WO2021258515A1 - 柚子皮生物碳应用于催化臭氧氧化降解废水中的有机污染物 - Google Patents

柚子皮生物碳应用于催化臭氧氧化降解废水中的有机污染物 Download PDF

Info

Publication number
WO2021258515A1
WO2021258515A1 PCT/CN2020/107718 CN2020107718W WO2021258515A1 WO 2021258515 A1 WO2021258515 A1 WO 2021258515A1 CN 2020107718 W CN2020107718 W CN 2020107718W WO 2021258515 A1 WO2021258515 A1 WO 2021258515A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
grapefruit peel
ppc
degradation
bio
Prior art date
Application number
PCT/CN2020/107718
Other languages
English (en)
French (fr)
Inventor
吴铎
马瑞
吴张雄
高兴敏
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2021258515A1 publication Critical patent/WO2021258515A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen

Definitions

  • the invention relates to the field of sewage treatment, in particular to the application of grapefruit peel biological carbon to catalytic ozone oxidation and degradation of organic pollutants in wastewater.
  • Water is the material basis for human survival and development.
  • the shortage of water resources has become a serious constraint on the development of the global economy, and our country is a country with water resources and its shortage.
  • the continuous expansion of the scale of cities, the continuous increase of urban water consumption and sewage and wastewater the contradiction between the supply and demand of water resources has become more acute.
  • it has promoted the process of recycling and resource utilization of sewage, and has prompted more attention to the research and development of advanced treatment technologies for reclaimed water.
  • Ozone oxidation technology is a kind of advanced oxidation technology.
  • Ozone is a strong oxidant, which has a strong ability to decompose organic matter, and also has the effects of decolorization, deodorization and disinfection.
  • ozone oxidation technology was an expensive technology.
  • Catalytic ozonation technology uses catalysts to strengthen the free radical reaction, and the reaction conditions are mild, which can not only improve the utilization rate of ozone, but also make the degradation of organic matter more thorough. It is becoming a very promising advanced wastewater treatment technology.
  • Catalytic ozonation technology does not introduce other energy and toxic and harmful chemicals into the process.
  • the catalyst is filled in the reactor at one time, and the operation is simple, which is convenient for application in the actual water treatment process.
  • activated carbon Due to its excellent physical and chemical properties, rich microporous structure and large specific surface area, activated carbon is widely used as adsorption, energy storage and catalytic materials.
  • Activated carbon can be prepared by hard template method, soft template method, hydrothermal method, pyrolysis combined activation method and other methods.
  • the preparation process is an important factor in the formation of porous carbon materials.
  • raw materials are also a decisive factor affecting the structural properties of porous carbon materials.
  • the template method has made significant progress, the most common hard template (ie, silica-based materials) still faces a huge bottleneck.
  • the removal of the silica template after carbonization always requires strict repeated chemical post-treatments, such as hydrofluoric acid (HF) or NaOH etching.
  • HF is harmful, and the NaOH post-treatment is carried out at elevated temperatures, so the NaOH post-treatment Processing is usually time-consuming and not cost-effective; and some porous materials are prepared through complex multiple synthesis steps or under strict conditions (such as anhydrous and anaerobic), which leads to great scale-up. Challenge.
  • the preparation process of using soft and hard template methods to prepare porous carbon is too cumbersome and complicated, the synthesis process is time-consuming, and difficult to control; the cost of raw materials and the cost of preparation materials are relatively high.
  • activated carbon is usually activated. There are various activators, including acids, alkalis, and metal salts.
  • ZnCl 2 , KOH, etc. are used to activate carbon materials, but this requires a large amount of activator, such as KOH, which is inconsistent with the urgent needs of energy saving and environmental protection.
  • activator such as KOH
  • ZnCl 2 activation is carried out under high temperature conditions, and the evaporation of ZnCl 2 may also cause serious air pollution problems.
  • waste biomass is mainly disposed of through landfill or direct incineration, which causes serious environmental pollution and waste of resources. It is of great significance and value to transform these wastes into high value-added chemical products through proper process treatment. In order to make full use of resources and develop sustainable chemical methods, it is very promising to use simple methods to convert waste biomass into high-value-added, high-performance porous carbon materials.
  • CN 106065332 A discloses a method for preparing biochar by hydrothermal carbonization of grapefruit peel, which uses agricultural waste grapefruit peel as a raw material, through pretreatment, crushing, mixing with deionized water, incorporation of catalyst, hydrothermal carbonization reaction, and filtration , Drying and sieving steps to prepare grapefruit peel biochar, and apply it to soil heavy metal pollution remediation.
  • CN 109967114 A discloses a preparation method of a grapefruit peel-based nitrogen and sulfur co-doped carbon material. The grapefruit peel is treated in a thiourea solution and then carbonized at 800-900°C, which can be used as a hydrogen precipitation reaction and an oxygen reduction reaction Catalyst.
  • CN 109650388 A, CN 104140101 A, CN 104772146 A disclose some bio-based activated carbons or their applications. Whether the materials prepared in the above-disclosed technology are suitable for catalyzing ozonation to degrade organic pollutants, and their catalytic performance is still unknown.
  • the present invention provides the application of grapefruit peel bio-carbon to catalyze ozone oxidation to degrade organic pollutants in wastewater.
  • the present invention discloses a catalyst that can be used to catalyze ozone oxidation and degradation of organic pollutants. During the catalytic degradation process, H 2 O 2 is generated, which improves the mineralization ability of organic pollutants and promotes the degradation of organic pollutants.
  • the present invention claims to protect the application of the grapefruit peel biological carbon material in catalyzing the ozone oxidation and degradation of organic pollutants; wherein, the preparation method of the grapefruit peel biological carbon material includes the following steps:
  • the grapefruit peel is freeze-dried and then calcined in a protective atmosphere at 500-900°C for 2-5 hours to obtain a grapefruit peel bio-carbon material.
  • the grapefruit peel bio-carbon material has several micropores, and the diameter of the micropores is 0.5-2nm.
  • the invention prepares the grapefruit peel bio-carbon material by a one-step pyrolysis method without further activation, and the preparation process is simple and easy to scale up.
  • the cheap and easily available raw material grapefruit peel is selected, which avoids the pollution of waste to the environment, achieves the purpose of resource recycling and reuse, and also solves the problem of expensive and expensive ozone oxidation catalysts in sewage treatment.
  • the metal ion leaching and preparation process is complicated and difficult to control.
  • the grapefruit peel is used as a raw material to prepare the grapefruit peel biocarbon material.
  • the obtained grapefruit peel biocarbon material has stable physical and chemical properties, rich tissue structure, and the pore structure is not damaged.
  • the surface is rich in chemical groups, the morphology is smooth and flat, showing a porous lamellar structure and a three-dimensional porous structure, and the carbon material has more defect sites and a higher degree of graphitization, which plays an important role in its application performance. It also avoids the problems of powdery, easy accumulation and agglomeration when activated carbon or graphene is used as a catalyst in the conventional catalytic ozone oxidative degradation of organic pollutants.
  • the grapefruit peel is pre-frozen at -15°C to -25°C for 10-15 hours, and then the grapefruit peel is freeze-dried at -40°C to -60°C for 60-80 hours.
  • the calcination process is carried out in a tube furnace.
  • the protective atmosphere is preferably nitrogen.
  • the calcination temperature is 800-900°C.
  • the calcination also includes the step of treating the calcined product in an aqueous hydrochloric acid solution.
  • concentration of the aqueous hydrochloric acid solution is 0.5-2 molL -1 .
  • the particle size of the grapefruit peel bio-carbon material is 200-300 ⁇ m.
  • the organic pollutant is oxalic acid.
  • the concentration of organic pollutants is 700-800 mgL -1 .
  • the use of grapefruit peel bio-carbon material to catalyze ozone oxidation and degradation of organic pollutants can achieve enhanced removal of high-concentration and high-stability small-molecule acids in water.
  • ozone oxidation and degradation of organic pollutants are carried out under the condition that the pH is not higher than 3.
  • H 2 O 2 is an important intermediate in catalytic ozonation, and if there is When H 2 O 2 is produced, it can react with molecular ozone to form more ROS, which will further enhance the overall degradation efficiency. Therefore, the role of H 2 O 2 in catalyzing ozone oxidation cannot be ignored.
  • the grapefruit peel bio-carbon material has excellent performance in catalyzing the ozone oxidation degradation of oxalic acid. This is because H 2 O 2 is generated during the interaction between the catalyst in the reaction solution and the oxalic acid solution under acidic conditions. In the catalytic ozonation reaction system, H 2 O 2 is also an important reaction intermediate.
  • H 2 O 2 can couple with molecular ozone to form more active oxygen species with strong oxidizing ability, thereby promoting the degradation of organic pollutants ,
  • the presence of H 2 O 2 greatly improves the performance of catalytic ozone oxidation.
  • the pH of the reaction solution is adjusted to be not higher than 3, and the catalytic reaction performance can be improved by generating H 2 O 2.
  • the ozone oxidative degradation of organic pollutants is carried out at 20-30°C. Preferably, it is room temperature.
  • the method for catalytic ozone oxidation and degradation of organic pollutants includes the following steps:
  • the grapefruit peel bio-carbon material is used as a catalyst. Under the action of the catalyst, ozone gas (O 3 ) is passed into the solution containing organic pollutants to carry out the ozone oxidative degradation of organic pollutants.
  • the concentration of ozone in the solution is 40-60 mgL -1 ; the concentration of the grapefruit peel bio-carbon material in the solution is 2-3 gL -1 .
  • the contact time of the grapefruit peel bio-carbon material and ozone with the solution is 1-7h.
  • oxygen is dissolved in the solution containing organic pollutants.
  • the oxygen content does not need to be deliberately controlled, that is, the solution containing organic pollutants can be directly subjected to ozone oxidation treatment without the need for deoxygenation steps.
  • the present invention has at least the following advantages:
  • the invention discloses the application of grapefruit peel biological carbon material in catalyzing ozone oxidation to degrade organic pollutants in wastewater, and solves the problems of high price of ozone oxidation metal-based catalysts and metal ion leaching in sewage treatment; at the same time, the grapefruit peel with low cost is recovered , Realizes the utilization of waste resources, greatly reduces the cost of catalyst materials for catalytic ozone oxidation treatment of organic wastewater, and is very conducive to the promotion of catalytic ozone oxidation technology in the field of sewage treatment.
  • the present invention uses the grapefruit peel biological carbon material as a catalyst for catalyzing the degradation of organic pollutants in wastewater by ozone, confirming that it has a strong ability to catalyze and degrade organic pollutants in the water, which is mainly due to the high ratio of grapefruit peel biological carbon material
  • the surface area and a large number of active sites can catalyze ozone to produce active oxygen species with strong oxidizing properties.
  • the material will continuously generate H 2 O 2 during the interaction with organic pollutants, and the interaction of H 2 O 2 and O 3 will produce More active oxygen species are added, and the ability to catalyze ozone oxidation and degradation of organic pollutants in water is further improved.
  • Figure 1 is an optical photo of the grapefruit peel bio-carbon material PPC-900 prepared in Example 1;
  • Figure 2 is an X-ray diffraction spectrum of the grapefruit peel bio-carbon material PPC-900 prepared in Example 1;
  • Figure 3 is the nitrogen absorption and desorption curves of the grapefruit peel bio-carbon materials PPC-900, PPC-700 and PPC-500 prepared in Example 1;
  • Example 4 is the pore size distribution curve of the pomelo peel bio-carbon materials PPC-900, PPC-700 and PPC-500 prepared in Example 1;
  • Fig. 5 is the variation curve of TOC concentration with time in the experiment of oxidizing oxalic acid by ozonation alone and the bio-carbon material of grapefruit peel prepared at different calcination temperatures in the experiment of catalyzing ozonation and degradation of oxalic acid;
  • Fig. 6 is the change curve of TOC concentration with time in the experiment of PPC-900 catalytic ozone oxidative degradation of oxalic acid by adjusting different pH conditions in Example 3;
  • Fig. 7 is a curve of TOC concentration with time in different experimental processes of PPC-900 catalyzed ozonation and degradation of oxalic acid under the condition of pH not higher than 3 in Example 4;
  • Fig. 8 is a graph showing the TOC concentration and H 2 O 2 concentration of different PPC-900 derivative materials of Example 5 during the different catalytic reaction processes of catalyzing the oxidative degradation of oxalic acid by ozonation with time;
  • Figure 9 is a comparison of the effects of different factors in Example 6 on the production of H 2 O 2.
  • This embodiment provides a method for preparing grapefruit peel bio-carbon material, and the specific method is as follows:
  • the obtained grapefruit peel bio-carbon material is named PPC-500, PPC-700 and PPC-900, respectively.
  • Figure 1 is an optical photo of PPC-900. From the picture, it can be seen that the grapefruit peel bio-carbon material PPC-900 is composed of particles ranging from tens of microns to hundreds of microns, and presents an irregular shape and a relatively smooth surface.
  • Figure 2 is an X-ray diffraction spectrum. From the spectrum, it is known that the grapefruit peel bio-carbon material presents an amorphous carbon structure.
  • Figure 3 is a nitrogen absorption and desorption spectrum.
  • PPC-900 shows an I-shaped curve, indicating that the material is mainly microporous.
  • Figure 4 is the pore size distribution curve. It can be seen that there are many micropores and mesopores in PPC-900.
  • the results show that as the calcination temperature increases, the specific surface area and pore volume of the sample gradually increase.
  • the grapefruit peel biological carbon material is applied to catalyze ozone oxidation to degrade oxalic acid (H 2 C 2 O 4 ⁇ 2H 2 O) wastewater, and the specific steps are as follows:
  • the catalytic ozonation degradation experiment was carried out in a 500 mL two-neck glass round-bottomed flask.
  • the reactor was placed in a water bath at 25°C to maintain a constant temperature throughout the process, and the rotational speed of the magnetic stirring was 300 rpm.
  • Example 2 (2) 112 mL of 1000 ppm H 2 C 2 O 4 ⁇ 2H 2 O solution and 0.28 g of the grapefruit peel bio-carbon material prepared in Example 1 were added to the reactor, and the initial pH of the oxalic acid solution was 2.08. Three sets of experiments were performed in parallel, and each set used the PPC-500, PPC-700 and PPC-900 prepared in Example 1.
  • step (2) ozone was used alone to degrade oxalic acid. The difference was that in step (2), the catalyst prepared in Example 1 was not added, and the remaining conditions remained the same.
  • the catalytic ozonation degradation experiment was carried out in a 500 mL two-necked glass round bottom flask.
  • the reactor was placed in a water bath at 25°C to maintain a constant temperature throughout the process, and the magnetic stirring speed was 300 rpm.
  • the catalytic ozonation degradation experiment was carried out in a 500 mL two-necked glass round bottom flask.
  • the reactor was placed in a water bath at 25°C to maintain a constant temperature throughout the process, and the magnetic stirring speed was 300 rpm.
  • step (2) the soaking step of PPC-900 in oxalic acid solution is omitted, and the catalytic reaction is directly carried out.
  • the catalytic reaction time is 7h, and this group of experiments is denoted as the PPC-900 (C7) group.
  • PPC-900 (C7) can achieve about 95% TOC removal after 180 minutes, and the effect is good.
  • PPC-900-A1-C4 in Example 4 as a catalyst, the catalytic ozonation degradation experiment was continued according to the above method. The difference is that in step (2) of Example 4, PPC-900 was replaced with PPC-900- A1-C4, the catalytic reaction time is 6h, this group of experiments is marked as PPC-900-A1-C4 (A1-C6) group. As shown in Figure 8, the PPC-900-A1-C4 (A1-C6) group is about 240min, the TOC removal rate reaches about 80%, indicating that the material has excellent catalytic performance, and also that PPC-900 has better Reusability, high stability.
  • PPC-900 was oxidized with ozone in a pure aqueous solution for 4 hours, and it was denoted as PPC-900-O 3 4.
  • PPC-900-O 3 4 follow the method of PPC-900 (A1-C4) group and use PPC-900-O 3 4 to continue the catalytic ozonation degradation experiment.
  • step (2) of Example 4 PPC-900 is replaced with PPC- 900-O 3 4, the catalytic reaction time is 6h, this group of experiments is recorded as the PPC-900-O 3 4 (A1-C6) group.
  • the grapefruit peel bio-carbon material PPC-900 of the present invention has excellent catalytic performance.
  • *It refers to the amount of oxalic acid (TOC) removed by unit mass of ozone for the same mass of catalyst.
  • Co/AC is the document "An Optimization Study of Cobalt Supported on Activated Carbon for the Catalytic Ozonation of Oxalic Acid: Effect of Operating Parameters and Synergetic Combination. Ozone: Science & Engineering, 2018.41(3): p.274-285" Material reported in. AC is the material reported in the document “Activated carbon-enhanced ozonation of oxalate attributed to HO ⁇ oxidation in bulk solution and surface oxidation: Effects of the type and number of basic sites. Chemical Engineering Journal, 2014.245: p.71-79" .
  • AC-NH 2 is a material reported in the document "Promoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acid. Applied Catalysis B-environmental, 2014, 146(1):169-176.”. CeO 2 @AC is the material reported in the document “Catalytic ozonation of oxalic acid over rod-like ceria coated on activated carbon. Catalysis Communications, 2018.110: p.28-32".
  • AC-900 is a material reported in the document "Activated carbon and ceria catalysts applied to the catalytic ozonation of dyes and textile effluents. Applied Catalysis B: Environmental, 2009.88(3-4): p.341-350".
  • LIB-GO-H is a material reported in the document "Promoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acid, Applied Catalysis B-environmental, 2014, 146(1):169-176".
  • PPC-900 is the product prepared in Example 1.
  • the PPC-900 material can indeed produce a large amount of H 2 O 2 after stirring for 1 hour in the oxalic acid solution, and the four factors of C 2 O 4 2- , H + , PPC-900 and O 2 in the solution are removed respectively.
  • the H 2 O 2 produced by this process is a combination of C 2 O 4 2- , H + , PPC-900, O 2
  • any condition is indispensable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及柚子皮生物碳在催化臭氧氧化降解废水中有机污染物中的应用,本发明公开了可用于催化臭氧氧化降解废水中有机污染物的催化剂,在酸性溶液中,柚子皮生物碳与有机污染物相互作用后会产生H 2O 2,H 2O 2会与O 3相互作用产生具有更多的具有强氧化性的活性氧物质,提高了有机污染物的矿化能力,促进有机污染物的降解。

Description

柚子皮生物碳应用于催化臭氧氧化降解废水中的有机污染物 技术领域
本发明涉及污水处理领域,尤其涉及柚子皮生物碳应用于催化臭氧氧化降解废水中的有机污染物。
背景技术
水是人类赖以生存与发展的物质基础。目前,水资源短缺已成为严重制约全球经济的发展,我国又属于水资源及其短缺的国家。随着现代化工业的迅猛发展,城市规模的不断扩大,城市用水量和污废水量不断增加,水资源供需失衡的矛盾显得更加尖锐。为了缓解水资源短缺引发的各种矛盾,促进了对污水再生利用和资源化进程,促使人们更多地关注再生水深度处理技术的研发。
臭氧氧化技术就是高级氧化技术的一种。臭氧是一种强氧化剂,有较强的分解有机物能力,同时具有脱色、除臭、消毒的效果。历史上,臭氧氧化技术是一项昂贵的技术。近年来,随着臭氧发生效率的提高,臭氧氧化技术的成本逐渐降低。尤其在催化条件下,臭氧氧化成为一种反应条件温和、成本相对较低的高级氧化技术。催化臭氧氧化技术利用催化剂加强自由基反应,反应条件温和,既可提高臭氧利用率,也可使有机物的降解更加彻底,正成为一种非常有前景的废水深度处理技术。催化臭氧氧化技术没有向工艺中引入其他能量和有毒有害的化学药剂,催化剂一次性填装于反应器内,操作简单,便于在实际的水处理工艺中应用。
但目前所采用的的催化剂普遍存在催化效率低、成本高、且具有一定的选择性,难以满足实际需求。因此,迫切需要开发和制备经济高效的催化剂,应用于催化臭氧氧化技术中,以解决水中高浓度、高稳定性的小分子污染物的去除问题。一直以来,在非均相催化臭氧化中,科研工作者们研究的比较广泛的是金属基催化剂,但由于金属基催化剂价格较为昂贵,同时又存在金属离子浸出,从而面临损失活性位点和污染环境等风险。
由于其优异的理化特性,丰富的微孔结构和较大的比表面积,活性炭被广泛用作吸附,储能和催化材料。活性炭可以通过硬模板法,软模板法,水热法,热解结合活化法等方法制备。一方面,制备工艺是构成多孔碳材料的重要因素。另一方面,原材料也是影响多孔碳材料结构性能的决定性因素。尽管模板方法取得了显著进步,但最常见的硬模板(即基于二氧化硅的材料)仍面临着巨大的瓶颈。碳化后去除二氧化硅模板始终需要进行严格的重复化学后处理,例如氢氟酸(HF)或NaOH蚀刻,HF是有害的,而且NaOH后处理是在升高的温 度下进行的,所以NaOH后处理通常很耗时且不具成本效益;并且某些多孔材料是通过复杂的多个合成步骤或在严格的条件下(例如无水和厌氧)制备的,这导致了在规模放大方面有很大的挑战。总之,采用软、硬模板法制备多孔碳的制备工艺过于繁琐复杂,合成过程耗时,且难以控制;原材料成本和制备材料工艺成本较高。此外,为了增强碳的孔隙率和比表面积,通常对活性炭进行活化,活化剂是多种多样的,包括酸,碱和金属盐等。已有报道采用ZnCl 2,KOH等对碳材料来进行活化,然而这需要消耗大量的活化剂,例如KOH,这与节能和环境保护的迫切需求不符。此外,为了去除源自活化剂的杂质,活化后通常需要重复进行净化后的处理。例如,经常需要大量的水来洗涤产品中的杂质,这不可避免地导致产生巨大的废液污染,带来了二次污染。另外,ZnCl 2活化是在高温条件下进行的,由于ZnCl 2的蒸发,可能还会导致严重的空气污染问题。
在许多发展中国家,废物生物质主要通过掩埋处置或直接焚化,这造成了严重的环境污染和资源浪费。通过适当的工艺处理将这些废物转变成高附加值的化学产品具有重要的意义和价值。为了充分利用资源并发展可持续的化学方法,采用简单的方法将废物生物质转化为高附加值的高性能多孔碳材料是非常有前途的。
CN 106065332 A公开了一种利用柚子皮水热炭化制备生物炭的方法,以农业废弃物柚子皮为原料,通过预处理、粉碎、与去离子水混合、掺入催化剂、水热炭化反应、过滤、干燥、筛分的步骤制备柚子皮生物炭,并应用于土壤重金属污染修复中。CN 109967114 A公开了一种柚子皮基氮硫共掺杂碳材料的制备方法,将柚子皮在硫脲溶液中处理后于800~900℃碳化后得到,其可作为氢气析出反应和氧气还原反应的催化剂。CN 109650388 A、CN 104140101 A、CN 104772146 A公开了一些生物基活性炭或其应用。以上公开的技术中制备的材料是否适用于催化臭氧氧化降解有机污染物、其催化性能如何目前仍未可知。
发明内容
为解决上述技术问题,本发明提供了柚子皮生物碳应用于催化臭氧氧化降解废水中的有机污染物。本发明公开了可用于催化臭氧氧化降解有机污染物的催化剂,在催化降解过程中会产生H 2O 2,提高了有机污染物的矿化能力,促进有机污染物的降解。
本发明要求保护柚子皮生物碳材料在催化臭氧氧化降解有机污染物中的应用;其中,柚子皮生物碳材料的制备方法包括以下步骤:
将柚子皮冷冻干燥后在保护气氛下于500-900℃下煅烧2-5h,得到柚子皮生物碳材料,柚子皮生物碳材料具有若干微孔,微孔的直径为0.5-2nm。
本发明通过一步热解法制备柚子皮生物碳材料,无需进一步活化,制备过程简单易放大。 在制备过程柚子皮生物碳材料的过程中,选用廉价易获取的原料柚子皮,避免了废物对环境的污染,达到了资源回收再利用的目的,也解决了污水处理中臭氧氧化催化剂成本昂贵和金属离子浸出和制备工艺复杂难操控的问题。同时,以柚子皮为原料制备柚子皮生物碳材料,所得到的柚子皮生物碳材料的物化性质稳定,组织结构丰富,孔道结构没有遭到破坏,其具有发达的孔道结构和高的孔隙率,表面化学基团丰富,形貌光滑平整,呈现具有多孔的片层状结构以及三维多孔结构,并且碳材料的缺陷位点较多以及石墨化程度较高,这对其在应用性能方面起着重要作用,也避免了常规催化臭氧氧化降解有机污染物中采用活性炭或石墨烯为催化剂时,催化剂呈粉末状、易堆积和团聚等问题。
进一步地,将柚子皮先在-15℃至-25℃下预冷冻10-15h,然后将柚子皮在-40℃至-60℃下冷冻干燥60-80h。
进一步地,煅烧过程在管式炉中进行。保护气氛优选为氮气。
优选地,煅烧温度为800-900℃。
进一步地,煅烧完毕后,还包括将煅烧产物在盐酸水溶液中处理的步骤。盐酸水溶液的浓度为0.5-2molL -1
进一步地,柚子皮生物碳材料的粒径为200-300μm。
进一步地,有机污染物为草酸。
进一步地,有机污染物的浓度为700-800mgL -1。采用柚子皮生物碳材料催化臭氧氧化降解有机污染物,可实现对水中高浓度、高稳定性小分子酸的强化去除。
进一步地,臭氧氧化降解有机污染物在pH不高于3的条件下进行。
在催化臭氧化反应体系中,臭氧催化氧化降解有机废水的效率主要取决于催化臭氧生成ROS的能力,H 2O 2在催化臭氧化中是重要的中间体,而如果在催化臭氧化过程中有H 2O 2产生,其能够与分子臭氧反应形成更多的ROS,这将对整体降解效率起到进一步的强化作用,所以H 2O 2在催化臭氧氧化中的作用是不容忽视的。
在催化臭氧氧化降解有机污染物的过程中,随着降解反应的进行,通常会产生例如草酸根等小分子酸副产物,这些小分子物质难以被矿化降解。在本发明中,通过调节反应物溶液的pH不高于3,柚子皮生物碳材料催化臭氧氧化降解草酸具有优异的性能。这是由于在酸性条件下反应溶液中催化剂与草酸溶液相互作用的过程中,就会产生H 2O 2。在催化臭氧化反应体系中,H 2O 2也是重要的反应中间体,H 2O 2能够与分子臭氧偶联形成更多的具有强氧化能力的活性氧物质,从而来促进有机污染物的降解,H 2O 2的存在大大提高催化臭氧氧化的性能。在实际应用的过程中,只需催化反应前,调节反应溶液的pH为不高于3,即可通过产生H 2O 2的方式来提高催化反应性能。
进一步地,在20-30℃下进行有机污染物的臭氧氧化降解。优选为室温条件。
进一步地,催化臭氧氧化降解有机污染物的方法包括以下步骤:
以柚子皮生物碳材料作为催化剂,在催化剂的作用下,向含有有机污染物的溶液中通入臭氧气体(O 3),以进行有机污染物的臭氧氧化降解。
进一步地,通入臭氧后,溶液中臭氧的浓度为40-60mgL -1;溶液中柚子皮生物碳材料的浓度为2-3gL -1
进一步地,柚子皮生物碳材料和臭氧与溶液的接触时间为1-7h。
进一步地,含有有机污染物的溶液中溶有氧气。氧气的含量无需刻意控制,即含有有机污染物的溶液直接进行臭氧氧化处理即可,不需除氧步骤。
借由上述方案,本发明至少具有以下优点:
本发明公开了柚子皮生物碳材料在催化臭氧氧化降解废水中有机污染物中的应用,解决了污水处理中臭氧氧化金属基催化剂价格昂贵和金属离子浸出的问题;同时通过回收成本低廉的柚子皮,实现了对废物资源化利用,极大降低了催化臭氧氧化处理有机废水的催化剂材料成本,十分有利于催化臭氧氧化技术在污水处理领域的推广。
本发明以柚子皮生物碳材料作为催化臭氧氧化降解废水中有机污染物中的催化剂,确证其具有很强的催化降解水中有机污染物的能力,这主要归因于柚子皮生物碳材料具有高比表面积及大量活性位点以催化臭氧产生具有强氧化性的活性氧物质,同时,该材料在与有机污染物相互作用过程中会不断生成H 2O 2,H 2O 2与O 3相互作用产生了更多的活性氧物质,进一步提升了催化臭氧氧化降解水中有机污染物的能力。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合详细附图说明如后。
附图说明
图1是实例1制备的柚子皮生物碳材料PPC-900的光学照片;
图2是实例1制备的柚子皮生物碳材料PPC-900的X射线衍射谱图;
图3是实施例1制备的柚子皮生物碳材料PPC-900、PPC-700和PPC-500的氮气吸脱附曲线;
图4是实施例1制备的柚子皮生物碳材料PPC-900、PPC-700和PPC-500的孔径分布曲线;
图5是实施例2中单独臭氧氧化草酸实验和不同煅烧温度下制备的柚子皮生物碳材料催化臭氧氧化降解草酸实验中TOC浓度随时间的变化曲线;
图6是实施例3中,通过在调节不同的pH条件下,PPC-900催化臭氧氧化降解草酸实验中TOC浓度随时间的变化曲线;
图7是实施例4中,在pH不高于3的条件下,PPC-900催化臭氧氧化降解草酸的不同实验过程中TOC浓度随时间的变化曲线;
图8是实施例5的不同的PPC-900衍生材料在催化臭氧氧化降解草酸的不同催化反应过程中TOC浓度和H 2O 2浓度随时间变化曲线;
图9是实施例6的不同因素对H 2O 2产生的影响比较。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
本实施例提供了一种柚子皮生物碳材料的制备方法,具体方法如下:
(1)首先取一定量的柚子皮,将其切成小块,在-20℃的冰箱中预冷冻12h。
(2)之后将柚子皮块在-50℃的冻干机中冷冻干燥72h。
(3)然后在N 2气氛下的管式炉中下碳化3h,煅烧温度分别为500℃、700℃和900℃。
(4)将所得样品浸入1molL -1HCl中酸洗后,过滤,洗涤。
(5)最后在真空烘箱中过夜干燥,得到柚子皮生物碳材料,根据煅烧温度,将得到的柚子皮生物碳材料分别命名为PPC-500、PPC-700和PPC-900。
图1是PPC-900的光学照片,从图片中可以看出柚子皮生物碳材料PPC-900由几十微米到几百微米的颗粒组成,并呈现出不规则的形状和相对光滑的表面。图2是X射线衍射谱图,从谱图中得知,柚子皮生物碳材料呈现出无定形碳的结构。图3是氮气吸脱附谱图,PPC-900显示为I型曲线,说明该材料以微孔为主。图4是孔径分布曲线,可以看出,PPC-900中微孔和介孔较多。以上制备的PPC-900的比表面积较高(S BET=820m 2g -1),且具有较大的孔体积(孔体积为0.33cm 3g -1)。PPC-700和PPC-500的比表面积分别为428m 2g -1和5m 2g -1,PPC-700孔体积分别为0.17cm 3g -1,PPC-500孔体积几乎为0cm 3g -1。结果表明,随着煅烧温度的升高,样品的比表面积和孔体积逐渐增加。
实施例2
本发明中柚子皮生物碳材料应用于催化臭氧氧化降解草酸(H 2C 2O 4·2H 2O)废水,具体步骤如下:
(1)催化臭氧化降解实验在500mL的两口玻璃圆底烧瓶中进行,反应器置于25℃的 水浴锅中保持全程恒温,磁力搅拌的转速为300rpm。
(2)反应器中加入112mL 1000ppm H 2C 2O 4·2H 2O溶液和0.28g实施例1制备的柚子皮生物碳材料,草酸溶液的初始pH为2.08。平行进行三组试验,每组各使用实施例1制备的PPC-500、PPC-700和PPC-900。
(3)臭氧由臭氧发生器(AnserosOzomat COM)用高纯度氧气(99.2%)以18mL min -1的入口流速产生,气态臭氧的浓度为50mg L -1,并且将其鼓泡到反应器底部,然后测试溶液中的草酸的TOC去除率。
为了作为对照,单独使用臭氧降解草酸,区别在于,在步骤(2)中,不加入实施例1制备的催化剂,其余条件保持一致。
对比以上几种条件下的草酸的TOC去除率,降解过程中TOC浓度对时间的变化如图5所示,在pH不高于3的情况下,单独使用臭氧,草酸的TOC去除率为1.9%,而PPC-500,PPC-700和PPC-900催化臭氧化降解草酸的TOC去除率分别为3.7%,49.8%和55.1%。显然,PPC-900具有更高的草酸降解能力,优于在700℃和500℃煅烧温度下得到的样品。由于其较高的比表面积,PPC-900与O 3接触更加充分,这可增强臭氧在溶液中催化分解为ROS的能力。
实施例3
(1)催化臭氧化降解实验在500mL的两口玻璃圆底烧瓶中进行,反应器置于25℃的水浴锅中保持全程恒温,磁力搅拌的转速为300rpm。
(2)反应器中加入112mL 1000ppm草酸溶液,平行进行三组试验,每组中草酸溶液的初始pH值分别为2.08、7.03、11.68。将PPC-900先在草酸溶液中浸泡1h,然后利用臭氧发生器将浓度为50mg L -1的臭氧鼓泡到反应器底部,催化反应1h。
(3)关闭臭氧发生器,停止通入臭氧,将PPC-900再在草酸溶液中浸泡3h,然后测试溶液中的草酸的TOC去除率。
结果如图6所示,在pH不高于3的情况下,PPC-900具有最优的催化降解草酸的性能,120min时TOC的去除率达到50%左右,相较于其他条件,去除率最高。这归因于在该pH的条件下,催化反应过程中产生更多的H 2O 2,从而促进产生强氧化能力的活性氧物质,使得水中有机污染物的矿化能力得以提升。
实施例4
(1)催化臭氧化降解实验在500mL的两口玻璃圆底烧瓶中进行,反应器置于25℃的水浴锅中保持全程恒温,磁力搅拌的转速为300rpm。
(2)反应器中加入112mL 1000ppm草酸溶液,草酸溶液的初始pH值为2.08。将 PPC-900先在草酸溶液中浸泡1h,然后利用臭氧发生器将浓度为50mg L -1的臭氧鼓泡到反应器底部,催化反应4h,然后测试溶液中的草酸的TOC去除率,该组实验记为PPC-900(A1-C4)组。
如图7所示,PPC-900(A1-C4)组在180min左右时,TOC的去除率即达到90%左右,具有较优异的催化降解能力。将以上反应过程结束的材料进行回收,记为PPC-900-A1-C4。
此外,按照PPC-900(A1-C4)组的方法进行催化臭氧化降解实验,不同之处在于,在步骤(2)中,省略PPC-900在草酸溶液中的浸泡步骤,直接进行催化反应,催化反应时间为7h,该组实验记为PPC-900(C7)组。如图7所示,PPC-900(C7)在180min后即可实现95%左右的TOC去除,效果较好。
实施例5
将实施例4中PPC-900-A1-C4作为催化剂,按照以上方法继续进行催化臭氧化降解实验,不同之处在于,在实施例4步骤(2)中,PPC-900替换为PPC-900-A1-C4,催化反应时间为6h,该组实验记为PPC-900-A1-C4(A1-C6)组。如图8所示,PPC-900-A1-C4(A1-C6)组在240min左右,TOC的去除率即达到80%左右,说明该材料催化性能优异,同时也说明PPC-900具有较好的重复利用性,较高的稳定性。此外,将PPC-900在纯水溶液中用臭氧氧化处理4h,记为PPC-900-O 34。按照PPC-900(A1-C4)组的方法利用PPC-900-O 34继续进行催化臭氧化降解实验,不同之处在于,在实施例4步骤(2)中,PPC-900替换为PPC-900-O 34,催化反应时间为6h,该组实验记为PPC-900-O 34(A1-C6)组。如图8所示,PPC-900-O 34(A1-C6)组在360min左右,TOC的去除率即达到95%左右,说明该材料催化性能较高,臭氧处理过程并没有明显改变催化剂的催化能力。
如图8所示,在PPC-900-A1-C4(A1-C6)组实验中,反应过程中,PPC-900-A1-C4在草酸溶液中浸泡1h后,反应体系中产生大约55μmol L -1的H 2O 2,随后随着O 3的通入,催化臭氧化反应过程中H 2O 2含量在5min内是升高的,之后H 2O 2的含量逐渐降低,说明材料与O 3可能相互作用,产生少量的H 2O 2,随后H 2O 2作为一反应中间体,参与催化反应并产生活性氧物质而被消耗,所以其浓度逐渐降低。同样,如图8所示,在PPC-900-O 34(A1-C6)组实验中,PPC-900-O 34也观察到上述类似的趋势,只是由于材料的不同,在草酸溶液中在进行先吸附1h产生的H 2O 2浓度较低,但1h后通入O 3后,其与臭氧相互作用,H 2O 2浓度在30min内是升高的,随后下降,也同样说明H 2O 2作为一催化臭氧化反应中的中间体物质,随着催化反应的进行,H 2O 2与O 3相互作用,逐渐被消耗,浓度逐渐降低。
以上一系列实验皆说明PPC-900具有较强的催化降解能力,同时具有较好的循环稳定性,这主要归因于通过调节反应物溶液的pH,实现在催化反应过程中产生H 2O 2,H 2O 2与臭氧反 应进一步产生反应活性氧物质,来强化水中污染物矿化能力。
同时将本发明中的柚子皮生物碳材料PPC-900与已经报道过的催化臭氧化领域的相关催化剂进行催化降解性能的详细比较,如表1所示,对比表1中的结果可看出,本发明的柚子皮生物碳材料PPC-900具有较优异的的催化性能。
表1不同催化剂对催化臭氧化降解草酸性能的比较
Figure PCTCN2020107718-appb-000001
*指相同质量催化剂,使用单位质量臭氧去除草酸(TOC)的量。
表1中,Co/AC为文献“An Optimization Study of Cobalt Supported on Activated Carbon for the Catalytic Ozonation of Oxalic Acid:Effect of Operating Parameters and Synergetic Combination.Ozone:Science&Engineering,2018.41(3):p.274-285”中所报道的材料。AC为文献“Activated carbon-enhanced ozonation of oxalate attributed to HO·oxidation in bulk solution and surface oxidation:Effects of the type and number of basic sites.Chemical Engineering Journal,2014.245:p.71-79”中所报道的材料。AC-NH 2为文献“Promoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acid.Applied Catalysis B-environmental,2014,146(1):169-176.”中所报道的材料。CeO 2@AC为文献“Catalytic ozonation of oxalic acid over rod-like ceria coated on activated carbon.Catalysis Communications,2018.110:p.28-32”中所报道的材料。AC-900为文献“Activated carbon and ceria catalysts applied to the catalytic ozonation of dyes and textile effluents.Applied Catalysis B:Environmental,2009.88(3-4):p.341-350”中所报道的材料。LIB-GO-H为文献“Promoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acid,Applied Catalysis B-environmental,2014,146(1):169-176”中所报道的材料。PPC-900为实施例1中制备的产物。
实施例6
为了探究草酸溶液与材料相互作用产生H 2O 2的原因,本发明进一步进行探究。如图9所示,使用PPC-900材料作为研究材料,进行了以下实验,A:PPC-900在pH为2.12的纯水溶液中搅拌1h;B:PPC-900在中性Na 2C 2O 4溶液中搅拌1h;C:pH为2.08的草酸溶液单独搅拌1h;D:向pH为2.08的草酸溶液中通入N 2 1h,除尽溶液中的溶解O 2,再加入PPC-900材料,搅拌1h;E:PPC-900在pH为2.08的草酸溶液中搅拌1h,测不同反应过程后的终点H 2O 2浓度。从图中可以看出,只有E过程产生28.68μmoL -1的H 2O 2,其他反应过程,H 2O 2浓度均没有增加,说明没有H 2O 2产生。综上所述,PPC-900材料在草酸溶液中搅拌1h后确实可以产生大量H 2O 2,而在分别去除溶液中C 2O 4 2-、H +、PPC-900、O 2四个因素后(A、B、C、D过程),均不能产生H 2O 2,说明此过程产生的H 2O 2是C 2O 4 2-、H +、PPC-900、O 2几种条件综合相互作用的结果,任何一个条件都缺一不可。
以上仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

  1. 柚子皮生物碳材料在催化臭氧氧化降解废水中有机污染物中的应用;所述柚子皮生物碳材料的制备方法包括以下步骤:
    将柚子皮冷冻干燥后在保护气氛下于500-900℃下煅烧2-5h,得到所述柚子皮生物碳材料,所述柚子皮生物碳材料具有若干微孔,所述微孔的直径为0.5-2nm。
  2. 根据权利要求1所述的应用,其特征在于,将柚子皮先在-15℃至-25℃下预冷冻10-15h,然后将柚子皮在-40℃至-60℃下冷冻干燥60-80h。
  3. 根据权利要求1所述的应用,其特征在于,所述柚子皮生物碳材料的粒径为200-300μm。
  4. 根据权利要求1所述的应用,其特征在于,所述有机污染物为草酸。
  5. 根据权利要求4所述的应用,其特征在于,有机污染物的浓度为700-800mgL -1
  6. 根据权利要求1所述的应用,其特征在于,臭氧氧化降解有机污染物在pH不高于3的条件下进行。
  7. 根据权利要求1所述的应用,其特征在于,在20-30℃下进行有机污染物的臭氧氧化降解。
  8. 根据权利要求1-7中任一项所述的应用,其特征在于,催化臭氧氧化降解有机污染物的方法包括以下步骤:
    以所述柚子皮生物碳材料作为催化剂,在所述催化剂的作用下,向含有有机污染物的溶液中通入臭氧,以进行有机污染物的臭氧氧化降解。
  9. 根据权利要求8所述的应用,其特征在于,通入臭氧后,溶液中臭氧的浓度为40-60mgL -1;溶液中所述柚子皮生物碳材料的浓度为2-3gL -1
  10. 根据权利要求8所述的应用,其特征在于,所述柚子皮生物碳材料和臭氧与溶液的接触时间为1-7h。
PCT/CN2020/107718 2020-06-22 2020-08-07 柚子皮生物碳应用于催化臭氧氧化降解废水中的有机污染物 WO2021258515A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010574381.XA CN111606408A (zh) 2020-06-22 2020-06-22 柚子皮生物碳应用于催化臭氧氧化降解废水中的有机污染物
CN202010574381.X 2020-06-22

Publications (1)

Publication Number Publication Date
WO2021258515A1 true WO2021258515A1 (zh) 2021-12-30

Family

ID=72198806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107718 WO2021258515A1 (zh) 2020-06-22 2020-08-07 柚子皮生物碳应用于催化臭氧氧化降解废水中的有机污染物

Country Status (2)

Country Link
CN (1) CN111606408A (zh)
WO (1) WO2021258515A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477175A (zh) * 2022-01-25 2022-05-13 南京智汇环境气象产业研究院有限公司 以柚子内瓤为原料的碳材料简易制备方法
CN114686332A (zh) * 2022-03-28 2022-07-01 山东工大食品科技有限公司 一种酱香型白酒新酒的脱色除杂工艺
CN114700065A (zh) * 2022-05-11 2022-07-05 南京工业大学 一种废旧树脂碳球型复合臭氧催化剂及其制备方法和应用
CN114984912A (zh) * 2022-06-20 2022-09-02 中国科学院生态环境研究中心 由柑橘类的果皮制备生物质炭材料的方法
CN115159495A (zh) * 2022-06-14 2022-10-11 安徽工程大学 一种轻质高强多孔碳材料的绿色制备方法及多孔碳材料
CN115475603A (zh) * 2022-09-14 2022-12-16 桂林理工大学 一种柚子皮生物碳/MgFe-LDH复合材料的制备方法及其应用
CN117299152A (zh) * 2023-11-27 2023-12-29 鲁东大学 一种硫掺杂生物炭的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114558603B (zh) * 2022-03-10 2023-05-02 苏州大学 一种具有高氧含量的氮掺杂空心多级孔碳微球及其制备方法和应用
CN114433055B (zh) * 2022-03-10 2022-12-23 苏州大学 一种具有高度开放多级孔结构的碳催化剂及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294695A (ja) * 1995-04-26 1996-11-12 Hitachi Ltd 水処理装置
JP2001225087A (ja) * 2000-02-18 2001-08-21 Japan Organo Co Ltd ホルモン様活性作用を有する化学物質の不活化方法および不活化装置
CN101654247A (zh) * 2009-09-15 2010-02-24 东华大学 柚子皮活性炭的制备方法
KR101951691B1 (ko) * 2017-12-08 2019-06-03 소프트에코 주식회사 오폐수 고도처리장치
CN110201661A (zh) * 2019-04-28 2019-09-06 中山大学 一种多孔阵列结构的锰基生物炭及其制备方法和应用
CN110787835A (zh) * 2019-11-15 2020-02-14 武汉纺织大学 一种花生壳三聚氰胺生物炭复合材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372085A (zh) * 2019-07-25 2019-10-25 成都硕特环保科技有限公司 一种有机废水臭氧催化氧化处理系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08294695A (ja) * 1995-04-26 1996-11-12 Hitachi Ltd 水処理装置
JP2001225087A (ja) * 2000-02-18 2001-08-21 Japan Organo Co Ltd ホルモン様活性作用を有する化学物質の不活化方法および不活化装置
CN101654247A (zh) * 2009-09-15 2010-02-24 东华大学 柚子皮活性炭的制备方法
KR101951691B1 (ko) * 2017-12-08 2019-06-03 소프트에코 주식회사 오폐수 고도처리장치
CN110201661A (zh) * 2019-04-28 2019-09-06 中山大学 一种多孔阵列结构的锰基生物炭及其制备方法和应用
CN110787835A (zh) * 2019-11-15 2020-02-14 武汉纺织大学 一种花生壳三聚氰胺生物炭复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DUAN, JINGWEI: "Study on Application of Catalytic Ozonation in Advanced Treatment of Refractory Organics", CHINA MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE & TECHNOLOGY I, no. 6, 15 June 2016 (2016-06-15), pages 1 - 68, XP055882863, ISSN: 1674-0246 *
LI, DENGYONG ET AL.: "Kinetics and Equilibrium of 4-Nitrochlorobenzene Adsorption on Biological Carbon Prepared by Pomelo Peel", CHINESE JOURNAL OF ENVIRONMENTAL ENGINEERING, vol. 4, no. 3, 31 March 2010 (2010-03-31), pages 481 - 486, XP055882894, ISSN: 1673-9108 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477175A (zh) * 2022-01-25 2022-05-13 南京智汇环境气象产业研究院有限公司 以柚子内瓤为原料的碳材料简易制备方法
CN114686332A (zh) * 2022-03-28 2022-07-01 山东工大食品科技有限公司 一种酱香型白酒新酒的脱色除杂工艺
CN114686332B (zh) * 2022-03-28 2024-01-23 山东工大食品科技有限公司 一种酱香型白酒新酒的脱色除杂工艺
CN114700065A (zh) * 2022-05-11 2022-07-05 南京工业大学 一种废旧树脂碳球型复合臭氧催化剂及其制备方法和应用
CN114700065B (zh) * 2022-05-11 2023-08-08 南京工业大学 一种废旧树脂碳球型复合臭氧催化剂及其制备方法和应用
CN115159495A (zh) * 2022-06-14 2022-10-11 安徽工程大学 一种轻质高强多孔碳材料的绿色制备方法及多孔碳材料
CN114984912A (zh) * 2022-06-20 2022-09-02 中国科学院生态环境研究中心 由柑橘类的果皮制备生物质炭材料的方法
CN115475603A (zh) * 2022-09-14 2022-12-16 桂林理工大学 一种柚子皮生物碳/MgFe-LDH复合材料的制备方法及其应用
CN117299152A (zh) * 2023-11-27 2023-12-29 鲁东大学 一种硫掺杂生物炭的制备方法
CN117299152B (zh) * 2023-11-27 2024-03-12 鲁东大学 一种硫掺杂生物炭的制备方法

Also Published As

Publication number Publication date
CN111606408A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2021258515A1 (zh) 柚子皮生物碳应用于催化臭氧氧化降解废水中的有机污染物
Zaeni et al. In situ nitrogen functionalization of biochar via one-pot synthesis for catalytic peroxymonosulfate activation: characteristics and performance studies
CN112441659B (zh) 一种利用多级介孔生物炭材料激活过硫酸盐降解处理有机污染物的方法
CN110575848B (zh) 一种用于催化臭氧氧化挥发性有机物的催化剂的制备方法
CN109499573A (zh) 一种磁性木基材料的原位制备方法
CN110743527A (zh) 一种介孔臭氧催化剂的制备方法
CN109850865A (zh) 一种铁负载的海藻酸钠碳气凝胶的制备方法及其应用
CN113943030B (zh) 用于活化过一硫酸盐处理氯苯污染水体的生物质炭包覆纳米零价铁复合材料及其制备和应用
CN106861626B (zh) 一种吸附-光催化双功能材料及其制备方法与在挥发性有机气体治理工艺的应用
CN111974404A (zh) 光助BiFe1-xCuxO3活化过一硫酸盐处理水体残留环丙沙星的方法
CN103551204B (zh) 一种多级层次孔结构的Fenton-like催化剂及其应用
CN113772710B (zh) 一种二氧化铈纳米线的制备方法及其应用
Liu et al. Performance, kinetics and mechanism of Fe (II) EDTA regeneration with surface-fluorinated anatase TiO2 with exposed (001) facets
Li et al. Green synthesis of graphite-based photo-Fenton nanocatalyst from waste tar via a self-reduction and solvent-free strategy
CN113441142A (zh) 一种富含氧空位的石墨烯负载多孔纳米氧化铁电催化剂的制备方法及应用
CN110898808B (zh) 一种富硫炔碳材料的机械化学制备方法及其在水溶液中重金属离子吸附方面的应用
Duan et al. Sulfur-doped photocatalysts with iron-nitrogen coordination bonds by modifying graphitic carbon nitride obtained from ammonium thiocyanate pyrolysis with ferrous sulfate heptahydrate in ethanol
Yu et al. Iron-based denitration catalyst derived from Fenton sludge: optimization analysis of selective dealkalization and influence mechanism of calcination temperature
CN116573640A (zh) 一种催化剂载体活性炭的活化工艺
CN106944077B (zh) 用于沼气净化的脱硫材料的制备方法
CN114797847B (zh) 一种金属掺杂的介孔碳基催化剂及其制备方法与应用
CN111545211A (zh) 一种氧化石墨烯-氧化镧-氢氧化钴复合材料、合成方法及其应用
CN114853112B (zh) 二氧化钛纳米催化剂在光催化去除水体硝酸盐氮中的应用
CN101433829A (zh) 一种用于臭氧氧化的微孔陶基催化剂及其制备方法
CN113171785A (zh) 一种氮硫共掺杂有序介孔碳材料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941843

Country of ref document: EP

Kind code of ref document: A1