WO2022100656A1 - 一种含铝合金粉体的制备方法及其应用及一种合金条带 - Google Patents

一种含铝合金粉体的制备方法及其应用及一种合金条带 Download PDF

Info

Publication number
WO2022100656A1
WO2022100656A1 PCT/CN2021/130019 CN2021130019W WO2022100656A1 WO 2022100656 A1 WO2022100656 A1 WO 2022100656A1 CN 2021130019 W CN2021130019 W CN 2021130019W WO 2022100656 A1 WO2022100656 A1 WO 2022100656A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
powder
phase
initial
matrix phase
Prior art date
Application number
PCT/CN2021/130019
Other languages
English (en)
French (fr)
Inventor
赵远云
刘丽
Original Assignee
赵远云
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011273043.9A external-priority patent/CN112143926B/zh
Priority claimed from CN202011273626.1A external-priority patent/CN112276101A/zh
Application filed by 赵远云 filed Critical 赵远云
Publication of WO2022100656A1 publication Critical patent/WO2022100656A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/30Acidic compositions for etching other metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition

Definitions

  • the invention relates to the technical field of metal materials, in particular to a preparation method and application of an aluminum alloy-containing powder and an alloy strip.
  • the disadvantages of the liquid phase method are low yield, high cost and complex process.
  • the disadvantage of the mechanical method is that it is difficult to classify after the powder is prepared, and the purity, fineness and morphology of the product are difficult to guarantee.
  • the rotating electrode method and the gas atomization method are currently the main methods for preparing high-performance alloy powder, but the production efficiency is low and the energy consumption is relatively large. Jet milling and hydrodehydrogenation are suitable for large-scale industrial production, but have strong selectivity to raw metals and alloys.
  • the impurity content of the metal powder or alloy powder, especially the oxygen content has a great influence on its performance. At present, the impurity content of metal powder or alloy powder is mainly controlled by controlling the purity and vacuum degree of raw materials, which is expensive. Therefore, it is of great significance to develop new preparation methods for high-purity alloy powder materials.
  • a preparation method containing aluminum alloy powder is characterized in that, comprises the following steps:
  • Step 1 select the initial alloy raw material, and melt the initial alloy raw material according to the initial alloy composition ratio to obtain a uniform initial alloy melt;
  • the main component of the initial alloy melt is RE a Al b M c T d ; wherein RE a Al b M c T d ; Contains at least one of Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, M includes W, Cr, Mo, V, Ta, At least one of Nb, Zr, Hf, Ti, Fe, Co, Ni; T is an impurity element and contains at least one of O, H, N, P, S, F, Cl; a, b, c, d respectively represents the atomic percentage content of the corresponding constituent elements, and 35% ⁇ a ⁇ 99.7%, 0.1% ⁇ b ⁇ 25%, 0.1% ⁇ c ⁇ 35%, 0 ⁇ d ⁇ 10%;
  • Step 2 solidify the initial alloy melt into initial alloy strips; the solidified structure of the initial alloy strips includes a matrix phase and a dispersed particle phase; the melting point of the matrix phase is lower than that of the dispersed particle phase, and the dispersed particles
  • the phase is coated in the matrix phase; the average composition of the matrix phase is mainly RE x1 Aly1 T z1 , and the composition of the dispersed particle phase is mainly M x2 Aly2 T z2 , x1, y1, z1, x2 , y2 and z2 respectively represent the atomic percentage content of the corresponding constituent elements, and 60% ⁇ x1 ⁇ 99.8%, 0.2% ⁇ y1 ⁇ 30%, 0 ⁇ z1 ⁇ 30%; 80% ⁇ x2 ⁇ 99.8%, 0.1% ⁇ y2 ⁇ 22%, 0 ⁇ z2 ⁇ 1.5%, z2 ⁇ d ⁇ z1; during the solidification of the initial alloy melt, the impurity element T in the initial alloy melt is redistributed in the dispersed particle
  • step 3 the initial alloy strip is reacted with the acid solution, the matrix phase in the initial alloy strip reacts with the acid to become ions entering the solution, and the dispersed particle phase that does not react with the acid solution is removed from the initial alloy.
  • the strip is separated out to obtain an aluminum alloy-containing powder material whose main component is M x2 Aly2 T z2 .
  • the source of impurity elements in the initial alloy melt includes: impurities introduced from the initial alloy raw material, and impurities introduced from the atmosphere or the crucible during the smelting process.
  • the impurities introduced into the atmosphere refer to impurities such as O, N, and H in the ambient atmosphere absorbed by the alloy melt.
  • the initial alloy raw material includes an M-T raw material containing an impurity element T.
  • M is Ti and T contains O
  • the M-T raw material includes Ti-O raw material containing O impurities.
  • T is an impurity element, and includes at least one of O, H, N, P, S, F, and Cl; and the total content of these impurity elements is the content of the T impurity element;
  • the M includes at least one of W, Cr, Mo, V, Ta, Nb, Zr, Hf, Ti, Fe, Co, and Ni, and when M includes Fe, Co, Ni At least one of W, Cr, Mo, V, Ta, Nb, Zr, Hf, Ti is also included;
  • the M includes at least one of W, Cr, Mo, V, Ta, Nb, Zr, Hf, and Ti;
  • the initial alloy strip does not contain an intermetallic compound composed of RE and M;
  • the method of solidification of the alloy melt includes strip method and continuous casting method; generally, thinner initial alloy strip can be obtained by strip method; thicker alloy strip can be obtained by continuous casting method .
  • the alloy strip refers to that the shape of the alloy includes a strip or a strip.
  • the shape of the alloy is mainly a strip, it means that one dimension of the alloy shape in the three-dimensional direction is significantly larger than the dimensions of the other two dimensions, and the strip includes regular strips and irregular strips.
  • the morphology of the alloy ingot obtained by the ordinary casting method is completely different.
  • the alloy ingot obtained by the ordinary casting method generally has no obvious appearance. Length and thickness comparison.
  • the thickness of the initial alloy strips ranges from 5 ⁇ m to 50 mm; further, the thickness of the initial alloy strips ranges from 5 ⁇ m to 5 mm; preferably, the thickness of the initial alloy strips ranges from 5 ⁇ m to 1 mm ; As a further preference, the thickness of the initial alloy strip ranges from 5 ⁇ m to 200 ⁇ m; as a further preference, the thickness of the initial alloy strip ranges from 5 ⁇ m to 20 ⁇ m.
  • the thickness of the initial alloy strip is in the order of millimeters, it can also be referred to as an alloy sheet.
  • the width of the cross-section of the initial alloy strip is more than twice the thickness.
  • the length of the initial alloy strip is more than 10 times its thickness.
  • the length of the initial alloy strip is more than 50 times its thickness.
  • the length of the initial alloy strip is more than 100 times its thickness.
  • the solidification rate of the initial alloy melt is 1 K/s ⁇ 10 7 K/s.
  • the particle size of the dispersed particle phase is related to the solidification rate of the initial alloy melt; in general, the particle size of the dispersed particle phase has a negative correlation with the solidification rate of the initial alloy melt, that is, the initial alloy melt. The higher the solidification rate of the melt, the smaller the particle size of the dispersed particle phase.
  • the particle size range of the dispersed particle phase is 2 nm to 3 mm; further, the particle size range of the dispersed particle phase is 2 nm to 500 ⁇ m; preferably, the particle size range of the dispersed particle phase is 2nm ⁇ 99 ⁇ m; as a further preference, the particle size range of the disperse particle phase is 2nm ⁇ 5 ⁇ m; as a further preference, the particle diameter range of the disperse particle phase is 2nm ⁇ 200nm; as a further preference, the disperse particles The particle size of the phase ranges from 2 nm to 100 nm.
  • the particle shape of the dispersed particle phase is not limited, and may include at least one of dendritic, spherical, nearly spherical, square, pie, and rod-shaped; when the particle shape is rod-shaped, the Size refers to the diameter dimension of the cross-section of the rod.
  • the dispersed particle phase solidifies and precipitates from the initial alloy melt.
  • the crystal grains all have a fixed orientation relationship in their crystal growth, so that the precipitated single grains are mainly composed of a single crystal.
  • the volume percentage of the dispersed particles in the entire initial alloy strip is relatively high, in the process of endogenous precipitation of single crystal particles, it is not excluded that two or more particles merge. If two or more single crystal particles are only softly agglomerated, adsorbed to each other, or connected together by only a few parts, and are not sufficiently combined into one particle through normal grain boundaries as in polycrystalline materials, they are still two single crystal particles. . Its characteristic is that after the matrix phase is removed in the subsequent process, these single crystal particles can be easily separated by techniques including ultrasonic dispersion treatment and jet milling. For polycrystalline materials of normal ductile metals or alloys, it is difficult to separate the grain boundaries by techniques including ultrasonic dispersion treatment and jet milling.
  • the number of single crystal particles in the dispersed particles in the initial alloy strip accounts for not less than 75% of the total number of dispersed particles.
  • the number of single crystal particles in the dispersed particles accounts for not less than 90% of the total number of dispersed particles.
  • volume percentage content of the dispersed particle phase in the initial alloy strip does not exceed 40%.
  • the RE element is mainly a large atomic rare earth element, and its atomic weight is generally higher than that of the M element. Therefore, when the atomic percentage content of M element is controlled not to exceed 35% in the alloy melt, the volume percentage content of the dispersed particle phase mainly composed of M element also generally does not exceed 35%.
  • the atomic percentage content of the Al element in the matrix phase whose average composition is mainly RE x1 A y1 T z1 is higher than the atomic percentage content in the dispersed particle phase whose composition is mainly M x2 A y2 T z2 , that is, y1>y2.
  • z2 is less than the atomic percentage content of T impurity elements in the MT raw material, that is, the atomic percentage content of T impurity elements in the dispersed particle phase whose main component is M x2 Aly2 T z2 is lower than the T in the MT raw material.
  • the atomic percentage of impurity elements is less than the atomic percentage content of T impurity elements in the MT raw material, that is, the atomic percentage content of T impurity elements in the dispersed particle phase whose main component is M x2 Aly2 T z2 is lower than the T in the MT raw material.
  • 0 ⁇ z2 ⁇ d ⁇ z1, 3z2 ⁇ z1, and 0 ⁇ z2 ⁇ 1.5% that is, the T impurity content in the dispersed particle phase is lower than the T impurity content in the initial alloy melt, and the 3 times the T impurity content in the dispersed particle phase is still lower than the T impurity content in the matrix phase;
  • the present invention adopts the atomic percentage content to express the T impurity content.
  • the composition of each element is characterized by the atomic percentage content of the element, and the increase or decrease of element content, such as the increase or decrease of impurity elements, can be accurately expressed through the concept of material quantity. If the mass percentage content (or ppm concept) of elements is used to characterize the content of each element, it is easy to produce wrong conclusions due to the difference in atomic weight of each element. For example, an alloy whose atomic percent content is Ti 45 Gd 45 O 10 contains 100 atoms, and the atomic percent content of O is 10 at %.
  • the 100 atoms are divided into two parts: Ti 45 O 4 (the atomic percentage composition is Ti 91.8 O 8.2 ) and Gd 45 O 6 (the atomic percentage composition is Gd 88.2 O 11.8 ), and the atomic percentage content of oxygen in Gd 45 O 6 is increased to 11.8at%, the atomic percentage of oxygen in Ti 45 O 4 is reduced to 8.2at%, which can accurately express that O is enriched in Gd.
  • the mass percent content of O is used to measure, the mass percent content of O in Ti 45 Gd 45 O 10 is 1.70 wt %, and the mass percent content of O in Ti 45 O 4 and Gd 45 O 6 is 2.9 wt. % and 2.9 wt % respectively. 1.34wt.%, it would lead to the wrong conclusion that the O content in Ti 45 O 4 is significantly increased compared to that in Gd 45 O 6 .
  • the acid in the acid solution includes at least one of sulfuric acid, hydrochloric acid, nitric acid, perchloric acid, phosphoric acid, acetic acid, oxalic acid, formic acid, and carbonic acid.
  • the molar concentration of the acid is 0.01 mol/L to 10 mol/L.
  • the temperature at which the initial alloy strip reacts with the acid solution is 0° C. ⁇ 100° C., and the reaction time is 0.1 min ⁇ 24 h.
  • the particle size range of the aluminum alloy powder-containing material is 2 nm ⁇ 3 mm.
  • the particle size range of the aluminum alloy powder-containing material ranges from 2 nm to 500 ⁇ m;
  • the particle size of the aluminum alloy powder-containing material ranges from 2 nm to 99 ⁇ m;
  • the particle size range of the aluminum alloy powder-containing material is 2 nm to 10 ⁇ m;
  • the particle size range of the aluminum alloy powder-containing material is 2 nm to 1 ⁇ m;
  • the particle size range of the aluminum alloy powder-containing material is 2 nm to 200 nm;
  • the particle size range of the aluminum alloy powder-containing material is 2 nm to 100 nm.
  • the dispersed particles are detached from the initial alloy strip, cleaned and dried to obtain an aluminum alloy-containing powder material whose main component is M x2 Aly2 T z2 .
  • the following steps are also performed: after sieving the aluminum alloy powder-containing material, select the aluminum alloy powder-containing material with a particle size range of 5 ⁇ m to 200 ⁇ m to perform plasma spheroidization treatment to obtain Spherical aluminum alloy powder material;
  • the particle size range of the spherical aluminum alloy-containing powder is 5 ⁇ m ⁇ 200 ⁇ m.
  • the present invention also relates to an aluminum alloy-containing powder, characterized in that the aluminum alloy-containing powder is prepared by the above-mentioned method.
  • the main component of the aluminum alloy-containing powder is M x2 Aly2 T z2 , and the particle size of the aluminum alloy-containing powder material ranges from 2 nm to 3 mm.
  • the present invention also relates to the application of the aluminum alloy-containing powder or spherical aluminum alloy-containing powder material obtained by the above preparation method in optoelectronic devices, wave absorbing materials, catalysts, powder metallurgy, 3D metal printing, metal injection molding, and coatings. .
  • the application of the spherical aluminum alloy-containing powder material obtained by the above preparation method in the field of metal powder 3D printing is characterized in that the particle size of the spherical aluminum alloy-containing powder is 5 ⁇ m to 200 ⁇ m.
  • the application of the aluminum alloy-containing powder or spherical aluminum-alloy-containing powder obtained by the above preparation method in metal injection molding and powder metallurgy is characterized in that the aluminum alloy-containing powder or spherical aluminum-alloy-containing powder
  • the particle size is 0.1 ⁇ m ⁇ 50 ⁇ m.
  • the application of the aluminum alloy-containing powder obtained by the above preparation method in a coating is characterized in that the particle size of the aluminum alloy-containing powder is 2 nm to 5 ⁇ m.
  • the invention also relates to an alloy strip, which is characterized in that it includes endogenous aluminum alloy-containing powder and a cladding body; the solidification structure of the alloy strip includes a matrix phase and a dispersed particle phase, and the matrix phase is the cladding body , the dispersed particle phase is the endogenous aluminum alloy-containing powder; the melting point of the cladding body is lower than the endogenous aluminum alloy-containing powder, and the endogenous aluminum alloy-containing powder is coated in the cladding body
  • the average composition of the cladding body is mainly RE x1 Aly1 T z1
  • the main composition of the endogenous aluminum alloy powder-containing powder is M x2 A y2 T z2 , where x1, y1, z1, x2, y2, z2 represent respectively
  • the atomic percentage content of the corresponding constituent elements and 60% ⁇ x1 ⁇ 99.8%, 0.2% ⁇ y1 ⁇ 30%, 0 ⁇ z1 ⁇ 30%; 80% ⁇ x2 ⁇ 99.8%, 0.
  • the M contains at least one of W, Cr, Mo, V, Ta, Nb, Zr, Hf, Ti, Fe, Co, and Ni, and when M contains at least one of Fe, Co, and Ni In the case of one type, it also contains at least one of W, Cr, Mo, V, Ta, Nb, Zr, Hf, and Ti;
  • the M includes at least one of W, Cr, Mo, V, Ta, Nb, Zr, Hf, and Ti;
  • the thickness of the alloy strip ranges from 5 ⁇ m to 50 mm;
  • the thickness of the alloy strip ranges from 5 ⁇ m to 5 mm;
  • the thickness of the alloy strip ranges from 5 ⁇ m to 1 mm;
  • the thickness of the alloy strip ranges from 5 ⁇ m to 200 ⁇ m;
  • the thickness of the alloy strip ranges from 5 ⁇ m to 20 ⁇ m.
  • the width of the cross section of the alloy strip is more than 2 times its thickness
  • the length of the initial alloy strip is more than 10 times its thickness
  • the length of the initial alloy strip is more than 50 times its thickness
  • the length of the initial alloy strip is more than 100 times its thickness.
  • the particle size range of the endogenous aluminum alloy-containing powder is 2 nm to 3 mm;
  • the particle size range of the endogenous aluminum alloy-containing powder is 2 nm to 500 ⁇ m;
  • the particle size range of the endogenous aluminum alloy-containing powder is 2 nm to 99 ⁇ m;
  • the particle size range of the endogenous aluminum alloy-containing powder is 2 nm to 10 ⁇ m;
  • the particle size range of the endogenous aluminum alloy-containing powder is 2 nm to 1 ⁇ m;
  • the particle size range of the endogenous aluminum alloy-containing powder is 2 nm to 200 nm;
  • the particle size range of the endogenous aluminum alloy-containing powder is 2 nm to 100 nm.
  • the particle shape of the endogenous aluminum alloy-containing powder includes at least one of dendritic shape, spherical shape, nearly spherical shape, square shape, cake shape, and rod shape.
  • the number of single crystal particles in the endogenous aluminum alloy-containing powder in the alloy strip accounts for not less than 75% of the total number of endogenous aluminum alloy-containing powders.
  • volume percentage of the endogenous aluminum alloy-containing powder in the alloy strip does not exceed 40%.
  • the addition of Al element plays a very important role.
  • the most widely used titanium alloy is Ti6Al4V alloy.
  • the Ti6Al4V alloy powder is generally obtained by smelting the Ti6Al4V alloy melt, and then using the atomization powder technology. Due to the limitation of atomization powder technology, it is difficult to obtain ultra-fine Ti6Al4V alloy powder, and even nano-scale Ti6Al4V alloy powder cannot be obtained by atomization powder technology.
  • the present invention cleverly finds that when a considerable content of Al element is added to the alloy composed of RE-M (it can exceed 10 at.% or even higher), the Al element in the solidified structure of the alloy can exist at the same time in the main composition of the alloy through a certain content distribution relationship.
  • the matrix phase composed of RE and the dispersed particle phase mainly composed of M.
  • the Al in M-based Al-containing dispersed particles is protected by inert M element and will not be easily removed by acid reaction (eg Ti6Al4V alloy has good Acid corrosion resistance), which makes it possible to prepare aluminum-containing titanium alloy powder by removing the matrix phase by acid reaction.
  • the present invention selects the initial alloy melt containing impurity T metal M, metal Al and rare earth RE smelting components whose main components are RE a Al b M c T d .
  • the solidification structure of the initial alloy melt is composed of a dispersed particle phase whose main component is M x2 A y2 T z2 and a matrix phase whose average composition is mainly RE x1 A y1 T z1 .
  • the solidification structure is conducive to the passage of the dispersed particle phase through the initial alloy.
  • the reaction of the band with the acid solution separates. Specifically, when the initial alloy strip reacts with the acid solution, the hydrogen ions in the acid solution react with RE elements and Al elements in the matrix phase to dissolve RE elements and Al elements into ions into Solution; the Al solid solution in the dispersed particle phase whose main component is M x2 Aly2 T z2 is protected by the inert element M and is not easy to react with the acid solution.
  • the disperse particle phase whose main component is M x2 Aly2 T z2 can be dispersed and separated after the matrix phase reacts with the acid solution to remove, and the main component is M x2 A ly2 T z2 containing aluminum alloy powder.
  • the size of the dispersed particle phase whose main component is M x2 Al y2 T z2 can be nanoscale, submicron, micron, or even millimeter scale.
  • the particle size of the body can also be nanoscale, submicron, micron, or even millimeter.
  • an aluminum alloy-containing powder mainly composed of single crystal particles can be obtained.
  • single crystal powders can achieve many significant and beneficial effects.
  • each endogenous dispersed particle grows and grows according to a specific atomic arrangement after nucleation from a certain position in the melt.
  • volume percentage of the matrix phase By controlling the volume percentage of the matrix phase to ensure that each endogenous particle can be dispersed, it is difficult for each endogenous particle to merge and grow. Therefore, most of the dispersed and distributed particle phases finally obtained are single crystal phases.
  • the growth direction of each secondary dendrite maintains a certain phase relationship with the growth direction of the main dendrite, which is still a single crystal particle.
  • the grain boundaries generally contain impurity elements discharged from the grain during solidification, so it is difficult to obtain high-purity polycrystalline powder materials.
  • the powder material is mainly composed of single crystal particles, its purity must be guaranteed.
  • the atoms on the surface of single crystal particles have specific arrangements, such as (111) plane arrangement, which will endow the single crystal powder materials with special mechanical, physical and chemical properties, thereby producing beneficial effects.
  • the realization of obtaining high-purity aluminum alloy-containing powder from low-purity raw materials, and pointing out a new way for the preparation of high-purity metal powder materials from low-purity raw materials, has positive significance.
  • the improvement of the purity of the high-purity aluminum alloy-containing powder of the present invention is mainly achieved through the following two mechanisms: 1) the "absorption" effect of RE rare earth elements on the impurity elements in the initial alloy melt.
  • the impurity element T Due to the extremely strong affinity between the selected RE rare earth elements and the impurity element T, this can make the impurity element T in the initial alloy melt either enter more into the matrix phase mainly composed of RE elements, or in the melt state 2)
  • the impurity element T will be discharged into the remaining in the melt.
  • the aluminum-containing endogenous alloy powder is not later than the matrix phase precipitation during the solidification process, its impurities will be enriched in the last part of the melt that solidifies, that is, the part of the melt that is mainly composed of RE rare earth elements and solidifies to form the matrix phase.
  • the result of two mechanisms is that the impurity element T is enriched in the matrix phase mainly composed of RE rare earths, and the aluminum-containing endogenous dispersed particle phase is purified.
  • the alloy strip composed of the endogenous aluminum alloy-containing powder and the cladding body creatively uses the in-situ generated matrix phase to wrap the endogenous aluminum alloy-containing powder, and maintains the high purity of the endogenous aluminum alloy-containing powder. with high activity.
  • metal or alloy powders prepared by traditional chemical methods or physical methods, especially nano-powders with extremely large specific surface areas, are easily oxidized naturally and face the problem of difficulty in powder preservation.
  • one of the technical solutions of the present invention does not rush to remove the cladding body after preparing the alloy strip composed of the endogenous aluminum alloy powder and the cladding body, but directly uses the cladding body to protect the inner Raw aluminum alloy powder is not naturally oxidized.
  • This alloy strip composed of endogenous aluminum alloy powder and cladding can be directly used as raw material for downstream production, so it has the potential to become a special product.
  • a suitable timing can be selected according to the characteristics of the next process, and the endogenous aluminum alloy-containing powder can be removed from the alloy strip through an acid solution under a suitable environment. It is released from the coating, and the released endogenous aluminum alloy-containing powder enters the next production process in the shortest time possible, so that the chance of the aluminum alloy-containing powder being contaminated by impurities such as oxygen is greatly reduced.
  • the aluminum-containing nano-alloy powder can be compounded with resin at the same time as the aluminum alloy-containing powder is released from the cladding body or immediately afterward, so as to prepare a resin matrix added with aluminum-containing nano-alloy powder with high activity. composite material.
  • the solid alloy obtained by solidification in the second step is in the shape of a strip, which ensures the uniformity of the product shape and the feasibility of large-scale production.
  • the alloy strip is a thin alloy strip, it can be prepared by the stripping method. As long as the flow rate of the alloy melt flowing to the rotating roll is kept constant and the rotation speed of the rotating roll is fixed, an alloy thin strip with a uniform thickness can be obtained, and the preparation process It can be carried out continuously, which is beneficial to large-scale production.
  • the alloy strip is a thick alloy strip, it can be prepared by a mature continuous casting method. The principle of continuous casting is similar to that of the strip method, and a continuous and uniform thick strip can also be obtained through the melt.
  • the preparation process can also It is carried out continuously, which is beneficial to large-scale production.
  • the cooling rate is also relatively uniform, and the particle size of the obtained dispersed particles is relatively uniform.
  • the solid alloy obtained by solidification is ingot-like, according to common sense, the ingot has no uniform thickness and no obvious length, which generally leads to difficulty in dissipating heat from the internal melt, and it is easy to obtain abnormally large endogenous particles. , this is only necessary when the large endogenous particles are simply collected and purified. Therefore, the present invention obtains the alloy strip by solidification, which is suitable for the subsequent preparation of the aluminum alloy powder-containing material by the "dephase method".
  • the preparation method of the present invention is simple in process, easy to operate, and low in cost, and can prepare high-purity aluminum alloy-containing powders with different morphologies of nano-, sub-micron, micron, and millimeter scales, which can be used in optoelectronic devices, absorbers, etc. It has good application prospects in the fields of wave materials, catalysts, powder metallurgy, 3D metal printing, metal injection molding, and coatings.
  • the present invention also provides a method for preparing an aluminum alloy-containing powder, comprising the following steps:
  • the composition is RE x1 Aly1
  • the composition of the dispersed particle phase is M x2 Aly2 , x1, y1, x2, y2 respectively represent the atomic percentage content of the corresponding constituent elements, and 0.5% ⁇ y1 ⁇ 30%, 0.1% ⁇
  • step S1 the raw materials required for smelting the initial alloy RE a Al b M c are prepared according to the specific composition and content;
  • step S1 the initial alloy is obtained through the following sub-steps:
  • the initial alloy melt can be prepared by melting each element according to the ratio. If the provided alloy raw material is directly RE a Al b M c alloy, the RE a Al b M c alloy can be remelted to obtain an alloy melt. Of course, the metal M, the metal Al and the rare earth RE can also be melted and prepared into the RE a Al b Mc alloy, and then the RE a Al b Mc alloy can be remelted to obtain the alloy melt.
  • the solidification method is not limited, and may be methods such as casting, melt stripping, and melt pulling.
  • the particle size and morphology of the finally formed alloy powder are basically the same as the particle size and morphology of the dispersed particle phase with the composition M x2 A y2 in the initial alloy, and the dispersed particle phase with the composition M x2 A y2
  • the particle size is related to the solidification rate of the alloy melt during the preparation process.
  • the particle size of the disperse particle phase with the composition M x2 Al y2 is negatively correlated with the cooling rate of the alloy melt, that is, the greater the solidification rate of the alloy melt, the larger the particle size of the disperse particle phase. smaller.
  • the solidification rate of the alloy melt is preferably 0.001K /s ⁇ 10 7 K/s, so that the particle size of the dispersed particle phase with the composition Mx2Aly2 in the initial alloy is 2nm ⁇ 50mm, so as to prepare nano-scale , sub-micron, micron and millimeter-scale aluminum alloy-containing powders with different morphologies.
  • the solidified structure of the initial alloy obtained by the solidification of the alloy melt includes a matrix phase and a dispersed particle phase, and the dispersed particle phase is a particle phase dispersed in the matrix phase, wherein the matrix phase
  • the average composition is RE x1 Aly1
  • the composition of the dispersed particle phase is M x2 Aly2
  • a small amount of Al dissolved in the dispersed particle phase with the composition M x2 Aly2 is protected by the inert element M, and it is not easy to mix with the acid solution.
  • the matrix phase with an average composition of RE x1 Al y1 is the active ingredient, which is very easy to react with acid. Therefore, the solidified structure of the initial alloy is favorable for subsequent separation, and an aluminum alloy-containing powder with a composition of M x2 Al y2 is obtained.
  • the atomic percentage content of Al element in the matrix phase with the average composition RE x1 A y1 is higher than that in the dispersed particle phase with the composition M x2 A y2 , that is, y1>y2.
  • the particle shape of the dispersed particle phase is not limited, and may include at least one of dendritic shape, spherical shape, nearly spherical shape, square shape, cake shape, and rod shape.
  • the size of the particle is particularly Refers to the diameter dimension of the rod-shaped cross-section.
  • the particle size of the dispersed particle phase is 2 nm ⁇ 50 mm.
  • the acid in the acid solution includes at least one of sulfuric acid, hydrochloric acid, nitric acid, perchloric acid, phosphoric acid, acetic acid, oxalic acid, formic acid, and carbonic acid, and the molar concentration of the acid is 0.001mol/L ⁇ 20mol /L.
  • the solvent in the acid solution includes water.
  • the temperature at which the matrix phase reacts with the acid solution is 0° C. ⁇ 100° C., and the time is 0.1 min ⁇ 24 h.
  • the prefabricated powders that are separated are screened and then subjected to plasma spheroidization treatment respectively, so as to obtain spherical containing particles with different particle sizes.
  • Aluminum alloy powder or, subjecting the separated prefabricated powder to plasma spheroidization and screening to obtain aluminum alloy-containing powder with different particle sizes and spherical shape.
  • an application of the aluminum alloy-containing powder obtained by the above preparation method in 3D metal printing is characterized in that the particle size of the aluminum alloy-containing powder is 0.5 ⁇ m ⁇ 1 mm.
  • an application of the aluminum alloy-containing powder obtained by the above preparation method in metal injection molding is characterized in that the particle size of the aluminum alloy-containing powder is 0.1 ⁇ m ⁇ 50 ⁇ m.
  • an application of the aluminum alloy-containing powder obtained by the above preparation method in an anti-corrosion coating is characterized in that the particle size of the aluminum alloy-containing powder is 2 nm to 5 ⁇ m.
  • the present invention also provides a preparation method of high-purity powder material according to the priority document joint application:
  • a preparation method of high-purity powder material characterized in that, comprising the following steps:
  • Step S1 select an initial alloy raw material, and melt the initial alloy raw material according to the initial alloy composition ratio to obtain a uniform initial alloy melt containing an impurity element T, wherein T includes O, H, N, P, S, F, Cl, At least one of I, Br, and the average composition of the initial alloy melt includes:
  • A contains Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, At least one of Tm, Yb, Lu; M includes at least one of W, Cr, Mo, V, Ta, Nb, Zr, Hf, Ti; Al is aluminum; wherein a, b, c, d represent respectively The atomic percentage content of the corresponding constituent elements, and 29.8% ⁇ a ⁇ 64.8%, 35% ⁇ b ⁇ 70%, 0.1% ⁇ c ⁇ 25%, 0 ⁇ d ⁇ 10%;
  • the average composition of the initial alloy melt is as described above;
  • step S2 the initial alloy melt is solidified into initial alloy strips;
  • the solidified structure of the initial alloy strip includes a matrix phase and a dispersed particle phase;
  • the melting point of the matrix phase is lower than that of the dispersed particle phase, and the The dispersed particle phase is coated in the matrix phase;
  • the impurity element T in the initial alloy melt is redistributed in the dispersed particle phase and the matrix phase, and is enriched in the matrix phase, so that the dispersed particle phase is purified;
  • the composition of the dispersed particle phase in the initial alloy strip is mainly M x1 Aly1 T z1 , and the average composition of the matrix phase is mainly A x2 A y2 T z2 ; and 77.8% ⁇ x1 ⁇ 99.8%, 0.1% ⁇ y1 ⁇ 22 %, 0 ⁇ z1 ⁇ 1.5%; 69.8% ⁇ x2 ⁇ 99.7%, 0.2% ⁇ y2 ⁇ 30%, 0 ⁇ z2 ⁇ 20%, z1 ⁇ d ⁇ z2, 2z1 ⁇ z2, y1 ⁇ y2, x1, y1, z1, x2, y2, and z2 respectively represent the atomic percentage content of the corresponding constituent elements;
  • the composition of the dispersed particle phase here is mainly M x1 Aly1 T z1
  • the average composition of the matrix phase is mainly A x2 A y2 T z2
  • the dispersed particles in claim 1 The composition of the phase is mainly A x2 A ly2 T z2
  • the average composition of the matrix phase is mainly M x1 A y1 T z1 . Therefore, the specific meaning of each component should not be confused, and it needs to be in one-to-one correspondence with the corresponding description and claims.
  • the composition of the dispersed particle phase in the initial alloy strip is M x1 Aly1 T z1 , and the average composition of the matrix phase is A x2 A y2 T z2 ;
  • step S3 the matrix phase in the initial alloy strip is removed, and the dispersed particle phase that cannot be removed at the same time in the process of removing the matrix phase is retained, and the shedding dispersed particle phase is collected, that is, a high-purity particle composed of the original dispersed particles is obtained.
  • Target powder material the matrix phase in the initial alloy strip is removed, and the dispersed particle phase that cannot be removed at the same time in the process of removing the matrix phase is retained, and the shedding dispersed particle phase is collected, that is, a high-purity particle composed of the original dispersed particles is obtained.
  • the source of the T impurity element in the initial alloy melt includes: impurities introduced from the initial alloy raw material, and impurities introduced from the atmosphere or the crucible during the smelting process.
  • the impurities introduced into the atmosphere refer to impurities such as O, N, and H in the ambient atmosphere absorbed by the alloy melt.
  • T is an impurity element and contains at least one of O, H, N, P, S, F, Cl, I, and Br; and the total content of these impurity elements is the content of T impurity elements;
  • the raw material is each element or master alloy containing impurity elements, it can be melted according to the proportion to prepare the initial alloy melt. If the supplied raw material is directly the alloy raw material corresponding to the composition of the initial alloy melt, it can be remelted to obtain the initial alloy melt.
  • the initial alloy raw material includes an M-T raw material containing an impurity element T.
  • M is Ti and T contains O
  • the M-T raw material includes Ti-O raw material containing O impurities.
  • the combination of A and M in the average composition of the initial alloy melt in the step S1 is extremely important, and the selection principle is to ensure that no intermetallic compound is formed between A and M during the solidification of the alloy melt; or even if M and other Element (D) can form a high melting point intermetallic compound, but still no intermetallic compound is formed between A and M.
  • the two-phase separation of the matrix phase dominated by A and the particle phase dominated by M can be realized during the solidification of the initial alloy melt, which is beneficial to the subsequent preparation of powder materials dominated by M.
  • the initial alloy strip does not contain intermetallic compounds comprising A and M;
  • the method of solidification of the alloy melt includes strip method and continuous casting method; generally, thinner initial alloy strip can be obtained by strip method; thicker alloy strip can be obtained by continuous casting method .
  • the alloy strip refers to that the shape of the alloy includes a strip or a strip.
  • the shape of the alloy is mainly strip, it means that one dimension of the alloy shape in the three-dimensional direction is significantly larger than the dimensions of the other two dimensions, and the strip includes regular strips and irregular strips.
  • the morphology of the alloy ingot obtained by the ordinary casting method is completely different.
  • the alloy ingot obtained by the ordinary casting method is average in size. There is no obvious difference in length, width and thickness.
  • the thickness of the initial alloy strips ranges from 5 ⁇ m to 50 mm; further, the thickness of the initial alloy strips ranges from 5 ⁇ m to 5 mm; preferably, the thickness of the initial alloy strips ranges from 5 ⁇ m to 1 mm ; As a further preference, the thickness of the initial alloy strip ranges from 5 ⁇ m to 200 ⁇ m; as a further preference, the thickness of the initial alloy strip ranges from 5 ⁇ m to 20 ⁇ m.
  • the thickness of the initial alloy strip is in the order of millimeters, it can also be referred to as an alloy sheet.
  • the width of the cross-section of the initial alloy strip is more than twice the thickness.
  • the length of the initial alloy strip is more than 10 times its thickness.
  • the length of the initial alloy strip is more than 50 times its thickness.
  • the length of the initial alloy strip is more than 100 times its thickness.
  • the solidification rate of the initial alloy melt is 1 K/s ⁇ 10 7 K/s.
  • the particle size of the dispersed particle phase is related to the solidification rate of the initial alloy melt; in general, the particle size of the dispersed particle phase has a negative correlation with the solidification rate of the initial alloy melt, that is, the initial alloy melt. The higher the solidification rate of the melt, the smaller the particle size of the dispersed particle phase.
  • the particle size range of the disperse particle phase is 2nm ⁇ 3mm; further, the particle size range of the disperse particle phase is 2nm ⁇ 500 ⁇ m; preferably, the particle size range of the disperse particle phase is 2nm ⁇ 99 ⁇ m; as a further preference, the particle size range of the dispersed particle phase is 2 nm to 5 ⁇ m; as a further preference, the particle diameter of the dispersed particle phase is in the range of 2 nm to 200 nm; as a further preference, the particle diameter of the dispersed particle phase The range is 2nm to 100nm.
  • the particle shape of the dispersed particle phase is not limited, and may include at least one of dendritic, spherical, nearly spherical, square, pie, and rod-shaped; when the particle shape is rod-shaped, the Size refers to the diameter dimension of the cross-section of the rod.
  • dispersed particles are of nanometer or submicron scale, spherical or nearly spherical particles are obtained with high probability; when the dispersed particles are of micrometer scale and above, dendritic particles are obtained with high probability.
  • the dispersed particle phase solidifies and precipitates from the initial alloy melt.
  • the crystal grains all have a fixed orientation relationship in their crystal growth, so that the precipitated single grains are mainly composed of a single crystal.
  • the number of single crystal particles in the dispersed particles in the initial alloy strip accounts for not less than 60% of the total number of dispersed particles.
  • the number of single crystal particles in the dispersed particles accounts for not less than 90% of the total number of dispersed particles.
  • the volume percentage content of the dispersed particle phase in the initial alloy strip can be determined by the corresponding initial alloy melt composition, dispersed particle phase composition, and matrix phase composition, Combined with element atomic weight, density parameters and other calculations to determine.
  • the matrix phase can obtain a higher volume percentage content through a smaller atomic percentage content.
  • the atomic percentage composition of the initial alloy strip of La 25 Fe 75 (for the convenience of calculation, the existence of impurities is not considered), the weight percentages of La and Fe are 45.33wt% and 54.67wt%, respectively, and the combined densities of the two are 6.2 g/cm 3 and 7.8 g/cm 3 , the volume percentages of La and Fe in the initial alloy strip with the atomic percentage composition La 25 Fe 75 can be calculated to be 51 vol.% and 49 vol.%, respectively. This shows that even though the atomic percent content of Fe in the La-Fe alloy is as high as 75 at.%, its volume percent content is still lower than 50 vol.%, which is favorable for the dispersion distribution of Fe particles in the initial alloy strips.
  • volume percentage content of the dispersed particle phase in its corresponding initial alloy strip is not higher than 50% vol.%.
  • the atomic percentage content z1 of the T impurity element in the dispersed particles is less than the atomic percentage content of the T impurity element in the M-T raw material.
  • 0 ⁇ z1 ⁇ d ⁇ z2, 3z1 ⁇ z2, and 0 ⁇ z1 ⁇ 1.5% that is, the T impurity content in the dispersed particle phase is lower than the T impurity content in the initial alloy melt, and the 3 times the T impurity content in the dispersed particle phase is still lower than the T impurity content in the matrix phase;
  • the method for removing the matrix phase from the alloy strip includes at least one of acid reaction removal, alkali reaction removal, and vacuum volatilization removal.
  • composition and concentration of the acid solution and the alkali solution are not specifically limited, as long as the matrix phase can be removed and the dispersed particle phase can be retained at the same time.
  • the temperature and vacuum degree of the vacuum treatment are not specifically limited, as long as the matrix phase can be removed and the dispersed particle phase can be retained at the same time.
  • the method for removing the matrix phase in the initial alloy strip includes the natural oxidation of the matrix phase-powdering and exfoliation removal.
  • the matrix phase is an element that is easily oxidized naturally with oxygen, such as La, Ce, etc.
  • the matrix phase can be separated from the dispersed particle phase through the natural oxidation-pulverization process of the matrix phase, and then supplemented by other technical means, Such as magnetic separation, it is possible to separate, for example, the magnetically dispersed particle phase from the natural oxides of the matrix phase.
  • the target powder material is the disperse particle phase dropped from the initial alloy ribbon
  • the composition and particle size of the target powder material are all equivalent to the composition and particle size of the corresponding disperse particle phase.
  • the particle size range of the target powder material is 2 nm to 3 mm; preferably, the particle size range of the target powder material is 2 nm to 500 ⁇ m; The diameter range is 2nm ⁇ 99 ⁇ m; as a further preference, the particle diameter range of the target powder material is 2nm ⁇ 5 ⁇ m; as a further preference, the particle diameter range of the target powder material is 2nm ⁇ 200nm; as a further preference , the particle size of the target powder material ranges from 2 nm to 100 nm.
  • the dispersed particles are separated from the initial alloy strip, cleaned and dried to obtain a high-purity target powder material.
  • composition of the high-purity target powder material is mainly M x1 Aly1 T z1 .
  • the composition of the high-purity target powder material is M x1 Aly1 T z1 .
  • the atomic percentage content of the T impurity element in the target metal powder does not exceed 1.5%
  • the atomic percentage content of the T impurity element in the target metal powder does not exceed 0.75%.
  • step S3 after sieving the high-purity powder material, select a high-purity powder material with a particle size ranging from 5 ⁇ m to 200 ⁇ m for plasma spheroidization, so as to obtain a spherical shape. of high-purity powder materials;
  • the present invention also relates to a high-purity powder material, characterized in that the high-purity powder material is prepared by the above-mentioned method.
  • the main component of the high-purity powder material is M x1 Aly1 T z1 , and the particle size range of the high-purity powder material is 2 nm ⁇ 3 mm.
  • the invention also relates to the application of the high-purity powder material or spherical high-purity powder material obtained by the above preparation method in catalytic materials, powder metallurgy, composite materials, wave absorbing materials, sterilization materials, metal injection molding, 3D printing, and coatings.
  • the application of the spherical high-purity powder material obtained by the above preparation method in the field of metal powder 3D printing is characterized in that the particle size of the spherical high-purity powder material ranges from 10 ⁇ m to 200 ⁇ m.
  • the application of the high-purity powder material obtained by the above preparation method in metal injection molding and powder metallurgy is characterized in that the particle size of the high-purity powder material ranges from 0.1 ⁇ m to 200 ⁇ m.
  • the application of the high-purity powder material obtained by the above preparation method in a coating is characterized in that the particle size of the high-purity powder material ranges from 2 nm to 5 ⁇ m.
  • the invention also relates to an alloy strip, which is characterized in that it includes endogenous powder and a coating body; the solidified structure of the alloy strip includes a matrix phase and a dispersed particle phase, and the matrix phase is the coating body, and the dispersed particles The phase is the endogenous powder; the melting point of the coating body is lower than the endogenous powder, and the endogenous powder is coated in the coating body;
  • the composition of the endogenous powder in the alloy strip is mainly M x1 A y1 T z1
  • the average composition of the clad is mainly A x2 A y2 T z2 ; and 77.8% ⁇ x1 ⁇ 99.8%, 0.1% ⁇ y1 ⁇ 22 %, 0 ⁇ z1 ⁇ 1.5%; 69.8% ⁇ x2 ⁇ 99.7%, 0.2% ⁇ y2 ⁇ 30%, 0 ⁇ z2 ⁇ 20%, z1 ⁇ d ⁇ z2, 2z1 ⁇ z2, y1 ⁇ y2, x1, y1, z1, x2, y2, and z2 respectively represent the atomic percentage content of the corresponding constituent elements; among them, A includes Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb , at least one of Lu; M includes at least one of W, Cr, Mo, V, Ta, Nb, Zr, Hf, Ti; Al is aluminum;
  • the composition of the endogenous powder in the alloy strip is M x1 Aly1 T z1
  • the average composition of the clad is A x2 A y2 T z2 ;
  • the thickness of the alloy strips ranges from 5 ⁇ m to 50 mm; preferably, the thickness of the alloy strips ranges from 5 ⁇ m to 5 mm; preferably, the thickness of the alloy strips ranges from 5 ⁇ m to 1 mm; Preferably, the thickness of the alloy strip is in the range of 5 ⁇ m to 200 ⁇ m; as a further preference, the thickness of the alloy strip is in the range of 5 ⁇ m to 20 ⁇ m.
  • the width of the cross section of the alloy strip is more than 2 times its thickness; further, the length of the initial alloy strip is more than 10 times its thickness; preferably, the length of the initial alloy strip is more than 50 times its thickness; preferably, the length of the initial alloy strip is more than 100 times its thickness.
  • the particle size range of the endogenous powder is 2nm ⁇ 3mm; preferably, the particle size range of the endogenous powder is 2nm ⁇ 500 ⁇ m; preferably, the particle size range of the endogenous powder is 2nm ⁇ 99 ⁇ m ; As a further preference, the particle size range of the endogenous powder is 2nm ⁇ 10 ⁇ m; As a further preference, the particle diameter range of the endogenous powder is 2nm ⁇ 1 ⁇ m; As a further preference, the particle size range of the endogenous powder It is 2nm ⁇ 200nm; as a further preference, the particle size range of the endogenous powder is 2nm ⁇ 100nm.
  • the shape of the endogenous powder includes at least one of dendritic shape, spherical shape, nearly spherical shape, square shape, cake shape and rod shape.
  • the number of single crystal particles in the endogenous powder in the alloy strip accounts for not less than 60% of the total number of endogenous powders.
  • volume percentage of the endogenous powder in the alloy strip does not exceed 50%.
  • phase separation occurs when the initial alloy melt is solidified, so that endogenous particles of a certain particle size target composition can be formed during the solidification of the initial alloy melt and can be separated by subsequent processes.
  • nano-metal particles can be easily prepared by bottom-up chemical methods, such as chemical reduction, but when the size of the particles increases to hundreds of nanometers or even micrometers, it is difficult to prepare them.
  • Metal particles of tens of microns or hundreds of microns can be easily prepared by top-down physical methods, such as atomization, ball milling, etc., but when the size of the particles is reduced to hundreds of nanometers to several microns, It is also difficult to prepare.
  • the technical scheme of the present invention can easily prepare nano-, sub-micron, micron, and even millimeter-scale target metal powder particles according to the different cooling rates in the solidification process of the initial alloy strip, which overcomes the above technical difficulties and has extremely high performance. Earth advantage.
  • the high-purity target powder material can be obtained from the low-purity raw material, and a new way is pointed out for the preparation of the high-purity powder material from the low-purity raw material, which is of positive significance.
  • the improvement of the purity of the target powder material of the present invention is mainly achieved through the following three mechanisms: 1) The "absorption" effect of highly active matrix main elements (such as RE rare earth elements) on impurity elements in the initial alloy melt.
  • the matrix element is generally a highly active, low melting point element, it has a strong affinity with the impurity element T during the melting and solidification of the alloy melt, which can make the impurity element T in the initial alloy melt more It enters into the matrix phase mainly composed of the main elements of the matrix phase, or forms slag with the main elements of the matrix in the melt state, and separates and removes it from the alloy melt; 2) During the nucleation and growth of the endogenously precipitated dispersed particle , the impurity element T will be discharged into the remaining melt.
  • the impurities related to the crucible entering the melt due to the interaction between the crucible and the melt during the smelting process are generally concentrated in the second phase matrix, which makes the requirements for the crucible during the smelting process. Further reduction, greatly reducing the production cost.
  • the target metal powder mainly composed of single crystal particles can be obtained.
  • single crystal powders can achieve many significant and beneficial effects.
  • each endogenous dispersed particle grows and grows according to a specific atomic arrangement after nucleation from a certain position in the melt.
  • the volume percentage of the dispersed particle phase in the initial alloy strip to not exceed 50%, it is difficult to merge and grow between individual endogenous particles under the condition that each endogenous particle can be dispersed and distributed. Therefore, most of the dispersed and distributed particle phases finally obtained are single crystal phases.
  • the growth direction of each secondary dendrite maintains a certain phase relationship with the growth direction of the main dendrite, which is still a single crystal particle.
  • the grain boundaries generally contain impurity elements discharged from the grain during solidification, so it is difficult to obtain high-purity polycrystalline powder materials.
  • the target metal powder is mainly composed of single crystal particles, its purity must be guaranteed.
  • the atoms on the surface of the single crystal particles have specific arrangements, such as (111) plane arrangement, which will endow the target metal powder with special mechanical, physical and chemical properties, thereby producing beneficial effects.
  • the solid solution of Al element in metals or alloy materials containing W, Cr, Mo, V, Ta, Nb, Zr, Hf, Ti and other elements is realized.
  • the addition of Al element plays a very important role.
  • the most widely used titanium alloy is Ti6Al4V alloy.
  • the Ti6Al4V alloy powder is generally obtained by smelting the Ti6Al4V alloy melt, and then using the atomization powder technology. Due to the limitation of atomization powder technology, it is difficult to obtain ultra-fine Ti6Al4V alloy powder, and even nano-scale Ti6Al4V alloy powder cannot be obtained by atomization powder technology.
  • the Al element in the solidified structure of the alloy can exist in the matrix phase mainly composed of RE and the dispersion mainly composed of M through a certain content distribution relationship. in the particle phase.
  • the Al in M-based Al-containing dispersed particles is protected by inert M element and will not be easily removed by acid reaction (eg Ti6Al4V alloy has good Acid corrosion resistance), which makes it possible to prepare Al-containing titanium alloy powder by removing the matrix phase by acid reaction.
  • the alloy strip composed of the endogenous powder and the coating body (matrix phase) creatively uses the in-situ generated matrix phase to wrap the endogenous powder, and maintains the high purity and high activity of the endogenous powder.
  • metal or alloy powders prepared by traditional chemical methods or physical methods, especially nano-powders with extremely large specific surface areas, are easily oxidized naturally and face the problem of difficulty in powder preservation.
  • the technical solution of the present invention does not rush to remove the cladding body after preparing the alloy strip composed of the endogenous metal powder and the cladding body (matrix phase), but directly uses the cladding body Protect the endogenous metal powder from natural oxidation.
  • This alloy strip composed of endogenous metal powder and cladding can be directly used as raw material for downstream production, so it has the potential to become a special product.
  • the downstream production needs to use high-purity powder, according to the characteristics of the next process, you can choose a suitable time and release the endogenous metal powder from the coating in the alloy strip under a suitable environment, and then as far as possible In a short time, the released endogenous powder enters the next production process, so that the chance of endogenous metal powder being contaminated by impurities such as oxygen is greatly reduced.
  • the endogenous metal powder when the endogenous metal powder is nanopowder, the endogenous metal powder can be compounded with the resin at the same time as the endogenous metal powder is released from the cladding body or immediately afterward, so as to prepare the resin-based composite material with the addition of endogenous metal powder with high activity.
  • the solid alloy obtained by solidification in the step S2 is in the shape of a strip, which ensures the uniformity of the product shape and the feasibility of mass production.
  • the alloy strip is a thin alloy strip, it can be prepared by the stripping method. As long as the flow rate of the alloy melt flowing to the rotating roll is kept constant and the rotation speed of the rotating roll is fixed, an alloy thin strip with a uniform thickness can be obtained, and the preparation process It can be carried out continuously, which is beneficial to large-scale production.
  • the alloy strip is a thick alloy strip, it can be prepared by a mature continuous casting method. The principle of continuous casting is similar to that of the strip method, and a continuous and uniform thick strip can also be obtained through the melt.
  • the preparation process can also It is carried out continuously, which is beneficial to large-scale production.
  • the thickness of the alloy strip is uniform, the cooling rate is also relatively uniform, and the particle size of the obtained dispersed particles is relatively uniform.
  • the solid alloy obtained by solidification is in the shape of an ingot, according to common sense, the ingot has no uniform thickness, and no obvious length and endpoints, which generally leads to difficulty in dissipating heat from the internal melt, and it is easy to obtain abnormally large internal melts. Green particles, this is only necessary if the large endogenous particles simply need to be collected and purified. Moreover, it is difficult to continuously produce ordinary ingots. Therefore, the present invention obtains alloy strips by solidification, which is suitable for subsequent preparation of powder materials by "dephase method".
  • the preparation method of the present invention has the characteristics of simple process, easy operation and low cost, and can prepare a variety of high-purity powder materials including nano-scale, sub-micron-scale and micro-scale, and can be used in catalytic materials, powder metallurgy, composite materials , absorbing materials, sterilization materials, magnetic materials, metal injection molding, 3D printing, coatings and other fields have good application prospects.
  • Fig. 1 is the energy spectrogram of the Ti-V-Al powder of the embodiment of the present invention 5;
  • Fig. 2 is the scanning electron microscope photograph of the Ti-V-Al powder of the embodiment of the present invention 6;
  • Fig. 3 is the scanning electron microscope photograph of the Ti-V-Al powder of the embodiment of the present invention 7;
  • Fig. 4 is the scanning electron microscope photograph of the Ti-V-Al powder of the embodiment of the present invention 8.
  • Example 5 is an energy spectrum diagram of the Ti-V-Al powder of Example 8 of the present invention.
  • This embodiment provides a preparation method of micron-scale Ti-V-Cr-Mo-Zr-Al alloy powder, and the preparation method includes the following steps:
  • the solidification structure of the alloy sheet is composed of a matrix phase with an average composition of about Gd 91.5 Al 8.5 and a dispersed dendritic grain phase with a composition of (Ti 82 V 8 Cr 6 Mo 2 Zr 2 ) 94.5 Al 5.5 , and the particles of the dispersed grain phase are composed of Size is 1 ⁇ m ⁇ 200 ⁇ m.
  • the obtained (Ti 82 V 8 Cr 6 Mo 2 Zr 2 ) 94.5 Al 5.5 -micron particles were separated from the solution, washed and dried to obtain micron-sized (Ti 82 V 8 Cr 6 Mo 2 Zr 2 ) 94.5 Al 5.5 Alloy powder, the average size of a single (Ti 82 V 8 Cr 6 Mo 2 Zr 2 ) 94.5 Al 5.5 particle ranges from 1 ⁇ m to 200 ⁇ m.
  • This embodiment provides a preparation method of micron-scale Ti-Mo-Zr-Al alloy powder, and the preparation method includes the following steps:
  • the solidification structure of the alloy sheet is composed of a matrix phase with an average composition of about Ce 91.5 Al 8.5 and a dispersed dendritic grain phase with a composition of (Ti 98 Mo 1 Zr 1 ) 94.5 Al 5.5 , and the size of the dispersed grain phase is 1 ⁇ m ⁇ 200 ⁇ m .
  • This embodiment provides a preparation method of nano-scale Ti-Cr-Al alloy powder, and the preparation method includes the following steps:
  • the solidification structure of the alloy strip is composed of a matrix phase with an average composition of about Ce 87 Al 13 and a dispersed particle phase with a composition of (Ti 97.5 Cr 2.5 ) 91.5 Al 8.5 , and the size of the dispersed particle phase is 10nm-200nm, and the shape is Nearly spherical.
  • This embodiment provides a preparation method of micron-scale Ti-Nb-Al alloy powder, and the preparation method includes the following steps:
  • the alloy melt is prepared into a Ce 68 Al 14 (Ti 96 Nb 4 ) 18 alloy sheet with a thickness of 1 mm to 20 mm at a solidification rate of 10 K/s to 1000 K/s.
  • the solidification structure of the alloy sheet is composed of a matrix phase with an average composition of Ce 85 Al 15 and a dispersed dendritic grain phase with a composition of (Ti 96 Nb 4 ) 90 Al 10 , and the size of the dispersed grain phase is 1 ⁇ m to 200 ⁇ m.
  • This embodiment provides a preparation method of nano-scale Ti-V-Al alloy powder, and the preparation method includes the following steps:
  • the solidification structure of the alloy strip is composed of a matrix phase with an average composition of Ce 88.5 Al 11.5 and a dispersed particle phase with a composition of (Ti 96 V 4 ) 92.5 Al 7.5 , and the size of the dispersed particle phase is 10nm-300nm, and the shape is approximately spherical.
  • This embodiment provides a preparation method of nano-scale Ti-V-Al alloy powder, and the preparation method includes the following steps:
  • the solidification structure of the alloy strip is composed of a matrix phase with an average composition of Ce 85 Al 15 and a dispersed particle phase with a composition of (Ti 96 V 4 ) 90 Al 10 , and the size of the dispersed particle phase is 10nm-300nm, and the shape is nearly spherical.
  • the average size of individual (Ti 96 V 4 ) 90 Al 10 particles ranges from 10 nm to 300 nm.
  • the obtained nano-scale (Ti 96 V 4 ) 90 Al 10 alloy powder can be used in the field of titanium alloy anti-corrosion coating additives.
  • This embodiment provides a preparation method of submicron Ti-V-Al alloy powder, and the preparation method includes the following steps:
  • the solidification structure of the alloy strip is composed of a matrix phase with an average composition of (La 50 Ce 50 ) 85 Al 15 and a dispersed particle phase with a composition of (Ti 96 V 4 ) 90 Al 10 , and the size of the dispersed particle phase is 100 nm ⁇ 1.5 ⁇ m.
  • the obtained (Ti 96 V 4 ) 90 Al 10 submicron particles were separated from the solution, washed and dried to obtain sub-micron (Ti 96 V 4 ) 90 Al 10 alloy powder as shown in FIG. 3 .
  • the average size of the single (Ti 96 V 4 ) 90 Al 10 particles ranges from 100 nm to 1.5 ⁇ m.
  • This embodiment provides a preparation method of micron-scale Ti-V-Al alloy powder, and the preparation method includes the following steps:
  • the alloy melt is prepared into a Ce 68 Al 14 (Ti 96 V 4 ) 18 alloy sheet with a thickness of 2 mm to 6 mm at a rate of 50 K/s to 500 K/s.
  • the solidification structure of the alloy sheet is composed of a matrix phase with an average composition of Ce 85 Al 15 and a dispersed dendritic grain phase with a composition of (Ti 96 V 4 ) 90 Al 10 , and the size of the dispersed grain phase is 5 ⁇ m to 100 ⁇ m.
  • the obtained (Ti 96 V 4 ) 90 Al 10 micron particles were separated from the solution, washed and dried, to obtain the (Ti 96 V 4 ) 90 Al 10 alloy powder as shown in Fig. 4 micron, whose single (Ti 96 The average size of the V 4 ) 90 Al 10 particles ranges from 5 ⁇ m to 100 ⁇ m. As shown in Figure 5, it has been verified that the alloy powder is composed of Ti, V, and Al elements.
  • This embodiment provides a preparation method of spherical micron-scale Ti-V-Al alloy powder, and the preparation method includes the following steps:
  • step (3) Collect 0.5 kg of micron-level (Ti 96 V 4 ) 90 Al 10 alloy powder obtained in step (2), and sieve through 100 mesh, 270 mesh, 1000 mesh, 2000 mesh, and 8000 mesh sieves to obtain The range of dendrite particle size is >150 ⁇ m, 150 ⁇ m ⁇ 53 ⁇ m, 53 ⁇ m ⁇ 13 ⁇ m, 13 ⁇ m ⁇ 6.5 ⁇ m, 6.5 ⁇ m ⁇ 1.6 ⁇ m and graded (Ti 96 V 4 ) 90 Al 10 alloy powder less than 1.6 ⁇ m.
  • the (Ti 96 V 4 ) 90 Al 10 alloy powders with dendritic particle sizes ranging from 150 ⁇ m to 53 ⁇ m, 53 ⁇ m to 13 ⁇ m and 13 ⁇ m to 6.5 ⁇ m were selected respectively, and the particle size range of 150 ⁇ m was further obtained by mature plasma spheroidization technology.
  • the obtained spherical (Ti 96 V 4 ) 90 Al 10 alloy powder can be used in the fields of 3D metal printing and metal injection molding (MIM).
  • This embodiment provides a preparation method for preparing high-purity nano-Ti-V-Al alloy powder from low-purity raw materials, and the preparation method includes the following steps:
  • Select sponges with T (containing at least one of O, H, N, P, S, F, Cl) impurity elements with atomic percentage content of 3 at.%, 1 at.%, 2.5 at.%, 0.2 at.% respectively Ti, electrolytic V, rare earth Ce, and Al raw materials.
  • the initial alloy raw materials are fully melted according to a certain proportion to obtain an initial alloy melt with an atomic percentage content mainly of Ce 70.5 Al 10 (Ti 96 V 4 ) 17 T 2.5 .
  • Ce 70.5 Al 10 (Ti 96 V 4 ) 17 T 2.5 alloy ribbons with a thickness of ⁇ 20 ⁇ m were prepared from the initial alloy melt by stripping the initial alloy melt at a solidification rate of ⁇ 10 6 K/s.
  • the solidification structure of the alloy strip is composed of a matrix phase whose average composition is mainly Ce 86.5 Al 10.5 T 3 and a dispersed particle phase whose composition is mainly (Ti 96 V 4 ) 92.25 Al 7.5 T 0.25 .
  • the volume percentage of the dispersed particle phase in the alloy strip is about 12%, and the particle size of the dispersed particle phase ranges from 5 nm to 100 nm, and the shape is nearly spherical.
  • the obtained alloy strip is an alloy strip composed of endogenously containing aluminum alloy powder and a cladding body.
  • the Ce 70.5 Al 10 (Ti 96 V 4 ) 17 T 2.5 alloy ribbon prepared above was reacted with an aqueous hydrochloric acid solution with a concentration of 0.5 mol/L.
  • the matrix phase whose average composition is mainly Ce 86.5 Al 10.5 T 3 reacts with acid and becomes ions into the solution, while the nano-scale (Ti 96 V 4 ) 92.25 Al 7.5 T 0.25 dispersed particle phase, which is difficult to react with acid, gradually changes. Disperse from the matrix phase.
  • the dispersed (Ti 96 V 4 ) 92.25 Al 7.5 T 0.25 nanoparticles were separated from the solution, washed and dried under a protective atmosphere to obtain nano-scale (Ti 96 V 4 ) 92.25 Al 7.5 T 0.25
  • the alloy powder has a particle size range of 5nm to 100nm, and the T impurity content in it is greatly reduced compared to the sponge Ti raw material.
  • the nano-scale (Ti 96 V 4 ) 92.25 Al 7.5 T 0.25 alloy powder is mixed with epoxy resin and other coating components under a protective atmosphere to prepare a titanium alloy nano-modified polymer anti-corrosion coating.
  • This embodiment provides a preparation method for preparing high-purity micron-scale Ti-Nb-Al alloy powder from low-purity raw materials, and the preparation method includes the following steps:
  • Select sponges with T (containing at least one of O, H, N, P, S, F, Cl) impurity elements with atomic percentage content of 3 at.%, 1 at.%, 2.5 at.%, 0.2 at.% respectively Ti, Nb flakes, rare earth Ce, and Al raw materials.
  • the initial alloy raw materials are fully melted according to a certain proportion to obtain an initial alloy melt whose main component is Ce 67.5 Al 13 (Ti 96 Nb 4 ) 17 T 2.5 in atomic percentage.
  • the initial alloy melt was prepared into a Ce 67.5 Al 13 (Ti 96 Nb 4 ) 17 T 2.5 alloy ribbon with a thickness of ⁇ 1 mm by the method of stripping the initial alloy through a copper roll at a solidification rate of 300 K/s.
  • the solidification structure of the alloy strip is composed of a matrix phase with an average composition of Ce 83.2 Al 13.7 T 3.1 and a dispersed particle phase with a composition of (Ti 96 Nb 4 ) 89.95 Al 10 T 0.05 .
  • the volume percentage of the dispersed particle phase in the alloy strip is about 13%, and the particle size of the dispersed particle phase ranges from 0.5 ⁇ m to 150 ⁇ m, and the shape is mainly dendrite.
  • the Ce 67.5 Al 13 (Ti 96 Nb 4 ) 17 T 2.5 alloy ribbon prepared above was reacted with an aqueous hydrochloric acid solution with a concentration of 0.5 mol/L.
  • the matrix phase whose average composition is mainly Ce 83.2 Al 13.7 T 3.1 reacts with acid and becomes ions into the solution, while the micron-sized (Ti 96 Nb 4 ) 89.95 Al 10 T 0.05 dispersed particle phase, which is difficult to react with acid, gradually changes. Disperse from the matrix phase.
  • the dispersed (Ti 96 Nb 4 ) 89.95 Al 10 T 0.05 particles were separated from the solution, washed and dried under a protective atmosphere to obtain a micron-sized (Ti 96 Nb 4 ) 89.95 Al 10 T 0.05 alloy
  • the powder has a particle size range of 0.5 ⁇ m to 150 ⁇ m, and the T impurity content in it is greatly reduced compared to the sponge Ti raw material.
  • the above-mentioned (Ti 96 Nb 4 ) 89.95 Al 10 T 0.05 alloy powder is sieved through 270 mesh, 1000 mesh, 2000 mesh, and 8000 mesh sieves, and the obtained dendrite particle size ranges are 150 ⁇ m ⁇ 53 ⁇ m, 53 ⁇ m ⁇ 13 ⁇ m, Graded (Ti 96 Nb 4 ) 89.95 Al 10 T 0.05 alloy powders of 13 ⁇ m to 6.5 ⁇ m, 6.5 ⁇ m to 1.6 ⁇ m and less than 1.6 ⁇ m.
  • the obtained spherical Ti-Nb-Al alloy powder can be used in the fields of 3D metal printing and metal injection molding.
  • This embodiment provides a preparation method of nano-Ti-Al-V powder, and the preparation method includes the following steps:
  • the solidification structure of the alloy strip is composed of a matrix phase with a composition of Ce 85 Al 15 and a large amount of dispersed particles with a composition of (Ti 96 V 4 ) 90 Al 10 , wherein the shape of the (Ti 96 V 4 ) 90 Al 10 particles is Nearly spherical, the particle size ranges from 3nm to 200nm.
  • the volume content of (Ti 96 V 4 ) 90 Al 10 particles in the alloy strip is about 52%; impurity elements are enriched in the Ce 85 Al 15 matrix during solidification.
  • the Ce 85 Al 15 matrix phase in the Ce 30 Al 12 (Ti 96 V 4 ) 58 alloy strip is removed by the dilute hydrochloric acid solution, so that the (Ti 96 V 4 ) 90 Al 10 particles that are difficult to react with the dilute hydrochloric acid solution are separated out , that is, to obtain nano (Ti 96 V 4 ) 90 Al 10 powder with a particle size range of 3 nm to 200 nm, and the H, O, N, S, P, F in the nano (Ti 96 V 4 ) 90 Al 10 powder , Cl, I, Br total content less than 1400ppm.
  • This embodiment provides a preparation method of submicron-micron Ti-Al-V powder, and the preparation method includes the following steps:
  • the solidification structure of the alloy strip is composed of a matrix phase with a composition of Ce 85 Al 15 and a large amount of dispersed particles with a composition of (Ti 96 V 4 ) 90 Al 10 , wherein the shape of the (Ti 96 V 4 ) 90 Al 10 particles is Nearly spherical or dendritic, with a particle size ranging from 500nm to 5 ⁇ m.
  • the volume content of (Ti 96 V 4 ) 90 Al 10 particles in the alloy strip is about 52%; impurity elements are enriched in the Ce 85 Al 15 matrix during solidification.
  • the Ce 85 Al 15 matrix phase in the Ce 30 Al 12 (Ti 96 V 4 ) 58 alloy strip is removed by the dilute hydrochloric acid solution, so that the (Ti 96 V 4 ) 90 Al 10 particles that are difficult to react with the dilute hydrochloric acid solution are separated out , that is, to obtain submicron-micron (Ti 96 V 4 ) 90 Al 10 powder, the particle size of which ranges from 500 nm to 5 ⁇ m, and the H, O, N, S, The total content of P, F, Cl, I and Br is less than 1400ppm.
  • This embodiment provides a preparation method of nano-Ti-V-Al alloy powder, and the preparation method includes the following steps:
  • the atomic percentages of T (including O, H, N, P, S, F, Cl) impurity elements are selected as sponge Ti, V block, 1at.%, 2.5at.%, 0.2at. Rare earth Ce, and Al raw materials.
  • the initial alloy raw materials are fully melted according to a certain proportion to obtain an initial alloy melt whose atomic percentage composition is mainly Ce 40.2 (Ti 96 V 4 ) 37.9 Al 20.5 T 1.4 .
  • the initial alloy melt was prepared into Ce 40.2 (Ti 96 V 4 ) 37.9 Al 20.5 T 1.4 alloy ribbons with a thickness of ⁇ 20 ⁇ m by copper roll stripping technique at a solidification rate of about ⁇ 10 6 K/s.
  • the solidification structure of the alloy strip is composed of a matrix phase with an average composition of Ce 73.2 Al 24.3 T 2.5 and a large number of dispersed particles with a main composition of (Ti 96 V 4 ) 84 Al 15.8 T 0.2 , of which (Ti 96 V 4 )
  • the shape of the 84 Al 15.8 T 0.2 dispersed particles is nearly spherical, and the particle size ranges from 5 nm to 200 nm.
  • the volume content of (Ti 96 V 4 ) 84 Al 15.8 T 0.2 dispersed particles in the alloy strip is about 33%;
  • the nanometer powder whose main component is (Ti 96 V 4 ) 84 Al 15.8 T 0.2 is mixed with epoxy resin and other coating components under a protective atmosphere to prepare a nano-Ti alloy modified polymer anti-corrosion coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种含铝合金粉体的制备方法及其应用,所述制备方法利用初始合金凝固组织中包含基体相与弥散颗粒相的特点,通过酸溶液将基体相反应去除,从而使得弥散颗粒相分离出来,得到含铝合金粉体。所述制备方法工艺简单,可以制备得到纳米级、亚微米级、微米级以及毫米级的不同形貌的含铝合金粉体,可应用于光电子器件、吸波材料、催化剂、3D金属打印、金属注射成型、防腐涂料等领域。

Description

一种含铝合金粉体的制备方法及其应用及一种合金条带 技术领域
本发明涉及金属材料技术领域,特别涉及一种含铝合金粉体的制备方法及其应用及一种合金条带。
背景技术
合金粉体的制备方法虽然很多,但每种方法都有一定的局限性。例如,液相法的缺点是产量低、成本高和工艺复杂等。机械法的缺点是在制取粉体后存在分级困难的问题,且产品的纯度、细度和形貌均难以保证。旋转电极法和气体雾化法是目前制备高性能合金粉体的主要方法,但生产效率低,能耗相对较大。气流磨法和氢化脱氢法适合大批量工业化生产,但对原料金属和合金的选择性较强。此外,金属粉或者合金粉的杂质含量,尤其是氧含量,对其性能具有极大的影响。目前,主要通过控制原料纯度与真空度的方法来控制金属粉或者合金粉的杂质含量,成本高昂。因此,开发新的高纯合金粉体材料的制备方法,具有重要的意义。
发明内容
基于此,有必要针对上述问题,提供一种含铝合金粉体的制备方法及其应用;
一种含铝合金粉体的制备方法,其特征在于,包括如下步骤:
步骤一,选择初始合金原料,按照初始合金成分配比将初始合金原料熔化,得到均匀的初始合金熔体;所述初始合金熔体的主要成分为RE aAl bM cT d;其中,RE包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种,M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti、Fe、Co、Ni中的至少一种;T为杂质元素且包含O、H、N、P、S、F、Cl中的至少一种;a、b、c、d分别代表对应组成元素的原子百分比含量,且35%≤a≤99.7%,0.1%≤b≤25%,0.1%≤c≤35%,0≤d≤10%;
步骤二,将初始合金熔体凝固成初始合金条带;所述初始合金条带的凝固组织包括基体相和弥散颗粒相;所述基体相的熔点低于所述弥散颗粒相,所述弥散颗粒相被包覆于所述基体相中;所述基体相的平均成分主要为RE x1Al y1T z1,所述弥散颗粒相的成分主要为M x2Al y2T z2,x1、y1、z1、x2、y2、z2分别代表对应组成元素的原子百分比含量,且60%≤x1<99.8%,0.2%≤y1≤30%,0≤z1≤30%;80%≤x2≤99.8%,0.1%≤y2≤22%,0≤z2≤1.5%,z2≤d≤z1;所述初 始合金熔体凝固过程中,初始合金熔体中的杂质元素T在弥散颗粒相与基体相中重新分配,并富集于所述基体相中,从而使所述弥散颗粒相得到纯化;
步骤三,将所述初始合金条带与酸溶液反应,所述初始合金条带中的基体相与酸反应变成离子进入溶液,而不与所述酸溶液反应的弥散颗粒相则从初始合金条带中脱离出来,即得主要成分为M x2Al y2T z2的含铝合金粉体材料。
所述步骤一中,
进一步地,所述初始合金熔体中的杂质元素来源包括:初始合金原料引入杂质,熔炼过程中气氛或坩埚引入杂质。其中,气氛引入杂质是指合金熔体吸收的环境气氛中的O、N、H等杂质。
进一步地,所述初始合金原料包括含有杂质元素T的M-T原料。例如,当M为Ti,且T包含O时,M-T原料即包括含有O杂质的Ti-O原料。
进一步地,T为杂质元素,且包含O、H、N、P、S、F、Cl中的至少一种;且这些杂质元素的总含量即为所述T杂质元素的含量;
进一步地,作为优选,0<d≤10%。
进一步地,作为优选,所述M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti、Fe、Co、Ni中的至少一种,且当M中包含有Fe、Co、Ni中的至少一种时,还同时包含有W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti中的至少一种;
作为进一步优选,所述M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti中的至少一种;
所述步骤二中,
进一步地,所述初始合金条带中不含有由RE与M构成的金属间化合物;
进一步地,所述合金熔体凝固的方式包括甩带法、连铸法;一般来说,通过甩带法可以获得较薄的初始合金条带;通过连铸法可以获得较厚的合金条带。
补充说明,所述合金条带,是指所述合金的形状包括条状或者带状。当合金形状主要为条状时,是指合金形状在三维方向上有一维的尺寸明显大于其它两个维的尺寸,所述条状包括规则条状,也包括非规则条状。
不论是甩带法获得的薄合金条带,还是连铸法获得的厚合金条带,均与普通铸造法获得的合金铸锭形貌完全不同,普通铸造法获得的合金铸锭一般没有明显的长度厚度对比。
进一步地,所述初始合金条带的厚度范围为5μm~50mm;进一步地,所述初始合金条带的厚度范围为5μm~5mm;作为优选,所述初始合金条带的厚度范围为5μm~1mm;作为进一步优选,所述初始合金条带的厚度范围为5μm~200μm;作为进一步优选,所述初始合金条带的厚度范围为5μm~20μm。
需要说明的是,当初始合金条带的厚度为毫米级时,其也可以被称为合金薄板。
进一步地,所述初始合金条带横截面的宽度是其厚度的2倍以上。
进一步地,所述初始合金条带的长度是其厚度的10倍以上。
作为优选,所述初始合金条带的长度是其厚度的50倍以上。
作为优选,所述初始合金条带的长度是其厚度的100倍以上。
进一步地,所述初始合金熔体凝固的速率为1K/s~10 7K/s。
进一步地,所述弥散颗粒相的颗粒大小与初始合金熔体的凝固速率有关;一般来说,弥散颗粒相的颗粒粒径大小与初始合金熔体的凝固速率成负相关的关系,即初始合金熔体的凝固速率越大,弥散颗粒相的颗粒粒径就越小。
进一步地,所述弥散颗粒相的颗粒粒径范围为2nm~3mm;进一步地,所述弥散颗粒相的颗粒粒径范围为2nm~500μm;作为优选,所述弥散颗粒相的颗粒粒径范围为2nm~99μm;作为进一步优选,所述弥散颗粒相的颗粒粒径范围为2nm~5μm;作为进一步优选,所述弥散颗粒相的颗粒粒径范围为2nm~200nm;作为进一步优选,所述弥散颗粒相的颗粒粒径范围为2nm~100nm。
进一步地,所述初始合金熔体凝固的速率为10 5K/s~10 7K/s时,可以获得粒径以纳米级尺度为主的弥散颗粒。
进一步地,所述初始合金熔体凝固的速率为10 4K/s~10 5K/s时,可以获得粒径以亚微米级尺度为主的弥散颗粒。
进一步地,所述初始合金熔体凝固的速率为10 2K/s~10 4K/s时,可以获得粒径以微米级尺度为主的弥散颗粒。
进一步地,所述初始合金熔体凝固的速率为1K/s~10 2K/s时,可以获得粒径以毫米级尺度为主的弥散颗粒。
进一步地,所述弥散颗粒相的颗粒形状不限,可包括枝晶形、球形、近球形、方块形、饼形、棒条形中的至少一种;当颗粒形状为棒条形时,颗粒的大小特指棒条横截面的直径尺寸。
进一步地,所述弥散颗粒相从所述初始合金熔体中凝固析出,根据形核长大理论,无论是刚刚形核长大的近球形纳米颗粒,还是充分长大的微米级、毫米级树枝晶颗粒,其晶体生长都具有固定的取向关系,从而使得析出的单个颗粒均主要由一个单晶构成。
当所述弥散颗粒在整个初始合金条带中体积百分含量较高时,在单晶颗粒的内生析出过程中,不排除有两个或两个以上颗粒合并的情况。如果两个或两个以上单晶颗粒仅仅软团聚、相互吸附、或者仅少许部位接触连接在一起,没有像多晶材料那样通过正常晶界充分结合成 一个颗粒,其仍然为两个单晶颗粒。其特点是,在后续过程去除基体相后,这些单晶颗粒可以轻易地通过包括超声分散处理、气流磨碎化等技术等分开。而正常的韧性金属或合金的多晶材料,则难以通过包括超声分散处理、气流磨碎化等技术将晶界分开。
作为优选,所述初始合金条带中弥散颗粒中的单晶颗粒数目在所有弥散颗粒数目中的占比不低于75%。
作为进一步优选,所述弥散颗粒中的单晶颗粒数目在所有弥散颗粒数目中的占比不低于90%。
进一步地,所述弥散颗粒相在所述初始合金条带中的体积百分含量不超过40%。
进一步地,由于c≤35%,而RE元素主要为大原子的稀土元素,其原子量普遍高于M元素的原子量。因此,当控制M元素的原子百分含量在合金熔体中不超过35%时,主要由M元素组成的弥散颗粒相的体积百分含量也一般不超35%。
进一步地,所述Al元素在平均成分主要为RE x1Al y1T z1的基体相中的原子百分含量高于其在成分主要为M x2Al y2T z2的弥散颗粒相中的原子百分含量,即y1>y2。
进一步地,z2小于M-T原料中T杂质元素的原子百分含量,即所述主要成分为M x2Al y2T z2的弥散颗粒相中的T杂质元素的原子百分含量低于M-T原料中的T杂质元素的原子百分含量。
进一步地,z2≤d≤z1,且2z2≤z1,
作为优选,z2≤d≤z1,且3z2≤z1,
进一步地,z2≤d≤z1,3z2≤z1,且0≤z2≤1.5%;
作为优选,0<z2<d<z1,3z2<z1,且0<z2≤1.5%;即所述弥散颗粒相中T杂质含量低于所述初始合金熔体中的T杂质含量,且所述弥散颗粒相中T杂质含量的3倍仍然低于所述基体相中的T杂质含量;
作为进一步优选,0<z2<d<z1,3z2<z1,且0<z2≤0.75%。
本发明采用原子百分比含量来表达T杂质含量。通过元素的原子百分比含量来表征各元素的组成,可以通过物质的量的概念准确地表达元素含量的增减变化,比如杂质元素的增减与变化。如果采用元素的质量百分比含量(或ppm概念)来表征各个元素的含量,由于各元素原子量的不同,则容易产生错误的结论。举例来说,如原子百分比含量为Ti 45Gd 45O 10的合金,包含100个原子,O的原子百分比含量为10at%。将这100个原子分成Ti 45O 4(原子百分比组成为Ti 91.8O 8.2)与Gd 45O 6(原子百分比组成为Gd 88.2O 11.8)两部分,Gd 45O 6中氧的原子百分比含量增为11.8at%,Ti 45O 4中氧的原子百分比含量减为8.2at%,可以很准确地表达Gd中富集了O。但若采用O的质量百分比含量来衡量,Ti 45Gd 45O 10中O的质量百分比含量为1.70 wt%,Ti 45O 4与Gd 45O 6中O的质量百分比含量分别为2.9wt.%与1.34wt.%,将会得出Ti 45O 4中O含量相比Gd 45O 6中O含量明显增加的错误结论。
所述步骤三中,
进一步地,所述酸溶液中的酸包括硫酸、盐酸、硝酸、高氯酸、磷酸、醋酸、草酸、甲酸、碳酸中的至少一种。
进一步地,所述酸的摩尔浓度为0.01mol/L~10mol/L。
进一步地,所述初始合金条带与所述酸溶液反应的温度为0℃~100℃,反应时间为0.1min~24h。
进一步地,所述含铝合金粉体材料的颗粒粒径范围为2nm~3mm。
作为优选,所述含铝合金粉体材料的颗粒粒径范围为2nm~500μm;
作为优选,所述含铝合金粉体材料的颗粒粒径范围为2nm~99μm;
作为进一步优选,所述含铝合金粉体材料的颗粒粒径范围为2nm~10μm;
作为进一步优选,所述含铝合金粉体材料的颗粒粒径范围为2nm~1μm;
作为进一步优选,所述含铝合金粉体材料的颗粒粒径范围为2nm~200nm;
作为进一步优选,所述含铝合金粉体材料的颗粒粒径范围为2nm~100nm。
进一步地,初始合金条带与酸溶液反应后,弥散颗粒从初始合金条带中脱离出来,对其清洗、干燥,即得到主要成分为M x2Al y2T z2的含铝合金粉体材料。
进一步地,在所述步骤三之后还进行以下步骤:将所述含铝合金粉体材料筛分后,选择粒径范围为5μm~200μm的含铝合金粉体材料进行等离子球化处理,以得到呈球形的含铝合金粉体材料;
进一步地,所述球形含铝合金粉体的粒径大小范围为5μm~200μm。
补充说明:进一步地,本发明还涉及一种含铝合金粉体,其特征在于,所述含铝合金粉体通过上述所述方法制备。
进一步地,所述含铝合金粉体主要成分为M x2Al y2T z2,所述含铝合金粉体材料的颗粒粒径范围为2nm~3mm。
进一步地,本发明还涉及上述制备方法得到的含铝合金粉体或球形含铝合金粉体材料在光电子器件、吸波材料、催化剂、粉末冶金、3D金属打印、金属注射成型、涂料中的应用。
进一步地,如上述制备方法得到的球形含铝合金粉体材料在金属粉3D打印领域中的应用,其特征在于,所述球形含铝合金粉体的粒径为5μm~200μm。
进一步地,如上述制备方法得到的含铝合金粉体或球形含铝合金粉体在金属注射成型与粉末冶金中的应用,其特征在于,所述含铝合金粉体或球形含铝合金粉体的粒径为 0.1μm~50μm。
进一步地,如上述制备方法得到的含铝合金粉体在涂料中的应用,其特征在于,所述含铝合金粉体的粒径为2nm~5μm。
本发明还涉及一种合金条带,其特征在于,包含内生含铝合金粉与包覆体;所述合金条带的凝固组织包括基体相和弥散颗粒相,基体相即为所述包覆体,弥散颗粒相即为所述内生含铝合金粉;所述包覆体的熔点低于所述内生含铝合金粉,所述内生含铝合金粉被包覆于所述包覆体中;所述包覆体的平均成分主要为RE x1Al y1T z1,所述内生含铝合金粉的主要成分为M x2Al y2T z2,x1、y1、z1、x2、y2、z2分别代表对应组成元素的原子百分比含量,且60%≤x1<99.8%,0.2%≤y1≤30%,0≤z1≤30%;80%≤x2≤99.8%,0.1%≤y2≤22%,0≤z2≤1.5%,z2≤z1,y1>y2;所述RE包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种,M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti、Fe、Co、Ni中的至少一种;T为杂质元素且包含O、H、N、P、S、F、Cl中的至少一种。
作为优选,所述M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti、Fe、Co、Ni中的至少一种,且当M中包含有Fe、Co、Ni中的至少一种时,还同时包含有W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti中的至少一种;
作为进一步优选,所述M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti中的至少一种;
进一步地,所述合金条带的厚度范围为5μm~50mm;
作为优选,所述合金条带的厚度范围为5μm~5mm;
作为优选,所述合金条带的厚度范围为5μm~1mm;
作为进一步优选,所述合金条带的厚度范围为5μm~200μm;
作为进一步优选,所述合金条带的厚度范围为5μm~20μm。
进一步地,所述合金条带横截面的宽度是其厚度的2倍以上;
进一步地,所述初始合金条带的长度是其厚度的10倍以上;
作为优选,所述初始合金条带的长度是其厚度的50倍以上;
作为优选,所述初始合金条带的长度是其厚度的100倍以上。
进一步地,所述内生含铝合金粉的颗粒粒径范围为2nm~3mm;
作为优选,所述内生含铝合金粉的颗粒粒径范围为2nm~500μm;
作为优选,所述内生含铝合金粉的颗粒粒径范围为2nm~99μm;
作为进一步优选,所述内生含铝合金粉的颗粒粒径范围为2nm~10μm;
作为进一步优选,所述内生含铝合金粉的颗粒粒径范围为2nm~1μm;
作为进一步优选,所述内生含铝合金粉的颗粒粒径范围为2nm~200nm;
作为进一步优选,所述内生含铝合金粉的颗粒粒径范围为2nm~100nm。
进一步地,所述内生含铝合金粉的颗粒形状包括枝晶形、球形、近球形、方块形、饼形、棒条形中的至少一种。
进一步地,所述合金条带中内生含铝合金粉中的单晶颗粒数目在所有内生含铝合金粉数目中的占比不低于75%。
进一步地,所述内生含铝合金粉在所述合金条带中的体积百分含量不超过40%。
进一步地,2z2≤z1,且0≤z2≤1.5%;
作为优选,3z2<z1,且0<z2≤1.5%;
作为进一步优选,3z2<z1,且0<z2≤0.75%。
本发明所述技术方案具有以下有益效果:
首先,实现了包含有W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti、Fe、Co、Ni等元素的金属或合金材料中Al元素的固溶。在上述合金材料中,Al元素的添加具有非常重要的作用。例如,目前使用最广泛的钛合金即Ti6Al4V合金。对于Ti6Al4V合金粉末来说,一般通过熔炼Ti6Al4V合金熔体,然后通过雾化制粉技术获得Ti6Al4V合金粉末。受雾化制粉技术的限制,其很难获得超细的Ti6Al4V合金粉末,甚至不能通过雾化制粉技术获得纳米级的Ti6Al4V合金粉末。因此,通过本发明所涉及的“去相法”实现Al元素在Ti-V合金中的添加,并制备各种粒径的Ti6Al4V合金粉末,具有非常重要的意义。本发明巧妙地发现,当在RE-M组成的合金中添加可观含量Al元素时(可以超过10at.%甚至更高),合金凝固组织中Al元素可以通过一定的含量分配关系同时存在于主要由RE组成的基体相与主要由M组成的弥散颗粒相中。由于RE-Al基体相可以很容易被酸反应去除,而以M为主的含Al的弥散颗粒中的Al受惰性M元素的保护,不会轻易被酸反应去除(如Ti6Al4V合金具有很好的耐酸腐蚀能力),这就使得通过酸反应去除基体相制备含铝钛合金粉末成为了可能。
其次,通过巧妙的元素选择,确保了初始合金条带中不生成由RE与M组成的金属间化合物,从而使得含铝与M的目标成分合金颗粒可以在初始合金熔体凝固过程中形成,并可以通过后续过程分离。本发明选择含有杂质T的金属M、金属Al与稀土RE熔炼成分主要成分为RE aAl bM cT d的初始合金熔体。该初始合金熔体的凝固组织由主要成分为M x2Al y2T z2的弥散颗粒相与平均成分主要为RE x1Al y1T z1的基体相组成,该凝固组织结构有利于弥散颗粒相通过初始合金条带与酸溶液的反应分离。具体来说,所述初始合金条带在与所述酸溶液反应时,所述酸溶液中的氢离子与基体相中的RE元素和Al元素反应,将RE元素和Al元素溶解变成离子进入溶液;主要成分为M x2Al y2T z2的弥散颗粒相中固溶的Al受到惰性元素M的保护,不易与酸溶液反应。因此,主要成分为M x2Al y2T z2的弥散颗粒相在基体相与酸溶液反应去除 后,即可以分散脱离出来,得到主要成分为M x2Al y2T z2的含铝合金粉体。根据初始合金条带冷速的不同,主要成分为M x2Al y2T z2的弥散颗粒相的大小可以为纳米级,亚微米级、微米级、甚至毫米级,则由其制备的含铝合金粉体的粒径也可以为纳米级,亚微米级、微米级、甚至毫米级。
第三,可以获得以单晶颗粒为主的含铝合金粉末。相比多晶粉末,单晶粉末可以获得诸多显著且有益效果。在所述初始合金熔体凝固过程中,每一个内生弥散颗粒都是从熔体中某个位置形核后按照特定的原子排列方式长大生成。通过控制基体相的体积百分含量,确保每个内生颗粒可以弥散分布的情况下,各个内生颗粒之间难以发生合并长大。因此,最终获得的各个弥散分布的颗粒相大多都是单晶相。即使尺度大到数十微米或毫米级的枝晶颗粒,其每个次级枝晶的生长方向都与主枝晶的生长方向保持一定的位相关系,其仍然属于单晶颗粒。对于多晶材料来说,其晶界一般容易含有凝固过程中从晶内排出来的杂质元素,因此很难获得高纯的多晶粉体材料。而当粉体材料主要由单晶颗粒组成时,其纯度必然能得到保障。而且,单晶颗粒表面原子具有特定的排列方式,如(111)面排列等,这些特定的排列方式会赋予单晶粉体材料特殊的力学、物理、化学性能,从而产生有益的效果。
第四,实现了通过低纯原料获得高纯含铝合金粉,并为低纯原料制备高纯金属粉体材料指出了一条新的途径,具有积极意义。本发明高纯含铝合金粉纯度的提高主要通过以下两个机制实现:1)RE稀土元素对初始合金熔体杂质元素的“吸收”作用。由于所选RE稀土元素与杂质元素T之间具有极强的亲和力,这可以使得初始合金熔体中的杂质元素T要么更多地进入主要由RE元素组成的基体相中,要么在熔体状态时与RE稀土元素形成熔渣,并与合金熔体分离去除;2)含铝内生合金粉(内生析出的弥散颗粒相)的形核长大过程中,杂质元素T会被排入剩余熔体中。只要凝固过程中含铝内生合金粉不晚于基体相析出,其杂质都会富集于最后凝固的那部分熔体,即主要由RE稀土元素组成并凝固形成基体相的那部分熔体。两个机制导致的结果是,杂质元素T富集于主要由RE稀土组成的基体相中,并使含铝内生弥散颗粒相得到提纯。
第五,所述由内生含铝合金粉与包覆体构成的合金条带,创造性地利用原位生成的基体相包裹内生含铝合金粉,保持了内生含铝合金粉的高纯度与高活性。具体来说,无论传统化学方法还是物理方法所制备的金属或合金粉,尤其是比表面积极大的纳米粉,极易自然氧化,都面临粉末的保存困难问题。针对这一问题,本发明其中一个技术方案在制备出由内生含铝合金粉与包覆体构成的合金条带之后,并不急于将包覆体去除,而是直接利用包覆体保护内生含铝合金粉不被自然氧化。这种由内生含铝合金粉与包覆体构成的合金条带可以直接作为下游生产的原料,因此有成为一类特殊产品的潜力。当下游生产需要使用高纯内生含铝合金 粉时,可以根据下一工序的特点,选择合适的时机并在合适的环境下通过酸溶液将内生含铝合金粉从合金条带中的包覆体中释放,再在尽可能短的时间使释放出来的内生含铝合金粉进入下一生产流程,从而使含铝合金粉受到氧等杂质污染的机会大大减少。例如,当内生含铝合金粉为纳米粉时,可以在含铝合金粉从包覆体中释放的同时或者随后马上与树脂复合,从而制备具有高活性的含铝纳米合金粉添加的树脂基复合材料。
第六,所述步骤二中通过凝固获得的固态合金为条带状,其保证了产品形状的均一性与大规模生产的可行性。当合金条带为薄合金条带时,可以通过甩带法制备,只要维持合金熔体流向旋转辊的流量固定,旋转辊的转速固定,就可以获得厚度均一的合金薄带,而且该制备过程可以连续进行,利于大规模生产。当合金条带为厚合金条带时,可以通过成熟的连铸法制备,连铸的原理与甩带法的原理相似,也可以通过熔体获得连续且厚度均一的厚带,制备过程也可以连续进行,利于大规模生产。当合金条带厚度均一时,冷速也较为均匀,获得弥散颗粒粒度也较为均匀。相比而言,如果凝固获得的固态合金为铸锭状时,根据常识,铸锭没有均一的厚度,也没有明显的长度,一般会导致内部熔体散热困难,容易获得异常大的内生颗粒,只有单纯需要对大的内生颗粒进行收集并对其提纯的时候才需要这样操作。因此,本发明通过凝固获得合金条带,适合后续通过“去相法”进行含铝合金粉体材料的制备。
因此,本发明的制备方法工艺简单、易于操作、成本低,可以制备得到纳米级、亚微米级、微米级、以及毫米级的不同形貌的高纯含铝合金粉体,在光电子器件、吸波材料、催化剂、粉末冶金、3D金属打印、金属注射成型、涂料等领域具有很好的应用前景。
作为备选方案,本发明还提供一种含铝合金粉体的制备方法,包括如下步骤:
S1,提供初始合金,所述初始合金的成分为RE aAl bM c,其中,RE选自Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种,M选自W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti中的至少一种,a、b、c分别代表对应组成元素的原子百分比含量,且0.1%≤b≤25%,0.1%≤c≤35%,a+b+c=100%,所述初始合金的凝固组织包括基体相和弥散颗粒相,所述基体相的平均成分为RE x1Al y1,所述弥散颗粒相的成分为M x2Al y2,x1、y1、x2、y2分别代表对应组成元素的原子百分比含量,且0.5%≤y1≤30%,0.1%≤y2≤25%,x1+y1=100%,x2+y2=100%;
S2,提供酸溶液,将所述初始合金与所述酸溶液混合,使所述初始合金中的基体相与所述酸溶液反应变成金属离子,所述初始合金中的弥散颗粒相脱离出来,得到含铝合金粉体,所述含铝合金粉体的成分为M x2Al y2
步骤S1中,按照特定组成与含量配制熔炼初始合金RE aAl bM c所需的原料;
步骤S1中,所述初始合金通过以下子步骤得到:
(1)按照配比称取原料;
(2)将所述原料熔化得到合金熔体;
(3)将所述合金熔体凝固得到所述初始合金,其中,所述凝固的速率为0.001K/s~10 7K/s。
上述子步骤(1)中,如果原料是金属M、金属Al与稀土RE,则可将各元素按照配比熔化制备所述初始合金熔体。如果提供的合金原料直接为RE aAl bM c合金时,则可以将RE aAl bM c合金重熔得到合金熔体。当然,也可以将金属M、金属Al与稀土RE熔融配制成RE aAl bM c合金,再将RE aAl bM c合金重熔得到合金熔体。
上述子步骤(3)中,所述凝固方法不做限定,可为铸造、熔体甩带、熔体抽拉等方法。考虑到最终形成的合金粉体的颗粒大小、形貌与初始合金中成分为M x2Al y2的弥散颗粒相的颗粒大小、形貌基本一致,而所述成分为M x2Al y2的弥散颗粒相的颗粒大小与制备过程中合金熔体的凝固速率有关。一般来说,成分为M x2Al y2的弥散颗粒相的颗粒粒径大小与合金熔体的冷却速率成负相关的关系,即:合金熔体的凝固速率越大,弥散颗粒相的颗粒粒径越小。因此,所述合金熔体的凝固速率优选为0.001K/s~10 7K/s,使得初始合金中成分为M x2Al y2的弥散颗粒相的颗粒大小为2nm~50mm,以便制备得到纳米级、亚微米级、微米级以及毫米级的不同形貌的含铝合金粉体。
上述子步骤(3)中,该合金熔体凝固得到的初始合金的凝固组织包括基体相和弥散颗粒相,所述弥散颗粒相即为弥散分布于基体相中的颗粒相,其中,所述基体相的平均成分为RE x1Al y1,所述弥散颗粒相的成分为M x2Al y2,且成分为M x2Al y2的弥散颗粒相中固溶的少量Al受到惰性元素M的保护,不易与酸溶液反应,平均成分为RE x1Al y1的基体相为活性成分,非常容易与酸反应。所以,该初始合金的凝固组织有利于后续分离,得到成分为M x2Al y2的含铝合金粉体。
进一步地,Al元素在平均成分为RE x1Al y1的基体相中的原子百分含量高于成分为M x2Al y2的弥散颗粒相中的原子百分含量,即y1>y2。
进一步地,所述弥散颗粒相的颗粒形状不限,可包括包括枝晶形、球形、近球形、方块形、饼形、棒形中的至少一种,当颗粒形状为棒状时,颗粒的大小特指棒状横截面的直径尺寸。
进一步地,且所述弥散颗粒相的颗粒大小为2nm~50mm。
进一步地,所述酸溶液中的酸包括硫酸、盐酸、硝酸、高氯酸、磷酸、醋酸、草酸、甲酸、碳酸中的至少一种,且所述酸的摩尔浓度为0.001mol/L~20mol/L。
进一步地,所述酸溶液中溶剂包括水。
进一步地,所述基体相与所述酸溶液反应的温度为0℃~100℃,时间为0.1min~24h。
进一步地,在所述基体相与所述酸溶液反应的步骤之后还进行以下步骤:将脱离出来的预制粉体筛分后分别进行等离子球化处理,以得到具有不同粒径且呈球形的含铝合金粉体;或者,将脱离出来的预制粉体进行等离子球化处理并筛分,以得到具有不同粒径且呈球形的含铝合金粉体。
进一步地,一种如上述制备方法得到的含铝合金粉体在光电子器件、吸波材料、催化剂、3D金属打印、金属注射成型、防腐涂料中的应用。
进一步地,一种如上述制备方法得到的含铝合金粉体在3D金属打印中的应用,其特征在于,所述含铝合金粉体的粒径为0.5μm~1mm。
进一步地,一种如上述制备方法得到的含铝合金粉体在金属注射成型中的应用,其特征在于,所述含铝合金粉体的粒径为0.1μm~50μm。
进一步地,一种如上述制备方法得到的含铝合金粉体在防腐涂料中的应用,其特征在于,所述含铝合金粉体的粒径为2nm~5μm。
作为补充方案,本发明依据优先权文件合案申请,还提供一种高纯粉体材料的制备方法:
一种高纯粉体材料的制备方法,其特征在于,包括以下步骤:
步骤S1,选择初始合金原料,按照初始合金成分配比将初始合金原料熔化,得到含有杂质元素T的均匀初始合金熔体,其中,T包含O、H、N、P、S、F、Cl、I、Br中的至少一种,且所述初始合金熔体的平均成分包括:
当所述初始合金熔体的平均成分主要为A aM bAl cT d时,A包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种;M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti中的至少一种;Al为铝;其中a、b、c、d分别代表对应组成元素的原子百分比含量,且29.8%≤a≤64.8%,35%<b≤70%,0.1%≤c≤25%,0<d≤10%;
进一步地,所述初始合金熔体的平均成分为如上所述;
步骤S2,将所述初始合金熔体凝固成初始合金条带;所述初始合金条带的凝固组织包括基体相和弥散颗粒相;所述基体相的熔点低于所述弥散颗粒相,所述弥散颗粒相被包覆于所述基体相中;所述初始合金熔体凝固过程中,初始合金熔体中的杂质元素T在弥散颗粒相与基体相中重新分配,并富集于所述基体相中,从而使所述弥散颗粒相得到纯化;
所述初始合金条带中弥散颗粒相的成分主要为M x1Al y1T z1,基体相的平均成分主要为A x2Al y2T z2;且77.8%≤x1≤99.8%,0.1%≤y1≤22%,0<z1≤1.5%;69.8%≤x2≤99.7%,0.2%≤y2≤30%,0<z2≤20%,z1<d<z2,2z1<z2,y1<y2,x1、y1、z1、x2、y2、z2分别代表对应组成元素的原子百分比含量;
补充说明:此处弥散颗粒相的成分主要为M x1Al y1T z1,基体相的平均成分主要为A x2Al y2T z2,与权利要求1的命名规则有所不同:权利要求1中弥散颗粒相的成分主要为A x2Al y2T z2,基体相的平均成分主要为M x1Al y1T z1。因此,各成分的具体意义不可混淆,需要结合对应的说明书与权利要求书一一对应。
作为优选,所述初始合金条带中弥散颗粒相的成分为M x1Al y1T z1,基体相的平均成分为A x2Al y2T z2
步骤S3,将所述初始合金条带中的基体相去除,并保留基体相去除过程中不能被同时去除的弥散颗粒相,收集脱落出来的弥散颗粒相,即得到由原弥散颗粒组成的高纯目标粉体材料。
所述步骤S1中,
进一步地,所述初始合金熔体中的T杂质元素来源包括:初始合金原料引入杂质,熔炼过程中气氛或坩埚引入杂质。其中,气氛引入杂质是指合金熔体吸收的环境气氛中的O、N、H等杂质。
进一步地,T为杂质元素且包含O、H、N、P、S、F、Cl、I、Br中的至少一种;且这些杂质元素的总含量即为T杂质元素的含量;
进一步地,如果原料是含有杂质元素的各单质或中间合金,则可将其按照配比熔化制备所述初始合金熔体。如果提供的原料直接为初始合金熔体成分对应合金原料时,则可以将其重熔得到初始合金熔体。
进一步地,所述初始合金原料包括含有杂质元素T的M-T原料。例如,当M为Ti,且T包含O时,M-T原料即包括含有O杂质的Ti-O原料。
进一步的,所述步骤S1中初始合金熔体平均成分中A与M的组合极为重要,其选择原则是确保合金熔体凝固过程中A与M之间不形成金属间化合物;或者即使M与其它元素(D)可以形成高熔点金属间化合物,但A与M之间仍不形成金属间化合物。这样就能实现初始合金熔体凝固过程中以A主的基体相和与M为的颗粒相的两相分离,有利于后续制备以M为主的粉体材料。
所述步骤S2中,
进一步地,所述初始合金条带中不含有包含A与M构成的金属间化合物;
进一步地,所述合金熔体凝固的方式包括甩带法、连铸法;一般来说,通过甩带法可以获得较薄的初始合金条带;通过连铸法可以获得较厚的合金条带。
补充说明,所述合金条带,是指所述合金的形状包括条状或者带状。当合金形状主要为条状时,是指合金形状在三维方向上有一维的尺寸明显大于其它两个维的尺寸,所述条状包 括规则条状,也包括非规则条状。
不论是甩带法获得的薄合金条带,还是连铸法获得的厚合金条带,均与普通铸造法获得的合金铸锭形貌完全不同,普通铸造法获得的合金铸锭在尺度上一般没有明显的长度、宽度、厚度区别。
进一步地,所述初始合金条带的厚度范围为5μm~50mm;进一步地,所述初始合金条带的厚度范围为5μm~5mm;作为优选,所述初始合金条带的厚度范围为5μm~1mm;作为进一步优选,所述初始合金条带的厚度范围为5μm~200μm;作为进一步优选,所述初始合金条带的厚度范围为5μm~20μm。
需要说明的是,当初始合金条带的厚度为毫米级时,其也可以被称为合金薄板。
进一步地,所述初始合金条带横截面的宽度是其厚度的2倍以上。
进一步地,所述初始合金条带的长度是其厚度的10倍以上。
作为优选,所述初始合金条带的长度是其厚度的50倍以上。
作为优选,所述初始合金条带的长度是其厚度的100倍以上。
进一步地,所述初始合金熔体凝固的速率为1K/s~10 7K/s。
进一步地,所述弥散颗粒相的颗粒大小与初始合金熔体的凝固速率有关;一般来说,弥散颗粒相的颗粒粒径大小与初始合金熔体的凝固速率成负相关的关系,即初始合金熔体的凝固速率越大,弥散颗粒相的颗粒粒径就越小。
进一步地,所述弥散颗粒相的颗粒粒径范围为2nm~3mm;进一步地,所述弥散颗粒相的粒径范围为2nm~500μm;作为优选,所述弥散颗粒相的粒径范围为2nm~99μm;作为进一步优选,所述弥散颗粒相的粒径范围为2nm~5μm;作为进一步优选,所述弥散颗粒相的粒径范围为2nm~200nm;作为进一步优选,所述弥散颗粒相的粒径范围为2nm~100nm。
进一步地,所述初始合金熔体凝固的速率为10 5K/s~10 7K/s时,可以获得粒径以纳米级尺度为主的弥散颗粒。
进一步地,所述初始合金熔体凝固的速率为10 4K/s~10 5K/s时,可以获得粒径以亚微米级尺度为主的弥散颗粒。
进一步地,所述初始合金熔体凝固的速率为10 2K/s~10 4K/s时,可以获得粒径以微米级尺度为主的弥散颗粒。
进一步地,所述初始合金熔体凝固的速率为1K/s~10 2K/s时,可以获得粒径以毫米级尺度为主的弥散颗粒。
进一步地,所述弥散颗粒相的颗粒形状不限,可包括枝晶形、球形、近球形、方块形、饼形、棒条形中的至少一种;当颗粒形状为棒条形时,颗粒的大小特指棒条横截面的直径尺 寸。
进一步的,当弥散颗粒为纳米级或亚微米级尺度时,大概率获得球形或近球形颗粒;当弥散颗粒为微米级及以上尺度时,大概率获得枝晶形颗粒。
进一步地,所述弥散颗粒相从所述初始合金熔体中凝固析出,根据形核长大理论,无论是刚刚形核长大的近球形纳米颗粒,还是充分长大的微米级、毫米级树枝晶颗粒,其晶体生长都具有固定的取向关系,从而使得析出的单个颗粒均主要由一个单晶构成。
当所述弥散颗粒在整个初始合金条带中体积百分含量较高时,在单晶颗粒的内生析出过程中,不排除有两个或两个以上颗粒合并的情况。如果两个或两个以上单晶颗粒仅仅软团聚、相互吸附、或者仅少许部位接触连接在一起,没有像多晶材料那样通过正常晶界充分结合成一个颗粒,其仍然为两个单晶颗粒。其特点是,在后续过程去除基体相后,这些单晶颗粒可以轻易地通过包括超声分散处理、气流磨碎化等技术等分开。而正常的韧性金属或合金的多晶材料,则难以通过包括超声分散处理、气流磨碎化等技术将晶界分开。
作为优选,所述初始合金条带中弥散颗粒中的单晶颗粒数目在所有弥散颗粒数目中的占比不低于60%。
作为进一步优选,所述弥散颗粒中的单晶颗粒数目在所有弥散颗粒数目中的占比不低于90%。
进一步地,对于某一确定的初始合金条带来说,所述弥散颗粒相在该初始合金条带中的体积百分含量可以通过对应初始合金熔体成分、弥散颗粒相成分、基体相成分,结合元素原子量、密度参数等计算确定。
当基体相主元素为大原子元素时,基体相可以通过较小的原子比百分含量获得较高的体积百分比含量。如原子百分比组成为La 25Fe 75的初始合金条带(为了计算方便,不考虑杂质存在情况),La与Fe的重量百分含量分别为45.33wt%与54.67wt%,结合两者密度分别为6.2g/cm 3与7.8g/cm 3,可以计算得到La、Fe在原子百分比组成为La 25Fe 75的初始合金条带中的体积百分含量分别为51vol.%与49vol.%。这表明:即使La-Fe合金中Fe的原子百分比含量高达75at.%,其体积百分比含量仍然低于50vol.%,从而有利于初始合金条带中Fe颗粒的弥散分布。
进一步地,所述弥散颗粒相在其对应的初始合金条带中的体积百分含量不高于50%vol.%。
进一步地,所述弥散颗粒中的T杂质元素原子百分比含量z1小于M-T原料中的T杂质元素原子百分比含量。
进一步地,z1<d<z2,且2z1<z2,
作为优选,z1<d<z2,且3z1<z2,
作为优选,0<z1<d<z2,3z1<z2,且0<z1≤1.5%;即所述弥散颗粒相中T杂质含量低于所述初始合金熔体中的T杂质含量,且所述弥散颗粒相中T杂质含量的3倍仍然低于所述基体相中的T杂质含量;
作为优选,0<z1<d<z2,3z1<z2,且0<z1≤0.75%。
所述步骤S3中,
进一步地,所述将合金条带中基体相去除方法包括:酸反应去除、碱反应去除、真空挥发去除中的至少一种。
所述酸溶液与碱溶液的组成与浓度不做具体限定,只要能够保证去除基体相,同时保留弥散颗粒相即可。
所述真空处理的温度与真空度不做具体限定,只要能够保证去除基体相,同时保留弥散颗粒相即可。
进一步地,所述将初始合金条带中基体相去除方法包括基体相自然氧化-粉化剥落去除。
当基体相为极易与氧发生自然氧化的元素,如La、Ce等时,通过基体相的自然氧化-粉化过程,就可以将基体相与弥散颗粒相分开,再辅以其它技术手段,如磁选,就可以将诸如具有磁性的弥散颗粒相与基体相的自然氧化物分开。
进一步地,由于目标粉体材料为初始合金条带中脱落下来的弥散颗粒相,因此所述目标粉体材料的成分、颗粒粒径等均与对应的弥散颗粒相的成分、颗粒粒径相当。
进一步地,所述目标粉体材料的颗粒粒径范围为2nm~3mm;作为优选,所述目标粉体材料的颗粒粒径范围为2nm~500μm;作为优选,所述目标粉体材料的颗粒粒径范围为2nm~99μm;作为进一步优选,所述目标粉体材料的颗粒粒径范围为2nm~5μm;作为进一步优选,所述目标粉体材料的颗粒粒径范围为2nm~200nm;作为进一步优选,所述目标粉体材料的颗粒粒径范围为2nm~100nm。
进一步地,初始合金条带与酸溶液反应后,弥散颗粒从初始合金条带中脱离出来,对其清洗、干燥,即得到高纯目标粉体材料。
进一步地,所述高纯目标粉体材料的成分主要为M x1Al y1T z1。作为优选,所述高纯目标粉体材料的成分为M x1Al y1T z1
进一步地,所述目标金属粉中的T杂质元素的原子百分比含量不超过1.5%;
作为优选,所述目标金属粉中的T杂质元素的原子百分比含量不超过0.75%。
进一步地,在所述步骤S3之后还进行以下步骤:将所述高纯粉体材料筛分后,选择粒径范围为5μm~200μm的高纯粉体材料进行等离子球化处理,以得到呈球形的高纯粉体材料;
补充说明:进一步地,本发明还涉及一种高纯粉体材料,其特征在于,所述高纯粉体材料通过上述所述方法制备。
进一步地,所述高纯粉体材料主要成分为M x1Al y1T z1,所述高纯粉体材料的颗粒粒径范围为2nm~3mm。
本发明还涉及上述制备方法得到的高纯粉体材料或球形高纯粉体材料在催化材料、粉末冶金、复合材料、吸波材料、杀菌材料、金属注射成型、3D打印、涂料中的应用。
进一步地,如上述制备方法得到的球形高纯粉体材料在金属粉3D打印领域中的应用,其特征在于,球形高纯粉体材料的粒径范围为10μm~200μm。
进一步地,如上述制备方法得到的高纯粉体材料在金属注射成型、粉末冶金中的应用,其特征在于,高纯粉体材料的粒径范围为0.1μm~200μm。
进一步地,如上述制备方法得到的高纯粉体材料在涂料中的应用,其特征在于,高纯粉体材料的粒径范围为2nm~5μm。
本发明还涉及一种合金条带,其特征在于,包含内生粉与包覆体;所述合金条带的凝固组织包括基体相和弥散颗粒相,基体相即为所述包覆体,弥散颗粒相即为所述内生粉;所述包覆体的熔点低于所述内生粉,所述内生粉被包覆于所述包覆体中;
所述合金条带中内生粉的成分主要为M x1Al y1T z1,包覆体的平均成分主要为A x2Al y2T z2;且77.8%≤x1≤99.8%,0.1%≤y1≤22%,0<z1≤1.5%;69.8%≤x2≤99.7%,0.2%≤y2≤30%,0<z2≤20%,z1<d<z2,2z1<z2,y1<y2,x1、y1、z1、x2、y2、z2分别代表对应组成元素的原子百分比含量;其中,A包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种;M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti中的至少一种;Al为铝;
作为优选,所述合金条带中内生粉的成分为M x1Al y1T z1,包覆体的平均成分为A x2Al y2T z2
进一步地,所述合金条带的厚度范围为5μm~50mm;作为优选,所述合金条带的厚度范围为5μm~5mm;作为优选,所述合金条带的厚度范围为5μm~1mm;作为进一步优选,所述合金条带的厚度范围为5μm~200μm;作为进一步优选,所述合金条带的厚度范围为5μm~20μm。
进一步地,所述合金条带横截面的宽度是其厚度的2倍以上;进一步地,所述初始合金条带的长度是其厚度的10倍以上;作为优选,所述初始合金条带的长度是其厚度的50倍以上;作为优选,所述初始合金条带的长度是其厚度的100倍以上。
进一步地,所述内生粉的粒径范围为2nm~3mm;作为优选,所述内生粉的粒径范围为2nm~500μm;作为优选,所述内生粉的粒径范围为2nm~99μm;作为进一步优选,所述内生 粉的粒径范围为2nm~10μm;作为进一步优选,所述内生粉的粒径范围为2nm~1μm;作为进一步优选,所述内生粉的粒径范围为2nm~200nm;作为进一步优选,所述内生粉的粒径范围为2nm~100nm。
进一步地,所述内生粉的形状包括枝晶形、球形、近球形、方块形、饼形、棒条形中的至少一种。
进一步地,所述合金条带中内生粉中的单晶颗粒数目在所有内生粉数目中的占比不低于60%。
进一步地,所述内生粉在所述合金条带中的体积百分含量不超过50%。
进一步地,2z2≤z1,且0≤z2≤1.5%;
作为优选,3z2<z1,且0<z2≤1.5%;
作为进一步优选,3z2<z1,且0<z2≤0.75%。
本发明所述技术方案具有以下有益效果:
首先,通过巧妙的合金设计,使得初始合金熔体凝固的时候发生相的分离,使得一定粒径目标成分的内生颗粒可以在初始合金熔体凝固过程中形成,并可以通过后续过程分离。一般来说,通过自下而上的化学方法,如化学还原,可以比较容易地制备纳米金属颗粒,但当颗粒的尺度增加到数百纳米甚至微米级时,则难以制备。通过自上而下的物理方法,如雾化法、球磨法等,可以比较容易地制备数十微米或者数百微米的金属颗粒,但当颗粒的尺度降低到数百纳米到几个微米时,则也很难制备。本发明的技术方案可以根据初始合金条带凝固过程中冷速的不同,非常容易地制备纳米级,亚微米级、微米级、甚至毫米级的目标金属粉颗粒,突破了上述技术难点,具有极大地优势。
其次,实现了通过低纯原料获得高纯目标粉体材料,并为低纯原料制备高纯粉体材料指出了一条新的途径,具有积极意义。本发明目标粉体材料纯度的提高主要通过以下三个机制实现:1)高活性的基体主元素(如RE稀土元素)对初始合金熔体杂质元素的“吸收”作用。由于基体元素一般为高活性,低熔点的元素,在合金熔体熔化及凝固过程中其与杂质元素T之间具有极强的亲和力,这可以使得初始合金熔体中的杂质元素T要么更多地进入主要由基体相主元素组成的基体相中,要么在熔体状态时与基体主元素形成熔渣,并与合金熔体分离去除;2)内生析出的弥散颗粒相形核长大过程中,杂质元素T会被排入剩余熔体中。只要凝固过程中内生析出的弥散颗粒相不晚于基体相析出,其杂质都会富集于最后凝固的那部分熔体,即主要由基体相主元素组成并凝固形成基体相的那部分熔体。3)由于第二相基体的存在,熔炼过程中由于坩埚与熔体相互作用从而进入熔体的与坩埚相关的杂质也一般集中在第二相基体中,这就使得熔炼过程中对坩埚的要求进一步降低,极大地降低了生产成本。
第三,可以获得以单晶颗粒为主的目标金属粉。相比多晶粉末,单晶粉末可以获得诸多显著且有益效果。在所述初始合金熔体凝固过程中,每一个内生弥散颗粒都是从熔体中某个位置形核后按照特定的原子排列方式长大生成。通过控制弥散颗粒相在初始合金条带中的体积百分含量不超过50%,确保每个内生颗粒可以弥散分布的情况下,各个内生颗粒之间难以发生合并长大。因此,最终获得的各个弥散分布的颗粒相大多都是单晶相。即使尺度大到数十微米或毫米级的枝晶颗粒,其每个次级枝晶的生长方向都与主枝晶的生长方向保持一定的位相关系,其仍然属于单晶颗粒。对于多晶材料来说,其晶界一般容易含有凝固过程中从晶内排出来的杂质元素,因此很难获得高纯的多晶粉体材料。而当目标金属粉主要由单晶颗粒组成时,其纯度必然能得到保障。而且,单晶颗粒表面原子具有特定的排列方式,如(111)面排列等,这些特定的排列方式会赋予目标金属粉特殊的力学、物理、化学性能,从而产生有益的效果。
第四,实现了包含有W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti等元素的金属或合金材料中Al元素的固溶。在上述合金材料中,Al元素的添加具有非常重要的作用。例如,目前使用最广泛的钛合金即Ti6Al4V合金。对于Ti6Al4V合金粉末来说,一般通过熔炼Ti6Al4V合金熔体,然后通过雾化制粉技术获得Ti6Al4V合金粉末。受雾化制粉技术的限制,其很难获得超细的Ti6Al4V合金粉末,甚至不能通过雾化制粉技术获得纳米级的Ti6Al4V合金粉末。因此,通过本发明所涉及的“去相法”实现Al元素在Ti-V合金中的添加,并制备各种粒径的Ti6Al4V合金粉末,具有非常重要的意义。本发明发现,当在A(A=稀土元素RE中的至少一种)与M(M=W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti等元素中的至少一种)组成的合金中添加可观含量Al元素时(可以超过10at.%甚至更高),合金凝固组织中Al元素可以通过一定的含量分配关系同时存在于主要由RE组成的基体相与主要由M组成的弥散颗粒相中。由于RE-Al基体相可以很容易被酸反应去除,而以M为主的含Al的弥散颗粒中的Al受惰性M元素的保护,不会轻易被酸反应去除(如Ti6Al4V合金具有很好的耐酸腐蚀能力),这就使得通过酸反应去除基体相制备含Al钛合金粉末成为了可能。
第五,所述由内生粉与包覆体(基体相)构成的合金条带,创造性地利用原位生成的基体相包裹内生粉,保持了内生粉的高纯度与高活性。具体来说,无论传统化学方法还是物理方法所制备的金属或合金粉,尤其是比表面积极大的纳米粉,极易自然氧化,都面临粉末的保存困难问题。针对这一问题,本发明所涉及技术方案在制备出由内生金属粉与包覆体(基体相)构成的合金条带之后,并不急于将包覆体去除,而是直接利用包覆体保护内生金属粉不被自然氧化。这种由内生金属粉与包覆体构成的合金条带可以直接作为下游生产的原料,因此有成为一类特殊产品的潜力。当下游生产需要使用高纯粉体时,可以根据下一工序的特 点,选择合适的时机并在合适的环境下将内生金属粉从合金条带中的包覆体中释放,再在尽可能短的时间使释放出来的内生粉进入下一生产流程,从而使内生金属粉受到氧等杂质污染的机会大大减少。例如,当内生金属粉为纳米粉时,可以在内生金属粉从包覆体中释放的同时或者随后马上与树脂复合,从而制备具有高活性的内生金属粉添加的树脂基复合材料。
第六,所述步骤S2中通过凝固获得的固态合金为条带状,其保证了产品形状的均一性与大规模生产的可行性。当合金条带为薄合金条带时,可以通过甩带法制备,只要维持合金熔体流向旋转辊的流量固定,旋转辊的转速固定,就可以获得厚度均一的合金薄带,而且该制备过程可以连续进行,利于大规模生产。当合金条带为厚合金条带时,可以通过成熟的连铸法制备,连铸的原理与甩带法的原理相似,也可以通过熔体获得连续且厚度均一的厚带,制备过程也可以连续进行,利于大规模生产。当合金条带厚度均一时,冷速也较为均匀,获得弥散颗粒粒度也较为均匀。相比而言,如果凝固获得的固态合金为铸锭状时,根据常识,铸锭没有均一的厚度,也没有明显的长度及端点,一般会导致内部熔体散热困难,容易获得异常大的内生颗粒,只有单纯需要对大的内生颗粒进行收集并对其提纯的时候才需要这样操作。而且普通铸锭难以连续生产。因此,本发明通过凝固获得合金条带,适合后续通过“去相法”进行粉体材料的制备。
因此,本发明的制备方法具有工艺简单、易于操作、成本低的特点,可以制备包括纳米级、亚微米级、以及微米级的多种高纯粉体材料,在催化材料、粉末冶金、复合材料、吸波材料、杀菌材料、磁性材料、金属注射成型、3D打印、涂料等领域具有很好的应用前景。
附图说明
图1为本发明实施例5的Ti-V-Al粉的能谱图;
图2为本发明实施例6的Ti-V-Al粉的扫描电镜照片;
图3为本发明实施例7的Ti-V-Al粉的扫描电镜照片;
图4为本发明实施例8的Ti-V-Al粉的扫描电镜照片;
图5为本发明实施例8的Ti-V-Al粉的能谱图。
具体实施方式
以下,将通过以下具体实施例对所述含铝合金粉体的制备方法及其应用做进一步的说明。
实施例1:
本实施例提供一种微米级Ti-V-Cr-Mo-Zr-Al合金粉体的制备方法,该制备方法包括如下步骤:
(1)按照Gd 76Al 8(Ti 82V 8Cr 6Mo 2Zr 2) 16合金(原子百分比)的配方称取原料,电弧熔炼后得到Gd 76Al 8(Ti 82V 8Cr 6Mo 2Zr 2) 16母合金。将该母合金通过感应熔炼重新加热熔化成合金熔体,将该合金熔体以10K/s~1000K/s的凝固速率制备成厚度为1mm~20mm的Gd 76Al 8(Ti 82V 8Cr 6Mo 2Zr 2) 16合金薄板。该合金薄板的凝固组织由平均成分约为Gd 91.5Al 8.5的基体相与成分为(Ti 82V 8Cr 6Mo 2Zr 2) 94.5Al 5.5的弥散枝晶颗粒相组成,且弥散颗粒相的颗粒大小为1μm~200μm。
(2)室温下,将1克步骤(1)制得的Gd 76Al 8(Ti 82V 8Cr 6Mo 2Zr 2) 16合金薄板加入150mL浓度为0.25mol/L的硫酸水溶液中进行反应。反应过程中,平均成分约为Gd 91.5Al 8.5的基体相与酸反应变成离子进入溶液,而难与酸反应的微米级的(Ti 82V 8Cr 6Mo 2Zr 2) 94.5Al 5.5弥散枝晶颗粒相则逐步从基体相中脱离分散出来。20min后,将所得(Ti 82V 8Cr 6Mo 2Zr 2) 94.5Al 5.5微米颗粒与溶液进行分离,经清洗干燥,即得微米级的(Ti 82V 8Cr 6Mo 2Zr 2) 94.5Al 5.5合金粉体,其单个(Ti 82V 8Cr 6Mo 2Zr 2) 94.5Al 5.5颗粒的平均大小范围为1μm~200μm。
实施例2:
本实施例提供一种微米级Ti-Mo-Zr-Al合金粉体的制备方法,该制备方法包括如下步骤:
(1)按照Ce 76Al 8(Ti 98Mo 1Zr 1) 16合金(原子百分比)的配方称取原料,电弧熔炼后得到Ce 76Al 8(Ti 98Mo 1Zr 1) 16母合金。将该母合金通过感应熔炼重新加热熔化成合金熔体,将该合金熔体熔体以10K/s~1000K/s的凝固速率制备成厚度为1mm~20mm的Ce 76Al 8(Ti 98Mo 1Zr 1) 16合金薄板。该合金薄板的凝固组织由平均成分约为Ce 91.5Al 8.5的基体相与成分为(Ti 98Mo 1Zr 1) 94.5Al 5.5的弥散枝晶颗粒相组成,且弥散颗粒相的大小为1μm~200μm。
(2)室温下,将1克步骤(1)制得的Ce 76Al 8(Ti 98Mo 1Zr 1) 16合金薄板加入200mL浓度为0.4mol/L的盐酸水溶液中进行反应。反应过程中,平均成分约为Ce 91.5Al 8.5的基体相与酸反应变成离子进入溶液,而难与酸反应的微米级(Ti 98Mo 1Zr 1) 94.5Al 5.5弥散枝晶颗粒相则逐步从基体相中脱离分散出来。20min后,将所得(Ti 98Mo 1Zr 1) 94.5Al 5.5微米颗粒与溶液进行分离,经清洗干燥,即得微米级的(Ti 98Mo 1Zr 1) 94.5Al 5.5合金粉体,其单个(Ti 98Mo 1Zr 1) 94.5Al 5.5颗粒的平均大小范围为1μm~200μm。
实施例3:
本实施例提供一种纳米级Ti-Cr-Al合金粉体的制备方法,该制备方法包括如下步骤:
(1)按照Ce 72Al 12(Ti 97.5Cr 2.5) 16合金(原子百分比)的配方称取原料,感应熔炼后得到熔 融Ce 72Al 12(Ti 97.5Cr 2.5) 16合金熔体。将该合金熔体通过铜辊甩带的方法以~10 5K/s的速率制备成厚度为20μm~100μm的Ce 72Al 12(Ti 97.5Cr 2.5) 16合金条带。该合金条带的凝固组织由平均成分约为Ce 87Al 13的基体相与成分为(Ti 97.5Cr 2.5) 91.5Al 8.5的弥散颗粒相组成,且弥散颗粒相的大小为10nm~200nm,形状为近球形。
(2)室温下,将1克步骤(1)制得的Ce 72Al 12(Ti 97.5Cr 2.5) 16合金条带加入150mL浓度为0.4mol/L的盐酸水溶液中进行反应。反应过程中,平均成分为Ce 87Al 13的基体相与酸反应变成离子进入溶液,而难与酸反应的纳米级(Ti 97.5Cr 2.5) 91.5Al 8.5弥散颗粒相则逐步从基体相中脱离分散出来。10min后,将所得(Ti 97.5Cr 2.5) 91.5Al 8.5纳米颗粒与溶液进行分离,经清洗干燥,即得纳米级的(Ti 97.5Cr 2.5) 91.5Al 8.5合金粉体,其单个(Ti 97.5Cr 2.5) 91.5Al 8.5颗粒的平均大小范围为10nm~200nm。
实施例4:
本实施例提供一种微米级Ti-Nb-Al合金粉体的制备方法,该制备方法包括如下步骤:
(1)按照Ce 68Al 14(Ti 96Nb 4) 18合金(原子百分比)的配方称取原料,感应熔炼后得到熔融Ce 68Al 14(Ti 96Nb 4) 18合金熔体。将该合金熔体以10K/s~1000K/s的凝固速率制备成厚度1mm~20mm的Ce 68Al 14(Ti 96Nb 4) 18合金薄板。该合金薄板的凝固组织由平均成分为Ce 85Al 15的基体相与成分为(Ti 96Nb 4) 90Al 10的弥散枝晶颗粒相组成,且弥散颗粒相的大小为1μm~200μm。
(2)室温下,将1克步骤(1)制得的Ce 68Al 14(Ti 96Nb 4) 18合金薄板加入200mL浓度为0.5mol/L的盐酸水溶液中进行反应。反应过程中,平均成分为Ce 85Al 15的基体相与酸反应变成离子进入溶液,而难与酸反应的微米级(Ti 96Nb 4) 90Al 10弥散枝晶颗粒相则逐步从基体相中脱离分散出来。20min后,将所得(Ti 96Nb 4) 90Al 10枝晶微米颗粒与溶液进行分离,经清洗干燥,即得微米级的(Ti 96Nb 4) 90Al 10合金粉体,其单个(Ti 96Nb 4) 90Al 10颗粒的平均大小范围为1μm~200μm。
实施例5:
本实施例提供一种纳米级Ti-V-Al合金粉体的制备方法,该制备方法包括如下步骤:
(1)按照Ce 72Al 10(Ti 96V 4) 18合金(原子百分比)的配方称取原料,感应熔炼后得到熔融Ce 72Al 10(Ti 96V 4) 18合金熔体。将该合金熔体通过铜辊甩带的方法以~10 5K/s的速率制备成厚度20μm~100μm的Ce 72Al 10(Ti 96V 4) 18合金条带。该合金条带的凝固组织由平均成分为Ce 88.5Al 11.5的基体相与成分为(Ti 96V 4) 92.5Al 7.5的弥散颗粒相组成,且弥散颗粒相的大小为10nm~300nm,形状为近球形。
(2)室温下,将1克步骤(1)制得的Ce 72Al 10(Ti 96V 4) 18合金条带加入200mL浓度为0.5mol/L 的盐酸水溶液中进行反应。反应过程中,平均成分为Ce 88.5Al 11.5的基体相与酸反应变成离子进入溶液,而难与酸反应的纳米级(Ti 96V 4) 92.5Al 7.5弥散颗粒相则逐步从基体相中脱离分散出来。10min后,将所得(Ti 96V 4) 92.5Al 7.5纳米颗粒与溶液进行分离,经清洗干燥,即得纳米级的(Ti 96V 4) 92.5Al 7.5合金粉体,其单个(Ti 96V 4) 92.5Al 7.5颗粒的平均大小范围为10nm~300nm。如图1所示,经验证,该合金粉体由Ti、V、Al元素组成。
实施例6:
本实施例提供一种纳米级Ti-V-Al合金粉体的制备方法,该制备方法包括如下步骤:
(1)按照Ce 68Al 14(Ti 96V 4) 18合金(原子百分比)的配方称取原料,感应熔炼后得到熔融Ce 68Al 14(Ti 96V 4) 18合金熔体。将该合金熔体通过铜辊甩带的方法以~10 5K/s的速率制备成厚度20μm~100μm的Ce 68Al 14(Ti 96V 4) 18合金条带。该合金条带的凝固组织由平均成分为Ce 85Al 15的基体相与成分为(Ti 96V 4) 90Al 10的弥散颗粒相组成,且弥散颗粒相的大小为10nm~300nm,形状为近球形。
(2)室温下,将1克步骤(1)制得的Ce 68Al 14(Ti 96V 4) 18合金条带加入200mL浓度为0.5mol/L的盐酸水溶液中进行反应。反应过程中,平均成分为Ce 85Al 15的基体相与酸反应变成离子进入溶液,而难与酸反应的纳米级(Ti 96V 4) 90Al 10弥散颗粒相则逐步从基体相中脱离分散出来。10min后,将所得(Ti 96V 4) 90Al 10纳米颗粒与溶液进行分离,经清洗干燥,即得如图2所示的纳米级的(Ti 96V 4) 90Al 10合金粉体,其单个(Ti 96V 4) 90Al 10颗粒的平均大小范围为10nm~300nm。所得纳米级(Ti 96V 4) 90Al 10合金粉可用于钛合金防腐涂料添加剂领域。
实施例7:
本实施例提供一种亚微米级Ti-V-Al合金粉体的制备方法,该制备方法包括如下步骤:
(1)按照(La 50Ce 50) 68Al 14(Ti 96V 4) 18合金(原子百分比)的配方称取原料,感应熔炼后得到熔融(La 50Ce 50) 68Al 14(Ti 96V 4) 18合金熔体。将该合金熔体通过铜辊甩带的方法以约10 3~10 4K/s的凝固速率制备成厚度100μm~2mm的(La 50Ce 50) 68(Ti 96V 4) 18合金条带。该合金条带的凝固组织由平均成分为(La 50Ce 50) 85Al 15的基体相与成分为(Ti 96V 4) 90Al 10的弥散颗粒相组成,且弥散颗粒相的大小为100nm~1.5μm。
(2)室温下,将1克步骤(1)制得的(La 50Ce 50) 68Al 14(Ti 96V 4) 18合金条带加入200mL浓度为0.4mol/L的硫酸水溶液中进行反应。反应过程中,平均成分为(La 50Ce 50) 85Al 15的基体相与酸反应变成离子进入溶液,而难与酸反应的亚微米级(Ti 96V 4) 90Al 10弥散颗粒相则逐步从基体相中脱离分散出来。10min后,将所得(Ti 96V 4) 90Al 10亚微米颗粒与溶液进行分离,经清洗干燥,即得如图3所示的亚微米级的(Ti 96V 4) 90Al 10合金粉体,其单个(Ti 96V 4) 90Al 10颗粒的平均大小范围 为100nm~1.5μm。
实施例8:
本实施例提供一种微米级Ti-V-Al合金粉体的制备方法,该制备方法包括如下步骤:
(1)按照Ce 68Al 14(Ti 96V 4) 18合金(原子百分比)的配方称取原料,感应熔炼后得到熔融Ce 68Al 14(Ti 96V 4) 18合金熔体。将该合金熔体以50K/s~500K/s的速率制备成厚度2mm~6mm的Ce 68Al 14(Ti 96V 4) 18合金薄板。该合金薄板的凝固组织由平均成分为Ce 85Al 15的基体相与成分为(Ti 96V 4) 90Al 10的弥散枝晶颗粒相组成,且弥散颗粒相的大小为5μm~100μm。
(2)室温下,将1克步骤(1)制得的Ce 68Al 14(Ti 96V 4) 18合金薄板加入200mL浓度为0.5mol/L的盐酸水溶液中进行反应。反应过程中,平均成分为Ce 85Al 15的基体相与酸反应变成离子进入溶液,而难与酸反应的微米级(Ti 96V 4) 90Al 10弥散枝晶颗粒相则逐步从基体相中脱离分散出来。20min后,将所得(Ti 96V 4) 90Al 10微米颗粒与溶液进行分离,经清洗干燥,即得如图4微米级的(Ti 96V 4) 90Al 10合金粉,其单个(Ti 96V 4) 90Al 10颗粒的平均大小范围为5μm~100μm。如图5所示,经验证,该合金粉体由Ti、V、Al元素组成。
实施例9:
本实施例提供一种球形微米级Ti-V-Al合金粉体的制备方法,该制备方法包括如下步骤:
(1)按照Ce 68Al 14(Ti 96V 4) 18合金(原子百分比)的配方称取原料,感应熔炼后得到熔融Ce 68Al 14(Ti 96V 4) 18合金熔体。将该合金熔体以10K/s~1000K/s的凝固速率制备成厚度1mm~20mm的Ce 68Al 14(Ti 96V 4) 18合金薄板。该合金薄板的凝固组织由平均成分为Ce 85Al 15的基体相与成分为(Ti 96V 4) 90Al 10的弥散枝晶颗粒相组成,且弥散颗粒相的大小为1μm~200μm。
(2)室温下,将1克步骤(1)制得的Ce 68Al 14(Ti 96V 4) 18合金薄板加入200mL浓度为0.5mol/L的盐酸水溶液中进行反应。反应过程中,平均成分为Ce 85Al 15的基体相与酸反应变成离子进入溶液,而难与酸反应的微米级(Ti 96V 4) 90Al 10弥散枝晶颗粒相则逐步从基体相中脱离分散出来。20min后,将所得(Ti 96V 4) 90Al 10微米颗粒与溶液进行分离,经清洗干燥,即得微米级的(Ti 96V 4) 90Al 10合金粉体,其单个(Ti 96V 4) 90Al 10颗粒的平均大小范围为1μm~200μm。
(3)收集0.5千克由步骤(2)制得的微米级(Ti 96V 4) 90Al 10合金粉,通过100目、270目、1000目、2000目、8000目的筛网进行筛分,得到枝晶粒径范围分别为>150μm、150μm~53μm、53μm~13μm、13μm~6.5μm、6.5μm~1.6μm以及小于1.6μm的分级(Ti 96V 4) 90Al 10合金粉体。分别选择枝晶粒径范围为150μm~53μm、53μm~13μm以及13μm~6.5μm的(Ti 96V 4) 90Al 10合金粉体,通过成熟的等离子球化处理技术进一步制得粒径范围为150μm~53μm、53μm~13μm以及13μm~6.5μm的球形(Ti 96V 4) 90Al 10合金粉体。所得球形(Ti 96V 4) 90Al 10合金粉体可用于3D金属 打印与金属注射成型(MIM)领域。
实施例10:
本实施例提供一种通过低纯原料制备高纯纳米Ti-V-Al合金粉体的制备方法,该制备方法包括如下步骤:
选用T(包含O、H、N、P、S、F、Cl中的至少一种)杂质元素的原子百分比含量分别为3at.%,1at.%,2.5at.%,0.2at.%的海绵Ti、电解V、稀土Ce,以及Al原料。将初始合金原料按照一定配比充分熔化,得到原子百分比含量成分主要为Ce 70.5Al 10(Ti 96V 4) 17T 2.5的初始合金熔体。
将该初始合金熔体通过铜辊甩带的方法以~10 6K/s的凝固速率制备成厚度~20μm的Ce 70.5Al 10(Ti 96V 4) 17T 2.5合金条带。该合金条带的凝固组织由平均成分主要为Ce 86.5Al 10.5T 3的基体相与成分主要为(Ti 96V 4) 92.25Al 7.5T 0.25的弥散颗粒相组成。其中,弥散颗粒相在合金条带中的体积百分数约为12%,且弥散颗粒相的颗粒大小范围为5nm~100nm,形状为近球形。
所得合金条带即为由内生含铝合金粉与包覆体构成的合金条带。
室温下,将上述制得的Ce 70.5Al 10(Ti 96V 4) 17T 2.5合金条带与浓度为0.5mol/L的盐酸水溶液反应。反应过程中,平均成分主要为Ce 86.5Al 10.5T 3的基体相与酸反应变成离子进入溶液,而难与酸反应的纳米级(Ti 96V 4) 92.25Al 7.5T 0.25弥散颗粒相则逐步从基体相中脱离分散出来。10min后,将分散出来的(Ti 96V 4) 92.25Al 7.5T 0.25纳米颗粒与溶液进行分离,在保护气氛下经清洗、干燥,即得纳米级的(Ti 96V 4) 92.25Al 7.5T 0.25合金粉体,其颗粒的粒径大小范围为5nm~100nm,且其中的T杂质含量相对于海绵Ti原料得到了极大的降低。
在保护气氛下将纳米级(Ti 96V 4) 92.25Al 7.5T 0.25合金粉体与环氧树脂及其它涂料组分混合,从而制备得到钛合金纳米改性聚合物防腐涂料。
实施例11:
本实施例提供一种通过低纯原料制备高纯微米级Ti-Nb-Al合金粉体的制备方法,该制备方法包括如下步骤:
选用T(包含O、H、N、P、S、F、Cl中的至少一种)杂质元素的原子百分比含量分别为3at.%,1at.%,2.5at.%,0.2at.%的海绵Ti、Nb片、稀土Ce,以及Al原料。将初始合金原料按照一定配比充分熔化,得到原子百分比含量主要成分为Ce 67.5Al 13(Ti 96Nb 4) 17T 2.5的初始合金熔体。
将该初始合金熔体通过铜辊甩带的方法以300K/s的凝固速率制备成厚度~1mm的Ce 67.5Al 13(Ti 96Nb 4) 17T 2.5合金条带。该合金条带的凝固组织由平均成分主要为Ce 83.2Al 13.7T 3.1的 基体相与成分主要为(Ti 96Nb 4) 89.95Al 10T 0.05的弥散颗粒相组成。其中,弥散颗粒相在合金条带中的体积百分数约为13%,且弥散颗粒相的颗粒大小范围为0.5μm~150μm,形状主要为枝晶形。
室温下,将上述制得的Ce 67.5Al 13(Ti 96Nb 4) 17T 2.5合金条带与浓度为0.5mol/L的盐酸水溶液反应。反应过程中,平均成分主要为Ce 83.2Al 13.7T 3.1的基体相与酸反应变成离子进入溶液,而难与酸反应的微米级(Ti 96Nb 4) 89.95Al 10T 0.05弥散颗粒相则逐步从基体相中脱离分散出来。10min后,将分散出来的(Ti 96Nb 4) 89.95Al 10T 0.05颗粒与溶液进行分离,在保护气氛下经清洗、干燥,即得微米级的(Ti 96Nb 4) 89.95Al 10T 0.05合金粉体,其颗粒的粒径大小范围为0.5μm~150μm,且其中的T杂质含量相对于海绵Ti原料得到了极大的降低。
将上述(Ti 96Nb 4) 89.95Al 10T 0.05合金粉体通过270目、1000目、2000目、8000目的筛网进行筛分,得到枝晶粒径范围分别为150μm~53μm、53μm~13μm、13μm~6.5μm、6.5μm~1.6μm以及小于1.6μm的分级(Ti 96Nb 4) 89.95Al 10T 0.05合金粉体。分别选择枝晶粒径范围为150μm~53μm、53μm~13μm以及13μm~6.5μm的(Ti 96Nb 4) 89.95Al 10T 0.05合金粉体,通过等离子球化处理技术进一步制得粒径范围为150μm~53μm、53μm~13μm以及13μm~6.5μm,且形状接近球形的Ti-Nb-Al合金粉体。所得球形Ti-Nb-Al合金粉体可用于3D金属打印与金属注射成型领域。
实施例12
本实施例提供了一种纳米Ti-Al-V粉的制备方法,该制备方法包括如下步骤:
选用原子比配方为Ce 30Al 12(Ti 96V 4) 58的合金,按照配方称取原料,将该初始合金原料熔化均匀后,通过铜辊甩带技术以约10 6K/s的凝固速率制备成厚度为20μm的Ce 30Al 12(Ti 96V 4) 58合金条带。该合金条带的凝固组织由成分为Ce 85Al 15的基体相与大量成分为(Ti 96V 4) 90Al 10的弥散颗粒相组成,其中(Ti 96V 4) 90Al 10颗粒的形状为近球形,粒径大小范围为3nm~200nm。(Ti 96V 4) 90Al 10颗粒在合金条带中的体积含量约为52%;凝固过程中杂质元素富集于Ce 85Al 15基体中。
通过稀盐酸溶液将Ce 30Al 12(Ti 96V 4) 58合金条带中的Ce 85Al 15基体相反应去除,使得难与稀盐酸溶液反应的(Ti 96V 4) 90Al 10颗粒脱离出来,即得到纳米(Ti 96V 4) 90Al 10粉,其粒径大小范围为3nm~200nm,且纳米(Ti 96V 4) 90Al 10粉中的H、O、N、S、P、F、Cl、I、Br总含量低于1400ppm。
实施例13
本实施例提供了一种亚微米-微米Ti-Al-V粉的制备方法,该制备方法包括如下步骤:
选用原子比配方为Ce 30Al 12(Ti 96V 4) 58的合金,按照配方称取原料,将该初始合金原料熔化均匀后,通过铜辊甩带技术以约10 3K/s的凝固速率制备成厚度为约500μm的 Ce 30Al 12(Ti 96V 4) 58合金条带。该合金条带的凝固组织由成分为Ce 85Al 15的基体相与大量成分为(Ti 96V 4) 90Al 10的弥散颗粒相组成,其中(Ti 96V 4) 90Al 10颗粒的形状为近球形或枝晶形,粒径大小范围为500nm~5μm。(Ti 96V 4) 90Al 10颗粒在合金条带中的体积含量约为52%;凝固过程中杂质元素富集于Ce 85Al 15基体中。
通过稀盐酸溶液将Ce 30Al 12(Ti 96V 4) 58合金条带中的Ce 85Al 15基体相反应去除,使得难与稀盐酸溶液反应的(Ti 96V 4) 90Al 10颗粒脱离出来,即得到亚微米-微米(Ti 96V 4) 90Al 10粉,其粒径大小范围为500nm~5μm,且纳米(Ti 96V 4) 90Al 10粉中的H、O、N、S、P、F、Cl、I、Br总含量低于1400ppm。
实施例14
本实施例提供一种纳米Ti-V-Al合金粉体的制备方法,该制备方法包括如下步骤:
选用T(包含O、H、N、P、S、F、Cl)杂质元素的原子百分比含量分别为1at.%,1at.%,2.5at.%,0.2at.%的海绵Ti、V块、稀土Ce,以及Al原料。将初始合金原料按照一定配比充分熔化,得到原子百分比成分主要为Ce 40.2(Ti 96V 4) 37.9Al 20.5T 1.4的初始合金熔体。
通过铜辊甩带技术以约~10 6K/s的凝固速率将初始合金熔体制备成厚度为~20μm的Ce 40.2(Ti 96V 4) 37.9Al 20.5T 1.4合金条带。该合金条带的凝固组织由平均成分主要为Ce 73.2Al 24.3T 2.5的基体相与大量成分主要为(Ti 96V 4) 84Al 15.8T 0.2的弥散颗粒相组成,其中(Ti 96V 4) 84Al 15.8T 0.2弥散颗粒的形状为近球形,粒径大小范围为5nm~200nm。(Ti 96V 4) 84Al 15.8T 0.2弥散颗粒在合金条带中的体积含量约为33%;
通过稀酸溶液将合金条带中的Ce 73.2Al 24.3T 2.5基体去除,使得合金条带中难与稀酸溶液反应的(Ti 96V 4) 84Al 15.8T 0.2颗粒脱离出来,即得到(Ti 96V 4) 84Al 15.8T 0.2纳米粉,其粒径大小范围为5nm~200nm,且其含有的O、H、N、P、S、F、Cl、Br、I的总含量为0.2at.%。
在保护气氛下将主要成分为(Ti 96V 4) 84Al 15.8T 0.2的纳米粉与环氧树脂及其它涂料组分混合,从而制备得到纳米Ti合金改性聚合物防腐涂料。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (30)

  1. 一种含铝合金粉体的制备方法,其特征在于,包括如下步骤:
    步骤一,选择初始合金原料,按照初始合金成分配比将初始合金原料熔化,得到均匀的初始合金熔体;所述初始合金熔体的主要成分为RE aAl bM cT d;其中,RE包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种,M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti、Fe、Co、Ni中的至少一种;T为杂质元素且包含O、H、N、P、S、F、Cl中的至少一种;a、b、c、d分别代表对应组成元素的原子百分比含量,且35%≤a≤99.7%,0.1%≤b≤25%,0.1%≤c≤35%,0≤d≤10%;
    步骤二,将初始合金熔体凝固成初始合金条带;所述初始合金条带的凝固组织包括基体相和弥散颗粒相;所述基体相的熔点低于所述弥散颗粒相,所述弥散颗粒相被包覆于所述基体相中;所述基体相的平均成分主要为RE x1Al y1T z1,所述弥散颗粒相的成分主要为M x2Al y2T z2,x1、y1、z1、x2、y2、z2分别代表对应组成元素的原子百分比含量,且60%≤x1<99.8%,0.2%≤y1≤30%,0≤z1≤30%;80%≤x2≤99.8%,0.1%≤y2≤22%,0≤z2≤1.5%,z2≤d≤z1;所述初始合金熔体凝固过程中,初始合金熔体中的杂质元素T在弥散颗粒相与基体相中重新分配,并富集于所述基体相中,从而使所述弥散颗粒相得到纯化;
    步骤三,将所述初始合金条带与酸溶液反应,所述初始合金条带中的基体相与酸反应变成离子进入溶液,而不与所述酸溶液反应的弥散颗粒相则从初始合金条带中脱离出来,即得主要成分为M x2Al y2T z2的含铝合金粉体材料。
  2. 根据权利要求1所述的含铝合金粉体的制备方法,其特征在于,所述初始合金熔体中的杂质元素来源包括:初始合金原料引入杂质,熔炼过程中气氛或坩埚引入杂质。
  3. 根据权利要求1所述的含铝合金粉体的制备方法,其特征在于,所述弥散颗粒相的颗粒粒径范围为2nm~3mm。
  4. 根据权利要求1所述的含铝合金粉体的制备方法,其特征在于,所述初始合金条带中弥散颗粒的单晶颗粒数目在所有弥散颗粒数目中的占比不低于75%。
  5. 根据权利要求1所述的含铝合金粉体的制备方法,其特征在于,y1>y2。
  6. 根据权利要求1所述的含铝合金粉体的制备方法,其特征在于,2z2≤z1。
  7. 根据权利要求1所述的含铝合金粉体的制备方法,其特征在于,所述含铝合金粉体材料的颗粒粒径范围为2nm~3mm。
  8. 根据权利要求1所述的含铝合金粉体的制备方法,其特征在于,在所述步骤三之后还进行以下步骤:将所述含铝合金粉体材料筛分后,选择粒径范围为5μm~200μm的含铝合金粉体材料进行等离子球化处理,得到呈球形的含铝合金粉体。
  9. 一种含铝合金粉体,其特征在于,通过权利要求1-8任一项所述方法制备。
  10. 根据权利要求1-8任一项所述的含铝合金粉体在吸波材料中的应用。
  11. 根据权利要求1-8任一项所述的含铝合金粉体在催化剂中的应用。
  12. 根据权利要求1-8任一项所述的含铝合金粉体在粉末冶金中的应用。
  13. 根据权利要求1-8任一项所述的含铝合金粉体在3D金属打印中的应用。
  14. 根据权利要求1-8任一项所述的含铝合金粉体在金属注射成型中的应用。
  15. 根据权利要求1-8任一项所述的含铝合金粉体在涂料中的应用。
  16. 一种合金条带,其特征在于,包含内生含铝合金粉与包覆体;所述合金条带的凝固组织包括基体相和弥散颗粒相,基体相即为所述包覆体,弥散颗粒相即为所述内生含铝合金粉;所述包覆体的熔点低于所述内生含铝合金粉,所述内生含铝合金粉被包覆于所述包覆体中;所述包覆体的平均成分主要为RE x1Al y1T z1,所述内生含铝合金粉的主要成分为M x2Al y2T z2,x1、y1、z1、x2、y2、z2分别代表对应组成元素的原子百分比含量,且60%≤x1<99.8%,0.2%≤y1≤30%,0≤z1≤30%;80%≤x2≤99.8%,0.1%≤y2≤22%,0≤z2≤1.5%,z2≤z1;所述RE包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种,M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti、Fe、Co、Ni中的至少一种;T为杂质元素且包含O、H、N、P、S、F、Cl中的至少一种。
  17. 根据权利要求16所述的一种合金条带,其特征在于,y1>y2。
  18. 一种高纯粉体材料的制备方法,其特征在于,包括以下步骤:
    步骤S1,选择初始合金原料,按照初始合金成分配比将初始合金原料熔化,得到含有杂质元素T的均匀初始合金熔体,其中,T包含O、H、N、P、S、F、Cl、I、Br中的至少一种,且所述初始合金熔体的平均成分包括:
    当所述初始合金熔体的平均成分主要为A aM bAl cT d时,A包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种;M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti中的至少一种;Al为铝;其中a、b、c、d分别代表对应组成元素的原子百分比含量,且29.8%≤a≤64.8%,35%<b≤70%,0.1%≤c≤25%,0<d≤10%;
    步骤S2,将所述初始合金熔体凝固成初始合金条带;所述初始合金条带的凝固组织包括基体相和弥散颗粒相;所述基体相的熔点低于所述弥散颗粒相,所述弥散颗粒相被包覆于所述基体相中;所述初始合金熔体凝固过程中,初始合金熔体中的杂质元素T在弥散颗粒相与基体相中重新分配,并富集于所述基体相中,从而使所述弥散颗粒相得到纯化;
    所述初始合金条带中弥散颗粒相的成分主要为M x1Al y1T z1,基体相的平均成分主要为A x2Al y2T z2;且77.8%≤x1≤99.8%,0.1%≤y1≤22%,0<z1≤1.5%;69.8%≤x2≤99.7%,0.2%≤y2≤30%,0<z2≤20%,z1<d<z2,x1、y1、z1、x2、y2、z2分别代表对应组成元素的原子百分比含量;
    步骤S3,将所述初始合金条带中的基体相去除,并保留基体相去除过程中不能被同时去除的弥散颗粒相,收集脱落出来的弥散颗粒相,即得到由原弥散颗粒组成的高纯目标粉体材料;
    所述高纯目标粉体材料的成分主要为M x1Al y1T z1
  19. 根据权利要求18所述的高纯粉体材料的制备方法,其特征在于,所述初始合金熔体中的T杂质元素来源包括:初始合金原料引入杂质,熔炼过程中气氛或坩埚引入杂质。
  20. 根据权利要求18所述的高纯粉体材料的制备方法,其特征在于,所述初始合金条带中不含有包含A与M构成的金属间化合物。
  21. 根据权利要求18所述的高纯粉体材料的制备方法,其特征在于,所述初始合金条带中弥散颗粒的单晶颗粒数目在所有弥散颗粒数目中的占比不低于60%。
  22. 根据权利要求18所述的高纯粉体材料的制备方法,其特征在于,2z1<z2。
  23. 根据权利要求18所述的高纯粉体材料的制备方法,其特征在于,y1<y2。
  24. 根据权利要求18所述的高纯粉体材料的制备方法,其特征在于,所述将合金条带中基体相去除方法包括:酸反应去除、碱反应去除、真空挥发去除、基体相自然氧化-粉化剥落去除中的至少一种。
  25. 根据权利要求18所述的高纯粉体材料的制备方法,其特征在于,所述高纯粉体材料的颗粒粒径范围为2nm~3mm。
  26. 根据权利要求18所述的高纯粉体材料的制备方法,其特征在于,在所述步骤S3之后还进行以下步骤:将所述高纯粉体材料筛分后,选择粒径范围为5μm~200μm的高纯粉体材料进行等离子球化处理,得到呈球形的高纯粉体材料。
  27. 一种高纯粉体材料,其特征在于,通过权利要求18-26任一项所述方法制备。
  28. 根据权利要求18-26任一项所述方法制备的高纯粉体材料在催化材料、粉末冶金、复合材料、吸波材料、杀菌材料、金属注射成型、3D打印、涂料中的应用。
  29. 一种合金条带,其特征在于,包含内生粉与包覆体;所述合金条带的凝固组织包括基体相和弥散颗粒相,基体相即为所述包覆体,弥散颗粒相即为所述内生粉;所述包覆体的熔点低于所述内生粉的熔点,所述内生粉被包覆于所述包覆体中;
    所述合金条带中内生粉的成分主要为M x1Al y1T z1,包覆体的平均成分主要为A x2Al y2T z2;且77.8%≤x1≤99.8%,0.1%≤y1≤22%,0<z1≤1.5%;69.8%≤x2≤99.7%,0.2%≤y2≤30%,0<z2≤20%, z1<d<z2,x1、y1、z1、x2、y2、z2分别代表对应组成元素的原子百分比含量;其中,A包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种;M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti中的至少一种;Al为铝;T包含O、H、N、P、S、F、Cl、I、Br中的至少一种。
  30. 根据权利要求29所述的一种合金条带,其特征在于,2z1<z2,y1<y2。
PCT/CN2021/130019 2019-11-28 2021-11-11 一种含铝合金粉体的制备方法及其应用及一种合金条带 WO2022100656A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201911188404 2019-11-28
CN202010838558 2020-08-19
CN202011273043.9A CN112143926B (zh) 2019-11-28 2020-11-13 一种含铝合金粉体的制备方法及其应用及一种合金条带
CN202011273043.9 2020-11-13
CN202011273626.1A CN112276101A (zh) 2020-08-19 2020-11-14 一种高纯粉体材料的制备方法及其应用及一种合金条带
CN202011273626.1 2020-11-14

Publications (1)

Publication Number Publication Date
WO2022100656A1 true WO2022100656A1 (zh) 2022-05-19

Family

ID=81607469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130019 WO2022100656A1 (zh) 2019-11-28 2021-11-11 一种含铝合金粉体的制备方法及其应用及一种合金条带

Country Status (1)

Country Link
WO (1) WO2022100656A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090134767A1 (en) * 2007-11-22 2009-05-28 Cheil Industries Inc. Composition for Electrodes Comprising Aluminum Powder Having Controlled Particle Size Distribution and Size, and Electrodes Made Using the Same
CN103317141A (zh) * 2013-06-17 2013-09-25 中国科学院宁波材料技术与工程研究所 一种金属纳米颗粒的制备方法
JP2013203626A (ja) * 2012-03-29 2013-10-07 Furukawa Electric Co Ltd:The 多孔質シリコン粒子及びその製造方法
CN106811750A (zh) * 2015-11-30 2017-06-09 中国科学院宁波材料技术与工程研究所 一种纳米多孔金属颗粒及其制备方法
CN111634938A (zh) * 2020-06-16 2020-09-08 东莞理工学院 一种纳米多孔粉体材料的制备方法
CN111940750A (zh) * 2019-05-15 2020-11-17 刘丽 一种合金粉体材料的制备方法
CN112143926A (zh) * 2019-11-28 2020-12-29 刘丽 一种含铝合金粉体的制备方法及其应用及一种合金条带
CN112276101A (zh) * 2020-08-19 2021-01-29 赵远云 一种高纯粉体材料的制备方法及其应用及一种合金条带
CN112404445A (zh) * 2020-08-19 2021-02-26 赵远云 高纯粉体材料的制备方法及其应用及一种双相粉体材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090134767A1 (en) * 2007-11-22 2009-05-28 Cheil Industries Inc. Composition for Electrodes Comprising Aluminum Powder Having Controlled Particle Size Distribution and Size, and Electrodes Made Using the Same
JP2013203626A (ja) * 2012-03-29 2013-10-07 Furukawa Electric Co Ltd:The 多孔質シリコン粒子及びその製造方法
CN103317141A (zh) * 2013-06-17 2013-09-25 中国科学院宁波材料技术与工程研究所 一种金属纳米颗粒的制备方法
CN106811750A (zh) * 2015-11-30 2017-06-09 中国科学院宁波材料技术与工程研究所 一种纳米多孔金属颗粒及其制备方法
CN111940750A (zh) * 2019-05-15 2020-11-17 刘丽 一种合金粉体材料的制备方法
CN112143926A (zh) * 2019-11-28 2020-12-29 刘丽 一种含铝合金粉体的制备方法及其应用及一种合金条带
CN111634938A (zh) * 2020-06-16 2020-09-08 东莞理工学院 一种纳米多孔粉体材料的制备方法
CN112276101A (zh) * 2020-08-19 2021-01-29 赵远云 一种高纯粉体材料的制备方法及其应用及一种合金条带
CN112404445A (zh) * 2020-08-19 2021-02-26 赵远云 高纯粉体材料的制备方法及其应用及一种双相粉体材料

Similar Documents

Publication Publication Date Title
WO2021104219A1 (zh) 一种含铝合金粉体的制备方法及其应用及一种合金条带
WO2022036906A1 (zh) 一种高纯粉体材料的制备方法及其应用及一种合金条带
AU2020435277B2 (en) Preparation method for powder material and use thereof
WO2022068710A1 (zh) 一类合金粉及其制备方法与用途
WO2020228709A1 (zh) 一种合金粉体材料的制备方法
WO2022036938A1 (zh) 高纯粉体材料的制备方法及其应用及一种双相粉体材料
WO2020168883A1 (zh) 一种金属粉体材料的制备方法
WO2022041516A1 (zh) 一种包含贵金属元素的粉体材料的制备方法及其应用
WO2022100656A1 (zh) 一种含铝合金粉体的制备方法及其应用及一种合金条带
JP3720250B2 (ja) 高水素吸蔵合金とその製造方法
KR101309516B1 (ko) 자성 비정질 금속 나노 파우더 제조방법
WO2023142563A1 (zh) 一种球形铁合金粉体材料及其制备方法与用途
WO2023142251A1 (zh) 一种球形铁合金粉体材料及其制备方法与用途
Nowak et al. Preparation Methods of Hydrogen Storage Materials and Nanomaterials
WO2004090182A1 (ja) 水素吸蔵合金材料及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891176

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21891176

Country of ref document: EP

Kind code of ref document: A1