WO2021253766A1 - 一种纳米多孔粉体材料的制备方法 - Google Patents

一种纳米多孔粉体材料的制备方法 Download PDF

Info

Publication number
WO2021253766A1
WO2021253766A1 PCT/CN2020/137354 CN2020137354W WO2021253766A1 WO 2021253766 A1 WO2021253766 A1 WO 2021253766A1 CN 2020137354 W CN2020137354 W CN 2020137354W WO 2021253766 A1 WO2021253766 A1 WO 2021253766A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoporous
powder
coarse
alloy
preparing
Prior art date
Application number
PCT/CN2020/137354
Other languages
English (en)
French (fr)
Inventor
赵远云
常春涛
赵成亮
Original Assignee
东莞理工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞理工学院 filed Critical 东莞理工学院
Priority to US18/011,035 priority Critical patent/US20230321720A1/en
Priority to EP20940520.8A priority patent/EP4166504A4/en
Publication of WO2021253766A1 publication Critical patent/WO2021253766A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0602Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with two or more other elements chosen from metals, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0637Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with metals not specified in groups C01B21/0607 - C01B21/0635, other than aluminium, titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium
    • C01B21/0761Preparation by direct nitridation of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium
    • C01B21/0768After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/02Hydrides of transition elements; Addition complexes thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G7/00Compounds of gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/11Controlling temperature, temperature profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/13Controlling pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/058Particle size above 300 nm up to 1 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the invention relates to the technical field of nanomaterials, in particular to a method for preparing nanoporous powder materials.
  • nanoporous materials Because of its large specific surface area, high porosity and relatively uniform nanopores, nanoporous materials have important applications in the fields of catalysis, new energy, powder metallurgy, ceramics, and optoelectronics. At present, nanoporous materials are mostly focused on the preparation of bulk nanoporous metal materials, usually by the dealloying method.
  • the invention patent with application number 201510862608.X relates to a method for preparing nanoporous metal particles by ultrasonic-assisted dealloying method, but the method is limited to amorphous alloy as the precursor, through two dealloying and ultrasonic treatment To prepare metal nanoporous particles with a particle size of 0.1 ⁇ m-10 ⁇ m. At present, relying on the dealloying method, the preparation of brittle nanoporous oxide particles, nitride particles, hydride particles, etc. is rarely reported.
  • the present invention provides a method for preparing nanoporous powder material, which includes the following steps:
  • the nanoporous T coarse powder is in contact with the gas containing M at a certain temperature, so that part or all of the T component elements in the nanoporous T coarse powder react with M to obtain the nanoporous T-M coarse powder;
  • the nano-porous T-M coarse powder is subjected to secondary crushing through a jet mill to obtain the nano-porous T-M fine powder.
  • T includes but is not limited to Be, B, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ge, Zr, Nb, Mo, At least one of Ag, Au, Pt, Pd, Hf, Ta, W, Bi;
  • A includes but is not limited to Li, Na, Mg, Al, K, Ca, Zn, Ga, Rb, Sn, Pb, Mn At least one of Fe, Co, Ni, Cu, RE (rare earth elements); and T in the precursor alloy is combined with A to form an intermetallic compound phase or an amorphous phase.
  • the precursor alloy is obtained by: weighing the alloy raw materials according to the ratio; after the alloy raw materials are fully melted to obtain an alloy melt, the precursor alloy is prepared by a rapid solidification method, wherein the alloy melt
  • the solidification rate of the body is 0.1 K/s to 10 7 K/s; the thickness of the precursor alloy is 5 ⁇ m to 50 mm.
  • the method of dealloying includes, but is not limited to, acid solution reaction dealloying and alkaline solution reaction dealloying.
  • the acid solution is hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, perchloric acid, and acetic acid.
  • At least one of the acid solution, and the concentration of the acid solution is 0.1 mol/L to 20 mol/L;
  • the alkaline solution is at least one of sodium hydroxide and potassium hydroxide, and the concentration of the alkaline solution It is 1mol/L ⁇ 15mol/L.
  • the frequency of the ultrasonic wave is 10 kHz to 500 kHz; the particle size of the coarse nanoporous T powder is in the range of 1 ⁇ m to 500 ⁇ m; the size of the porous "tether" inside the coarse nanoporous T powder is 2 nm to 400 nm.
  • the M includes but is not limited to at least one of O, N, and H;
  • the gas reactant containing M includes but is not limited to air, O 2 , N 2 , NH 3 , and H 2 At least one of;
  • the M reaction includes but is not limited to at least one of an oxidation reaction, a nitridation reaction, and a hydrogenation reaction.
  • the temperature of the Mization reaction is 100°C to 2000°C
  • the particle size of the nanoporous TM coarse powder is in the range of 1 ⁇ m to 600 ⁇ m; the size of the internal porous "ribbons" of the nanoporous TM coarse powder is 3 nm to 500nm.
  • the M conversion rate of the nanoporous T coarse powder is 10% to 100%.
  • the jet milling pressure of the jet mill is 0.1 MPa to 2 MPa, and the working temperature is 20°C to 200°C;
  • the selected gas includes but is not limited to at least one of air, nitrogen, inert gas, and water vapor.
  • the particle size of the nanoporous T-M fine powder ranges from 0.1 ⁇ m to 5 ⁇ m; the size of the internal porous "lace" of the nanoporous T-M fine powder ranges from 3 nm to 500 nm.
  • the T element in the precursor alloy is combined with the A element to form an intermetallic compound phase or an amorphous phase.
  • This phase structure can make the intermetallic compound or A in the amorphous phase removed by the etching solution during the dealloying reaction, and the T element atoms can be rearranged to form a three-dimensional continuous nanoporous T through diffusion.
  • the final product of nanoporous T-M powder is crushed by jet mill. Since the jet mill cannot directly process larger bulk raw materials, it is necessary to first turn the jet mill raw materials into coarse powder suitable for processing. Ultrasonic treatment is simultaneously applied during the dealloying reaction process, which can simultaneously crush the nanoporous structure formed by dealloying into coarse powder that meets the requirements of jet milling treatment.
  • the M treatment can not only obtain the target material containing M, but also make the nanoporous TM coarse powder brittle, which is beneficial to the jet milling and preparation powder.
  • the nanoporous powder material prepared by the present invention mainly has a particle size of micron or submicron, but the inside of the particle is composed of three-dimensional networked nanoporous "lace", which has a high specific surface area and permeability. It has important application potential in the fields of catalysis, new energy, powder metallurgy, ceramics, and optoelectronics.
  • the preparation method of nanoporous powder material provided by the present invention can realize the low cost of nanoporous TM powder through three key steps of "ultrasonic assisted dealloying"-"M treatment”-"jet milling treatment". , Mass production, and has broad application prospects.
  • Fig. 1 is a transmission electron microscope photograph of the nanoporous CuO powder of Example 1 of the present invention.
  • a preparation method of nano porous powder material which comprises the following steps:
  • a x T is removed by ultrasonic-assisted dealloying method
  • the element A in the y alloy is used to obtain the coarse nanoporous T powder that is primary crushed by ultrasonic;
  • the coarse nanoporous T-M powder is subjected to secondary crushing by a jet mill to obtain the fine nanoporous T-M powder.
  • T includes but is not limited to Be, B, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ge, Zr, Nb, Mo, Ag, Au At least one of, Pt, Pd, Hf, Ta, W, Bi;
  • A includes but is not limited to Li, Na, Mg, Al, K, Ca, Zn, Ga, Rb, Sn, Pb, Mn, Fe, At least one of Co, Ni, Cu, RE (rare earth elements); and T in the precursor alloy is combined with A to form an intermetallic compound phase or an amorphous phase.
  • This phase structure can make the intermetallic compound or A in the amorphous phase removed by the etching solution during the dealloying reaction, and the T element atoms can be rearranged to form a three-dimensional continuous nanoporous T through diffusion.
  • the precursor alloy is obtained by: weighing the alloy raw materials according to the ratio; after the alloy raw materials are fully melted to obtain the alloy melt, the precursor alloy is prepared by a rapid solidification method; wherein the solidification of the alloy melt The rate is 0.1 K/s to 10 7 K/s; the thickness of the precursor alloy is 5 ⁇ m to 50 mm.
  • the method of dealloying includes, but is not limited to, acid solution reactive dealloying and alkaline solution reactive dealloying.
  • the acid solution is at least one of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, perchloric acid, and acetic acid, and the concentration of the acid solution is 0.1 mol/L to 20 mol/L;
  • the alkali solution is at least one of sodium hydroxide and potassium hydroxide, and the concentration of the alkali solution is 1 mol/L to 15 mol/L.
  • T is an acid corrosion-resistant element, it is generally preferred to use an acid solution as the corrosive solution.
  • T is an element that is not resistant to acid solution corrosion
  • amphoteric metal Al or Zn as A
  • alkaline solution as the corrosive solution to remove A.
  • concentration of the acid and alkali solution is determined according to the corrosion resistance of T and A, and the selection basis is: remove A while basically retaining the nanoporous T.
  • the frequency of the ultrasonic wave is 10kHz ⁇ 500kHz; it can be foreseen that although most of the particles in the nanoporous T coarse powder that have been crushed by the ultrasonic wave have a particle size of tens of microns or hundreds of microns, they will also contain a small amount of relatively fine particles. Therefore, the particle size of the coarse nanoporous T powder ranges from 1 ⁇ m to 500 ⁇ m; the size of the internal porous "tie" of the coarse nanoporous T powder and the reaction system and reaction parameters (including alloy composition, acid solution composition and concentration, reaction Temperature) related. According to different reaction systems and reaction parameters, the size of the porous "tie” ranges from 2nm to 400nm.
  • step S2
  • the M includes but is not limited to at least one of O, N, and H; the M-containing gas reactant includes but is not limited to at least one of air, O 2 , N 2 , NH 3 , and H 2 Species;
  • the M reaction includes, but is not limited to, at least one of an oxidation reaction, a nitridation reaction, and a hydrogenation reaction.
  • the nanoporous T coarse powder can oxidize with O 2 in the air, but does not react with other components in the air, the oxidation reaction of the nanoporous T coarse powder can be realized by air.
  • the temperature of the Mization reaction is 100°C to 2000°C; after the Mization reaction of the nanoporous T coarse powder occurs, the M element relies on the porous structure of the nanoporous T coarse powder to combine with it, and the coarse powder particles are "tethered” with the porous
  • the size will increase after the Mization reaction. Therefore, the particle size of the nanoporous TM coarse powder is in the range of 1 ⁇ m to 600 ⁇ m; the size of the internal porous "ribbons" of the nanoporous TM coarse powder is 3 nm to 500 nm.
  • the M conversion rate of the nanoporous T coarse powder is 10% to 100%. Specifically, when T is one element, part or all of the Mized nanoporous TM coarse powder can be obtained by controlling the reaction conditions of Mization; when T is two or more elements, it can be partially or completely Part of the elements in MT. Moreover, since T and M are generally covalently bonded with elements, the resulting nanoporous T-M coarse powder will become brittle, which is beneficial to the subsequent airflow grinding process.
  • step S3
  • the coarse nanoporous T-M powder is subjected to secondary crushing by a jet mill to obtain fine nanoporous T-M powder.
  • the jet milling pressure of the jet mill is 0.1MPa-2MPa, and the working temperature is 20°C-200°C; the selected gas includes but is not limited to at least one of air, nitrogen, inert gas, and water vapor.
  • the secondary crushing of the jet mill can proceed smoothly.
  • the obtained nanoporous T-M fine powder has a particle size ranging from 0.1 ⁇ m to 5 ⁇ m; the internal porous "lace" size of the nanoporous T-M fine powder is 3 nm to 500 nm.
  • the preparation method of nanoporous powder material provided by the present invention can realize the low cost of nanoporous TM powder through three key steps of "ultrasonic assisted dealloying"-"M treatment”-"jet milling treatment". , Mass production, and has broad application prospects.
  • This embodiment provides a method for preparing nanoporous Cu-O powder, which includes the following steps:
  • Mg 67 Cu 33 precursor alloy formulates the alloy according to the element composition, fully melt the alloy, and then cool the alloy melt to room temperature at a solidification rate of 10 5 K/s to obtain a Mg 67 Cu 33 thin strip with a thickness of 25 ⁇ m. It is mainly composed of Mg 2 Cu intermetallic compound.
  • the Mg 67 Cu 33 ribbon was reacted with a 0.5 mol/L hydrochloric acid aqueous solution for 30 min under the assistance of 40 kHz ultrasound to obtain coarse nanoporous Cu powder with a particle size of 1 ⁇ m-200 ⁇ m, and the average diameter of the nanoporous "ribbons" was 45 nm.
  • the nanoporous Cu coarse powder is fully oxidized with oxygen in the air at 300°C to obtain nanoporous CuO coarse powder with a particle size range of 1 ⁇ m-220 ⁇ m, and the average diameter of the nanoporous "lace" is 50nm.
  • the coarse nanoporous CuO powder is further crushed by jet mill, the air crushing pressure is 1MPa, and finally the nanoporous CuO fine powder is obtained, the particle size range is 0.1 ⁇ m-3 ⁇ m, and the average diameter of the nanoporous "lace" is 50nm, such as As shown in Figure 1.
  • This embodiment provides a method for preparing nanoporous Cu-O powder, which includes the following steps:
  • Gd 82 Al 8 Cu 10 precursor alloy formulates the alloy according to the element composition, fully melt the alloy, and then cool the alloy melt to room temperature at a solidification rate of 10 5 K/s to obtain a Gd 82 Al 8 Cu with a thickness of 25 ⁇ m 10 thin ribbon, which is composed of single-phase amorphous.
  • the Gd 82 Al 8 Cu 10 amorphous ribbon was reacted with a 0.5mol/L hydrochloric acid aqueous solution for 30 minutes under the assistance of 40kHz ultrasound to obtain a coarse nanoporous Cu powder with a particle size of 1 ⁇ m-200 ⁇ m.
  • the average nanoporous "lace" The diameter is 35nm.
  • the nanoporous Cu coarse powder is fully oxidized with oxygen in the air at 300°C to obtain nanoporous CuO coarse powder with a particle size range of 1 ⁇ m-220 ⁇ m, and the average diameter of the nanoporous "lace" is 40nm.
  • the coarse nanoporous CuO powder is further crushed by jet mill, the air crushing pressure is 1MPa, and the final nanoporous CuO fine powder is obtained, the particle size range is 0.1 ⁇ m-2.5 ⁇ m, and the average diameter of the nanoporous "lace" is 40nm.
  • This embodiment provides a method for preparing nanoporous AuCu-O powder, which includes the following steps:
  • Mg 67 Cu 30 Au 3 precursor alloy formulates the alloy according to the element composition, fully melt the alloy, and then cool the alloy melt to room temperature at a solidification rate of 10 5 K/s to obtain a Mg 67 Cu 30 Au with a thickness of 25 ⁇ m 3 Thin strip, which is mainly composed of Mg 2 Cu (Au) intermetallic compound.
  • the Mg 67 Cu 30 Au 3 thin strip was reacted with a 1mol/L hydrochloric acid aqueous solution for 30 minutes under the aid of 40kHz ultrasound, and the Mg element was removed by dealloying to obtain a coarse nanoporous Cu(Au) powder with a particle size of 1 ⁇ m-200 ⁇ m.
  • the average diameter of the "lace” is 15 nm.
  • the nanoporous Cu(Au) coarse powder is oxidized with oxygen in the air at 300°C, so that Cu is fully oxidized but Au is not oxidized, and the nanoporous CuO(Au) composite coarse powder is obtained, with a particle size range of 1 ⁇ m -210 ⁇ m, the average diameter of the nanoporous "lace" is 20nm.
  • the nanoporous CuO(Au) composite coarse powder is further crushed by jet mill, the air crushing pressure is 1MPa, and finally the nanoporous CuO(Au) fine powder is obtained, the particle size range is 0.1 ⁇ m-3 ⁇ m, and the nanoporous "tie" The average diameter is 20nm.
  • This embodiment provides a method for preparing nanoporous Ti-H powder, which includes the following steps:
  • the Fe 67 Ti 33 precursor alloy is selected, the alloy is prepared according to the element composition, the alloy is fully melted, and then the alloy melt is cooled to room temperature at a solidification rate of 10 5 K/s to obtain a Fe 67 Ti 33 thin strip with a thickness of 25 ⁇ m. It is mainly composed of Fe 2 Ti intermetallic compounds.
  • the Fe 67 Ti 33 ribbon was reacted with a 1 mol/L sulfuric acid aqueous solution for 30 minutes under the assistance of 40 kHz ultrasound to obtain coarse nano-porous Ti powder with a particle size of 1 ⁇ m-200 ⁇ m. The average diameter of the nano-porous "ribbons" was 35 nm.
  • the nanoporous Ti coarse powder is fully hydrogenated with H 2 at 375° C. to obtain the nanoporous Ti-H coarse powder.
  • the average diameter of the nanoporous "tie" is 40nm.
  • the coarse nanoporous Ti-H powder is further crushed by jet mill, the air crushing pressure is 1MPa, and the final nanoporous TiH fine powder is obtained, the particle size range is 0.1 ⁇ m-3 ⁇ m, and the average diameter of the nanoporous "lace" is 40nm .
  • This embodiment provides a method for preparing nanoporous Ti-N powder, which includes the following steps:
  • Mn 67 Ti 33 precursor alloy formulates the alloy according to the element composition, fully melt the alloy, and then cool the alloy melt to room temperature at a solidification rate of 500 K/s to obtain a Mn 67 Ti 33 thin strip with a thickness of 1 mm. It is composed of Mn 2 Ti intermetallic compound.
  • the Mn 67 Ti 33 ribbon was reacted with a 2 mol/L hydrochloric acid aqueous solution for 30 minutes under the assistance of 40 kHz ultrasound to obtain coarse nano-porous Ti powder with a particle size ranging from 1 ⁇ m to 200 ⁇ m.
  • the average diameter of the nano-porous "ribbons" was 32 nm.
  • the nano-porous Ti coarse powder undergoes a sufficient nitridation reaction with N 2 at 1200° C. to obtain nano-porous Ti-N coarse powder.
  • the average diameter of the nano-porous "ribbons" is 40 nm.
  • the coarse nanoporous Ti-N powder is further crushed by jet mill, the air crushing pressure is 0.8MPa, and the final nanoporous TiN fine powder is obtained. Its particle size ranges from 0.1 ⁇ m-3 ⁇ m, and the average diameter of the nanoporous "lace" is 40nm.
  • This embodiment provides a method for preparing nanoporous TiZrHf-N powder, which includes the following steps:
  • Mn 67 Ti 11 Zr 11 Hf 11 precursor alloy formulate the alloy according to the element composition, fully melt the alloy, and then cool the alloy melt to room temperature at a solidification rate of 10 5 K/s to obtain Mn 67 Ti with a thickness of 25 ⁇ m 11 Zr 11 Hf 11 thin strip, which is mainly composed of Mn 2 (TiZrHf) intermetallic compound.
  • the thin strip of Mn 67 Ti 11 Zr 11 Hf 11 was reacted with a 2mol/L hydrochloric acid aqueous solution for 40 minutes under the assistance of 40kHz ultrasound to obtain a coarse nanoporous TiZrHf powder with a particle size range of 1 ⁇ m-200 ⁇ m.
  • the average nanoporous "tie" The diameter is 33nm.
  • the nano-porous TiZrHf coarse powder is fully nitridated with N 2 at 1200° C. to obtain the nano-porous TiZrHf-N coarse powder.
  • the average diameter of the nano-porous "ribbons" is 40 nm.
  • the coarse nanoporous Ti-N powder is further crushed by jet mill, the air crushing pressure is 0.8MPa, and finally the nanoporous TiZrHf-N fine powder is obtained, the particle size range is 0.1 ⁇ m-2.5 ⁇ m, and the nanoporous "tie" The average diameter is 40nm.
  • This embodiment provides a method for preparing nanoporous Ni-O powder, which includes the following steps:
  • Zn 80 Ni 20 precursor alloy formulates the alloy according to the element composition, fully melt the alloy, and then cool the alloy melt to room temperature at a solidification rate of 10 5 K/s to obtain a Zn 80 Ni 20 thin strip with a thickness of 25 ⁇ m. It is mainly composed of Zn 4 Ni intermetallic compound.
  • the Zn 80 Ni 20 thin strip was reacted with a 5mol/L NaOH aqueous solution for 60 minutes under the assistance of 40kHz ultrasound to obtain coarse nanoporous Ni powder with a particle size of 1 ⁇ m-100 ⁇ m, and the average diameter of the nanoporous "ribbons" was 20 nm.
  • the nanoporous Ni coarse powder is fully oxidized with oxygen in the air at 200°C to obtain the nanoporous NiO coarse powder, the particle size range of which is 1 ⁇ m-120 ⁇ m, and the average diameter of the nanoporous "lace" is 25nm.
  • the coarse nanoporous NiO powder was further crushed by jet mill, and the air crushing pressure was 1.2MPa. Finally, the fine nanoporous NiO powder was obtained, the particle size range of which was 0.1 ⁇ m-2 ⁇ m, and the average diameter of the nanoporous "lace" was 25nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

提供一种纳米多孔粉体材料的制备方法。该方法首先通过超声辅助脱合金法去除A xT y合金中的A而制备纳米多孔T粗粉,然后将其与含M的气体反应物进行M化反应得到纳米多孔T-M粗粉,最后通过气流磨进一步破碎得到纳米多孔T-M细粉。该方法可以实现纳米多孔T-M细粉的成本低、大规模生产,具有广阔的应用前景。

Description

一种纳米多孔粉体材料的制备方法 技术领域
本发明涉及纳米材料技术领域,特别是涉及一种纳米多孔粉体材料的制备方法。
背景技术
纳米多孔材料因其具有大的比表面积,高孔隙率和较均匀的纳米孔,在催化、新能源、粉末冶金、陶瓷、光电领域等方面具有重要的应用。目前,纳米多孔材料多集中于块体纳米多孔金属材料的制备,通常釆用脱合金法制备。申请号为201510862608.X的发明专利涉及了一种通过超声辅助脱合金法制备纳米多孔金属颗粒的方法,但该方法仅限于以非晶合金为前驱体,通过两次脱合金并辅以超声处理来制备粒径为0.1μm-10μm的金属纳米多孔颗粒。目前,依托脱合金法,对于脆性的纳米多孔氧化物颗粒、氮化物颗粒、氢化物颗粒等的制备还鲜见于报道。
发明内容
有鉴于此,有必要提供一种可行、且易于操作的纳米多孔粉体材料的制备方法。
本发明提供一种纳米多孔粉体材料的制备方法,其包括以下步骤:
制备前驱体合金A xT y,x与y代表各类元素的原子百分比含量,并且0.1%≤y≤50%,x+y=100%;通过超声辅助脱合金的方法去除A xT y合金中的A元素,得到通过超声波初级碎化的纳米多孔T粗粉;
将纳米多孔T粗粉与含M的气体在一定温度下接触,使纳米多孔T粗粉中部分或者全部T组成元素与M发生M化反应,得到纳米多孔T-M粗粉;
将纳米多孔T-M粗粉通过气流磨进行二级碎化,即得到纳米多孔T-M细粉。
进一步地,所述前驱体合金A xT y中,T包含但不局限于Be、B、Si、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Ge、Zr、Nb、Mo、Ag、Au、Pt、Pd、Hf、Ta、W、Bi中的至少一种;A包含但不局限于Li、Na、Mg、Al、K、Ca、Zn、Ga、Rb、Sn、Pb、Mn、Fe、Co、Ni、Cu、RE(稀土元素)中的至少一种;且前驱体合金中T通过和A结合成金属间化合物相或非晶相存在。
进一步地,所述前驱体合金通过以下方式得到:按照配比称取合金原料;将合金原料充分熔融得到合金熔体后,通过快速凝固方法制备成所述前驱体合金,其中,所述合金熔体的凝固速率为0.1K/s~10 7K/s;所述前驱体合金的厚度为5μm~50mm。
进一步地,所述脱合金的方式包括但不局限于酸溶液反应脱合金与碱溶液反应脱合金,采用酸溶液反应脱合金时,酸溶液为盐酸、硫酸、硝酸、磷酸、高氯酸、醋酸中的至少一种,且酸溶液的浓度为0.1mol/L~20mol/L;采用碱溶液反应脱合金时,碱溶液为氢氧化钠、氢氧化钾中的至少一种,且碱溶液的浓度为1mol/L~15mol/L。
进一步地,所述超声波的频率为10kHz~500kHz;所述纳米多孔T粗粉的粒径范围为1μm~500μm;所述纳米多孔T粗粉内部多孔“系带”尺寸为2nm~400nm。
进一步地,所述M包括但不局限于O、N、H元素中的至少一种;所 述含M的气体反应物包括但不局限于空气、O 2、N 2、NH 3、H 2中的至少一种;所述M化反应包括但不局限于氧化反应、氮化反应、氢化反应中的至少一种。
进一步地,所述M化反应的温度为100℃~2000℃,所述纳米多孔T-M粗粉的粒径范围为1μm~600μm;所述纳米多孔T-M粗粉内部多孔“系带”尺寸为3nm~500nm。
进一步地,所述纳米多孔T粗粉的M化率为10%~100%。
进一步地,所述气流磨的气流粉碎压力为0.1MPa~2MPa,工作温度20℃~200℃;所选用气体包括但不局限于空气、氮气、惰性气体、水蒸汽中的至少一种。
进一步地,所述纳米多孔T-M细粉的粒径范围为0.1μm~5μm;纳米多孔T-M细粉内部多孔“系带”尺寸为3nm~500nm。
本发明所述一种纳米多孔粉体材料的制备方法,具有以下特点:
首先,前驱体合金中T元素通过和A元素结合成金属间化合物相或非晶相存在。这种相结构可以使得脱合金反应过程中,金属间化合物或非晶相中的A被腐蚀液去除后,T元素原子可以通过扩散重排形成三维连续的纳米多孔T。
其次,最终产物纳米多孔T-M细粉通过气流磨破碎来实现。由于气流磨不能直接处理较大的块体原料,因此需要将气流磨原料首先变成适合处理的粗粉。而脱合金反应过程中同时施以超声处理,可以将脱合金形成的纳米多孔结构同时碎化成满足气流磨处理要求的粗粉。
其三,在气流磨处理纳米多孔T粗粉之前,对其进行M化处理,不仅可以获得含M的目标材料,还可以使得纳米多孔T-M粗粉变脆,从而有利 于气流磨碎化并制备细粉。
其四,本发明所制备的纳米多孔粉体材料,颗粒大小主要为微米级或亚微米级,但颗粒内部由三维网状的纳米多孔“系带”构成,具有很高的比表面积与通透性,在催化、新能源、粉末冶金、陶瓷、光电领域等方面具有重要的应用潜力。
因此,本发明提供的纳米多孔粉体材料的制备方法,通过“超声辅助脱合金”-“M化处理”-“气流磨处理”等三个关键步骤,可以实现纳米多孔T-M细粉的成本低、大规模生产、并具有广阔的应用前景。
为更清楚地阐述本发明的结构特征、技术手段及其所达到的具体目的和功能,下面结合附图与具体实施例来对本发明作进一步详细说明:
附图说明
图1为本发明实施例1的纳米多孔CuO细粉的透射电镜照片。
具体实施方式
下面结合实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
一种纳米多孔粉体材料的制备方法,其包括以下步骤:
S1,制备前驱体合金A xT y,x与y代表各类元素的原子百分比含量,并且0.1%≤y≤50%,x+y=100%;通过超声辅助脱合金的方法去除A xT y合金中的A元素,得到通过超声波初级碎化的纳米多孔T粗粉;
S2,将纳米多孔T粗粉与含M的气体在一定温度下接触,使纳米多孔T粗粉中部分或者全部T组成元素与M发生M化反应,得到纳米多孔T-M 粗粉;
S3,将纳米多孔T-M粗粉通过气流磨进行二级碎化,即得到纳米多孔T-M细粉。
在步骤S1中,
所述前驱体合金A xT y中,T包含但不局限于Be、B、Si、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Ge、Zr、Nb、Mo、Ag、Au、Pt、Pd、Hf、Ta、W、Bi中的至少一种;A包含但不局限于Li、Na、Mg、Al、K、Ca、Zn、Ga、Rb、Sn、Pb、Mn、Fe、Co、Ni、Cu、RE(稀土元素)中的至少一种;且前驱体合金中T通过和A结合成金属间化合物相或非晶相存在。这种相结构可以使得脱合金反应过程中,金属间化合物或非晶相中的A被腐蚀液去除后,T元素原子可以通过扩散重排形成三维连续的纳米多孔T。
所述前驱体合金通过以下方式得到:按照配比称取合金原料;将合金原料充分熔融得到合金熔体后,通过快速凝固方法制备成所述前驱体合金;其中,所述合金熔体的凝固速率为0.1K/s~10 7K/s;所述前驱体合金的厚度为5μm~50mm。
所述脱合金的方式包括但不局限于酸溶液反应脱合金与碱溶液反应脱合金。采用酸溶液反应脱合金时,酸溶液为盐酸、硫酸、硝酸、磷酸、高氯酸、醋酸中的至少一种,且酸溶液的浓度为0.1mol/L~20mol/L;采用碱溶液反应脱合金时,碱溶液为氢氧化钠、氢氧化钾中的至少一种,且碱溶液的浓度为1mol/L~15mol/L。具体地,当T为耐酸腐蚀元素时,一般优先采用酸溶液为腐蚀液。当T为不耐酸溶液腐蚀元素时,可以选择两性金属Al或Zn为A,采用碱溶液为腐蚀液去除A。根据制备需求,酸和碱溶液的浓度根据T与A的耐腐蚀程度确定,其选择依据为:将A去除,同时基本 保留纳米多孔T。
所述超声波的频率为10kHz~500kHz;可以预见,虽然经过超声波碎化的纳米多孔T粗粉中绝大部分颗粒具有数十微米或者数百微米的粒径,但也会包含少量比较细小的颗粒,因此所述纳米多孔T粗粉的粒径范围为1μm~500μm;所述纳米多孔T粗粉内部多孔“系带”尺寸与反应体系及反应参数(包括合金成分、酸溶液成分与浓度、反应温度)相关。根据不同的反应体系及反应参数,其多孔“系带”尺寸的范围为2nm~400nm。
在步骤S2中,
所述M包括但不局限于O、N、H元素中的至少一种;所述含M的气体反应物包括但不局限于空气、O 2、N 2、NH 3、H 2中的至少一种;所述M化反应包括但不局限于氧化反应、氮化反应、氢化反应中的至少一种。
一定温度条件下,当纳米多孔T粗粉可与空气中的O 2发生氧化反应,同时不与空气中其它组分发生反应时,可以通过空气来实现纳米多孔T粗粉的氧化反应。
所述M化反应的温度为100℃~2000℃;由于纳米多孔T粗粉发生M化反应后,M元素依托纳米多孔T粗粉的多孔结构与之结合,粗粉颗粒与多孔“系带”尺寸在M化反应后将有所增加,因此所述纳米多孔T-M粗粉的粒径范围为1μm~600μm;所述纳米多孔T-M粗粉内部多孔“系带”尺寸为3nm~500nm。
所述纳米多孔T粗粉的M化率为10%~100%。具体来说,当T为一种元素时,可以通过控制M化的反应条件,获得部分或者全部M化的纳米多孔T-M粗粉;当T为两种或者两种以上元素时,可以部分或全部M化T中的部分元素。且由于T与M与元素一般为共价键结合,将会使所得纳米 多孔T-M粗粉变脆,有利于后续的气流磨碎化过程。
在步骤S3中,
所述纳米多孔T-M粗粉通过气流磨进行二级碎化,得到纳米多孔T-M细粉。所述气流磨的气流粉碎压力为0.1MPa~2MPa,工作温度20℃~200℃;所选用气体包括但不局限于空气、氮气、惰性气体、水蒸汽中的至少一种。
此外,通过步骤S1和S2,获得满足气流磨处理要求的脆性纳米多孔T-M粗粉后,其通过气流磨的二级碎化就可以顺利进行。所获得纳米多孔T-M细粉颗粒大小范围为0.1μm~5μm;纳米多孔T-M细粉内部多孔“系带”尺寸为3nm~500nm。
因此,本发明提供的纳米多孔粉体材料的制备方法,通过“超声辅助脱合金”-“M化处理”-“气流磨处理”等三个关键步骤,可以实现纳米多孔T-M细粉的成本低、大规模生产、并具有广阔的应用前景。
实施例1
本实施例提供了一种纳米多孔Cu-O粉的制备方法,该制备方法包括如下步骤:
选择Mg 67Cu 33前驱体合金,按照元素组成配制合金,将合金充分熔化,然后将合金熔体以10 5K/s的凝固速率冷却到室温,得到厚度为25μm的Mg 67Cu 33薄带,其主要由Mg 2Cu金属间化合物组成。将Mg 67Cu 33薄带在40kHz超声辅助情况下与0.5mol/L的盐酸水溶液反应30min,得到粒径为1μm-200μm的纳米多孔Cu粗粉,纳米多孔“系带”的平均直径为45nm。
将纳米多孔Cu粗粉在300℃下与空气中的氧发生充分的氧化反应,得到纳米多孔CuO粗粉,其粒径范围为1μm-220μm,纳米多孔“系带”的平 均直径为50nm。
将纳米多孔CuO粗粉通过气流磨进行进一步破碎,空气粉碎压力为1MPa,最终得到纳米多孔CuO细粉,其粒径范围为0.1μm-3μm,纳米多孔“系带”的平均直径为50nm,如图1所示。
实施例2
本实施例提供了一种纳米多孔Cu-O粉的制备方法,该制备方法包括如下步骤:
选择Gd 82Al 8Cu 10前驱体合金,按照元素组成配制合金,将合金充分熔化,然后将合金熔体以10 5K/s的凝固速率冷却到室温,得到厚度为25μm的Gd 82Al 8Cu 10薄带,其由单相非晶组成。将Gd 82Al 8Cu 10非晶薄带在40kHz超声辅助情况下与0.5mol/L的盐酸水溶液反应30min,得到粒径为1μm-200μm的纳米多孔Cu粗粉,纳米多孔“系带”的平均直径为35nm。
将纳米多孔Cu粗粉在300℃下与空气中的氧发生充分的氧化反应,得到纳米多孔CuO粗粉,其粒径范围为1μm-220μm,纳米多孔“系带”的平均直径为40nm。
将纳米多孔CuO粗粉通过气流磨进行进一步破碎,空气粉碎压力为1MPa,最终得到纳米多孔CuO细粉,其粒径范围为0.1μm-2.5μm,纳米多孔“系带”的平均直径为40nm。
实施例3
本实施例提供了一种纳米多孔AuCu-O粉的制备方法,该制备方法包括如下步骤:
选择Mg 67Cu 30Au 3前驱体合金,按照元素组成配制合金,将合金充分熔化,然后将合金熔体以10 5K/s的凝固速率冷却到室温,得到厚度为25μm的Mg 67Cu 30Au 3薄带,其主要由Mg 2Cu(Au)金属间化合物组成。将Mg 67Cu 30Au 3薄带在40kHz超声辅助情况下与1mol/L的盐酸水溶液反应30min,脱合金去除Mg元素,得到粒径为1μm-200μm的纳米多孔Cu(Au)粗粉,纳米多孔“系带”的平均直径为15nm。
将纳米多孔Cu(Au)粗粉在300℃下与空气中的氧发生氧化反应,使Cu被充分氧化而Au不被氧化,得到纳米多孔CuO(Au)复合粗粉,其粒径范围为1μm-210μm,纳米多孔“系带”的平均直径为20nm。
将纳米多孔CuO(Au)复合粗粉通过气流磨进行进一步破碎,空气粉碎压力为1MPa,最终得到纳米多孔CuO(Au)细粉,其粒径范围为0.1μm-3μm,纳米多孔“系带”的平均直径为20nm。
实施例4
本实施例提供了一种纳米多孔Ti-H粉的制备方法,该制备方法包括如下步骤:
选择Fe 67Ti 33前驱体合金,按照元素组成配制合金,将合金充分熔化,然后将合金熔体以10 5K/s的凝固速率冷却到室温,得到厚度为25μm的Fe 67Ti 33薄带,其主要由Fe 2Ti金属间化合物组成。将Fe 67Ti 33薄带在40kHz超声辅助情况下与1mol/L的硫酸水溶液反应30min,得到粒径为1μm-200μm的纳米多孔Ti粗粉,纳米多孔“系带”的平均直径为35nm。
将纳米多孔Ti粗粉在375℃下与H 2发生充分的氢化反应,得到纳米多孔Ti-H粗粉,纳米多孔“系带”的平均直径为40nm。
将纳米多孔Ti-H粗粉通过气流磨进行进一步破碎,空气粉碎压力为1MPa,最终得到纳米多孔TiH细粉,其粒径范围为0.1μm-3μm,纳米多孔“系带”的平均直径为40nm。
实施例5
本实施例提供了一种纳米多孔Ti-N粉的制备方法,该制备方法包括如下步骤:
选择Mn 67Ti 33前驱体合金,按照元素组成配制合金,将合金充分熔化,然后将合金熔体以500K/s的凝固速率冷却到室温,得到厚度为1mm的Mn 67Ti 33薄带,其主要由Mn 2Ti金属间化合物组成。将Mn 67Ti 33薄带在40kHz超声辅助情况下与2mol/L的盐酸水溶液反应30min,得到粒径范围为1μm-200μm的纳米多孔Ti粗粉,纳米多孔“系带”的平均直径为32nm。
将纳米多孔Ti粗粉在1200℃下与N 2发生充分的氮化反应,得到纳米多孔Ti-N粗粉,纳米多孔“系带”的平均直径为40nm。
将纳米多孔Ti-N粗粉通过气流磨进行进一步破碎,空气粉碎压力为0.8MPa,最终得到纳米多孔TiN细粉,其粒径范围为0.1μm-3μm,纳米多孔“系带”的平均直径为40nm。
实施例6
本实施例提供了一种纳米多孔TiZrHf-N粉的制备方法,该制备方法包括如下步骤:
选择Mn 67Ti 11Zr 11Hf 11前驱体合金,按照元素组成配制合金,将合金充分熔化,然后将合金熔体以10 5K/s的凝固速率冷却到室温,得到厚度为 25μm的Mn 67Ti 11Zr 11Hf 11薄带,其主要由Mn 2(TiZrHf)金属间化合物组成。将Mn 67Ti 11Zr 11Hf 11薄带在40kHz超声辅助情况下与2mol/L的盐酸水溶液反应40min,得到粒径范围为1μm-200μm的纳米多孔TiZrHf粗粉,纳米多孔“系带”的平均直径为33nm。
将纳米多孔TiZrHf粗粉在1200℃下与N 2发生充分的氮化反应,得到纳米多孔TiZrHf-N粗粉,纳米多孔“系带”的平均直径为40nm。
将纳米多孔Ti-N粗粉通过气流磨进行进一步破碎,空气粉碎压力为0.8MPa,最终得到纳米多孔TiZrHf-N细粉,其粒径范围为0.1μm-2.5μm,纳米多孔“系带”的平均直径为40nm。
实施例7
本实施例提供了一种纳米多孔Ni-O粉的制备方法,该制备方法包括如下步骤:
选择Zn 80Ni 20前驱体合金,按照元素组成配制合金,将合金充分熔化,然后将合金熔体以10 5K/s的凝固速率冷却到室温,得到厚度为25μm的Zn 80Ni 20薄带,其主要由Zn 4Ni金属间化合物组成。将Zn 80Ni 20薄带在40kHz超声辅助情况下与5mol/L的NaOH水溶液反应60min,得到粒径为1μm-100μm的纳米多孔Ni粗粉,纳米多孔“系带”的平均直径为20nm。
将纳米多孔Ni粗粉在200℃下与空气中的氧发生充分的氧化反应,得到纳米多孔NiO粗粉,其粒径范围为1μm-120μm,纳米多孔“系带”的平均直径为25nm。
将纳米多孔NiO粗粉通过气流磨进行进一步破碎,空气粉碎压力为1.2MPa,最终得到纳米多孔NiO细粉,其粒径范围为0.1μm-2μm,纳米多 孔“系带”的平均直径为25nm。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种纳米多孔粉体材料的制备方法,其特征在于,包括以下步骤:
    1)制备前驱体合金A xT y,x与y代表各类元素的原子百分比含量,并且0.1%≤y≤50%,x+y=100%;通过超声辅助脱合金的方法去除A xT y合金中的A元素,得到通过超声波初级碎化的纳米多孔T粗粉;
    2)将纳米多孔T粗粉与含M的气体在一定温度下接触,使纳米多孔T粗粉中部分或者全部T组成元素与M发生M化反应,得到纳米多孔T-M粗粉;
    3)将纳米多孔T-M粗粉通过气流磨进行二级碎化,即得到纳米多孔T-M细粉。
  2. 根据权利要求1所述的一种纳米多孔粉体材料的制备方法,其特征在于,所述前驱体合金A xT y中,T包含但不局限于Be、B、Si、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Ge、Zr、Nb、Mo、Ag、Au、Pt、Pd、Hf、Ta、W、Bi中的至少一种;A包含但不局限于Li、Na、Mg、Al、K、Ca、Zn、Ga、Rb、Sn、Pb、Mn、Fe、Co、Ni、Cu、RE(稀土元素)中的至少一种;且前驱体合金中T通过和A结合成金属间化合物相或非晶相存在。
  3. 根据权利要求1所述的一种纳米多孔粉体材料的制备方法,其特征在于,按照配比称取合金原料;将合金原料充分熔融得到合金熔体后,通过快速凝固方法制备成所述前驱体合金;其中,所述合金熔体的凝固速率为0.1K/s~10 7K/s;所述前驱体合金的厚度为5μm~50mm。
  4. 根据权利要求1所述的一种纳米多孔粉体材料的制备方法,其特征在于,所述脱合金的方式包括但不局限于酸溶液反应脱合金与碱溶液反应脱合金;采用酸溶液反应脱合金时,酸溶液为盐酸、硫酸、硝酸、磷酸、 高氯酸、醋酸中的至少一种,且酸溶液的浓度为0.1mol/L~20mol/L;采用碱溶液反应脱合金时,碱溶液为氢氧化钠、氢氧化钾中的至少一种,且碱溶液的浓度为1mol/L~15mol/L。
  5. 根据权利要求1所述的一种纳米多孔粉体材料的制备方法,其特征在于,所述超声波的频率为10kHz~500kHz;所述纳米多孔T粗粉的粒径范围为1μm~500μm;所述纳米多孔T粗粉内部多孔“系带”尺寸为2nm~400nm。
  6. 根据权利要求1所述的一种纳米多孔粉体材料的制备方法,其特征在于,所述M包括但不局限于O、N、H元素中的至少一种;所述含M的气体反应物包括但不局限于空气、O 2、N 2、NH 3、H 2中的至少一种;所述M化反应包括但不局限于氧化反应、氮化反应、氢化反应中的至少一种。
  7. 根据权利要求1所述的一种纳米多孔粉体材料的制备方法,其特征在于,所述M化反应的温度为100℃~2000℃,所述纳米多孔T-M粗粉的粒径范围为1μm~600μm;所述纳米多孔T-M粗粉内部多孔“系带”尺寸为3nm~500nm。
  8. 根据权利要求1所述的一种纳米多孔粉体材料的制备方法,其特征在于,所述纳米多孔T粗粉的M化率为10%~100%。
  9. 根据权利要求1所述的一种纳米多孔粉体材料的制备方法,其特征在于,所述气流磨的气流粉碎压力为0.1MPa~2MPa,工作温度20℃~200℃;所选用气体包括但不局限于空气、氮气、惰性气体、水蒸汽中的至少一种。
  10. 根据权利要求1所述的一种纳米多孔粉体材料的制备方法,其特征在于,所述纳米多孔T-M细粉的粒径范围为0.1μm~5μm;纳米多孔T-M细粉内部多孔“系带”尺寸为3nm~500nm。
PCT/CN2020/137354 2020-06-16 2020-12-17 一种纳米多孔粉体材料的制备方法 WO2021253766A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/011,035 US20230321720A1 (en) 2020-06-16 2020-12-17 Method of preparing nano-porous powder material
EP20940520.8A EP4166504A4 (en) 2020-06-16 2020-12-17 METHOD FOR PREPARING A NANOPOROUS POWDER MATERIAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010545646.3A CN111634938B (zh) 2020-06-16 2020-06-16 一种纳米多孔粉体材料的制备方法
CN202010545646.3 2020-06-16

Publications (1)

Publication Number Publication Date
WO2021253766A1 true WO2021253766A1 (zh) 2021-12-23

Family

ID=72325687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137354 WO2021253766A1 (zh) 2020-06-16 2020-12-17 一种纳米多孔粉体材料的制备方法

Country Status (4)

Country Link
US (1) US20230321720A1 (zh)
EP (1) EP4166504A4 (zh)
CN (1) CN111634938B (zh)
WO (1) WO2021253766A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114559028A (zh) * 2022-01-24 2022-05-31 中山大学 一种大尺寸铋纳米线及其制备方法
WO2023201710A1 (zh) * 2022-04-22 2023-10-26 赵远云 贵金属纳米颗粒掺杂的纳米金属氧化物及贵金属纳米颗粒的制备方法与用途

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022100656A1 (zh) * 2019-11-28 2022-05-19 赵远云 一种含铝合金粉体的制备方法及其应用及一种合金条带
CN111634938B (zh) * 2020-06-16 2021-11-09 东莞理工学院 一种纳米多孔粉体材料的制备方法
JP2023544559A (ja) * 2020-09-30 2023-10-24 遠雲 趙 合金粉末、及び、その製造方法、並びに、用途
CN115490262A (zh) * 2021-06-19 2022-12-20 赵远云 一种纳米氧化锆/铪及金属纳米颗粒的制备方法
CN113800899A (zh) * 2021-08-12 2021-12-17 西安理工大学 一种块体纳米多孔CuO制备方法
CN113800556A (zh) * 2021-08-12 2021-12-17 西安理工大学 一种高比表面积的大尺寸块体多孔TiO2制备方法
WO2023201709A1 (zh) * 2022-04-22 2023-10-26 赵远云 纳米金属氧化物及其制备方法与用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103317141A (zh) * 2013-06-17 2013-09-25 中国科学院宁波材料技术与工程研究所 一种金属纳米颗粒的制备方法
US20150184309A1 (en) * 2014-01-02 2015-07-02 City University Of Hong Kong Method of fabricating improved porous metallic material and resulting structure thereof
CN104928518A (zh) * 2015-07-14 2015-09-23 北京航空航天大学 一种超细纳米多孔金属及其制备方法
CN106811750A (zh) * 2015-11-30 2017-06-09 中国科学院宁波材料技术与工程研究所 一种纳米多孔金属颗粒及其制备方法
CN111634938A (zh) * 2020-06-16 2020-09-08 东莞理工学院 一种纳米多孔粉体材料的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6347385B2 (ja) * 2013-11-29 2018-06-27 国立大学法人大阪大学 銅材の接合方法
CN104630538B (zh) * 2015-02-12 2017-03-01 张忠华 一种多组元纳米多孔钯基合金及其制备方法
CN105624456B (zh) * 2016-03-22 2017-11-14 北京航空航天大学 一种海绵状超细纳米多孔金属及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103317141A (zh) * 2013-06-17 2013-09-25 中国科学院宁波材料技术与工程研究所 一种金属纳米颗粒的制备方法
US20150184309A1 (en) * 2014-01-02 2015-07-02 City University Of Hong Kong Method of fabricating improved porous metallic material and resulting structure thereof
CN104928518A (zh) * 2015-07-14 2015-09-23 北京航空航天大学 一种超细纳米多孔金属及其制备方法
CN106811750A (zh) * 2015-11-30 2017-06-09 中国科学院宁波材料技术与工程研究所 一种纳米多孔金属颗粒及其制备方法
CN111634938A (zh) * 2020-06-16 2020-09-08 东莞理工学院 一种纳米多孔粉体材料的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
REN XIANGRONG, ZHOU QI: "Preparation of Nanoporous Ni and NiO and Their Electrocatalytic Activities for Oxygen Evolution Reaction", CHEMICAL JOURNAL OF CHINESE UNIVERSITIES, vol. 41, no. 1, 31 January 2020 (2020-01-31), pages 162 - 174, XP055881963, DOI: 10.7503 /cjcu20190340 *
See also references of EP4166504A4
ZHENG BIN: "Preparation and Electrochemical Performance of Nanoprous Binary Metal Oxides by Dealloying", CHINESE MASTER'S THESES FULL-TEXT DATABASE, ENGINEERING TECHNOLOGY I, no. 11, 15 November 2016 (2016-11-15), XP055881970 *
ZHOU QI, LI ZHI-YANG: "Preparation and Hydrogen Evolution Properties of Nanoporous Ni,Ni-Mo Alloys and Their Oxides", CHINESE JOURNAL OF INORGANIC CHEMISTRY / WU JI HUA XUE XUE BAO, CHINESE ELECTRONIC PERIODICAL SERVICES, CN, vol. 34, no. 12, 31 December 2018 (2018-12-31), CN , pages 2188 - 2196, XP055881969, ISSN: 1001-4861, DOI: 10.11862/CJIC.2018.268 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114559028A (zh) * 2022-01-24 2022-05-31 中山大学 一种大尺寸铋纳米线及其制备方法
CN114559028B (zh) * 2022-01-24 2024-01-23 中山大学 一种大尺寸铋纳米线及其制备方法
WO2023201710A1 (zh) * 2022-04-22 2023-10-26 赵远云 贵金属纳米颗粒掺杂的纳米金属氧化物及贵金属纳米颗粒的制备方法与用途
WO2023201994A1 (zh) * 2022-04-22 2023-10-26 赵远云 贵金属纳米颗粒掺杂的纳米金属氧化物及贵金属纳米颗粒的制备方法与用途

Also Published As

Publication number Publication date
EP4166504A4 (en) 2024-04-10
CN111634938B (zh) 2021-11-09
EP4166504A1 (en) 2023-04-19
US20230321720A1 (en) 2023-10-12
CN111634938A (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
WO2021253766A1 (zh) 一种纳米多孔粉体材料的制备方法
JP4828986B2 (ja) 水素吸蔵合金、水素貯蔵膜および水素貯蔵タンク
JP5108976B2 (ja) 燃料電池セパレータ
WO2020228709A1 (zh) 一种合金粉体材料的制备方法
JP6122589B2 (ja) 燃料電池セパレータ
JPH11503489A (ja) ナノ結晶Mg基−材料及びその水素輸送と水素貯蔵への利用
JP6851315B2 (ja) 金属酸化物粒子及びその生成方法
KR100814951B1 (ko) 전이금속이 도핑된 티타네이트 나노튜브 제조방법
KR101530727B1 (ko) 밸브 금속 및 밸브 금속 아산화물로 이루어진 나노 크기 구조체 및 그 제조 방법
US11532827B2 (en) Fuel cell bipolar plate alloys
JPH03122205A (ja) Ti粉末の製造方法
JP5108986B2 (ja) 燃料電池セパレータ
JP3720250B2 (ja) 高水素吸蔵合金とその製造方法
US6284066B1 (en) Process for producing hydrogen absorbing alloy powder and hydrogen absorbing alloy electrode
Hesse et al. High-energy ball milling of intermetallic Ti-Cu alloys for the preparation of oxide nanoparticles
JP2000239703A (ja) 耐酸化性に優れる水素吸蔵合金粉末の製造方法
WO2022222998A1 (zh) 一种纳米钛酸盐、纳米钛酸、纳米TiO2的制备方法及用途
WO2023201994A1 (zh) 贵金属纳米颗粒掺杂的纳米金属氧化物及贵金属纳米颗粒的制备方法与用途
JP2000303101A (ja) 耐久性に優れる水素吸蔵合金とその製造方法
JP2002105511A (ja) 耐久性に優れた水素吸蔵合金とその製造方法
JP3033430B2 (ja) 水素吸蔵合金粉末とニッケル−水素電池
JP2002060804A (ja) 耐久性に優れる水素吸蔵合金とその製造方法
JPS6026603A (ja) 非晶質合金粉末
JP2004068049A (ja) 水素移動量に優れたbcc固溶体型水素貯蔵合金および該水素貯蔵合金の製造方法
Andronache et al. Materials Science Communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020940520

Country of ref document: EP

Effective date: 20230116