WO2021254024A1 - 一种可回收利用钕铁硼废料焙烧窑炉余热的装置及方法 - Google Patents

一种可回收利用钕铁硼废料焙烧窑炉余热的装置及方法 Download PDF

Info

Publication number
WO2021254024A1
WO2021254024A1 PCT/CN2021/092365 CN2021092365W WO2021254024A1 WO 2021254024 A1 WO2021254024 A1 WO 2021254024A1 CN 2021092365 W CN2021092365 W CN 2021092365W WO 2021254024 A1 WO2021254024 A1 WO 2021254024A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste
heating
waste heat
heat
bin
Prior art date
Application number
PCT/CN2021/092365
Other languages
English (en)
French (fr)
Inventor
张相良
谢志忠
叶健
朱剑峰
赖泽斌
Original Assignee
信丰县包钢新利稀土有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信丰县包钢新利稀土有限责任公司 filed Critical 信丰县包钢新利稀土有限责任公司
Publication of WO2021254024A1 publication Critical patent/WO2021254024A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/18Door frames; Doors, lids, removable covers
    • F27D1/1858Doors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D13/00Apparatus for preheating charges; Arrangements for preheating charges
    • F27D13/002Preheating scrap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to the technical field of neodymium iron boron rare earth materials, in particular to a device that can recycle the waste heat of a roasting kiln for neodymium iron boron waste.
  • Neodymium iron boron is one of the magnets. It has excellent magnetic properties, extremely high magnetic energy product and coercive force. It also has the advantages of high energy density. It has excellent machining performance and its working temperature can reach 200 °C. Moreover, the texture is hard, and it has been widely used in modern industry and electronic technology, making the miniaturization, lightness and weight of equipment such as instruments, motors, and magnetic separation and magnetization realized.
  • the production process of NdFeB generally includes the steps of preparing raw materials, smelting, casting, hydrogen smashing, magnetic field orientation and pressing, sintering, post-processing, etc.
  • a large amount of usable waste materials such as sludge
  • manufacturers are currently recycling and sintering.
  • the roasting kiln will have a large amount of waste heat during the sintering process.
  • the existing heat is directly discharged into the air, although there are also some waste heat recovery methods. Device, but the recycling effect is poor, and the waste heat cannot be fully utilized.
  • One of the objectives of the present invention is to solve the problem that the waste heat recovery device in the prior art has a poor recovery and utilization effect and cannot fully utilize the waste heat.
  • the second object of the present invention is to provide a method for recovering and utilizing the waste heat of the NdFeB waste roasting kiln.
  • a device that can recycle the waste heat of the NdFeB waste roasting kiln which includes: a roasting furnace, the roasting furnace has: an inlet, the inlet The material port is located at the upper end of the roasting furnace; the exhaust port, the exhaust port is located at the side end of the roasting furnace; the regulating valve, the regulating valve is arranged at the exhaust port; the material partition plate, the material partition plate Is arranged in the feed port to seal the feed port; a preheating bin, the preheating bin is provided at the upper end of the roasting furnace, the preheating bin is connected to the feeding port, and the preheating bin has : An air inlet pipe, the air inlet pipe is connected to the regulating valve; a hopper, the hopper communicates with the preheating bin; a synchronization gear, the synchronization gear is set in the hopper; a bias spring, the bias The set elastic piece is arranged on
  • a heat insulation board the heat insulation board is arranged in the hopper, the synchronization gear is connected to the heat insulation board, and the heat insulation board seals the hopper.
  • the two synchronizing gears mesh with each other, the synchronizing gear is located in the middle of the hopper, and the heat shield is arranged on the left and right sides of the synchronizing gear.
  • the regulating valve of the exhaust port of the roasting furnace is opened, so that the waste heat is discharged and transferred to the preheating chamber. Then pour the neodymium iron boron waste into the feeding hopper on the preheating bin.
  • the heat shield in the feeding hopper is rotated downward by the gravity of the neodymium iron boron waste and drives the synchronous gear to rotate.
  • the synchronous gear rotates while pressing the bias shrapnel.
  • the NdFeB waste material rotates downwards along the heat insulation board to open the channel and enters into the preheating bin for preheating.
  • the elastic force of the biasing shrapnel promotes synchronization
  • the gear resets and drives the heat shield to reset, re-sealing the connection between the feeding hopper and the preheating bin.
  • the two intermeshing synchronous gears located in the middle of the heat shield rotate, so that the heat shields on the left and right sides are tapered upwards, so that the neodymium iron boron waste flows along the heat shield and is scattered in the preheating bin. On both sides.
  • the bottom of the preheating bin has an inclined material guide surface, and the material guide surface is used to introduce the neodymium iron boron waste to the feed inlet.
  • the neodymium iron boron waste scattered on both sides of the preheating bin is slowly flowed and concentrated into the feed inlet at the upper end of the roasting furnace under the action of the inclined guide surface in the preheating bin. Through this way of slow flow and then concentrated together, it is beneficial for the waste heat to more fully contact the neodymium iron boron waste material and enhance the utilization rate of the waste heat.
  • a telescopic cylinder is provided at the upper end of the roasting furnace, and the telescopic cylinder is connected to the material partition plate.
  • stop blocks on both sides of the inner side of the hopper, and the stop blocks are used to resist the heat insulation board.
  • the stop blocks are used to resist the heat insulation board.
  • the device that can recycle the waste heat of the NdFeB waste roasting kiln further includes: a filter bin connected to the air inlet pipe or a regulating valve; a heating bin, the heating The bin is connected to the filter bin; the heat preservation bin is connected to the heating bin; the heating bin is connected to the heat preservation bin.
  • the filter compartment has a honeycomb filter
  • the honeycomb filter has: large pores; small pores, the small pores and the large pores are along the longitudinal and transverse directions Are arranged at intervals; the blocking block is arranged at the left end of the small pores, the blocking block is also arranged at the right end of the large pores; the upper filter screen, the upper filter The net is arranged between the bottom of the small channel and the top of the large channel; the lower filter screen is arranged between the bottom of the large channel and the top of the small channel.
  • the filter hole directions of the upper filter screen and the lower filter screen are both inclined from right to left.
  • the waste heat gas After the control valve is opened, the waste heat gas enters the filter chamber, and the harmful substances in the waste heat gas are filtered through the filter chamber. Specifically: the waste heat gas enters the small pores, and then the upper filter and the lower filter in the small pores treat the waste heat The harmful substances of the gas are filtered, so that the filtered waste heat gas enters the large pores, and then the waste heat gas is discharged from the large pores.
  • the waste heat gas entering the small holes moves from right to left along the upper filter screen and the lower filter screen.
  • the residual heat gas is guided to a certain extent through the upper filter screen and the lower filter screen slanted to the left by setting the filter holes , So that the waste heat gas is not easy to pass through the upper filter screen and the lower filter screen quickly in a large amount, and at the same time, enough waste heat gas can be fully contained in the small pores, so that the small pores can filter the waste heat gas in a large area and relatively slowly.
  • the impurities on the waste heat gas can be effectively prevented from sticking to the object to be heated, resulting in a decrease in the heating effect of the waste heat on the object to be heated.
  • the heating chamber has: a water inlet pipe; an intestinal pipe, the intestinal pipe communicating with the water inlet pipe, the intestine pipe located in the heating chamber; a water outlet pipe, The water outlet pipe communicates with the intestinal pipe.
  • the heat preservation bin has: a water bucket which is connected to the water outlet pipe; a heat preservation channel, the heat preservation passage is formed by a gap between the inner wall of the heat preservation compartment and the outer surface of the water bucket, and the heat preservation is connected to the heating warehouse.
  • the filtered waste heat gas enters the heating chamber to heat the water flow in the intestine-shaped pipe in the heating chamber, and then the waste heat gas enters the heat preservation chamber from the heating chamber, and the waste heat gas flows along the heat preservation channel of the heat preservation chamber. Insulate the water flowing into the bucket in the shaped pipe
  • the heat preservation warehouse further has: an air outlet pipe; and a heating valve, the heating valve being installed on the air outlet pipe.
  • the heating warehouse has: a hot gas pipe connected to the heating valve; a heating pipe connected to the hot gas pipe; and a radiator installed on the heating pipe.
  • the heating valve on the outlet pipe of the heat preservation warehouse is opened, so that the waste heat gas flows into the heating pipe in the heating warehouse through the hot gas pipe after passing through the heat preservation warehouse, and the radiator installed on the heating pipe is heated and released.
  • the heating warehouse further has: an electric control door, the electric control door is located at the right end of the heating warehouse; a temperature sensor, the temperature sensor is located in the heating warehouse Wall surface.
  • the cold air mechanism is opened to input cold air into the heating chamber.
  • the temperature sensor in the heating chamber detects that the temperature reaches a suitable state
  • the electric control door is opened to supply heating.
  • a cold air mechanism is provided at the side end of the heating warehouse, and the cold air mechanism has: a cold air pipe connected to the heating warehouse; a drive motor provided at the side end of the cold air pipe; a rotating shaft, the The rotating shaft is connected to the driving motor, the rotating shaft passes through the cold air duct transversely; the driving gear, the driving gear is located at the side end of the cold air duct, the driving gear is sleeved on the rotating shaft; the suction blade, so The suction blade is located in the cold air duct, the suction blade is sleeved on the rotating shaft; a rotating column, the rotating column is inclined to the rotating shaft, the rotating column has: a connecting gear, the connecting gear Meshing the driving gear; column head; first bearing, the first bearing is sleeved on the rotating column; movable block, the movable block is movably connected to the column head; the limiting rod, the limiting rod is rotatably connected to the The movable block, the limiting rod is inclined to the
  • the working principle of the cold air mechanism is: start the drive motor to drive the rotating shaft to rotate, drive the suction blade in the cold air duct to rotate, and draw the cold air from the outside into the cold air duct.
  • the rotation of the shaft also drives the drive gear to rotate, which in turn drives the connecting teeth.
  • the rotating column on the connecting gear rotates, so that the limiting rod slanted to the rotating column is moved and rotated by the movable block movably connected to the column head of the rotating column, which causes the limiting column and the slider on the limiting column to rotate.
  • the passive gear rotates to compress the bias spring, and pulls the sealed door to move, opening the cold air duct, so that the cold air enters the heating chamber from the cold air duct, and mixes with the hot air in the heating chamber.
  • the rotating column drives the movable block to rotate idly.
  • the drive motor is turned off.
  • the compressed bias spring is reset to drive the driven gear to push The airtight door re-seals the cold air duct, and at the same time, the sliding head of the limit post and the limit rod are reset under the action of the bias spring, prompting the limit rod to re-tilt to the rotating column.
  • the sealed door in the cold air mechanism can move synchronously with the suction blade at the same time, that is, when the suction blade rotates to inhale, the sealed door opens, and when the suction blade stops rotating, the sealed door closes.
  • precise control can be achieved.
  • the lowered temperature of the waste heat makes the temperature reach a suitable temperature for the human body, and avoids the temperature provided by the heating warehouse from being too high, which is difficult to use as heating. Therefore, the utilization of the waste heat is greatly strengthened.
  • the invention preheats neodymium iron boron waste by introducing waste heat into the preheating box.
  • the heat insulation board can follow the addition of neodymium iron boron waste. Open the feeding hopper in time, and close the feeding hopper when there is no NdFeB waste added, which reduces the loss of waste heat and is beneficial to strengthen the use of waste heat.
  • the heat shield is tapered after opening, so that the NdFeB waste can be The shunt is scattered on both sides of the preheating bin, which is beneficial to expand the contact area of the NdFeB waste to the waste heat, and further strengthen the full use of the waste heat.
  • a method for recovering and utilizing the waste heat of the NdFeB waste roasting kiln including the following steps:
  • Blanking control pour neodymium iron boron waste into the hopper on the preheating bin, the heat shield in the hopper is rotated downward by the gravity of the neodymium iron boron waste and drives the synchronous gear to rotate, and the synchronous gear is pressed while rotating Biased shrapnel, at this time the NdFeB waste material rotates downwards along the heat shield to open the channel and enters into the preheating bin for preheating.
  • the heat shield does not have NdFeB waste material, the elastic effect of the bias shrapnel Force to reset the synchronous gear, and drive the heat shield to reset, re-sealing the connection between the feeding hopper and the preheating bin;
  • the two intermeshing synchronous gears located in the middle of the heat insulation plate rotate, so that the heat insulation plates on the left and right sides are tapered upwards, so that the neodymium iron boron waste flows along the heat insulation plate and is scattered on the preheating plate.
  • the NdFeB waste material is preheated in the preheat bin.
  • the NdFeB waste materials scattered on both sides of the preheating bin are slowly flowed and concentrated into the feed inlet at the upper end of the roasting furnace under the action of the inclined guide surface in the preheating bin.
  • the waste heat gas enters the filter bin, and the harmful substances in the waste heat gas are filtered through the filter bin, specifically: the waste heat gas enters the small pores, and then the small pores
  • the upper filter screen and the lower filter screen filter the harmful substances in the waste heat gas, so that the filtered waste heat gas enters the large pores, and then the waste heat gas is discharged from the large pores.
  • the waste heat gas entering the small holes moves from right to left along the upper filter screen and the lower filter screen. During the movement, it passes through the upper filter screen and the lower filter screen to the left
  • the filter holes are arranged to guide the waste heat gas to a certain extent, so that the waste heat gas is not easy to pass through the upper filter and the lower filter in a large amount and quickly, and at the same time, enough waste heat gas can be fully contained in the small holes, so that the small holes can be large in size. And the waste heat gas is filtered slowly.
  • the filtered waste heat gas enters the heating chamber to heat the water flow in the intestinal pipe in the heating chamber, and then the waste heat gas enters the heat preservation chamber from the heating chamber, and the waste heat gas flows along The heat preservation channel of the heat preservation bin flows to heat the water flowing from the intestinal pipe into the water bucket.
  • the heating valve on the outlet pipe of the heat preservation warehouse is opened, so that the waste heat gas flows into the heating pipe in the heating warehouse through the hot gas pipe after passing through the heat preservation warehouse. Heat up and exotherm.
  • the cold air mechanism in a cold air climate, according to the temperature demand, is turned on to input cold air into the heating chamber, and when the temperature sensor in the heating chamber detects that the temperature reaches a proper state, it turns on The electric control door provides heating supply.
  • the working principle of the cold air mechanism is: start the drive motor to drive the rotating shaft to rotate, drive the suction blades in the cold air duct to rotate, and inhale the cold air from the outside into the cold air duct.
  • the driving gear to rotate, and then drive the connecting teeth and the rotating column on the connecting gear to rotate, so that the limiting rod inclined to the rotating column is moved and rotated by the movable block movably connected to the column head of the rotating column, which promotes the limiting column and the rotating column on the limiting column.
  • the passive gear on the limit column rotates to compress the bias spring, and pulls the sealing door to move, opening the cold air duct, so that cold air enters the heating chamber from the cold air duct, and is mixed with the hot air in the heating chamber.
  • the rotating column drives the movable block to rotate idly.
  • the drive motor When there is no need to input cold air into the heating chamber, the drive motor is turned off. At the same time, the compressed The bias spring resets, driving the passive gear to push the sealing door to reseal the cold air duct, and at the same time, the sliding head of the limit column and the limiting rod are also reset under the action of the bias spring, prompting the limiting rod to re-tilt on the rotating column.
  • Fig. 1 is a schematic plan view of a device capable of recycling waste heat from a roasting kiln for neodymium iron boron waste in an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of a device that can recycle waste heat from a roasting kiln for neodymium iron boron waste in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the structure of the preheating chamber according to the embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the effect of the preheating chamber according to the embodiment of the present invention.
  • Fig. 5 is a three-dimensional schematic diagram of a honeycomb filter according to an embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of a honeycomb filter according to an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of the structure of a cooling mechanism according to an embodiment of the present invention.
  • Fig. 8 is a three-dimensional schematic diagram of a rotating column and a limiting column according to an embodiment of the present invention.
  • Fig. 9 is a schematic diagram of the movement effect of the cold air mechanism according to the embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the movement of the rotating column and the limiting column according to the embodiment of the present invention.
  • Heating warehouse 61 Heating warehouse 61.
  • Heat pipe 62 Heat pipe
  • a device that can recycle the waste heat of the NdFeB waste roasting kiln which, as shown in Figures 1-3, includes: a roasting furnace 10, a regulating valve 13, a partition plate 14, a preheating bin 20, a charging hopper 22, Synchronous gear 24, bias shrapnel, and heat shield 25.
  • the roasting furnace 10 has a feed port 11 and an exhaust port 12, and the feed port 11 is located at the upper end of the roasting furnace 10.
  • the exhaust port 12 is located at the left end of the roasting furnace 10.
  • the regulating valve 13 is provided at the exhaust port 12.
  • the partition plate 14 is arranged in the feed port 11 to seal the feed port 11.
  • the preheating bin 20 is arranged at the upper end of the roasting furnace 10, the preheating bin 20 is connected to the feed inlet 11, the preheating bin 20 has an air inlet pipe 21, and the air inlet pipe 21 is connected with a regulating valve 13.
  • the hopper 22 is connected to the preheating bin 20.
  • the synchronization gear 24 is provided in the hopper 22.
  • the bias spring is arranged on the synchronization gear 24.
  • the heat insulation plate 25 is arranged in the hopper 22, the synchronization gear 24 is connected to the heat insulation plate 25, and the heat insulation plate 25 seals the hopper 22.
  • the two synchronous gears 24 mesh with each other, the synchronous gear 24 is located in the middle of the hopper 22, and the heat shield 25 is arranged on the left and right sides of the synchronous gear 24.
  • the NdFeB waste material rotates downward along the heat shield 25 to open the channel and enters the preheating bin 20 for preheating.
  • the heat shield 25 does not have NdFeB waste material, it passes through The elastic force of the biasing elastic piece causes the synchronization gear 24 to reset, and drives the heat insulation plate 25 to reset, and the communication between the feeding hopper 22 and the preheating bin 20 is sealed again.
  • the partition plate 14 in the feeding port 11 is moved, so that the NdFeB waste in the preheating bin 20 enters the roasting furnace 10.
  • the two intermeshing synchronization gears 24 located in the middle of the heat insulation plate 25 rotate, so that the heat insulation plates 25 on the left and right sides are tapered upwards, so that the neodymium iron boron waste flows along the heat insulation plate 25 and is scattered.
  • the preheating chamber 20 On both sides of the preheating chamber 20.
  • the waste heat is introduced into the preheating box to preheat the neodymium iron boron waste.
  • the heat insulation board 25 can follow the neodymium iron boron waste Adding to open the hopper 22 in time, and close the hopper 22 when no NdFeB waste is added, reducing the loss of waste heat (and also avoiding the damage to the staff when the waste heat is added), which is beneficial to strengthen the use of waste heat.
  • the heat shield 25 is tapered after opening, so that the NdFeB waste can be shunted and scattered on both sides of the preheating bin 20, which is beneficial to expand the contact area of the NdFeB waste to the waste heat and further strengthen the full utilization of the waste heat.
  • the bottom of the preheating bin 20 has an inclined material guide surface 23, and the material guide surface 23 is used to introduce the neodymium iron boron waste to the inlet 11.
  • the NdFeB waste scattered on both sides of the preheating bin 20 is slowly flowed and concentrated into the feed inlet 11 at the upper end of the roasting furnace 10 under the action of the inclined guide surface 23 in the preheating bin 20.
  • a telescopic cylinder 15 is provided at the upper end of the roasting furnace 10, the telescopic cylinder 15 is connected to the spacer plate 14, and the telescopic cylinder 15 is a telescopic cylinder.
  • stop blocks 26 on both inner sides of the hopper 22, and the stop blocks 26 are used to resist the heat insulation board 25.
  • the heat insulation plate 25 is prevented from being tilted upward under the elastic action of the biased elastic sheet, and the hopper 22 is opened, which promotes the rapid loss of heat in the preheating bin 20, and cannot fully utilize the waste heat generated after roasting.
  • the device capable of recycling the waste heat of the NdFeB waste roasting kiln further includes: a filter warehouse 30, a heating warehouse 40, a heat preservation warehouse 50, and a heating warehouse 60.
  • the filter compartment 30 is connected to the intake pipe 21 or the regulating valve 13.
  • the heating chamber 40 is connected to the filtering chamber 30.
  • the heat preservation bin 50 is connected to the heating bin 40.
  • the heating warehouse 60 is connected to the thermal insulation warehouse 50.
  • the filter compartment 30 has a honeycomb filter 31, which has: large pores 32, small pores 33, plugging blocks 34, upper filter screen 35, and lower Filter 36.
  • the small holes 33 and the large holes 32 are spaced apart from each other in the longitudinal and transverse directions.
  • the blocking block 34 is arranged at the left end of the small channel 33, and the blocking block 34 is also arranged at the right end of the large channel 32.
  • the upper filter screen 35 is arranged between the bottom of the small channel 33 and the top of the large channel 32.
  • the lower filter 36 is arranged between the bottom of the large channel 32 and the top of the small channel 33.
  • the filter hole directions of the upper filter screen 35 and the lower filter screen 36 are both inclined from right to left.
  • the waste heat gas After the regulating valve 13 is opened, the waste heat gas enters the filter chamber 30, and the harmful substances in the waste heat gas are filtered through the filter chamber 30. Specifically, the waste heat gas enters the small channel 33, and then the upper filter screen in the small channel 33 35 and the lower filter 36 filter the harmful substances of the waste heat gas, so that the filtered waste heat gas enters the large pores 32, and then the waste heat gas is discharged from the large pores 32.
  • the waste heat gas entering the small hole 33 moves from right to left along the upper filter screen 35 and the lower filter screen 36.
  • the upper filter screen 35 and the lower filter screen 36 are slanted to the left by setting the filter holes to treat the residual heat.
  • the gas is guided to a certain extent, so that the waste heat gas is not easy to pass through the upper filter 35 and the lower filter 36 quickly in a large amount, and at the same time, enough waste heat gas can be fully contained in the small hole 33, thereby enabling the small hole 33 to have a large area and Filter waste heat gas slowly.
  • the impurities on the waste heat gas can be effectively prevented from sticking to the object to be heated, resulting in a decrease in the heating effect of the waste heat on the object to be heated.
  • the heating chamber 40 has: a water inlet pipe 41, an intestinal pipe 42, and a water outlet pipe 43,
  • the intestine-shaped pipe 42 communicates with the water inlet pipe 41, and the intestine-shaped pipe 42 is located in the heating chamber 40.
  • the water outlet pipe 43 communicates with the intestinal pipe 42.
  • the heat preservation bin 50 has a water bucket 51 and a heat preservation channel 52, and the water bucket 51 is connected to the water outlet pipe 43.
  • the heat preservation channel 52 is formed by a gap between the inner wall of the heat preservation bin 50 and the outer surface of the water bucket 51, and the heat preservation is connected to the heating bin 40.
  • the filtered waste heat gas enters the heating chamber 40 and heats the water flow in the intestinal pipe 42 in the heating chamber 40. After that, the waste heat gas enters the heat preservation chamber 50 from the heating chamber 40, and the waste heat gas follows the heat preservation of the heat preservation chamber 50.
  • the passage 52 flows to keep the water flowing from the intestinal pipe 42 into the bucket 51 for heat preservation
  • the heat preservation warehouse 50 further has an air outlet pipe 53 and a heating valve 54, and the heating valve 54 is installed on the air outlet pipe 53.
  • the heating warehouse 60 has a hot air pipe 61, a heating pipe 62, and a radiator 63.
  • the hot gas pipe 61 communicates with the heating valve 54.
  • the heating pipe 62 communicates with the hot gas pipe 61.
  • the radiator 63 is installed on the heating pipe 62.
  • the heating warehouse 60 further has an electric control door 64 and a temperature sensor 65, and the electric control door 64 is located at the right end of the heating warehouse 60.
  • the temperature sensor 65 adopts a temperature sensor 65 resistant to high temperature, and the temperature sensor 65 is located on the wall surface of the heating chamber 60.
  • the cold air mechanism 70 is opened to input cold air into the heating compartment 60.
  • the temperature sensor 65 in the heating compartment 60 detects that the temperature reaches a suitable state, the electric control door 64 is opened to supply heating.
  • the cold air mechanism 70 has: a cold air pipe 71, a drive motor 72, a rotating shaft 721, a drive gear 722, a suction blade 723, a rotating column 73, and a first Bearing 733, movable block 75, limiting rod 74, limiting post 76, sliding head 762, second bearing 763, and sealing door 77.
  • the cold air pipe 71 communicates with the heating chamber 60.
  • the driving motor 72 is arranged at the side end of the cold air duct 71.
  • the rotating shaft 721 is connected to the driving motor 72, and the rotating shaft 721 passes through the cold air duct 71 transversely.
  • the driving gear 722 is located at the side end of the cold air pipe 71, and the driving gear 722 is sleeved on the rotating shaft 721.
  • the suction blade 723 is located in the cold air duct 71, and the suction blade 723 is sleeved on the rotating shaft 721.
  • the rotating column 73 is inclined to the rotating shaft 721.
  • the rotating column 73 has a column head 732 and a connecting gear 731 at the upper and lower ends, and the connecting gear 731 meshes with the driving gear 722.
  • the first bearing 733 is sleeved on the rotating column 73.
  • the movable block 75 is movably connected to the column head 732.
  • the limiting rod 74 is rotatably connected to the movable block 75, the limiting rod 74 is inclined to the rotating column 73, and the limiting rod 74 has a roller head 741.
  • the limiting column 76 is perpendicular to the rotating shaft 721, the limiting column 76 has a driven gear 761, and the driven gear 761 is provided with a bias spring.
  • the limit post 76 is slidably connected to the limit post 76, the sliding head 762 is perpendicular to the limit post 76, the sliding head 762 is provided with a sliding track, and the roller head 741 is arranged in the sliding track.
  • the second bearing 763 is sleeved on the limit post 76.
  • the airtight door 77 is arranged in the cold air duct 71, and the airtight door 77 has a tooth groove 771, and the tooth groove 771 meshes with the driven gear 761.
  • the working principle of the cold air mechanism 70 is: starting the drive motor 72 drives the rotating shaft 721 to rotate, drives the suction blades 723 in the cold air duct 71 to rotate, and sucks the outside cold air into the cold air duct 71.
  • the rotation shaft 721 also drives the driving gear 722 to rotate, and then drives the connecting teeth and the rotating column 73 on the connecting gear 731 to rotate, so that the limiting rod 74 inclined to the rotating column 73 is movably connected to the movable block 75 of the column head 732 of the rotating column 73
  • the moving and rotating causes the limit post 76 and the sliding head 762 on the limit post 76 to rotate.
  • the passive gear 761 on the limit post 76 rotates to compress the bias spring and pulls the sealing door 77 to move, opening the cold air duct 71 to make it cool
  • the air enters the heating chamber 60 from the cold air pipe 71 and mixes with the hot air in the heating chamber 60.
  • the rotating column 73 Drive the movable block 75 to rotate idly.
  • the drive motor 72 is turned off.
  • the compressed bias spring is reset, driving the driven gear 761 to push the sealing door 77 to re-seal the cold air duct 71, and at the same time
  • the sliding head 762 of the limit post 76 and the limit rod 74 are also reset under the action of the bias spring, so that the limit rod 74 is re-inclined to the rotation post 73.
  • the sealing door 77 in the cooling mechanism 70 can move synchronously with the suction blade 723 at the same time, that is, when the suction blade 723 rotates to suck in air, the sealing door 77 opens, and when the suction blade 723 stops rotating, the sealing door 77 closes.
  • the synchronization efficiency of can accurately control the temperature of the waste heat drop, so that the temperature reaches the suitable temperature of the human body, and avoid the temperature provided by the heating warehouse 60 being too high, which is difficult to use as heating. Therefore, the utilization of the waste heat is greatly enhanced.
  • a method for recycling waste heat from a roasting kiln for neodymium iron boron waste including the following steps:
  • Blanking control pour NdFeB waste into the feeding hopper 22 on the preheating bin 20.
  • the heat shield 25 in the feeding hopper 22 is rotated downward by the gravity of the NdFeB waste and drives the synchronous gear 24 to rotate.
  • the synchronous gear While 24 is rotating, the biasing shrapnel is compressed.
  • the NdFeB waste material rotates downwards along the heat shield 25 to open the channel and enters into the preheating bin 20 for preheating.
  • the heat shield 25 does not have NdFeB waste material
  • the synchronizing gear 24 is reset by the elastic force of the biasing elastic piece, and the heat shield 25 is driven to reset, and the communication between the feeding hopper 22 and the preheating bin 20 is sealed again.
  • the two intermeshing synchronization gears 24 located in the middle of the heat insulation board 25 rotate, so that the heat insulation boards 25 on the left and right sides are tapered upwards, so that the neodymium iron boron waste material flows along the heat insulation board 25. Scattered on both sides of the preheating bin 20, so that the neodymium iron boron waste material is preheated in the preheating bin 20.
  • the NdFeB waste scattered on both sides of the preheating bin 20 is slowly flowed and concentrated into the feed inlet 11 at the upper end of the roasting furnace 10 under the action of the inclined guide surface 23 in the preheating bin 20.
  • the waste heat gas enters the filter chamber 30, and the harmful substances in the waste heat gas are filtered through the filter chamber 30. Specifically, the waste heat gas enters the small pores 33, and then the waste heat gas enters the small pores 33.
  • the upper filter 35 and the lower filter 36 filter the harmful substances of the waste heat gas, so that the filtered waste heat gas enters the large pores 32, and then the waste heat gas is discharged from the large pores 32.
  • the waste heat gas entering the small hole 33 moves from right to left along the upper filter screen 35 and the lower filter screen 36. During the movement, it passes through the upper filter screen 35 and the lower filter screen 36 and is set slantingly to the left.
  • the filter holes guide the waste heat gas to a certain extent, so that the waste heat gas is not easy to pass through the upper filter screen 35 and the lower filter screen 36 quickly, and at the same time, the small hole 33 can fully contain enough waste heat gas, thereby making the small hole 33 It can filter the waste heat gas in a large area and relatively slowly.
  • the filtered waste heat gas enters the heating chamber 40 to heat the water flow in the intestinal pipe 42 in the heating chamber 40, and then the waste heat gas enters the heat preservation chamber 50 from the heating chamber 40, and the waste heat gas flows along the heat preservation chamber.
  • the heat preservation channel 52 of the bin 50 flows to heat the water flowing from the intestinal pipe 42 into the water bucket 51.
  • the heating valve 54 on the outlet pipe 53 of the heat preservation warehouse 50 is opened, so that the waste heat gas flows into the heating pipe 62 in the heating warehouse 60 through the hot gas pipe 61 after passing through the heat preservation warehouse 50, and the heating installed on the heating pipe 62
  • the sheet 63 heats up and emits heat.
  • the cold air mechanism 70 is opened to input cold air into the heating cabin 60, and when the temperature sensor 65 in the heating cabin 60 detects that the temperature reaches a proper state, the electronic control door is opened 64 for heating supply.
  • the working principle of the cold air mechanism 70 is: starting the drive motor 72 drives the rotating shaft 721 to rotate, drives the suction blades 723 in the cold air duct 71 to rotate, and sucks the external cold air into the cold air duct 71.
  • the rotation of 721 also drives the driving gear 722 to rotate, which in turn drives the connecting teeth and the rotating column 73 on the connecting gear 731 to rotate, so that the limiting rod 74 inclined to the rotating column 73 is moved by the movable block 75 movably connected to the column head 732 of the rotating column 73
  • the sliding head 762 on the limit post 76 and the limit post 76 is rotated by the dynamic rotation.
  • the passive gear 761 on the limit post 76 rotates to compress the bias spring, and pulls the sealing door 77 to move, opening the cold air pipe 71 to make the cold air It enters the heating chamber 60 from the cold air pipe 71 and mixes with the hot air in the heating chamber 60.
  • the rotating column 73 drives The movable block 75 is idling.
  • the drive motor 72 is turned off.
  • the compressed bias spring is reset, driving the driven gear 761 to push the sealing door 77 to re-seal the cold air duct 71, and at the same time limit
  • the sliding head 762 of the position post 76 and the limiting rod 74 are also reset under the action of the biasing spring, so that the limiting rod 74 is tilted to the rotating column 73 again.

Abstract

本发明公开了一种可回收利用钕铁硼废料焙烧窑炉余热的装置,涉及钕铁硼稀土材料技术领域,包括:焙烧炉、调控阀门、隔料板、预热仓、加料斗、同步齿轮、偏置弹片、隔热板。本发明通过将余热导入至预热箱中对钕铁硼废料预热,在此过程中,每当向预热箱加入钕铁硼废料时,隔热板都能随着钕铁硼废料的加入及时打开加料斗,并在没有钕铁硼废料加入时关闭加料斗,减少了余热的流失,有利于加强对余热的利用,此外,隔热板打开后呈锥形,使得钕铁硼废料能够被分流散落在预热仓两侧,有利于扩大钕铁硼废料对余热的接触面积,进一步加强对余热的充分利用。

Description

一种可回收利用钕铁硼废料焙烧窑炉余热的装置及方法 技术领域
本发明涉及钕铁硼稀土材料技术领域,特别涉及一种可回收利用钕铁硼废料焙烧窑炉余热的装置。
背景技术
钕铁硼是磁铁中的一种,具有优异的磁性能、极高的磁能积和矫顽力,同时还具有高能量密度的优点,其本身的机械加工性能优异,工作温度可达200℃,而且质地坚硬,在现代化工业和电子技术中得到了广泛应用,使得仪器仪表、电机、磁选磁化等设备的小型化、轻:量化得以实现。
在钕铁硼的生产过程一般包括准备原材料、冶炼、铸片、氢碎、磁场取向与压型、烧结,后加工等步骤,在上述生产流程中,会产生大量可利用的废料,如油泥、边角料等,为了避免浪费,目前厂家都进行重新回收烧结利用,焙烧窑炉在进行烧结过程中会有大量的余热,现有的热量都是直接排到空气中,虽然目前也有一些对余热回收的装置,但回收利用效果较差,不能对余热充分利用。
发明内容
本发明目的之一是解决现有技术中的余热回收的装置的回收利用效果较差,不能对余热充分利用的问题。
本发明目的之二是提供一种可回收利用钕铁硼废料焙烧窑炉余热的方法。
为达到上述目的之一,本发明采用以下技术方案:一种可回收利用钕铁硼废料焙烧窑炉余热的装置,其中,包括:焙烧炉,所述焙烧炉具有:进料口,所述进料口位于所述焙烧炉上端;排气口,所述排气口位于所述焙烧炉侧端;调控阀门,所述调控阀门设置在所述排气口;隔料板,所述隔料板设置在所述进料口中,密封所述进料口;预热仓,所述预热仓设置在所述焙烧炉上端,所述预热仓连通所述进料口,所述预热仓具有:进气管,所述进气管与所述调控阀门相连;加料斗,所述加料斗连通所述预热仓;同步齿轮,所述同步齿轮设置所述加料斗中;偏置弹片,所述偏置弹片设置在所述同步齿轮上;
隔热板,所述隔热板设置在所述加料斗中,所述同步齿轮连接所述隔热板,所述隔热板密封所述加料斗。
其中,所述同步齿轮至少具有两个,该两个同步齿轮相互啮合,所述同步齿轮位于加料斗中间,所述隔热板设置在所述同步齿轮左右两侧。
在上述技术方案中,本发明实施例在首先在焙烧炉燃烧钕铁硼废料后,打开焙烧炉排气 口的调控阀门,使得余热被排放转移至预热仓中。之后向预热仓上的加料斗倒入钕铁硼废料,加料斗中的隔热板受到钕铁硼废料的重力作用向下旋转并且驱动同步齿轮转动,同步齿轮转动的同时压紧偏置弹片,此时钕铁硼废料顺着隔热板向下旋转打开通道进入至预热仓中进行预热,当隔热板上不具有钕铁硼废料时,通过偏置弹片的弹性作用力促使同步齿轮复位,并带动隔热板复位,重新密闭加料斗与预热仓的连通。最后当焙烧炉取出焙烧好的钕铁硼废料后,移动进料口中隔料板,使得预热仓中的钕铁硼废料进入至焙烧炉中。
其中,位于隔热板中间的两个相互啮合的同步齿轮旋转,使得左右两侧的隔热板呈向上突起的锥形,进而使得钕铁硼废料顺着隔热板流动,散落在预热仓两侧。
进一步地,在本发明实施例中,所述预热仓底部具有倾斜导料面,该导料面用于将钕铁硼废料导入至所述进料口处。散落在预热仓两侧的钕铁硼的废料在预热仓中倾斜导料面的作用下,缓慢流动集中至焙烧炉上端的进料口中。通过这种缓慢流动再集中在一起的方式,有利于余热更充分接触钕铁硼废料,加强余热的利用率。
进一步地,在本发明实施例中,所述焙烧炉上端设有伸缩缸,所述伸缩缸连接所述隔料板。
进一步地,在本发明实施例中,所述加料斗内两侧具有限位块,所述限位块用于抵住所述隔热板。防止隔热板在偏置弹片的弹性作用下向上翘起,打开加料斗,促使预热仓内的热量快速流失,无法充分利用焙烧后产生的余热。
进一步地,在本发明实施例中,所述可回收利用钕铁硼废料焙烧窑炉余热的装置还包括:过滤仓,所述过滤仓连通所述进气管或调控阀门;加热仓,所述加热仓连通所述过滤仓;保温仓,所述保温仓连通所述加热仓;供暖仓,所述供暖仓连通所述保温仓。
更进一步地,在本发明实施例中,所述过滤仓内具有蜂窝过滤器,所述蜂窝过滤器具有:大孔道;小孔道,所述小孔道与所述大孔道沿纵向与横向方向相互间隔排列;封堵块,所述封堵块设置在所述小孔道的左侧端,所述封堵块还设置在所述大孔道的右侧端;上滤网,所述上滤网设置在所述小孔道的底部与所述大孔道的顶部之间;下滤网,所述下滤网设置在所述大孔道的底部与所述小孔道的顶部之间。
更进一步地,在本发明实施例中,所述上滤网与所述下滤网的滤孔方向均由右向左倾斜。
调控阀门打开后,余热气体进入至过滤仓中,通过过滤仓对余热气体中的有害物质进行过滤,具体为:余热气体进入小孔道,之后小孔道中的上滤网与下滤网对余热气体的有害物质过滤,使得过滤后的余热气体进入至大孔道中,进而使得余热气体从大孔道中排出。
进入小孔道的余热气体沿着上滤网与下滤网由右向左移动,在移动过程中,通过上滤网 与下滤网偏斜向左的设置滤孔对余热气体进行一定的导向,使得余热气体不易大量且快速穿过上滤网与下滤网,同时使得小孔道中能够充分容纳足够的余热气体,进而使得小孔道能够大面积且较为缓慢的过滤余热气体。通过过滤余热气体,能够有效的避免余热气体上的杂质粘结在待加热物上,导致余热对待加热物的加热效果下降。
更进一步地,在本发明实施例中,所述加热仓具有:进水管;肠形管道,所述肠形管道连通所述进水管,所述肠形管道位于所述加热仓中;出水管,所述出水管连通所述肠形管道。
所述保温仓具有:水桶,所述水桶连通所述出水管;保温通道,所述保温通道由所述保温仓的内壁与所述水桶外表面之间的空隙构成,所述保温连通所述加热仓。
过滤后的余热气体进入至加热仓中,对加热仓中的肠形管道中的水流加热,之后余热气体从加热仓中进入至保温仓,余热气体沿着保温仓的保温通道流动,对从肠形管道中流入至水桶的水流进行保温
更进一步地,在本发明实施例中,所述所述保温仓还具有:出气管;供暖阀门,所述供暖阀门安装在所述出气管上。
所述供暖仓具有:热气管,所述热气管连通所述供暖阀门;发热管,所述发热管连通所述热气管;暖气片,所述暖气片安装在所述发热管上。
打开保温仓出气管上的供暖阀门,使得余热气体经过保温仓后通过热气管流入至供暖仓中的发热管中,对安装在发热管上的暖气片进行升温放热。
更进一步地,在本发明实施例中,所述供暖仓还具有:电控门,所述电控门位于所述供暖仓的右侧端;温度传感器,所述温度传感器位于所述供暖仓的壁面上。
根据人体适宜温度的需求,打开冷风机构向供暖仓中输入冷空气,当供暖仓中的温度传感器检测到温度达到合适的状态,则打开电控门进行暖气供应。
所述供暖仓侧端设有冷风机构,所述冷风机构具有:冷风管,所述冷风管连通所述供暖仓;驱动电机,所述驱动电机设置在所述冷风管侧端;转轴,所述转轴连接所述驱动电机,所述转轴横向穿过所述冷风管;驱动齿轮,所述驱动齿轮位于所述冷风管侧端,所述驱动齿轮套设在所述转轴上;吸气叶片,所述吸气叶片位于所述冷风管中,所述吸气叶片套设在所述转轴上;旋转柱,所述旋转柱倾斜于所述转轴,所述旋转柱具有:连接齿轮,所述连接齿轮啮合所述驱动齿轮;柱头;第一轴承,所述第一轴承套设在所述旋转柱上;活动块,所述活动块活动连接所述柱头;限定杆,所述限定杆旋转连接所述活动块,所述限定杆倾斜于所述旋转柱,所述限定杆上具有:滚头;限位柱,所述限位柱垂直于所述转轴,所述限位柱具有:被动齿轮,所述被动齿轮上设有偏置弹簧;滑头,所述滑动旋转连接所述限位柱,所述滑头 垂于于所述限位柱,所述滑头上具有滑道,所述滚头设置在所述滑道中;第二轴承,所述第二轴承套设在所述限位柱上;密封门,所述密封门设置在所述冷风管中,所述密封门上具有齿槽,该齿槽啮合所述被动齿轮。
冷风机构的工作原理为:启动驱动电机带动转轴转动,带动冷风管中的吸气叶片转动,将外界的冷空气卷吸入至冷风管中,转轴转动的同时还带动驱动齿轮旋转,继而带动连接齿以及连接齿轮上的旋转柱转动,使得倾斜于旋转柱的限定杆被活动连接在旋转柱柱头的活动块搬动旋转,促使限位柱与限位柱上的滑头旋转,此时限位柱上的被动齿轮旋转压缩偏置弹簧,并且拉动密封门移动,打开冷风管,使得冷空气从冷风管进入至供暖仓中,与供暖仓中的热空气混合,在此过程中,当限定杆旋转至一定角度,且与旋转柱处于同一中心轴线时,旋转柱带动活动块空转,当无需向供暖仓中输入冷空气时,关闭驱动电机,与此同时,被压缩的偏置弹簧复位,带动被动齿轮推动密封门重新密封冷风管,同时限位柱的滑头与限定杆也在偏置弹簧的作用下复位,促使限定杆重新倾斜于旋转柱。
冷风机构中的密封门能够同时与吸气叶片同步运动,即吸气叶片旋转吸气时,密封门打开,吸气叶片停止旋转时,密封门关闭,通过这种强大的同步效率,能够精准控制余热下降的温度,使得该温度达到人体适宜的温度,避免供暖仓提供的温度过高,难以作为供暖使用,因此,大大加强了对余热的利用。
本发明的有益效果是:
本发明通过将余热导入至预热箱中对钕铁硼废料预热,在此过程中,每当向预热箱加入钕铁硼废料时,隔热板都能随着钕铁硼废料的加入及时打开加料斗,并在没有钕铁硼废料加入时关闭加料斗,减少了余热的流失,有利于加强对余热的利用,此外,隔热板打开后呈锥形,使得钕铁硼废料能够被分流散落在预热仓两侧,有利于扩大钕铁硼废料对余热的接触面积,进一步加强对余热的充分利用。
为达到上述目的之二,本发明采用以下技术方案:一种可回收利用钕铁硼废料焙烧窑炉余热的方法,包括以下步骤:
导热,在焙烧炉燃烧钕铁硼废料后,打开焙烧炉排气口的调控阀门,使得余热被排放转移至预热仓中;
落料调控,向预热仓上的加料斗倒入钕铁硼废料,加料斗中的隔热板受到钕铁硼废料的重力作用向下旋转并且驱动同步齿轮转动,同步齿轮转动的同时压紧偏置弹片,此时钕铁硼废料顺着隔热板向下旋转打开通道进入至预热仓中进行预热,当隔热板上不具有钕铁硼废料时,通过偏置弹片的弹性作用力促使同步齿轮复位,并带动隔热板复位,重新密闭加料斗与 预热仓的连通;
预热,位于隔热板中间的两个相互啮合的同步齿轮旋转,使得左右两侧的隔热板呈向上突起的锥形,进而使得钕铁硼废料顺着隔热板流动,散落在预热仓两侧,使得钕铁硼废料在预热仓中进行预热。
进一步地,在本发明实施例中,散落在预热仓两侧的钕铁硼的废料在预热仓中倾斜导料面的作用下,缓慢流动集中至焙烧炉上端的进料口中。
进一步地,在本发明实施例中,调控阀门打开后,余热气体进入至过滤仓中,通过过滤仓对余热气体中的有害物质进行过滤,具体为:余热气体进入小孔道,之后小孔道中的上滤网与下滤网对余热气体的有害物质过滤,使得过滤后的余热气体进入至大孔道中,进而使得余热气体从大孔道中排出。
更进一步地,在本发明实施例中,进入小孔道的余热气体沿着上滤网与下滤网由右向左移动,在移动过程中,通过上滤网与下滤网偏斜向左的设置滤孔对余热气体进行一定的导向,使得余热气体不易大量且快速穿过上滤网与下滤网,同时使得小孔道中能够充分容纳足够的余热气体,进而使得小孔道能够大面积且较为缓慢的过滤余热气体。
更进一步地,在本发明实施例中,过滤后的余热气体进入至加热仓中,对加热仓中的肠形管道中的水流加热,之后余热气体从加热仓中进入至保温仓,余热气体沿着保温仓的保温通道流动,对从肠形管道中流入至水桶的水流进行保温。
更进一步地,在本发明实施例中,打开保温仓出气管上的供暖阀门,使得余热气体经过保温仓后通过热气管流入至供暖仓中的发热管中,对安装在发热管上的暖气片进行升温放热。
更进一步地,在本发明实施例中,在寒冷空气候中,根据温度的需求,打开冷风机构向供暖仓中输入冷空气,当供暖仓中的温度传感器检测到温度达到合适的状态,则打开电控门进行暖气供应,其中,冷风机构的工作原理为:启动驱动电机带动转轴转动,带动冷风管中的吸气叶片转动,将外界的冷空气卷吸入至冷风管中,转轴转动的同时还带动驱动齿轮旋转,继而带动连接齿以及连接齿轮上的旋转柱转动,使得倾斜于旋转柱的限定杆被活动连接在旋转柱柱头的活动块搬动旋转,促使限位柱与限位柱上的滑头旋转,此时限位柱上的被动齿轮旋转压缩偏置弹簧,并且拉动密封门移动,打开冷风管,使得冷空气从冷风管进入至供暖仓中,与供暖仓中的热空气混合,在此过程中,当限定杆旋转至一定角度,且与旋转柱处于同一中心轴线时,旋转柱带动活动块空转,当无需向供暖仓中输入冷空气时,关闭驱动电机,与此同时,被压缩的偏置弹簧复位,带动被动齿轮推动密封门重新密封冷风管,同时限位柱的滑头与限定杆也在偏置弹簧的作用下复位,促使限定杆重新倾斜于旋转柱。
附图说明
图1为本发明实施例可回收利用钕铁硼废料焙烧窑炉余热的装置的平面示意图。
图2为本发明实施例可回收利用钕铁硼废料焙烧窑炉余热的装置的结构示意图。
图3为本发明实施例预热仓的结构示意图。
图4为本发明实施例预热仓的效果示意图。
图5为本发明实施例蜂窝过滤器的立体示意图。
图6为本发明实施例蜂窝过滤器的结构示意图。
图7为本发明实施例冷风机构的结构示意图。
图8为本发明实施例旋转柱与限位柱的立体示意图。
图9为本发明实施例冷风机构的运动效果示意图。
图10为本发明实施例旋转柱与限位柱的运动示意图。
附图中
10、焙烧炉                 11、进料口                 12、排气口
13、调控阀门               14、隔料板                 15、伸缩缸
20、预热仓                 21、进气管                 22、加料斗
23、导料面                 24、同步齿轮               25、隔热板
26、限位块
30、过滤仓                 31、蜂窝过滤器             32、大孔道
33、小孔道                 34、封堵块                 35、上滤网
36、下滤网
40、加热仓                 41、进水管                 42、肠形管道
43、出水管
50、保温仓                 51、水桶                   52、保温通道
53、出气管                 54、供暖阀门
60、供暖仓                 61、热气管                 62、发热管
63、暖气片                 64、电控门                 65、温度传感器
70、冷风机构               71、冷风管                 72、驱动电机
721、转轴                  722、驱动齿轮              723、吸气叶片
73、旋转柱                 731、连接齿轮              732、柱头
733、第一轴承              74、限定杆                 741、滚头
75、活动块                 76、限位柱                 761、被动齿轮
762、滑头                  763、第二轴承              77、密封门
771、齿槽
具体实施方式
为了使本发明的目的、技术方案进行清楚、完整地描述,及优点更加清楚明白,以下结合附图对本发明实施例进行进一步详细说明。应当理解,此处所描述的具体实施例是本发明一部分实施例,而不是全部的实施例,仅仅用以解释本发明实施例,并不用于限定本发明实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“中”“上”、“下”、“左”、“右”、“内”、“外”、“顶”、“底”、“侧”、“竖直”、“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“一”、“第一”、“第二”、“第三”、“第四”、“第五”、“第六”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
出于简明和说明的目的,实施例的原理主要通过参考例子来描述。在以下描述中,很多具体细节被提出用以提供对实施例的彻底理解。然而明显的是。对于本领域普通技术人员,这些实施例在实践中可以不限于这些具体细节。在一些实例中,没有详细地描述公知可回收利用钕铁硼废料焙烧窑炉余热的方法和结构,以避免无必要地使这些实施例变得难以理解。另外,所有实施例可以互相结合使用。
实施例一:
一种可回收利用钕铁硼废料焙烧窑炉余热的装置,其中,如图1-3所示,包括:焙烧炉10、调控阀门13、隔料板14、预热仓20、加料斗22、同步齿轮24、偏置弹片、隔热板25。
焙烧炉10具有进料口11与排气口12,进料口11位于焙烧炉10上端。排气口12位于 焙烧炉10左侧端。
调控阀门13设置在排气口12。隔料板14设置在进料口11中,密封进料口11。
预热仓20设置在焙烧炉10上端,预热仓20连通进料口11,预热仓20具有进气管21,进气管21与调控阀门13相连。加料斗22连通预热仓20。
如图3所示,同步齿轮24设置加料斗22中。偏置弹片设置在同步齿轮24上。隔热板25设置在加料斗22中,同步齿轮24连接隔热板25,隔热板25密封加料斗22。
其中,同步齿轮24至少具有两个,该两个同步齿轮24相互啮合,同步齿轮24位于加料斗22中间,隔热板25设置在同步齿轮24左右两侧。
实施步骤:如图2、4所示,首先在焙烧炉10燃烧钕铁硼废料后,打开焙烧炉10排气口12的调控阀门13,使得余热被排放转移至预热仓20中。之后向预热仓20上的加料斗22倒入钕铁硼废料,加料斗22中的隔热板25受到钕铁硼废料的重力作用向下旋转并且驱动同步齿轮24转动,同步齿轮24转动的同时压紧偏置弹片,此时钕铁硼废料顺着隔热板25向下旋转打开通道进入至预热仓20中进行预热,当隔热板25上不具有钕铁硼废料时,通过偏置弹片的弹性作用力促使同步齿轮24复位,并带动隔热板25复位,重新密闭加料斗22与预热仓20的连通。最后当焙烧炉10取出焙烧好的钕铁硼废料后,移动进料口11中隔料板14,使得预热仓20中的钕铁硼废料进入至焙烧炉10中。
其中,位于隔热板25中间的两个相互啮合的同步齿轮24旋转,使得左右两侧的隔热板25呈向上突起的锥形,进而使得钕铁硼废料顺着隔热板25流动,散落在预热仓20两侧。
本发明通过将余热导入至预热箱中对钕铁硼废料预热,在此过程中,每当向预热箱加入钕铁硼废料时,隔热板25都能随着钕铁硼废料的加入及时打开加料斗22,并在没有钕铁硼废料加入时关闭加料斗22,减少了余热的流失(也能避免在加料时余热对工作人员的伤害),有利于加强对余热的利用,此外,隔热板25打开后呈锥形,使得钕铁硼废料能够被分流散落在预热仓20两侧,有利于扩大钕铁硼废料对余热的接触面积,进一步加强对余热的充分利用。
优选地,如图3所示,预热仓20底部具有倾斜导料面23,该导料面23用于将钕铁硼废料导入至进料口11处。散落在预热仓20两侧的钕铁硼的废料在预热仓20中倾斜导料面23的作用下,缓慢流动集中至焙烧炉10上端的进料口11中。通过这种缓慢流动再集中在一起的方式,有利于余热更充分接触钕铁硼废料,加强余热的利用率。
优选地,焙烧炉10上端设有伸缩缸15,伸缩缸15连接隔料板14,伸缩缸15为伸缩气缸。
优选地,加料斗22内两侧具有限位块26,限位块26用于抵住隔热板25。防止隔热板 25在偏置弹片的弹性作用下向上翘起,打开加料斗22,促使预热仓20内的热量快速流失,无法充分利用焙烧后产生的余热。
优选地,如图1、2所示,可回收利用钕铁硼废料焙烧窑炉余热的装置还包括:过滤仓30、加热仓40、保温仓50、供暖仓60。
过滤仓30连通进气管21或调控阀门13。加热仓40连通过滤仓30。保温仓50连通加热仓40。供暖仓60连通保温仓50。
更优选地,如图2、5、6所示,过滤仓30内具有蜂窝过滤器31,蜂窝过滤器31具有:大孔道32、小孔道33、封堵块34、上滤网35、下滤网36。
小孔道33与大孔道32沿纵向与横向方向相互间隔排列。封堵块34设置在小孔道33的左侧端,封堵块34还设置在大孔道32的右侧端。上滤网35设置在小孔道33的底部与大孔道32的顶部之间。下滤网36设置在大孔道32的底部与小孔道33的顶部之间。
上滤网35与下滤网36的滤孔方向均由右向左倾斜。
调控阀门13打开后,余热气体进入至过滤仓30中,通过过滤仓30对余热气体中的有害物质进行过滤,具体为:余热气体进入小孔道33,之后小孔道33中的上滤网35与下滤网36对余热气体的有害物质过滤,使得过滤后的余热气体进入至大孔道32中,进而使得余热气体从大孔道32中排出。
进入小孔道33的余热气体沿着上滤网35与下滤网36由右向左移动,在移动过程中,通过上滤网35与下滤网36偏斜向左的设置滤孔对余热气体进行一定的导向,使得余热气体不易大量且快速穿过上滤网35与下滤网36,同时使得小孔道33中能够充分容纳足够的余热气体,进而使得小孔道33能够大面积且较为缓慢的过滤余热气体。通过过滤余热气体,能够有效的避免余热气体上的杂质粘结在待加热物上,导致余热对待加热物的加热效果下降。
更优选地,如图2所示,加热仓40具有:进水管41、肠形管道42、出水管43,
肠形管道42连通进水管41,肠形管道42位于加热仓40中。出水管43连通肠形管道42。
保温仓50具有水桶51与保温通道52,水桶51连通出水管43。保温通道52由保温仓50的内壁与水桶51外表面之间的空隙构成,保温连通加热仓40。
过滤后的余热气体进入至加热仓40中,对加热仓40中的肠形管道42中的水流加热,之后余热气体从加热仓40中进入至保温仓50,余热气体沿着保温仓50的保温通道52流动,对从肠形管道42中流入至水桶51的水流进行保温
更优选地,保温仓50还具有出气管53与供暖阀门54,供暖阀门54安装在出气管53上。
如图2所示,供暖仓60具有:热气管61、发热管62、暖气片63。
热气管61连通供暖阀门54。发热管62连通热气管61。暖气片63安装在发热管62上。
打开保温仓50出气管53上的供暖阀门54,使得余热气体经过保温仓50后通过热气管61流入至供暖仓60中的发热管62中,对安装在发热管62上的暖气片63进行升温放热。
更优选地,供暖仓60还具有电控门64与温度传感器65,电控门64位于供暖仓60的右侧端。温度传感器65采用耐高温的温度传感器65,温度传感器65位于供暖仓60的壁面上。
根据人体适宜温度的需求,打开冷风机构70向供暖仓60中输入冷空气,当供暖仓60中的温度传感器65检测到温度达到合适的状态,则打开电控门64进行暖气供应。
如图7、8所示,供暖仓60侧端设有冷风机构70,冷风机构70具有:冷风管71、驱动电机72、转轴721、驱动齿轮722、吸气叶片723、旋转柱73、第一轴承733、活动块75、限定杆74、限位柱76、滑头762、第二轴承763、密封门77。
冷风管71连通供暖仓60。驱动电机72设置在冷风管71侧端。转轴721连接驱动电机72,转轴721横向穿过冷风管71。驱动齿轮722位于冷风管71侧端,驱动齿轮722套设在转轴721上。吸气叶片723位于冷风管71中,吸气叶片723套设在转轴721上。
旋转柱73倾斜于转轴721,旋转柱73具有上下两端具有柱头732与连接齿轮731,连接齿轮731啮合驱动齿轮722。
第一轴承733套设在旋转柱73上。活动块75活动连接柱头732。限定杆74旋转连接活动块75,限定杆74倾斜于旋转柱73,限定杆74上具有滚头741。限位柱76垂直于转轴721,限位柱76具有被动齿轮761,被动齿轮761上设有偏置弹簧。滑动旋转连接限位柱76,滑头762垂于于限位柱76,滑头762上具有滑道,滚头741设置在滑道中。第二轴承763套设在限位柱76上。
密封门77设置在冷风管71中,密封门77上具有齿槽771,该齿槽771啮合被动齿轮761。
如图9、10所示,冷风机构70的工作原理为:启动驱动电机72带动转轴721转动,带动冷风管71中的吸气叶片723转动,将外界的冷空气卷吸入至冷风管71中,转轴721转动的同时还带动驱动齿轮722旋转,继而带动连接齿以及连接齿轮731上的旋转柱73转动,使得倾斜于旋转柱73的限定杆74被活动连接在旋转柱73柱头732的活动块75搬动旋转,促使限位柱76与限位柱76上的滑头762旋转,此时限位柱76上的被动齿轮761旋转压缩偏置弹簧,并且拉动密封门77移动,打开冷风管71,使得冷空气从冷风管71进入至供暖仓60中,与供暖仓60中的热空气混合,在此过程中,当限定杆74旋转至一定角度,且与旋转柱73处于同一中心轴线时,旋转柱73带动活动块75空转,当无需向供暖仓60中输入冷空气时,关闭驱动电机72,与此同时,被压缩的偏置弹簧复位,带动被动齿轮761推动密封门77 重新密封冷风管71,同时限位柱76的滑头762与限定杆74也在偏置弹簧的作用下复位,促使限定杆74重新倾斜于旋转柱73。
冷风机构70中的密封门77能够同时与吸气叶片723同步运动,即吸气叶片723旋转吸气时,密封门77打开,吸气叶片723停止旋转时,密封门77关闭,通过这种强大的同步效率,能够精准控制余热下降的温度,使得该温度达到人体适宜的温度,避免供暖仓60提供的温度过高,难以作为供暖使用,因此,大大加强了对余热的利用。
一种可回收利用钕铁硼废料焙烧窑炉余热的方法,包括以下步骤:
导热,在焙烧炉10燃烧钕铁硼废料后,打开焙烧炉10排气口12的调控阀门13,使得余热被排放转移至预热仓20中。
落料调控,向预热仓20上的加料斗22倒入钕铁硼废料,加料斗22中的隔热板25受到钕铁硼废料的重力作用向下旋转并且驱动同步齿轮24转动,同步齿轮24转动的同时压紧偏置弹片,此时钕铁硼废料顺着隔热板25向下旋转打开通道进入至预热仓20中进行预热,当隔热板25上不具有钕铁硼废料时,通过偏置弹片的弹性作用力促使同步齿轮24复位,并带动隔热板25复位,重新密闭加料斗22与预热仓20的连通。
预热,位于隔热板25中间的两个相互啮合的同步齿轮24旋转,使得左右两侧的隔热板25呈向上突起的锥形,进而使得钕铁硼废料顺着隔热板25流动,散落在预热仓20两侧,使得钕铁硼废料在预热仓20中进行预热。
优选地,散落在预热仓20两侧的钕铁硼的废料在预热仓20中倾斜导料面23的作用下,缓慢流动集中至焙烧炉10上端的进料口11中。
优选地,调控阀门13打开后,余热气体进入至过滤仓30中,通过过滤仓30对余热气体中的有害物质进行过滤,具体为:余热气体进入小孔道33,之后小孔道33中的上滤网35与下滤网36对余热气体的有害物质过滤,使得过滤后的余热气体进入至大孔道32中,进而使得余热气体从大孔道32中排出。
更优选地,进入小孔道33的余热气体沿着上滤网35与下滤网36由右向左移动,在移动过程中,通过上滤网35与下滤网36偏斜向左的设置滤孔对余热气体进行一定的导向,使得余热气体不易大量且快速穿过上滤网35与下滤网36,同时使得小孔道33中能够充分容纳足够的余热气体,进而使得小孔道33能够大面积且较为缓慢的过滤余热气体。
更优选地,过滤后的余热气体进入至加热仓40中,对加热仓40中的肠形管道42中的水流加热,之后余热气体从加热仓40中进入至保温仓50,余热气体沿着保温仓50的保温通道52流动,对从肠形管道42中流入至水桶51的水流进行保温。
更优选地,打开保温仓50出气管53上的供暖阀门54,使得余热气体经过保温仓50后通过热气管61流入至供暖仓60中的发热管62中,对安装在发热管62上的暖气片63进行升温放热。
更优选地,在寒冷空气候中,根据温度的需求,打开冷风机构70向供暖仓60中输入冷空气,当供暖仓60中的温度传感器65检测到温度达到合适的状态,则打开电控门64进行暖气供应,其中,冷风机构70的工作原理为:启动驱动电机72带动转轴721转动,带动冷风管71中的吸气叶片723转动,将外界的冷空气卷吸入至冷风管71中,转轴721转动的同时还带动驱动齿轮722旋转,继而带动连接齿以及连接齿轮731上的旋转柱73转动,使得倾斜于旋转柱73的限定杆74被活动连接在旋转柱73柱头732的活动块75搬动旋转,促使限位柱76与限位柱76上的滑头762旋转,此时限位柱76上的被动齿轮761旋转压缩偏置弹簧,并且拉动密封门77移动,打开冷风管71,使得冷空气从冷风管71进入至供暖仓60中,与供暖仓60中的热空气混合,在此过程中,当限定杆74旋转至一定角度,且与旋转柱73处于同一中心轴线时,旋转柱73带动活动块75空转,当无需向供暖仓60中输入冷空气时,关闭驱动电机72,与此同时,被压缩的偏置弹簧复位,带动被动齿轮761推动密封门77重新密封冷风管71,同时限位柱76的滑头762与限定杆74也在偏置弹簧的作用下复位,促使限定杆74重新倾斜于旋转柱73。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员能够理解本发明,但是本发明不仅限于具体实施方式的范围,对本技术领域的普通技术人员而言,只要各种变化只要在所附的权利要求限定和确定的本发明精神和范围内,一切利用本发明构思的发明创造均在保护之列。

Claims (17)

  1. 一种可回收利用钕铁硼废料焙烧窑炉余热的装置,其中,包括:
    焙烧炉,所述焙烧炉具有:
    进料口,所述进料口位于所述焙烧炉上端;
    排气口,所述排气口位于所述焙烧炉侧端;
    调控阀门,所述调控阀门设置在所述排气口;
    隔料板,所述隔料板设置在所述进料口中,密封所述进料口;
    预热仓,所述预热仓设置在所述焙烧炉上端,所述预热仓连通所述进料口,所述预热仓具有:
    进气管,所述进气管与所述调控阀门相连;
    加料斗,所述加料斗连通所述预热仓;
    同步齿轮,所述同步齿轮设置所述加料斗中;
    偏置弹片,所述偏置弹片设置在所述同步齿轮上;
    隔热板,所述隔热板设置在所述加料斗中,所述同步齿轮连接所述隔热板,所述隔热板密封所述加料斗。
  2. 根据权利要求1所述可回收利用钕铁硼废料焙烧窑炉余热的装置,其中,所述预热仓底部具有倾斜导料面,该导料面用于将钕铁硼废料导入至所述进料口处。
  3. 根据权利要求1所述可回收利用钕铁硼废料焙烧窑炉余热的装置,其中,所述焙烧炉上端设有伸缩缸,所述伸缩缸连接所述隔料板。
  4. 根据权利要求1所述可回收利用钕铁硼废料焙烧窑炉余热的装置,其中,所述加料斗内两侧具有限位块,所述限位块用于抵住所述隔热板。
  5. 根据权利要求1所述可回收利用钕铁硼废料焙烧窑炉余热的装置,其中,所述可回收利用钕铁硼废料焙烧窑炉余热的装置还包括:
    过滤仓,所述过滤仓连通所述进气管或调控阀门;
    加热仓,所述加热仓连通所述过滤仓;
    保温仓,所述保温仓连通所述加热仓;
    供暖仓,所述供暖仓连通所述保温仓。
  6. 根据权利要求5所述可回收利用钕铁硼废料焙烧窑炉余热的装置,其中,所述过滤仓内具有蜂窝过滤器,所述蜂窝过滤器具有:
    大孔道;
    小孔道,所述小孔道与所述大孔道沿纵向与横向方向相互间隔排列;
    封堵块,所述封堵块设置在所述小孔道的左侧端,所述封堵块还设置在所述大孔道的右侧端;
    上滤网,所述上滤网设置在所述小孔道的底部与所述大孔道的顶部之间;
    下滤网,所述下滤网设置在所述大孔道的底部与所述小孔道的顶部之间。
  7. 根据权利要求6所述可回收利用钕铁硼废料焙烧窑炉余热的装置,其中,所述上滤网与所述下滤网的滤孔方向均由右向左倾斜。
  8. 根据权利要求5所述可回收利用钕铁硼废料焙烧窑炉余热的装置,其中,所述加热仓具有:
    进水管;
    肠形管道,所述肠形管道连通所述进水管,所述肠形管道位于所述加热仓中;
    出水管,所述出水管连通所述肠形管道;
    所述保温仓具有:
    水桶,所述水桶连通所述出水管;
    保温通道,所述保温通道由所述保温仓的内壁与所述水桶外表面之间的空隙构成,所述保温连通所述加热仓。
  9. 根据权利要求8所述可回收利用钕铁硼废料焙烧窑炉余热的装置,其中,所述所述保温仓还具有:
    出气管;
    供暖阀门,所述供暖阀门安装在所述出气管上;
    所述供暖仓具有:
    热气管,所述热气管连通所述供暖阀门;
    发热管,所述发热管连通所述热气管;
    暖气片,所述暖气片安装在所述发热管上。
  10. 根据权利要求9所述可回收利用钕铁硼废料焙烧窑炉余热的装置,其中,所述供暖仓还具有:
    电控门,所述电控门位于所述供暖仓的右侧端;
    温度传感器,所述温度传感器位于所述供暖仓的壁面上;
    所述供暖仓侧端设有冷风机构,所述冷风机构具有:
    冷风管,所述冷风管连通所述供暖仓;
    驱动电机,所述驱动电机设置在所述冷风管侧端;
    转轴,所述转轴连接所述驱动电机,所述转轴横向穿过所述冷风管;
    驱动齿轮,所述驱动齿轮位于所述冷风管侧端,所述驱动齿轮套设在所述转轴上;
    吸气叶片,所述吸气叶片位于所述冷风管中,所述吸气叶片套设在所述转轴上;
    旋转柱,所述旋转柱倾斜于所述转轴,所述旋转柱具有:
    连接齿轮,所述连接齿轮啮合所述驱动齿轮;
    柱头;
    第一轴承,所述第一轴承套设在所述旋转柱上;
    活动块,所述活动块活动连接所述柱头;
    限定杆,所述限定杆旋转连接所述活动块,所述限定杆倾斜于所述旋转柱,所述限定杆上具有:
    滚头;
    限位柱,所述限位柱垂直于所述转轴,所述限位柱具有:
    被动齿轮,所述被动齿轮上设有偏置弹簧;
    滑头,所述滑动旋转连接所述限位柱,所述滑头垂于于所述限位柱,所述滑头上具有滑道,所述滚头设置在所述滑道中;
    第二轴承,所述第二轴承套设在所述限位柱上;
    密封门,所述密封门设置在所述冷风管中,所述密封门上具有齿槽,该齿槽啮合所述被动齿轮。
  11. 一种可回收利用钕铁硼废料焙烧窑炉余热的方法,包括以下步骤:
    导热,在焙烧炉燃烧钕铁硼废料后,打开焙烧炉排气口的调控阀门,使得余热被排放转移至预热仓中;
    落料调控,向预热仓上的加料斗倒入钕铁硼废料,加料斗中的隔热板受到钕铁硼废料的重力作用向下旋转并且驱动同步齿轮转动,同步齿轮转动的同时压紧偏置弹片,此时钕铁硼废料顺着隔热板向下旋转打开通道进入至预热仓中进行预热,当隔热板上不具有钕铁硼废料时,通过偏置弹片的弹性作用力促使同步齿轮复位,并带动隔热板复位,重新密闭加料斗与预热仓的连通;
    预热,位于隔热板中间的两个相互啮合的同步齿轮旋转,使得左右两侧的隔热板呈向上突起的锥形,进而使得钕铁硼废料顺着隔热板流动,散落在预热仓两侧,使得钕铁硼废料在预热仓中进行预热。
  12. 根据权利要求11所述可回收利用钕铁硼废料焙烧窑炉余热的方法,其中,散落在预 热仓两侧的钕铁硼的废料在预热仓中倾斜导料面的作用下,缓慢流动集中至焙烧炉上端的进料口中。
  13. 根据权利要求11所述可回收利用钕铁硼废料焙烧窑炉余热的方法,其中,调控阀门打开后,余热气体进入至过滤仓中,通过过滤仓对余热气体中的有害物质进行过滤,具体为:余热气体进入小孔道,之后小孔道中的上滤网与下滤网对余热气体的有害物质过滤,使得过滤后的余热气体进入至大孔道中,进而使得余热气体从大孔道中排出。
  14. 根据权利要求13所述可回收利用钕铁硼废料焙烧窑炉余热的方法,其中,进入小孔道的余热气体沿着上滤网与下滤网由右向左移动,在移动过程中,通过上滤网与下滤网偏斜向左的设置滤孔对余热气体进行一定的导向,使得余热气体不易大量且快速穿过上滤网与下滤网,同时使得小孔道中能够充分容纳足够的余热气体,进而使得小孔道能够大面积且较为缓慢的过滤余热气体。
  15. 根据权利要求14所述可回收利用钕铁硼废料焙烧窑炉余热的方法,其中,过滤后的余热气体进入至加热仓中,对加热仓中的肠形管道中的水流加热,之后余热气体从加热仓中进入至保温仓,余热气体沿着保温仓的保温通道流动,对从肠形管道中流入至水桶的水流进行保温。
  16. 根据权利要求15所述可回收利用钕铁硼废料焙烧窑炉余热的方法,其中,打开保温仓出气管上的供暖阀门,使得余热气体经过保温仓后通过热气管流入至供暖仓中的发热管中,对安装在发热管上的暖气片进行升温放热。
  17. 根据权利要求16所述可回收利用钕铁硼废料焙烧窑炉余热的方法,其中,在寒冷空气候中,根据温度的需求,打开冷风机构向供暖仓中输入冷空气,当供暖仓中的温度传感器检测到温度达到合适的状态,则打开电控门进行暖气供应,其中,冷风机构的工作原理为:启动驱动电机带动转轴转动,带动冷风管中的吸气叶片转动,将外界的冷空气卷吸入至冷风管中,转轴转动的同时还带动驱动齿轮旋转,继而带动连接齿以及连接齿轮上的旋转柱转动,使得倾斜于旋转柱的限定杆被活动连接在旋转柱柱头的活动块搬动旋转,促使限位柱与限位柱上的滑头旋转,此时限位柱上的被动齿轮旋转压缩偏置弹簧,并且拉动密封门移动,打开冷风管,使得冷空气从冷风管进入至供暖仓中,与供暖仓中的热空气混合,在此过程中,当限定杆旋转至一定角度,且与旋转柱处于同一中心轴线时,旋转柱带动活动块空转,当无需向供暖仓中输入冷空气时,关闭驱动电机,与此同时,被压缩的偏置弹簧复位,带动被动齿轮推动密封门重新密封冷风管,同时限位柱的滑头与限定杆也在偏置弹簧的作用下复位,促使限定杆重新倾斜于旋转柱。
PCT/CN2021/092365 2020-06-20 2021-05-08 一种可回收利用钕铁硼废料焙烧窑炉余热的装置及方法 WO2021254024A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010569519.7 2020-06-20
CN202010569519.7A CN111664718B (zh) 2020-06-20 2020-06-20 一种可回收利用钕铁硼废料焙烧窑炉余热的装置及方法

Publications (1)

Publication Number Publication Date
WO2021254024A1 true WO2021254024A1 (zh) 2021-12-23

Family

ID=72388876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092365 WO2021254024A1 (zh) 2020-06-20 2021-05-08 一种可回收利用钕铁硼废料焙烧窑炉余热的装置及方法

Country Status (2)

Country Link
CN (1) CN111664718B (zh)
WO (1) WO2021254024A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114353520A (zh) * 2021-12-31 2022-04-15 高诺(衡阳)铜业有限责任公司 一种高效节能的铜精炼反射炉
CN114440647A (zh) * 2022-01-19 2022-05-06 安徽省瀚海新材料股份有限公司 一种钕铁硼加工的冷却装置
CN114485194A (zh) * 2022-02-16 2022-05-13 乌拉特后旗紫金矿业有限公司 尾矿矿浆余热供暖系统
CN115449627A (zh) * 2022-10-13 2022-12-09 中国科学院赣江创新研究院 一种氧化焙烧钕铁硼废料的方法
CN115488339A (zh) * 2022-11-15 2022-12-20 蓬莱市超硬复合材料有限公司 一种用于烧结制备金属复合粉的装置及方法
CN116469672A (zh) * 2023-06-20 2023-07-21 赣州富尔特电子股份有限公司 一种烧结钕铁硼磁体生产过程中使用的磁粉取向成型装置
CN117101785A (zh) * 2023-10-25 2023-11-24 山西集翔生物工程有限公司 一种制备核黄素磷酸钠用吸尘式粉碎筛分装置
CN117268125A (zh) * 2023-11-23 2023-12-22 信丰县包钢新利稀土有限责任公司 一种净化处理钕铁硼废料焙烧废气的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111664718B (zh) * 2020-06-20 2022-02-18 信丰县包钢新利稀土有限责任公司 一种可回收利用钕铁硼废料焙烧窑炉余热的装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040161373A1 (en) * 2003-02-18 2004-08-19 Ngk Insulators, Ltd. Honeycomb filter and exhaust gas purification system
WO2008066167A1 (fr) * 2006-11-30 2008-06-05 Hitachi Metals, Ltd. Filtre céramique en nid d'abeilles et son procédé de fabrication
CN202582226U (zh) * 2012-05-03 2012-12-05 信丰县包钢新利稀土有限责任公司 钕铁硼废料综合回收焙烧窖炉余热利用装置
CN206670384U (zh) * 2017-03-29 2017-11-24 赣州市恒源科技股份有限公司 一种工业炉窑烟气余热回收装置
CN206666606U (zh) * 2017-04-07 2017-11-24 赣州市恒源科技股份有限公司 一种可回收利用钕铁硼废料焙烧窑炉烟气余热的装置
CN209910378U (zh) * 2019-03-29 2020-01-07 河南恒通新材料有限公司 高效熔炼装置
CN210394421U (zh) * 2019-06-17 2020-04-24 河南鸿河科技有限公司 一种废钢预热连续加料装置
CN210512687U (zh) * 2019-07-12 2020-05-12 天津赫尔莫斯科技有限责任公司 一种节能环保焙烧炉的废气处理装置
CN111664718A (zh) * 2020-06-20 2020-09-15 信丰县包钢新利稀土有限责任公司 一种可回收利用钕铁硼废料焙烧窑炉余热的装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6279368B2 (ja) * 2014-03-18 2018-02-14 日本碍子株式会社 排ガス浄化装置
CN203822402U (zh) * 2014-05-26 2014-09-10 博格华纳汽车零部件(宁波)有限公司 相位器上偏置弹簧的安装结构
CN207004606U (zh) * 2017-06-30 2018-02-13 芜湖恒耀汽车零部件有限公司 一种新型具有过滤功能的汽车尾气排气管
CN208720876U (zh) * 2018-07-09 2019-04-09 镇江海润船舶科技有限公司 一种船舶生产用淡水保暖仓
CN208901884U (zh) * 2018-10-15 2019-05-24 赣州天和永磁材料有限公司 钕铁硼废料综合回收焙烧窑炉

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040161373A1 (en) * 2003-02-18 2004-08-19 Ngk Insulators, Ltd. Honeycomb filter and exhaust gas purification system
WO2008066167A1 (fr) * 2006-11-30 2008-06-05 Hitachi Metals, Ltd. Filtre céramique en nid d'abeilles et son procédé de fabrication
CN202582226U (zh) * 2012-05-03 2012-12-05 信丰县包钢新利稀土有限责任公司 钕铁硼废料综合回收焙烧窖炉余热利用装置
CN206670384U (zh) * 2017-03-29 2017-11-24 赣州市恒源科技股份有限公司 一种工业炉窑烟气余热回收装置
CN206666606U (zh) * 2017-04-07 2017-11-24 赣州市恒源科技股份有限公司 一种可回收利用钕铁硼废料焙烧窑炉烟气余热的装置
CN209910378U (zh) * 2019-03-29 2020-01-07 河南恒通新材料有限公司 高效熔炼装置
CN210394421U (zh) * 2019-06-17 2020-04-24 河南鸿河科技有限公司 一种废钢预热连续加料装置
CN210512687U (zh) * 2019-07-12 2020-05-12 天津赫尔莫斯科技有限责任公司 一种节能环保焙烧炉的废气处理装置
CN111664718A (zh) * 2020-06-20 2020-09-15 信丰县包钢新利稀土有限责任公司 一种可回收利用钕铁硼废料焙烧窑炉余热的装置及方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114353520B (zh) * 2021-12-31 2023-09-05 高诺(衡阳)铜业有限责任公司 一种高效节能的铜精炼反射炉
CN114353520A (zh) * 2021-12-31 2022-04-15 高诺(衡阳)铜业有限责任公司 一种高效节能的铜精炼反射炉
CN114440647A (zh) * 2022-01-19 2022-05-06 安徽省瀚海新材料股份有限公司 一种钕铁硼加工的冷却装置
CN114440647B (zh) * 2022-01-19 2023-09-12 安徽省瀚海新材料股份有限公司 一种钕铁硼加工的冷却装置
CN114485194A (zh) * 2022-02-16 2022-05-13 乌拉特后旗紫金矿业有限公司 尾矿矿浆余热供暖系统
CN115449627A (zh) * 2022-10-13 2022-12-09 中国科学院赣江创新研究院 一种氧化焙烧钕铁硼废料的方法
CN115449627B (zh) * 2022-10-13 2023-12-12 中国科学院赣江创新研究院 一种氧化焙烧钕铁硼废料的方法
CN115488339A (zh) * 2022-11-15 2022-12-20 蓬莱市超硬复合材料有限公司 一种用于烧结制备金属复合粉的装置及方法
CN116469672A (zh) * 2023-06-20 2023-07-21 赣州富尔特电子股份有限公司 一种烧结钕铁硼磁体生产过程中使用的磁粉取向成型装置
CN116469672B (zh) * 2023-06-20 2023-09-19 赣州富尔特电子股份有限公司 一种烧结钕铁硼磁体生产过程中使用的磁粉取向成型装置
CN117101785A (zh) * 2023-10-25 2023-11-24 山西集翔生物工程有限公司 一种制备核黄素磷酸钠用吸尘式粉碎筛分装置
CN117101785B (zh) * 2023-10-25 2024-01-02 山西集翔生物工程有限公司 一种制备核黄素磷酸钠用吸尘式粉碎筛分装置
CN117268125A (zh) * 2023-11-23 2023-12-22 信丰县包钢新利稀土有限责任公司 一种净化处理钕铁硼废料焙烧废气的方法

Also Published As

Publication number Publication date
CN111664718B (zh) 2022-02-18
CN111664718A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
WO2021254024A1 (zh) 一种可回收利用钕铁硼废料焙烧窑炉余热的装置及方法
CN113137859B (zh) 一种锰锌铁氧体磁芯均热烧结装置
CN206670384U (zh) 一种工业炉窑烟气余热回收装置
CN107058701B (zh) 一种稀土永磁的间歇式连续氢处理方法及其装置
CN206467275U (zh) 一种铁矿石磁化焙烧装置
CN214864416U (zh) 一种精金矿高效充气机械机械搅拌式浮选装置
CN212409383U (zh) 一种石墨电极生产用焙烧炉
CN215295741U (zh) 一种连铸保护渣烘烤装置
CN210359160U (zh) 一种阳极板铸锭装置
CN208136100U (zh) 一种高纯度和高活性氧化钙煅烧窑
CN207095295U (zh) 外热式真空炉炉体卡紧装置
CN111504054A (zh) 一种铝酸盐水泥制备用干法中空回转窑
CN214792501U (zh) 一种隧道窑尾部冷却装置
CN111664705A (zh) 一种节能高效熔炼炉
CN216115332U (zh) 一种节能环保型隧道窑炉
CN220468008U (zh) 一种降低高炉热能损失的炼铁用设备
CN217005335U (zh) 一种预热式窑炉
CN216409616U (zh) 一种烘干机热风炉简洁化装置
CN217032008U (zh) 一种制备带高还原电位竹盐的竹盐煅烧炉
CN114797331B (zh) 一种集尘设备、方法和具有该集尘设备的生产线
CN215810097U (zh) 一种镁铁钙砂煅烧用高温竖窑密封节能装置
CN214172900U (zh) 一种生产效率高的节能回转窑
CN213873866U (zh) 磁瓦生坯烧结用余热回收装置
CN117367116A (zh) 可调节式熔炼炉用液压闸板阀
CN219539630U (zh) 一种锂电池用六氟磷酸锂晶体分离纯化设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826600

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21826600

Country of ref document: EP

Kind code of ref document: A1