WO2021256798A1 - 연성 금속 적층체, 이의 제조방법 및 이를 이용한 프린트 배선판 - Google Patents

연성 금속 적층체, 이의 제조방법 및 이를 이용한 프린트 배선판 Download PDF

Info

Publication number
WO2021256798A1
WO2021256798A1 PCT/KR2021/007385 KR2021007385W WO2021256798A1 WO 2021256798 A1 WO2021256798 A1 WO 2021256798A1 KR 2021007385 W KR2021007385 W KR 2021007385W WO 2021256798 A1 WO2021256798 A1 WO 2021256798A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
flexible metal
metal laminate
layer
void
Prior art date
Application number
PCT/KR2021/007385
Other languages
English (en)
French (fr)
Inventor
조천희
김민우
정인원
최영민
민형기
김광진
이인욱
Original Assignee
동우 화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200074219A external-priority patent/KR20210156524A/ko
Priority claimed from KR1020200074220A external-priority patent/KR20210156525A/ko
Application filed by 동우 화인켐 주식회사 filed Critical 동우 화인켐 주식회사
Publication of WO2021256798A1 publication Critical patent/WO2021256798A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a flexible metal laminate, a manufacturing method thereof, and a printed wiring board using the same, and more particularly, to a flexible metal laminate having excellent adhesion between an insulating layer and a copper layer and a reduced signal loss rate, a manufacturing method thereof, and a method for manufacturing the same It relates to a printed wiring board.
  • the communication and vehicle-mounted markets are moving from 4G to 5G, and accordingly, high performance of various parts is required.
  • the frequency used for communication is required from the existing 4G up to 3.5 GHz to 5G up to 28 GHz, and for in-vehicle use up to 70 GHz, and accordingly, low dielectric properties are required. Accordingly, various industries are developing materials for lowering dielectric properties.
  • Flexible metal laminates are mainly used as substrates for flexible printed circuit boards (FPCBs), and other surface heating element electromagnetic shielding materials, flat cables, packaging materials, and the like.
  • the flexible copper clad laminate is mainly composed of a polyimide layer and a copper foil layer, and may be divided into an adhesive type and a non-adhesive type depending on whether an epoxy adhesive layer exists between the polyimide layer and the copper foil layer.
  • polyimide is directly adhered to the surface of the copper clad.
  • non-adhesive flexible copper clad laminates are mainly used.
  • Korean Patent Laid-Open Publication No. 10-2013-0027442 discloses a first metal layer; a first polyimide layer; a polyimide layer in which a fluororesin is dispersed formed on the first polyimide layer; and a second polyimide layer formed on the polyimide layer in which the fluororesin is dispersed, wherein in the polyimide layer in which the fluororesin is dispersed, the content per unit volume of the fluororesin is the total amount from the surface of the polyimide layer.
  • a flexible metal laminate having improved adhesion and dielectric properties with a metal layer is disclosed by becoming larger at a depth of 40 to 60% of the thickness rather than at a depth of 5 to 10% of the thickness.
  • polyimide itself has a high dielectric constant, so it is difficult to satisfy the high-speed level required recently.
  • polyphenylene sulfide has lower dielectric constant (Dk) and dielectric loss (Df) compared to conventional polyimide, so it can be considered as an insulating layer of a flexible metal laminate, but with copper foil Since the adhesion is lower than 0.7 kgf/cm, molding into a flexible circuit board is not easy, and there is a problem in that durability is lowered under severe conditions (high temperature, thermal shock).
  • One object of the present invention is to provide a flexible metal laminate having excellent adhesion between an insulating layer and a copper layer and a reduced signal loss rate.
  • Another object of the present invention is to provide a method for manufacturing the flexible metal laminate.
  • Another object of the present invention is to provide a printed wiring board using the flexible metal laminate.
  • the present invention provides a flexible metal laminate in which an insulating layer and a copper layer are laminated on at least one surface of the insulating layer, wherein the insulating layer includes polyphenylene sulfide (PPS).
  • PPS polyphenylene sulfide
  • the insulating layer may have a single-layer or multi-layer structure.
  • the insulating layer is a single layer composed of a void-free insulating layer containing no voids, a single layer composed of a void containing insulating layer containing voids, or no voids. It may have a multilayer structure in which a void-free insulating layer that does not contain voids and a void-containing insulating layer that includes voids are stacked.
  • the dielectric constant at 15 GHz of the insulating layer may be 3.3 or less, and the dielectric loss tangent at 15 GHz may be 0.0025 or less.
  • the insulating layer may satisfy Equation 1 below.
  • A is the intensity of the Raman peak of 1076 cm ⁇ 1 in the Raman spectrum measured in the longitudinal direction (MD) of the insulating layer
  • B is the Raman spectrum measured in the width direction (TD) of the insulating layer 1076 cm ⁇ 1 is the intensity of the Raman peak.
  • the insulating layer may satisfy Equation 2 below.
  • A is the intensity of the Raman peak of 1076 cm ⁇ 1 in the Raman spectrum measured in the longitudinal direction (MD) of the insulating layer
  • B is the Raman spectrum measured in the width direction (TD) of the insulating layer 1076 cm ⁇ 1 is the intensity of the Raman peak.
  • the present invention provides a printed wiring board using the flexible metal laminate.
  • the present invention comprises the steps of bonding an insulating layer comprising polyphenylene sulfide (PPS), and a copper layer disposed on at least one surface of the insulating layer; and heat-treating the bonded laminate.
  • PPS polyphenylene sulfide
  • the insulating layer may have a single-layer or multi-layer structure.
  • the insulating layer is a single layer composed of a void-free insulating layer containing no voids, a single layer composed of a void-containing insulating layer containing voids, or a void-free insulating layer containing no voids. It may have a multi-layered structure in which a void-containing insulating layer and a void-containing insulating layer including voids are stacked.
  • the dielectric constant at 15 GHz of the insulating layer may be 3.3 or less, and the dielectric loss tangent at 15 GHz may be 0.0025 or less.
  • the bonding temperature may be T m ⁇ 40 °C (T m is the melting point of polyphenylene sulfide).
  • the heat treatment temperature may be T m -20 °C to T m +50 °C (T m is the melting point of polyphenylene sulfide).
  • the insulating layer may satisfy Equation 1 below.
  • A is the intensity of the Raman peak of 1076 cm ⁇ 1 in the Raman spectrum measured in the longitudinal direction (MD) of the insulating layer
  • B is the Raman spectrum measured in the width direction (TD) of the insulating layer 1076 cm ⁇ 1 is the intensity of the Raman peak.
  • the insulating layer may satisfy Equation 2 below.
  • A is the intensity of the Raman peak of 1076 cm ⁇ 1 in the Raman spectrum measured in the longitudinal direction (MD) of the insulating layer
  • B is the Raman spectrum measured in the width direction (TD) of the insulating layer 1076 cm ⁇ 1 is the intensity of the Raman peak.
  • the heat treatment may be performed at a temperature of T m -10°C to T m +30°C (T m is the melting point of polyphenylene sulfide) for 300 seconds to 600 seconds.
  • the flexible metal laminate according to the present invention may improve adhesion between the copper layer and the insulating layer by bonding the copper layer and the insulating layer and then performing heat treatment. Therefore, the flexible metal laminate according to the present invention can be easily formed, and durability can be maintained under severe conditions (high temperature, thermal shock). .
  • FIG. 1 is a structural cross-sectional view of a flexible metal laminate according to an embodiment of the present invention.
  • One embodiment of the present invention relates to a flexible metal laminate in which an insulating layer and a copper layer are laminated on at least one surface of the insulating layer, wherein the insulating layer includes polyphenylene sulfide (PPS). .
  • PPS polyphenylene sulfide
  • a copper layer may be laminated on at least one surface of the insulating layer, but preferably a first copper layer 100 and The second copper layer 300 has a stacked structure.
  • the insulating layer includes polyphenylene sulfide (PPS).
  • the PPS is a polymer including a repeating unit of Formula 1 below.
  • the repeating unit of Formula 1 is preferably a p-phenylene sulfide structure in view of heat resistance.
  • the repeating unit of Formula 1 may be included in an amount of 70 mol% or more, preferably 90 mol% or more, based on 100 mol% of the total repeating units of the polymer in terms of heat resistance.
  • the PPS may further include a repeating unit containing a sulfide bond other than the repeating unit of Formula 1 in an amount of less than 30 mol% based on 100 mol% of the total repeating units of the polymer.
  • Examples of the additional repeating unit include one or more of the repeating units represented by the following Chemical Formulas 2-1 to 2-7.
  • the PPS is a homopolymer composed of only the repeating unit of Chemical Formula 1, or the repeating unit of Chemical Formula 1 and repeating units containing other sulfide bonds, for example, the repeating units of Chemical Formulas 2-1 to 2-7 are constant. It may be a block copolymer repeatedly repeating, or a random copolymer in which these are randomly repeated.
  • the PPS can be prepared and used by a conventional manufacturing method, or can be obtained and used commercially.
  • the PPS may be prepared by reacting a sulfidating agent and a polyhalogenated aromatic compound with a temperature range of 200°C or higher and less than 290°C in an organic polar solvent.
  • the polyhalogenated aromatic compound refers to an aromatic compound having two or more halogen atoms in one molecule.
  • Specific examples of the polyhalogenated aromatic compound include p-dichlorobenzene, m-dichlorobenzene, o-dichlorobenzene, 1,3,5-trichlorobenzene, 1,2,4-trichlorobenzene, 1,2,4,5 -tetrachlorobenzene, hexachlorobenzene, 2,5-dichlorotoluene, 2,5-dichloro-p-xylene, 1,4-dibromobenzene, 1,4-diiodine benzene, 1-methoxy-2, and polyhalogenated aromatic compounds such as 5-dichlorobenzene, and p-dichlorobenzene is preferred. It is also possible to use two or more types of polyhalogenated aromatic compounds in combination, but it is preferable to use p-dihalogenated aromatic compounds as a
  • the sulfiding agent may be an alkali metal sulfide, an alkali metal hydrosulfide, and/or hydrogen sulfide.
  • the alkali metal sulfide include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and mixtures of two or more thereof, and sodium sulfide is preferable among them.
  • These alkali metal sulfides can be used as hydrates or aqueous mixtures or as anhydrides.
  • alkali metal hydrosulfide examples include sodium hydrosulfide, potassium hydrosulfide, lithium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide, and mixtures of two or more thereof. Among them, sodium hydrosulfide is preferable. . These alkali metal hydrosulfides can be used as hydrates or aqueous mixtures or as anhydrides.
  • organic polar solvent examples include N-alkylpyrrolidones such as N-methyl-2-pyrrolidone and N-ethyl-2-pyrrolidone, caprolactams such as N-methyl- ⁇ -caprolactam, 1; aprotic organic solvents typified by 3-dimethyl-2-imidazolidinone, N,N-dimethylacetamide, N,N-dimethylformamide, hexamethyl phosphate triamide, dimethyl sulfone, tetramethylene sulfoxide, and the like; mixtures thereof, and the like.
  • N-alkylpyrrolidones such as N-methyl-2-pyrrolidone and N-ethyl-2-pyrrolidone
  • caprolactams such as N-methyl- ⁇ -caprolactam, 1
  • aprotic organic solvents typified by 3-dimethyl-2-imidazolidinone, N,N-dimethylacetamide, N,N-d
  • the PPS contains a specific functional group such as washing with an aqueous acid solution (acid washing), treatment with an organic solvent or hot water, washing with water containing an alkaline earth metal salt, acid anhydride, an amine and/or isocyanate functional group-containing disulfide compound, etc. It can be used after a treatment selected from various treatments such as activation by a compound, crosslinking/high molecular weight by heating in the atmosphere, and heat treatment under an inert gas atmosphere such as nitrogen or under reduced pressure. It is also possible to repeat this process several times or to combine other processes.
  • a specific functional group such as washing with an aqueous acid solution (acid washing), treatment with an organic solvent or hot water, washing with water containing an alkaline earth metal salt, acid anhydride, an amine and/or isocyanate functional group-containing disulfide compound, etc. It can be used after a treatment selected from various treatments such as activation by a compound, crosslinking/high molecular weight by heating in the atmosphere, and heat
  • the insulating layer may be a PPS resin film formed from the PPS resin composition including the PPS.
  • the PPS resin composition may include PPS in an amount of 60% by weight or more based on 100% by weight of the total composition. If the content of the PPS is less than 60% by weight, mechanical properties, heat resistance, heat sealing properties (adhesion to metal), moisture absorption dimensional stability, dielectric properties, etc. of the insulating layer may be deteriorated.
  • the PPS resin composition may further include a polymer other than the PPS, an inorganic or organic filler, a lubricant, a colorant, and the like.
  • Polymers other than PPS include polyester, liquid crystal polyester, polyamide, polyolefin, polyimide, polyamideimide, polyetherimide, polyarylate, modified polyphenylene sulfide, polyetheretherketone, polyethersulfone, poly sulfones and the like.
  • the melt viscosity of the PPS resin composition is not particularly limited as long as it is in the range of 1 to 1500 Pa.s (300°C, shear rate 1000/s), but preferably 300 Pa.s or less, more preferably 200 Pa.s or less. This is good in terms of film forming and film forming processability.
  • Any suitable molding method may be employed as a method for forming a film from the PPS resin composition. Specific examples thereof include an extrusion molding method, an injection molding method, a casting method, a blow molding method, and a transfer molding method.
  • the PPS resin film may be an unstretched amorphous film, a uniaxially stretched film or a biaxially stretched film.
  • the insulating layer may have a single-layer or multi-layer structure.
  • the insulating layer is a single layer composed of a void-free insulating layer containing no voids, a single layer composed of a void-containing insulating layer containing voids, or a void-free insulating layer containing no voids and voids. It may have a multilayer structure in which void-containing insulating layers are stacked.
  • the insulating layer of the multilayer structure may include a void-free first insulating layer, a void-containing second insulating layer laminated on the void-free first insulating layer, and a void-containing second insulating layer laminated on the void-containing second insulating layer It may have a three-layer structure including a void-free third insulating layer.
  • the size of the void may be 0.1 to 20 ⁇ m, preferably 1 to 5 ⁇ m.
  • the size of the void is less than 0.1 ⁇ m, it is difficult to sufficiently lower the dielectric constant, and when it exceeds 20 ⁇ m, mechanical properties of the insulating layer may be deteriorated.
  • the number of voids is preferably within 10 within 10 ⁇ m2, for example, 1 to 10. If the number of voids exceeds 10 within 10 ⁇ m2, mechanical properties of the insulating layer may be deteriorated.
  • the insulating layer may have a thickness of 10 to 100 ⁇ m, preferably 25 to 75 ⁇ m.
  • the overall thickness satisfies the above range. If the thickness of the insulating layer is less than 10 ⁇ m, the effect of lowering the dielectric constant of the flexible metal laminate may be slightly insignificant, and thus the signal loss rate of the FBCB may increase, and if it exceeds 100 ⁇ m, thinning may be difficult.
  • the insulating layer has a three-layer structure including a void-free first insulating layer, a void-containing second insulating layer, and a void-free third insulating layer, a void-free first insulating layer and a void-free third insulating layer
  • the thickness of each may be 2 to 20 ⁇ m, and the thickness of the void-containing second insulating layer may be 6 to 60 ⁇ m.
  • the dielectric constant at 15 GHz of the insulating layer may be 3.3 or less, and the dielectric loss tangent at 15 GHz may be 0.0025 or less.
  • the permittivity is a physical unit indicating the effect of a medium between charges on the electric field when an electric field acts between the charges, and may be viewed as the amount of charge that the medium can store.
  • the dielectric constant at 15 GHz of the insulating layer is a value measured at a frequency of 15 GHz according to the method described in Experimental Examples to be described later for the insulating layer.
  • the dielectric constant at 15 GHz of the insulating layer may be 3.3 or less, for example, greater than 1 and 3.3 or less as described above.
  • the signal loss factor may increase in a high frequency band such as 15 GHz.
  • the dissipation factor (DF) is a unit for measuring the ratio of force loss due to vibration, and is generally expressed as tangent delta (tangent ⁇ ).
  • the dielectric loss tangent at 15 GHz of the insulating layer is a value measured at a frequency of 15 GHz according to the method described in Experimental Examples to be described later for the insulating layer.
  • the dielectric loss tangent at 15 GHz of the insulating layer may be 0.0025 or less as described above, for example, more than 0 and 0.0025 or less.
  • the signal loss rate may increase in a high frequency band such as 15 GHz.
  • the insulating layer may satisfy Equation 1 below.
  • A is the intensity of the Raman peak of 1076 cm ⁇ 1 in the Raman spectrum measured in the longitudinal direction (MD) of the insulating layer
  • B is the Raman spectrum measured in the width direction (TD) of the insulating layer 1076 cm ⁇ 1 is the intensity of the Raman peak.
  • the insulating layer may have improved adhesion with the copper layer by satisfying Equation 1, thereby improving moldability, securing durability under severe conditions, for example, high temperature and/or thermal shock, and ductility. It is possible to prevent an increase in the signal loss rate when manufacturing the circuit board.
  • the insulating layer may satisfy Equation 2 below.
  • A is the intensity of the Raman peak of 1076 cm ⁇ 1 in the Raman spectrum measured in the longitudinal direction (MD) of the insulating layer
  • B is the Raman spectrum measured in the width direction (TD) of the insulating layer 1076 cm ⁇ 1 is the intensity of the Raman peak.
  • the insulating layer may satisfy Equation 3 below.
  • A is the intensity of the Raman peak of 1076 cm ⁇ 1 in the Raman spectrum measured in the longitudinal direction (MD) of the insulating layer
  • B is the Raman spectrum measured in the width direction (TD) of the insulating layer 1076 cm ⁇ 1 is the intensity of the Raman peak.
  • the insulating layer is 5,000 > (A+B) ⁇ (A/B), an appearance may be poor or mechanical properties may be deteriorated due to random blisters in the insulating layer.
  • a method of measuring the intensity of the Raman peak with respect to the insulating layer is not particularly limited, but, for example, may be measured according to the method described in Experimental Examples to be described later.
  • the copper layer may be a layer formed by electrolysis or a layer formed by rolling.
  • the thickness of the copper layer may be in the range of 5 to 50 ⁇ m, preferably 7 to 15 ⁇ m. As shown in FIG. 1 , when the first copper layer 100 and the second copper layer 300 are respectively stacked on both sides of the insulating layer 200 , the thickness of each copper layer satisfies the above range. When the thickness of the copper layer is within the above range, adjustment of the tension of the copper layer is easy at the time of manufacturing the laminate, and the flexibility of the obtained laminate is improved, which is preferable. If the thickness of the copper layer is more than 50 ⁇ m, it is difficult to manufacture a flexible metal laminate due to poor flexibility.
  • One embodiment of the present invention relates to a method of manufacturing the flexible metal laminate.
  • the constituent components, layer structure, thickness, dielectric constant, and dielectric loss tangent of the insulating layer are the same as described for the flexible metal laminate.
  • the constituent components and thickness of the copper layer are the same as those described in the flexible metal laminate.
  • the insulating layer and the copper layer may be bonded by a thermal fusion method, but if necessary, an adhesive or an adhesive layer may be further included for bonding each layer.
  • the thermal fusion may be performed using a hot roll, a double belt press, a heating plate, or a combination thereof.
  • the bonding temperature may be T m ⁇ 40 °C (T m is the melting point of polyphenylene sulfide), preferably T m ⁇ 20 °C. If the bonding temperature is less than T m -40 °C, the melting of the surface of the insulating layer is weak, and the anchoring effect with the copper layer is reduced, and this may decrease adhesion with the copper layer, and if T m exceeds +40 °C An overflow phenomenon may occur due to deep melting of the insulating layer.
  • the bonding pressure may be 3 to 15 MPa, preferably 6 to 12 MPa. If the bonding pressure is less than 3 MPa, the adhesion between the copper layer and the insulating layer may not be sufficient, and thus adhesion may be reduced.
  • the melting point of polyphenylene sulfide may be slightly different depending on the type and content of the constituent repeating units, but may be approximately 270 to 290°C.
  • the bonding time may be 1 to 15 minutes, preferably 3 to 12 minutes. If the bonding time is less than 1 minute, the pressure of the copper layer and the insulating layer may not be sufficient, so that the adhesion may be reduced, and if it exceeds 15 minutes, productivity may be reduced by increasing the process time.
  • the heat treatment may be performed without applying pressure, for example, using a hot roll, a hot air furnace, a ceramic heater, an IR furnace, or a method using a combination thereof.
  • the heat treatment temperature may be T m -20 °C to T m +50 °C (T m is the melting point of polyphenylene sulfide), preferably T m -10 °C to T m +30 °C. If the heat treatment temperature is less than T m -20°C, adhesion between the copper layer and the insulating layer may be reduced, and if T m exceeds +50°C, the insulating layer may be melted or random blisters may be generated in the insulating layer.
  • the heat treatment time may be 120 seconds to 900 seconds, preferably 300 seconds to 600 seconds. If the heat treatment time is less than 120 seconds, the adhesion between the copper layer and the insulating layer may be reduced, and if it exceeds 900 seconds, random blisters may occur in the insulating layer or productivity may be reduced.
  • the insulating layer may satisfy Equation 1 below.
  • A is the intensity of the Raman peak of 1076 cm ⁇ 1 in the Raman spectrum measured in the longitudinal direction (MD) of the insulating layer
  • B is the Raman spectrum measured in the width direction (TD) of the insulating layer 1076 cm ⁇ 1 is the intensity of the Raman peak.
  • the adhesion between the insulating layer and the copper layer may be improved, thereby improving the formability, securing durability under severe conditions, for example, high temperature and/or thermal shock, and manufacturing a flexible circuit board It is possible to prevent an increase in the signal loss rate.
  • the insulating layer may satisfy Equation 2 below.
  • A is the intensity of the Raman peak of 1076 cm ⁇ 1 in the Raman spectrum measured in the longitudinal direction (MD) of the insulating layer
  • B is the Raman spectrum measured in the width direction (TD) of the insulating layer 1076 cm ⁇ 1 is the intensity of the Raman peak.
  • the insulating layer may satisfy Equation 3 below.
  • A is the intensity of the Raman peak of 1076 cm ⁇ 1 in the Raman spectrum measured in the longitudinal direction (MD) of the insulating layer
  • B is the Raman spectrum measured in the width direction (TD) of the insulating layer 1076 cm ⁇ 1 is the intensity of the Raman peak.
  • the insulating layer is 5,000 > (A+B) ⁇ (A/B), an appearance may be poor or mechanical properties may be deteriorated due to random blisters in the insulating layer.
  • One embodiment of the present invention relates to a printed wiring board using the flexible metal laminate.
  • the printed wiring board may be manufactured by forming a circuit pattern on at least one copper layer of the laminate through etching or the like.
  • the printed wiring board may be a flexible printed wiring board.
  • Example 1 Preparation of a flexible metal laminate
  • Copper foil substrate (thickness 12 ⁇ m, manufacturer Mitsui, product name SP-) on the upper and lower surfaces of single-layer PPS film (thickness 50 ⁇ m, T m 288°C, void-free, manufacturer Toray, dielectric constant: 3.3, dielectric loss tangent: 0.0025, 15GHz)
  • a vacuum press machine Karl Fischer Seiki, Model-KVHC
  • the resulting laminate was put into a hot air oven (Espec, Model-IPHH-202), and then heat-treated at a temperature of 300° C. for 300 seconds to prepare a flexible metal laminate.
  • a flexible metal laminate was manufactured in the same manner as in Example 1, except that the laminate was heat-treated for 420 seconds.
  • a flexible metal laminate was prepared in the same manner as in Example 1, except that the laminate was heat-treated for 480 seconds.
  • a flexible metal laminate was prepared in the same manner as in Example 1, except that a multi-layer PPS film was used instead of the single-layer PPS film.
  • the multilayer PPS film is a product of Toray Corporation, and has a three-layer structure consisting of a void-free first insulating layer having a thickness of 10 ⁇ m, a void-containing second insulating layer having a thickness of 30 ⁇ m, and a void-free third insulating layer having a thickness of 10 ⁇ m.
  • T m was 288 °C, and the permittivity and dielectric loss tangent were 3.15 and 0.0019 at 15 GHz, respectively.
  • a flexible metal laminate was prepared in the same manner as in Example 1, except that the resulting laminate was not subjected to post heat treatment.
  • a flexible metal laminate was prepared in the same manner as in Example 1, except that the laminate was heat-treated for 60 seconds.
  • a flexible metal laminate was prepared in the same manner as in Example 1, except that the laminate was heat-treated for 1200 seconds.
  • a specimen for evaluation was prepared by cutting the flexible metal laminate into a size of 100 mm ⁇ 10 mm.
  • the adhesion between the insulating layer and the copper layer was measured using a UTM (Shimadzu) measuring device under the conditions of a peeling angle of 90 ⁇ and a peeling rate of 50mm/min, and the average value was obtained by measuring three specimens.
  • Raman intensities in the MD and TD directions of the insulating layer were measured using Raman spectroscopy (Laser wavelength: 532 nm, energy: 2.33 eV). Specifically, after etching the copper foil of the flexible metal laminate, the laser was incident in the MD direction of the insulating layer and the TD direction perpendicular to the surface thereof to detect a scattered signal. The reference peak was taken as a peak in the vicinity of 1076 cm -1 , which is a peak from the bond between the benzene ring and sulfur (S). The Raman intensity in each direction and the ratio of the MD/TD direction were measured for three specimens to obtain an average value. At this time, the etching of the copper foil was carried out by diluting 200 g of non-toxic etching powder (SME Trader) in 1 L of water and heating it to 90° C., and then precipitating a flexible metal laminate specimen.
  • SME Trader non-toxic etching powder
  • the Raman intensity can be interpreted as the density (concentration) of particles oriented in each direction to form a grain.
  • A+B ⁇ (A/B) values were obtained using the obtained Raman intensity in each direction and the ratio (A/B) of the MD/TD direction.
  • A is the intensity of the Raman peak at 1076 cm -1 in the Raman spectrum measured in the longitudinal direction (MD) of the insulating layer
  • B is the Raman spectrum measured in the width direction (TD) of the insulating layer 1076 cm -1 is the intensity of the Raman peak.
  • the etching of the copper foil was carried out by diluting 200 g of non-toxic etching powder (SME Trader) in 1 L of water, heating it to 90° C., and precipitating a flexible metal laminate specimen.
  • SME Trader non-toxic etching powder
  • Example 1 As shown in Table 1, after bonding an insulating layer containing polyphenylene sulfide (PPS) to a copper layer, and then undergoing a predetermined heat treatment, Example 1 in which (A+B) ⁇ (A/B) value is 15,000 or less It can be seen that the flexible metal laminates of Examples to 4 do not undergo heat treatment, and thus have improved adhesion and good appearance compared to the flexible metal laminate of Comparative Example 1 having a (A+B) ⁇ (A/B) value of more than 15,000.
  • PPS polyphenylene sulfide
  • Example 5 Fabrication of a flexible circuit board
  • Example 2 After processing the flexible metal laminate prepared in Example 1 into a flexible circuit board having a line width of 111 ⁇ m and a line 40 mm, it was bonded with a touch sensor (CPW transmission line type, line 10 mm) to prepare a flexible circuit board.
  • CPW transmission line type, line 10 mm CPW transmission line type, line 10 mm
  • the coverlay of Inox (Model: MAH-0X-25HX) was used.
  • Example 6 Fabrication of a flexible circuit board
  • a flexible circuit board was manufactured in the same manner as in Example 5, except that the flexible metal laminate prepared in Example 2 was used instead of the flexible metal laminate prepared in Example 1 above.
  • Example 7 Fabrication of a flexible circuit board
  • a flexible circuit board was manufactured in the same manner as in Example 5, except that the flexible metal laminate prepared in Example 3 was used instead of the flexible metal laminate prepared in Example 1 above.
  • Example 8 Fabrication of a flexible circuit board
  • a flexible circuit board was manufactured in the same manner as in Example 5, except that the flexible metal laminate prepared in Example 4 was used instead of the flexible metal laminate prepared in Example 1 above.
  • a flexible circuit board was manufactured in the same manner as in Example 5, except that the flexible metal laminate prepared in Comparative Example 1 was used instead of the flexible metal laminate prepared in Example 1.
  • Comparative Example 5 Fabrication of a flexible circuit board
  • a flexible circuit board was manufactured in the same manner as in Example 5, except that the flexible metal laminate prepared in Comparative Example 2 was used instead of the flexible metal laminate prepared in Example 1 above.
  • a flexible circuit board was manufactured in the same manner as in Example 5, except that the flexible metal laminate prepared in Comparative Example 3 was used instead of the flexible metal laminate prepared in Example 1 above.
  • Comparative Example 7 Fabrication of a flexible circuit board
  • a flexible circuit board was manufactured in the same manner as in Example 5, except that a flexible metal laminate (Inox Corporation) using a modified polyimide (MPI) film instead of the PPS film was used.
  • MPI modified polyimide
  • Comparative Example 8 Fabrication of a flexible circuit board
  • a flexible circuit board was manufactured in the same manner as in Example 5, except that a flexible metal laminate (Panasonic) using a liquid crystal polymer (LCP) film instead of the PPS film was used.
  • a flexible metal laminate Panasonic
  • LCP liquid crystal polymer
  • a flexible circuit board was manufactured in the same manner as in Example 5, except that a flexible metal laminate (Azotech) using a liquid crystal polymer (LCP) film instead of the PPS film was used.
  • a flexible metal laminate Azotech
  • LCP liquid crystal polymer
  • the signal loss ratio (S21) for the flexible circuit boards manufactured in Examples and Comparative Examples was measured at 28.5 GHz.
  • the signal loss rate was measured three times for each sample, and the average value was recorded.
  • the signal loss rate measuring device used was VNA (Vector Network Analyzers, Anritsu, N5224B).
  • the flexible circuit boards of Examples 5 to 8 manufactured using the flexible metal laminates of Examples 1 to 4 based on polyphenylene sulfide (PPS) were MPI-based conventionally used It can be seen that the signal loss rate characteristic is superior to that of the flexible circuit board of Comparative Example 7 manufactured using the flexible metal laminate of
  • the flexible circuit boards of Examples 5 to 8 showed signal loss rate characteristics equivalent to those of the flexible circuit boards of Comparative Examples 8 and 9 manufactured using an LCP-based flexible metal laminate known to have excellent low dielectric constant characteristics. appear.
  • the flexible circuit board of Example 8 using the multilayer PPS film having a void-containing layer exhibits better signal loss rate characteristics than the flexible circuit board of Example 5 using the single-layer PPS film having no void-containing layer. .
  • first copper layer 200 insulating layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 절연층, 및 상기 절연층의 적어도 일면에 구리층이 적층된 연성 금속 적층체로서, 상기 절연층이 폴리페닐렌설파이드(PPS)를 포함하는 연성 금속 적층체, 이의 제조방법 및 이를 이용한 프린트 배선판에 관한 것이다. 본 발명에 따른 연성 금속 적층체는 금속박과 절연층 사이의 밀착력이 우수하여 쉽게 성형이 가능할 뿐만 아니라 가혹 조건(고온, 열충격) 하에서 내구성이 유지될 수 있으며, 연성 회로 기판 제작시 신호손실율이 적어 5G 통신 제품에 유리하게 적용될 수 있다.

Description

연성 금속 적층체, 이의 제조방법 및 이를 이용한 프린트 배선판
본 발명은 연성 금속 적층체, 이의 제조방법 및 이를 이용한 프린트 배선판에 관한 것으로, 보다 상세하게는 절연층과 구리층 간의 밀착력이 우수하고 신호손실율이 저하된 연성 금속 적층체, 이의 제조방법 및 이를 이용한 프린트 배선판에 관한 것이다.
최근 통신 및 차재용 시장은 4G에서 5G를 향하고 있으며, 그에 따른 각종 부품의 고성능화가 요구되고 있다. 5G의 경우 사용되는 주파수가 통신용은 기존 4G 최대 3.5GHz에서 5G 최대 28GHz, 차재용은 최대 70GHz까지 요구되고 있으며, 이에 따라 저 유전특성이 요구되고 있다. 이에 여러 산업계에서 유전특성을 낮추기 위한 재료 개발이 이루어지고 있다.
연성 금속 적층체는 주로 연성 인쇄회로 기판(FPCB)의 기재로 사용되고, 그 외에 면 발열체 전자파 실드 재료, 플랫 케이블, 포장 재료 등에 사용되고 있다. 이러한 연성 금속 적층체 중에서도 연성 동박 적층체는 주로 폴리이미드층과 동박층으로 구성되는데, 폴리이미드층과 동박층 사이에 에폭시 접착제층이 존재하는가에 따라 접착형과 비접착형으로 나뉘기도 한다. 상기 비접착형 연성 동박 적층판은 동박 표면에 폴리이미드를 직접 접착시킨 것이다. 최근 전자제품이 소형화, 박형화되고, 우수한 이온 마이그레이션 특성을 요구하는 추세에 따라 비접착형 연성 동박 적층판이 주로 사용되고 있다.
대한민국 공개특허 제10-2013-0027442호에는 제1금속층; 제1폴리이미드층; 상기 제1폴리이미드층 상에 형성된 불소수지가 분산된 폴리이미드층; 및 상기 불소수지가 분산된 폴리이미드층 상에 형성된 제2폴리이미드층;을 포함하고, 상기 불소수지가 분산된 폴리이미드층에서, 상기 불소수지의 단위 부피당 함량은 상기 폴리이미드층의 표면으로부터 전체 두께의 5 내지 10%의 깊이에서보다, 40 내지 60%의 깊이에서 더 크게 됨으로써, 금속층과의 접착력 및 유전특성이 향상된 연성 금속 적층판이 기재되어 있다. 그러나, 폴리이미드는 그 자체의 유전율이 높아 최근 요구되는 고속화 수준을 만족시키기 어렵다.
이와 관련하여, 액정 폴리머(LCP) 필름과, 회로(도체 패턴)를 구성할 수 있는 금속층을 적층시킨 적층판이 알려져 있다. 이 적층판은, 다층화에 의해 플렉시블 프린트 배선판을 형성할 수 있고, 그 경우에 배선의 고밀도화가 가능해서 가동이 넓은 이점을 갖고 있다. 그러나, 액정 폴리머 필름은 경제성이 떨어지는 문제점이 있다.
한편, 폴리페닐렌설파이드(polyphenylene sulfide, PPS)는 기존 폴리이미드와 비교해 유전상수(Dk) 및 유전손실(Df) 수치가 낮아 연성 금속 적층체의 절연층으로서 적용을 고려해볼 수 있으나, 동박과의 밀착력이 0.7 kgf/cm보다 낮아 연성 회로 기판으로의 성형이 용이하지 않고, 가혹 조건(고온, 열충격) 하에서 내구성이 저하되는 문제점이 있다.
본 발명의 한 목적은 절연층과 구리층 간의 밀착력이 우수하고 신호손실율이 저하된 연성 금속 적층체를 제공하는 것이다.
본 발명의 다른 목적은 상기 연성 금속 적층체의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 연성 금속 적층체를 이용한 프린트 배선판을 제공하는 것이다.
한편으로, 본 발명은 절연층, 및 상기 절연층의 적어도 일면에 구리층이 적층된 연성 금속 적층체로서, 상기 절연층이 폴리페닐렌설파이드(PPS)를 포함하는 연성 금속 적층체를 제공한다.
본 발명의 일 실시형태에서, 상기 절연층은 단일층 또는 다층 구조를 가질 수 있다.
본 발명의 일 실시형태에서, 상기 절연층은 보이드(void)를 포함하지 않는 보이드 무함유 절연층으로 구성된 단일층이거나, 보이드를 포함하는 보이드 함유 절연층으로 구성된 단일층이거나, 또는 보이드를 포함하지 않는 보이드 무함유 절연층 및 보이드를 포함하는 보이드 함유 절연층이 적층된 다층 구조를 가질 수 있다.
본 발명의 일 실시형태에서, 상기 절연층의 15GHz에서의 유전율은 3.3 이하이며, 15GHz에서의 유전정접이 0.0025 이하일 수 있다.
본 발명의 일 실시형태에서, 상기 절연층은 하기 수학식 1을 만족할 수 있다.
[수학식 1]
(A+B)×(A/B) ≤ 15,000
상기 식에서, A는 절연층의 길이 방향(MD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기(intensity)이고, B는 절연층의 폭 방향(TD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기이다.
본 발명의 일 실시형태에서, 상기 절연층이 하기 수학식 2를 만족할 수 있다.
[수학식 2]
5,000 ≤ (A+B)×(A/B) ≤ 15,000
상기 식에서, A는 절연층의 길이 방향(MD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기(intensity)이고, B는 절연층의 폭 방향(TD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기이다.
다른 한편으로, 본 발명은 상기 연성 금속 적층체를 이용한 프린트 배선판을 제공한다.
또 다른 한편으로, 본 발명은 폴리페닐렌설파이드(PPS)를 포함하는 절연층, 및 상기 절연층의 적어도 일면에 배치된 구리층을 접합시키는 단계; 및 상기 접합된 적층체를 열처리하는 단계를 포함하는 연성 금속 적층체의 제조방법을 제공한다.
본 발명의 일 실시형태에서, 상기 절연층은 단일층 또는 다층 구조를 가질 수 있다.
본 발명의 일 실시형태에서, 상기 절연층은 보이드를 포함하지 않는 보이드 무함유 절연층으로 구성된 단일층이거나, 보이드를 포함하는 보이드 함유 절연층으로 구성된 단일층이거나, 또는 보이드를 포함하지 않는 보이드 무함유 절연층 및 보이드를 포함하는 보이드 함유 절연층이 적층된 다층 구조를 가질 수 있다.
본 발명의 일 실시형태에서, 상기 절연층의 15GHz에서의 유전율은 3.3 이하이며, 15GHz에서의 유전정접이 0.0025 이하일 수 있다.
본 발명의 일 실시형태에서, 상기 접합 온도는 Tm±40℃(Tm은 폴리페닐렌설파이드의 융점임)일 수 있다.
본 발명의 일 실시형태에서, 상기 열처리 온도는 Tm-20℃ 내지 Tm+50℃(Tm은 폴리페닐렌설파이드의 융점임)일 수 있다.
본 발명의 일 실시형태에 따른 제조방법은 상기 열처리하는 단계 이후에 상기 절연층이 하기 수학식 1을 만족할 수 있다.
[수학식 1]
(A+B)×(A/B) ≤ 15,000
상기 식에서, A는 절연층의 길이 방향(MD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기(intensity)이고, B는 절연층의 폭 방향(TD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기이다.
본 발명의 일 실시형태에 따른 제조방법은 상기 열처리하는 단계 이후에 상기 절연층이 하기 수학식 2를 만족할 수 있다.
[수학식 2]
5,000 ≤ (A+B)×(A/B) ≤ 15,000
상기 식에서, A는 절연층의 길이 방향(MD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기(intensity)이고, B는 절연층의 폭 방향(TD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기이다.
본 발명의 일 실시형태에서, 상기 열처리는 Tm-10℃ 내지 Tm+30℃(Tm은 폴리페닐렌설파이드의 융점임)의 온도에서 300초 내지 600초 동안 수행될 수 있다.
본 발명에 따른 연성 금속 적층체는 구리층과 절연층을 접합시킨 후 열처리를 거침으로써 구리층과 절연층 사이의 밀착력을 향상시킬 수 있다. 따라서, 본 발명에 따른 연성 금속 적층체는 쉽게 성형이 가능할 뿐만 아니라 가혹 조건(고온, 열충격) 하에서 내구성이 유지될 수 있으며, 연성 회로 기판 제작시 신호손실율이 적어 5G 통신 제품에 유리하게 적용될 수 있다.
도 1은 본 발명의 일 실시형태에 따른 연성 금속 적층체의 구조 단면도이다.
이하, 본 발명을 보다 상세히 설명한다.
본 발명의 일 실시형태는 절연층, 및 상기 절연층의 적어도 일면에 구리층이 적층된 연성 금속 적층체로서, 상기 절연층이 폴리페닐렌설파이드(PPS)를 포함하는 연성 금속 적층체에 관한 것이다.
본 발명의 일 실시형태에 따른 연성 금속 적층체는 절연층의 적어도 일면에 구리층이 적층될 수 있지만, 바람직하게는 도 1과 같이 절연층(200)의 양면에 제1구리층(100)과 제2구리층(300)이 적층된 구조를 갖는다.
본 발명의 일 실시형태에서, 상기 절연층은 폴리페닐렌설파이드(PPS)를 포함한다.
상기 PPS는 하기 화학식 1의 반복 단위를 포함하는 중합체이다.
[화학식 1]
Figure PCTKR2021007385-appb-I000001
상기 화학식 1의 반복 단위는 내열성면에서 바람직하게는 p-페닐렌 설파이드 구조이다.
상기 화학식 1의 반복 단위는 내열성면에서 중합체의 전체 반복 단위 100 몰%에 대하여 70 몰% 이상, 바람직하게는 90 몰% 이상으로 포함될 수 있다.
상기 PPS는 상기 화학식 1의 반복 단위 이외에 다른 설파이드 결합을 함유하는 반복 단위를 중합체의 전체 반복 단위 100 몰%에 대하여 30 몰% 미만의 양으로 추가로 포함할 수 있다.
추가 가능한 반복 단위로는 하기 화학식 2-1 내지 2-7의 반복 단위 중 하나 이상을 예로 들 수 있다.
[화학식 2-1]
Figure PCTKR2021007385-appb-I000002
[화학식 2-2]
Figure PCTKR2021007385-appb-I000003
[화학식 2-3]
Figure PCTKR2021007385-appb-I000004
[화학식 2-4]
Figure PCTKR2021007385-appb-I000005
[화학식 2-5]
Figure PCTKR2021007385-appb-I000006
[화학식 2-6]
Figure PCTKR2021007385-appb-I000007
[화학식 2-7]
Figure PCTKR2021007385-appb-I000008
상기 PPS는 상기 화학식 1의 반복 단위로만 구성되는 호모 중합체이거나, 상기 화학식 1의 반복단위와, 다른 설파이드 결합을 함유하는 반복 단위들, 예컨대 상기 화학식 2-1 내지 2-7의 반복단위들이 각각 일정하게 반복되는 블록 공중합체, 또는 이들이 랜덤하게 반복되는 랜덤 공중합체일 수 있다.
상기 PPS는 통상의 제조방법으로 제조하여 사용하거나 시판되는 것을 입수하여 사용할 수 있다. 예를 들어, 상기 PPS는 유기 극성 용매 중에서 설파이드화제와 폴리 할로겐화 방향족 화합물을 200℃ 이상 290℃ 미만의 온도 범위 내에서 반응시킴으로써 제조할 수 있다.
상기 폴리 할로겐화 방향족 화합물은 1분자 중에 할로겐 원자를 2개 이상 가지는 방향족 화합물을 의미한다. 폴리 할로겐화 방향족 화합물의 구체예로서는, p-디클로로벤젠, m-디클로로벤젠, o-디클로로벤젠, 1,3,5-트리클로로벤젠, 1,2,4-트리클로로벤젠, 1,2,4,5-테트라클로로벤젠, 헥사클로로벤젠, 2,5-디클로로톨루엔, 2,5-디클로로-p-크실렌, 1,4-디브로모벤젠, 1,4-디요오드 벤젠, 1-메톡시-2,5-디클로로벤젠 등의 폴리 할로겐화 방향족 화합물을 들 수 있고, p-디클로로벤젠이 바람직하다. 또한, 2종 이상의 폴리 할로겐화 방향족 화합물을 조합하여 사용하는 것도 가능하지만, p-디할로겐화 방향족 화합물을 주성분으로 하는 것이 바람직하다.
상기 설파이드화제는 알칼리금속 황화물, 알칼리금속 수황화물, 및/또는 황화수소를 들 수 있다. 상기 알칼리금속 황화물의 구체예로서는, 예를 들면, 황화리튬, 황화나트륨, 황화칼륨, 황화루비듐, 황화세슘 및 이들 2종 이상의 혼합물을 들 수 있고, 그 중에서도 황화나트륨이 바람직하다. 이러한 알칼리금속 황화물은, 수화물 또는 수성 혼합물로서 혹은 무수물로서 이용할 수 있다. 상기 알칼리금속 수황화물의 구체예로서는, 예를 들면 수황화나트륨, 수황화칼륨, 수황화리튬, 수황화루비듐, 수황화세슘 및 이들 2종 이상의 혼합물을 들 수 있고, 그 중에서도 수황화나트륨이 바람직하다. 이러한 알칼리금속 수황화물은, 수화물 또는 수성 혼합물로서 혹은 무수물로서 이용할 수 있다.
상기 유기 극성 용매로는 N-메틸-2-피롤리돈, N-에틸-2-피롤리돈 등의 N-알킬피롤리돈류, N-메틸-ε-카프로락탐 등의 카프로락탐류, 1,3-디메틸-2-이미다졸리디논, N,N-디메틸아세트아미드, N,N-디메틸포름아미드, 헥사메틸 인산 트리아미드, 디메틸설폰, 테트라메틸렌설폭시드 등으로 대표되는 아프로틱 유기 용매, 및 이들의 혼합물 등을 들 수 있다.
상기 PPS는 산수용액 등에 의한 세정(산세정), 유기 용매 혹은 열수에 의한 처리, 알칼리토금속염을 포함하는 물에 의한 세정, 산무수물, 아민 및/또는 이소시아네이트 관능기 함유 디설피드 화합물 등과 같은 특정 관능기 함유 화합물에 의한 활성화 등과 같은 여러 가지의 처리, 대기 중 가열에 의한 가교/고분자량화, 질소 등의 불활성 가스 분위기 하 또는 감압 하에서의 열처리로부터 선택된 처리 이후에 사용할 수 있다. 또한, 이러한 처리를 여러 차례 반복하거나 다른 처리를 조합하는 것도 가능하다.
상기 절연층은 상기 PPS를 포함하는 PPS 수지 조성물로부터 형성된 PPS 수지 필름일 수 있다.
상기 PPS 수지 조성물은 PPS를 조성물 전체 100 중량%에 대하여 60 중량% 이상의 양으로 포함할 수 있다. 상기 PPS의 함량이 60 중량% 미만이면, 절연층의 기계특성, 내열성, 열융착 특성(금속과의 밀착성), 습기 흡수 치수 안정성, 유전특성 등이 저하될 수 있다.
상기 PPS 수지 조성물은 상기 PPS 이외의 폴리머, 무기 또는 유기의 필러, 윤활제, 착색제 등을 추가로 포함할 수 있다. 상기 PPS 이외의 폴리머로는 폴리에스테르, 액정폴리에스테르, 폴리아미드, 폴리올레핀, 폴리이미드, 폴리아미드이미드, 폴리에테르이미드, 폴리아릴레이트, 변성폴리페닐렌 설파이드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리설폰 등을 예로 들 수 있다.
상기 PPS 수지 조성물의 용융 점도는 1 내지 1500 Pa.s(300℃, 전단 속도 1000/s)의 범위이면 특별히 제한하지 않으나, 바람직하게는 300 Pa.s 이하, 더욱 바람직하게는 200 Pa.s 이하인 것이 필름의 성형, 제막 가공성면에서 좋다.
상기 PPS 수지 조성물로부터 필름을 형성하는 방법으로서 임의의 적절한 성형법을 채용할 수 있다. 그 구체적인 예로는 압출 몰딩법, 사출 몰딩법, 캐스팅법, 블로우 몰딩법, 트랜스퍼성형법 등을 들 수 있다.
상기 PPS 수지 필름은 미연신의 비결정성 필름이거나, 일축 연신된 필름 또는 이축 연신된 필름일 수 있다.
본 발명의 일 실시형태에서, 상기 절연층은 단일층 또는 다층 구조를 가질 수 있다.
상기 절연층은 보이드를 포함하지 않는 보이드 무함유 절연층으로 구성된 단일층이거나, 보이드를 포함하는 보이드 함유 절연층으로 구성된 단일층이거나, 또는 보이드를 포함하지 않는 보이드 무함유 절연층 및 보이드를 포함하는 보이드 함유 절연층이 적층된 다층 구조를 가질 수 있다.
예를 들어, 상기 다층 구조의 절연층은 보이드 무함유 제1 절연층, 상기 보이드 무함유 제1 절연층 상에 적층된 보이드 함유 제2 절연층, 및 상기 보이드 함유 제2 절연층 상에 적층된 보이드 무함유 제3 절연층으로 구성된 3층 구조일 수 있다.
상기 보이드의 크기는 0.1 내지 20㎛, 바람직하게는 1 내지 5㎛일 수 있다. 상기 보이드의 크기가 0.1㎛ 미만이면 유전율을 충분히 낮추기 어렵고, 20㎛ 초과이면 절연층의 기계적 물성이 저하될 수 있다.
상기 보이드의 개수는 10 ㎛² 내에 10개 이내, 예를 들어 1 내지 10개가 바람직하다. 상기 보이드의 개수는 10 ㎛² 내에 10개를 초과하면 절연층의 기계적 물성이 저하될 수 있다.
상기 절연층의 두께는 10 내지 100㎛, 바람직하게는 25 내지 75㎛일 수 있다. 상기 절연층이 다층인 경우 전체 두께가 상기 범위를 만족한다. 상기 절연층의 두께가 10㎛ 미만이면 연성 금속 적층체의 유전율을 저하시키는 효과가 다소 미미하여 FBCB의 신호손실율이 상승할 수 있고, 100㎛ 초과이면 박막화가 어려울 수 있다.
상기 절연층이 보이드 무함유 제1 절연층, 보이드 함유 제2 절연층, 및 보이드 무함유 제3 절연층으로 구성된 3층 구조인 경우, 보이드 무함유 제1 절연층 및 보이드 무함유 제3 절연층의 두께는 각각 2 내지 20㎛이고, 보이드 함유 제2 절연층의 두께는 6 내지 60㎛일 수 있다.
상기 절연층의 15GHz에서의 유전율은 3.3 이하이며, 15GHz에서의 유전정접이 0.0025 이하일 수 있다.
상기 유전율(permittivity)은 전하 사이에 전기장이 작용할 때, 그 전하 사이의 매질이 전기장에 미치는 영향을 나타내는 물리적 단위로서, 매질이 저장할 수 있는 전하량으로 볼 수도 있다.
상기 절연층의 15GHz에서의 유전율은 절연층에 대하여 후술하는 실험예에 기재된 방법에 따라 주파수 15GHz에서 측정한 값이다.
상기 절연층의 15GHz에서의 유전율은 상술한 바와 같이 3.3 이하, 예를 들어 1 초과 3.3 이하일 수 있다. 상기 절연층의 15GHz에서의 유전율이 3.3 초과이면 15GHz와 같이 고주파수 대역에서 신호손실율이 커질 수 있다.
상기 유전정접(dissipation factor, DF)은 진동으로 인한 힘의 손실 비율을 측정하는 단위로서, 일반적으로 탄젠트 델타(tangent δ)로 표기된다.
상기 절연층의 15GHz에서의 유전정접은 절연층에 대하여 후술하는 실험예에 기재된 방법에 따라 주파수 15GHz에서 측정한 값이다.
상기 절연층의 15GHz에서의 유전정접은 상술한 바와 같이 0.0025 이하, 예를 들어 0 초과 0.0025 이하일 수 있다. 상기 절연층의 15GHz에서의 유전정접이 0.0025 초과이면 15GHz와 같이 고주파수 대역에서 신호손실율이 커질 수 있다.
본 발명의 일 실시형태에서, 상기 절연층은 하기 수학식 1을 만족할 수 있다.
[수학식 1]
(A+B)×(A/B) ≤ 15,000
상기 식에서, A는 절연층의 길이 방향(MD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기(intensity)이고, B는 절연층의 폭 방향(TD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기이다.
상기 절연층은 상기 수학식 1을 만족함으로써 구리층과의 밀착력이 향상될 수 있으며, 이에 따라 성형성이 개선되고, 가혹 조건, 예를 들어 고온 및/또는 열충격 하에서 내구성을 확보할 수 있으며, 연성 회로 기판 제작시 신호손실율의 증가를 방지할 수 있다.
예를 들어, 상기 절연층은 하기 수학식 2를 만족할 수 있다.
[수학식 2]
5,000 ≤ (A+B)×(A/B) ≤ 15,000
상기 식에서, A는 절연층의 길이 방향(MD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기(intensity)이고, B는 절연층의 폭 방향(TD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기이다.
바람직하게는, 상기 절연층은 하기 수학식 3을 만족할 수 있다.
[수학식 3]
5,000 ≤ (A+B)×(A/B) ≤ 10,000
상기 식에서, A는 절연층의 길이 방향(MD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기(intensity)이고, B는 절연층의 폭 방향(TD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기이다.
상기 절연층이 5,000 > (A+B)×(A/B)인 경우에는 절연층 내 무작위적인 기포(blister) 발생 등으로 인해 외관이 불량하거나 기계적 특성이 저하될 수 있다.
상기 절연층에 대한 라만 피크의 세기를 측정하는 방법은 특별히 한정되지 않지만, 예를 들면 후술하는 실험예에 기재된 방법에 따라 측정할 수 있다.
본 발명의 일 실시형태에서, 상기 구리층은 전해에 의해 형성된 층이거나 압연에 의해 형성된 층일 수 있다.
상기 구리층의 두께는 5 내지 50㎛, 바람직하게는 7 내지 15㎛의 범위일 수 있다. 도 1과 같이 절연층(200)의 양면에 제1 구리층(100)과 제2 구리층(300)이 각각 적층된 경우 각각의 구리층의 두께가 상기한 범위를 만족한다. 상기 구리층의 두께가 상기한 범위이면, 적층체의 제조시에, 구리층의 장력의 조정이 용이하고, 얻어지는 적층체의 굴곡성이 향상되기 때문에 바람직하다. 상기 구리층의 두께가 50㎛ 초과이면 굴곡성이 떨어져 연성 금속 적층체를 제조하기 어렵다.
본 발명의 일 실시형태는 상기 연성 금속 적층체의 제조방법에 관한 것이다.
본 발명의 일 실시형태에 따른 연성 금속 적층체의 제조방법은
폴리페닐렌설파이드(PPS)를 포함하는 절연층, 및 상기 절연층의 적어도 일면에 배치된 구리층을 접합시키는 단계; 및
상기 접합된 적층체를 열처리하는 단계를 포함한다.
상기 절연층의 구성 성분, 층 구조, 두께, 유전율 및 유전정접 등은 상기 연성 금속 적층체에서 설명한 바와 동일하다.
상기 구리층의 구성 성분 및 두께 등은 상기 연성 금속 적층체에서 설명한 바와 동일하다.
상기 절연층과 구리층의 접합은 열 융착 방식에 의해 접합될 수 있으나, 필요에 따라 각 층의 접합을 위해 점착제 또는 접착제층을 더 포함할 수도 있다.
상기 열 융착은 열롤, 더블밸트프레스, 가열판 또는 이들을 병용한 방법을 사용할 수 있다.
상기 접합 온도는 Tm±40℃(Tm은 폴리페닐렌설파이드의 융점임), 바람직하게는 Tm±20℃일 수 있다. 상기 접합 온도가 Tm-40℃ 미만이면 절연층 표면의 용융이 미약하여 구리층과의 앵커링 효과가 감소하게 되고, 이로 인해 구리층과의 밀착력이 저하될 수 있고, Tm+40℃ 초과이면 절연층의 용융이 심화되어 오버플로우(overflow) 현상이 발생할 수 있다.
상기 접합 압력은 3 내지 15MPa, 바람직하게는 6 내지 12MPa일 수 있다. 상기 접합 압력이 3MPa 미만이면 구리층과 절연층의 가압이 충분하지 못하여 밀착력이 저하될 수 있고, 15MPa 초과이면 과압으로 인해 절연층 내부에 크랙이 발생하여 기계적 특성이 저하될 수 있다.
폴리페닐렌설파이드의 융점은 구성 반복 단위의 종류 및 함량에 따라 다소 상이할 수 있으나, 대략 270 내지 290℃일 수 있다.
상기 접합 시간은 1 내지 15분, 바람직하게는 3 내지 12분일 수 있다. 상기 접합 시간이 1분 미만이면 구리층과 절연층의 가압이 충분하지 못하여 밀착력이 저하될 수 있고, 15분 초과이면 공정시간 증가에 의해 생산성이 저하될 수 있다.
상기 적층체는 접합된 후 열처리를 거친다.
상기 열처리는 압력을 가하지 않고, 예를 들어 열 롤, 열풍 가열로, 세라믹 히터, IR 가열로 또는 이들을 병용한 방법을 사용하여 수행할 수 있다.
상기 열처리 온도는 Tm-20℃ 내지 Tm+50℃(Tm은 폴리페닐렌설파이드의 융점임), 바람직하게는 Tm-10℃ 내지 Tm+30℃일 수 있다. 상기 열처리 온도가 Tm-20℃ 미만이면 구리층과 절연층 간의 밀착력이 떨어질 수 있고, Tm+50℃ 초과이면 절연층이 용융되거나 절연층 내에 무작위적인 기포(blister)가 발생할 수 있다.
상기 열처리 시간은 120초 내지 900초, 바람직하게는 300초 내지 600초일 수 있다. 상기 열처리 시간이 120초 미만이면 구리층과 절연층 간의 밀착력이 떨어질 수 있고, 900초 초과이면 절연층 내에 무작위적인 기포(blister)가 발생하거나 생산성이 저하될 수 있다.
상기 열처리하는 단계 이후에 상기 절연층은 하기 수학식 1을 만족할 수 있다.
[수학식 1]
(A+B)×(A/B) ≤ 15,000
상기 식에서, A는 절연층의 길이 방향(MD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기(intensity)이고, B는 절연층의 폭 방향(TD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기이다.
상기 후 열처리를 통해 상기 절연층과 구리층 간의 밀착력이 향상될 수 있으며, 이에 따라 성형성이 개선되고, 가혹 조건, 예를 들어 고온 및/또는 열충격 하에서 내구성을 확보할 수 있으며, 연성 회로 기판 제작시 신호손실율의 증가를 방지할 수 있다.
예를 들어, 상기 열처리하는 단계 이후에 상기 절연층은 하기 수학식 2를 만족할 수 있다.
[수학식 2]
5,000 ≤ (A+B)×(A/B) ≤ 15,000
상기 식에서, A는 절연층의 길이 방향(MD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기(intensity)이고, B는 절연층의 폭 방향(TD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기이다.
바람직하게는, 상기 열처리하는 단계 이후에 상기 절연층은 하기 수학식 3을 만족할 수 있다.
[수학식 3]
5,000 ≤ (A+B)×(A/B) ≤ 10,000
상기 식에서, A는 절연층의 길이 방향(MD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기(intensity)이고, B는 절연층의 폭 방향(TD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기이다.
상기 절연층이 5,000 > (A+B)×(A/B)인 경우에는 절연층 내 무작위적인 기포(blister) 발생 등으로 인해 외관이 불량하거나 기계적 특성이 저하될 수 있다.
본 발명의 일 실시형태는 상기 연성 금속 적층체를 이용한 프린트 배선판에 관한 것이다.
상기 프린트 배선판은 적층체의 적어도 하나의 구리층에 에칭 등을 통해 회로 패턴을 형성하여 제조될 수 있다.
상기 프린트 배선판은 플렉서블 프린트 배선판일 수 있다.
이하, 실시예, 비교예 및 실험예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예, 비교예 및 실험예는 오직 본 발명을 설명하기 위한 것으로, 본 발명의 범위가 이들에 국한되지 않는다는 것은 당업자에게 있어서 자명하다.
실시예 1: 연성 금속 적층체의 제조
단일층 PPS 필름(두께 50㎛, Tm 288℃, 보이드 무함유, 제조사 도레이, 유전율: 3.3, 유전정접: 0.0025, 15GHz)의 상면 및 하면에 동박 기재(두께 12㎛, 제조사 미쓰이, 제품명 SP-2)를 적층한 후, 진공 프레스기(Kitagawa Seiki사, Model-KVHC)에 투입한 후, 온도 275℃(승온 60분, 유지 5분, 하온 60분), 면압 9MPa, 진공도 0.1kPa 하에서 가압하였다. 생성된 적층체를 열풍 오븐기(Espec사, Model-IPHH-202)에 투입한 후, 온도 300℃ 하에서 300초 동안 열처리하여 연성 금속 적층체를 제조하였다.
실시예 2: 연성 금속 적층체의 제조
적층체를 420초 동안 열처리하는 것을 제외하고 상기 실시예 1과 동일한 방법으로 연성 금속 적층체를 제조하였다.
실시예 3: 연성 금속 적층체의 제조
적층체를 480초 동안 열처리하는 것을 제외하고 상기 실시예 1과 동일한 방법으로 연성 금속 적층체를 제조하였다.
실시예 4: 연성 금속 적층체의 제조
단일층 PPS 필름 대신에 다층 PPS 필름을 사용하는 것을 제외하고 상기 실시예 1과 동일한 방법으로 연성 금속 적층체를 제조하였다.
상기 다층 PPS 필름은 도레이 사의 제품으로, 두께 10㎛의 보이드 무함유 제1 절연층, 두께 30㎛의 보이드 함유 제2 절연층, 및 두께 10㎛의 보이드 무함유 제3 절연층으로 구성된 3층 구조이며, Tm은 288℃이고, 유전율과 유전정접은 15GHz에서 각각 3.15 및 0.0019이었다.
비교예 1: 연성 금속 적층체의 제조
생성된 적층체를 후 열처리하지 않는 것을 제외하고 상기 실시예 1과 동일한 방법으로 연성 금속 적층체를 제조하였다.
비교예 2: 연성 금속 적층체의 제조
적층체를 60초 동안 열처리하는 것을 제외하고 상기 실시예 1과 동일한 방법으로 연성 금속 적층체를 제조하였다.
비교예 3: 연성 금속 적층체의 제조
적층체를 1200초 동안 열처리하는 것을 제외하고 상기 실시예 1과 동일한 방법으로 연성 금속 적층체를 제조하였다.
실험예 1:
상기 실시예 및 비교예에서 제조된 연성 금속 적층체의 물성을 하기와 같이 측정하여 그 결과를 표 1에 나타내었다.
(1) 밀착력
연성 금속 적층체를 100mm×10mm 크기로 잘라 평가용 시편을 준비하였다. 절연층과 구리층 간의 밀착력을 UTM(Shimadzu사) 측정기를 이용하여 박리 각도 90˚, 박리 속도 50mm/min의 조건으로 측정하였으며, 3개의 시편을 측정하여 평균값을 구하였다.
(2) 라만 세기(intensity) 측정
라만 분광법(Laser 파장: 532nm, 에너지: 2.33eV)을 이용해 절연층의 MD 방향과 TD 방향의 라만 세기를 측정하였다. 구체적으로, 연성 금속 적층체의 동박을 에칭한 후 절연층의 MD 방향과 그의 면상에서 수직 방향인 TD 방향으로 레이저를 입사하여 산란되는 시그널을 검출하였다. 기준 피크는 벤젠 고리와 황(S)과의 결합에서 나오는 피크인 1076cm-1 부근의 피크로 하였다. 각 방향의 라만 세기(intensity)와 MD/TD 방향의 비율을 3개의 시편에 대하여 측정하여 평균값을 구하였다. 이때 동박의 에칭은 무독성 에칭파우더(SME 교역사) 200g을 물 1 L에 희석하여 90℃로 가열한 후, 연성 금속 적층체 시편을 침전시켜 진행하였다.
라만 세기는 각 방향으로 배향되어 결을 이루는 입자의 밀도(농도)로 해석이 가능하다.
얻어진 각 방향의 라만 세기와 MD/TD 방향의 비율(A/B)을 이용하여 (A+B)×(A/B) 값을 구하였다. 이때, A는 절연층의 길이 방향(MD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기(intensity)이고, B는 절연층의 폭 방향(TD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기이다.
(3) 외관 확인
가압 또는 후열처리 후의 연성 금속 적층체의 동박을 에칭한 후, 육안 및 현미경(광학현미경, 100배율)을 통해 관찰해 하기 평가 기준에 따라 평가하였다. 이때 동박의 에칭은 무독성 에칭파우더(SME 교역사) 200g을 물 1 L에 희석하여 90℃로 가열한 후, 연성 금속 적층체 시편을 침전시켜 진행하였다.
<평가 기준>
○: 직경 50㎛ 이상의 기포가 없음
×: 직경 50㎛ 이상의 기포가 있음
구분 연성 금속 적층체 제조 연성 금속 적층체 평가
접합 열처리 밀착력
(kgf/cm)
라만 세기 MD/TD
(A/B)
(A+B)×(A/B) 외관
압력
(MPa)
온도
(℃)
온도
(℃)
시간
(초)
MD
(A)
TD
(B)
실시예 1 9 275 300 300 0.62 4586 4071 1.13 9696
실시예 2 9 275 300 420 0.93 4201 3882 1.08 8810
실시예 3 9 275 300 480 0.79 3924 2838 1.38 9332
실시예 4 9 275 300 300 0.85 4384 3968 1.10 9187
비교예 1 9 275 미실시 미실시 0.22 7979 5939 1.34 18511
비교예 2 9 275 300 60 0.24 6987 5273 1.33 16183
비교예 3 9 275 300 1200 0.61 2135 1678 1.27 4843 ×
상기 표 1에 나타낸 바와 같이, 폴리페닐렌설파이드(PPS)를 포함하는 절연층과 구리층을 접합시킨 후 소정의 열처리를 거쳐 (A+B)×(A/B) 값이 15,000 이하인 실시예 1 내지 4의 연성 금속 적층체는 열처리를 거치지 않아 (A+B)×(A/B) 값이 15,000 초과인 비교예 1의 연성 금속 적층체 대비 밀착력이 향상되고, 외관이 양호한 것을 확인할 수 있다.
또한, 열처리가 부족한 비교예 2의 연성 금속 적층체는 밀착력이 떨어지고, 열처리가 과도한 비교예 3의 연성 금속 적층체는 밀착력이 저하되면서 기포가 발생하여 외관이 불량한 것으로 나타났다.
실시예 5: 연성 회로 기판의 제조
상기 실시예 1에서 제조한 연성 금속 적층체를 선폭 111㎛, 선로 40mm의 연성 회로 기판으로 가공한 후, 터치센서(CPW transmission line type, 선로 10mm)와 본딩하여 연성 회로 기판을 제조하였다. 이때, 커버레이는 이녹스사(Model: MAH-0X-25HX) 제품을 사용하였다.
실시예 6: 연성 회로 기판의 제조
상기 실시예 1에서 제조한 연성 금속 적층체 대신에 실시예 2에서 제조한 연성 금속 적층체를 사용하는 것을 제외하고 상기 실시예 5와 동일한 방법으로 연성 회로 기판을 제조하였다.
실시예 7: 연성 회로 기판의 제조
상기 실시예 1에서 제조한 연성 금속 적층체 대신에 실시예 3에서 제조한 연성 금속 적층체를 사용하는 것을 제외하고 상기 실시예 5와 동일한 방법으로 연성 회로 기판을 제조하였다.
실시예 8: 연성 회로 기판의 제조
상기 실시예 1에서 제조한 연성 금속 적층체 대신에 실시예 4에서 제조한 연성 금속 적층체를 사용하는 것을 제외하고 상기 실시예 5와 동일한 방법으로 연성 회로 기판을 제조하였다.
비교예 4: 연성 회로 기판의 제조
상기 실시예 1에서 제조한 연성 금속 적층체 대신에 비교예 1에서 제조한 연성 금속 적층체를 사용하는 것을 제외하고 상기 실시예 5와 동일한 방법으로 연성 회로 기판을 제조하였다.
비교예 5: 연성 회로 기판의 제조
상기 실시예 1에서 제조한 연성 금속 적층체 대신에 비교예 2에서 제조한 연성 금속 적층체를 사용하는 것을 제외하고 상기 실시예 5와 동일한 방법으로 연성 회로 기판을 제조하였다.
비교예 6: 연성 회로 기판의 제조
상기 실시예 1에서 제조한 연성 금속 적층체 대신에 비교예 3에서 제조한 연성 금속 적층체를 사용하는 것을 제외하고 상기 실시예 5와 동일한 방법으로 연성 회로 기판을 제조하였다.
비교예 7: 연성 회로 기판의 제조
PPS 필름 대신에 개질 폴리이미드(modified polyimide, MPI) 필름을 사용한 연성 금속 적층체(이녹스 사)를 사용하는 것을 제외하고 상기 실시예 5와 동일한 방법으로 연성 회로 기판을 제조하였다.
비교예 8: 연성 회로 기판의 제조
PPS 필름 대신에 액정 폴리머(liquid crystal polymer, LCP) 필름을 사용한 연성 금속 적층체(파나소닉 사)를 사용하는 것을 제외하고 상기 실시예 5와 동일한 방법으로 연성 회로 기판을 제조하였다.
비교예 9: 연성 회로 기판의 제조
PPS 필름 대신에 액정 폴리머(liquid crystal polymer, LCP) 필름을 사용한 연성 금속 적층체(아조텍 사)를 사용하는 것을 제외하고 상기 실시예 5와 동일한 방법으로 연성 회로 기판을 제조하였다.
실험예 2:
상기 실시예 및 비교예에서 제조된 연성 회로 기판의 물성을 하기와 같이 측정하여 그 결과를 표 2에 나타내었다.
(1) 신호손실율
상기 실시예 및 비교예에서 제조된 연성 회로 기판에 대한 신호손실율(S21)을 28.5GHz에서 측정하였다. 신호손실율은 각 샘플 당 3회씩 측정하여 그 평균값을 기재하였다. 이 때, 사용된 신호손실율 측정기기는 VNA(Vector Network Analyzers, Anritsu사, N5224B)이었다.
(2) 내구성
상기 실시예 및 비교예에서 제조된 연성 회로 기판을 150℃에서 1시간 동안 방치시킨 후, 260±5℃ 납조에 10초간 침전시킨 다음, 현미경(광학현미경, 100배율)을 통해 단면부를 관찰하고 하기 평가 기준에 따라 내구성을 평가하였다.
<평가 기준>
○: 들뜸, 층간 박리 및 부풀음 없음
×: 들뜸, 층간 박리 또는 부풀음 있음
신호손실율(dB) 내구성
실시예 5 -2.37
실시예 6 -2.36
실시예 7 -2.34
실시예 8 -2.19
비교예 4 -2.38 ×
비교예 5 -2.39 ×
비교예 6 -2.35 ×
비교예 7 -2.59
비교예 8 -2.31
비교예 9 -2.37
상기 표 2에 나타낸 바와 같이, 폴리페닐렌설파이드(PPS)를 기반으로 하는 실시예 1 내지 4의 연성 금속 적층체를 사용하여 제조한 실시예 5 내지 8의 연성 회로 기판은, 종래 사용하던 MPI 기반의 연성 금속 적층체를 사용하여 제조한 비교예 7의 연성 회로 기판보다 우수한 신호손실율 특성을 보이는 것을 확인할 수 있다.
또한, 실시예 5 내지 8의 연성 회로 기판은, 뛰어난 저유전율 특성을 갖는 것으로 알려진 LCP 기반의 연성 금속 적층체를 사용하여 제조한 비교예 8 및 9의 연성 회로 기판과 동등한 신호손실율 특성을 보이는 것으로 나타났다.
아울러, 보이드 함유층을 갖는 다층 PPS 필름을 사용한 실시예 8의 연성 회로 기판은, 보이드 함유층을 갖지 않는 단일층 PPS 필름을 사용한 실시예 5의 연성 회로 기판 대비 더욱 우수한 신호손실율 특성을 보이는 것을 확인할 수 있다.
따라서, 본 발명에 따라 폴리페닐렌설파이드(PPS)를 포함하는 절연층과 구리층을 접합시킨 후 소정의 열처리를 거친 경우 연성 금속 적층체의 밀착력을 향상시킬 수 있으며, 이와 같이 밀착력이 향상된 PPS 기반의 연성 금속 적층체를 사용한 경우 연성 회로 기판의 내구성을 향상시킬 수 있을 뿐만 아니라 신호손실율을 감소시켜 5G 통신에 유리하게 적용할 수 있음을 알 수 있다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아님은 명백하다. 본 발명이 속한 기술분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
따라서, 본 발명의 실질적인 범위는 첨부된 특허청구범위와 그의 등가물에 의하여 정의된다고 할 것이다.
[부호의 설명]
100: 제1 구리층 200: 절연층
300: 제2 구리층

Claims (14)

  1. 절연층, 및 상기 절연층의 적어도 일면에 구리층이 적층된 연성 금속 적층체로서,
    상기 절연층이 폴리페닐렌설파이드(PPS)를 포함하는 연성 금속 적층체.
  2. 제1항에 있어서, 상기 절연층은 단일층 또는 다층 구조를 가지는 연성 금속 적층체.
  3. 제2항에 있어서, 상기 절연층은 보이드(void)를 포함하지 않는 보이드 무함유 절연층으로 구성된 단일층이거나, 보이드를 포함하는 보이드 함유 절연층으로 구성된 단일층이거나, 또는 보이드를 포함하지 않는 보이드 무함유 절연층 및 보이드를 포함하는 보이드 함유 절연층이 적층된 다층 구조를 가지는 연성 금속 적층체.
  4. 제1항에 있어서, 상기 절연층의 15GHz에서의 유전율은 3.3 이하이며, 15GHz에서의 유전정접이 0.0025 이하인 연성 금속 적층체.
  5. 제1항에 있어서, 상기 절연층이 하기 수학식 1을 만족하는 연성 금속 적층체:
    [수학식 1]
    (A+B)×(A/B) ≤ 15,000
    상기 식에서, A는 절연층의 길이 방향(MD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기(intensity)이고, B는 절연층의 폭 방향(TD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기이다.
  6. 제5항에 있어서, 상기 절연층이 하기 수학식 2를 만족하는 연성 금속 적층체:
    [수학식 2]
    5000 ≤ (A+B)×(A/B) ≤ 15,000
    상기 식에서, A는 절연층의 길이 방향(MD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기(intensity)이고, B는 절연층의 폭 방향(TD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기이다.
  7. 제1항 내지 제6항 중 어느 한 항의 연성 금속 적층체를 이용한 프린트 배선판.
  8. 폴리페닐렌설파이드(PPS)를 포함하는 절연층, 및 상기 절연층의 적어도 일면에 배치된 구리층을 접합시키는 단계; 및
    상기 접합된 적층체를 열처리하는 단계를 포함하는 연성 금속 적층체의 제조방법.
  9. 제8항에 있어서, 상기 절연층은 단일층 또는 다층 구조를 가지는 제조방법.
  10. 제9항에 있어서, 상기 절연층은 보이드(void)를 포함하지 않는 보이드 무함유 절연층으로 구성된 단일층이거나, 보이드를 포함하는 보이드 함유 절연층으로 구성된 단일층이거나, 또는 보이드를 포함하지 않는 보이드 무함유 절연층 및 보이드를 포함하는 보이드 함유 절연층이 적층된 다층 구조를 가지는 제조방법.
  11. 제8항에 있어서, 상기 절연층의 15GHz에서의 유전율은 3.3 이하이며, 15GHz에서의 유전정접이 0.0025 이하인 제조방법.
  12. 제8항에 있어서, 상기 열처리하는 단계 이후에 절연층이 하기 수학식 1을 만족하는 제조방법:
    [수학식 1]
    (A+B)×(A/B) ≤ 15,000
    상기 식에서, A는 절연층의 길이 방향(MD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기(intensity)이고, B는 절연층의 폭 방향(TD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기이다.
  13. 제12항에 있어서, 상기 열처리하는 단계 이후에 절연층이 하기 수학식 2를 만족하는 제조방법:
    [수학식 2]
    5000 ≤ (A+B)×(A/B) ≤ 15,000
    상기 식에서, A는 절연층의 길이 방향(MD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기(intensity)이고, B는 절연층의 폭 방향(TD)에서 측정한 라만 스펙트럼에서 1076cm-1의 라만 피크의 세기이다.
  14. 제8항에 있어서, 상기 열처리는 Tm-10℃ 내지 Tm+30℃(Tm은 폴리페닐렌설파이드의 융점임)의 온도에서 300초 내지 600초 동안 수행되는 제조방법.
PCT/KR2021/007385 2020-06-18 2021-06-14 연성 금속 적층체, 이의 제조방법 및 이를 이용한 프린트 배선판 WO2021256798A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0074220 2020-06-18
KR1020200074219A KR20210156524A (ko) 2020-06-18 2020-06-18 연성 금속 적층체 및 이를 이용한 프린트 배선판
KR10-2020-0074219 2020-06-18
KR1020200074220A KR20210156525A (ko) 2020-06-18 2020-06-18 연성 금속 적층체의 제조방법

Publications (1)

Publication Number Publication Date
WO2021256798A1 true WO2021256798A1 (ko) 2021-12-23

Family

ID=79268893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007385 WO2021256798A1 (ko) 2020-06-18 2021-06-14 연성 금속 적층체, 이의 제조방법 및 이를 이용한 프린트 배선판

Country Status (1)

Country Link
WO (1) WO2021256798A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100013033A (ko) * 2008-07-30 2010-02-09 삼성전자주식회사 도금 층을 구비한 도전성 잉크 및 페이스트 인쇄회로기판및 그 제조 방법
KR101829195B1 (ko) * 2010-05-10 2018-02-14 덴카 주식회사 금속 베이스 기판의 제조방법 및 회로기판의 제조방법
JP2018029187A (ja) * 2017-09-04 2018-02-22 住友化学株式会社 積層板及び金属ベース回路基板
JP6480650B2 (ja) * 2011-09-29 2019-03-13 住友ベークライト株式会社 金属張積層板、プリント配線基板、半導体パッケージ、半導体装置および金属張積層板の製造方法
KR101989826B1 (ko) * 2012-11-28 2019-06-19 주식회사 아모그린텍 인쇄회로기판의 회로패턴 형성방법 및 이에 의해 형성된 회로패턴을 구비하는 인쇄회로기판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100013033A (ko) * 2008-07-30 2010-02-09 삼성전자주식회사 도금 층을 구비한 도전성 잉크 및 페이스트 인쇄회로기판및 그 제조 방법
KR101829195B1 (ko) * 2010-05-10 2018-02-14 덴카 주식회사 금속 베이스 기판의 제조방법 및 회로기판의 제조방법
JP6480650B2 (ja) * 2011-09-29 2019-03-13 住友ベークライト株式会社 金属張積層板、プリント配線基板、半導体パッケージ、半導体装置および金属張積層板の製造方法
KR101989826B1 (ko) * 2012-11-28 2019-06-19 주식회사 아모그린텍 인쇄회로기판의 회로패턴 형성방법 및 이에 의해 형성된 회로패턴을 구비하는 인쇄회로기판
JP2018029187A (ja) * 2017-09-04 2018-02-22 住友化学株式会社 積層板及び金属ベース回路基板

Similar Documents

Publication Publication Date Title
WO2015183056A1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2018056573A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
WO2014168404A1 (ko) 적층체 및 이를 이용하여 제조된 기판을 포함하는 소자
WO2019194389A1 (ko) 연성금속박적층판 제조용 폴리이미드 필름 및 이를 포함하는 연성금속박적층판
WO2019054616A1 (ko) 폴리이미드 공중합체 및 이를 이용한 폴리이미드 필름
WO2019054612A1 (ko) 폴리이미드 전구체 조성물 및 이를 이용한 폴리이미드 필름
WO2017209414A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2018080222A2 (ko) 폴리이미드 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드 필름
WO2019235712A1 (ko) 실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물
WO2020180149A1 (ko) 패키징 기판 및 이를 포함하는 반도체 장치
WO2019194386A1 (ko) 연성금속박적층판 제조용 폴리이미드 필름 및 이를 포함하는 연성금속박적층판
WO2020159174A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2014021635A1 (ko) 코팅층을 포함하는 분리막 및 이를 이용한 전지
WO2015102461A1 (ko) 수지 이중층 부착 동박, 이를 포함하는 다층 인쇄 회로 기판 및 그 제조 방법
WO2020162668A1 (ko) 반도체 패키지용 열경화성 수지 조성물, 프리프레그 및 금속박 적층판
WO2018143588A1 (ko) 가요성 기판 제조용 적층체 및 이를 이용한 가요성 기판의 제조방법
WO2021145664A1 (ko) 회로기판
WO2021256798A1 (ko) 연성 금속 적층체, 이의 제조방법 및 이를 이용한 프린트 배선판
WO2018021747A1 (ko) 폴리이미드 전구체 용액 및 이의 제조방법
WO2015099451A1 (ko) 연성 인쇄회로기판 형성용 절연 수지 시트 및 이의 제조방법, 이를 포함하는 인쇄회로기판
WO2021256869A1 (ko) 회로기판
WO2021040364A1 (ko) 회로기판
WO2020185021A1 (ko) 패키징 기판 및 이를 포함하는 반도체 장치
WO2020204473A1 (ko) 반도체용 패키징 유리기판, 반도체용 패키징 기판 및 반도체 장치
WO2020185023A1 (ko) 패키징 기판 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826267

Country of ref document: EP

Kind code of ref document: A1