharge plan, and the like.
  • the second switch control unit 441 switches the selected b switches 120 to the first state, and switches the switches 120 other than the b switches 120 to the second state. As a result, the discharge current supplied from the battery pack 100 to the load 300 is supplied from the b switches 120 in the first state.
  • the second switch control unit 441 continues discharging until a predetermined second switching condition is satisfied.
  • the predetermined second switching condition may include, for example, that the charge state of the battery unit 110 associated with the switch 120 in the first state is equal to or less than a predetermined threshold value (fourth threshold value). .. Further, the predetermined second switching condition may include, for example, that a predetermined time has elapsed since any switch 120 in the first state switched from the second state to the first state.
  • the secondary battery cell may have a solid electrolyte layer instead of a separator.
  • FIG. 7 is a schematic cross-sectional view of the secondary battery cell 10A according to the modified example.
  • the secondary battery cell 10A is a solid-state battery in which a fixed electrolyte layer 17 is formed between a positive electrode 11, a negative electrode, and 13.
  • the secondary battery cell 10A is the secondary battery cell 10 (FIG. 2) according to the embodiment, in which the separator 13 is changed to the solid electrolyte layer 17 and does not have an exterior body.
  • the physical pressure applied from the electrolyte to the surface of the negative electrode tends to differ depending on the location due to the fluctuation of the liquid.
  • the secondary battery cell 10A includes the solid electrolyte layer 17, the pressure applied to the surface of the negative electrode 12 becomes more uniform, and the shape of the carrier metal deposited on the surface of the negative electrode 12 becomes more uniform. Can be done. As a result, the carrier metal deposited on the surface of the negative electrode 12 is further suppressed from growing in a dendrite shape, so that the cycle characteristics of the secondary battery (secondary battery cell 10A) are further improved.
  • the solid electrolyte layer 17 a known material can be appropriately selected depending on the use of the secondary battery and the type of carrier metal.
  • the solid electrolyte 17 preferably has ionic conductivity and no electron conductivity.
  • the internal resistance of the secondary battery cell 10A can be reduced, and a short circuit inside the secondary battery cell 10A can be suppressed.
  • the energy density, capacity, and cycle characteristics of the secondary battery (secondary battery cell 10A) can be improved.
  • Examples of the solid electrolyte layer 17 include those containing a resin and a salt.
  • a resin is not particularly limited, but for example, a resin having an ethylene oxide unit in the main chain and / or the side chain, an acrylic resin, a vinyl resin, an ester resin, a nylon resin, a polysiloxane, a polyphosphazene, and a polyvinylidenefro.
  • Examples thereof include ride, polymethylmethacrylate, polyamide, polyimide, aramid, polylactic acid, polyethylene, polystyrene, polyurethane, polypropylene, polybutylene, polyacetal, polysulfone, polytetrafluoroethylene and the like.
  • the above resins may be used alone or in combination of two or more.
  • the salt contained in the solid electrolyte layer 17 is not particularly limited, and examples thereof include salts of Li, Na, K, Ca, and Mg.
  • the lithium salt is not particularly limited, but LiI, LiCl, LiBr, LiF, LiBF 4 , LiPF 6 , LiAsF 6 , LiSO 3 CF 3 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN. (SO 2 CF 3 CF 3 ) 2 , LiB (O 2 C 2 H 4 ) 2 , LiB (O 2 C 2 H 4 ) F 2 , LiB (OCOCF 3 ) 4 , LiNO 3 , and Li 2 SO 4 etc. Can be mentioned.
  • As the above-mentioned lithium salts one kind is used alone or two or more kinds are used in combination.
  • the content ratio of the resin and the lithium salt in the solid electrolyte layer is determined by the ratio of the oxygen atom of the resin to the lithium atom of the lithium salt ([Li] / [O]).
  • the content ratio of the resin to the lithium salt is such that the above ratio ([Li] / [O]) is preferably 0.02 or more and 0.20 or less, more preferably 0.03 or more and 0. It is adjusted to be 15 or less, more preferably 0.04 or more and 0.12 or less.
  • the solid electrolyte layer 17 may contain components other than the above resin and salt.
  • it may contain an electrolytic solution similar to the electrolytic solution that can be contained in the secondary battery cell 10.
  • it is preferable to seal the secondary battery cell 10A with an exterior body.
  • the solid electrolyte layer 17 preferably has a certain thickness from the viewpoint of reliably separating the positive electrode and the negative electrode, while the thickness is constant from the viewpoint of increasing the energy density of the secondary battery (secondary battery cell 10A). It is preferable to suppress it to the following.
  • the average thickness of the solid electrolyte layer 17 is preferably 5 ⁇ m to 20 ⁇ m, more preferably 7 ⁇ m to 18 ⁇ m or less, and further preferably 10 ⁇ m to 15 ⁇ m.
  • solid electrolyte includes a gel electrolyte.
  • the gel electrolyte is not particularly limited, and examples thereof include those containing a polymer, an organic solvent, and a lithium salt.
  • the polymer in the gel electrolyte is not particularly limited, and examples thereof include a copolymer of polyethylene and / or polyethylene oxide, polyvinylidene fluoride, and a copolymer of polyvinylidene fluoride and hexafluoropropylene.
  • the secondary battery cell 10 may have a current collector arranged so as to be in contact with the positive electrode or the negative electrode.
  • the positive electrode terminal and the negative electrode terminal are connected to the current collector.
  • the current collector is not particularly limited, and examples thereof include a current collector that can be used as a negative electrode material.
  • the negative electrode and the positive electrode themselves act as current collectors.
  • a plurality of negative electrodes, a separator or a solid electrolyte layer, and a positive electrode may be laminated to improve the capacity and output voltage of the battery.
  • the number of layers is, for example, 3 or more, preferably 10 to 30.
  • high energy density means that the total volume or capacity per total mass of the battery is high, but it is preferably 800 Wh / L or more or 350 Wh / kg or more, and more preferably 900 Wh or more. It is / L or more or 400 Wh / kg or more, and more preferably 1000 Wh / L or more or 450 Wh / kg or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

サイクル寿命を向上させることの可能な電池システム、制御装置及び制御方法を提供する。負極に負極活物質を含まない電池セルを少なくとも1つ含む複数の電池ユニットと、電池ユニットが充電経路又は放電経路に接続された第1状態と、電池ユニットが充電経路及び放電経路のいずれにも接続されない第2状態との間を切り替え可能な複数のスイッチと、充電制御部と、放電制御部と、備える電池システムであって、充電制御部は、選択されたa個(aは2以上の整数)のスイッチを同時に第1状態にし、且つ、a個のスイッチ以外のスイッチを同時に第2状態にする第1スイッチ制御部を含み、放電制御部は、選択されたb個(bはaより小さい整数)のスイッチを同時に第1状態にし、且つb個のスイッチ以外のスイッチを同時に第2状態にする第2スイッチ制御部を含む、電池システム。

Description

電池システム、制御装置及び制御方法
 本発明は、電池システム、制御装置及び制御方法に関する。
 近年、太陽光又は風力等の自然エネルギーを電気エネルギーに変換する技術が注目されている。これに伴い、多くの電気エネルギーを蓄えることができ、かつ安全性が高い蓄電デバイスとして、様々な電池が開発されている。
 その中でも、正極及び負極の間を金属イオンが移動することで充放電を行う2次電池は高電圧及び高エネルギー密度を示すことが知られており、典型的には、リチウムイオン2次電池が知られている。典型的なリチウムイオン2次電池としては、正極及び負極にリチウムを保持することのできる活物質を導入し、正極活物質及び負極活物質の間でのリチウムイオンの授受によって充放電をおこなうものが挙げられる。
 また、負極表面上にリチウム金属を析出させることでリチウムを保持するリチウム金属2次電池が開発されている。例えば、特許文献1には、極薄のリチウム金属アノードを用いた高出力リチウム金属アノード2次電池が開示されている。また、特許文献2には、金属粒子が形成された負極集電体上にリチウム金属を形成するリチウム2次電池が開示されている。
特表2019-517722号公報 特表2019-537226号公報
 しかしながら、負極表面上にリチウム等のキャリア金属を析出させることでキャリア金属を保持する2次電池は、充放電を繰り返すことにより負極表面上にデンドライト(負極からの電位が印可されない不活性化したキャリア金属)が形成されやすい。そのため、容量低下が生じやすく、サイクル特性が十分でない。
 本出願人が鋭意実験を重ねた結果、このような2次電池では、充放電サイクルにおいて低い充電レートで充電を行う一方で高い放電レートで放電を行うことにより、サイクル特性が向上することが見出された。
 本発明は、負極表面上にキャリア金属を析出させることでキャリア金属を保持する2次電池のサイクル特性を向上させることの可能な電池システム、制御装置及び制御方法を提供することを目的とする。
 本発明の一態様に係る電池システムは、負極に負極活物質を含まない電池セルを少なくとも1つ含み、互いに並列に接続可能に配置された複数の電池ユニットと、複数の電池ユニットの各々に対応付けて設けられ、電池ユニットが充電経路又は放電経路に接続された第1状態と、電池ユニットが充電経路及び放電経路のいずれにも接続されない第2状態との間を切り替え可能な複数のスイッチと、複数のスイッチの切り替えを制御することにより、複数の電池ユニットの充電制御を実行する充電制御部と、複数のスイッチの切り替えを制御することにより、複数の電池ユニットの放電制御を実行する放電制御部と、備える電池システムであって、充電制御部は、複数のスイッチのうち選択されたa個(aは2以上の整数)のスイッチを同時に第1状態にし、且つ、複数のスイッチのうちa個のスイッチ以外のスイッチを同時に第2状態にする第1スイッチ制御部を含み、放電制御部は、複数のスイッチのうち選択されたb個(bはaより小さい整数)のスイッチを同時に第1状態にし、且つ複数のスイッチのうちb個のスイッチ以外のスイッチを同時に第2状態にする第2スイッチ制御部を含む。
 この態様によれば、負極に負極活物質を含まない2次電池を含んで構成される電池ユニットについて、充電制御においては、第1スイッチ制御部によりa個の電池ユニットが充電経路に接続され、放電制御においては、第2スイッチ制御部によりa個より少ないb個の電池ユニットが放電される。そのため、各電池セルの充電レートは低減し、放電レートは増加する。これにより、各電池セルのサイクル特性が向上する。
 本発明によれば、負極表面上にキャリア金属を析出させることでキャリア金属を保持する2次電池のサイクル特性を向上させることの可能な電池システム、制御装置及び制御方法を提供することができる。
本発明の実施形態に係る電池システム1の概略構成の一例を示すブロック図である。 2次電池セル10の概略構成の一例を示す図である。 充放電サイクルの実験結果の一例を示す図である。 BMS400の機能構成の一例を示すブロック図である。 BMS400による充電制御の動作フローの一例を示す図である。 BMS400による放電制御の動作フローの一例を示す図である。 2次電池セル10の変形例の概略構成の一例を示す図である。
 添付図面を参照して、本発明の好適な実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。
[電池システムの構成]
 図1は、本発明の実施形態に係る電池システム1の概略構成の一例を示すブロック図である。
 電池システム1は、例えば、電池パック100と、充電器200と、負荷300と、バッテリ・マネジメント・システム(BMS)400と、を含む。電池パック100は、後述するように、互いに並列に接続可能に配置された複数の2次電池セル10を含んで構成される。電池パック100に含まれる2次電池セル10は、例えば、充電器200に接続され、BMS400の制御によって充電器200が供給する充電電流によって充電され得る。また、電池パック100に含まれる2次電池セル10は、例えば、負荷300に接続され、BMS400による制御によって負荷300に電流を供給し得る。
 電池パック100は、例えば、複数の電池ユニット110と、電池ユニット110毎に設けられたスイッチ120と、電池ユニット毎に設けられた電流センサ130と、電圧センサ140と、コンバータ150と、バッファキャパシタ160とを含む。
 複数の電池ユニット110は、互いに並列に接続可能に配置される。電池パック100が含む電池ユニット110の数は、特に限定されない。電池ユニット110は、互いに並列に接続された少なくとも1つの2次電池セル10を含む。図1に示す例では、各電池ユニット110は、3つの2次電池セル10を含む。2次電池セル10は、単一の単位電池セルによって構成されてもよいし、複数の単位電池セルが直列に接続されて構成されてもよい。2次電池セル10の構成は、例えば負荷300に応じて調整されてもよい。電池ユニット110が含む2次電池セル10は、それぞれ同一の特性を有していてもよいし、異なる特性を有していてもよい。2次電池セル10の構成の詳細については後述する。
 スイッチ120は、例えば、電界効果トランジスタやMOSFET等の半導体スイッチ素子によって構成される。スイッチ120の一端は、電池ユニット110の一端と接続される。スイッチ120の他端は、コンバータ150を介して充電器200及び/又は負荷300に接続される。スイッチ120は、BMS400から供給される制御信号に基づいて、電池ユニット110が充電経路及び/又は放電経路に接続した状態(第1状態)と、電池ユニット110が充電経路及び放電経路のいずれにも接続しない状態(第2状態)との間を切り替え可能である。ここで、充電経路は、充電器200からの電流の供給経路(充電経路)である。また、放電経路は、負荷300への電流の供給経路(放電経路)である。
 電流センサ130は、電池ユニット110に直列に接続される。電流センサ130は、電池ユニット110に流れる電流を検知し、当該電流値をBMS400に供給する。
 電圧センサ140は、複数の電池ユニット110に対して並列に接続される。電圧センサ140は、各電池ユニット110の両端の電圧を検知し、当該電圧値をBMS400に供給する。
 バッファキャパシタ160は、BMS400から供給される制御信号に基づいて、充電器300から電池ユニット110に供給される電流の少なくとも一部を吸収することにより、電池ユニット110の充電電流を低減することができる。これにより、充電器200の供給電流が大きい場合であっても、電池ユニット110の充電レートを低く保つことが可能となる。
 コンバータ150は、BMS400から供給される制御信号に基づいて、電池ユニット110側の電圧を降圧して負荷300側に印加することにより、電池ユニット110の放電電流を低減させた上で負荷300に供給すことができる。これにより、負荷300の要求電流が小さい場合であっても、電池ユニット110の放電レートを高く保つことが可能となる。
充電器200は、例えば、外部電源に接続された充電プラグが接続可能な充電コネクタが設けられ、外部電源からの供給電力を2次電池セル10の充電電力に変換するように構成される。
 電流センサ201は、充電器200に直列に接続され、充電器200から電池パック100への電流(供給電流)を検知して、当該電流値をBMS400に供給する。
 負荷300は、特に限定されないが、例えば、電動車両(電気自動車、ハイブリッド自動車)の駆動装置等として構成されてよい。
 電流センサ301は、負荷300に直列に接続され、電池パック100から300への電流(負荷電流)を検知して、当該電流値をBMS400に供給する。
 BMS400は、例えば、メモリ401と、CPU402と、を含んで構成されるコントローラであって、電池パック100に含まれる2次電池セル10の充電及び放電を制御する。
 メモリ401は、例えば、RAM、ROM、半導体メモリ、磁気ディスク装置及び光ディスク装置等によって構成され、CPU402による処理に用いられるドライバプログラム、オペレーティングシステムプログラム、アプリケーションプログラム、データ等を記憶する。各種プログラムは、例えばCD-ROM、DVD-ROM等のコンピュータ読み取り可能な可搬型記録媒体から、公知のセットアッププログラム等を用いて記憶部22にインストールされてもよい。
 CPU402は、一又は複数個のプロセッサ及びその周辺回路を備え、BMS400の全体的な動作を統括的に制御する。CPU402は、メモリ401に記憶されているプログラム(オペレーティングシステムプログラムやドライバプログラム、アプリケーションプログラム等)に基づいて処理を実行する。
[2次電池セル10]
 図2は、2次電池セル10の概略構成の一例を示す図である。図2に示すように、2次電池セル10は、正極11、負極活物質を有しない負極12及び正極11と負極12との間に配置されたセパレータ13等が外装体14内に封止されたパウチセルであり、正極11及び負極12にそれぞれ接続された正極端子15、負極端子16が外装体14の外部に延出して外部回路に接続できるように構成されている。2次電池セル10の上面及び下面は平面であり、その形状は、方形であるが、これに限定されるものではなく、用途等に応じて任意の形状(例えば、円形等)にすることができる。
(正極)
 正極11としては、一般的に2次電池に用いられるものであれば、特に限定されないが、2次電池の用途及びキャリア金属の種類によって、公知の材料を適宜選択することができる。2次電池の安定性及び出力電圧を高める観点から、正極11は、好ましくは正極活物質を有する。
 正極活物質は、金属イオンを正極に保持するための物質であり、金属イオンのホスト物質となる。正極活物質の材料としては、特に限定されないが、例えば、金属酸化物及び金属リン酸塩が挙げられる。上記金属酸化物としては、特に限定されないが、例えば、酸化コバルト系化合物、酸化マンガン系化合物、及び酸化ニッケル系化合物等が挙げられる。上記金属リン酸塩としては、特に限定されないが、例えば、リン酸鉄系化合物、及びリン酸コバルト系化合物が挙げられる。
 金属イオンがリチウムイオンである場合、正極活物質としては、例えば、リチウムニッケルコバルトアルミニウム酸化物(NCA,LiNiCoAlO)、リチウムニッケルコバルトマグネシウム酸化物(LiNiCoMnO、NCMと称される。なお、元素比の違いによりNCM622、NCM523、NCM811等と表記されることもある。)、コバルト酸リチウム(LCO,LiCoO)、リン酸鉄リチウム(LFP,LiFePO)が挙げられる。上記のような正極活物質は、1種を単独で又は2種以上を併用して用いられる。正極活物質の含有量は、正極11全体に対して、例えば、50質量%以上100質量%以下であってもよい。
 正極11は、正極活物質以外の成分を含んでいてもよい。そのような成分としては、特に限定されないが、例えば、公知の導電助剤、バインダ、固体ポリマー電解質、及び無機固体電解質が挙げられる。
 例えば、正極11は、バインダを含んでいてもよい。バインダとしては、例えば、フッ素系バインダ、水系バインダ、イミド系バインダが用いられる。このようなバインダとしては、例えば、ポリビニリデンフロライド(PvDF)、スチレンブタジエンゴムとカルボキシメチルセルロースの合材(SBR-CMC)、ポリアクリル酸(PAA)、ポリアクリル酸リチウム(Li-PAA)、ポリイミド(PI)、ポリアミドイミド(PAI)、アラミドなどが用いられる。バインダの含有量は、正極11全体に対して、例えば、0.5質量%30質量%以下であってもよい。
 例えば、正極11は、導電助剤を含んでいてもよい。導電助剤としては、例えば、カーボンブラック、アセチレンブラック(AB)、カーボンナノファイバー(VGCF)、単層カーボンナノチューブ(SWCNT)、多層カーボンナノチューブ(MWCNT)が挙げられる。導電助剤の含有量は、正極11全体に対して、例えば、0.5質量%30質量%以下あってもよい。
 正極11の単位面積当たりの重量は、例えば、10-40mg/cmである。正極活物質層12の厚さは、例えば、30~150μmである。正極11の密度は、例えば、2.5~4.5g/mlである。正極11の面積容量は、例えば、1.0~10.0mAh/cmである。
 正極11の面積は、好ましくは、10cm以上300cm以下であり、より好ましくは20cm以上250cm以下であり、更に好ましくは50cm以上200cm以下である。
 正極11の厚さ(上下方向の長さ)は、好ましくは20μm以上150μm以下であり、より好ましくは40μm以上120μm以下であり、更に好ましくは50μm以上100μm以下である。
(負極)
 負極12は、負極活物質を有しないものである。負極活物質を有する負極を備える電池は、その負極活物質の存在に起因して、エネルギー密度を高めることが困難である。一方、本実施形態の2次電池セル10は負極活物質を有しない負極12を備えるため、そのような問題が生じない。すなわち2次電池セル10は、金属が負極12の表面に析出し、及び、その析出した金属が溶解することによって充放電が行われるため、エネルギー密度が高い。
 「負極活物質」とは、電池において電荷キャリアとなる金属イオン又はその金属イオンに対応する金属(以下、「キャリア金属」という。)を負極12に保持するための物質を意味し、キャリア金属のホスト物質と換言してもよい。そのような保持の機構としては、特に限定されないが、例えば、インターカレーション、合金化、及び金属クラスターの吸蔵等が挙げられる。負極活物質は、典型的には、リチウム金属又はリチウムイオンを負極12に保持するための物質である。
 そのような負極活物質としては、特に限定されないが、例えば、炭素系物質、金属酸化物、及び金属又は合金等が挙げられる。上記炭素系物質としては、特に限定されないが、例えば、グラフェン、グラファイト、ハードカーボン、メソポーラスカーボン、カーボンナノチューブ、及びカーボンナノホーン等が挙げられる。上記金属酸化物としては、特に限定されないが、例えば、酸化チタン系化合物、酸化スズ系化合物、及び酸化コバルト系化合物等が挙げられる。上記金属又は合金としては、キャリア金属と合金化可能なものであれば特に限定されないが、例えば、ケイ素、ゲルマニウム、スズ、鉛、アルミニウム、ガリウム、及びこれらを含む合金が挙げられる。
 負極12としては、負極活物質を有さず、集電体として用いることができるものであれば特に限定されないが、例えば、Cu、Ni、Ti、Fe、及び、その他Liと反応しない金属、及び、これらの合金、並びに、ステンレス鋼(SUS)からなる群より選択される少なくとも1種からなるものが挙げられる。なお、負極12にSUSを用いる場合、SUSの種類としては従来公知の種々のものを用いることができる。上記のような負極材料は、1種を単独で又は2種以上を併用して用いられる。なお、「Liと反応しない金属」とは、2次電池セル10の動作条件においてリチウムイオン又はリチウム金属と反応して合金化することがない金属を意味する。
 負極12は、好ましくはリチウムを含有しない電極である。そのような態様によれば、製造の際に可燃性の高いリチウム金属を用いなくてよいため、2次電池セル10は、より安全性及び生産性に優れるものとなる。同様の観点及び負極12の安定性向上の観点から、その中でも、負極12は、より好ましくは、Cu、Ni、及び、これらの合金、並びに、ステンレス鋼(SUS)からなる群より選択される少なくとも1種からなるものである。同様の観点から、負極12は、更に好ましくは、Cu、Ni、又はこれらからなる合金からなるものであり、特に好ましくはCu、又はNiからなるものである。
 「負極が負極活物質を有しない」とは、「ゼロアノード」又は「アノードフリー」ともいうことができ、負極における負極活物質の含有量が、負極全体に対して10質量%以下であることを意味する。負極における負極活物質の含有量は、負極全体に対して、好ましくは5.0質量%以下、より好ましくは1.0質量%以下、更に好ましくは0.1質量%以下、特に好ましくは0.0質量%以下である。
 負極12は、好ましくは、表面に、析出するキャリア金属と負極との接着性を高めるための接着層が形成されている。そのような態様によれば、負極12上にキャリア金属、特にリチウム金属が析出する際に、負極12と析出金属との接着性をより向上させることができる。その結果、負極12から析出金属が剥離することを抑制することができるため、2次電池セル10のサイクル特性が向上する。
 接着層としては、例えば、負極以外の金属、その合金、及び炭素系物質が挙げられる。限定することを意図するものではないが、接着層の例としては、Au,Ag,Pt,Sb,Pb,In,Sn、Zn,Bi,Al,Ni,Cu,グラフェン、グラファイト、ハードカーボン、メソポーラスカーボン、カーボンナノチューブ、及びカーボンナノホーン等が挙げられる。接着層の厚さは、特に限定されないが、好ましくは1nm以上300nm以下、より好ましくは50nm以上150nm以下である。接着層が上記態様であると、一層負極12と析出金属との接着性を向上させることができる。なお、接着層が上述した負極活物質に該当する場合、接着層は、負極に対して、10質量%以下であり、好ましくは5.0質量%以下、より好ましくは1.0質量%以下、更に好ましくは0.1質量%以下である。
 負極12の面積は、正極11の面積よりも大きいことが好ましく、例えば、その四方が正極11よりも僅かに(例えば、0.5~1.0mm程度)大きく構成されている。
 負極12の厚さ(上下方向の長さ)は、好ましくは20μm以下、より好ましくは10μm以下、さらに好ましくは、1μm以下である。
(セパレータ)
 セパレータ13は、正極11と負極12を隔離して短絡を防ぎつつ、正極11と負極12との間の電荷キャリアとなる金属イオンのイオン伝導性を確保する部材であり、金属イオンと反応しない部材により構成される。電解液を用いる場合には、セパレータ13は当該電解液を保持する役割も担う。
セパレータ13は、セパレータ基材と、セパレータ基材の表面を被覆するセパレータ被覆層とを有することが好ましい。セパレータ基材は、上記役割を担う限りにおいて限定はないが、例えば、多孔質のポリエチレン(PE)、ポリプロピレン(PP)、又はこれらの積層構造により構成される。セパレータ13の面積は、正極11及び負極12の面積よりも大きいことが好ましく、厚さは、例えば、5~20μmであることが好ましい。
 セパレータ被覆層は、セパレータ基材の両面を被覆しても、片面のみを被覆していてもよい。セパレータ被覆層は、電荷キャリアとなる金属イオンと反応せずにイオン伝導性を確保しつつ、上下に隣接する層にセパレータ基材を強固に接着させるものである。セパレータ被覆層は、そのような特性を備える限りにおいて限定はないが、例えば、ポリビニリデンフロライド(PvDF)、スチレンブタジエンゴムとカルボキシメチルセルロースの合材(SBR-CMC)、ポリアクリル酸(PAA)、ポリアクリル酸リチウム(Li-PAA)、ポリイミド(PI)、ポリアミドイミド(PAI)、アラミドなどからなるバインダにより構成される。セパレータ被覆層は、上記バインダにシリカ、アルミナ、チタニア、ジルコニア、酸化マグネシウム、水酸化マグネシウム等の無機粒子を添加させてもよい。
(電解液)
 2次電池セル10は、電解液を有していてもよい。電解液は、セパレータ13に浸漬させる。この電解液は、電解質を溶媒に溶解させて作った、イオン伝導性を有する溶液であり、リチウムイオンの導電経路として作用する。このため、電解液を有することにより、2次電池セル10の内部抵抗が低下し、エネルギー密度及びサイクル特性を向上できる。
 電解質としては、好ましくはリチウム塩が用いられる。リチウム塩としては、特に限定されないが、LiPF6、LiBF4、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(フルオロスルホニル)イミド(LiFSI)、LiClO4、リチウムビスオキサラートボラート(LiBOB)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(LiBETI)が挙げられる。電池1のサイクル特性が一層優れるようになる観点から、リチウム塩としては、LiFSIが好ましい。なお、上記のリチウム塩は、1種を単独で又は2種以上を併用して用いられる。
 溶媒としては、特に限定されないが、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、1,2-ジメトキシエタン(DME)、ジエチルカーボネート(DEC)、γ-ブチロラクトン(GBL)、1,3-ジオキソラン(DOL)、フルオロエチレンカーボネート(FEC)が挙げられる。
(外装体)
 外装体14は、2次電池セル10の正極11,負極12、セパレータ13、電解液等を収容して密閉封止するものであり、材料としては、例えば、ラミネートフィルムが用いられる。
(正極端子及び負極端子)
 正極端子15は、一端が正極11の上面(セパレータ13に対向する面と反対側の面)に接続され、外装体14の外部に延出して、他端が外部回路(図示せず)に接続される。負極端子16は、一端が負極12の下面(セパレータ13に対向する面と反対側の面)に接続され、外装体14の外部に延出して、他端が外部回路(図示せず)に接続される。正極端子15、負極端子16の材料としては、導電性のあるものであれば特に限定されないが、例えば、Al、Ni等が挙げられる。
[充放電サイクルの実験結果]
 ここで、図2に示された構成を有する2次電池セル10を製作した上で、充電レート及び放電レートを様々な値に設定して充放電サイクルを繰り返す実験を行った。製作した2次電池セル10の概要は、以下のとおりである。正極には、面積約16cm、厚さ約75μmのLiNi2-xAl(x=0.01~0.5)を用いた。負極には、面積約25cm、厚さ約8μmの銅箔(Cu箔)を用いた。セパレータには、PvDFをコートした微多孔性ポリエチレンフィルムを用いた。電解液には、体積比80%のジメトキシエタン(DME)と、体積比20%のフッ素化エーテルとに、1molのLiN(SOF)を混合したものを用いた。
 図3は、その実験結果の一例を示す図である。図3に示す実験結果のうち、行は充電レート、列は放電レートを示す。また、各セル内の数値は、容量維持率が90%未満となるサイクル数を示す。
 図3に示すとおり、概ね、充電レートが低い程、又、放電レートが高い程、容量維持率が90%未満となるサイクル数は多いことが分かる。したがって、負極表面上にキャリア金属(例えば、リチウム金属)を析出させることにより該キャリア金属を保持する2次電池においては、充電レートは低く、放電レートは高いほど、サイクル特性が向上すると言える。
 これは、以下のような理由によるものと考えられる。すなわち、上述したとおり、本実施形態に係る2次電池セル10では、負極12は負極活物質を有しないため、充電によってキャリア金属が負極12の表面に析出し、又、放電によってその析出したキャリア金属が溶解する。このとき、充電レートが低い程、負極12におけるキャリア金属の析出反応が緩やかになり、不活性化したキャリア金属の析出が抑制される。また、放電レートが高い程、負極12におけるキャリア金属の溶解反応が激しくなり、不活性化したキャリア金属の生成が抑制される。
 以上より、サイクル特性の観点からは、充電レートに対する放電レートの割合(放電レートを充電レートで除した値)は、より大きい方が好ましいと言える。より具体的には、充電レートに対する放電レートの割合は、1以上が好ましく、1.5以上が更に好ましく、2以上が更に好ましく、3以上が更に好ましく、5以上が更に好ましい。
[BMSの機能構成]
 図4は、BMS400の機能構成の一例を示すブロック図である。本実施形態に係るBMS400は、上述の実験結果等を踏まえて、例えば、充電制御においては充電レートが低くなるようにスイッチ120等を制御し、放電制御においては放電レートが高くなるようにスイッチ120等を制御することが可能である。
図4に示すとおり、BMS400は、例えば、充電状態算出部410と、設定記憶部420と、充電制御部430と、放電制御部440と、を含む。BMS400が有するこれら機能モジュールは、メモリ401に記憶されたプログラムをCPU402が実行することによって実現される。また、BMS400は、例えば、設定記憶部420を含む。設定記憶部420は、メモリ402の一部として構成される。
(充電状態算出部)
 充電状態算出部411は、例えば所定の周期毎に、電流センサ130から取得した電池ユニット110の電流値及び電圧センサ140から取得した電池ユニット110の電圧値に基づいて、2次電池セル10の充電状態を算出し、算出した充電状態を充電制御部430及び/又は放電制御部440等に供給する。ここで、充電状態は、2次電池セル10の充電の状態を示す任意の情報であってよいが、例えば、満充電容量に対する現在の残容量を百分率で示したSOC(State of Charge)を含んでもよい。
(設定記憶部)
 設定記憶部420は、BMS400による制御に関する各種の設定事項を記憶する。例えば、設定記憶部420は、2次電池セル10の充電制御の具体的内容を規定した充電計画を記憶する。また、例えば、設定記憶部420は、2次電池セル10の放電制御の具体的内容を規定した放電計画を記憶する。これら充電計画及び放電計画は、それぞれ任意に設定可能であってよい。
(充電制御部)
 充電制御部430は、例えば設定記憶部420に記憶された充電計画に基づいて、充電制御を実行する。充電制御部430は、例えば、第1スイッチ制御部431と、バッファキャパシタ制御部432とを含む。
 第1スイッチ制御部431は、充電制御において、電池パック100が含むスイッチ120の各々に対して制御信号を供給して各スイッチ120を第1状態と第2状態との間で切り替えることにより、電池パック100が含む各電池ユニット110の充電を制御することができる。例えば、第1スイッチ制御部431は、複数のスイッチ120のうち選択されたa個のスイッチ120を同時に第1状態にし、且つ、複数のスイッチ120のうち当該a個のスイッチ120以外のスイッチ120を同時に第2状態にすることが可能である。このとき、第1状態であるa個のスイッチ120のそれぞれに対応する電池ユニット110は充電経路に接続され、当該a個のスイッチ120以外のスイッチ120のそれぞれに対応する電池ユニット110は充電経路に接続されない。これにより、充電器200から電池パック100に供給される供給電流が、複数の電池ユニット110のうち充電経路に接続された当該a個の電池ユニット110の各々に流入する。ここで、aは、2以上の整数であって、後述するb(放電制御において同時に第1状態となるスイッチ120の個数)より大きい整数として設定され得る。そのため、各2次電池セル10の充電レートが低くなる。
 第1スイッチ制御部431は、所定の第1切替条件が満たされた場合、第1状態にあるa個のスイッチ120から選択された1つのスイッチ120を第1状態から第2状態に切り替え、且つ、第2状態にあるa個のスイッチ120以外のスイッチ120から選択された1つのスイッチ120を第1状態に切り替える。当該選択の基準は特に限定されないが、例えば、スイッチ120の充電状態、放電充電計画において予め設定されたスイッチ120の序列等を含んでもよい。第1切替条件は、第1状態にあるa個のスイッチ120に対応付けられた少なくともいずれかの電池ユニット110の充電状態が第2閾値以上となったことを含んでもよい。また、第1切替条件は、複数の第2閾値を設けてもよい。また、第1切替条件は、第1状態にあるa個のスイッチ120の少なくともいずれかが第2状態から第1状態に切り替わってから所定時間が経過したことを含んでもよい。また、第1切替条件は、上述した複数の条件を組み合わせて規定されてもよい。
 バッファキャパシタ制御部432は、充電器200から供給される供給電流が所定の閾値(第1閾値)以上である場合、供給電流の少なくとも一部を吸収することにより電池ユニット110に供給される電流を低減させるようにバッファキャパシタ160を制御することができる。ここで、第1閾値は、任意に設定可能であってよいが、例えば、2次電池セル10の所望する充電レート(例えば、0.1C)に、上述したa(例えば、3)を乗じて得られる値(例えば、0.3C)に設定してもよい。バッファキャパシタ160が電池ユニット110の充電電流を低減させる大きさは、特に限定されないが、例えば、バッファキャパシタ160は、上述した第1閾値まで当該充電電流を低減させてもよい。これにより、2次電池セル10の充電レートが所望する充電レートとなる。
 放電制御部440は、例えば設定記憶部420に記憶された放電計画に基づいて、放電制御を実行する。放電制御部440は、例えば、第2スイッチ制御部441と、コンバータ制御部442とを含む。
 第2スイッチ制御部441は、放電制御において、電池パック100が含むスイッチ120の各々に対して制御信号を供給して各スイッチ120を第1状態と第2状態との間で切り替えることにより、電池パック100が含む各電池ユニット110の放電を制御することができる。例えば、第2スイッチ制御部441は、複数のスイッチ120のうち選択されたb個のスイッチ120を同時に第1状態にし、且つ、複数のスイッチ120のうち当該b個のスイッチ120以外のスイッチ120を同時に第2状態にすることが可能である。このとき、第1状態であるb個のスイッチ120のそれぞれに対応する電池ユニット110は放電経路に接続され、当該b個のスイッチ120以外のスイッチ120のそれぞれに対応する電池ユニット110は放電経路に接続されない。これにより、電池パック100から負荷300に供給される放電電流は、複数の電池ユニット110のうち放電経路に接続された当該b個の電池ユニット110から供給される。ここで、bは、整数であって、上述したa(充電制御において同時に第1状態となるスイッチ120の個数)より小さい整数として設定され得る。そのため、各2次電池セル10の放電レートが高くなる。   
 第2スイッチ制御部441は、所定の第2切替条件が満たされた場合、第1状態にあるb個のスイッチ120から選択された1つのスイッチ120を第1状態から第2状態に切り替え、且つ、第2状態にあるb個のスイッチ120以外のスイッチ120から選択された1つのスイッチ120を第1状態に切り替える。当該選択の基準は特に限定されないが、例えば、スイッチ120の充電状態、放電計画において予め設定されたスイッチ120の序列等を含んでもよい。第2切替条件は、第1状態にあるb個のスイッチ120に対応付けられた少なくともいずれかの電池ユニット110の充電状態が第4閾値以下となったことを含んでもよい。また、第2切替条件は、複数の第4閾値を設けてもよい。また、第2切替条件は、第1状態にあるb個のスイッチ120の少なくともいずれかが第2状態から第1状態に切り替わってから所定時間が経過したことを含んでもよい。また、第2切替条件は、上述した複数の条件を組み合わせて規定されてもよい。
 コンバータ制御部442は、負荷300の要求電流が所定の閾値(第3閾値)以下である場合、電池ユニット110側の電圧を降圧して負荷300側に印加することにより、電池ユニット110の放電電流を低減させて負荷300に供給させるようにコンバータ150を制御することができる。ここで、第3閾値は、任意に設定可能であってよいが、例えば、2次電池セル10の所望する放電レート(例えば、0.3C)に設定してもよい。コンバータ150が電池ユニット110の放電電流を低減させる大きさは、特に限定されないが、例えば、コンバータ150は、上述した第3閾値まで当該放電電流を低減させてもよい。これにより、2次電池セル10の放電レートが所望する放電レートとなる。
[動作]
(充電制御)
 図5は、BMS400による充電制御の動作フローの一例を示す図である。当該動作処理は、主に充電制御部430が、設定記憶部412に記憶された充電計画に基づいて実行する。
 充電制御が開始されると、充電状態算出部411は、例えば所定の周期毎に、電池ユニットの充電状態を算出した上で、当該充電状態を充電制御部430に送信する。
(S101)
 まず、バッファキャパシタ制御部432は、充電器200の供給電流の電流値を電流センサ201から取得した上で、当該供給電流が充電計画に含まれる第1閾値以上であるか否かを判定する。取得された充電器200の供給電流が第1閾値以上でないと判定された場合(S101;No)、処理はS103に進む。
(S102)
 取得された充電器200の供給電流が第1閾値以上であると判定された場合(S101;Yes)、バッファキャパシタ制御部432は、バッファキャパシタ160に制御信号を供給することにより、当該供給電流を低減させて各電池ユニット110に供給する。
(S103)
 次に、第1スイッチ制御部431は、充電状態算出部411から供給される電池ユニット110の充電状態に基づいて、全ての電池ユニット110が充電済みか否かを判定する。例えば、電池ユニット110の充電状態が所定の閾値(第5閾値)以上である場合、当該電池ユニット110については充電済みであると判定する。当該第5閾値は特に限定されないが、例えば、80%、85%、90%、95%、99%等であってよい。
(S104)
 全ての電池ユニット110が充電済みと判定された場合(S103;Yes)、第1スイッチ制御部431は、電池パック100が含む全てのスイッチ120に対して制御信号を供給することにより、全てのスイッチ120を第2状態に切り替える。これにより、当該全てのスイッチ120が第2状態となり、処理が終了する。
(S105)
 全ての電池ユニット110が充電済みであると判定されなかった場合(S103;No)、第1スイッチ制御部431は、充電計画に基づいて、電池パック100に含まれるスイッチ120のうち、S103で充電状態が所定の閾値(第5閾値)以上であると判定されなかった電池ユニット110に対応するスイッチ120からa個(aは2以上の整数)のスイッチ120を選択する。当該選択の基準は特に限定されないが、例えば、スイッチ120の充電状態、充電計画において予め設定されたスイッチ120の序列等を含んでもよい。
(S106)
 次に、第1スイッチ制御部431は、選択されたa個のスイッチ120を第1状態に切り替え、当該a個のスイッチ120以外のスイッチ120を第2状態に切り替える。これにより、電池パック100に供給される充電電流は、第1状態である当該a個のスイッチ120に供給される。
(S107)
 次に、第1スイッチ制御部431は、所定の第1切替条件が満たされるまで、充電を継続する。所定の第1切替条件が満たされると判定された場合(S107;Yes)、処理はステップS103に戻る。上述したとおり、所定の第1切替条件は、例えば、第1状態にあるスイッチ120に対応付けられた電池ユニット110の充電状態が所定の閾値(第2閾値)以上となったことを含んでもよい。また、所定の第1切替条件は、例えば、第1状態にあるいずれかのスイッチ120が第2状態から第1状態に切り替わってから所定時間が経過したことを含んでもよい。
(放電制御)
 図6は、BMS400による放電制御の動作フローの一例を示す図である。当該動作処理は、主に放電制御部440が、設定記憶部412に記憶された放電計画に基づいて実行する。
 放電制御が開始されると、充電状態算出部411は、例えば所定の周期毎に、電池ユニットの充電状態を算出した上で、当該充電状態を放電制御部440に送信する。
(S201)
 まず、コンバータ制御部442は、負荷300の要求電流の電流値を電流センサ301から取得した上で、当該要求電流が放電計画に含まれる第2閾値以下であるか否かを判定する。取得された負荷300の要求電流が第3閾値以下でないと判定された場合(S201;No)、処理はS203に進む。
(S202)
 取得された負荷300の要求電流が第3閾値以下であると判定された場合(S201;Yes)、コンバータ制御部442は、コンバータ150に制御信号を供給することにより、各電池ユニット110からの放電電流を増加させて負荷300に供給する。
(S203)
 次に、第2スイッチ制御部441は、充電状態算出部411から供給される電池ユニット110の充電状態に基づいて、全ての電池ユニット110が放電済みか否かを判定する。例えば、電池ユニット110の充電状態が所定の閾値(第6閾値)以下である場合、当該電池ユニット110については放電済みであると判定する。当該第6閾値は特に限定されないが、例えば、1%、3%、5%、10%、20%、30%、40%、50%等であってよい。
(S204)
 全ての電池ユニット110が放電済みと判定された場合(S203;Yes)、第2スイッチ制御部441は、電池パック100が含む全てのスイッチ120に対して制御信号を供給することにより、全てのスイッチ120を第2状態に切り替える。これにより、当該全てのスイッチ120が第2状態となり、処理が終了する。
(S205)
 全ての電池ユニット110が放電済みであると判定されなかった場合(S203;No)、第2スイッチ制御部441は、放電計画に基づいて、電池パック100に含まれるスイッチ120のうち、S203で充電状態が所定の閾値(第6閾値)以下であると判定されなかった電池ユニット110に対応するスイッチ120からb個(bはaより小さい整数)のスイッチ120を選択する。当該選択の基準は特に限定されないが、例えば、スイッチ120の充電状態、放電計画において予め設定されたスイッチ120の序列等を含んでもよい。
(S206)
 次に、第2スイッチ制御部441は、選択されたb個のスイッチ120を第1状態に切り替え、当該b個のスイッチ120以外のスイッチ120を第2状態に切り替える。これにより、電池パック100から負荷300に供給される放電電流は、第1状態である当該b個のスイッチ120から供給される。
(S207)
 次に、第2スイッチ制御部441は、所定の第2切替条件が満たされるまで、放電を継続する。所定の第2切替条件が満たされると判定された場合(S207;Yes)、処理はステップS203に戻る。上述したとおり、所定の第2切替条件は、例えば、第1状態にあるスイッチ120に対応付けられた電池ユニット110の充電状態が所定の閾値(第4閾値)以下となったことを含んでもよい。また、所定の第2切替条件は、例えば、第1状態にあるいずれかのスイッチ120が第2状態から第1状態に切り替わってから所定時間が経過したことを含んでもよい。
[変形例]
上記実施形態は、本発明を説明するための例示であり、本発明をその実施形態のみに限定する趣旨ではなく、本発明は、その要旨を逸脱しない限り、様々な変形が可能である。
 例えば、2次電池セルは、セパレータではなく固体電解質層を有していてもよい。図7は、変形例にかかる2次電池セル10Aの概略断面図である。図7に示すように、2次電池セル10Aは、正極11と負極と13との間に固定電解質層17が形成された固体電池である。2次電池セル10Aは、実施形態にかかる2次電池セル10(図2)において、セパレータ13を固体電解質層17に変更した上、外装体を有しないようにしたものである。
 一般に、液体電解質を備える電池は、液体の揺らぎに起因して、電解質から負極表面に対してかかる物理的圧力が場所によって異なる傾向にある。これに対し、2次電池セル10Aは、固体電解質層17を備えるため、負極12の表面にかかる圧力がより均一なものとなり、負極12の表面に析出するキャリア金属の形状をより均一化することができる。これにより、負極12の表面に析出するキャリア金属が、デンドライト状に成長することがより抑制されるため、2次電池(2次電池セル10A)のサイクル特性がさらに優れたものとなる。
 固体電解質層17としては、2次電池の用途及びキャリア金属の種類によって、公知の材料を適宜選択することができる。固体電解質17は、好ましくはイオン伝導性を有し、電子伝導性を有さないものである。これにより、2次電池セル10Aの内部抵抗を低下させ、2次電池セル10A内部の短絡を抑制することができる。その結果、2次電池(2次電池セル10A)のエネルギー密度、容量、及びサイクル特性を向上させることができる。
 固体電解質層17としては、例えば、樹脂及び塩を含むものが挙げられる。そのような樹脂としては、特に限定されないが、例えば、主鎖及び/又は側鎖にエチレンオキサイドユニットを有する樹脂、アクリル樹脂、ビニル樹脂、エステル樹脂、ナイロン樹脂、ポリシロキサン、ポリホスファゼン、ポリビニリデンフロライド、ポリメタクリル酸メチル、ポリアミド、ポリイミド、アラミド、ポリ乳酸、ポリエチレン、ポリスチレン、ポリウレタン、ポリプロピレン、ポリブチレン、ポリアセタール、ポリスルホン、及びポリテトラフロロエチレン等が挙げられる。上記のような樹脂は、1種を単独で又は2種以上を併用して用いられる。
 固体電解質層17に含まれる塩としては、特に限定されないが、例えば、Li、Na、K、Ca、及びMgの塩等が挙げられる。リチウム塩としては、特に限定されないが、LiI、LiCl、LiBr、LiF、LiBF、LiPF、LiAsF、LiSOCF、LiN(SOF)、LiN(SOCF、LiN(SOCFCF、LiB(O、LiB(O)F、LiB(OCOCF、LiNO、及びLiSO等が挙げられる。上記のようなリチウム塩は、1種を単独で又は2種以上を併用して用いられる。
 一般に、固体電解質層における樹脂とリチウム塩との含有量比は、樹脂の有する酸素原子と、リチウム塩の有するリチウム原子の比([Li]/[O])によって定められる。固体電解質層17において、樹脂とリチウム塩との含有量比は、上記比([Li]/[O])が、好ましくは0.02以上0.20以下、より好ましくは0.03以上0.15以下、更に好ましくは0.04以上0.12以下になるように調整される。
 固体電解質層17は、上記樹脂及び塩以外の成分を含んでいてもよい。例えば、例えば、2次電池セル10が含み得る電解液と同様の電解液を含んでも良い。なお、この場合は、2次電池セル10Aを外装体により封止することが好ましい。
 固体電解質層17は、正極と負極とを確実に離隔する観点からある程度の厚みを有することが好ましく、他方、2次電池(2次電池セル10A)のエネルギー密度を大きくする観点からは厚みを一定以下に抑えることが好ましい。具体的には、固体電解質層17の平均厚さは、好ましくは5μm~20μmであり、より好ましくは7μm~18μm以下であり、さらに好ましくは、10μm~15μmである。
 なお、本明細書において、「固体電解質」とは、ゲル電解質を含むものとする。ゲル電解質としては、特に限定されないが、例えば、高分子と、有機溶媒と、リチウム塩とを含むものが挙げられる。ゲル電解質における高分子としては、特に限定されないが、例えば、ポリエチレン及び/又はポリエチレンオキシドの共重合体、ポリビニリデンフロライド、並びにポリビニリデンフロライド及びヘキサフロロプロピレンの共重合体等が挙げられる。
 また、例えば、2次電池セル10は、正極又は負極に接触するように配置される集電体を有していてもよい。この場合、正極端子及び負極端子は、集電体に接続される。集電体としては、特に限定されないが、例えば、負極材料に用いることのできる集電体が挙げられる。なお、2次電池セル10が集電体を有しない場合、負極及び正極自身が集電体として働く。
 また、例えば、2次電池セル10は、負極とセパレータ又は固体電解質層と、正極とを複数積層させて、電池の容量や出力電圧を向上させるようにしてもよい。積層数は、例えば、3以上、好ましくは、10~30である。
 なお、本明細書において、エネルギー密度が高いとは、電池の総体積又は総質量当たりの容量が高いことを意味するが、好ましくは800Wh/L以上又は350Wh/kg以上であり、より好ましくは900Wh/L以上又は400Wh/kg以上であり、更に好ましくは1000Wh/L以上又は450Wh/kg以上である。
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。
 1…電池システム、10…2次電池セル、11…正極、12…負極、13…セパレータ、14…外装体、15…正極端子、16…負極端子、17…固体電解質、100…電池パック、110…電池ユニット、120…スイッチ、130…電流センサ、140…電圧センサ、150…コンバータ、160…バッファキャパシタ、200…充電器、201…電流センサ、300…負荷、301…電流センサ、400…バッテリ・マネジメント・システム(BMS)、401…メモリ、402…CPU、410…充電状態算出部、420…設定記憶部、430…充電制御部、431…第1スイッチ制御部、432…バッファキャパシタ制御部、440…放電制御部、441…第2スイッチ制御部、442…コンバータ制御部

Claims (16)

  1.  負極に負極活物質を含まない電池セルを少なくとも1つ含み、互いに並列に接続可能に配置された複数の電池ユニットと、
     前記複数の電池ユニットの各々に対応付けて設けられ、電池ユニットが充電経路又は放電経路に接続された第1状態と、電池ユニットが充電経路及び放電経路のいずれにも接続されない第2状態との間を切り替え可能な複数のスイッチと、
     前記複数のスイッチの切り替えを制御することにより、前記複数の電池ユニットの充電制御を実行する充電制御部と、
     前記複数のスイッチの切り替えを制御することにより、前記複数の電池ユニットの放電制御を実行する放電制御部と、
    を備える電池システムであって、
     前記充電制御部は、前記複数のスイッチのうち選択されたa個(aは2以上の整数)のスイッチを同時に前記第1状態にし、且つ、前記複数のスイッチのうち前記a個のスイッチ以外のスイッチを同時に前記第2状態にする第1スイッチ制御部を含み、
     前記放電制御部は、前記複数のスイッチのうち選択されたb個(bはaより小さい整数)のスイッチを同時に前記第1状態にし、且つ前記複数のスイッチのうち前記b個のスイッチ以外のスイッチを同時に前記第2状態にする第2スイッチ制御部を含む、電池システム。
  2.  前記複数の電池ユニットに対して直列に接続されるバッファキャパシタと、
     前記複数の電池ユニットに接続される充電器から供給される供給電流が第1閾値以上である場合、前記供給電流の少なくとも一部を吸収することにより前記複数の電池ユニットに供給される電流を低減させるように前記バッファキャパシタを制御する、バッファキャパシタ制御部と、を更に備える、請求項1に記載の電池システム。
  3.  前記バッファキャパシタは、前記供給電流を前記第1閾値に低減する、請求項2に記載の電池システム。
  4.  前記第1スイッチ制御部は、所定の第1切替条件が満たされた場合、前記第1状態にある前記a個のスイッチから選択された1つのスイッチを前記第1状態から前記第2状態に切り替え、且つ、前記第2状態にある前記a個のスイッチ以外の前記スイッチから選択された1つのスイッチを前記第1状態に切り替える、請求項1から3のいずれか一項に記載の電池システム。
  5.  前記所定の第1切替条件は、前記第1状態にある前記a個のスイッチに対応付けられた少なくともいずれかの電池ユニットの充電状態が第2閾値以上となったことを含む、請求項4に記載の電池システム。
  6.  前記所定の第1切替条件は、前記第1状態にある前記a個のスイッチの少なくともいずれかが前記第2状態から前記第1状態に切り替わってから所定時間が経過したことを含む、請求項4又は5に記載の電池システム。
  7.  前記複数の電池ユニットに対して直列に接続されるコンバータと、
     前記複数の電池ユニットに接続される負荷の要求電流が第3閾値以下である場合、前記複数の電池ユニット側の電圧を降圧して前記負荷側に印加することにより、前記複数の電池ユニットの放電電流を低減させて前記負荷に供給させるように前記コンバータを制御する、コンバータ制御部と、を更に備える、請求項1から6のいずれか一項に記載の電池システム。
  8.  前記コンバータは、前記複数の電池ユニットの放電電流が前記第3閾値となるように、前記複数の電池ユニット側の電圧を降圧して前記負荷側に印加する、請求項7に記載の電池システム。
  9.  前記第2スイッチ制御部は、所定の第2切替条件が満たされた場合、前記第1状態にある前記b個のスイッチから選択された1つのスイッチを前記第1状態から前記第2状態に切り替え、且つ、前記第2状態にある前記b個のスイッチ以外の前記スイッチから選択された1つのスイッチを前記第1状態に切り替える、請求項1から8のいずれか一項に記載の電池システム。
  10.  前記所定の第2切替条件は、前記第1状態にある前記b個のスイッチに対応付けられた少なくともいずれかの電池ユニットの充電状態が第4閾値以下となったことを含む、請求項9に記載の電池システム。
  11.  前記所定の第2切替条件は、前記第1状態にある前記b個のスイッチの少なくともいずれかが前記第2状態から前記第1状態に切り替わってから所定時間が経過したことを含む、請求項9又は10に記載の電池システム。
  12.  前記複数の電池ユニットの数は、3以上である、請求項1から11のいずれか一項に記載の電池システム。
  13.  前記複数の電池ユニットの各々は、互いに並列に接続された3個の前記電池セルを含む、請求項1から12のいずれか一項に記載の電池システム。
  14.  前記充電制御における各電池セルに対する充電レートに対する、前記放電制御における各電池セルに対する放電レートの割合は、2以上である、請求項1から13のいずれか一項に記載の電池システム。
  15.  負極に負極活物質を含まない電池セルを少なくとも1つ含み、互いに並列に接続可能に配置された複数の電池ユニットと、
     前記複数の電池ユニットの各々に対応付けて設けられ、電池ユニットが充電経路又は放電経路に接続された第1状態と、電池ユニットが充電経路及び放電経路のいずれにも接続されない第2状態との間を切り替え可能な複数のスイッチと、を備える電池システムの制御装置であって、
     前記複数のスイッチの切り替えを制御することにより、前記複数の電池ユニットの充電制御を実行する充電制御部と、
     前記複数のスイッチの切り替えを制御することにより、前記複数の電池ユニットの放電制御を実行する放電制御部と、を備え、
     前記充電制御部は、前記複数のスイッチのうち選択されたa個(aは2以上の整数)のスイッチを同時に前記第1状態にし、且つ、前記複数のスイッチのうち前記a個のスイッチ以外のスイッチを同時に前記第2状態にする第1スイッチ制御部を含み、
     前記放電制御部は、前記複数のスイッチのうち選択されたb個(bはaより小さい整数)のスイッチを同時に前記第1状態にし、且つ前記複数のスイッチのうち前記b個のスイッチ以外のスイッチを同時に前記第2状態にする第2スイッチ制御部を含む、制御装置。
  16.  負極に負極活物質を含まない電池セルを少なくとも1つ含み、互いに並列に接続可能に配置された複数の電池ユニットと、
     前記複数の電池ユニットの各々に対応付けて設けられ、電池ユニットが充電経路又は放電経路に接続された第1状態と、電池ユニットが充電経路及び放電経路のいずれにも接続されない第2状態との間を切り替え可能な複数のスイッチと、を備える電池システムの制御方法であって、
     前記複数のスイッチの切り替えを制御することにより、前記複数の電池ユニットの充電制御を実行する充電ステップと、
     前記複数のスイッチの切り替えを制御することにより、前記複数の電池ユニットの放電制御を実行する放電ステップと、を備え、
     前記充電ステップは、前記複数のスイッチのうち選択されたa個(aは2以上の整数)のスイッチを同時に前記第1状態にし、且つ、前記複数のスイッチのうち前記a個のスイッチ以外のスイッチを前記第2状態にする第1スイッチ制御ステップを含み、
     前記放電ステップは、前記複数のスイッチのうち選択されたb個(bはaより小さい整数)のスイッチを同時に前記第1状態にし、且つ前記複数のスイッチのうち前記b個のスイッチ以外のスイッチを前記第2状態にする第2スイッチ制御ステップを含む、制御方法。
PCT/JP2020/025318 2020-06-26 2020-06-26 電池システム、制御装置及び制御方法 WO2021260936A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202080102427.6A CN115769457A (zh) 2020-06-26 2020-06-26 电池系统、控制装置和控制方法
JP2022532221A JP7488605B2 (ja) 2020-06-26 2020-06-26 電池システム、制御装置及び制御方法
EP20942298.9A EP4175117A4 (en) 2020-06-26 2020-06-26 BATTERY SYSTEM, CONTROL DEVICE AND CONTROL METHOD
PCT/JP2020/025318 WO2021260936A1 (ja) 2020-06-26 2020-06-26 電池システム、制御装置及び制御方法
KR1020237000271A KR20230019959A (ko) 2020-06-26 2020-06-26 전지 시스템, 제어 장치 및 제어 방법
US18/085,816 US20230120526A1 (en) 2020-06-26 2022-12-21 Battery system, control device, and control method
JP2024073392A JP2024099772A (ja) 2020-06-26 2024-04-30 電池システム、制御装置及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/025318 WO2021260936A1 (ja) 2020-06-26 2020-06-26 電池システム、制御装置及び制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/085,816 Continuation US20230120526A1 (en) 2020-06-26 2022-12-21 Battery system, control device, and control method

Publications (1)

Publication Number Publication Date
WO2021260936A1 true WO2021260936A1 (ja) 2021-12-30

Family

ID=79282206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025318 WO2021260936A1 (ja) 2020-06-26 2020-06-26 電池システム、制御装置及び制御方法

Country Status (6)

Country Link
US (1) US20230120526A1 (ja)
EP (1) EP4175117A4 (ja)
JP (2) JP7488605B2 (ja)
KR (1) KR20230019959A (ja)
CN (1) CN115769457A (ja)
WO (1) WO2021260936A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023615A (ja) * 2010-07-15 2012-02-02 Panasonic Corp ダイレクトサンプリング回路
JP2015012712A (ja) * 2013-06-28 2015-01-19 株式会社東芝 蓄電システムの制御装置及び制御方法
JP2017117636A (ja) * 2015-12-24 2017-06-29 トヨタ自動車株式会社 二次電池を再利用するための処理方法
JP2019517722A (ja) 2016-06-08 2019-06-24 ソリッドエナジー システムズ,エルエルシー 高エネルギー密度、高出力密度、高容量及び室温対応「アノードフリー」二次電池
JP2019537226A (ja) 2017-06-21 2019-12-19 エルジー・ケム・リミテッド リチウム二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW544986B (en) * 2000-11-28 2003-08-01 Delta Electronics Inc Switchable battery charger
JP4572850B2 (ja) * 2006-03-24 2010-11-04 株式会社日立製作所 電源制御装置
EP2738908A1 (en) * 2011-07-28 2014-06-04 Sanyo Electric Co., Ltd Battery system, battery control device, electric vehicle, mobile body, and power source device
TWI537849B (zh) * 2013-04-30 2016-06-11 台灣立凱綠能移動股份有限公司 大型電動車電源架構及其電池箱輪休排序控制方法
EP2950435B1 (fr) * 2014-05-26 2017-01-04 EM Microelectronic-Marin SA Dispositif électronique comprenant un générateur d'énergie à très basse tension alimentant une batterie
JP6314701B2 (ja) * 2014-07-01 2018-04-25 日産自動車株式会社 蓄電器接続状態制御装置
JP6790072B2 (ja) * 2016-03-30 2020-11-25 三洋電機株式会社 電源システム、制御システムおよび電源システムの電力制御方法
CN112514196A (zh) * 2018-07-31 2021-03-16 赛昂能源有限公司 多路复用的充放电电池管理系统
US11024877B2 (en) * 2018-12-04 2021-06-01 TeraWatt Technology Inc. Anode-free solid-state battery cells with anti-dendrite and interface adhesion controlled functional layers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023615A (ja) * 2010-07-15 2012-02-02 Panasonic Corp ダイレクトサンプリング回路
JP2015012712A (ja) * 2013-06-28 2015-01-19 株式会社東芝 蓄電システムの制御装置及び制御方法
JP2017117636A (ja) * 2015-12-24 2017-06-29 トヨタ自動車株式会社 二次電池を再利用するための処理方法
JP2019517722A (ja) 2016-06-08 2019-06-24 ソリッドエナジー システムズ,エルエルシー 高エネルギー密度、高出力密度、高容量及び室温対応「アノードフリー」二次電池
JP2019537226A (ja) 2017-06-21 2019-12-19 エルジー・ケム・リミテッド リチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4175117A4

Also Published As

Publication number Publication date
EP4175117A1 (en) 2023-05-03
EP4175117A4 (en) 2023-08-02
KR20230019959A (ko) 2023-02-09
JPWO2021260936A1 (ja) 2021-12-30
JP7488605B2 (ja) 2024-05-22
CN115769457A (zh) 2023-03-07
JP2024099772A (ja) 2024-07-25
US20230120526A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
JP6892492B2 (ja) 二次電池、電池パック及び車両
EP3457468B1 (en) Positive electrode, secondary battery, battery pack, and vehicle
EP2503628B1 (en) Current collector for bipolar secondary battery
JP6870914B2 (ja) 非水電解質電池、電池パック及び車両
CN100401557C (zh) 非水电解质二次电池
JP6214985B2 (ja) 組電池、電池パック及び自動車
JP2013077421A (ja) 非水電解質二次電池
JP5411813B2 (ja) 非水電解質二次電池及びそれを有する電池システム
CN112514130A (zh) 锂离子二次电池
JP5856611B2 (ja) 特定のバイポーラ構造を有するリチウム電気化学アキュムレータ
CN111276667A (zh) 预锂化硅和氧化硅电极的方法
TWI442616B (zh) 混成型儲能元件
CN111095617A (zh) 锂离子二次电池用负极和包含所述负极的锂离子二次电池
US20230238539A1 (en) Lithium secondary battery, and anode free battery
US20230273267A1 (en) Deterioration state estimation device, deterioration state estimation method, program, and power supply device for anode-free lithium battery equipped with same
JP2012185911A (ja) リチウムイオン二次電池用複合正極活物質及びこれを用いたリチウムイオン二次電池
WO2021260936A1 (ja) 電池システム、制御装置及び制御方法
JP6735036B2 (ja) リチウムイオン二次電池
JP2006092973A (ja) 非水電解質二次電池
US20230335752A1 (en) Battery system, charging device, and charging method
JP7359490B2 (ja) 2次電池
WO2022091407A1 (ja) リチウム2次電池
US20240154177A1 (en) Lithium secondary battery
JP7359491B2 (ja) 電池及びその製造方法
WO2021229680A1 (ja) 電池及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532221

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237000271

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020942298

Country of ref document: EP

Effective date: 20230126

NENP Non-entry into the national phase

Ref country code: DE