WO2014021635A1 - 코팅층을 포함하는 분리막 및 이를 이용한 전지 - Google Patents

코팅층을 포함하는 분리막 및 이를 이용한 전지 Download PDF

Info

Publication number
WO2014021635A1
WO2014021635A1 PCT/KR2013/006894 KR2013006894W WO2014021635A1 WO 2014021635 A1 WO2014021635 A1 WO 2014021635A1 KR 2013006894 W KR2013006894 W KR 2013006894W WO 2014021635 A1 WO2014021635 A1 WO 2014021635A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
substituted
separator
unsubstituted
carbon atoms
Prior art date
Application number
PCT/KR2013/006894
Other languages
English (en)
French (fr)
Inventor
전인식
박진규
박태준
정준호
진목연
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to US14/418,785 priority Critical patent/US20150155542A1/en
Publication of WO2014021635A1 publication Critical patent/WO2014021635A1/ko
Priority to US17/073,664 priority patent/US11814483B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator comprising a coating layer and an electrochemical cell using the same.
  • a separator for an electrochemical cell refers to an interlayer membrane which maintains ionic conductivity while separating an anode and a cathode from each other in a cell, thereby allowing the battery to be charged and discharged.
  • Korean Patent No. 10-0775310 et al. Proposes to form an organic and inorganic mixed coating layer on one side or both sides of a base film of a separator in order to improve the heat resistance of the base film.
  • the problem to be solved by the present invention is to provide a separator having excellent heat resistance and drying processability by utilizing a polyamic acid excellent in solubility in a low boiling point solvent as a coating component of the separator.
  • Another problem to be solved by the present invention is to provide a separator having a low residual amount of the solvent in the coating layer and excellent air permeability and improved heat resistance.
  • Another object of the present invention is to provide an electrochemical cell having excellent thermal stability by using the separator.
  • Another object of the present invention is to provide a separator having improved heat resistance and air permeability while maintaining excellent shutdown function of the polyolefin-based separator.
  • the separator according to an aspect of the present invention relates to a polyolefin-based separator including a coating layer containing polyamic acid.
  • a separator comprising a polyolefin-based film and a coating layer containing polyamic acid on one or both surfaces of the polyolefin-based film, wherein the polyamic acid has the structure of Formula 1 or Formula 2 below It can have
  • R 1 , R 5 , and R 7 are each independently a substituted or unsubstituted aromatic hydrocarbon having 6 to 30 carbon atoms; Substituted or unsubstituted aliphatic hydrocarbons having 2 to 20 carbon atoms; Or a substituted or unsubstituted alicyclic hydrocarbon having 3 to 24 carbon atoms.
  • R 1 , R 5 , and R 7 may be the same or different, respectively.
  • an electrochemical cell including the separator and including a positive electrode, a negative electrode, and an electrolyte.
  • a lithium secondary battery including the separator.
  • the separator of the present invention maintains the shut-down characteristics while improving the melt-down temperature and excellent heat resistance.
  • the separator of the present invention has a small amount of residual solvent in the coating layer of the dried separator to compensate for the weakness of the heat-resistant polyolefin without lowering the air permeability exhibits the effect of strengthening the heat resistance of the separator.
  • the coating composition for a separator of the present invention is excellent in solubility in a low boiling point solvent, it is possible to relax the drying conditions can be simplified the process and cost reduction.
  • the separator of the present invention has a strong resistance to thermal contraction generated when the battery is overheated, and when used in the battery, it has the effect of improving the stability of the battery and extending its life.
  • the polyamic acid used as the coating composition of the present invention has the effect of maintaining the dispersibility of the inorganic particles in the inorganic dispersion to improve the manufacturing processability of the organic material and inorganic mixed coating layer.
  • FIG. 1 is a graph showing a capacity change according to the number of cycles of a battery using a separator according to an embodiment of the present invention.
  • Example 2 is a graph measuring the shutdown temperature of the separator according to Example 1 (Graph B) and Comparative Example 1 (Graph A).
  • FIG 3 is a graph showing the results of TMA measurement of the separator according to Example 1 (graph B) and Comparative Example 1 (graph A).
  • Example 4 is a graph measuring the high-rate discharge characteristics (C-rate) of the separator according to Example 1 and Comparative Example 1.
  • the separator according to an aspect of the present invention includes a coating layer containing a high heat-resistant polyamic acid.
  • the separator according to an aspect of the present invention includes a polyolefin-based base film and a coating layer containing polyamic acid on one or both sides of the polyolefin-based base film, wherein the polyamic acid has a structure of Formula 1 or Formula 2 below It can have
  • R 1 , R 5 , and R 7 are each independently a substituted or unsubstituted aromatic hydrocarbon having 6 to 30 carbon atoms; Substituted or unsubstituted aliphatic hydrocarbons having 2 to 20 carbon atoms; Or a substituted or unsubstituted alicyclic hydrocarbon having 3 to 24 carbon atoms.
  • R 1 , R 5 , and R 7 may be the same or different, respectively.
  • aromatic hydrocarbon having 6 to 30 carbon atoms may be represented by the following Chemical Formula 3.
  • the substituted alkylene or silylene may be substituted once or twice by F, OH, CH 3 , CF 3, and the like.
  • M, l, and o may be each independently 0 or 1. Specifically, when m is 1, when l and o are 0, X 2 and X 3 are a single bond and Ar 2 may be a trivalent substituted or unsubstituted arylene having 6 to 15 carbon atoms, wherein m and l are When 1 and o is 0, X 3 is a single bond, and Ar 3 may be a trivalent substituted or unsubstituted arylene having 6 to 15 carbon atoms.
  • Ar 1 may be a tetravalent substituted or unsubstituted arylene having 6 to 15 carbon atoms, for example, a tetravalent substitution or Unsubstituted phenylene or naphthylene.
  • R 2 , R 6 , and R 8 are each independently substituted or unsubstituted aromatic hydrocarbon having 6 to 30 carbon atoms; Substituted or unsubstituted aliphatic hydrocarbons having 2 to 20 carbon atoms; Substituted or unsubstituted alicyclic hydrocarbon having 3 to 24 carbon atoms; or (Wherein R 3 and R 4 may each independently be alkylene having 1 to 5 carbon atoms, and Ar 5 may be substituted or unsubstituted arylene having 6 to 15 carbon atoms. When Ar 5 is substituted, CH 3 , OH, SH or NH 2 may be substituted once to three times.). R 2 , R 6 , and R 8 may each be the same or different.
  • the substituted or unsubstituted aromatic hydrocarbon having 6 to 30 carbon atoms may be represented by the following Formula 4.
  • the substituted alkylene or silylene may be substituted once or twice by F, OH, CH 3 , CF 3, and the like.
  • P, q and r may be each independently 0 or 1.
  • X 5 and X 6 are single bonds, and Ar 6 and Ar 7 may each independently be substituted or unsubstituted phenylene or naphthylene.
  • X 6 may be a single bond.
  • X 4 to X 6 may be a single bond.
  • X 4 may be in an ortho, meta, or para position with respect to the amine group (-NH-) of Formula 1 or Formula 2. Specifically, it may be in the meta position, solubility may be improved when positioned in the meta position relative to the amine group.
  • n is an integer of 30 to 10000, an integer of 100 to 1000, or an integer of 50 to 500, or an integer of 50 to 300.
  • x may be an integer between 15 and 5000
  • y may be an integer between 15 and 5000
  • x may be an integer between 50 and 500
  • y may be an integer between 50 and 500
  • More specifically, x may be an integer between 25 and 250
  • y may be an integer between 25 and 250.
  • R 1 , R 2 , R 5 , R 6 , R 7 and R 8 are each independently substituted or unsubstituted aromatic having 6 to 18 carbon atoms hydrocarbon; Substituted or unsubstituted alicyclic hydrocarbon having 6 to 24 carbon atoms; Or a substituted or unsubstituted aliphatic hydrocarbon having 2 to 17 carbon atoms, and in the aromatic hydrocarbon of Formula 3 or Formula 4, Ar 1 to Ar 4 or Ar 6 to Ar 9 are each independently substituted or unsubstituted 4 carbon atoms.
  • Arylene from 10 to 10, specifically phenylene or naphthylene.
  • Ar 1 to Ar 4 may not be substituted, Ar 6 to Ar 9 may be each independently unsubstituted or substituted Can be. When any one or more of Ar 6 to Ar 9 is substituted, it may be substituted with CH 3 , CF 3 , OH, F, or the like, for example, may be substituted with CH 3 or CF 3 .
  • the linking group of two or three phenyl groups may be a single bond, C ( ⁇ O), C (CH 3 ) 2 or C (CF 3 ) 2 .
  • two phenyl groups may be linked by the linking group.
  • R 2 , R 6 , and R 8 are substituted or unsubstituted alicyclic hydrocarbons having 4 to 12 carbon atoms, substituted or unsubstituted aliphatic hydrocarbons having 4 to 17 carbon atoms, or substituted or unsubstituted 2 to 4 phenyl groups.
  • the linking group may be C ( ⁇ O), S ( ⁇ O) 2 , or O.
  • two phenyl groups may be linked by the linking group.
  • R One , R 5 silver May be substituted or unsubstituted phenylene or naphthylene
  • the polyamic acid having the structure of Formula 1 or Formula 2 has an advantage of exhibiting proper solubility in a low boiling point solvent (solvent having a boiling point of less than 150 ° C).
  • a low boiling point solvent solvent having a boiling point of less than 150 ° C.
  • the polyamic acid having the structure of Formula 1 or 2 is suitably adjusted to the low boiling point solvent so that it is suitable as a coating composition of the separator.
  • the polyamic acid having the structure of Formula 1 or Formula 2 has excellent heat resistance and solubility in a low boiling point solvent, thereby ensuring heat resistance of the membrane by the polyamic acid itself without performing imidization separately, and at a high temperature. Since imidization of the polyolefin-based substrate is not performed, damage to the polyolefin layer, which is a lower substrate, can be avoided, and a coating layer can be formed on the polyolefin-based substrate. In addition, since the solubility in the low boiling point solvent is excellent, the high temperature drying process under severe conditions for removing the high boiling point solvent is not necessary, so that a coating layer may be formed on the polyolefin substrate.
  • Polyimide has excellent heat resistance, but it does not dissolve in low boiling point solvents and thus has not been practically utilized as a coating component of a separator. Specifically, in the separator including the coating layer, if a large amount of solvent remains in the coating layer after drying, not only the adhesive strength of the separator is lowered, but also the air permeability is lowered, thereby preventing the proper function as the separator. Therefore, when the separator is to be coated by a general coating method (particularly, dip coating), a low boiling point solvent is used as the coating solvent to facilitate drying of the solvent. However, in the case of polyimide, it does not dissolve in the low boiling point solvent, and despite its excellent heat resistance, it is difficult to use it as a conventional separator coating layer.
  • the present invention is to solve the conventional problem by introducing a polyamic acid excellent in heat resistance and easily dissolved in a low boiling point solvent.
  • 'aromatic hydrocarbons having 6 to 30 carbon atoms' as used herein refers to a case in which aromatic hydrocarbons are present alone, or two are joined to each other to form a condensed ring, or two or more aromatic rings are not joined and connected by different linking groups. It includes everything.
  • aromatic hydrocarbons present alone divalent or tetravalent phenylene groups may be mentioned, and as examples of the aromatic hydrocarbons in which two are bonded to each other to form a condensed ring, divalent or tetravalent naphthylene groups may be mentioned. .
  • 'arylene having 6 to 15 carbon atoms' as used herein includes aromatic hydrocarbons having 6 to 15 carbon atoms, in which the aromatic hydrocarbons are present alone or two are bonded to each other to form a condensed ring.
  • Examples of arylene include phenyl Lene or naphthylene group.
  • the arylene herein may be divalent, trivalent or tetravalent.
  • the term 'alicyclic hydrocarbon having 3 to 24 carbon atoms' means a saturated or partially unsaturated hydrocarbon group containing 1 to 3 rings having 3 to 8 carbon atoms per ring.
  • a cyclohexyl, cycloheptyl, cyclohexenyl group, or 1,2,3,4-tetrahydronaphthalene group may be mentioned as the alicyclic hydrocarbon having 6 to 20 carbon atoms.
  • the term 'aliphatic hydrocarbon having 2 to 20 carbon atoms' refers to a divalent or tetravalent saturated or partially unsaturated straight or branched chain hydrocarbon group. Specifically, it may mean a divalent or tetravalent saturated straight or branched hydrocarbon group.
  • the aliphatic hydrocarbon having 2 to 20 carbon atoms include ethyl, butyl, pentyl, hexyl, 1,1-dimethylbutyl, and the like.
  • the group may or may not be substituted several times by F, OH, SH, CH 3 , CF 3 or NH 2, and the like. For example, it may be substituted one to three times by F, OH, SH, CH 3 , CF 3 or NH 2 and the like.
  • R 2 , R 6 , or R 8 is phenylene, or when R 2 , R 6 , or R 8 includes a phenylene group as part thereof, each independently, at ortho, meta, and para positions Can be connected.
  • R 1 , R 5 , and R 7 may be selected from the group consisting of Formulas A1 to A43:
  • R 2 , R 6 , and R 8 may be selected from the group consisting of the following Formulas B1 to B74:
  • the polyamic acid compound according to another embodiment of the present invention may include one or more functional groups selected from the group consisting of sulfone groups, trifluoromethyl groups, alkyl groups, and phenyl ether groups.
  • it may include one or more sulfone groups, trifluoromethyl groups, alkyl groups and / or phenyl ether groups in the molecule, and may include both sulfone groups and trifluoromethyl groups.
  • the solubility in a low boiling point solvent may be further increased when it contains one or more sulfone group trifluoromethyl group, an alkyl group, and / or a phenyl ether group.
  • polyamic acid represented by any one of the following Chemical Formulas 5 to 7 may be used.
  • the polyamic acid having the structure of Chemical Formula 5 has excellent solubility in a low boiling point solvent, and specifically, a weight ratio of acetone as a low boiling point solvent and N, N-dimethyl acetamide (DMAc) as a high boiling point solvent is about 9.5: 0.5 or less, that is, Acetone may exhibit excellent solubility in a solvent composition that is included in a weight ratio of 9.5: 0.5 or less with respect to DMAc. More specifically, acetone may exhibit excellent solubility in a solvent composition in which acetone is included in a weight ratio of 9: 1 or less or in a weight ratio of 8.75: 1.25 or less.
  • DMAc N, N-dimethyl acetamide
  • the polyamic acid having the structure of Chemical Formula 6 has excellent solubility in a low boiling point solvent, and specifically, a weight ratio of acetone, which is a low boiling point solvent, and DMAc, which is a high boiling point solvent, is about 8: 2 or less, that is, acetone is 8: 2 to DMAc. It can exhibit excellent solubility in the solvent composition contained in the weight ratio or less. More specifically, acetone may exhibit excellent solubility in a solvent composition which is included in a weight ratio of 7.5: 2.5 or less with respect to DMAc.
  • the polyamic acid having the structure of Chemical Formula 7 has excellent solubility in a low boiling point solvent, and specifically, a weight ratio of acetone as a low boiling point solvent and DMAc as a high boiling point solvent is about 7.5: 2.5 or less, that is, acetone is 7.5: 2.5 with respect to DMAc. It can exhibit excellent solubility in the solvent composition contained in the weight ratio or less. More specifically, acetone may exhibit excellent solubility in a solvent composition that is included in a weight ratio of 6: 4 to DMAc.
  • a polyamic acid or sulfone group forming a structure in which an amic acid repeating unit (x) containing a phenyl ether group (hereinafter referred to as 'unit') and an amic acid unit (y) including a sulfone group are repeated. It is possible to use a polyamic acid having a structure in which an amic acid unit (x) including but not containing a trifluoromethyl group and an amic acid unit (y) including a sulfone group and a trifluoromethyl group are repeated. Specifically, polyamic acid represented by the following formula (8) or (9) can be used.
  • the ratio of x: y may be 5: 5 to 1: 9. Within this ratio range, there is an advantage that the solubility of the polyamic acid in the low boiling point solvent (eg, acetone) is increased.
  • the low boiling point solvent eg, acetone
  • the polyamic acid having the structure of Formula 8 may exhibit excellent solubility in a solvent composition in which a weight ratio of acetone, which is a low boiling point solvent, and DMAc, which is a high boiling point solvent, is about 8: 2 or less. More specifically, acetone may exhibit excellent solubility in a solvent composition which is included in a weight ratio of 7.5: 2.5 or less with respect to DMAc.
  • the ratio of x: y may be 9: 1 to 7: 3.
  • the polyamic acid within the above ratio range has an advantage of exhibiting sufficiently high solubility in low boiling point solvents without being too high in solubility in electrolyte solution or the like.
  • the polyamic acid having the structure of Formula 9 has excellent solubility in a low boiling point solvent, and specifically, may exhibit excellent solubility in a solvent composition in which a weight ratio of acetone as a low boiling point solvent and DMAc as a high boiling point solvent is 9.5: 0.5 to 5: 5. have.
  • the sulfone group may be a substituent in an ortho-, meta- or para- position with respect to the amine group, and may be, for example, in a meta position.
  • the sulfone group is a substituent in the meta position, there is an advantage that the solubility of the polyamic acid in the low boiling point solvent is increased.
  • Polyamic acid according to embodiments of the present invention may have a weight average molecular weight (Mw) of 50,000 to 100,000.
  • Mw weight average molecular weight
  • solubility in low boiling point solvent may be increased and heat resistance may be improved.
  • the polyamic acid of Chemical Formula 1 may be prepared using a method known to those skilled in the art for reacting an anhydride including R 1 with a diamine including R 2 .
  • the polyamic acid of Chemical Formula 2 may be prepared using a method known to those skilled in the art for reacting an anhydride including R 5 with a diamine including R 6 , an anhydride including R 7 , and a diamine including R 8 .
  • Non-limiting examples of anhydrides comprising R 1 , R 5 or R 7 include pyromellitic dianhydride, 4,4'-hexafluoroisopropylidenediphthalic dianhydride (4,4 '). -(hexafluoroisopropylidene) diphthalic dianhydride), benzophenonetetracarboxylic dianhydride (3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride), carbonyldiphthalic dianhydride (4,4'-Carbonyldiphthalic anhydride), butanetetracarboxylic dianhydride (1,2,3,4-Butanetetracarboxylic dianhydride), oxydiphthalic dianhydride (4,4'-oxydiphthalic dianhydride), biphenyltetracarboxylic dianhydride (3,3 ', 4,4'-biphenyltetracarboxylic dianhydride), non Bi
  • Non-limiting examples of the diamine comprising the R 2 , R 6 or R 8 3,3'-diaminodiphenylsulfone (3,3'-diaminodiphenylsulfone), 4,4'-diaminodiphenylsulfone ( 4,4'-diaminodiphenyl sulfone), 1,6-hexamethylenediamine, 4,4'-oxydianiline, 4,4'-methylenedianiline (4,4 ' -methylenedianiline), 1,3-phenylenediamine, 1,4-phenylenediamine, bisaminomethylphenylhexafluoropropane (2,2-bis (3- amino-4-methylphenyl) hexafluoropropane), meta-xylenediamine, para-xylenediamine, 3-hexafluoroisopropylidenedianiline (3,3 '-(hexafluoroisopropylidene) diani
  • the polyamic acid having the structure of Chemical Formula 1 or 2 has an advantage of exhibiting proper solubility in a low boiling point solvent (solvent having a boiling point of less than 150 ° C).
  • the organic binder component of the membrane coating agent has a low solubility in low boiling point, it is difficult to manufacture a coating agent that can be used for a general coating method. On the contrary, when the solubility in low boiling point is too high, the membrane is dissolved in the electrolyte of the battery. There is a risk that the battery safety is rather reduced.
  • an aspect of the present invention provides a coating composition in which solubility in a low boiling point solvent is appropriately adjusted by using a polyamic acid having the structure of Formula 1 or 2 above.
  • the polyamic acid used in the present invention may be contained in 1 to 30% by weight, more specifically in 1 to 20% by weight, based on the weight of the coating composition, for example 1 to 15% by weight It may be contained as. Within this range, the polyamic acid may sufficiently serve as an organic binder component of the coating agent and may sufficiently impart high heat resistance to the coating composition.
  • the low boiling point solvent used in the present invention means a solvent having a boiling point of less than 150 °C.
  • Non-limiting examples of the low boiling point solvent usable in the present invention include acetone, tetrahydrofuran (THF) and the like. These can be used individually or in mixture of 2 or more types, For example, acetone can be used. Acetone has a boiling point of about 56.5 ° C., which is considerably low, and thus, when acetone is used as a solvent for the coating agent, the coating layer can be easily dried, thereby improving the air permeability of the separator and preventing degradation of physical properties due to residual solvent.
  • a high boiling point solvent may be used together with the low boiling point solvent as a solvent of the coating composition.
  • the high boiling point solvent which can be used by this invention means the solvent whose boiling point is 150 degreeC or more.
  • Non-limiting examples of the high boiling point solvent usable in the present invention include dimethylformamide (DMF), dimethyl sulfoxide (DMSO), dimethylacetamide (DMAc), dimethyl carbonate (DMC) or N-methylpyrrolidone (NMP ), And the like. These can be used individually or in mixture of 2 or more types.
  • the weight ratio (X: Y) of the high boiling point solvent (Y) to the low boiling point solvent (X) may be 9.5: 0.5 to 5: 5, specifically 9.0: It may be 1.0 to 5: 5, and more specifically, it may be contained as 9.0: 1.0 to 6: 4.
  • the polyamic acid is sufficiently dissolved to facilitate the manufacture of the coating agent, but also the drying of the coating layer formed on the base film is easy. That is, there is an advantage in that the solvent remains in a small amount in the dried coating layer of the separator (for example, 500 ppm or less) and does not lower the air permeability of the separator.
  • the content of the total solvent including the low boiling point and the high boiling point solvent may be 20 to 99% by weight, specifically 50 to 95% by weight, and more specifically 70 to 95% by weight based on the weight of the coating composition. .
  • the coating agent may be easily prepared, and the drying process of the coating layer may be performed smoothly.
  • the inorganic particles used in the present invention are not particularly limited and may be inorganic particles commonly used in the art.
  • Non-limiting examples of the inorganic particles usable in the present invention include Al 2 O 3 , SiO 2 , B 2 O 3 , Ga 2 O 3 , TiO 2 , SnO 2 , and the like. These can be used individually or in mixture of 2 or more types.
  • Al 2 O 3 (alumina) can be used as the inorganic particles used in the present invention.
  • the size of the inorganic particles used in the present invention is not particularly limited, but the average particle diameter may be 1 to 2,000 nm, and may also be 100 to 1,000 nm.
  • the inorganic particles in the size range it is possible to prevent the dispersibility and coating processability of the inorganic particles in the coating liquid to be lowered and the thickness of the coating layer is appropriately adjusted to prevent the reduction of mechanical properties and increase of electrical resistance. Can be.
  • the size of the pores generated in the separator is appropriately adjusted, there is an advantage that can lower the probability of the internal short circuit occurs during the charge and discharge of the battery.
  • the inorganic particles may be used in the form of an inorganic dispersion in which it is dispersed in a suitable solvent.
  • the appropriate solvent is not particularly limited and may be a solvent commonly used in the art.
  • Acetone can be used as a suitable solvent for dispersing the inorganic particles, for example.
  • the inorganic dispersion may be prepared by a conventional method without any particular limitation.
  • Al 2 O 3 may be added to acetone in an appropriate amount, and the inorganic dispersion may be milled and dispersed using a bead mill. Dispersions can be prepared.
  • the content of the inorganic particles may be 10 to 40 wt%, and specifically 20 to 30 wt%, based on the weight of the dispersion.
  • the heat dissipation characteristics of the inorganic particles may be sufficiently exhibited, and when the separator is coated using the inorganic particles, heat shrinkage of the separator may be effectively suppressed.
  • the content of the inorganic dispersion may be 10 to 70% by weight, specifically 20 to 60% by weight, more specifically 30 to 50% by weight. It is possible to expect sufficient heat dissipation characteristics by the inorganic particles within the above range, and the content of the organic binder can also be properly adjusted to ensure the adhesive strength of the separator above an appropriate level.
  • the coating composition may further include a binder in addition to the polyamic acid.
  • the binder is polyvinylidene fluoride (PVdF) homopolymer, polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), polymethylmethacrylate (polymethylmethacrylate).
  • the viscosity and adhesion of the coating composition may be improved to help evenly disperse the inorganic particles, and the coating layer having a high adhesive strength may be evenly formed on the base film to increase the stability of the separator.
  • the molecular weight of the polyvinylidene fluoride homopolymer usable in the present invention is not particularly limited, a weight average molecular weight of 1,000,000 g / mol or more may be used, and for example, 1,000,000 to 1,200,000 g / mol may be used. .
  • the adhesion between the coating layer and the polyolefin-based substrate film is enhanced, thereby effectively suppressing shrinkage of the polyolefin-based substrate film due to heat, and the adhesion between the coating layer and the electrode is also improved to improve the adhesion between the anode and the cathode. Short circuit can be prevented.
  • the polyvinylidene fluoride homopolymer within the above molecular weight range, there is an advantage that the polyvinylidene fluoride homopolymer can be smoothly dissolved even with a small amount of DMF to facilitate the drying of the coating layer.
  • the separator when the separator is coated with a coating agent additionally containing polyvinylidene fluoride-hexafluoropropylene copolymer, there is an advantage in that the electrolyte impregnation of the separator is improved, thereby producing a battery having excellent electrical output.
  • the molecular weight of the polyvinylidene fluoride-hexafluoropropylene copolymer usable in the present invention is not particularly limited, but a weight average molecular weight of 800,000 g / mol or less may be used, and for example, 600,000 to 800,000 g / mol Can be used.
  • the content of each of the polyvinylidene fluoride and hexafluoropropylene is not particularly limited, but is based on the total weight of the copolymer.
  • hexafluoropropylene may be contained in an amount of 0.1 to 40 wt%.
  • Method for producing a coating separator according to an aspect of the present invention to apply a coating composition comprising a polyamic acid, a low boiling point solvent and a high boiling point solvent on one or both sides of the polyolefin-based substrate film, and to dry it to form a coating layer It may include.
  • a coating composition comprising a polyamic acid, a low boiling point solvent and a high boiling point solvent, 1 to 30% by weight of polyamic acid and 70 to 99% by weight of the total solvent, based on the total weight of the coating composition Mixing the point solvent and stirring at 10 to 40 ° C. for 30 minutes to 5 hours.
  • the coating composition may further comprise inorganic particles.
  • preparing the coating composition may include mixing the polyamic acid, the low boiling point solvent, the high boiling point solvent and the inorganic particles and stirring at 10 to 40 ° C. for 30 minutes to 5 hours. At this time, the content of the inorganic particles may be 10 to 40% by weight based on the total weight of the coating composition.
  • a coating composition may be prepared by preparing an inorganic dispersion in which the inorganic particles are dispersed in a dispersion medium, and mixing the same with a polymer solution containing a polyamic acid, a low boiling point solvent and a high boiling point solvent.
  • a polymer solution containing a polyamic acid, a low boiling point solvent and a high boiling point solvent.
  • the polyamic acid component and the inorganic particles may each be prepared and mixed in a dissolved or dispersed state in a suitable solvent.
  • a solution obtained by dissolving a polyamic acid, a polyvinylidene fluoride homopolymer, and / or a polyvinylidene fluoride-hexafluoropropylene copolymer in an appropriate solvent, and an inorganic dispersion in which inorganic particles are dispersed, are prepared, respectively.
  • the coating composition can then be prepared by mixing them with a suitable solvent.
  • the coating composition in the form of a mixture is prepared by a sufficiently stirring process using a ball mill, beads mill, or screw mixer. can do.
  • a separator in which one or both surfaces of a polyolefin-based substrate film are coated with the coating composition.
  • the method of coating the polyolefin-based substrate film using the coating agent is not particularly limited, and a method commonly used in the art may be used.
  • Non-limiting examples of the coating method may include a dip coating method, a die coating method, a roll coating method, or a comma coating method. These may be applied alone or in combination of two or more methods.
  • the coating layer of the separator of the present invention may be formed by, for example, a dip coating method.
  • the thickness of the organic and inorganic mixed coating layer of the present invention may be 0.01 to 20 ⁇ m, specifically 1 to 15 ⁇ m. Within the thickness range, it is possible to form a coating layer having a suitable thickness to obtain excellent thermal stability and adhesion, and to prevent the thickness of the entire separator from being too thick to suppress the increase in the internal resistance of the battery.
  • the coating layer may be dried by hot air, hot air, low humidity, vacuum drying, or a method of irradiating far infrared rays or electron beams.
  • the drying temperature is different depending on the type of the solvent, it can be dried at a temperature of approximately 60 to 120 °C.
  • the drying time also varies depending on the type of solvent, but may generally be dried for 1 minute to 1 hour. In embodiments, it may be dried for 1 minute to 30 minutes, or 1 minute to 10 minutes at a temperature of 90 to 120 °C.
  • polyamic acid having excellent solubility in a low boiling point solvent as a coating composition component, the solvent can be effectively removed even in the shorter drying time and lower drying temperature conditions as described above.
  • the residual amount of the low boiling point solvent and the high boiling point solvent in the coating separator may be 500 ppm or less. Specifically, the residual amount of the low boiling point solvent and the high boiling point solvent may be 400 ppm or less. For example, the low boiling point solvent does not remain in the coating layer after drying, and the high boiling point solvent may remain below 500 ppm.
  • the base film used in the separator of the present invention is preferably a polyolefin type.
  • Non-limiting examples of the polyolefin base film include polyethylene base film, polypropylene base film and the like.
  • the secondary battery separator it is preferable to use a substrate film having a shutdown function, and the polyolefin-based substrate film used in the separator of the present invention corresponds to a substrate film having excellent shutdown function.
  • the polyolefin-based substrate film used in the present invention is composed of, for example, a polyethylene single film, a polypropylene single film, a polyethylene / polypropylene double film, a polypropylene / polyethylene / polypropylene triple film, and a polyethylene / polypropylene / polyethylene triple film.
  • a polyethylene single film a polypropylene single film
  • a polyethylene / polypropylene double film a polypropylene / polyethylene / polypropylene triple film
  • a polyethylene / polypropylene / polyethylene triple film can be selected from the group.
  • the polyolefin-based substrate film may have a thickness of 1 to 40 ⁇ m, more specifically 1 to 30 ⁇ m, and more specifically 1 to 20 ⁇ m.
  • a separator having a suitable thickness, thick enough to prevent a short circuit between the positive and negative electrodes of the battery, but not thick enough to increase the internal resistance of the battery.
  • the polyamic acid of the present invention may be present in the form of polyamic acid without imidization in the coating layer.
  • the residual amount of the organic solvent in the dried coating layer of the separator of the present invention may be 500 ppm or less.
  • the residual amount of the organic solvent means the residual amount of the sum of the solvents when both the low boiling point solvent and the high boiling point solvent are used.
  • the residual amount of the solvent in the dried coating layer of the present invention is 500 ppm or less is not a concept containing a value less than 0 numerically, technically means a positive value of 0 to 500 ppm or less.
  • the dried coating layer of the separator of the present invention is after the coating treatment of the coating agent on a polyolefin-based substrate film from 70 °C to 120 °C, specifically 100 °C to 120 °C 1 to 20 minutes, or more specifically 1 to 10 minutes It means a drying step for 1 to 2 minutes, or a coating layer dried for 6 to 48 hours at 10 °C to 30 °C.
  • the residual amount of solvent in the dried coating layer of the separator is 500 ppm or less, a problem occurs when excess solvent remains in the coating layer, that is, the organic binder component does not exhibit sufficient adhesiveness, and the adhesion of the coating layer is deteriorated. Accordingly, there is an advantage in that the thermal contraction of the base film can not be effectively suppressed, and thus, a problem of inhibiting the performance of the battery during charging and discharging of the battery and preventing a short circuit of the electrode when the battery is overheated can be prevented. .
  • the organic solvent remaining in the dried coating layer of the present invention may have a boiling point higher than the melting point of the base film of the present invention.
  • the temperature rise rate is 5 ° C./min (see ASTM E 831). Within this range, the separator does not shrink well even at high temperatures, thereby improving the stability of the separator and the stability of the battery. Therefore, in another aspect of the present invention, a polyolefin-based substrate film; And a coating layer including a polyamic acid formed on one or both surfaces of the base film, and a separation film having a breaking temperature of 0.005 N and a temperature of 5 ° C./min at a temperature of 180 ° C. or higher is provided.
  • the heat shrinkage in the machine direction (Machine Direction, MD) or the right-angle direction (Transverse Direction, TD) after leaving the polyamic acid coated separator of the present invention at 200 ° C. for 1 hour is 20% or less, specifically 10 Or less, more specifically, 5% or less.
  • the heat shrinkage rate may be, for example, 5% or less.
  • the heat shrinkage in the machine direction (Machine Direction, MD) or the perpendicular direction (Transverse Direction, TD) is 15% or less, specifically, 13 It may be% or less, more specifically 10% or less.
  • the heat shrinkage rate may be, for example, 5% or less.
  • the method for measuring the thermal contraction rate of the separator is not particularly limited, it can be used a method commonly used in the art.
  • a non-limiting example of a method of measuring the thermal contraction rate of the separator is as follows: The prepared separator is cut to a size of about 5 cm in width (MD) by about 5 cm in length (TD), which is 200 ° C. chamber. After storing for 1 hour, the shrinkage in the MD direction and the TD direction of the separator can be measured by calculating the heat shrinkage rate.
  • the heat shrinkage rate at 150 ° C. may be performed in the same manner as the above method except that the chamber at 200 ° C. is replaced with a chamber at 150 ° C.
  • the separation membrane of the present invention may have a heat resistance temperature of 200 °C or more.
  • the heat resistance temperature of the separator is 200 ° C. or more, short-circuiting of electrodes due to heat is effectively suppressed, and thus a battery having high thermal stability may be manufactured.
  • the term “heat resistance temperature” means a temperature at which the shrinkage in the transverse (MD) / vertical (TD) direction of the separator is less than 5% when the separator is exposed to a specific temperature for 10 minutes.
  • an electrochemical cell filled with an electrolyte including a polyolefin-based porous separator including the organic and inorganic mixture coating layer, and an anode and a cathode.
  • the kind of the electrochemical cell is not particularly limited, and may be a battery of a kind known in the art.
  • the electrochemical cell of the present invention may be a lithium secondary battery such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
  • a lithium secondary battery such as a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery.
  • the method for producing the electrochemical cell of the present invention is not particularly limited, and a method commonly used in the art may be used.
  • a non-limiting example of a method of manufacturing the electrochemical cell is as follows: A polyolefin crab separator comprising the organic and inorganic mixture coating layer of the present invention is placed between a positive electrode and a negative electrode of a cell, and then filled with an electrolyte solution.
  • the battery can be produced in a manner.
  • the electrode constituting the electrochemical cell of the present invention can be produced in a form in which the electrode active material is bound to the electrode current collector by a method commonly used in the technical field of the present invention.
  • the cathode active material is not particularly limited, and a cathode active material commonly used in the technical field of the present invention may be used.
  • Non-limiting examples of the positive electrode active material include lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron oxide or a lithium composite oxide in combination thereof.
  • the negative electrode active material of the electrode active material used in the present invention is not particularly limited, and a negative electrode active material commonly used in the technical field of the present invention may be used.
  • Non-limiting examples of the negative electrode active material include lithium adsorption materials such as lithium metal or lithium alloy, carbon, petroleum coke, activated carbon, graphite (graphite) or other carbons, and the like. .
  • the electrode current collector used in the present invention is not particularly limited, and an electrode current collector commonly used in the technical field of the present invention may be used.
  • Non-limiting examples of the positive electrode current collector material of the electrode current collector may be a foil made of aluminum, nickel or a combination thereof.
  • Non-limiting examples of the negative electrode current collector material of the electrode current collector may be a foil produced by copper, gold, nickel, copper alloy or a combination thereof.
  • the electrolyte solution used in the present invention is not particularly limited and may be used an electrochemical cell electrolyte solution commonly used in the technical field of the present invention.
  • the electrolyte solution may be one in which a salt having a structure such as A + B ⁇ is dissolved or dissociated in an organic solvent.
  • Non-limiting examples of A + include a cation consisting of an alkali metal cation such as Li + , Na + or K + , or a combination thereof.
  • Non-limiting examples of the organic solvent propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethicone Methoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (NMP), ethylmethyl carbonate (EMC) or gamma butyrolactone (-Butyrolactone).
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • DPC dipropyl carbonate
  • dimethyl sulfoxide acetonitrile
  • dimethicone Methoxyethane diethoxyethane
  • tetrahydrofuran N-methyl-2-pyrrolidone
  • NMP N-methyl-2-pyrrolidone
  • EMC
  • Al 2 O 3 (LS235, Nippon Light Metal) was added to acetone (large gold) at 25% by weight, milled at 25 ° C. for 3 hours using a bead mill, and dispersed. Prepared.
  • N, N-dimethylacetamide (DMAc): acetone 1: 4.8: 0.8: 3.4, and 25 ° C with a power mixer. It was stirred for 2 hours to prepare a coating composition.
  • DMAc N-dimethylacetamide
  • the prepared coating composition was coated on both sides of a polyethylene-based film having a thickness of 12 ⁇ m by a dip coating method, and then dried at room temperature for 24 hours to prepare a separator.
  • DMAc N-dimethyl acetamide
  • Example 1 when preparing the coating composition, using a 4,4'-oxydianiline (4,4'-Oxydianiline) instead of 3,3'- diaminodiphenyl sulfone in a four-neck flask, polyamic acid solution
  • DMAc N-dimethylacetamide
  • acetone 0.9: 2.8: 4.1: 2.2
  • a separator was prepared in the same manner as in Example 1.
  • Example 1 in preparing the coating composition, 0.2 mol of 4,4'-oxydianiline and 3,3'-diaminodiphenyl instead of 0.5 mol of 3,3'-diaminodiphenylsulfone in a four-necked flask.
  • Example 1 and the above, except that 0.3 mol of sulfone was used and the resulting polyamic acid solution: N, N-dimethylacetamide (DMAc): inorganic dispersion: acetone 0.9: 1.5: 4.1: 3.5
  • a separator was prepared in the same manner.
  • Example 1 except that 4,4'-diaminodiphenyl sulfone is used instead of 3,3'-diaminodiphenyl sulfone in the four-necked flask when preparing the coating composition, Example 1 and A separator was prepared in the same manner.
  • DMAc N-dimethylacetamide
  • PVdF homopolymer' N, N- Dimethylacetamide
  • DMAc Dimethylacetamide
  • Acetone 0.5: 0.7: 0.7: 4.1: 4.0
  • the PVdF homopolymer solution was prepared by adding PVdF homopolymer (5130, Solvay) to DMF (coarse gold) at 10 wt% and stirring at 25 ° C. for 4 hours using a stirrer.
  • PVdF-HFP copolymer solution a PVdF-HFP copolymer (21216, Solvay) having a weight average molecular weight of 700,000 g / mol was added to acetone (large gold) at 10% by weight, using a stirrer at 25 ° C. What was prepared by stirring for 4 hours was used.
  • Example 1 in preparing the coating composition, instead of 0.5 mol of pyromellitic dianhydride, 0.45 mol of pyromellitic dianhydride and 0.05 mol of 4,4'-hexafluoro isopropyl diphthalic dianhydride were prepared.
  • the prepared polyamic acid solution: N, N-dimethylacetamide (DMAc): inorganic dispersion: acetone 0.9: 0.3: 4.1: 4.7, except that the mixture was prepared in the same manner as in Example 1 above. .
  • Example 1 when preparing the coating composition, instead of 0.5 mol of pyromellitic dianhydride, 0.35 mol of pyromellitic dianhydride and 0.15 mol of 4,4'-hexafluoro isopropyl diphthalic dianhydride,
  • the prepared polyamic acid solution: N, N-dimethylacetamide (DMAc): inorganic dispersion: acetone 0.9: 0.1: 4.1: 4.7, except that the mixture was prepared in the same manner as in Example 1 above. .
  • DMAc N, N-dimethylacetamide
  • Example 1 in preparing the coating composition, instead of 0.5 mol of pyromellitic dianhydride, 0.3 mol of pyromellitic dianhydride and 0.2 mol of 4,4'-hexafluoro isopropyl diphthalic dianhydride were prepared.
  • Example 1 except for using butanetetracarboxylic dianhydride (1,2,3,4-Butanetetracarboxylic dianhydride) instead of pyromellitic dianhydride when preparing the coating agent, in the same manner as in Example 1 To prepare a separator.
  • butanetetracarboxylic dianhydride (1,2,3,4-Butanetetracarboxylic dianhydride)
  • Example 1 the same method as in Example 1 except for using cyclohexanetetracarboxylic dianhydride (1,2,4,5-Cyclohexanetetracarboxylic Dianhydride) instead of pyromellitic dianhydride when preparing the coating agent By the separation membrane was prepared.
  • cyclohexanetetracarboxylic dianhydride (1,2,4,5-Cyclohexanetetracarboxylic Dianhydride) instead of pyromellitic dianhydride
  • Example 1 except for using carbonyldiphthalic dianhydride (4,4'-Carbonyldiphthalic Anhydride) instead of pyromellitic dianhydride when preparing the coating agent, by the same method as in Example 1 A separator was prepared.
  • carbonyldiphthalic dianhydride (4,4'-Carbonyldiphthalic Anhydride) instead of pyromellitic dianhydride
  • Example 1 4,4'-hexafluoro isopropyl diphthalic dianhydride (4,4'- (hexafluoroisopropylidene) diphthalic anhydride) is used instead of pyromellitic dianhydride when preparing the coating agent, 3, A separator was prepared in the same manner as in Example 1, except that hexadecanediamine (1,16-Hexadecanediamine) was used instead of 3'-diamino diphenyl sulfone. .
  • Example 1 4,4'-hexafluoro isopropyl diphthalic dianhydride (4,4'- (hexafluoroisopropylidene) diphthalic anhydride) is used instead of pyromellitic dianhydride when preparing the coating agent, 3, Separation membrane was prepared in the same manner as in Example 1, except that 1,4-cyclohexyldiamine was used instead of 3'-diamino diphenyl sulfone. .
  • Example 6 when preparing the coating agent, 4,4'-diamino diphenyl sulfone (4,4'-diamino diphenyl) instead of 3,3'-diamino diphenyl sulfone Except for using sulfone), a separator was prepared in the same manner as in Example 6.
  • Example 6 except for using cyclohexanetetracarboxylic dianhydride (1,2,4,5-Cyclohexanetetracarboxylic Dianhydride) instead of pyromellitic dianhydride when preparing the coating agent, A separator was prepared in the same manner.
  • Example 6 When preparing the coating in Example 6, instead of 4,4'-hexafluoroisopropyl diphthalic dianhydride, 4,4'-isopropylidenediphthalic dianhydride (4,4'-isopropylidenediphthalic anhydride) is used Except that, a separator was prepared in the same manner as in Example 6.
  • Comparative Example 1 except for using the PVdF homopolymer solution of Example 7 instead of the PVdF-HFP copolymer solution, a separator was prepared in the same manner as in Comparative Example 1.
  • Table 3 shows the results of measuring the acetone: DMAc ratio which maintains the most transparent state for the low boiling point solvent and the high boiling point solvent of each polyamic acid.
  • the polyamic acid prepared in Examples 1 to 20 has excellent solubility in acetone, a low boiling point solvent, suitable for use as a coating composition of the separator.
  • the polyamic acid having the highest solubility in acetone was the polyamic acid prepared according to Examples 6, 9, 10 and 11, and in comparison, the ratio of 4,4'-hexafluoro isopropyl diphthalic dianhydride was It was confirmed that the solubility of the polyamic acid in acetone increases.
  • each coating layer was measured by using a SEM cross section image of each coating layer and a micro caliper. Then, each of the coating layers were cut to a size of 10 cm in width x 20 cm in length, and the weight was measured with an electronic balance to calculate the coating amount. The measurement results of the thickness and coating amount are shown in Table 5 below.
  • a total of seven samples were prepared by cutting each of the separators prepared according to the Examples and Comparative Examples by 5 cm in width and 5 cm in length. Each sample was stored in a chamber at 150 ° C. and 200 ° C. for 1 hour, and then heat shrinkage was calculated by measuring the shrinkage in the MD and TD directions of each sample. The measurement results of the heat shrinkage are shown in Table 5 below.
  • a total of seven samples were prepared by cutting each of the separators prepared according to the Examples and Comparative Examples into a square shape having a width of 3 cm x 3 cm. Each sample was floated on the surface of the beaker containing the electrolyte solution and the time taken until it was completely wet by the electrolyte solution was measured.
  • the separation membranes of Examples 1 to 20 containing polyamic acid in the coating layer had a smaller degree of shrinkage of the separator due to heat than the Comparative Examples 1 and 2 containing no polyamic acid. It can be confirmed that it is excellent.
  • the separator of the present invention when used in an electrochemical cell, it is determined that the thermal stability of the battery can be improved to extend the life of the battery for a long time.
  • Example 1 which is a separator having a coating layer containing polyamic acid, was formed. Although the heat resistance was improved, the shutdown function was still maintained to ensure the high temperature safety of the separator.
  • the separation membrane of Comparative Example 1 pore shrinkage of the membrane was observed near the shutdown temperature (about 130 ° C.), and the membrane was broken after about 150 ° C.
  • the shrinkage of the separator up to about 191 ° C was hardly observed due to the high temperature safety of the coating layer containing the polyamic acid.
  • the separation temperature of the separator comprising a polyamic acid coating layer was found to be 180 °C or more.
  • High rate discharge characteristics of each separator according to Example 1 and Comparative Example 1 were measured (FIG. 4).
  • the high rate discharge characteristics are 5 hours (0.2C) after 2 hours of charging a battery having a capacity of 850mAh using a charge and discharge tester (TOSCAT-3600, TOYO System Co.LTD), 2 hours after 2 hours (0.5C) ), The capacity change after 1 hour discharge (1C) after 2 hours charge and 30 minutes discharge (2C) after 2 hours charge was measured to observe the capacity change rate.
  • the separator of Example 1 exhibited a significantly higher rate of discharge characteristics than the separator of Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Paints Or Removers (AREA)

Abstract

본 발명은 폴리아믹산이 함유된 코팅층을 포함하는 고내열성 폴리올레핀계 분리막에 관한 것이다. 구체적으로 본 발명은 폴리올레핀계 기재 필름, 및 상기 폴리올레핀계 기재 필름의 일면 또는 양면에 폴리아믹산이 함유된 코팅층을 포함하는 분리막으로서, 상기 폴리아믹산은 설폰기, 트리플루오로메틸기, 알킬기 및 페닐 에테르기로 이루어진 군에서 선택되는 1 종 이상의 작용기를 포함하는 분리막에 관한 것이다. 또한 본 발명은 상기 폴리아믹산 함유 코팅층을 포함하는 분리막을 이용하여 열적 안정성이 향상된 전기 화학 전지에 관한 것이다.

Description

코팅층을 포함하는 분리막 및 이를 이용한 전지
본 발명은 코팅층을 포함하는 분리막 및 이를 이용한 전기 화학 전지에 관한 것이다.
전기 화학 전지용 분리막(separator)은 전지 내에서 양극과 음극을 서로 격리시키면서 이온 전도도를 지속적으로 유지시켜 주어 전지의 충전과 방전이 가능하게 하는 중간막을 의미한다.
최근 전자 기기의 휴대성을 높이기 위한 전기 화학 전지의 경량화 및 소형화 추세와 더불어, 전기 자동차 등에의 사용을 위한 고출력 대용량 전지를 필요로 하는 경향이 있다. 이에, 전지용 분리막의 경우 그 두께를 얇게 하고 중량을 가볍게 하는 것이 요구되면서도 그와 동시에 고용량 전지의 생산을 위하여 열에 의한 형태 안정성이 우수할 것이 요구된다.
특히 분리막의 기재 필름으로 폴리올레핀계를 사용할 경우, 비교적 낮은 온도에서 필름이 멜트 다운(melt down)되는 문제가 있어 이를 보완하고자 기재 필름의 내열성을 향상시키려는 연구가 진행되어 왔다. 대한민국 등록특허 제10-0775310호 등에서는 기재 필름의 내열성을 향상시키기 위하여 분리막의 기재 필름의 일면 또는 양면에 유기물 및 무기물 혼합 코팅층을 형성시킬 것을 제안하고 있다.
한편, 폴리이미드와 같이 내열성이 우수한 유기 바인더를 분리막의 코팅제 성분으로 사용하여 코팅층의 열적 안정성을 향상시키고자 하는 시도가 있었다. 그러나 이와 같이 내열성이 높은 유기 바인더는 저비점 용매에서 용해되지 않는 문제가 있으며, 이는 추후 분리막 코팅 처리 후 용매의 건조 공정이 원활히 진행되지 못하는 문제를 야기하게 된다. 나아가 이는 분리막의 통기도를 저하시킴은 물론, 함께 첨가되는 기타 코팅제 성분들과의 상용성을 떨어뜨려 코팅제로서의 실질적인 활용을 어렵게 한다.
따라서, 고내열성이면서도 저비점 용매에 대한 용해도가 높은 유기 바인더를 코팅제 성분으로 이용하여 분리막에 코팅 처리함으로써 내열성 및 통기도가 우수한 전지용 분리막의 개발이 요구된다.
본 발명이 해결하고자 하는 과제는 저비점 용매에서의 용해도가 우수한 폴리아믹산을 분리막의 코팅제 성분으로 활용하여 내열성 및 건조 공정성이 우수한 분리막을 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는 코팅층 내에 용매의 잔류량이 적어 통기도가 우수하면서도 내열성이 향상된 분리막을 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는 상기 분리막을 이용하여 열적 안정성이 우수한 전기 화학 전지를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는 폴리올레핀계 분리막의 우수한 셧 다운 기능을 유지하면서 내열성 및 통기도가 향상된 분리막을 제공하는 것이다.
본 발명의 일 양태에 따른 분리막은 폴리아믹산이 함유된 코팅층을 포함하는 폴리올레핀계 분리막에 관한 것이다.
구체적으로 본 발명의 일 양태에 따르면, 폴리올레핀계 기재 필름, 및 상기 폴리올레핀계 기재 필름의 일면 또는 양면에 폴리아믹산이 함유된 코팅층을 포함하는 분리막으로서, 상기 폴리아믹산은 하기 화학식 1 또는 화학식 2의 구조를 가질 수 있다.
[화학식 1]
Figure PCTKR2013006894-appb-I000001
[화학식 2]
Figure PCTKR2013006894-appb-I000002
상기 화학식 1 또는 2에서,
R1, R5, 및 R7은, 각각 독립적으로 치환되거나 비치환된 탄소수가 6 내지 30인 방향족 탄화수소; 치환되거나 비치환된 탄소수가 2 내지 20인 지방족 탄화수소; 또는 치환되거나 비치환된 탄소수가 3 내지 24인 지환족 탄화수소일 수 있다. R1, R5, 및 R7는 각각 동일하거나 상이할 수 있다.
본 발명의 또 다른 일 양태에 따르면, 상기의 분리막을 포함하며 양극, 음극 및 전해질을 포함하는 전기 화학 전지를 제공한다.
본 발명의 또 다른 일 양태에 따르면, 상기 분리막을 포함하는 리튬 이차 전지를 제공한다.
본 발명의 분리막은 셧-다운 특성은 그대로 유지되는 한편 멜트-다운 온도는 향상되고 내열성이 우수하다.
또한, 본 발명의 분리막은 건조된 분리막의 코팅층 내 용매 잔류량이 적어 통기도는 저하시키지 않으면서 열에 약한 폴리올레핀의 단점을 보완해주어 분리막의 내열성을 강화하는 효과를 나타낸다.
본 발명의 분리막용 코팅제 조성물은 저비점 용매에 대한 용해도가 우수하며, 건조 조건을 완화할 수 있어 공정의 간소화 및 비용 절감을 꾀할 수 있다.
또한, 본 발명의 분리막은 전지의 과열 시 발생하는 열수축에 대한 저항성이 강하여, 이를 전지에 활용할 경우 전지의 안정성을 향상시키고 수명을 연장시키는 효과를 나타낸다.
또한, 본 발명의 코팅제 조성물로 사용된 폴리아믹산은 무기 분산액 내의 무기 입자의 분산성을 유지시켜주어 유기물 및 무기물 혼합 코팅층의 제조 공정성을 향상시키는 효과를 나타낸다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 아니하며, 다양한 효과들이 본원 명세서 내에 포함되어 있다.
도 1은 본 발명의 일 실시예에 따른 분리막을 이용한 전지의 사이클 수에 따른 용량 변화를 나타낸 그래프이다.
도 2는 실시예 1(그래프 B) 및 비교예 1(그래프 A)에 따른 분리막의 셧 다운 온도를 측정한 그래프이다.
도 3은 실시예 1(그래프 B) 및 비교예 1(그래프 A)에 따른 분리막의 TMA 측정 결과를 나타낸 그래프이다.
도 4는 실시예 1 및 비교예 1에 따른 분리막의 고율 방전 특성 (C-rate)을 측정한 그래프이다.
이하, 본 발명에 대하여 보다 상세히 설명한다. 본원 명세서에 기재되지 않은 내용은 본 발명의 기술 분야 또는 유사 분야에서 숙련된 자이면 충분히 인식하고 유추할 수 있는 것이므로 그 설명을 생략한다.
본 발명의 일 양태에 따른 분리막은 고내열성인 폴리아믹산이 함유된 코팅층을 포함한다. 구체적으로 본 발명의 일 양태에 따른 분리막은, 폴리올레핀계 기재 필름, 및 상기 폴리올레핀계 기재 필름의 일면 또는 양면에 폴리아믹산이 함유된 코팅층을 포함하고, 상기 폴리아믹산은 하기 화학식 1 또는 화학식 2의 구조를 가질 수 있다.
[화학식 1]
Figure PCTKR2013006894-appb-I000003
[화학식 2]
Figure PCTKR2013006894-appb-I000004
상기 화학식 1 또는 2에서,
R1, R5, 및 R7은, 각각 독립적으로 치환되거나 비치환된 탄소수가 6 내지 30인 방향족 탄화수소; 치환되거나 비치환된 탄소수가 2 내지 20인 지방족 탄화수소; 또는 치환되거나 비치환된 탄소수가 3 내지 24인 지환족 탄화수소일 수 있다. R1, R5, 및 R7는 각각 동일하거나 상이할 수 있다.
구체적으로, 상기 탄소수가 6 내지 30인 방향족 탄화수소는 하기 화학식 3으로 표현될 수 있다.
[화학식 3]
Figure PCTKR2013006894-appb-I000005
상기 화학식 3에서, Ar1 내지 Ar4는 각각 독립적으로 비치환되거나 치환된 탄소수 6 내지 15의 아릴렌일 수 있고, Ar1 내지 Ar4는 각각 서로 상이하거나 동일할 수 있고, X1 내지 X3는 서로 독립적으로 단일결합, O, S, C(=O), S(=O)2, C(=O)NH, 비치환되거나 치환된 탄소수 1 내지 10의 알킬렌, 구체적으로 탄소수 1 내지 4의 알킬렌, 또는 치환되거나 비치환된 실리렌(silylene)일 수 있다. 예를 들어, 상기 치환된 알킬렌 또는 실리렌은 F, OH, CH3, CF3 등에 의해 1회 또는 2회 치환될 수 있다.
상기 m, l 및 o는 각각 독립적으로 0 또는 1일 수 있다. 구체적으로, 상기 m은 1이고, l 및 o가 0인 경우 X2 및 X3은 단일결합이고 Ar2는 3가의 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌일 수 있으며, 상기 m 및 l이 1이고, o가 0인 경우, X3이 단일결합이고, Ar3 는 3가의 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌일 수 있다. 상기 m, l 및 o가 모두 0인 경우, X1 내지 X3는 단일결합이고, Ar1은 4가의 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌일 수 있으며, 예를 들어, 4가의 치환 또는 비치환된 페닐렌 또는 나프틸렌일 수 있다.
상기 화학식 1 또는 2에서, R2, R6, 및 R8은, 각각 독립적으로 치환되거나 비치환된 탄소수가 6 내지 30인 방향족 탄화수소; 치환되거나 비치환된 탄소수가 2 내지 20인 지방족 탄화수소; 치환되거나 비치환된 탄소수가 3 내지 24인 지환족 탄화수소; 또는
Figure PCTKR2013006894-appb-I000006
(여기서, R3 및 R4는 각각 독립적으로 탄소수 1 내지 5의 알킬렌일 수 있고, Ar5는 치환되거나 비치환된 탄소수 6 내지 15의 아릴렌일 수 있다. Ar5가 치환되는 경우, CH3, OH, SH 또는 NH2로 1회 내지 3회 치환될 수 있다.)일 수 있다. R2, R6, 및 R8은 각각 동일하거나 상이할 수 있다.
구체적으로, 상기 R2, R6, 및 R8에서, 치환 또는 비치환된 탄소수가 6 내지 30인 방향족 탄화수소는 하기 화학식 4로 표현될 수 있다.
[화학식 4]
Figure PCTKR2013006894-appb-I000007
상기 화학식 4에서, Ar6 내지 Ar9는 각각 독립적으로 탄소수 6 내지 15의 아릴렌일 수 있고, Ar6 내지 Ar9는 각각 서로 상이하거나 동일할 수 있고, X4 내지 X6은 서로 독립적으로 단일결합, O, S, C(=O), S(=O)2, C(=O)NH, 비치환되거나 치환된 탄소수 1 내지 10의 알킬렌, 구체적으로 탄소수 1 내지 4의 알킬렌, 또는 치환되거나 비치환된 실리렌(silylene)일 수 있다. 예를 들어, 상기 치환된 알킬렌 또는 실리렌은 F, OH, CH3, CF3 등에 의해 1회 또는 2회 치환될 수 있다.
상기 p, q 및 r은 각각 독립적으로 0 또는 1일 수 있다. 상기 p는 1이고, q 및 r이 0인 경우, X5 및 X6은 단일결합이고, Ar6 및 Ar7는 각각 독립적으로 치환 또는 비치환된 페닐렌 또는 나프틸렌일 수 있다. 상기 p 및 q가 1이고, r이 0인 경우 X6이 단일결합일 수 있다. 상기 p, q 및 r이 모두 0인 경우, X4 내지 X6은 단일결합일 수 있다.
상기 화학식 4에서 X4은, 상기 화학식 1 또는 화학식 2의 아민기(-NH-)에 대하여 오쏘, 메타, 또는 파라 위치에 올 수 있다. 구체적으로 메타 위치에 있을 수 있으며, 아민기에 대하여 메타 위치에 위치하는 경우 용해도가 향상될 수 있다.
상기 화학식 1에서 n은 30 내지 10000 사이의 정수이며, 100 내지 1000 사이의 정수, 또는 50 내지 500의 정수, 또는 50 내지 300의 정수일 수 있다.
상기 화학식 2에서, x는 15 내지 5000 사이의 정수일 수 있고, y는 15 내지 5000 사이의 정수일 수 있으며, 구체적으로 x가 50 내지 500 사이의 정수일 수 있고, y는 50 내지 500 사이의 정수일 수 있으며, 보다 구체적으로 x가 25 내지 250 사이의 정수일 수 있고, y는 25 내지 250 사이의 정수일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1 또는 2에서 R1, R2, R5, R6, R7 및 R8이, 각각 서로 독립적으로 치환 또는 비치환된 탄소수가 6 내지 18인 방향족 탄화수소; 치환 또는 비치환된 탄소수가 6 내지 24인 지환족 탄화수소; 또는 치환되거나 비치환된 탄소수 2 내지 17의 지방족 탄화수소일 수 있으며, 상기 화학식 3 또는 화학식 4의 방향족 탄화수소에서, Ar1 내지 Ar4 또는 Ar6 내지 Ar9는 각각 독립적으로 치환 또는 비치환된 탄소수 4 내지 10의 아릴렌일 수 있으며, 구체적으로 페닐렌 또는 나프틸렌일 수 있다. 이 때, 화학식 3에서 상기 m, l 및 o가 모두 0이거나, 상기 m은 1이고, l 및 o가 0일 수 있고, 화학식 4에서 상기 p, q 및 r이 모두 1이거나, 상기 p는 1이고, q 및 r이 0일 수 있다.
본 발명의 다른 실시예에 따른 폴리아믹산 화합물은, 상기 화학식 3 또는 화학식 4의 방향족 탄화수소에서, Ar1 내지 Ar4는 치환되지 않을 수 있고, Ar6 내지 Ar9는 각각 독립적으로 비치환되거나 치환될 수 있다. Ar6 내지 Ar9 중 어느 하나 이상이 치환되는 경우, CH3, CF3, OH, 또는 F 등으로 치환될 수 있고, 예를 들어, CH3 또는 CF3로 치환될 수 있다.
본 발명의 또 다른 실시예에 따른 폴리아믹산 화합물은, 상기 화학식 1 또는 화학식 2에서 R1, R5, 및 R7이 치환 또는 비치환된 페닐렌 또는 나프틸렌, 치환 또는 비치환된 탄소수 4 내지 12의 지환족 탄화수소, 탄소수 4 내지 7의 지방족 탄화수소, 또는 치환 또는 비치환된 2개 내지 3개의 페닐기가, 단일 결합, O, S, C(=O), S(=O)2, C(=O)NH, 비치환되거나 치환된 탄소수 1 내지 10의 알킬렌, 치환되거나 비치환된 실리렌(silylene) 등에 의해 연결된 형태일 수 있다. 상기 치환 또는 비치환된 2개 또는 3개의 페닐기는 구체적으로 각각 독립적으로 단일결합; C(=O); S(=O)2; 비치환되거나, CH3 또는 CF3로 1회 또는 2회 치환된 탄소수 1 내지 3의 알킬렌; 또는 비치환되거나, CH3 또는 CF3로 1회 또는 2회 치환된 실리렌으로 연결된 형태일 수 있다. 보다 구체적으로, 상기 2개 또는 3개의 페닐기의 연결기는 단일결합, C(=O), C(CH3)2 또는 C(CF3)2일 수 있다. 또는, 2개의 페닐기가 상기 연결기에 의해 연결된 형태일 수 있다. R2, R6, 및 R8는 치환 또는 비치환된 탄소수 4 내지 12의 지환족 탄화수소, 치환 또는 비치환된 탄소수 4 내지 17의 지방족 탄화수소, 또는 치환 또는 비치환된 2개 내지 4개의 페닐기가, 단일 결합, O, S, C(=O), S(=O)2, C(=O)NH, 비치환되거나 치환된 탄소수 1 내지 10의 알킬렌, 치환되거나 비치환된 실리렌(silylene) 등에 의해 연결된 형태일 수 있다. 상기 치환 또는 비치환된 2개 내지 4개의 페닐기는 구체적으로 서로 독립적으로 단일결합; S(=O)2; O; C(=O); 비치환되거나, CH3 또는 CF3로 1회 또는 2회 치환된 탄소수 1 내지 3의 알킬렌; 또는 비치환되거나, CH3 또는 CF3로 1회 또는 2회 치환된 실리렌으로 연결될 수 있다. 보다 구체적으로, 상기 2개 내지 4개의 페닐기의 연결기는 단일결합, C(=O), S(=O)2, O, C(CH3)2 또는 C(CF3)2일 수 있다. 특히 상기 연결기는 C(=O), S(=O)2, 또는 O일 수 있다. 예를 들어, 2개의 페닐기가 상기 연결기에 의해 연결된 형태일 수 있다.
본 발명의 또 다른 실시예에 따른 폴리아믹산 화합물은, 상기 화학식 1 또는 화학식 2에서 R1, R5 치환 또는 비치환된 페닐렌 또는 나프틸렌일 수 있으며, R2, R6, R7 및 R8는 치환 또는 비치환된 2개 내지 4개의 페닐기가, 단일 결합, O, S, C(=O), S(=O)2, C(=O)NH, 비치환되거나 치환된 탄소수 1 내지 10의 알킬렌, 치환되거나 비치환된 실리렌(silylene) 등에 의해 연결된 형태일 수 있다.
상기 화학식 1 또는 화학식 2의 구조를 갖는 폴리아믹산은 저비점 용매(비점이 150℃ 미만인 용매)에 대한 적절한 용해도를 나타내는 이점이 있다. 구체적으로, 분리막 코팅제의 유기 바인더 성분이 저비점 용매에 대한 용해도가 낮은 경우에는 일반적인 코팅법에서 사용 가능한 코팅제의 제조 자체가 어렵게 되며, 이와 반대로 저비점에 대한 용해도가 지나치게 높은 경우에는 전지의 전해액에 분리막이 용해될 위험이 있어 오히려 전지 안전성을 떨어뜨리는 문제가 있다. 상기 화학식 1 또는 2의 구조를 갖는 폴리아믹산은 저비점 용매에 대한 용해도가 적절히 조절되어 분리막의 코팅제 조성물로 적합하다. 상기 화학식 1 또는 화학식 2의 구조를 갖는 폴리아믹산은 내열성 및 저비점 용매에서의 용해도가 우수한 특성을 가지며, 이로써 이미드화를 별도로 진행하지 않고 폴리아믹산 자체로 분리막의 내열성을 확보할 수 있을 뿐만 아니라 고온에서의 이미드화를 수행하지 않으므로 하부 기재인 폴리올레핀층의 손상을 피할 수 있어, 폴리올레핀계 기재 상에 코팅층을 형성할 수 있다. 또한, 저비점 용매에서의 용해도가 우수하므로 고비점 용매 제거를 위한 가혹한 조건의 고온 건조 공정이 필요없으므로 폴리올레핀 기재 상에 코팅층의 형성이 가능하다. 폴리이미드는 내열성이 우수한 장점이 있으나 저비점 용매에서는 용해되지 않아 실질적으로 분리막의 코팅제 성분으로서 활용되지 못하여 왔다. 구체적으로, 코팅층을 포함하는 분리막에 있어서 분리막의 코팅층은 건조 후 코팅층 내에 용매가 다량 잔존하게 되면 분리막의 접착력이 떨어질 뿐만 아니라, 통기도가 저하되어 분리막으로서의 기능을 제대로 발휘하지 못하는 문제가 있다. 따라서 일반적인 코팅법(특히, 딥 코팅법(Dip coating))에 의해 분리막을 코팅하고자 하는 경우에는 용매의 건조를 용이하게 하기 위하여 코팅제 용매로서 비점이 낮은 용매를 사용하고 있었다. 그러나 폴리이미드의 경우 저비점 용매 내에서는 용해되지 않아 그의 우수한 내열성에도 불구하고 종래 분리막 코팅층으로 활용하기 어렵다. 이에 본 발명은 내열성이 우수하고 저비점 용매에서 쉽게 용해되는 폴리아믹산을 도입함으로써 종래의 문제를 해결하고자 한다.
본원에서 사용된 용어 '탄소수가 6 내지 30인 방향족 탄화수소'는 방향족 탄화수소가 단독으로 존재하거나, 2개가 서로 접합되어 축합 고리를 형성하거나 2개 이상의 방향족 고리가 접합되지 않고 다른 연결기에 의해 연결된 경우를 모두 포함한다. 상기 단독으로 존재하는 방향족 탄화수소의 예로는 2가 또는 4가의 페닐렌기가 언급될 수 있고, 2개가 서로 접합하여 축합고리를 형성하는 방향족 탄화수소의 예로는 2가 또는 4가의 나프틸렌기가 언급될 수 있다.
본원에서 사용된 용어 '탄소수가 6 내지 15인 아릴렌'은 방향족 탄화수소가 단독으로 존재하거나, 2개가 서로 접합되어 축합 고리를 형성하는 탄소수 6 내지 15의 방향족 탄화수소를 포함하며, 아릴렌의 예로 페닐렌 또는 나프틸렌기를 들 수 있다. 본원에서 상기 아릴렌은 2가, 3가 또는 4가일 수 있다.
본원에서 사용된 용어 '탄소수가 3 내지 24인 지환족 탄화수소'는 고리마다 3개 내지 8개의 탄소 원자를 갖는 1 내지 3개의 고리를 함유하는 포화되거나 부분적으로 불포화된 탄화수소기를 의미한다. 예를 들어, 탄소수 6 내지 20인 지환족 탄화수소로는 시클로헥실, 시클로헵틸, 시클로헥세닐기, 또는 1,2,3,4-테트라하이드로나프탈렌기가 언급될 수 있다.
본원에서 사용된 용어 '탄소수가 2 내지 20인 지방족 탄화수소'는 2가 혹은 4가의 포화되거나 부분적으로 불포화된 직쇄 또는 분지쇄의 탄화수소기를 의미한다. 구체적으로는 2가 혹은 4가의 포화된 직쇄 또는 분지쇄의 탄화수소기를 의미할 수 있다. 탄소수가 2 내지 20인 지방족 탄화수소의 예로는 에틸, 부틸, 펜틸, 헥실, 1,1-디메틸부틸 등을 들 수 있다.
본원에서 '치환 또는 비치환된'이 사용되는 경우, 치환기에 대해 별도의 언급이 없으면, 해당 기는 F, OH, SH, CH3, CF3 또는 NH2 등에 의해 수회 치환되거나 치환되지 않을 수 있다. 예를 들어, F, OH, SH, CH3, CF3 또는 NH2 등에 의해 1회 내지 3회 치환될 수 있다.
본원에서 R2, R6, 또는 R8이 페닐렌인 경우, 또는 R2, R6, 또는 R8이 페닐렌기를을 그 일부로써 포함하는 경우, 각각 독립적으로, ortho, meta 및 para 위치에 연결될 수 있다.
구체적으로, 상기 화학식 1 및 2에서 R1, R5, 및 R7은 하기 화학식 A1 내지 A43으로 이루어진 군으로부터 선택될 수 있다:
[화학식 A1]
Figure PCTKR2013006894-appb-I000008
;
[화학식 A2]
Figure PCTKR2013006894-appb-I000009
;
[화학식 A3]
Figure PCTKR2013006894-appb-I000010
;
[화학식 A4]
Figure PCTKR2013006894-appb-I000011
;
[화학식 A5]
Figure PCTKR2013006894-appb-I000012
;
[화학식 A6]
Figure PCTKR2013006894-appb-I000013
;
[화학식 A7]
Figure PCTKR2013006894-appb-I000014
;
[화학식 A8]
Figure PCTKR2013006894-appb-I000015
;
[화학식 A9]
Figure PCTKR2013006894-appb-I000016
;
[화학식 A10]
Figure PCTKR2013006894-appb-I000017
;
[화학식 A11]
Figure PCTKR2013006894-appb-I000018
;
[화학식 A12]
Figure PCTKR2013006894-appb-I000019
;
[화학식 A13]
Figure PCTKR2013006894-appb-I000020
;
[화학식 A14]
Figure PCTKR2013006894-appb-I000021
;
[화학식 A15]
Figure PCTKR2013006894-appb-I000022
;
[화학식 A16]
Figure PCTKR2013006894-appb-I000023
;
[화학식 A17]
Figure PCTKR2013006894-appb-I000024
;
[화학식 A18]
Figure PCTKR2013006894-appb-I000025
;
[화학식 A19]
Figure PCTKR2013006894-appb-I000026
;
[화학식 A20]
Figure PCTKR2013006894-appb-I000027
;
[화학식 A21]
Figure PCTKR2013006894-appb-I000028
;
[화학식 A22]
Figure PCTKR2013006894-appb-I000029
;
[화학식 A23]
Figure PCTKR2013006894-appb-I000030
;
[화학식 A24]
Figure PCTKR2013006894-appb-I000031
;
[화학식 A25]
Figure PCTKR2013006894-appb-I000032
;
[화학식 A26]
*
Figure PCTKR2013006894-appb-I000033
;
[화학식 A27]
Figure PCTKR2013006894-appb-I000034
;
[화학식 A28]
Figure PCTKR2013006894-appb-I000035
;
[화학식 A29]
Figure PCTKR2013006894-appb-I000036
;
[화학식 A30]
Figure PCTKR2013006894-appb-I000037
;
[화학식 A31]
Figure PCTKR2013006894-appb-I000038
;
[화학식 A32]
Figure PCTKR2013006894-appb-I000039
;
[화학식 A33]
Figure PCTKR2013006894-appb-I000040
;
[화학식 A34]
*
Figure PCTKR2013006894-appb-I000041
;
[화학식 A35]
Figure PCTKR2013006894-appb-I000042
;
[화학식 A36]
Figure PCTKR2013006894-appb-I000043
;
[화학식 A37]
Figure PCTKR2013006894-appb-I000044
;
[화학식 A38]
Figure PCTKR2013006894-appb-I000045
;
[화학식 A39]
Figure PCTKR2013006894-appb-I000046
;
[화학식 A40]
Figure PCTKR2013006894-appb-I000047
;
[화학식 A41]
Figure PCTKR2013006894-appb-I000048
;
[화학식 A42]
; 및
[화학식 A43]
Figure PCTKR2013006894-appb-I000050
.
구체적으로, 상기 화학식 1 및 2에서 R2, R6, 및 R8는 하기 화학식 B1 내지 B74으로 이루어진 군으로부터 선택될 수 있다:
[화학식 B1]
Figure PCTKR2013006894-appb-I000051
;
[화학식 B2]
Figure PCTKR2013006894-appb-I000052
;
[화학식 B3]
Figure PCTKR2013006894-appb-I000053
;
[화학식 B4]
Figure PCTKR2013006894-appb-I000054
;
[화학식 B5]
Figure PCTKR2013006894-appb-I000055
;
[화학식 B6]
Figure PCTKR2013006894-appb-I000056
;
[화학식 B7]
Figure PCTKR2013006894-appb-I000057
;
[화학식 B8]
Figure PCTKR2013006894-appb-I000058
;
[화학식 B9]
Figure PCTKR2013006894-appb-I000059
;
[화학식 B10]
Figure PCTKR2013006894-appb-I000060
;
[화학식 B11]
Figure PCTKR2013006894-appb-I000061
;
[화학식 B12]
Figure PCTKR2013006894-appb-I000062
;
[화학식 B13]
Figure PCTKR2013006894-appb-I000063
;
[화학식 B14]
Figure PCTKR2013006894-appb-I000064
;
[화학식 B15]
Figure PCTKR2013006894-appb-I000065
;
[화학식 B16]
Figure PCTKR2013006894-appb-I000066
;
[화학식 B17]
Figure PCTKR2013006894-appb-I000067
;
[화학식 B18]
Figure PCTKR2013006894-appb-I000068
;
[화학식 B19]
Figure PCTKR2013006894-appb-I000069
;
[화학식 B20]
Figure PCTKR2013006894-appb-I000070
;
[화학식 B21]
Figure PCTKR2013006894-appb-I000071
;
[화학식 B22]
*
Figure PCTKR2013006894-appb-I000072
;
[화학식 B23]
Figure PCTKR2013006894-appb-I000073
;
[화학식 B24]
Figure PCTKR2013006894-appb-I000074
;
[화학식 B25]
Figure PCTKR2013006894-appb-I000075
;
[화학식 B26]
Figure PCTKR2013006894-appb-I000076
;
[화학식 B27]
Figure PCTKR2013006894-appb-I000077
;
[화학식 B28]
Figure PCTKR2013006894-appb-I000078
;
[화학식 B29]
Figure PCTKR2013006894-appb-I000079
;
[화학식 B30]
Figure PCTKR2013006894-appb-I000080
;
[화학식 B31]
Figure PCTKR2013006894-appb-I000081
;
[화학식 B32]
Figure PCTKR2013006894-appb-I000082
;
[화학식 B33]
Figure PCTKR2013006894-appb-I000083
;
[화학식 B34]
Figure PCTKR2013006894-appb-I000084
;
[화학식 B35]
Figure PCTKR2013006894-appb-I000085
;
[화학식 B36]
Figure PCTKR2013006894-appb-I000086
;
[화학식 B37]
Figure PCTKR2013006894-appb-I000087
;
[화학식 B38]
Figure PCTKR2013006894-appb-I000088
;
[화학식 B39]
Figure PCTKR2013006894-appb-I000089
;
[화학식 B40]
Figure PCTKR2013006894-appb-I000090
;
[화학식 B41]
Figure PCTKR2013006894-appb-I000091
;
[화학식 B42]
Figure PCTKR2013006894-appb-I000092
;
[화학식 B43]
Figure PCTKR2013006894-appb-I000093
;
[화학식 B44]
Figure PCTKR2013006894-appb-I000094
;
[화학식 B45]
Figure PCTKR2013006894-appb-I000095
;
[화학식 B46]
Figure PCTKR2013006894-appb-I000096
;
[화학식 B47]
Figure PCTKR2013006894-appb-I000097
;
[화학식 B48]
Figure PCTKR2013006894-appb-I000098
;
[화학식 B49]
Figure PCTKR2013006894-appb-I000099
;
[화학식 B50]
Figure PCTKR2013006894-appb-I000100
;
[화학식 B51]
Figure PCTKR2013006894-appb-I000101
;
[화학식 B52]
Figure PCTKR2013006894-appb-I000102
;
[화학식 B53]
Figure PCTKR2013006894-appb-I000103
;
[화학식 B54]
Figure PCTKR2013006894-appb-I000104
;
[화학식 B55]
Figure PCTKR2013006894-appb-I000105
;
[화학식 B56]
Figure PCTKR2013006894-appb-I000106
;
[화학식 B57]
Figure PCTKR2013006894-appb-I000107
;
[화학식 B58]
Figure PCTKR2013006894-appb-I000108
;
[화학식 B59]
Figure PCTKR2013006894-appb-I000109
;
[화학식 B60]
Figure PCTKR2013006894-appb-I000110
;
[화학식 B61]
Figure PCTKR2013006894-appb-I000111
;
[화학식 B62]
Figure PCTKR2013006894-appb-I000112
;
[화학식 B63]
Figure PCTKR2013006894-appb-I000113
;
[화학식 B64]
Figure PCTKR2013006894-appb-I000114
;
[화학식 B65]
Figure PCTKR2013006894-appb-I000115
;
[화학식 B66]
Figure PCTKR2013006894-appb-I000116
;
[화학식 B67]
Figure PCTKR2013006894-appb-I000117
;
[화학식 B68]
Figure PCTKR2013006894-appb-I000118
;
[화학식 B69]
Figure PCTKR2013006894-appb-I000119
;
[화학식 B70]
Figure PCTKR2013006894-appb-I000120
;
[화학식 B71]
*
Figure PCTKR2013006894-appb-I000121
;
[화학식 B72]
Figure PCTKR2013006894-appb-I000122
;
[화학식 B73]
Figure PCTKR2013006894-appb-I000123
; 및
[화학식 B74]
Figure PCTKR2013006894-appb-I000124
.
본 발명의 또 다른 실시예에 따른 폴리아믹산 화합물은, 설폰기, 트리플루오로메틸기, 알킬기 및 페닐 에테르기로 이루어진 군에서 선택되는 1 종 이상의 작용기를 포함할 수 있다. 예를 들어, 분자 내 1 개 이상의 설폰기, 트리플루오로메틸기, 알킬기 및/또는 페닐 에테르기를 포함할 수 있으며, 설폰기 및 트리플루오로메틸기를 모두 포함할 수 있다. 폴리아믹산에 있어서, 1 개 이상의 설폰기 트리플루오로메틸기, 알킬기 및/또는 페닐 에테르기를 포함하는 경우에는 저비점 용매에 대한 용해도가 더욱 상승할 수 있다. 구체적으로, 하기 화학식 5 내지 7 중의 어느 하나로 표현되는 폴리아믹산을 사용할 수 있다.
[화학식 5]
Figure PCTKR2013006894-appb-I000125
상기 화학식 5의 구조를 갖는 폴리아믹산은 저비점 용매에 대한 용해도가 우수하며, 구체적으로 저비점 용매인 아세톤과 고비점 용매인 N,N-디메틸 아세트아미드 (DMAc)의 중량비가 약 9.5 : 0.5 이하, 즉 아세톤이 DMAc에 대하여 9.5 : 0.5의 중량비 이하로 포함되는 용매 조성에서 우수한 용해도를 나타낼 수 있다. 보다 구체적으로 아세톤이 DMAc에 대하여 9:1의 중량비 이하 또는 8.75 : 1.25의 중량비 이하로 포함되는 용매 조성에서 우수한 용해도를 나타낼 수 있다.
[화학식 6]
Figure PCTKR2013006894-appb-I000126
상기 화학식 6의 구조를 갖는 폴리아믹산은 저비점 용매에 대한 용해도가 우수하며, 구체적으로 저비점 용매인 아세톤과 고비점 용매인 DMAc의 중량비가 약 8 : 2 이하, 즉 아세톤이 DMAc에 대하여 8 : 2의 중량비 이하로 포함되는 용매 조성에서 우수한 용해도를 나타낼 수 있다. 보다 구체적으로 아세톤이 DMAc에 대하여 7.5 : 2.5의 중량비 이하로 포함되는 용매 조성에서 우수한 용해도를 나타낼 수 있다.
[화학식 7]
Figure PCTKR2013006894-appb-I000127
상기 화학식 7의 구조를 갖는 폴리아믹산은 저비점 용매에 대한 용해도가 우수하며, 구체적으로 저비점 용매인 아세톤과 고비점 용매인 DMAc의 중량비가 약 7.5 : 2.5 이하, 즉 아세톤이 DMAc에 대하여 7.5 : 2.5 의 중량비 이하로 포함되는 용매 조성에서 우수한 용해도를 나타낼 수 있다. 보다 구체적으로 아세톤이 DMAc에 대하여 6 : 4의 중량비 이하로 포함되는 용매 조성에서 우수한 용해도를 나타낼 수 있다.
또한, 페닐 에테르기를 포함하는 아믹산 반복 단위 (repeating unit)(x)(이하, '단위'라 한다)와 설폰기를 포함하는 아믹산 단위(y)가 반복되는 구조를 이루는 폴리아믹산, 또는 설폰기를 포함하나 트리플루오로메틸기를 포함하지 않는 아믹산 단위(x)와 설폰기 및 트리플루오로메틸기를 포함하는 아믹산 단위(y)가 반복되는 구조를 이루는 폴리아믹산을 사용할 수 있다. 구체적으로, 하기 화학식 8 또는 9로 표현되는 폴리아믹산을 사용할 수 있다.
[화학식 8]
Figure PCTKR2013006894-appb-I000128
상기 화학식 8에 있어서, 보다 구체적으로는 상기 x : y의 비가 5 : 5 내지 1 : 9일 수 있다. 상기 비율 범위 내에서, 저비점 용매(예를 들어, 아세톤)에 대한 폴리아믹산의 용해도가 증가하는 이점이 있다.
상기 화학식 8의 구조를 갖는 폴리아믹산은 구체적으로, 저비점 용매인 아세톤과 고비점 용매인 DMAc의 중량비가 약 8 : 2 이하인 용매 조성에서 우수한 용해도를 나타낼 수 있다. 보다 구체적으로 아세톤이 DMAc에 대하여 7.5 : 2.5의 중량비 이하로 포함되는 용매 조성에서 우수한 용해도를 나타낼 수 있다.
[화학식 9]
Figure PCTKR2013006894-appb-I000129
상기 화학식 9에 있어서, 상기 x : y의 비가 9 : 1 내지 7 : 3일 수 있다. 상기 비율 범위 내의 폴리아믹산은 전해액 등에 녹을 정도로 지나치게 용해도가 높지는 않으면서도 저비점 용매에 대하여는 충분히 높은 용해도를 나타내는 이점이 있다. 상기 화학식 9의 구조를 갖는 폴리아믹산은 저비점 용매에 대한 용해도가 우수하며, 구체적으로 저비점 용매인 아세톤과 고비점 용매인 DMAc의 중량비가 9.5:0.5 내지 5:5인 용매 조성에서 우수한 용해도를 나타낼 수 있다.
상기 화학식 5 내지 9에 있어서, 상기 설폰기는 아민기에 대하여 오르토(ortho-), 메타(meta-) 또는 파라(para-) 위치의 치환기일 수 있으며, 예를 들어 메타 위치에 있을 수 있다. 상기 설폰기가 메타 위치의 치환기일 경우, 저비점 용매에 대한 폴리아믹산의 용해도가 증가하는 이점이 있다.
본 발명의 실시예들에 따른 폴리아믹산은 중량 평균 분자량(Mw)이 5만 내지 10만일 수 있다. 상기 범위의 분자량을 갖는 경우 저비점 용매에 대한 용해도가 증가하고 내열성이 향상될 수 있다.
상기 화학식 1의 폴리아믹산은 R1을 포함하는 무수물과 R2를 포함하는 디아민을 반응시키는 당업자에게 알려진 방법을 이용하여 제조될 수 있다. 상기 화학식 2의 폴리아믹산은 R5을 포함하는 무수물과 R6을 포함하는 디아민, R7을 포함하는 무수물과 R8을 포함하는 디아민을 반응시키는 당업자에게 알려진 방법을 이용하여 제조할 수 있다.
상기 R1, R5 또는 R7을 포함하는 무수물의 비제한적인 예로는, 피로멜리트산 이무수물 (pyromellitic dianhydride), 4,4'-헥사플루오로이소프로필리덴디프탈산 이무수물 (4,4'-(hexafluoroisopropylidene)diphthalic dianhydride), 벤조페논테트라카르복시산 이무수물(3,3',4,4'-benzophenonetetracarboxylic dianhydride), 카보닐디프탈릭 이무수물(4,4'-Carbonyldiphthalic Anhydride), 부탄테트라카르복시 이무수물( 1,2,3,4-Butanetetracarboxylic dianhydride), 옥시디프탈산 이무수물(4,4'-oxydiphthalic dianhydride), 비페닐테트라카르복시산 이무수물(3,3',4,4'-biphenyltetracarboxylic dianhydride), 비시클로옥텐테트라카르복시산 이무수물 (bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride), 디페닐설폰테트라카르복시산 이무수물(3,3',4,4'-diphenylsulfonetetracarboxylic dianhydride), 4,4'-이소프로필리덴디프탈릭산 이무수물, 시클로헥산테트라카르복시산 이무수물(1,2,4,5-cyclohexanetetracarboxylic dianhydride), 또는 시클로펜탄테트라카르복시산 이무수물(1,2,3,4-cyclopentanetetracarboxylic dianhydride) 등을 들 수 있다.
상기 R2, R6 또는 R8을 포함하는 디아민의 비제한적인 예로는, 3,3'-디아미노디페닐설폰(3,3'-diaminodiphenylsulfone), 4,4'-디아미노디페닐설폰(4,4'-diaminodiphenyl sulfone), 1,6-헥사메틸렌디아민(hexamethylenediamine), 4,4'-옥시디아닐린(4,4'-oxydianiline), 4,4'-메틸렌디아닐린(4,4'-methylenedianiline), 1,3-페닐렌디아민(1,3-phenylenediamine), 1,4-페닐렌디아민(1,4-phenylenediamine), 비스아미노메틸페닐헥사플루오로프로판(2,2-bis(3-amino-4-methylphenyl)hexafluoropropane), 메타자일렌디아민(meta-xylenediamine), 파라자일렌디아민(para-xylenediamine), 3-헥사플루오로이소프로필리덴디아닐린 (3,3'-(hexafluoroisopropylidene)dianiline), 4-헥사플루오로이소프로필리덴디아닐린(4,4'-(hexafluoroisopropylidene)dianiline), 3-[3-(3-아미노페닐)설포닐페닐]설포닐아닐린, 2-비스트리플루오로메틸벤지딘(2,2'-bis(trifluoromethyl)benzidine), 헥사데칸디아민(1,16-Hexadecanediamine), 시클로헥실디아민(1,4-cyclohexyldiamine), 3-비스트리플루오로메틸벤지딘(3,3'-bis(trifluoromethyl)benzidine), 오쏘-톨리딘(ortho-tolidine), 테트라메틸페닐렌디아민(2,3,5,6-tetramethyl-1,4-phenylenediamine), 디메틸페닐렌디아민(2,5-dimethyl-1,4-phenylenediamine), 디아미노디메틸디페닐메탄(4,4'-diamino-3,3'-dimethyldiphenylmethane) 또는 2,2-비스아미노페녹시페닐헥사플루오로프로판(2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane) 등을 들 수 있다.
상기 화학식 1 또는 2의 구조를 갖는 폴리아믹산은 저비점 용매(비점이 150℃ 미만인 용매)에 대한 적절한 용해도를 나타내는 이점이 있다.
구체적으로, 분리막 코팅제의 유기 바인더 성분이 저비점에 대한 용해도가 낮은 경우에는 일반적인 코팅법에 사용 가능한 코팅제의 제조 자체가 어렵게 되며, 이와 반대로 저비점에 대한 용해도가 지나치게 높은 경우에는 전지의 전해액에 분리막이 용해될 위험이 있어 오히려 전지 안전성을 떨어뜨리는 문제가 있다.
이에 본 발명의 일 양태는 상기 화학식 1 또는 2의 구조를 갖는 폴리아믹산을 사용함으로써 저비점 용매에 대한 용해도가 적절히 조절된 코팅제 조성물을 제공한다.
본 발명에서 사용되는 상기 폴리아믹산은 코팅제 조성물의 중량을 기준으로 1 내지 30 중량%로 함유될 수 있고, 보다 구체적으로는 1 내지 20 중량%로 함유될 수 있으며, 예를 들어 1 내지 15 중량%로 함유될 수 있다. 상기 범위 내에서 폴리아믹산이 코팅제의 유기 바인더 성분으로서 역할을 충분히 수행할 수 있으며 코팅제 조성물에 고내열성을 충분히 부여할 수 있다.
본 발명에서 사용되는 상기 저비점 용매는 비점이 150℃ 미만인 용매를 의미한다. 본 발명에서 사용 가능한 상기 저비점 용매의 비제한적인 예로는 아세톤, 테트라하이드로퓨란(THF) 등을 들 수 있다. 이들은 단독 또는 2 종 이상을 혼합하여 사용할 수 있으며, 예를 들어 아세톤을 사용할 수 있다. 아세톤은 비점이 약 56.5℃로 상당히 낮기 때문에 이를 코팅제의 용매로 사용하는 경우 코팅층의 건조가 용이하게 이루어져 분리막의 통기도가 우수해질 뿐만 아니라 잔류 용매로 인한 물성 저하를 막을 수 있다.
본 발명의 일 양태에 따르면, 코팅제 조성물의 용매로서 상기 저비점 용매에 추가적으로 고비점 용매를 함께 사용할 수 있다.
본 발명에서 사용 가능한 고비점 용매는 비점이 150℃ 이상인 용매를 의미한다. 본 발명에서 사용 가능한 상기 고비점 용매의 비제한적인 예로는 디메틸포름아미드(DMF), 디메틸설폭사이드(DMSO), 디메틸아세트아미드(DMAc), 디메틸카보네이트(DMC) 또는 N-메틸피롤리돈(NMP) 등을 들 수 있다. 이들은 단독 또는 2 종 이상을 혼합하여 사용할 수 있다.
상기 저비점 용매 및 고비점 용매의 함량에 있어서, 상기 저비점 용매(X)에 대한 상기 고비점 용매(Y)의 중량비(X:Y)가 9.5:0.5 내지 5:5일 수 있으며, 구체적으로 9.0:1.0 내지 5:5일 수 있으며, 보다 구체적으로 9.0:1.0 내지 6:4로 함유할 수 있다.
상기 범위 내의 함량비로 저비점 및 고비점 용매를 조절하여 사용하는 경우, 폴리아믹산이 충분히 용해되어 코팅제 제조를 용이하게 하면서도 기재 필름에 형성된 코팅층의 건조 또한 용이하게 이루어지는 이점이 있다. 즉, 분리막의 건조된 코팅층 내에 용매가 적은 양으로 잔존하게 되어(예를 들어, 500 ppm 이하) 분리막의 통기도를 저하시키지 않는 이점이 있다.
코팅제 조성물의 중량을 기준으로 저비점 및 고비점 용매를 포함한 전체 용매의 함량은 20 내지 99 중량%일 수 있고, 구체적으로 50 내지 95 중량%일 수 있으며, 보다 구체적으로 70 내지 95 중량%일 수 있다. 상기 범위의 용매를 함유하는 경우 코팅제의 제조가 용이해지며 코팅층의 건조 공정이 원활히 수행될 수 있다.
본 발명에서 사용되는 무기 입자는 특별히 제한되지 아니하며 당해 기술 분야에서 통상적으로 사용하는 무기 입자를 사용할 수 있다. 본 발명에서 사용 가능한 무기 입자의 비제한적인 예로는 Al2O3, SiO2, B2O3, Ga2O3, TiO2 또는 SnO2 등을 들 수 있다. 이들은 단독 또는 2종 이상을 혼합하여 사용할 수 있다. 본 발명에서 사용되는 무기 입자로는 예를 들어, Al2O3(알루미나)를 사용할 수 있다.
본 발명에서 사용되는 무기 입자의 크기는 특별히 제한되지 아니하나, 평균 입경이 1 내지 2,000 nm일 수 있고, 또한 100 내지 1,000 nm일 수 있다. 상기 크기 범위의 무기 입자를 사용하는 경우, 코팅액 내에서의 무기 입자의 분산성 및 코팅 공정성이 저하되는 것을 방지할 수 있고 코팅층의 두께가 적절히 조절되어 기계적 물성의 저하 및 전기적 저항의 증가를 방지할 수 있다. 또한, 분리막에 생성되는 기공의 크기가 적절히 조절되어 전지의 충방전 시 내부 단락이 일어날 확률을 낮출 수 있는 이점이 있다.
코팅제 조성물의 제조에 있어서 상기 무기 입자는 이를 적절한 용매에 분산시킨 무기 분산액 형태로 이용될 수 있다. 상기 적절한 용매는 특별히 제한되지 아니하며 당해 기술 분야에서 통상적으로 사용하는 용매를 사용할 수 있다. 상기 무기 입자를 분산시키는 적절한 용매로서 예를 들어, 아세톤을 사용할 수 있다.
상기 무기 분산액을 제조하는 방법은 특별한 제한없이 통상적인 방법에 의할 수 있으며, 예를 들어 Al2O3를 아세톤에 적정 함량으로 첨가하고 비즈 밀(Beads mill)을 이용해 밀링하여 분산시키는 방식으로 무기 분산액을 제조할 수 있다.
무기 분산액 제조에 있어서 분산액의 중량을 기준으로 무기 입자의 함량은 10 내지 40 중량%일 수 있고, 구체적으로 20 내지 30 중량%일 수 있다. 상기 범위 내로 무기 입자를 함유하는 경우, 무기 입자의 방열 특성이 충분히 발휘될 수 있으며 이를 이용하여 분리막을 코팅할 경우 분리막의 열수축을 효과적으로 억제할 수 있다.
본 발명의 코팅제 조성물의 중량을 기준으로, 상기 무기 분산액의 함량은 10 내지 70 중량%일 수 있고, 구체적으로 20 내지 60 중량%일 수 있으며, 보다 구체적으로 30 내지 50 중량%일 수 있다. 상기 범위 내에서 무기 입자에 의한 충분한 방열 특성을 기대할 수 있으며, 상대적으로 유기 바인더의 함량 또한 적절히 조절되어 분리막의 접착력을 적정 수준 이상으로 확보할 수 있다.
본 발명의 일 양태에 따르면, 상기 코팅제 조성물에 상기 폴리아믹산 외에 추가적으로 바인더를 더 포함할 수 있다. 상기 바인더는 폴리비닐리덴 플루오라이드 호모폴리머 (Polyvinylidene fluoride(PVdF) homopolymer), 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 코폴리머 (Polyvinylidene fluoride-Hexafluoropropylene copolymer, PVdF-HFP), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드(polyethylene oxide), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트(cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜 (cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스 (cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 및 아크리로니트릴스티렌부타디엔 공중합체 (acrylonitrilestyrene-butadiene copolymer)로 이루어진 군으로부터 선택된 단독 또는 이들의 혼합물일 수 있다.. 구체적으로, 폴리비닐리덴 플루오라이드 호모폴리머 및/또는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 코폴리머를 포함할 수 있다.
폴리비닐리덴 플루오라이드 호모폴리머를 추가로 함유하는 경우 코팅제 조성물의 점도 및 접착력이 향상되어 무기 입자의 고른 분산을 도와주는 것은 물론, 기재 필름에 고접착력의 코팅층이 고르게 형성되어 분리막의 안정성을 높여주는 이점이 있다. 본 발명에서 사용 가능한 폴리비닐리덴 플루오라이드 호모폴리머의 분자량은 특별히 제한되지 아니하나, 중량 평균 분자량이 1,000,000 g/mol 이상인 것을 사용할 수 있으며, 또한 예를 들어 1,000,000 내지 1,200,000 g/mol인 것을 사용할 수 있다. 상기 분자량 범위 내에서 코팅층과 폴리올레핀계 기재 필름 사이의 접착력이 강화되어, 열에 약한 폴리올레핀계 기재 필름이 열에 의해 수축되는 것을 효과적으로 억제할 수 있으며, 이와 더불어 코팅층과 전극 사이의 접착력 또한 향상되어 양극과 음극의 단락을 방지할 수 있다. 또한, 상기 분자량 범위 내의 폴리비닐리덴 플루오라이드 호모폴리머를 사용하는 경우, 적은 양의 DMF로도 폴리비닐리덴 플루오라이드 호모폴리머가 원활히 용해되어 코팅층의 건조를 용이하게 할 수 있는 이점이 있다.
또한, 예를 들어 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 코폴리머를 추가로 함유한 코팅제로 분리막을 코팅하는 경우, 분리막의 전해질 함침성이 향상되어 전기 출력이 우수한 전지를 생산할 수 있는 이점이 있다. 본 발명에서 사용 가능한 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 코폴리머의 분자량은 특별히 제한되지 아니하나, 중량 평균 분자량이 800,000 g/mol 이하인 것을 사용할 수 있으며, 또한 예를 들어 600,000 내지 800,000 g/mol인 것을 사용할 수 있다. 상기 분자량 범위 내의 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 코폴리머를 사용하는 경우, 전해질 함침성을 충분히 향상된 분리막을 제조할 수 있으며 시킬 수 있으며 이를 활용하여 전기 출력이 효율적으로 일어나는 전지를 생산할 수 있는 이점이 있다.
본 발명에서 사용되는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 코폴리머에 있어서, 상기 플리비닐리덴 플루오라이드 및 헥사플루오로프로필렌의 각각의 함량은 특별히 제한되지 아니하나, 상기 코폴리머의 총 중량을 기준으로 헥사플루오로프로필렌이 0.1 내지 40 중량%로 함유될 수 있다.
본 발명의 일 양태에 따른 코팅 분리막의 제조 방법은, 폴리올레핀계 기재 필름의 일면 또는 양면에 폴리아믹산, 저비점 용매 및 고비점 용매를 포함하는 코팅 조성물을 도포하 고, 이를 건조하여 코팅층을 형성하는 것을 포함할 수 있다.
본 발명에서 폴리아믹산, 저비점 용매 및 고비점 용매를 포함하는 코팅 조성물을 제조하는 것은, 코팅 조성물의 전체 중량을 기준으로 1 내지 30 중량%의 폴리아믹산 및 전체 용매 70 내지 99 중량%의 저비점 및 고비점 용매를 혼합하고 10 내지 40℃에서 30분 내지 5시간 동안 교반하는 것을 포함할 수 있다.
상기 코팅 조성물은 무기 입자를 추가로 포함할 수 있다. 따라서, 상기 코팅 조성물을 제조하는 것은 폴리아믹산, 저비점 용매, 고비점 용매 및 무기 입자를 혼합하고 10 내지 40℃에서 30분 내지 5시간 동안 교반하는 것을 포함할 수 있다. 이 때 무기 입자의 함량은 코팅 조성물의 전체 중량을 기준으로 10 내지 40 중량%일 수 있다.
또는, 상기 무기 입자를 분산 매질에 분산시킨 무기 분산액을 제조하고, 이를 폴리아믹산, 저비점 용매 및 고비점 용매를 함유하는 고분자 용액과 혼합하여 코팅 조성물을 제조할 수 있다. 상기와 같이 무기 분산액을 별도로 제조하는 경우 무기입자 및 폴리아믹산의 분산성 및 조액 안정성을 향상시킬 수 있다. 따라서, 다른 양태에서, 본 발명의 코팅제 조성물을 제조함에 있어서, 폴리아믹산 성분 및 무기 입자는 각각 적절한 용매 내에 용해 또는 분산된 상태로 제조되어 혼합될 수 있다.
예를 들어, 폴리아믹산, 폴리비닐리덴 플루오라이드 호모폴리머 및/또는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 코폴리머 각각을 적절한 용매에 용해시킨 용액과, 무기 입자를 분산시킨 무기 분산액을 각각 제조한 다음, 이들을 적절한 용매와 함께 혼합하는 방식으로 코팅제 조성물을 제조할 수 있다.
상기 폴리아믹산 용액, 무기 분산액 및 용매를 혼합한 후 볼 밀(Ball mill), 비즈 밀(Beads mill) 또는 스크류 믹서(Screw mixer) 등을 이용하여 충분히 교반하는 공정을 거쳐 혼합물 형태의 코팅제 조성물을 제조할 수 있다.
본 발명의 또 다른 일 양태에 따르면, 폴리올레핀계 기재 필름의 일면 또는 양면을 상기 코팅제 조성물로 코팅 처리한 분리막을 제공한다.
상기 코팅제를 이용하여 폴리올레핀계 기재 필름을 코팅하는 방법은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 방법을 사용할 수 있다. 상기 코팅 방법의 비제한적인 예로는, 딥(Dip) 코팅법, 다이(Die) 코팅법, 롤(Roll) 코팅법 또는 콤마(Comma) 코팅법 등을 들 수 있다. 이들은 단독 또는 2 가지 이상의 방법을 혼합하여 적용될 수 있다. 본 발명의 분리막의 코팅층은 예를 들어 딥 코팅법에 의해 형성된 것일 수 있다.
본 발명의 유기물 및 무기물 혼합 코팅층의 두께는 0.01 내지 20 ㎛일 수 있으며, 구체적으로 1 내지 15 ㎛일 수 있다. 상기 두께 범위 내에서, 적절한 두께의 코팅층을 형성하여 우수한 열적 안정성 및 접착력을 얻을 수 있으며, 전체 분리막의 두께가 지나치게 두꺼워지는 것을 방지하여 전지의 내부 저항이 증가하는 것을 억제할 수 있다.
본 발명에서 코팅층을 건조하는 것은 온풍, 열풍, 저습풍에 의한 건조나 진공 건조 또는 원적외선이나 전자선 등을 조사하는 방법을 사용할 수 있다. 그리고 건조 온도는 용매의 종류에 따라 차이가 있으나 대체로 60 내지 120℃의 온도에서 건조할 수 있다. 건조 시간 역시 용매의 종류에 따라 차이가 있으나 대체로 1분 내지 1시간 건조할 수 있다. 구체예에서, 90 내지 120 ℃의 온도에서 1분 내지 30분, 또는 1분 내지 10분 건조할 수 있다. 본 발명은 저비점 용매에서의 용해도가 우수한 폴리아믹산을 코팅 조성물 성분으로 사용함으로써 상기와 같이 단축된 건조 시간 및 낮은 건조 온도 조건에서도 용매를 효과적으로 제거할 수 있다.
상기 건조 후에 상기 코팅 분리막 내의 저비점 용매 및 고비점 용매의 잔류량은 500ppm 이하일 수 있다. 구체적으로 저비점 용매 및 고비점 용매의 잔류량은 400ppm 이하일 수 있다. 예를 들어, 저비점 용매는 건조 후에 코팅층 내에 잔류하지 않고, 고비점 용매는 500 ppm 이하로 잔류할 수 있다.
본 발명의 분리막에서 사용되는 기재 필름은 폴리올레핀계가 바람직하다. 폴리올레핀계 기재 필름의 비제한적인 예로는 폴리에틸렌 기재 필름, 폴리프로필렌 기재 필름 등을 들 수 있다.
이차 전지용 분리막의 경우 셧 다운(shut down) 기능이 있는 기재 필름을 사용하는 것이 바람직하며, 본 발명의 분리막에 사용되는 폴리올레핀계 기재 필름은 상기 셧 다운 기능이 우수한 기재 필름에 해당한다.
본 발명에 사용되는 폴리올레핀계 기재 필름은, 예를 들어 폴리에틸렌 단일막, 폴리프로필렌 단일막, 폴리에틸렌/폴리프로필렌 이중막, 폴리프로필렌/폴리에틸렌/폴리프로필렌 삼중막 및 폴리에틸렌/폴리프로필렌/폴리에틸렌 삼중막으로 이루어진 군에서 선택될 수 있다.
상기 폴리올레핀계 기재 필름의 두께는 1 내지 40 ㎛일 수 있고, 보다 구체적으로는 1 내지 30 ㎛일 수 있으며, 더욱 구체적으로는 1 내지 20 ㎛일 수 있다. 상기 두께 범위 내의 기재 필름을 사용하는 경우, 전지의 양극과 음극의 단락을 방지할 수 있을 만큼 충분히 두꺼우면서도 전지의 내부 저항을 증가시킬 만큼 두껍지는 않은, 적절한 두께를 갖는 분리막을 제조할 수 있다.
본 발명의 폴리아믹산은 상기 코팅층 내에서 이미드화하지 않고 폴리아믹산의 형태로 존재할 수 있다.
본 발명의 상기 분리막의 건조된 코팅층 내 유기 용매 잔류량은 500 ppm 이하일 수 있다. 상기 유기 용매 잔류량은 저비점 용매와 고비점 용매를 모두 사용한 경우에서 상기 용매들의 합의 잔류량을 의미한다.
본 발명의 건조된 코팅층 내 상기 용매의 잔류량이 500 ppm 이하라는 것은 수치적으로 0 미만의 값을 포함하는 개념은 아니며, 기술적으로는 0 내지 500 ppm 이하의 양(+)의 값을 의미한다.
본 발명의 상기 분리막의 건조된 코팅층은 폴리올레핀계 기재 필름에 상기 코팅제를 코팅 처리한 후 70℃ 내지 120℃, 구체적으로 100℃ 내지 120℃에서 1 내지 20분, 또는 1 내지 10분 보다 구체적으로는 1 내지 2분 동안의 건조 공정하는 공정, 혹은 10℃ 내지 30℃에서 6시간 내지 48시간 동안 건조된 코팅층을 의미한다.
분리막의 건조된 코팅층 내 용매의 잔류량이 500 ppm 이하인 경우에는, 코팅층 내 과량의 용매가 잔존하는 경우에 발생하는 문제, 즉 유기 바인더 성분이 충분한 접착성을 발휘하지 못하는 문제, 코팅층의 접착력이 저하됨에 따라 기재 필름의 열 수축을 효과적으로 억제할 수 없는 문제, 이에 따라 전지의 충방전 시 전지의 성능을 저해하는 요소로 작용하여 전지의 과열 시 전극 단락을 유발하는 문제 등을 방지할 수 있는 이점이 있다.
본 발명의 상기 건조된 코팅층 내에 잔류하는 유기 용매는 그 비점이 본 발명의 상기 기재 필름의 융점보다 높은 것일 수 있다.
본 발명의 상기 폴리아믹산 코팅된 분리막을 0.005 N의 힘으로 당기면서 승온 속도를 5℃/분으로 하여(ASTM E 831 참조) 분리막이 파단되는 온도를 측정시 파단 온도가 180℃ 이상일 수 있다. 상기 범위이면 분리막이 고온에서도 잘 수축되지 않아 분리막의 안정성 및 전지의 안정성이 개선되는 이점이 있다. 따라서, 본 발명의 또 다른 일 양태에서, 폴리올레핀계 기재 필름; 및 상기 기재 필름의 일면 또는 양면에 형성된 폴리아믹산을 포함하는 코팅층을 포함하고, 0.005 N, 및 5℃/분 승온 온도 조건에서의 파단 온도가 180℃ 이상인 분리막이 제공된다.
본 발명의 상기 폴리아믹산 코팅된 분리막을 200℃에서 1시간 동안 방치한 후의 기계 방향(Machine Direction, MD) 또는 직각 방향(Transverse Direction, TD)으로의 열수축률은, 각각 20% 이하, 구체적으로 10% 이하, 보다 구체적으로는 5% 이하일 수 있다. 상기 열수축률은 예를 들어 5% 이하일 수 있다. 상기 범위 내에서, 전극의 단락을 효과적으로 방지하여 전지의 안전성을 향상시키는 이점이 있다.
본 발명의 상기 폴리아믹산 코팅된 분리막을 150℃에서 1시간 동안 방치한 후의 기계 방향(Machine Direction, MD) 또는 직각 방향(Transverse Direction, TD)으로의 열수축률은, 각각 15% 이하, 구체적으로 13% 이하, 보다 구체적으로는 10% 이하일 수 있다. 상기 열수축률은 예를 들어 5% 이하일 수 있다. 상기 범위 내에서, 전극의 단락을 효과적으로 방지하여 전지의 안전성을 향상시키는 이점이 있다.
상기 분리막의 열수축률을 측정하는 방법은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 방법을 사용할 수 있다.
분리막의 열수축률을 측정하는 방법의 비제한적인 예는 다음과 같다: 제조된 분리막을 가로(MD) 약 5 cm ×세로(TD) 약 5 cm 크기로 제단하고, 이를 200℃의 챔버(chamber)에서 1 시간 동안 보관한 다음, 상기 분리막의 MD 방향 및 TD 방향의 수축 정도를 측정하여 열수축률을 계산하는 방식으로 수행될 수 있다.
150℃에서의 열수축률은 상기 200℃의 챔버(chamber)를 150℃의 챔버(chamber)로 바꾼 것을 제외하고는 상기 방법과 동일한 방식으로 수행될 수 있다.
본 발명의 상기 분리막은 내열 온도가 200℃ 이상일 수 있다. 분리막의 내열 온도가 200℃ 이상인 경우 열에 의한 전극 단락 현상이 효과적으로 억제되어 열에 의한 안전성이 높은 전지를 제조할 수 있다. 본원에서 "내열 온도"란 분리막을 10분 동안 특정 온도에 노출시켰을 때 분리막의 가로(MD)/세로(TD)방향의 수축율이 5% 미만인 온도를 의미한다.
본 발명의 또 다른 일 양태에 따르면, 상기 유기 및 무기 혼합물 코팅층을 포함하는 폴리올레핀계 다공성 분리막 및 양극, 음극을 포함하며 전해질로 채워진 전기 화학 전지를 제공한다.
상기 전기 화학 전지의 종류는 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 알려진 종류의 전지일 수 있다.
본 발명의 상기 전기 화학 전지는 구체적으로는 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등과 같은 리튬 이차 전지일 수 있다.
본 발명의 전기 화학 전지를 제조하는 방법은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 방법을 사용할 수 있다.
상기 전기 화학 전지를 제조하는 방법의 비제한적인 예는 다음과 같다: 본 발명의 상기 유기 및 무기 혼합물 코팅층을 포함하는 폴리올레핀게 분리막을, 전지의 양극과 음극 사이에 위치시킨 후, 이에 전해액을 채우는 방식으로 전지를 제조할 수 있다.
본 발명의 전기 화학 전지를 구성하는 전극은, 본 발명의 기술 분야에서 통상적으로 사용하는 방법에 의해 전극 활물질을 전극 전류집전체에 결착된 형태로 제조할 수 있다.
본 발명에서 사용되는 상기 전극 활물질 중 양극 활물질은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 양극 활물질을 사용할 수 있다.
상기 양극 활물질의 비제한적인 예로는, 리튬 망간 산화물, 리튬 코발트 산화물, 리튬 니켈 산화물, 리튬 철 산화물 또는 이들을 조합한 리튬 복합 산화물 등을 들 수 있다.
본 발명에서 사용되는 상기 전극 활물질 중 음극 활물질은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 음극 활물질을 사용할 수 있다.
상기 음극 활물질의 비제한적인 예로는, 리튬 금속 또는 리튬 합금, 탄소, 석유 코크(petroleum coke), 활성화 탄소(activated carbon), 그라파이트(graphite) 또는 기타 탄소류 등과 같은 리튬 흡착 물질 등을 들 수 있다.
본 발명에서 사용되는 상기 전극 전류집전체는 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 전극 전류집전체를 사용할 수 있다.
상기 전극 전류집전체 중 양극 전류집전체 소재의 비제한적인 예로는, 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등을 들 수 있다.
상기 전극 전류집전체 중 음극 전류집전체 소재의 비제한적인 예로는, 구리, 금, 니켈, 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등을 들 수 있다.
본 발명에서 사용되는 전해액은 특별히 제한되지 아니하며, 본 발명의 기술 분야에서 통상적으로 사용하는 전기 화학 전지용 전해액을 사용할 수 있다.
상기 전해액은 A+ B-와 같은 구조의 염이, 유기 용매에 용해 또는 해리된 것일 수 있다.
상기 A+의 비제한적인 예로는, Li+, Na+ 또는 K+와 같은 알칼리 금속 양이온, 또는 이들의 조합으로 이루어진 양이온을 들 수 있다.
상기 B-의 비제한적인 예로는, PF6 -, BF4 -, Cl-, Br-, I-, ClO4 -, AsF6 -, CH3CO2 -, CF3SO3 -, N(CF3SO2)2 - 또는 C(CF2SO2)3 -와 같은 음이온, 또는 이들의 조합으로 이루어진 음이온을 들 수 있다.
상기 유기 용매의 비제한적인 예로는, 프로필렌 카보네이트(PC), 에틸렌 카보네이트(EC), 디에틸카보네이트(DEC), 디메틸카보네이트(DMC), 디프로필카보네이트(DPC), 디메틸설폭사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 테트라히드로퓨란, N-메틸-2-피롤리돈(NMP), 에틸메틸카보네이트(EMC) 또는 감마 부티롤락톤(-Butyrolactone) 등을 들 수 있다. 이들은 단독 또는 2 종 이상을 혼합하여 사용할 수 있다.
이하, 실시예, 비교예 및 실험예를 기술함으로써 본 발명을 보다 상세히 설명한다. 다만, 하기의 실시예, 비교예 및 실험예는 본 발명의 일 예시에 불과하며, 본 발명의 내용이 이에 한정되는 것으로 해석되어서는 아니된다.
[실시예 1 내지 20] 폴리아믹산을 함유하는 코팅층이 형성된 분리막의 제조
실시예 1
(1) 코팅제 조성물의 제조
교반기, 온도 조절 장치, 질소 가스 주입 장치 및 냉각기가 장착된 4구 플라스크에 질소를 통과시키면서 3,3'-디아미노페닐설폰((3,3'-diamino diphenyl sulfone; DDS) 0.5 mol 및, N,N-디메틸아세트아미드(DMAc)를 넣어 교반시키면서 용해시켰다. 그 다음, 상기 용액에 고체 상태의 피로멜리트산이무수물(pyromellitic dianhydride; PMDA) 0.5 mol을 넣고 격렬하게 교반하였다. 이 때의 고형분 함량은 질량비로 20 중량%이며, 온도는 25℃ 미만으로 유지하면서 24 시간 동안 반응을 수행하여 폴리아믹산 용액을 제조하였다.
무기 분산액을 제조하기 위하여, Al2O3(LS235, 일본경금속)를 아세톤(대정화금)에 25 중량%로 첨가하고, 비즈밀을 이용해서 25℃에서 3 시간 동안 밀링하여 분산시켜 무기 분산액을 제조하였다.
상기 제조된 폴리아믹산 용액 및 무기 분산액을, 폴리아믹산 용액 : 무기 분산액 : N,N-디메틸아세트아미드(DMAc) : 아세톤 = 1 : 4.8 : 0.8 : 3.4의 중량비가 되도록 혼합하고, 파워 믹서로 25℃에서 2 시간 교반하여 코팅제 조성물을 제조하였다.
(2) 폴리아믹산 함유 코팅층이 형성된 분리막의 제조
상기 제조된 코팅제 조성물을 두께 12 ㎛의 폴리에틸렌 기재 필름의 양면에 딥 코팅 방식으로 코팅한 다음, 실온에서 24 시간 동안 이를 건조하여 분리막을 제조하였다.
실시예 2
상기 실시예 1에 있어서, 코팅제 조성물 제조 시, 4구 플라스크에 3,3'-디아미노디페닐설폰 대신 1,6-헥사메틸디아민(1,6-hexamethylenediamine)을 사용하고, 제조된 폴리아믹산 용액 : N,N-디메틸 아세트아미드(DMAc) : 무기 분산액 : 아세톤 = 0.9 : 1.5 : 4.1 : 3.5가 되도록 혼합하는 것을 제외하고는, 상기 실시예 1과 동일한 방법에 의하여 분리막을 제조하였다.
실시예 3
상기 실시예 1에 있어서, 코팅제 조성물 제조 시, 4구 플라스크에 3,3'-디아미노디페닐설폰 대신 4,4'-옥시디아닐린(4,4'-Oxydianiline)을 사용하고, 폴리아믹산 용액의 고형분 함량을 질량비로 10 중량%로 하며, 제조된 폴리아믹산 용액 : N,N-디메틸아세트아미드(DMAc) : 무기 분산액 :아세톤 = 0.9 :2.8 : 4.1 : 2.2 가 되도록 혼합하는 것을 제외히고는, 상기 실시예 1과 동일한 방법에 의하여 분리막을 제조하였다.
실시예 4
상기 실시예 1에 있어서, 코팅제 조성물 제조 시, 4구 플라스크에 3,3'-디아미노디페닐설폰 0.5 mol 대신, 4,4'-옥시디아닐린 0.2 mol 및 3,3'-디아미노디페닐설폰 0.3 mol을 사용하고, 제조된 폴리아믹산 용액 : N,N-디메틸아세트아미드(DMAc) : 무기 분산액 : 아세톤 = 0.9 : 1.5 : 4.1 : 3.5가 되도록 혼합하는 것을 제외하고는, 상기 실시예 1과 동일한 방법에 의하여 분리막을 제조하였다.
실시예 5
상기 실시예 1에 있어서, 코팅제 조성물 제조 시, 4구 플라스크에 3,3'-디아미노디페닐설폰 대신 4,4'-디아미노디페닐설폰을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법에 의하여 분리막을 제조하였다.
실시예 6
상기 실시예 1에 있어서, 코팅제 조성물 제조 시, 피로멜리트산이무수물 0.5 mol 대신, 피로멜리트산이무수물 0.375 mol 및 4,4'-헥사플루오로 이소프로필 디프탈릭산이무수물(4,4'-(hexafluoroisopropylidene)diphthalic anhydride) 0.125 mol을 사용하고, 제조된 폴리아믹산 용액 : N,N-디메틸아세트아미드(DMAc) : 무기 분산액 : 아세톤 = 0.9: 0.2 : 4.1 : 4.7 이 되도록 혼합하는 것을 제외하고는, 상기 실시예 1과 동일한 방법에 의하여 분리막을 제조하였다.
실시예 7
상기 실시예 1에 있어서, 코팅제 조성물 제조 시, 폴리비닐리덴 플루오라이드 호모폴리머(이하, 'PVdF 호모폴리머') 용액을 추가로 포함하며, 제조된 폴리아믹산 용액 : PVdF 호모폴리머 용액 : N,N-디메틸아세트아미드(DMAc) : 무기 분산액 : 아세톤 = 0.5 : 0.7 : 0.7 : 4.1 : 4.0 이 되도록 혼합하는 것을 제외하고는, 상기 실시예 1과 동일한 방법에 의하여 분리막을 제조하였다.
상기 PVdF 호모폴리머 용액은, PVdF 호모폴리머(5130, 솔베이)를 DMF(대정화금)에 10 중량%로 첨가하고, 교반기를 이용하여 25℃에서 4 시간 동안 교반하여 제조한 것을 사용하였다.
실시예 8
상기 실시예 1에 있어서, 코팅제 조성물 제조 시, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 코폴리머(이하, 'PVdF-HFP 코폴리머') 용액을 추가로 포함하며, 제조된 폴리아믹산 용액 : PVdF-HFP 코폴리머 용액 : N,N-디메틸아세트아미드(DMAc) : 무기 분산액 : 아세톤 = 0.5 : 0.7 : 1.4 : 4.1 : 3.3 이 되도록 혼합하는 것을 제외하고는, 상기 실시예 1과 동일한 방법에 의하여 분리막을 제조하였다.
상기 PVdF-HFP 코폴리머 용액은, 중량 평균 분자량이 700,000 g/mol인 PVdF-HFP 코폴리머(21216, 솔베이)를 아세톤(대정화금)에 10 중량%로 첨가하고, 교반기를 이용하여 25℃에서 4 시간 동안 교반하여 제조한 것을 사용하였다.
실시예 9
상기 실시예 1에 있어서, 코팅제 조성물 제조 시, 피로멜리트산이무수물 0.5 mol 대신, 피로멜리트산이무수물 0.45 mol 및 4,4'-헥사플루오로 이소프로필 디프탈릭산이무수물 0.05 mol을 사용하고, 제조된 폴리아믹산 용액 : N,N-디메틸아세트아미드(DMAc) : 무기 분산액 : 아세톤 = 0.9: 0.3 : 4.1 : 4.7 이 되도록 혼합하는 것을 제외하고는, 상기 실시예 1과 동일한 방법에 의하여 분리막을 제조하였다.
실시예 10
상기 실시예 1에 있어서, 코팅제 조성물 제조 시, 피로멜리트산이무수물 0.5 mol 대신, 피로멜리트산이무수물 0.35 mol 및 4,4'-헥사플루오로 이소프로필 디프탈릭산이무수물 0.15 mol을 사용하고, 제조된 폴리아믹산 용액 : N,N-디메틸아세트아미드(DMAc) : 무기 분산액 : 아세톤 = 0.9: 0.1 : 4.1 : 4.7 이 되도록 혼합하는 것을 제외하고는, 상기 실시예 1과 동일한 방법에 의하여 분리막을 제조하였다.
실시예 11
상기 실시예 1에 있어서, 코팅제 조성물 제조 시, 피로멜리트산이무수물 0.5 mol 대신, 피로멜리트산이무수물 0.3 mol 및 4,4'-헥사플루오로 이소프로필 디프탈릭산이무수물 0.2 mol을 사용하고, 제조된 폴리아믹산 용액 : 무기 분산액 : 아세톤 = 0.9: 4.1 : 4.7 이 되도록 혼합하는 것을 제외하고는, 상기 실시예 1과 동일한 방법에 의하여 분리막을 제조하였다.
실시예 12
상기 실시예 1에 있어서, 코팅제 제조 시, 피로멜리트산이무수물 대신, 부탄테트라카르복시이무수물(1,2,3,4-Butanetetracarboxylic dianhydride)을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법에 의하여 분리막을 제조하였다.
실시예 13
상기 실시예 1에 있어서, 코팅제 제조 시, 피로멜리트산이무수물 대신, 시클로헥산테트라카르복시이무수물( 1,2,4,5-Cyclohexanetetracarboxylic Dianhydride)을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법에 의하여 분리막을 제조하였다.
실시예 14
상기 실시예 1에 있어서, 코팅제 제조 시, 피로멜리트산이무수물 대신, 카보닐디프탈릭 이무수물( 4,4'-Carbonyldiphthalic Anhydride)을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법에 의하여 분리막을 제조하였다.
실시예 15
상기 실시예 1에 있어서, 코팅제 제조 시, 피로멜리트산이무수물 대신, 4,4'-헥사플루오로 이소프로필 디프탈릭산이무수물(4,4'-(hexafluoroisopropylidene)diphthalic anhydride) 을 사용하고, 3,3'-디아미노디페닐설폰(3,3'-diamino diphenyl sulfone) 대신 헥사데칸디아민(1,16-Hexadecanediamine)을 사용하는것을 제외하고는, 상기 실시예 1과 동일한 방법에 의하여 분리막을 제조하였다.
실시예 16
상기 실시예 1에 있어서, 코팅제 제조 시, 피로멜리트산이무수물 대신, 4,4'-헥사플루오로 이소프로필 디프탈릭산이무수물(4,4'-(hexafluoroisopropylidene)diphthalic anhydride) 을 사용하고, 3,3'-디아미노디페닐설폰(3,3'-diamino diphenyl sulfone) 대신 시클로헥실디아민(1,4-cyclohexyldiamine)을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법에 의하여 분리막을 제조하였다.
실시예 17
상기 실시예 6에 있어서, 코팅제 제조 시, 3,3'-디아미노디페닐설폰(3,3'-diamino diphenyl sulfone) 대신 4,4'-디아미노디페닐설폰(4,4'-diamino diphenyl sulfone)을 사용하는 것을 제외하고는, 상기 실시예 6과 동일한 방법에 의하여 분리막을 제조하였다.
실시예 18
상기 실시예 6에 있어서, 코팅제 제조 시, 피로멜리트산이무수물 대신, 시클로헥산테트라카복실릭 이무수물( 1,2,4,5-Cyclohexanetetracarboxylic Dianhydride)을 사용하는 것을 제외하고는, 상기 실시예 6과 동일한 방법에 의하여 분리막을 제조하였다.
실시예 19
상기 실시예 6에서 코팅제 제조 시, 4,4'-헥사플루오로이소프로필 디프탈릭산 이무수물 대신, 4,4'-이소프로필리덴디프탈릭산 이무수물(4,4'-isopropylidenediphthalic anhydride)을 사용하는 것을 제외하고는, 상기 실시예 6과 동일한 방법에 의하여 분리막을 제조하였다.
실시예 20
상기 실시예 1에서 코팅제 제조 시, 3,3'-디아미노디페닐설폰 대신 3-[3-(3-아미노페닐)설포닐페닐]설포닐아닐린(3-[3-(3-aminophenyl)sulfonylphenyl] sulfonylaniline)을 사용하고, 피로멜리트산이무수물 0.5 mol 대신, 피로멜리트산 이무수물 0.375 mol 및 4,4'-헥사플루오로 이소프로필디프탈릭산 이무수물 0.125mol를 사용한 것을 제외하고는 실시예 1과 동일한 방법에 의하여 분리막을 제조하였다.
상기 실시예들에서 사용한 용매의 비율은 하기 표 1과 같다.
[표 1]
Figure PCTKR2013006894-appb-I000130
[비교예 1 및 2]
폴리아믹산을 함유하지 않은 코팅층이 형성된 분리막의 제조
비교예 1
상기 실시예 8의 PVdF-HFP 코폴리머 용액 : 실시예 1의 무기 분산액 : 아세톤 = 2 : 4.8 : 3.2의 조성비로 혼합하고 파워 믹서로 25℃에서 2 시간 동안 교반하여 제조한 코팅제를, 두께 14 ㎛의 폴리에틸렌 기재 필름의 양면에 딥 코팅 방식으로 코팅한 다음, 이를 건조하여 분리막을 제조하였다.
비교예 2
상기 비교예 1에 있어서, PVdF-HFP 코폴리머 용액 대신 실시예 7의 PVdF 호모폴리머 용액을 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법에 의하여 분리막을 제조하였다.
[표 2]
Figure PCTKR2013006894-appb-I000131
Figure PCTKR2013006894-appb-I000132
Figure PCTKR2013006894-appb-I000133
실험예 1: 폴리아믹산의 구조에 따른 저비점 및 고비점 용매에 대한 용해도
상기 실시예에 따라 제조된 각각 상이한 구조를 갖는 폴리아믹산의 저비점 용매 및 고비점 용매에 대한 용해도를 평가하기 위하여, 상기 각 폴리아믹산을 용해시켰을 때 용매가 가장 투명한 상태를 유지하는 저비점 용매 및 고비점 용매의 비율을 측정하였다. 저비점 용매로는 아세톤(대정화금)을 사용하였으며 고비점 용매로는 N,N-디메틸아세트아미드(DMAc)를 사용하였다.
상기 각 폴리아믹산의 저비점 용매 및 고비점 용매에 대해 가장 투명한 상태를 유지하는 아세톤 : DMAc 비를 측정한 결과를 하기 표 3에 나타내었다.
[표 3]
Figure PCTKR2013006894-appb-I000134
상기 표 3에 나타난 바와 같이, 상기 실시예 1 내지 20에서 제조된 폴리아믹산은 저비점 용매인 아세톤에 대한 용해도가 우수하여 분리막의 코팅제 조성물로 활용되기에 적합하다는 것을 확인할 수 있었다.
특히, 아세톤에 대한 용해도가 가장 우수한 폴리아믹산은 실시예 6, 9, 10 및 11에 따라 제조된 폴리아믹산이었으며, 이들을 비교할 때, 4,4'-헥사플루오로 이소프로필 디프탈릭산 이무수물의 비율이 증가할수록 폴리아믹산의 아세톤에 대한 용해도가 상승한다는 것을 확인할 수 있었다.
다만, 실시예 11의 폴리아믹산의 경우에는 저비점 용매에 대한 용해도가 지나치게 상승한 결과, 전지의 전해액 내에서도 용해되는 것으로 관찰되었다.
실험예 2: 코팅층의 두께 및 도공량의 측정
상기 실시예 1 내지 20, 및 비교예 1, 2에서 제조된 분리막의 코팅층의 두께 및 도공량을 측정하기 위하여 하기의 방법을 수행하였다.
우선, 각 코팅층의 SEM 단면(Cross section) 이미지 및 마이크로 캘리퍼스를 이용하여 상기 각 코팅층의 두께를 측정하였다. 그 다음, 상기 코팅층 각각을, 가로(MD) 10 cm ×세로(TD) 20 cm 크기로 제단하여 전자 저울로 무게를 측정하여 도공량을 계산하였다. 상기 두께 및 도공량의 측정 결과는 하기 표 5에 나타내었다.
실험예 3: 분리막의 열수축률 측정
상기 실시예 1 내지 20, 및 비교예 1, 2에서 제조된 분리막의 열수축률을 측정하기 위하여 하기의 방법을 수행하였다.
상기 실시예 및 비교예에 따라 제조된 분리막 각각을 가로(MD) 5 cm ×세로(TD) 5 cm로 제단하여 총 7개의 시료를 제작하였다. 상기 각 시료를 150℃ 및 200℃의 챔버에서 각각 1 시간 동안 보관한 다음, 각 시료의 MD 방향 및 TD 방향의 수축 정도를 측정하여 열수축률을 계산하였다. 상기 열수축률의 측정 결과는 하기 표 5에 나타내었다.
실험예 4: 통기도의 측정
상기 실시예 1 내지 20, 및 비교예 1, 2에서 제조된 분리막의 통기도를 EG01-55-1MR (Asahi Seiko 사)를 사용하여 100 cc의 공기가 분리막을 통과하는 데에 걸리는 시간을 측정하는 방법으로 측정하였다.
실험예 5: 분리막의 전해액 젖음성
상기 실시예 1 내지 20, 및 비교예 1, 2에서 제조된 분리막의 전해액 젖음성을 측정하기 위하여 하기의 방법을 수행하였다.
상기 실시예 및 비교예에 따라 제조된 분리막 각각을 가로 3 cm ×세로 3 cm의 정사각형 모양으로 제단하여 총 7개의 시료를 제작하였다. 상기 각 시료를 전해액이 담겨있는 비이커의 표면에 띄워놓은 후 전해액에 의하여 완전히 젖을 때까지 걸리는 시간을 측정하였다.
상기 전해액 젖음에 걸리는 시간은 하기 표 5에 나타내었다.
실험예 6: 분리막 코팅층 내 DMAc 용매의 잔류량 측정
상기 실시예 1 내지 20, 및 비교예 1, 2에서 제조된 건조 분리막의 코팅층 내 유기 용매의 잔류량을 측정하기 위하여 하기 표 4에 기재된 조건으로 가스 크로마토그래피(Gas Chromatography, HP-6890)를 수행하여 그 결과를 표 5에 나타내었다.
[표 4]
Figure PCTKR2013006894-appb-I000135
[표 5]
Figure PCTKR2013006894-appb-I000136
상기 표 5에 나타난 바와 같이, 코팅층 내에 폴리아믹산을 함유하고 있는 실시예 1 내지 20의 분리막의 경우가 폴리아믹산을 함유하고 있지 않은 비교예 1 및 2에 비하여 열에 의한 분리막의 수축 정도가 작아 내열성이 우수하다는 것을 확인할 수 있다.
또한, 실시예 6, 9, 10 및 11을 비교할 때, 4,4'-헥사플루오로 이소프로필 디프탈릭산이무수물의 비율이 증가할수록 폴리아믹산의 아세톤에 대한 용해도가 상승하는 결과(표 1 참조), 용매가 용이하게 휘발됨에 따라 건조 성능이 향상되고 결과적으로 코팅층 내의 용매 잔류량이 적어 통기도가 우수해진다는 것을 확인할 수 있었다.
한편, 실시예 1에 따른 분리막을 이용하여 리튬 이차 전지를 제조한 후 전지의 사용에 따른 전지 용량의 변화를 관찰한 결과, 약 350 회 사이클 진행 후에도 전지 용량이 거의 변화하지 않음을 확인할 수 있었다(도 1).
따라서, 전기 화학 전지에 본 발명의 분리막을 활용하는 경우 전지의 열적 안정성이 향상되어 전지의 수명을 장기간으로 연장시킬 수 있을 것으로 판단된다.
실험예 7: 분리막의 셧 다운(shut down) 기능 측정
상기 실시예 1 및 비교예 1에 따른 각 분리막의 셧 다운 기능을 측정하기 위하여 상기 실시예 및 비교예에서 제조한 분리막에 대하여 1 kHz에서 10℃/분의 승온 속도로 3522-50 LCR HiTester(HIOKI)를 이용하여 임피던스 (impedance)를 측정하였다(도 2).
도 2를 참조하여 살펴보면, 실시예 1과 비교예 1의 셧 다운 온도는 거의 비슷한 것으로 나타났으며 이를 실험예 3의 결과와 비교할 때, 폴리아믹산을 함유하는 코팅층이 형성된 분리막인 실시예 1의 경우 내열성이 향상되었으면서도 셧 다운 기능은 여전히 우수하게 유지되어 분리막의 고온 안전성을 확보할 수 있음을 확인할 수 있었다.
실험예 8: TMA(Thermal Mechanical Analysis) 측정
상기 실시예 및 비교예에 따른 각 분리막의 TMA를 측정하기 위하여 상기 각 분리막을 0.005 N의 힘으로 당기면서 승온 속도를 5℃/분으로 하여(ASTM E 831 참조) TA Instruments(TMA Q400)로 상기 각 분리막이 파단되는 온도를 측정하였다(도 3). 그 결과는 하기 표 6에 나타내었다.
도 3을 참조하여 살펴보면, 비교예 1의 분리막의 경우 셧 다운 온도 부근 (약 130℃ 전후)에서 분리막의 기공 수축이 관찰되었고 약 150℃ 이후에는 분리막이 파단되는 특성을 나타내었다. 반면, 실시예 1의 분리막의 경우에는 폴리아믹산을 함유하는 코팅층의 고온 안전성에 의해 약 191℃에 이르기까지 분리막의 수축 현상이 거의 관찰되지 않았다. 또한, 표 6에 의하면 폴리아믹산 코팅층을 포함하는 분리막의 경우 파단온도가 180℃ 이상인 것으로 나타났다.
[표 6]
Figure PCTKR2013006894-appb-I000137
실험예 9: 고율 방전 특성 (C-rate) 측정
상기 실시예 1 및 비교예 1에 따른 각 분리막의 고율 방전 특성을 측정하였다(도 4). 상기 고율 방전 특성은 충방전 시험기(TOSCAT-3600, TOYO System Co.LTD)를 이용하여 용량이 850mAh 인 전지를 2시간 충전 후 5시간 방전(0.2C), 2시간 충전 후 2시간 방전(0.5C), 2시간 충전 후 1시간 방전(1C), 2시간 충전 후 30분 방전(2C)한 후의 용량을 측정하여 용량 변화율을 관찰하였다.
도 4를 참조하여 살펴보면, 실시예 1의 분리막의 경우 비교예 1의 분리막에 비해 상당히 우수한 고율 방전 특성을 나타냄을 확인할 수 있었다. 고율 방전 특성이 우수할수록 전지의 출력 특성이 향상되므로 상기 실시예 1의 분리막은 뛰어난 고온 특성에 의해 전지의 안전성이 향상될 뿐만 아니라 보다 고출력의 전지를 개발하는 데에도 상당한 기여를 할 것으로 보인다.

Claims (14)

  1. 폴리올레핀계 기재 필름, 및 상기 폴리올레핀계 기재 필름의 일면 또는 양면에 형성된 화학식 1 또는 화학식 2로 표시되는 폴리아믹산이 함유된 코팅층을 포함하는 분리막.
    [화학식 1]
    Figure PCTKR2013006894-appb-I000138
    [화학식 2]
    Figure PCTKR2013006894-appb-I000139
    상기 화학식 1 또는 2에서,
    R1, R5, 및 R7은, 각각 독립적으로 치환되거나 비치환된 탄소수가 6 내지 30인 방향족 탄화수소; 치환되거나 비치환된 탄소수가 2 내지 20인 지방족 탄화수소; 또는 치환되거나 비치환된 탄소수가 3 내지 24인 지환족 탄화수소일 수 있고,
    R2, R6, 및 R8은, 각각 독립적으로 치환되거나 비치환된 탄소수가 6 내지 30인 방향족 탄화수소; 치환되거나 비치환된 탄소수가 2 내지 20인 지방족 탄화수소; 치환되거나 비치환된 탄소수가 3 내지 24인 지환족 탄화수소; 또는
    Figure PCTKR2013006894-appb-I000140
    (여기서, R3 및 R4는 각각 독립적으로 탄소수 1 내지 5의 알킬렌일 수 있고, Ar5는, CH3, OH, SH 또는 NH2로 1회 내지 3회 치환되거나 비치환된 탄소수 6 내지 15의 아릴렌일 수 있다.)일 수 있고,
    n은 30 내지 10000 사이의 정수이고,
    x는 15 내지 5000 사이의 정수이고, y는 15 내지 5000 사이의 정수이다.
  2. 제1항에 있어서, 상기 R1, R5, 및 R7이 각각 독립적으로 하기 화학식 3의 방향족 탄화수소이고, 상기 R2, R6, 및 R8이 각각 독립적으로 하기 화학식 4의 방향족 탄화수소인 분리막.
    [화학식 3]
    Figure PCTKR2013006894-appb-I000141
    [화학식 4]
    Figure PCTKR2013006894-appb-I000142
    상기 화학식 3에서,
    Ar1 내지 Ar4은 각각 독립적으로 비치환되거나 치환된 탄소수 6 내지 15의 아릴렌일 수 있고, X1 내지 X3은 서로 독립적으로 단일결합, O, S, C(=O), S(=O)2, C(=O)NH, 비치환되거나 치환된 탄소수 1 내지 10의 알킬렌 또는 치환되거나 비치환된 실리렌(silylene)일 수 있고;
    상기 m, 1, 및 o는 각각 독립적으로 0 또는 1이고; 상기 m은 1이고, l 및 o가 0인 경우 X2 및 X3은 단일결합이고 Ar2 는 치환 또는 비치환된 3가의 탄소수 5 내지 15의 아릴렌이고; 상기 m 및 l이 1이고, o가 0인 경우, X3는 단일결합이고 Ar3 는 치환 또는 비치환된 3가의 탄소수 5 내지 15의 아릴렌이고; 상기 m, l 및 o가 모두 0인 경우, X1 내지 X3는 단일결합이고, Ar1은 4가의 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌이며,
    상기 화학식 4에서,
    Ar6 내지 Ar9는 각각 독립적으로 서로 동일하거나 상이한 비치환되거나 치환된 탄소수 6 내지 15의 아릴렌일 수 있고, X4 내지 X6은 서로 독립적으로 단일결합, O, S, C(=O), S(=O)2, C(=O)NH, 비치환되거나 치환된 탄소수 1 내지 10의 알킬렌 또는 치환되거나 비치환된 실리렌(silylene)일 수 있고,
    상기 p, q 및 r 은 각각 독립적으로 0 또는 1이고, 상기 p는 1이고, q 및 r이 0인 경우, X5 및 X6은 단일결합이고, 상기 p 및 q가 1이고, r이 0인 경우 X6이 단일결합이고, 상기 p, q 및 r이 모두 0인 경우 X4 내지 X6은 단일결합이다.
  3. 제1항에 있어서, 상기 화학식 1 또는 화학식 2의 폴리아믹산은 설폰기를 포함하는 분리막.
  4. 제3항에 있어서, 상기 설폰기는 메타-아릴 설폰기인 분리막.
  5. 제1항에 있어서, 상기 폴리아믹산은 설폰기 및 트리플루오로메틸기를 포함하는 분리막.
  6. 제1항에 있어서, 상기 폴리아믹산이 페닐 에테르기를 포함하는 제 1 반복 단위와 설폰기를 포함하는 제2 반복 단위를 포함하고, 상기 제1 반복 단위와 상기 제2 반복 단위의 비가 5:5 내지 1:9인 분리막.
  7. 제1항에 있어서, 상기 폴리아믹산이 설폰기를 포함하는 제1 반복 단위와 트리플루오로메틸기를 포함하는 제2 반복 단위를 포함하고, 상기 제1 반복 단위와 상기 제2 반복 단위의 비가 9:1 내지 7:3인 분리막.
  8. 제1항에 있어서, 상기 폴리아믹산은 하기의 화학식 9의 구조를 갖는 분리막.
    [화학식 9]
    Figure PCTKR2013006894-appb-I000143
    상기 식에서,
    상기 반복 단위 x와 y의 비 (x : y)는 9:1 내지 7:3이다.
  9. 제8항에 있어서, 상기 화학식의 상기 반복 단위 x 또는 y 내의 1 개 이상의 아릴 설폰기가 메타-아릴 설폰기인 분리막.
  10. 제1항에 있어서, 상기 코팅층은 무기 입자를 함유하는 분리막.
  11. 제10항에 있어서, 상기 무기 입자는 Al2O3, SiO2, B2O3, Ga2O3, TiO2 및 SnO2로 이루어진 군에서 선택되는 1 종 이상을 포함하는 분리막.
  12. 제1항에 있어서, 상기 분리막의 0.005 N, 및 5℃/분 승온 온도 조건에서의 파단 온도가 180℃ 이상인 분리막.
  13. 양극, 음극, 분리막 및 전해질을 포함하는 전기 화학 전지로서, 상기 분리막은 제1항 내지 제12항 중 어느 하나의 항에 기재된 분리막인, 전기 화학 전지.
  14. 제13항에 있어서, 상기 전기 화학 전지는 리튬 이차 전지인, 전기 화학 전지.
PCT/KR2013/006894 2012-08-01 2013-07-31 코팅층을 포함하는 분리막 및 이를 이용한 전지 WO2014021635A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/418,785 US20150155542A1 (en) 2012-08-01 2013-07-31 Separation membrane comprising coating layer and battery using same
US17/073,664 US11814483B2 (en) 2012-08-01 2020-10-19 Separation membrane comprising coating layer, method of preparing same, and battery using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0084536 2012-08-01
KR20120084536 2012-08-01
KR10-2012-0126384 2012-11-09
KR20120126384 2012-11-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/418,785 A-371-Of-International US20150155542A1 (en) 2012-08-01 2013-07-31 Separation membrane comprising coating layer and battery using same
US17/073,664 Continuation US11814483B2 (en) 2012-08-01 2020-10-19 Separation membrane comprising coating layer, method of preparing same, and battery using same

Publications (1)

Publication Number Publication Date
WO2014021635A1 true WO2014021635A1 (ko) 2014-02-06

Family

ID=50028247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006894 WO2014021635A1 (ko) 2012-08-01 2013-07-31 코팅층을 포함하는 분리막 및 이를 이용한 전지

Country Status (3)

Country Link
US (2) US20150155542A1 (ko)
KR (2) KR101627736B1 (ko)
WO (1) WO2014021635A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101709695B1 (ko) * 2014-08-25 2017-02-24 삼성에스디아이 주식회사 고내열성 및 난연성 분리막 및 전기 화학 전지
KR102470991B1 (ko) * 2015-12-18 2022-11-25 삼성에스디아이 주식회사 이차 전지
JP7039947B2 (ja) * 2017-11-17 2022-03-23 大日本印刷株式会社 ポリイミドフィルム、ポリイミド前駆体、ポリイミドフィルムの製造方法、及び表示装置用部材
US11489232B2 (en) 2017-12-27 2022-11-01 Lg Energy Solution, Ltd. Method for manufacturing separator, separator formed thereby, and electrochemical device including same
US20210057698A1 (en) * 2018-11-14 2021-02-25 Lg Chem, Ltd. Separator for lithium secondary battery and method for manufacturing same
KR20230074016A (ko) * 2021-11-19 2023-05-26 에스이에스 홀딩스 피티이. 엘티디. 전기화학 전지용 기능화된 분리기, 이를 이용해 제조된 전기화학 전지, 및 이들 각각의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355938A (ja) * 2001-05-30 2002-12-10 Tonen Chem Corp 複合膜、その製造方法及びそれを用いた電池用セパレータ又はフィルター
KR20030010406A (ko) * 2001-07-27 2003-02-05 주식회사 뉴턴에너지 다공성 격리막 및 이의 제조방법
KR20100099667A (ko) * 2009-03-03 2010-09-13 주식회사 엘지화학 고에너지 밀도의 양극 재료와 유/무기 복합 다공성 분리막을 포함하는 리튬 이차전지
KR20110136745A (ko) * 2010-06-14 2011-12-21 한양대학교 산학협력단 리튬 이차 전지용 세퍼레이터 및 이의 제조 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2684582B2 (ja) 1992-08-25 1997-12-03 宇部興産株式会社 ポリイミド分離膜
KR100553737B1 (ko) * 1999-09-06 2006-02-20 삼성에스디아이 주식회사 리튬 이온 폴리머 전지의 전극 활물질 조성물, 세퍼레이타 조성물 및 이를 이용한 리튬 이온 폴리머 전지의 제조방법
WO2003074587A1 (fr) * 2002-03-05 2003-09-12 Suzuka Fuji Xerox Co., Ltd. Solution de precurseur de polyimide, element de fixation/transfert, et procede de fabrication d'une ceinture sans couture en polyimide
KR100775310B1 (ko) 2004-12-22 2007-11-08 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
JP2007324073A (ja) 2006-06-05 2007-12-13 Matsushita Electric Ind Co Ltd リチウム二次電池並びにそのセパレータ及びその製造方法
JP5245219B2 (ja) * 2006-07-12 2013-07-24 トヨタ自動車株式会社 燃料電池システム
KR100877161B1 (ko) 2007-09-17 2009-01-07 코오롱글로텍주식회사 열 안정성이 우수한 고출력 이차전지용 다공성 분리막 및그 제조 방법
JP5464422B2 (ja) 2008-02-15 2014-04-09 独立行政法人産業技術総合研究所 水素分離用フィルム状自立金属薄膜およびその製造方法
WO2010027065A2 (en) 2008-09-02 2010-03-11 Tonen Chemical Corporation Microporous polymeric membranes, methods for making such membranes, and the use of such membranes as battery separator film
JP5287692B2 (ja) 2008-12-26 2013-09-11 Jsr株式会社 ポリイミド系材料、組成物及びフィルム、並びにその製造方法
KR101055536B1 (ko) * 2009-04-10 2011-08-08 주식회사 엘지화학 다공성 코팅층을 포함하는 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
US20110020701A1 (en) 2009-07-16 2011-01-27 Carbon Micro Battery Corporation Carbon electrode structures for batteries
KR20110075631A (ko) * 2009-12-28 2011-07-06 롯데알미늄 주식회사 나노기공을 갖는 세퍼레이터 및 이를 이용한 에너지 저장 장치
US8808923B2 (en) * 2010-09-30 2014-08-19 Panasonic Corporation Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US20130244080A1 (en) 2012-03-16 2013-09-19 Samsung Sdi Co., Ltd. Separator for lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355938A (ja) * 2001-05-30 2002-12-10 Tonen Chem Corp 複合膜、その製造方法及びそれを用いた電池用セパレータ又はフィルター
KR20030010406A (ko) * 2001-07-27 2003-02-05 주식회사 뉴턴에너지 다공성 격리막 및 이의 제조방법
KR20100099667A (ko) * 2009-03-03 2010-09-13 주식회사 엘지화학 고에너지 밀도의 양극 재료와 유/무기 복합 다공성 분리막을 포함하는 리튬 이차전지
KR20110136745A (ko) * 2010-06-14 2011-12-21 한양대학교 산학협력단 리튬 이차 전지용 세퍼레이터 및 이의 제조 방법

Also Published As

Publication number Publication date
KR101627736B1 (ko) 2016-06-07
KR20140018125A (ko) 2014-02-12
US11814483B2 (en) 2023-11-14
US20150155542A1 (en) 2015-06-04
US20210036294A1 (en) 2021-02-04
KR20140018126A (ko) 2014-02-12

Similar Documents

Publication Publication Date Title
WO2014021635A1 (ko) 코팅층을 포함하는 분리막 및 이를 이용한 전지
WO2014021634A1 (ko) 분리막 코팅제 조성물, 상기 코팅제 조성물로 형성된 분리막 및 이를 이용한 전지
WO2015183056A1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2017111300A1 (ko) 신규 구조의 디아민 모노머를 적용한 폴리아믹산 용액 및 이를 포함하는 폴리이미드 필름
WO2016032299A1 (ko) 단량체 염을 이용한 폴리이미드 제조방법
WO2018038436A1 (ko) 디아민 화합물 및 이의 제조방법
WO2016108491A1 (ko) 가교형 수용성 열가소성 폴리아믹산을 이용한 열융착 다층 폴리이미드 필름, 및 이의 제조방법
WO2021141376A1 (ko) 선분산제 조성물, 이를 포함하는 전극 및 이차전지
WO2023054878A1 (ko) 리튬이차전지 양극용 가용성 폴리이미드 바인더 및 그 제조 방법과, 이를 포함하는 리튬이차전지
WO2019235712A1 (ko) 실록산 화합물 및 이를 포함하는 폴리이미드 전구체 조성물
WO2015046956A1 (ko) 변성 폴리페닐렌 옥사이드 및 이를 이용하는 동박 적층판
WO2016108490A1 (ko) 가교형 수용성 열가소성 폴리아믹산 및 이의 제조방법
WO2020149574A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
WO2022045737A1 (ko) 포지티브형 감광성 수지 조성물
WO2020141713A1 (ko) 신규한 디카르보닐 화합물을 포함하는 폴리아믹산 조성물의 제조방법, 폴리아믹산 조성물, 이를 이용한 폴리아미드-이미드 필름의 제조방법 및 그 제조방법을 통해 제조된 폴리아미드-이미드 필름.
WO2021075872A1 (ko) 전극의 중간 생성물, 전극 분말, 이를 이용한 전극, 이를 이용한 전극 펠렛, 및 그들의 제조 방법
WO2015182925A1 (ko) 신규 디아민 합성 및 이를 이용한 액정 배향제
WO2020036444A1 (ko) 리튬 이차 전지용 음극의 제조방법 및 이를 이용하여 제조한 리튬 이차 전지용 음극
WO2020159035A1 (ko) 폴리이미드 필름, 이를 이용한 플렉서블 기판 및 플렉서블 기판을 포함하는 플렉서블 디스플레이
WO2020159086A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2020105933A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
WO2022005064A1 (ko) 다공성 실리콘옥시카바이드 제조용 중간체, 이의 제조방법, 이로부터 제조된 다공성 실리콘옥시카바이드를 음극활물질로 포함하는 리튬 이차전지
WO2015111801A1 (ko) 폴리아닐린 나노페이스트 및 이의 제조방법
WO2016032222A1 (ko) 표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2020138644A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14418785

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 01-07-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13826368

Country of ref document: EP

Kind code of ref document: A1