WO2022068710A1 - 一类合金粉及其制备方法与用途 - Google Patents

一类合金粉及其制备方法与用途 Download PDF

Info

Publication number
WO2022068710A1
WO2022068710A1 PCT/CN2021/120572 CN2021120572W WO2022068710A1 WO 2022068710 A1 WO2022068710 A1 WO 2022068710A1 CN 2021120572 W CN2021120572 W CN 2021120572W WO 2022068710 A1 WO2022068710 A1 WO 2022068710A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy powder
endogenous
alloy
powder
metal material
Prior art date
Application number
PCT/CN2021/120572
Other languages
English (en)
French (fr)
Inventor
赵远云
刘丽
Original Assignee
赵远云
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP21874370.6A priority Critical patent/EP4223436A1/en
Priority to BR112023005810A priority patent/BR112023005810A2/pt
Priority to US18/029,572 priority patent/US20230364677A1/en
Priority to KR1020237014885A priority patent/KR20230098581A/ko
Priority to MX2023003660A priority patent/MX2023003660A/es
Priority to CN202180064613.XA priority patent/CN116367938A/zh
Application filed by 赵远云 filed Critical 赵远云
Priority to AU2021354564A priority patent/AU2021354564A1/en
Priority to IL301708A priority patent/IL301708A/en
Priority to CA3194475A priority patent/CA3194475A1/en
Priority to JP2023519406A priority patent/JP2023544559A/ja
Publication of WO2022068710A1 publication Critical patent/WO2022068710A1/zh
Priority to ZA2023/04438A priority patent/ZA202304438B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/38Paints containing free metal not provided for above in groups C09D5/00 - C09D5/36
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/08Alloys based on copper with lead as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/30Acidic compositions for etching other metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/13Use of plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/054Alkali metals, i.e. Li, Na, K, Rb, Cs, Fr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • B22F2301/355Rare Earth - Fe intermetallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/45Rare earth metals, i.e. Sc, Y, Lanthanides (57-71)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the invention relates to the technical field of metal materials, in particular to a type of alloy powder and a preparation method and application thereof.
  • metal powders with micro-nano particle size show many unique properties that are different from traditional materials in optics, electricity, magnetism, catalysis, etc. Therefore, it is widely used in many fields such as optoelectronic devices, wave absorbing materials, and high-efficiency catalysts.
  • the preparation methods of metal powders are divided into solid phase method, liquid phase method and gas phase method from the state of matter.
  • the solid-phase methods mainly include mechanical pulverization, ultrasonic pulverization, thermal decomposition, and explosion methods.
  • Liquid phase methods mainly include precipitation method, alkoxide method, carbonyl method, spray thermal drying method, freeze drying method, electrolysis method, chemical coagulation method, etc.
  • the gas phase method mainly includes gas phase reaction method, plasma method, high temperature plasma method, evaporation method, chemical vapor deposition method, etc.
  • Rotating electrode method and gas atomization method are the main methods for preparing high-performance metal and alloy powder at present, but the production efficiency is low, the yield of ultrafine powder is not high, and the energy consumption is relatively large; jet milling method, hydrodehydrogenation method It is suitable for large-scale industrial production, but has strong selectivity to raw metals and alloys.
  • the impurity content of the metal powder or alloy powder, especially the oxygen content has a great influence on its performance. At present, the impurity content of metal powder or alloy powder is mainly controlled by controlling the purity and vacuum degree of raw materials, which is expensive. Therefore, it is of great significance to develop new preparation methods for high-purity metal powder materials.
  • the technical scheme of the present invention is:
  • a metal material composed of endogenous alloy powder and a cladding body characterized in that it is prepared by solidification of an alloy melt, and its composition includes a disperse particle phase that is endogenously precipitated during the solidification of the initial alloy and a matrix phase that coats the disperse particles.
  • the elemental composition of the endogenous alloy powder is mainly Ma1 A b1 T c1
  • the element composition of the cladding body is mainly A b2 T c2
  • M and A both contain one or more metal elements
  • T is an impurity element including oxygen
  • the melting point of the endogenous alloy powder is higher than the melting point of the cladding body
  • the endogenous alloy powder M a1 A A element is solid-dissolved in b1 T c1
  • the M and the A include one or more groups of M 1 -A 1 element combinations that do not form intermetallic compounds, wherein M 1 represents any one of M element, A 1 represents any element in A, and the
  • T is an impurity element including oxygen element, which means that T is an impurity element and T includes O element;
  • the solidification methods of the initial alloy melt include ordinary casting, continuous casting, melt stripping, melt pulling and other methods.
  • the particle size of the endogenous alloy powder is related to the solidification rate of the initial alloy melt. Generally speaking, the particle size of the endogenous alloy powder is negatively correlated with the solidification rate of the initial alloy melt, that is, the greater the solidification rate of the initial alloy melt, the smaller the particle size of the endogenous alloy powder. .
  • the solidification mode of the initial alloy melt does not include the solidification mode corresponding to the atomization powder milling technology
  • the solidification rate of the initial alloy melt ranges from 0.001K/s to 10 8 K/s;
  • the solidification rate of the initial alloy melt ranges from 0.001K/s to 10 7 K/s;
  • the particle size range of the endogenous alloy powder includes 3 nm ⁇ 10 mm.
  • the particle size range of the endogenous alloy powder is 3nm to 1mm;
  • the particle size of the endogenous alloy powder ranges from 3 nm to 500 ⁇ m;
  • the particle size of the endogenous alloy powder ranges from 3 nm to 99 ⁇ m;
  • the particle size of the endogenous alloy powder ranges from 3 nm to 25 ⁇ m;
  • the particle size of the endogenous alloy powder ranges from 3 nm to 10 ⁇ m;
  • the particle shape of the endogenous alloy powder is not limited, and can include at least one of dendritic, spherical, nearly spherical, square, cake, and rod-shaped; when the particle shape is rod-shaped, the particle The size refers to the diameter of the cross-section of the rod.
  • the shape of the metal material composed of the endogenous alloy powder and the clad is related to the solidification method: when the solidification method is continuous casting, its shape is generally lath-like; when the solidification method is melt stripping, its shape is generally The shape is generally mainly ribbon-like or sheet-like; when the solidification method is melt drawing, the shape is generally mainly filamentary.
  • the solidification rate is higher, the cross-section of the obtained metal material composed of endogenous alloy powder and cladding is thinner, thinner and narrower; on the contrary, the cross-section is thicker, thicker and wider;
  • the shape of the metal material composed of the endogenous alloy powder and the cladding body does not include the powder shape of the product corresponding to the atomization pulverizing technology
  • an endogenous alloy powder with a thickness of about 10 ⁇ m ⁇ 5mm can be obtained.
  • the metal material strip formed by the cladding body contains endogenous alloy powder with a particle size ranging from 3 nm to 200 ⁇ m.
  • the initial alloy melt is solidified by means of ordinary casting or continuous casting, and the solidification rate is 0.001K/s to 100K/s, a block with at least one dimension exceeding 5mm in the three-dimensional dimension can be obtained.
  • It is a metal material composed of endogenous alloy powder and a cladding body, and the particle size range of the included endogenous alloy powder is 200 ⁇ m to 10 mm.
  • the metal material composed of the endogenous alloy powder and the cladding body is in the shape of a strip, and the thickness of the strip is 5 ⁇ m to 5 mm;
  • the metal material composed of the endogenous alloy powder and the cladding body is strip-shaped, and the thickness of the strip is 10 ⁇ m ⁇ 1 mm;
  • the lower limit of the volume percentage content of the endogenous alloy powder in the metal material composed of the endogenous alloy powder and the clad is 1%, and the upper limit is that the endogenous alloy powder can be dispersed in the The corresponding volume percentage content in the cladding.
  • volume percentage content can be converted through the relationship between the density and atomic weight of each element and the atomic percentage content.
  • the matrix element of the coating body is a large atomic element, the matrix can obtain a higher volume percentage content through a smaller atomic percentage content, thereby significantly increasing the content of the endogenous alloy powder that can be coated.
  • the atomic percentage composition of the alloy melt is Ce 50 Ti 50
  • the weight percentages of Ce and Ti are 74.53wt% and 25.47wt% respectively
  • the combined densities are 6.7g/cm 3 and 4.5g/cm 3 , respectively.
  • the volume percentages of Ce and Ti in the melt with the atomic percentage content of Ce 50 Ti 50 are 66 vol% and 34 vol%, respectively. If Ti is precipitated from the melt, its volume percentage is only about 34 vol% without considering the solid solution and impurities. It shows that even if the atomic percentage of Ti in Ce-Ti alloy exceeds 50%, its volume percentage can still be significantly lower than 50%, which is beneficial to obtain dispersed Ti particles.
  • the cladding body Since the application of the metal material composed of the endogenous alloy powder and the cladding body mainly lies in the application effect of the endogenous alloy powder, the cladding body needs to be removed subsequently. Therefore, when the volume percentage of the endogenous alloy powder is less than 1%, it will greatly waste the cladding material and lose the practical significance of the material application.
  • the size and morphology of the resulting endogenous alloy powders are also different.
  • the cooling rate is fast and the endogenous alloy powder is mainly fine spherical or nearly spherical nano-powder
  • the growth degree of the particles is limited, and it is easy to maintain a certain space and distance between the particles, so as to ensure the dispersion and distribution of the endogenous alloy powder.
  • the cooling rate is low and the endogenous alloy powder is mainly coarse dendrites, the growth of its particles is very sufficient, and different particles are easy to meet, merge, and merge during the growth process.
  • the endogenous dendrite alloy powder can only reach a relatively low volume percentage under the condition of ensuring the dispersed distribution of endogenous dendrite alloy particles.
  • the volume percentage content of the endogenous alloy powder in the metal material composed of the endogenous alloy powder and the cladding body ranges from 5% to 50%;
  • the volume percentage content of the endogenous alloy powder in the metal material composed of the endogenous alloy powder and the clad is in the range of 5% to 40%; The upper limit of , sufficiently ensures that the endogenous alloy powder can be dispersed and distributed in the cladding body.
  • the endogenous alloy powder is solidified and precipitated from the initial melt. According to the nucleation and growth theory, whether it is a nearly spherical nanoparticle that has just nucleated and grown, or a fully grown micron-scale dendritic particle, its crystal growth All have a fixed orientation relationship, so that the single particles precipitated are mainly composed of a single crystal.
  • the volume percentage of the endogenous alloy powder is relatively high, in the process of endogenous precipitation of single crystal particles, it is not excluded that two or more particles merge. If two or more single crystal particles are only softly agglomerated, adsorbed to each other, or connected together in contact with only a few parts, and are not sufficiently combined into one particle through normal grain boundaries as in polycrystalline materials, they are still two single crystal particles. . Its characteristic is that after the coating is removed in the subsequent process, these single crystal particles can be easily separated by techniques including ultrasonic dispersion treatment and jet milling. For normal ductile metal polycrystalline materials, it is difficult to separate the grain boundaries by techniques including ultrasonic dispersion treatment and jet milling.
  • the number of single crystal particles in the endogenous alloy powder accounts for not less than 60% of the total number of particles.
  • the number of single crystal particles in the endogenous alloy powder accounts for not less than 75% of the total number of particles.
  • the number of single crystal particles in the endogenous alloy powder accounts for not less than 90% of the total number of particles.
  • both the endogenous alloy powder and cladding body are crystalline;
  • the elemental composition of the endogenous alloy powder is mainly M a1 A b1 T c1
  • the element composition of the clad is mainly A b2 T c2
  • M and A both contain one or more metal elements
  • each element is characterized by the atomic percentage content of the element, and the increase or decrease of element content, such as the increase or decrease of impurity elements, can be accurately expressed through the concept of material quantity. If the mass percentage content (or ppm concept) of elements is used to characterize the content of each element, it is easy to produce wrong conclusions due to the difference in atomic weight of each element. For example, an alloy whose atomic percent content is Ti 45 Gd 45 O 10 contains 100 atoms, and the atomic percent content of O is 10 at %.
  • the 100 atoms are divided into two parts: Ti 45 O 4 (the atomic percentage composition is Ti 91.8 O 8.2 ) and Gd 45 O 6 (the atomic percentage composition is Gd 88.2 O 11.8 ), and the atomic percentage content of oxygen in Gd 45 O 6 is increased to 11.8 at%, the atomic percentage of oxygen in Ti 45 O 4 is reduced to 8.2 at%, which can accurately express the enrichment of O in Gd.
  • the mass percent content of O is used to measure, the mass percent content of O in Ti 45 Gd 45 O 10 is 1.70 wt %, and the mass percent content of O in Ti 45 O 4 and Gd 45 O 6 is 2.9 wt. % and 2.9 wt % respectively. 1.34 wt.%, it would lead to the wrong conclusion that the O content in Ti 40 O 4 is significantly increased compared to that in Gd 40 O 6 .
  • the melting point of the endogenous alloy powder M a1 A b1 T c1 is higher than the melting point of the cladding body A b2 T c2 ; after satisfying this condition, the matrix phase of the initial alloy solidifies at the end, and the coating is clad. Live endogenous alloy powder.
  • the endogenous alloy powder M a1 A b1 T c1 has a solid solution of A element, that is, 0 ⁇ b1.
  • M a1 A b1 T c1 may contain up to 15% of A element (atomic percentage content) in solid solution.
  • the solid solubility of A in the M a1 A b1 T c1 endogenous alloy powder is also different according to the difference of the main element composition of the specific alloy melt, the difference of the impurity content, and the difference of the solidification rate. Generally speaking, when the solidification rate of the melt is high and a small endogenous alloy powder is formed, such as nano-powder, it can solid-dissolve more A element.
  • the endogenous alloy powder contains a certain amount of impurity T, and the content of the T impurity element in the endogenous alloy powder is lower than the content of the T impurity element corresponding to the cladding body, that is, c2>c1>0 .
  • the T is an impurity element such as O, H, N, P, S, F, Cl and the like including oxygen, and 0 ⁇ c1 ⁇ 1.5%.
  • T contains O, and the content of O is greater than zero; a specific element of the above-listed H, N, P, S, F, and Cl elements is not contained and its content is zero, and when it is contained, its content is zero. The content is greater than zero; the content of T is the total content of O, H, N, P, S, F, and Cl elements.
  • the T is an impurity element including oxygen, such as O, H, N, P, S, F, and Cl, and 0.01% ⁇ c1 ⁇ 1.5%.
  • Both M and A contain one or more metal elements, and the selection of M and A is the key to preparing the metal material composed of endogenous alloy powder and cladding.
  • M and A need to satisfy the following relationship:
  • the M and the A include one or more groups of M 1 -A 1 element combinations that do not form intermetallic compounds; wherein, M 1 represents any element in M, and A 1 represents any one in A elements, and the main element in M consists of each M 1 element that satisfies the M 1 -A 1 element combination condition, and the main element in A consists of each A 1 element that satisfies the M 1 -A 1 element combination condition.
  • M or A when the atomic percentage content of each M 1 element or each A 1 element satisfying the above combination conditions respectively accounts for more than 30% in M or A, it can be called M or A respectively. main element in .
  • the M includes at least one of W, Cr, Mo, V, Ta, Nb, Zr, Hf, Ti, Fe, Co, Ni, Mn, Cu, and Ag
  • A includes Y, La, At least one of Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Mg, Ca, Li, Na, K, In, Pb, Zn, It can be satisfied that the intermetallic compound composed of the host element in M and the host element in A will not be generated during the solidification of the alloy melt.
  • any element in M can find the corresponding M 1 -A 1 combination pair in A that does not generate intermetallic compounds, such as Cr-Y, Ti-Ce, Fe- Mg, Co-K, Ni-Li, Mn-Mg, Cu-Li, Ag-Pb combination etc.
  • intermetallic compounds such as Cr-Y, Ti-Ce, Fe- Mg, Co-K, Ni-Li, Mn-Mg, Cu-Li, Ag-Pb combination etc.
  • the set of each M 1 and each set of A 1 still satisfy the condition that the corresponding intermetallic compound is not generated when the alloy melt is solidified.
  • Ti-Ce, Ti-Gd, Nb-Ce, Nb-Gd all satisfy the condition of M 1 -A 1 combination pair, then (Ti-Nb)-(Ce-Gd) will still satisfy the corresponding alloy melt that does not form during solidification Combination pair conditions for intermetallic compounds.
  • the host elements in M include Ti and Nb; the host elements in A include Ce and Gd.
  • M 1 -M 2 intermetallic compound powder when the host element in M and the host element in A meet the conditions of one or more groups of M 1 -A 1 combination pairs, if M also contains a host element M 1 in M that can form a stable high melting point intermetallic compound.
  • M 1 and M 2 When the element M 2 is present, M 1 and M 2 will form an M 1 -M 2 intermetallic compound with a stable high melting point, and neither M 1 nor M 2 can form an intermetallic compound with the host element in A.
  • the endogenous alloy powder is M 1 -M 2 intermetallic compound powder.
  • the M includes at least one of W, Cr, Mo, V, Ta, Nb, Zr, Hf, and Ti
  • the A includes Y, La, Ce, Pr, Nd, Pm, Sm, Eu, At least one of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • the M contains at least one of W, Cr, Mo, V, Ta, Nb, Zr, Hf, and Ti, and simultaneously contains at least one of Fe, Co, and Ni
  • these two elements in M A high melting point intermetallic compound can be formed between the similar elements, when A contains at least one of Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu
  • an endogenous intermetallic compound powder mainly composed of two sub-type elements in M can be formed.
  • the M contains at least one of sub-type elements W, Cr, Mo, V, Ta, Nb, Zr, Hf, Ti, and at least one of sub-type elements Fe, Co, Ni, and
  • the molar ratio of the two sub-elements is about 1:1
  • stable high-melting intermetallic compounds can be formed between the two sub-elements in M.
  • A contains Y, La, Ce, Pr, Nd, Pm, Sm
  • the alloy melt is mainly composed of two subtypes of elements in M during solidification, and the molar ratio is about 1:1.
  • the M includes at least one of Mn, Fe, Ni, Cu, and Ag, and A includes at least one of Mg, La, In, Na, K, Li, and Pb.
  • the M includes at least one of Ir, Ru, Re, Os, Tc, W, Cr, Mo, V, Ta, Nb, Zr, Hf, Ti, and Fe, and A includes at least one of Cu and Zn A sort of.
  • the M includes at least one of Ir, Ru, Re, Os, Tc, W, Cr, Mo, V, Ta, and Nb, and A includes Cu.
  • the M includes at least one of Ir, Ru, Re, Os, and Tc, and A includes Cu.
  • the A, M or T may also contain other alloying elements or impurity elements other than those listed above. As long as the change of the content of these elements does not cause the result of "qualitative change" in the solidification process and law of the initial alloy, it does not affect the realization of the above technical solutions of the present invention.
  • the alloy powder is prepared by removing the cladding body in the metal material composed of the endogenous alloy powder and the cladding body. Therefore, most of the characteristics of the alloy powder are consistent with the endogenous alloy powder. The difference is that the endogenous alloy powder is coated in the coating body, preventing the influence of impurities such as oxygen in the environment. And the alloy powder, especially when the particle size of the alloy powder is relatively fine, such as nano-alloy powder, the surface or surface atoms of the alloy powder will be combined with oxygen and other impurity elements during the exposure process, resulting in an increase in the content of T element. That is, c3>c1>0.
  • the number of single crystal particles in the alloy powder accounts for not less than 60% of the total number of particles.
  • the number of single crystal particles in the alloy powder accounts for not less than 75% of the total number of particles.
  • the number of single crystal particles in the alloy powder accounts for not less than 90% of the total number of particles.
  • the particle size of the alloy powder ranges from 3 nm to 10 mm.
  • the particle size of the alloy powder ranges from 3nm to 1mm;
  • the particle size of the alloy powder ranges from 3 nm to 500 ⁇ m;
  • the particle size of the alloy powder ranges from 3 nm to 99 ⁇ m;
  • the particle size of the alloy powder ranges from 3 nm to 25 ⁇ m;
  • the particle size of the alloy powder ranges from 3 nm to 10 ⁇ m;
  • the particle size of the alloy powder ranges from 3 nm to 5 ⁇ m;
  • the selected particles are subjected to the pre-crushing treatment of jet milling, so that the particles that may be entangled are dispersed and crushed, which is beneficial to the subsequent spheroidization treatment.
  • alloy powder is screened before the plasma spheroidization treatment
  • the particle size range of the alloy powder subjected to the plasma spheroidization treatment is 5 ⁇ m-200 ⁇ m.
  • the particle size range of the alloy powder subjected to the plasma spheroidization treatment is 5 ⁇ m-100 ⁇ m.
  • the present invention also relates to a method for preparing a metal material composed of endogenous alloy powder and a cladding body, which is characterized in that the method is prepared by the following steps:
  • the solidification methods of the initial alloy melt include ordinary casting, continuous casting, melt stripping, melt pulling and other methods.
  • the particle size of the endogenous alloy powder is related to the solidification rate of the initial alloy melt. Generally speaking, the particle size of the endogenous alloy powder is negatively correlated with the solidification rate of the initial alloy melt, that is, the greater the solidification rate of the initial alloy melt, the smaller the particle size of the endogenous alloy powder. .
  • the solidification mode of the initial alloy melt does not include the solidification mode corresponding to the atomization powder milling technology
  • the solidification rate of the initial alloy melt ranges from 0.001K/s to 10 8 K/s;
  • the solidification rate of the initial alloy melt ranges from 0.001K/s to 10 7 K/s;
  • the particle size range of the endogenous alloy powder includes 3 nm ⁇ 10 mm.
  • the particle shape of the endogenous alloy powder is not limited, and can include at least one of dendritic, spherical, nearly spherical, square, cake, and rod-shaped; when the particle shape is rod-shaped, the particle The size refers to the diameter of the cross-section of the rod.
  • the shape of the metal material composed of the endogenous alloy powder and the clad is related to the solidification method: when the solidification method is continuous casting, its shape is generally lath-like; when the solidification method is melt stripping, its shape is generally The shape is generally mainly ribbon-like or sheet-like; when the solidification method is melt drawing, the shape is generally mainly filamentary.
  • the solidification rate is higher, the cross-section of the obtained metal material composed of endogenous alloy powder and cladding is thinner, thinner and narrower; on the contrary, the cross-section is thicker, thicker and wider;
  • the shape of the metal material composed of the endogenous alloy powder and the cladding body does not include the powder shape of the product corresponding to the atomization pulverizing technology
  • an endogenous alloy powder with a thickness of about 10 ⁇ m ⁇ 5mm can be obtained.
  • the metal strip formed by the covering body contains endogenous alloy powder with a particle size ranging from 3 nm to 200 ⁇ m.
  • the initial alloy melt is solidified by ordinary casting or continuous casting, and the solidification rate is 0.001K/s to 100K/s, a block with at least one dimension exceeding 5 mm in the three-dimensional dimension can be obtained
  • a metal material in the shape of an endogenous alloy powder and a cladding body, and the particle size range of the included endogenous alloy powder is 200 ⁇ m to 10 mm.
  • the metal material composed of the endogenous alloy powder and the cladding body is in the shape of a strip, and the thickness of the strip is 5 ⁇ m to 5 mm;
  • the metal material composed of the endogenous alloy powder and the cladding body is strip-shaped, and the thickness of the strip is 10 ⁇ m ⁇ 1 mm;
  • the metal material composed of the endogenous alloy powder and the cladding body is in the shape of a strip, and the thickness of the strip is 10 ⁇ m ⁇ 500 ⁇ m;
  • the metal material composed of the endogenous alloy powder and the cladding body is strip-shaped, and the thickness of the strip is 10 ⁇ m ⁇ 100 ⁇ m;
  • the lower limit of the volume percentage content of the endogenous alloy powder in the metal material composed of the endogenous alloy powder and the clad is 1%, and the upper limit is that the endogenous alloy powder can be dispersed in the The corresponding volume percentage content in the cladding.
  • the volume percentage content of the endogenous alloy powder in the metal material composed of the endogenous alloy powder and the cladding body ranges from 5% to 50%;
  • the volume percentage content of the endogenous alloy powder in the metal material composed of the endogenous alloy powder and the clad is in the range of 5% to 40%; The upper limit of , sufficiently ensures that the endogenous alloy powder can be dispersed in the cladding body.
  • the number of single crystal particles in the endogenous alloy powder accounts for not less than 60% of the total number of particles.
  • the number of single crystal particles in the endogenous alloy powder accounts for not less than 75% of the total number of particles.
  • the number of single crystal particles in the endogenous alloy powder accounts for not less than 90% of the total number of particles.
  • the melting point of the endogenous alloy powder M a1 A b1 T c1 is higher than the melting point of the cladding body A b2 T c2 ; after satisfying this condition, the matrix phase of the initial alloy solidifies at the end, and the coating is clad. Live endogenous alloy powder.
  • endogenous alloy powder M a1 A b1 T c1 is solid-dissolved with A element, that is, 0 ⁇ b1.
  • M a1 A b1 T c1 may contain up to 15% of A element (atomic percentage content) in solid solution.
  • the solid solubility of A in the M a1 A b1 T c1 endogenous alloy powder is also different according to the difference of the main element composition of the specific alloy melt, the difference of the impurity content, and the difference of the solidification rate. Generally speaking, when the solidification rate of the melt is high and a small endogenous alloy powder is formed, such as nano-powder, it can solid-dissolve more A element.
  • Supplementary instructions further, 0.01% ⁇ b1 ⁇ 15%; further, 0.05% ⁇ b1 ⁇ 15%; further, 0.1% ⁇ b1 ⁇ 15%;
  • T is an impurity element such as O, H, N, P, S, F, Cl, etc. including oxygen, and 0 ⁇ c1 ⁇ 1.5%.
  • T is O, H, N, P, S, F, and Cl elements including O, which are all non-metallic elements with similar properties.
  • the present invention finds that the above-mentioned T elements in the initial alloy melt have similar thermodynamic effects on the diffusion and phase distribution of A, M, and T elements in the matrix phase and the dispersed particle phase during the solidification process of the initial alloy melt; Due to the influence of thermodynamics, when the content of T is high, more A element can be dissolved in the M a1 A b1 T c1 endogenous alloy powder. The possible reason for this is that the A, M, and T elements in the initial alloy melt were uniformly mixed at the beginning.
  • the dispersed particle phase mainly composed of M was first precipitated from the melt.
  • the T-type element atoms will be expelled, and some kind of vacancy may be formed while the T-type element atoms are expelled.
  • This vacancy can be replaced by the M-type atom and can also be replaced by the A-type atom; therefore, the same situation
  • the amount of solid solution A element in the endogenous alloy powder of Ma1 A b1 T c1 is also affected by two aspects of thermodynamics and kinetics during the solidification of the initial alloy melt ; Thermodynamically, when the content of T is high, more A element can be dissolved in the endogenous alloy powder of Ma1 A b1 T c1 ; from a kinetic point of view, when the initial alloy melt solidification rate is high and the formation of When the endogenous alloy powder is smaller, the M a1 A b1 T c1 endogenous alloy powder can dissolve more A element;
  • the M a0 A b0 T c0 initial alloy melt is formed by smelting an alloy raw material including a first raw material and a second raw material; wherein, the main element composition of the first raw material is M d1 T e1 , and the second raw material is composed of M d1 T e1 .
  • the content of T impurities in the endogenous M a1 A b1 T c1 alloy powder is compared with that of M d1 T e1
  • the raw material has been greatly reduced, that is, the T impurity content in the endogenous M a1 A b1 T c1 alloy powder is lower than that in the M d1 T e1 raw material, that is, c1 is smaller than e1.
  • the volume percentage of endogenous M a1 A b1 T c1 alloy powder and M d1 T when the raw materials are prepared The volume percentage of e1 raw materials is equivalent; equivalent means close.
  • the volume percentage of the endogenous M a1 A b1 T c1 alloy powder in the metal material composed of the target endogenous alloy powder and the clad it can be roughly reversed to obtain the initial alloy melt of the melting M a0 A b0 T c0
  • the volume percentage of M d1 T e1 raw material and A d2 T e2 raw material are required respectively; when the respective volume percentages of M d1 T e1 raw material and A d2 T e2 raw material are determined, the relative ratio of a0 and b0 is also It can be calculated from the atomic weight, density and other data of each element.
  • T elements may form a small amount of slag floating on the melt surface with M or A during the initial alloy smelting process. Since the slag is generally solid and does not belong to the initial alloy melt, the content of T element in the initial alloy melt may also be c0 ⁇ e1, c0 ⁇ e2, that is, M a0 A b0 T c0 initial alloy melt Compared with the total impurity content in the alloy raw material, the content of impurities in the alloy is reduced.
  • the present invention also relates to a method for preparing an alloy powder, which is characterized in that, by removing the cladding body part in the metal material composed of the endogenous alloy powder and the cladding body, the endogenous alloy that cannot be removed at the same time is retained at the same time. Powder preparation.
  • the method for removing the coating and retaining the endogenous alloy powder includes at least one of acid solution dissolution reaction removal, alkali solution dissolution reaction removal, vacuum volatilization removal, and natural oxidation-powder removal of the coating body.
  • the appropriate acid type and concentration should be selected.
  • the selection standard is to ensure that the coating body A b2 T c2 turns into ions and enters the solution, while the endogenous alloy powder Ma1 A b1 T c1 hardly corresponds to the corresponding acid reaction, so as to achieve the removal of the coating.
  • the acid solution is degassed so that it contains a lower dissolved oxygen and nitrogen content.
  • the selection criterion is to ensure that the coating body A b2 T c2 turns into ions and enters the solution, while the endogenous alloy powder M a1 A b1 T c1 hardly corresponds to the corresponding
  • the alkali reaction of the cladding can be achieved to remove the coating.
  • the alkaline solution is degassed to contain lower dissolved oxygen and nitrogen content.
  • the coated body When the coated body is easily oxidized and pulverized, the naturally oxidized and pulverized coated body can be preliminarily removed, and then the coated body can be completely removed by other methods.
  • the M includes Fe
  • the A includes La
  • the metal material composed of the endogenous alloy powder and the cladding body is an endogenous Fe alloy powder and a La cladding body.
  • the formed metal strip has La solid solution in the endogenous Fe alloy powder; through the natural oxidation-powdering of the La coating, the endogenous Fe alloy powder and the matrix La oxide powder are pre-separated. Magnetic properties, the use of a magnetic field to separate Fe alloy powder from the oxides of the matrix La.
  • the invention also relates to the application of the alloy powder in powder metallurgy, metal injection molding, magnetic material and paint.
  • the particle size of the alloy powder when the particle size of the alloy powder is large, it can be used in the fields of powder metallurgy and metal injection molding; when the particle size of the alloy powder is small, such as nano-scale, it can be used in the field of coatings, mainly as a coating additive with special functions. .
  • the alloy powder is a soft magnetic alloy powder, it can also be used in the field of magnetic materials.
  • the invention also relates to the application of a spherical or nearly spherical alloy powder in powder metallurgy, metal injection molding, and metal powder 3D printing.
  • the invention also relates to the application of a metal material composed of endogenous alloy powder and a clad in coatings and composite materials.
  • a metal material composed of endogenous alloy powder and a cladding body with an average particle size of the endogenous alloy powder below 1000 nm is selected, and the cladding body is removed; the obtained alloy is removed simultaneously or immediately after the cladding body is removed.
  • the powder is mixed with other components of the coating or composite material to reduce the content of impurities including O newly introduced on the powder surface or surface layer after the surface of the alloy powder is exposed, and obtain the alloy powder with high surface activity and make other components of the coating or composite material.
  • the cleaning and drying process of the alloy powder, and the mixing process of the alloy powder with other components of the coating or composite material are all performed in a vacuum environment or a protective atmosphere.
  • the obtained alloy powder is mixed with other components of the coating or composite material within 20 minutes.
  • the obtained alloy powder is mixed with other components of the coating or composite material within 5 minutes.
  • the biggest advantage of the technical scheme involved in the present invention lies in that: in the process of forming the alloy powder, the alloy powder is purified and solid solution alloyed at the same time;
  • the invention of the composed metal material also puts forward a new idea for the preparation, preservation and application of high-purity alloy powder.
  • the present invention uses the basic concept of selective corrosion in principle, it is fundamentally different from the selective corrosion of the dealloying method in principle.
  • the precursor alloy selected by the dealloying method must be a single amorphous phase, or one or more intermetallic compound phases, or a mixture of one or more intermetallic compound phases and an amorphous phase.
  • the target atoms are uniformly dispersed in each phase of the alloy in the form of atoms (whether it is an intermetallic compound phase or an amorphous phase, the target atoms and other target atoms do not aggregate to form the target phase); dealloying After the reaction, the active atoms are corroded and removed, and the target atoms are dissociated, and the target atoms are aggregated together by re-diffusion and rearrangement to form a nanoporous structure.
  • the material prepared by the dealloying method is generally a nanoporous material, not a powder material, and the macroscopic shape of the material before and after the dealloying reaction remains roughly unchanged, that is, the shape of the alloy strip after the alloying reaction is still a nanoporous strip. ;
  • the shape of the alloy block is still a nanoporous block after the dealloying reaction (see the document Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag and Cu) through chemical dealloying, J.Phys Chem C.113 (2009) 12629- 12636). Only when ultrasound or other disintegration methods are applied, can the obtained nanoporous structure be further disintegrated into loose nanoporous fragments or nanoparticles.
  • the bulk M d1 T e1 raw material and the A d2 T e2 raw material are heated to above the melting point of the two raw materials to obtain an initial alloy melt of Ma0 A b0 T c0 .
  • the dispersed particle phase with the main element composition of Ma1 A b1 T c1 precipitates from the melt, and the matrix phase with the main element composition of A b2 T c2 finally solidifies and coats the dispersed particles Mutually.
  • This disperse particle phase can be nanoparticles when the cooling rate is fast enough, submicron particles with a slower cooling rate, micron particles, and millimeter-sized particles even slower.
  • the M a1 A b1 T c1 endogenous alloy powder of the present invention is formed during the solidification of the initial alloy melt, not during a process such as acid reaction removal. Subsequent removal is merely to remove the overcladding to obtain freely dispersed alloy nanoparticles.
  • high-purity endogenous alloy powder is obtained from low-purity raw materials, and a new way is pointed out for the preparation of high-purity metal powder materials from low-purity raw materials, which is of positive significance.
  • the improvement of the purity of high-purity endogenous alloy powder is mainly achieved through the following two mechanisms:
  • endogenous alloy powder endogenously precipitated dispersed particle phase
  • impurity elements will be discharged into the remaining melt.
  • the endogenous alloy powder is not later than the matrix phase precipitation during the solidification process, its impurities will be enriched in the last part of the melt that solidifies, that is, the part of the melt that is mainly composed of element A and solidifies to form the matrix phase.
  • the M a1 A b1 T c1 endogenous alloy powder prepared by using raw materials containing relatively high impurity elements often has a considerable content of A in solid solution.
  • the solid solubility of A in the M a1 A b1 T c1 endogenous alloy powder will also be different according to the difference of the main element composition of the specific alloy melt, the difference of the impurity content, and the difference of the solidification rate.
  • M a1 A b1 T c1 endogenous alloy powders More A element can be dissolved in it.
  • the solid solution of element A in the M a1 A b1 T c1 endogenous alloy powder makes the endogenous alloy powder have some characteristics of the solid solution alloyed alloy powder, which has positive significance.
  • the solid solution alloying of element A in the M a1 A b1 T c1 endogenous alloy powder is the result obtained when the corresponding initial alloy melt contains enough A element (most of the other A elements).
  • a matrix phase A b2 T c2 ) is formed, which is completely different from the case where a small amount of A element is directly added to M to obtain MA alloys.
  • a trace amount (such as 0.3 wt%) of Y is generally added to Ti metal in industry (supplementary note: its corresponding Y atomic percentage content is 0.16 at%) to improve the strength and plasticity of Ti-Y alloy.
  • Y 2 O 3 oxide is formed after the trace-added Y enters the Ti metal and is generally combined with impurity elements such as O in the Ti metal.
  • the existence of Y 2 O 3 oxide can increase the nucleation rate as a particle of heterogeneous nucleation, so that finer grains can be obtained during the solidification of Ti metal, thereby improving the strength of Ti metal at the same time through the principle of grain refinement with plasticity.
  • This alloying is not strictly alloying, since a small amount of Y is added to Ti metal of non-absolute purity and exists in the form of Y 2 O 3 oxide.
  • Ti-YT alloy melt can be obtained by smelting Ti raw material containing impurity T and Y raw material containing impurity T.
  • Ti-YT endogenous alloy powder with a small amount of Y in solid solution can be obtained.
  • Y is the real alloying element involved in solid solution alloying. This difference can make the Ti-YT endogenous alloy powder obtain obviously different and beneficial application effects.
  • the Ti-YT alloy micro-powder after removing the coating matrix phase and spheroidizing is used in the field of metal 3D printing, during the laser remelting process of the powder, the solid "stored" in the Ti-YT alloy powder.
  • the dissolved Y element can absorb the O element on the surface or surface of the Ti-YT alloy powder (remove the coating matrix phase and introduce it through the spheroidization process) to form Y 2 O 3 oxide.
  • Y 2 O 3 oxide as the particle of heterogeneous nucleation can significantly refine the grains in the Ti-YT alloy structure after laser remelting and solidification, thereby improving the strength and plasticity of the 3D printing device.
  • Y has been combined with O to form Y 2 O 3 oxide, and new O was introduced into the powder during the milling process, making the powder laser There is no "free” Y to further combine with O during the remelting process; or to achieve this, more Y needs to be added to the traditional Ti-Y alloy powder so that in addition to the Y2O3 oxide , the Ti- Some "free" Y can be dissolved in the Y alloy powder. This is undoubtedly not superior to the Ti-YT alloy powder in which only the Y element is dissolved in the present invention.
  • alloy powders mainly composed of single crystal particles can be obtained. Compared with polycrystalline powders, single crystal powders can achieve many significant and beneficial effects.
  • each endogenous particle grows and grows according to a specific atomic arrangement after nucleation from a certain position in the melt.
  • volume percentage of the matrix phase By controlling the volume percentage of the matrix phase to ensure that each endogenous particle can be dispersed, it is difficult for each endogenous particle to merge and grow. Therefore, each dispersed particle phase finally obtained is generally a single crystal phase. Even if the size of dendrite particles is as large as tens of microns, the growth direction of each secondary dendrite maintains a certain phase relationship with the growth direction of the main dendrite, which is still a single crystal particle.
  • the grain boundaries are generally prone to contain impurity elements discharged from the grain during solidification, so it is difficult to obtain high-purity polycrystalline powder materials.
  • the powder material is mainly composed of single crystal particles, its purity must be guaranteed.
  • the atoms on the surface of single crystal particles have specific arrangements, such as (111) plane arrangement, which will endow the material with special mechanical, physical and chemical properties, resulting in beneficial effects.
  • the metal material composed of the endogenous alloy powder and the cladding body creatively uses the in-situ generated cladding body to wrap the endogenous alloy powder, thereby maintaining the high purity and high activity of the endogenous alloy powder.
  • Metal or alloy powders prepared by traditional chemical methods or physical methods, especially nano-powders with extremely large specific surface areas, are easily oxidized naturally and face the problem of difficulty in powder preservation.
  • This metal material composed of endogenous alloy powder and cladding can be directly used as raw material for downstream production.
  • the downstream production needs to use endogenous alloy powder, according to the characteristics of the next process, you can choose a suitable time and release the endogenous alloy powder in a suitable environment, and then release the released endogenous alloy powder in the shortest time possible. into the next production process, so that the chance of alloy powder contamination is greatly reduced.
  • the endogenous alloy powder is nano-scale, it can be compounded with the resin at the same time as the alloy powder is released or immediately afterward to prepare a resin-based composite material with the addition of high-activity nano-alloy powder.
  • the preparation of endogenous alloy powders with different and continuous particle sizes can be achieved, including the preparation of nano-powder, sub-micron powder, micron powder, and even millimeter-scale powder.
  • the "primary particle phase precipitation-dephasing method” involved in the present invention "is a new class of methods for preparing powder materials ranging from nanometer to millimeter particle size.
  • nanoparticles of several nanometers or tens of nanometers can be easily prepared from the atomic or ionic scale through a bottom-up approach (such as ion reduction); a top-down approach (such as ball milling) can easily prepare micron particles of tens of microns.
  • a bottom-up approach such as ion reduction
  • a top-down approach such as ball milling
  • the traditional methods for preparing powder materials are only suitable in a certain particle size range.
  • ion reduction produces nanoparticles below 100 nm
  • atomization produces microscopic particles above 10 ⁇ m.
  • the method involved in the present invention is very suitable for preparing powder materials ranging from several nanometers to several millimeters, and only needs to control the solidification rate of the initial alloy melt, which perfectly solves the difficulty of preparing powder materials with a particle size of about 1 ⁇ m.
  • the present invention is also particularly suitable for the large-scale and low-cost preparation of certain special nanometer metal powders (such as nanometer Ti powders).
  • nanometer metal powders such as nanometer Ti powders. Due to the particularity of Ti element, it is difficult or impossible to prepare nano-Ag or Cu by chemical reduction of Ag + and Cu 2+ like Ag and Cu, and it is generally only possible to prepare nano-Ti in small batches by physical methods such as explosion method.
  • the cost of nano-Ti powder is extremely high. Even though the nano-Ti powder is very useful, the cost of several thousand yuan per kilogram greatly limits its industrial application.
  • the present invention solves the large-scale and low-cost preparation of high-purity and solid-solution alloyed nano-Ti powder extremely skillfully through low-purity raw materials, and has inestimable value.
  • M and A in the present invention include one or more groups of M 1 -A 1 element combinations that do not form intermetallic compounds.
  • the solidified structure of the M 1 -A 1 element combination does not form M 1 -A 1 intermetallic compounds; the A includes Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho , Er, Tm, Yb, Lu, Mg, Ca, Li, Na, K, In, Pb, Zn, Cu; although the above elements seem to be more, but Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu are all rare earth elements.
  • RE is replaced by RE
  • A only contains RE, Mg, Ca, Li, Na, K, At least one of In, Pb, Zn, Cu; wherein, RE, Mg, Ca, Li, Na, K, In, Pb, Zn are extremely active, or extremely low melting point, or extremely soft metal elements, which are generally It does not form alloys with other elements to improve strength or corrosion resistance (alloys formed with M, A is a cladding body, can not achieve this effect), and generally rarely used, it is an unpopular academic research and industrial application element.
  • the M 1 -A 1 element combinations selected by the present invention are all unpopular element combinations rarely involved in the academic and industrial circles.
  • the present invention takes a different approach, turns the disadvantages of the above-mentioned unpopular element combination into advantages, and is applied to the field of powder material preparation, which has great creativity.
  • the invention skillfully utilizes the characteristics of the combination of the above-mentioned unpopular elements, by utilizing the separation phenomenon of A and M during the solidification process of the alloy and the first precipitation of M-based primary crystal particles and the post-precipitation of A-based matrix phase, the successful The preparation of metal material composed of endogenous alloy powder and cladding is realized.
  • the characteristics of RE, Mg, Ca, Li, Na, K, In, Pb, Zn and other elements are extremely active, or have extremely low melting points, or are extremely soft, which just provides convenience for removing the coating mainly composed of these elements. Therefore, the above clever use of unpopular element combinations to realize the preparation of a class of alloy powders has obvious positive significance.
  • the present invention creatively uses low-purity raw materials, and integrates multiple beneficial technical solutions such as single-crystal alloy powder generation, alloy powder purification and storage, powder solid solution alloying, etc., and can achieve high-purity nano-scale, sub-micron
  • the preparation of solid-solution alloy powders of grade, micron, and millimeter scale has good application prospects in the fields of catalysis, powder metallurgy, composite materials, magnetic materials, sterilization, metal injection molding, metal powder 3D printing, coatings, composite materials, etc. .
  • Example 1 is a partial backscattering SEM image of the endogenous nano-Ti alloy powder and Gd coating of Example 3 of the present invention
  • Fig. 2 is the SEM image of the nano-Ti alloy powder of Example 3 of the present invention.
  • Example 3 is a partial backscattering SEM image of the endogenous Ti-Co dendrite alloy powder and its Gd coating of Example 6 of the present invention
  • Fig. 4 is the SEM image of the Ti-Co dendrite alloy powder of Example 6 of the present invention.
  • This embodiment provides a metal strip composed of an endogenous nano-Ti alloy powder and a Ce coating, a nano-Ti alloy powder, and a preparation method and application thereof, including the following steps:
  • the low-purity Ti and low-purity Ce raw materials are mixed in a volume ratio of 1:3, and other trace elements that may exist in the raw materials are classified as main elements to facilitate the calculation.
  • the composition of the mixed gold raw material can be expressed as about (Ti 97 Cl 0.4 N 0.33 O 0.88 H 1.39 ) 39 (Ce 97.43 O 2.57 ) 61 in terms of atomic percentage, and the specific expansion is Ti 37.83 Ce 59.435 Cl 0.156 N 0.129 H 0.54 O 1.91 , wherein the total content of impurity elements T such as Cl, N, H, O is about 2.735 at%.
  • T represents impurity elements such as Cl, N, H, O, etc.
  • Some impurity elements in the initial alloy melt may become slag and separate from the melt, reducing the impurity content; and some impurities in the environment and atmosphere, such as oxygen, may also enter the melt, reducing the impurity content in the melt. rise.
  • the initial alloy melt is rapidly solidified into strips with a thickness of about 100 ⁇ m by means of copper roll stripping.
  • the Ti-based dispersed particle phase is embedded and precipitated in the Ce-based matrix phase, that is, the obtained A metal strip composed of endogenous nano-Ti alloy powder and Ce coating.
  • the atomic percentage composition of the endogenous Ti alloy powder is about Ti 99.1 Ce 0.5 T 0.4 , which is mainly composed of single crystal particles, and the particle size ranges from 3 nm to 300 nm.
  • the volume percentage of endogenous Ti alloy powder is equivalent to the volume percentage of Ti raw material when the raw material is prepared, which is still about 25vol%, ensuring that The dispersion distribution of Ti alloy powder in the Ce-based matrix phase was investigated.
  • step (5) can also be directly performed after step (3):
  • This embodiment provides a metal sheet composed of endogenous micron Ti alloy powder and Ce cladding, a micron Ti alloy powder, and a preparation method and application thereof, including the following steps:
  • the low-purity Ti and low-purity Ce raw materials are mixed with a volume ratio of 1:3, and other trace elements that may exist in the raw materials are classified as main elements to facilitate the calculation.
  • the composition of the mixed gold raw material is expressed in terms of atomic percentage about (Ti 97 Cl 0.4 N 0.33 O 0.88 H 1.39 ) 39 (Ce 97.43 O 2.57 ) 61 , that is, the atomic percentage is about Ti 37.83 Ce 59.435 Cl 0.156 N 0.129 H 0.54 O 1.91 , wherein the total content of impurity elements T such as Cl, N, H, and O is about 2.735 at%.
  • T represents impurity elements such as Cl, N, H, O, etc.
  • Some impurity elements in the initial alloy melt may become slag and separate from the melt, reducing the impurity content; and some impurities in the environment and atmosphere, such as oxygen, may also enter the melt, reducing the impurity content in the melt. rise.
  • the initial alloy melt is solidified into a thin plate with a thickness of about 4 mm.
  • the interdendritic dispersed particle phase dominated by Ti is inlaid and distributed in the matrix phase dominated by Ce.
  • a metal sheet composed of micron Ti alloy powder and Ce cladding.
  • the atomic percentage composition of the endogenous Ti alloy dendrite powder is about Ti 99.4 Ce 0.3 T 0.3 , which is mainly composed of single crystal dendrite particles, and the particle size ranges from 1 ⁇ m to 150 ⁇ m.
  • Ce is solid-dissolved in the endogenous Ti alloy powder, and the content of T impurities is greatly reduced compared with the low-purity Ti raw materials, while other large amounts of T impurities are enriched in the Ce cladding.
  • the volume percentage of endogenous Ti alloy powder is equivalent to the volume percentage of titanium raw material when the raw material is prepared, which is still about 25vol%, which ensures that the Ti alloy The dispersion and distribution of dendrite powder in the matrix phase dominated by Ce.
  • the Ti-Ce-T alloy dendrite powder is treated by jet milling, so that the entangled dendrite particles during the solidification process are dispersed, and the larger dendrite particles are broken into smaller dendrite particles.
  • the spherical or nearly spherical Ti alloy powder is used in the field of metal powder 3D printing.
  • This embodiment provides a metal strip composed of endogenous nano-Ti alloy powder and Gd coating, a nano-Ti alloy powder, and a preparation method thereof, including the following steps:
  • the alloy raw material is proportioned with the low-purity Ti raw material and the rare earth raw material mainly composed of Gd according to the volume ratio of 15:85, and the alloy raw material is subjected to induction melting to obtain an initial alloy with an atomic percentage composition of about Ti 24 Gd 73 T 3 Melt, in which the content of T is about 3 at%.
  • the initial alloy melt is rapidly solidified into a strip with a thickness of about 100 ⁇ m by means of stripping the copper roll.
  • the dispersed particle phase mainly composed of Ti is embedded and distributed in the matrix phase mainly composed of Gd, that is, A metal strip composed of endogenous nano-Ti alloy powder and Gd coating can be obtained, and its microstructure is shown in Figure 1.
  • the atomic percentage composition of the endogenous Ti alloy powder is about Ti 99.2 Gd 0.5 T 0.3 , which is mainly composed of Ti nano-single crystal particles with a small amount of Gd dissolved in solid solution, and the particle size ranges from 3nm to 300nm.
  • the content of T impurities in the endogenous Ti alloy powder is greatly reduced, while other large amounts of T impurities are enriched in the Gd coating.
  • the volume percentage of endogenous Ti alloy powder is equivalent to the volume percentage of Ti raw material when the raw material is prepared, which is still about 15 vol%, which ensures that the Ti alloy powder can be used in
  • the dispersion distribution in the Gd-dominated matrix phase is shown in Figure 1.
  • the Gd coating in the metal strip composed of the endogenous nano-Ti alloy powder and the Gd coating is removed by dilute hydrochloric acid solution. Since the Ti alloy powder does not react with the dilute hydrochloric acid solution, it can be separated, washed and dried. A Ti-Gd-Ti alloy powder whose main composition is Ti is obtained, and its particle size ranges from 3 nm to 300 nm, as shown in FIG. 2 .
  • This embodiment provides a metal strip composed of an endogenous nano-Ti-Nb-V alloy powder and a Ce-La-Nd-Pr coating, a nano-Ti-Nb-V alloy powder, and a preparation method thereof , including the following steps:
  • the content of impurity T in both types of raw materials is about 3 at%. Since Ti-Ce, Ti-La, Ti-Nd, Ti-Pr, Nb-Ce, Nb-La, Nb-Nd, Nb-Pr, V-Ce, V-La, V-Nd, V-Pr are all The element combination pairs that do not form intermetallic compounds, and the melting points of Ti, Nb, and V are higher than those of Ce, La, Nd, and Pr, so Ti-Nb-V alloy powders can be prepared based on these element combination pairs.
  • the alloy raw material is subjected to induction melting to obtain (Ti-Nb-V)-(Ce-La-Nd-Pr)-T initial alloy melt, wherein the content of T is about 3 at%.
  • the initial alloy melt was rapidly solidified into strips with a thickness of about 100 ⁇ m by means of copper rolls.
  • metal strips composed of endogenous nano-Ti-Nb-V alloy powder and Ce-La-Nd-Pr coating can be obtained.
  • the atomic percentage composition of the endogenous Ti-Nb-V alloy powder is about (Ti-Nb-V) 99.2 (Ce-La-Nd-Pr) 0.5 T 0.3 , which is mainly composed of infinitely miscible Ti-Nb-V single It is composed of crystal particles, and the particle size ranges from 3 nm to 300 nm.
  • Ce-La-Nd-Pr is solid-dissolved in the endogenous Ti-Nb-V alloy powder, and the content of T impurities is greatly reduced compared with Ti, Nb, and V raw materials, while a large amount of other T impurities are concentrated in the Ti-Nb-V alloy powder.
  • Ce-La-Nd-Pr coating In the obtained metal strip composed of endogenous nano-Ti-Nb-V alloy powder and Ce-La-Nd-Pr cladding, the volume percentage of endogenous Ti-Nb-V alloy powder and Ti, Nb, The volume percentage of V raw material is similar, still about 33vol%, which ensures the dispersion distribution of Ti-Nb-V alloy powder in the matrix phase dominated by Ce-La-Nd-Pr.
  • This embodiment provides a metal strip composed of an endogenous submicron Ti-Co alloy powder and a Ce-La-Nd-Pr coating, a submicron Ti-Co alloy powder, and a preparation method thereof, comprising: follow the steps below:
  • the alloy raw material is subjected to induction melting to obtain (Ti-Co)-(Ce-La-Nd-Pr)-T initial alloy melt, wherein the content of T is about 3 at%.
  • the initial alloy melt was rapidly solidified into strips with a thickness of about 300 ⁇ m by means of copper rollers.
  • metal strips composed of endogenous submicron Ti-Co alloy powder and Ce-La-Nd-Pr cladding can be obtained.
  • the atomic percentage composition of the endogenous Ti-Co alloy powder is about (Ti-Co) 99 (Ce-La-Nd-Pr) 0.6 T 0.4 , which is mainly composed of Ti-Co single crystal particles of intermetallic compounds.
  • the particle size ranges from 20nm to 1 ⁇ m.
  • Ce-La-Nd-Pr is solid-dissolved in the endogenous Ti-Co alloy powder, and the content of T impurities is greatly reduced compared with Ti and Co raw materials, while other large amounts of T impurities are enriched in Ce-La- in the Nd-Pr coating.
  • the volume percentage of endogenous Ti-Co alloy powder and the volume percentage of Ti and Co raw materials during raw material preparation The content of Ti-Co alloy is similar, still about 33vol%, which ensures the dispersion and distribution of Ti-Co alloy powder in the matrix phase dominated by Ce-La-Nd-Pr.
  • This embodiment provides a metal sheet composed of an endogenous micron Ti-Co alloy powder and a Gd coating, a micron Ti-Co alloy powder, and a preparation method thereof, including the following steps:
  • the alloy raw material is subjected to induction melting to obtain a TiCo-Gd-T initial alloy melt, wherein the content of T is about 3 at%.
  • the initial alloy melt is solidified into a thin plate with a thickness of about 2 mm.
  • the dendritic particle phase mainly composed of Ti-Co is inlaid and distributed in the matrix phase mainly composed of Gd, that is, an endogenous micron
  • the solidified microstructure of the metal sheet composed of Ti-Co alloy powder and Gd coating is shown in Figure 3.
  • the atomic percentage composition of the endogenous Ti-Co alloy powder is about (TiCo) 99.5 Gd 0.3 T 0.2 , which is mainly composed of Ti-Co single crystal particles of intermetallic compounds, and the particle size ranges from 1 ⁇ m to 60 ⁇ m.
  • the volume percentage of endogenous Ti-Co alloy powder is equivalent to the volume percentage of Ti and Co raw materials when the raw materials are prepared, and is still about 30 vol%, ensuring that Dispersion and distribution of Ti-Co alloy powder in the Gd-dominated matrix phase.
  • This embodiment provides a metal strip composed of endogenous micron Fe alloy powder and La coating, a micron Fe alloy powder, and a preparation method thereof, including the following steps:
  • Low-purity Fe raw materials and rare earth raw materials mainly composed of La are selected, and the impurity T content in both types of raw materials is about 2.5 at%. Since Fe-La is an element combination pair that does not form intermetallic compounds, and both are host elements, Fe alloy powder can be prepared based on the Fe-La combination pair.
  • the low-purity Fe raw material and the rare earth raw material mainly composed of La are proportioned as alloy raw materials according to the volume ratio of 1:2, and the alloy raw materials are subjected to induction melting to obtain Fe-La-T initial alloy melt, in which the amount of T is The content is about 2.5at%.
  • the initial alloy melt was rapidly solidified into a strip with a thickness of about 500 ⁇ m by means of stripping the copper roll.
  • the Fe-based dispersed particle phase was embedded in the La-based matrix phase. That is, a metal strip composed of endogenous micron Fe alloy powder and La coating can be obtained.
  • the atomic percentage composition of the endogenous Fe alloy powder is about Fe 99.4 La 0.3 T 0.3 , which is mainly composed of Fe single crystal particles, and the particle size ranges from 500 nm to 5 ⁇ m.
  • La is solid solution in the endogenous Fe alloy powder, and the T impurity content is greatly reduced compared with the Fe raw material, while a large amount of other T impurities are enriched in the La coating.
  • the volume percentage of endogenous Fe alloy powder is equivalent to the volume percentage of the raw material preparation, which is still about 33vol%, ensuring that Fe alloy powder Dispersion distribution in the La-dominated matrix phase.
  • This embodiment provides a metal strip composed of endogenous nano-Cu alloy powder and Li coating, a nano-Cu alloy powder, and a preparation method thereof, including the following steps:
  • Low-purity Cu raw materials and low-purity Li raw materials are selected, and the content of impurity T in both kinds of raw materials is about 1 at%. Since Cu-Li is an element combination pair that does not form intermetallic compounds, and both are host elements; therefore, Cu alloy powder can be prepared based on the combination pair of Cu and Li.
  • the low-purity Cu raw material and the low-purity Li raw material are proportioned as alloy raw materials according to the volume ratio of 1:3, and the alloy raw material is subjected to induction melting to obtain a Cu-Li-T initial alloy melt, wherein the content of T is about 1at%.
  • the initial alloy melt was rapidly solidified into strips with a thickness of about 30 ⁇ m by means of copper rollers, and the dispersed particle phase mainly composed of Cu was embedded in the matrix phase mainly composed of Li during the solidification process. That is, a metal strip composed of endogenous nano-Cu alloy powder and Li coating can be obtained.
  • the atomic percentage composition of the endogenous Cu alloy powder is about Cu 84.8 Li 15 T 0.2 , which is mainly composed of Cu single crystal particles with a large amount of Li dissolved in solid solution, and the particle size ranges from 3 nm to 150 nm.
  • the T impurity content is greatly reduced compared to the Cu raw material, while other large amounts of T impurities are enriched in the Li coating.
  • This embodiment provides a metal strip composed of endogenous nano-Cu alloy powder and Pb coating, a nano-Cu alloy powder, and a preparation method thereof, including the following steps:
  • Low-purity Cu raw materials and Pb raw materials are selected, and the content of impurity T in the two kinds of raw materials is about 2 at% and 0.5 at%, respectively. Since Cu-Pb is an element combination pair that does not form intermetallic compounds, and both are host elements, Cu alloy powder can be prepared based on the combination pair of Cu and Pb.
  • the low-purity Cu raw material and the Pb raw material are proportioned as alloy raw materials according to the volume ratio of 1:3, and the alloy raw material is subjected to induction melting to obtain a Cu-Pb-T initial alloy melt, in which the content of T is about 1 at% .
  • the initial alloy melt was rapidly solidified into strips with a thickness of about 30 ⁇ m by means of copper roll stripping.
  • the Cu-based dispersed particle phase was embedded in the Pb-based matrix phase. That is, a metal strip composed of endogenous nano-Cu alloy powder and Pb coating can be obtained.
  • the atomic percentage composition of the endogenous Cu alloy powder is about Cu 99.5 Pb 0.3 T 0.2 , which is mainly composed of Cu single crystal particles with a small amount of Pb dissolved in solid solution, and the particle size ranges from 3nm to 150nm.
  • the T impurity content is greatly reduced compared to the Cu raw material, while a large amount of other T impurities are enriched in the Pb cladding.
  • the volume percentage of endogenous Cu alloy powder is equivalent to the volume percentage of the raw material preparation, which is still about 25vol%, which ensures the Cu alloy powder. Dispersion distribution in the Pb-dominated matrix phase.
  • This embodiment provides a metal strip composed of endogenous nano-Nb-V-Mo-W alloy powder and Cu coating, a nano-Nb-V-Mo-W alloy powder, and a preparation method thereof, including follows the steps below:
  • Nb, V, Mo, W raw materials and Cu raw materials are all element combination pairs that do not form intermetallic compounds, and Nb, V, Mo, and W are mutually soluble host elements, these combination pairs can be expressed as Based on this, Nb-V-Mo-W alloy powder was prepared.
  • the initial alloy melt was retarded into strips with a thickness of about 30 ⁇ m by the method of stripping the copper roll.
  • the dispersed particle phase mainly composed of Nb 2 VMoW was embedded in the matrix phase mainly composed of Cu.
  • a metal strip composed of endogenous nano-Nb-V-Mo-W alloy powder and Cu coating can be obtained.
  • the atomic percentage composition of the endogenous Nb 2 VMoW alloy powder is about (Nb 2 VMoW) 99.3 Cu 0.5 T 0.2 , which is mainly composed of high-entropy Nb 2 VMoW single crystal particles with a small amount of Cu dissolved. It is 3nm ⁇ 200nm.
  • the T impurity content is greatly reduced compared to the Cu raw material, while other large amounts of T impurities are enriched in the Cu cladding.
  • the volume percentage of endogenous Nb 2 VMoW alloy powder is equivalent to the volume percentage of the raw material preparation, which is still about 33vol%, which ensures the dispersion and distribution of Nb 2 VMoW alloy powder in the Cu-based matrix phase.
  • This embodiment provides a metal sheet composed of endogenous micron Nb-V-Mo-W alloy powder and Cu cladding, a micron Nb-V-Mo-W alloy powder, and a preparation method thereof, including the following step:
  • the initial alloy melt is solidified into a thin plate with a thickness of about 4 mm.
  • the dispersed dendritic phase mainly composed of NbVMoW is embedded and distributed in the matrix phase mainly composed of Cu, which can be obtained by endogenous micron Nb - Metal sheet composed of V-Mo-W alloy powder and Cu cladding.
  • the atomic percentage composition of the endogenous NbVMoW dendritic alloy powder is about (NbVMoW) 99.6 Cu 0.3 T 0.1 , which is mainly composed of high-entropy NbVMoW single crystal particles with a small amount of Cu dissolved in a solid solution, and the particle size ranges from 1 ⁇ m to 150 ⁇ m. .
  • the T impurity content is greatly reduced compared to the Cu raw material, while other large amounts of T impurities are enriched in the Cu cladding.
  • the volume percentage of endogenous NbVMoW dendrite alloy powder is equivalent to the volume percentage of the raw material preparation, which is still about 33vol %, ensuring the dispersion distribution of NbVMoW dendritic alloy powder in the Cu-based matrix phase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Plant Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一类合金粉及其制备方法与用途。选择合适的合金体系,通过低纯原料熔炼初始合金熔体,在初始合金熔体凝固的过程析出高纯合金粉与包覆高纯合金粉的基体相,同时实现高纯合金粉的固溶合金化。将包覆高纯合金粉的基体相去除,即可获的合金粉;亦可选择合适的时机去除包覆高纯合金粉的基体相,从而获得高纯合金粉。该方法工艺简单,可以制备包括纳米级、亚微米级、微米级,甚至毫米级的不同形貌的多种合金粉体材料,在催化、粉末冶金、复合材料、磁性材料、杀菌、金属注射成型、金属粉3D打印、涂料、复合材料等领域具有很好的应用前景。

Description

一类合金粉及其制备方法与用途 技术领域
本发明涉及金属材料技术领域,特别是涉及一类合金粉及其制备方法与用途。
背景技术
微纳米粒径的金属粉体,由于具有特殊的表面效应、量子尺寸效应,量子隧道效应以及库仑阻塞效应等,在光学、电学、磁学、催化等方面表现出诸多与传统材料不同的奇特性能,因此被广泛地应用于光电子器件、吸波材料、高效催化剂等多个领域。
目前,金属粉体的制备方法从物质的状态分有固相法、液相法和气相法。固相法主要有机械粉碎法、超声波粉碎法、热分解法、爆炸法等。液相法主要有沉淀法、醇盐法、羰基法、喷雾热干燥法、冷冻干燥法、电解法、化学凝聚法等。气相法主要有气相反应法、等离子体法、高温等离子体法、蒸发法、化学气相沉积法等。虽然金属粉末的制备方法有很多种,但每种方法都有一定的局限性。例如,液相法的缺点是产量低、成本高和工艺复杂等。机械法的缺点是在制取粉末后存在分级困难的问题,且产品的纯度、细度和形貌均难以保证。旋转电极法和气体雾化法是目前制备高性能金属及合金粉末的主要方法,但生产效率低,超细粉末的收得率不高,能耗相对较大;气流磨法、氢化脱氢法适合大批量工业化生产,但对原料金属和合金的选择性较强。此外,金属粉或者合金粉的杂质含量,尤其是氧含量,对其性能具有极大的影响。目前,主要通过控制原料纯度与真空度的方法来控制金属粉或者合金粉的杂质含量,成本高昂。因此,开发新的高纯金属粉体材料的制备方法,具有重要的意义。
发明内容
基于此,有必要针对上述技术问题,提供一种工艺简单、成本低,易于操作的高纯合金粉体材料的制备方法。
为解决上述技术问题,本发明的技术方案是:
一种由内生合金粉与包覆体构成的金属材料,其特征在于,通过合金熔体凝固制备,其构成包括初始合金凝固过程中内生析出的弥散颗粒相与包覆弥散颗粒的基体相,两者分别对应于所述内生合金粉与所述包覆体;所述内生合金粉的元素组成主要为M a1A b1T c1,所述包覆 体的元素组成主要为A b2T c2,其中M与A均包含一种或多种金属元素,T为包括氧元素在内的杂质元素,a1,b1,c1,b2,c2分别代表相应元素组成的原子百分比含量,且a1+b1+c1=100%,b2+c2=100%,c2>c1>0,b1>0;所述内生合金粉的熔点高于所述包覆体的熔点;所述内生合金粉M a1A b1T c1中固溶有A元素;所述M与所述A之间包含一组或多组不形成金属间化合物的M 1-A 1元素组合,其中,M 1代表M中的任意一种元素,A 1代表A中的任意一种元素,且M中的主体元素由满足M 1-A 1元素组合条件的各M 1元素构成,A中的主体元素由满足M 1-A 1元素组合条件的各A 1元素构成,使得所述由内生合金粉与包覆体构成的金属材料完全熔化后重新凝固仍不生成由M中主体元素与A中主体元素组成的金属间化合物,而是生成所述内生合金粉M a1A b1T c1与所述包覆体A b2T c2
补充说明:T为包括氧元素在内的杂质元素,是指T为杂质元素,且T包括O元素;
所述初始合金熔体的凝固方式包括普通铸造、连铸、熔体甩带、熔体抽拉等方法。所述内生合金粉的颗粒大小与初始合金熔体的凝固速率有关。一般来说,内生合金粉的颗粒粒径大小与初始合金熔体的凝固速率成负相关的关系,即:初始合金熔体的凝固速率越大,内生合金粉的颗粒粒径就越小。
进一步地,所述初始合金熔体的凝固方式不包括雾化制粉技术所对应的凝固方式;
补充说明:所述初始合金熔体的凝固速率范围为0.001K/s~10 8K/s;
进一步地,所述初始合金熔体的凝固速率范围包括0.001K/s~10 7K/s;
进一步地,所述内生合金粉的粒径范围包括3nm~10mm。
补充说明:所述内生合金粉的粒径范围为3nm~1mm;
作为优选,所述内生合金粉的粒径范围为3nm~500μm;
作为优选,所述内生合金粉的粒径范围为3nm~99μm;
作为优选,所述内生合金粉的粒径范围为3nm~25μm;
作为优选,所述内生合金粉的粒径范围为3nm~10μm;
进一步地,所述内生合金粉的颗粒形状不限,可包括枝晶形、球形、近球形、方块形、饼形、棒条形中的至少一种;当颗粒形状为棒条形时,颗粒的大小特指棒条横截面的直径尺寸。
所述由内生合金粉与包覆体构成的金属材料的形状与凝固方式相关:当凝固方式为连续铸造时,其形状一般主要为板条状;当凝固方式为熔体甩带时,其形状一般主要为条带状或薄板状;当凝固方式为熔体抽拉时,其形状一般主要为丝状。当凝固速率越高时,获得的由内生合金粉与包覆体构成的金属材料的横截面就越薄、越细、越窄;反之,其横截面就越厚、越粗、越宽;
进一步地,所述由内生合金粉与包覆体构成的金属材料的形状不包括雾化制粉技术所对应的产品的粉末状;
进一步地,当所述初始合金熔体通过包括熔体甩带的方式凝固,且凝固速率为100K/s~10 7K/s时,可以获得厚度约为10μm~5mm的由内生合金粉与包覆体构成的金属材料条带,所包含内生合金粉的粒径范围为3nm~200μm。
进一步地,当所述初始合金熔体通过包括普通铸造或者连铸的方式凝固,且凝固速率为0.001K/s~100K/s时,可以获得三维尺度方向上至少有一维的尺寸超过5mm块体状由内生合金粉与包覆体构成的金属材料,所包含内生合金粉的粒径范围为200μm~10mm。
补充说明:进一步地,所述内生合金粉与包覆体构成的金属材料为条带状,且条带厚度为5μm~5mm;
进一步地,所述内生合金粉与包覆体构成的金属材料为条带状,且条带厚度为10μm~1mm;
进一步地,所述内生合金粉在所述由内生合金粉与包覆体构成的金属材料中的体积百分比含量下限为1%,上限为满足所述内生合金粉可以弥散分布于所述包覆体中对应的体积百分比含量。
当考虑包覆体中都够包覆多少弥散分布的内生合金粉时,需要通过内生合金粉的体积百分比含量来准确评价,因为体积相互关系与内生合金粉能否弥散分布直接相关。所述体积百分比含量可以通过各元素的密度、原子量等关系和原子百分比含量进行换算。当包覆体基体元素为大原子元素时,基体可以通过较小的原子比百分含量获得较高的体积百分比含量,从而显著增加所能够包覆的内生合金粉的含量。如原子百分比组成为Ce 50Ti 50的合金熔体,Ce与Ti的重量百分含量分别为74.53wt%与25.47wt%,结合两者密度分别为6.7g/cm 3与4.5g/cm 3,可以计算得到Ce、Ti在原子百分比含量为Ce 50Ti 50的熔体中的体积百分含量分别为66vol%与34vol%。如果Ti从熔体中析出,不考虑固溶与杂质情况下,其体积百分含量仅约为34vol%。说明即使Ce-Ti合金中Ti的原子百分比含量超过50%,其体积百分比含量仍然可以显著低于50%,从而有利于获得弥散分布的Ti颗粒。
由于所述由内生合金粉与包覆体构成的金属材料的应用主要还是在于其中内生合金粉的应用效果,后续还需要去除包覆体。因此,当内生合金粉体积百分含量低于1%时,将会极大造成包覆体材料的浪费,失去材料应用的实际意义。
由于不同的合金体系,不同的凝固速率,其生成的内生合金粉的大小形貌也不同。比如,当冷速较快,内生合金粉主要为细小的球形或近球形纳米粉时,其颗粒的生长程度有限,颗粒之间容易保持一定的空间与距离,在保证内生合金粉弥散分布的情况下,其可以达到较高 的体积百分比含量;当冷速较低,内生合金粉主要为粗大的树枝晶时,其颗粒的生长很充分,且不同颗粒生长过程中容易相遇、合并、缠结,在保证内生枝晶合金颗粒弥散分布的情况下,内生枝晶合金粉只能达到相对较低的体积百分比含量。
作为优选,所述内生合金粉在所述由内生合金粉与包覆体构成的金属材料中的体积百分比含量范围为5%~50%;
作为进一步优选,所述内生合金粉在所述由内生合金粉与包覆体构成的金属材料中的体积百分比含量范围为5%~40%;优选后的下限保证了经济性,优选后的上限充分确保了所述内生合金粉可以弥散分布于所述包覆体中。
所述内生合金粉从所述初始熔体中凝固析出,根据形核长大理论,无论是刚刚形核长大的近球形纳米颗粒,还是充分长大的微米级树枝晶颗粒,其晶体生长都具有固定的取向关系,从而使得析出的单个颗粒均主要由一个单晶构成。
当所述内生合金粉体积百分含量较高时,在单晶颗粒的内生析出过程中,不排除有两个或两个以上颗粒合并的情况。如果两个或两个以上单晶颗粒仅仅软团聚、相互吸附、或者仅少许部位接触连接在一起,没有像多晶材料那样通过正常晶界充分结合成一个颗粒,其仍然为两个单晶颗粒。其特点是,在后续过程去除包覆体后,这些单晶颗粒可以轻易地通过包括超声分散处理、气流磨碎化等技术等分开。而正常的韧性金属多晶材料,则难以通过包括超声分散处理、气流磨碎化等技术将晶界分开。
作为优选,所述内生合金粉中的单晶颗粒数目在所有颗粒数目中的占比不低于60%。
作为进一步优选,所述内生合金粉中的单晶颗粒数目在所有颗粒数目中的占比不低于75%。
作为进一步优选,所述内生合金粉中的单晶颗粒数目在所有颗粒数目中的占比不低于90%。
补充说明:所述由内生合金粉与包覆体构成的金属材料中,内生合金粉与包覆体均为晶态;
所述内生合金粉的元素组成主要为M a1A b1T c1,所述包覆体的元素组成主要为A b2T c2,其中M与A均包含一种或多种金属元素,T为包括氧元素在内的杂质元素,其中a1,b1,c1,b2,c2分别代表相应元素组成的原子百分比含量,且a1+b1+c1=100%,b2+c2=100%;
通过元素的原子百分比含量来表征各元素的组成,可以通过物质的量的概念准确地表达元素含量的增减变化,比如杂质元素的增减与变化。如果采用元素的质量百分比含量(或ppm概念)来表征各个元素的含量,由于各元素原子量的不同,则容易产生错误的结论。举例来说,如原子百分比含量为Ti 45Gd 45O 10的合金,包含100个原子,O的原子百分比含量为10at%。 将这100原子分成Ti 45O 4(原子百分比组成为Ti 91.8O 8.2)与Gd 45O 6(原子百分比组成为Gd 88.2O 11.8)两部分,Gd 45O 6中氧的原子百分比含量增为11.8at%,Ti 45O 4中氧的原子百分比含量减为8.2at%,可以很准确地表达Gd中富集了O。但若采用O的质量百分比含量来衡量,Ti 45Gd 45O 10中O的质量百分比含量为1.70wt%,Ti 45O 4与Gd 45O 6中O的质量百分比含量分别为2.9wt.%与1.34wt.%,将会得出Ti 40O 4中O含量相比Gd 40O 6中O含量明显增加的错误结论。
进一步地,所述内生合金粉M a1A b1T c1的熔点高于所述包覆体A b2T c2的熔点;满足这一条件后,初始合金凝固时其基体相最后凝固,并包覆住内生合金粉。
进一步地,所述所述内生合金粉M a1A b1T c1中固溶有A元素,即0<b1。
作为优选,0<b1≤15%;即M a1A b1T c1中最多可以固溶有15%的A元素(原子百分比含量)。根据具体合金熔体主体元素成分的不同、杂质含量的不同、以及凝固速率的不同,A在M a1A b1T c1内生合金粉中的固溶度也不同。一般来说,当熔体凝固速率较高且形成较小的内生合金粉时,如纳米粉时,其可以固溶较多一些的A元素。
进一步地,所述内生合金粉中含有一定量的杂质T,且所述内生合金粉中的T杂质元素含量低于所述包覆体对应T杂质元素的含量,即c2>c1>0。这表明,通过合金熔体凝固方式制备的所述由内生合金粉与包覆体构成的金属材料,杂质元素将被富集在包覆体A b2T c2中,同时使M a1A b1T c1内生合金粉得到纯化。
进一步地,所述T为包含氧在内的O、H、N、P、S、F、Cl等杂质元素,且0<c1≤1.5%。
补充说明:也就是说,T中包含O,且O的含量大于零;上述所列H、N、P、S、F、Cl元素中具体某种元素不含有时其含量为零,含有时其含量大于零;T的含量即为O、H、N、P、S、F、Cl元素的总含量。
作为优选,所述T为包含氧在内的O、H、N、P、S、F、Cl等杂质元素,且0.01%≤c1≤1.5%。
所述M与A均包含一种或多种金属元素,M与A的选择是制备所述由内生合金粉与包覆体构成的金属材料的关键。为了确保所述合金熔体凝固过程中不会生成由M中主体元素与A中主体元素组成的金属间化合物,而是生成所述内生合金粉M a1A b1T c1与所述包覆体A b2T c2,M与A需要满足如下关系:
所述M与所述A之间包含一组或多组不形成金属间化合物的M 1-A 1元素组合;其中,M 1代表M中的任意一种元素,A 1代表A中的任意一种元素,且M中的主体元素由满足M 1-A 1元素组合条件的各M 1元素构成,A中的主体元素由满足M 1-A 1元素组合条件的各A 1元素构成。
进一步地,在M或A中的,当满足上述组合条件的各M 1元素或各A 1元素的原子百分 比含量分别占到M或A中的30%以上时,可以称其分别为M或A中的主体元素。
进一步地,当所述M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti、Fe、Co、Ni、Mn、Cu、Ag中的至少一种时,A包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Mg、Ca、Li、Na、K、In、Pb、Zn中的至少一种时,可以满足合金熔体凝固过程中不会生成由M中主体元素与A中主体元素组成的金属间化合物。根据合金相图,上述所列元素中,M中任意一种元素都能在A中找到相应的不生成金属间化合物的M 1-A 1组合对,如Cr-Y、Ti-Ce、Fe-Mg、Co-K、Ni-Li、Mn-Mg、Cu-Li、Ag-Pb组合对等。当M与A之间有多组M 1-A 1组合对时,各M 1的集合与各A 1的集合仍会满足合金熔体凝固时不生成相应金属间化合物的条件。如Ti-Ce、Ti-Gd、Nb-Ce、Nb-Gd均满足M 1-A 1组合对条件,则(Ti-Nb)-(Ce-Gd)仍会满足相应合金熔体凝固时不生成金属间化合物的组合对条件。此时,M中主体元素包含Ti、Nb;A中主体元素包含Ce、Gd。
此外,当M中主体元素与A中主体元素满足一组或多组M 1-A 1组合对的条件下,如果M中还含有能够和M中主体元素M 1形成稳定的高熔点金属间化合物的元素M 2时,M 1与M 2会形成高熔点稳定存在的M 1-M 2金属间化合物,且M 1与M 2均不和A中主体元素形成金属间化合物。此种情形下,内生合金粉为M 1-M 2金属间化合物粉。
作为优选,所述M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti中的至少一种,所述A包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种。
作为优选,所述M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti中的至少一种,同时包含Fe、Co、Ni中的至少一种时,M中的这两子类元素之间可以形成高熔点金属间化合物,当A包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种时,可以形成主要由M中两子类元素组成的内生金属间化合物粉。
作为优选,所述M包含子类元素W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti中的至少一种,同时包含子类元素Fe、Co、Ni中的至少一种,且两子类元素摩尔比约为1:1时,M中的这两子类元素之间可以形成稳定的高熔点金属间化合物,当A包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的至少一种时,合金熔体凝固过程中形成主要由M中两子类元素组成、且摩尔比约为1:1的内生金属间化合物粉,以及主要由A元素组成的包覆体。
作为优选,所述M包括Mn、Fe、Ni、Cu、Ag中的至少一种,A包括Mg、La、In、Na、K、Li、Pb中的至少一种。
进一步地,所述M包括Ir、Ru、Re、Os、Tc、W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti、 Fe中的至少一种,A包括Cu、Zn中的至少一种。
补充说明:进一步地,所述M包括Ir、Ru、Re、Os、Tc、W、Cr、Mo、V、Ta、Nb中的至少一种,A包括Cu。
进一步地,所述M包括Ir、Ru、Re、Os、Tc中的至少一种,A包括Cu。
需要说明的是,所述A、M或者T中还可以含有上述所列元素之外的其它合金化元素或杂质元素。只要这些元素含量的变化不引起初始合金凝固过程与规律发生“质变”的结果,都不影响本发明上述技术方案的实现。
本发明还涉及一种合金粉,通过去除所述由内生合金粉与包覆体构成的金属材料中的包覆体制备,其特征在于,其元素组成主要为M a3A b3T c3,a3,b3,c3分别代表相应元素组成的原子百分比含量,b3>0,a3+b3+c3=100%,且所述合金粉中的T元素含量高于所述内生合金粉中的T元素含量,即c3>c1>0。
所述合金粉通过去除所述由内生合金粉与包覆体构成的金属材料中的包覆体制备。因此,所述合金粉的大部分特征与所述内生合金粉一致。有所不同的是,所述内生合金粉被包覆于包覆体中,杜绝了环境中氧等杂质的影响。而所述合金粉,尤其当所述合金粉粒度较细,如为纳米合金粉时,裸露过程中合金粉的表面或表层原子将会与氧等杂质元素结合,从而导致其T元素含量增加,即c3>c1>0。
作为优选,所述合金粉中的单晶颗粒数目在所有颗粒数目中的占比不低于60%。
作为进一步优选,所述合金粉中的单晶颗粒数目在所有颗粒数目中的占比不低于75%。
作为进一步优选,所述合金粉中的单晶颗粒数目在所有颗粒数目中的占比不低于90%。
作为优选,所述合金粉的颗粒大小范围为3nm-10mm。
补充说明:所述合金粉的粒径范围为3nm~1mm;
作为优选,所述合金粉的粒径范围为3nm~500μm;
作为优选,所述合金粉的粒径范围为3nm~99μm;
作为优选,所述合金粉的粒径范围为3nm~25μm;
作为优选,所述合金粉的粒径范围为3nm~10μm;
作为优选,所述合金粉的粒径范围为3nm~5μm;
本发明还涉及一种球形或近球形合金粉,其特征在于,将上面所述合金粉进行等离子球化处理,即得到球形或近球形的合金粉。其特征在于,其元素组成主要为M a4A b4T c4,a4,b4,c4分别代表相应元素组成的原子百分比含量,b4>0,a4+b4+c4=100%,且所述球形或近球形合金粉中的T元素含量高于未等离子球化处理合金粉中的T元素含量,即c4>c3>c1>0。
进一步地,在等离子球化处理之前对所选颗粒进行气流磨预破碎处理,使可能缠结的颗 粒分散破碎,利于后续的球化处理。
进一步的,所述合金粉进行等离子球化处理之前进行筛分处理;
进一步的,所述进行等离子球化处理的合金粉的粒径范围为5μm-200μm。
补充说明,所述进行等离子球化处理的合金粉的粒径范围为5μm-100μm。
本发明还涉及一种由内生合金粉与包覆体构成的金属材料的制备方法,其特征在于,通过如下步骤制备:
(1)熔炼主要元素组成为M a0A b0T c0的初始合金熔体,其中M与A均包含一种或多种金属元素,T为包括氧元素在内的杂质元素,a0、b0、c0代表对应组成元素的原子百分比含量,a0+b0+c0=100%,0<c0≤15%;所述M元素与所述A元素之间包含一组或多组不形成金属间化合物的M 1-A 1元素组合,其中,M 1代表M中的任意一种元素,A 1代表A中的任意一种元素;且M中的主体元素由满足M 1-A 1元素组合条件的各M 1元素构成,A中的主体元素由满足M 1-A 1元素组合条件的各A 1元素构成;
(2)将所述M a0A b0T c0初始合金熔体凝固成固态,得到从熔体中内生析出的M a1A b1T c1弥散颗粒相与包覆弥散颗粒的A b2T c2基体相,其即为所述的由内生合金粉与包覆体构成的金属材料;其中,0<c1<c0<c2,即M a0A b0T c0初始合金熔体中T元素含量高于M a1A b1T c1弥散颗粒相中的T元素含量,同时低于A b2T c2基体相中T元素的含量。
所述初始合金熔体的凝固方式包括普通铸造、连铸、熔体甩带、熔体抽拉等方法。所述内生合金粉的颗粒大小与初始合金熔体的凝固速率有关。一般来说,内生合金粉的颗粒粒径大小与初始合金熔体的凝固速率成负相关的关系,即:初始合金熔体的凝固速率越大,内生合金粉的颗粒粒径就越小。
进一步地,所述初始合金熔体的凝固方式不包括雾化制粉技术所对应的凝固方式;
补充说明:所述初始合金熔体的凝固速率范围为0.001K/s~10 8K/s;
进一步地,所述初始合金熔体的凝固速率范围包括0.001K/s~10 7K/s;
进一步地,所述内生合金粉的粒径范围包括3nm~10mm。
进一步地,所述内生合金粉的颗粒形状不限,可包括枝晶形、球形、近球形、方块形、饼形、棒条形中的至少一种;当颗粒形状为棒条形时,颗粒的大小特指棒条横截面的直径尺寸。
所述由内生合金粉与包覆体构成的金属材料的形状与凝固方式相关:当凝固方式为连续铸造时,其形状一般主要为板条状;当凝固方式为熔体甩带时,其形状一般主要为条带状或薄板状;当凝固方式为熔体抽拉时,其形状一般主要为丝状。当凝固速率越高时,获得的由内生合金粉与包覆体构成的金属材料的横截面就越薄、越细、越窄;反之,其横截面就越厚、 越粗、越宽;
进一步地,所述由内生合金粉与包覆体构成的金属材料的形状不包括雾化制粉技术所对应的产品的粉末状;
作为优选,当所述初始合金熔体通过熔体甩带的方式凝固,且凝固速率为100K/s~10 7K/s时,可以获得厚度约为10μm~5mm的由内生合金粉与包覆体构成的金属条带,所包含内生合金粉的粒径范围为3nm~200μm。
作为优选,当所述初始合金熔体通过普通铸造或者连铸的方式凝固,且凝固速率为0.001K/s~100K/s时,可以获得三维尺度方向上至少有一维的尺寸超过5mm的块体状且由内生合金粉与包覆体构成的金属材料,所包含内生合金粉的粒径范围为200μm~10mm。
补充说明:进一步地,所述内生合金粉与包覆体构成的金属材料为条带状,且条带厚度为5μm~5mm;
进一步地,所述内生合金粉与包覆体构成的金属材料为条带状,且条带厚度为10μm~1mm;
进一步地,所述内生合金粉与包覆体构成的金属材料为条带状,且条带厚度为10μm~500μm;
进一步地,所述内生合金粉与包覆体构成的金属材料为条带状,且条带厚度为10μm~100μm;
进一步地,所述内生合金粉在所述由内生合金粉与包覆体构成的金属材料中的体积百分比含量下限为1%,上限为满足所述内生合金粉可以弥散分布于所述包覆体中对应的体积百分比含量。
作为优选,所述内生合金粉在所述由内生合金粉与包覆体构成的金属材料中的体积百分比含量范围为5%~50%;
作为进一步优选,所述内生合金粉在所述由内生合金粉与包覆体构成的金属材料中的体积百分比含量范围为5%~40%;优选后的下限保证了经济性,优选后的上限充分确保了内生合金粉可以弥散分布于所述包覆体中。
作为优选,所述内生合金粉中的单晶颗粒数目在所有颗粒数目中的占比不低于60%。
作为进一步优选,所述内生合金粉中的单晶颗粒数目在所有颗粒数目中的占比不低于75%。
作为进一步优选,所述内生合金粉中的单晶颗粒数目在所有颗粒数目中的占比不低于90%。
进一步地,所述内生合金粉M a1A b1T c1的熔点高于所述包覆体A b2T c2的熔点;满足这一条 件后,初始合金凝固时其基体相最后凝固,并包覆住内生合金粉。
进一步地,所述内生合金粉M a1A b1T c1中固溶有A元素,即0<b1。
作为优选,0<b1≤15%;即M a1A b1T c1中最多可以固溶有15%的A元素(原子百分比含量)。根据具体合金熔体主体元素成分的不同、杂质含量的不同、以及凝固速率的不同,A在M a1A b1T c1内生合金粉中的固溶度也不同。一般来说,当熔体凝固速率较高且形成较小的内生合金粉时,如纳米粉时,其可以固溶较多一些的A元素。
补充说明:进一步地,0.01%<b1≤15%;进一步地,0.05%<b1≤15%;进一步地,0.1%<b1≤15%;
进一步地,T为包含氧在内的O、H、N、P、S、F、Cl等杂质元素,且0<c1≤1.5%。
补充说明:进一步地,T为包含O在内的O、H、N、P、S、F、Cl元素,其均为性质类似的非金属元素。本发明发现,初始合金熔体中的上述T元素对初始合金熔体凝固过程中基体相与弥散颗粒相中的A、M、T类元素的扩散与相分配规律具有相似的热力学影响;通过这种热力学的影响,当T含量较高时,M a1A b1T c1内生合金粉中可以固溶较多的A元素。其可能的原因为,初始合金熔体中A、M、T类元素一开始是均匀混合的,在初始合金熔体降温凝固过程中,主要组成为M的弥散颗粒相首先从熔体中析出,其析出的过程中会将T类元素原子排出,在T类元素原子排出的同时可能形成某种空位,这种空位可以被M类原子顶替,同时也可以被A类原子顶替;因此,同等情况下,当T类元素含量越高,可被顶替的空位也越多,M a1A b1T c1内生合金粉中固溶的A元素含量也越高。因此,除了初始合金熔体主体元素成分的影响外,M a1A b1T c1内生合金粉中固溶的A元素的量还受到初始合金熔体凝固过程中热力学与动力学两个方面的影响;从热力学上来说,当T含量较高时,M a1A b1T c1内生合金粉中可以固溶较多的A元素;从动力学上来说,当初始合金熔体凝固速率较高且形成较小的内生合金粉时,M a1A b1T c1内生合金粉可以固溶较多一些的A元素;
进一步地,所述M a0A b0T c0初始合金熔体通过包含第一原料与第二原料的合金原料熔炼而成;其中,第一原料的主要元素组成为M d1T e1,第二原料的主要元素组成为A d2T e2,d1,e1,d2,e2分别代表相应元素组成的原子百分比含量,且0<e1≤10%,0<e2≤10%,d1+e1=100%,d2+e2=100%。
作为优选,0<c0≤10%,0<e1≤7.5%,0<e2≤7.5%。
作为进一步优选,0.01%≤c0≤10%,0.01%≤e1≤7.5%,0.01%≤e2≤7.5%。
这表明,可以通过低纯原料制备包含高纯目标内生合金粉的由内生合金粉与包覆体构成的金属材料。
补充说明:进一步地,在多个实施例中,所述由内生合金粉与包覆体构成的金属材料中, 内生M a1A b1T c1合金粉中T杂质含量相比M d1T e1原料得到了极大的降低,即内生M a1A b1T c1合金粉中T杂质含量低于M d1T e1原料中的T含量,亦即c1小于e1。
补充说明:进一步地,在多个实施例中,所述由内生合金粉与包覆体构成的金属材料中,内生M a1A b1T c1合金粉的体积百分数与原料配制时M d1T e1原料的体积百分含量相当;相当即为接近的意思。因此,可以根据所需要设计的目标内生合金粉与包覆体构成的金属材料中内生M a1A b1T c1合金粉的体积百分数,大致反推得到熔炼M a0A b0T c0初始合金熔体时M d1T e1原料与A d2T e2原料各自需要的体积百分含量;当M d1T e1原料与A d2T e2原料各自的体积百分含量确定时,a0与b0的相对比值也就可以通过各个元素的原子量、密度等数据计算得到。
需要说明的是,由于熔炼过程中诸如气氛中的O等杂质元素可能进入熔体,因此可能出现c0>e1,c0>e2的情况,即M a0A b0T c0初始合金熔体中杂质含量相对于合金原料中总杂质含量有所增加。
补充说明:同时,初始合金熔炼过程中部分T元素可能会与M或A形成浮在熔体表面的少量熔渣。由于熔渣一般为固体,不属于初始合金熔体部分,因此,初始合金熔体中的T元素含量也可能出现c0<e1,c0<e2的情况,即M a0A b0T c0初始合金熔体中杂质含量相对于合金原料中总杂质含量有所减少。
本发明还涉及一种合金粉的制备方法,其特征在于,通过去除所述由内生合金粉与包覆体构成的金属材料中的包覆体部分,同时保留不能被同时去除的内生合金粉制备。
进一步地,去除所述包覆体并保留内生合金粉的方法包括酸溶液溶解反应去除、碱溶液溶解反应去除、真空挥发去除、包覆体自然氧化-粉化去除中的至少一种。
当采用酸溶液反应去除时,选择合适的酸品种与浓度,其选择的标准是保证包覆体A b2T c2变成离子进入溶液,而内生合金粉M a1A b1T c1几乎不与相应的酸反应,从而实现包覆体的去除。
进一步地,酸溶液经过去气处理,使之含有较低的氧与氮溶解量。
当采用碱溶液反应去除时,选择合适的碱品种与浓度,其选择的标准是保证包覆体A b2T c2变成离子进入溶液,而内生合金粉M a1A b1T c1几乎不与相应的碱反应,从而实现包覆体的去除。
进一步地,碱溶液经过去气处理,使之含有较低的氧与氮溶解量。
当采用真空挥发去除时,选择合适的真空度与温度条件,其选择的标准是保证熔点较低的包覆体A b2T c2挥发,而熔点较高的内生合金粉M a1A b1T c1不挥发并得到保留,从而实现包覆体的去除。
当包覆体极易自然氧化-粉化情况下,还可以初步将自然氧化-粉化的包覆体预去除,再辅以其它方式将包覆体彻底去除。
补充说明:进一步地,在某个实施例中,所述M包含Fe,所述A包含La,所述内生合 金粉与包覆体构成的金属材料为内生Fe合金粉与La包覆体构成的金属条带,内生Fe合金粉中固溶有La;通过La包覆体的自然氧化-粉化,使内生Fe合金粉与基体La的氧化物粉预分离,通过Fe合金粉的磁性特性,利用磁场将Fe合金粉与基体La的氧化物分离。
本发明还涉及一种合金粉在粉末冶金、金属注射成型、磁性材料、涂料中的应用。
进一步地,当合金粉的粒度较大时,可以在粉末冶金,金属注射成型领域应用;当合金粉的粒度较小,如纳米级时,可以在涂料领域应用,主要作为具有特殊功能的涂料添加剂。
进一步地,当合金粉为软磁合金粉时,还可以用于磁性材料领域。
本发明还涉及一种球形或近球形合金粉在粉末冶金、金属注射成型、金属粉3D打印中的应用。
本发明还涉及一种由内生合金粉与包覆体构成的金属材料在涂料、复合材料中的应用。
进一步地,其特征在于,选择内生合金粉平均粒度低于1000nm的由内生合金粉与包覆体构成的金属材料,将包覆体去除;包覆体去除同时或去除后马上将所得合金粉与涂料或复合材料其它组分混合,以降低因合金粉表面裸露后粉末表面或表层新引入的包括O在内的杂质含量,获得表面高活性的合金粉并使涂料或复合材料其它组分与合金粉表面在原子尺度发生良好的结合,从而获得添加有高纯超细高活性合金粉的涂料或复合材料,可应用于包括抗菌涂料、耐候涂料、隐身涂料、吸波涂料、耐磨涂料、防腐涂料、树脂基复合材料等在内的各个领域。
进一步地,包覆体去除后,合金粉的清洗、干燥过程,以及其与涂料或复合材料其它组分的混合过程均在真空环境或保护气氛下进行。
进一步地,包覆体去除后,20min之内将所得合金粉与涂料或复合材料其它组分混合。
作为进一步优选,包覆体去除后,5min之内将所得合金粉与涂料或复合材料其它组分混合。
总之,本发明所涉及的技术方案,其最大的优势在于:在合金粉末形成的过程中,同时对合金粉末进行了提纯与固溶合金化处理;而由高纯内生合金粉与包覆体构成的金属材料的发明,也为高纯合金粉的制备、保存、应用提出了一条新的思路。
补充说明:本发明在原理上虽然用到了选择性腐蚀的基本概念,但与去合金法的选择性腐蚀在原理上有着本质的区别。具体表现在,去合金法选择的前驱体合金中,必须为单一的非晶相,或者为一个或多个金属间化合物相,或者为一个或多个金属间化合物相与非晶相的混合。在去合金反应之前,目标原子是以原子的方式均匀分散在合金的各个相中的(无论是金属间化合物相或非晶相中,目标原子和其它目标原子不聚集形成目标相);去合金反应后,活泼原子被腐蚀去掉,目标原子游离出来,目标原子通过重新扩散重排聚集在一起,形成纳 米多孔的结构。因此,通过去合金法制备的为一般为纳米多孔材料,而不是粉体材料,且去合金反应前后材料的宏观形状大致保持不变,即合金条带去合金反应后形状仍然为纳米多孔条带;合金块体去合金反应后形状仍然为纳米多孔块体(见文献Generalized fabrication of nanoporous metals(Au,Pd,Pt,Ag and Cu)through chemical dealloying,J.Phys Chem C.113(2009)12629-12636)。只有在施加超声或者其它破碎方式的时候,所获得的纳米多孔结构才可能进一步破碎成疏松的纳米多孔碎片或者纳米颗粒。
而本发明通过特殊的合金组元对选择,将大块的M d1T e1原料与A d2T e2原料加热到两种原料的熔点以上,得到M a0A b0T c0初始合金熔体。在初始合金熔体凝固的过程中,元素组成主要为M a1A b1T c1的弥散颗粒相从熔体中析出,最后元素组成主要为A b2T c2的基体相最后凝固并包覆住弥散颗粒相。这种弥散颗粒相在冷速足够快的时候可以为纳米颗粒,冷速稍慢为亚微米颗粒,再慢为微米颗粒,更慢为毫米级颗粒。因此,本发明的M a1A b1T c1内生合金粉是在初始合金熔体凝固的过程中形成的,不是在诸如酸反应去除的过程中形成的。后续的去除仅仅是移除包覆体,以获得自由分散的合金纳米颗粒。
具体来说,本发明的有益效果主要体现在以下几个方面:
第一,实现了通过低纯原料获得高纯内生合金粉,并为低纯原料制备高纯金属粉体材料指出了一条新的途径,具有积极意义。高纯内生合金粉纯度的提高主要通过以下两个机制实现:
1)A元素对杂质元素的“吸收”作用。由于所选A元素相比M元素均为低熔点、高活性元素,因此相比M元素来说,其对T杂质元素具有更强的亲和力。这可以使得T杂质元素要么更多地进入并固溶在主要由A元素组成的基体相中,要么在熔体状态时与A元素形成熔渣,并与合金熔体分离;例如,当A元素包含与氧亲和力强的稀土元素或钙元素时,就可以实现这一个过程。
2)内生合金粉(内生析出的弥散颗粒相)的形核长大过程中,杂质元素会被排入剩余熔体中。只要凝固过程中内生合金粉不晚于基体相析出,其杂质都会富集于最后凝固的那部分熔体,即主要由A元素组成并凝固形成基体相的那部分熔体。
第二,在M a1A b1T c1内生合金粉形核长大、纯化的过程中,同时实现了内生合金粉中不能与M形成金属间化合物的A元素在M中的固溶合金化,且这种固溶合金化会起到积极的效果。
通过实施例研究发现,采用含有较高杂质元素原料制备的M a1A b1T c1内生合金粉中往往会固溶有可观含量的A。根据具体合金熔体主体元素成分的不同、杂质含量的不同、以及凝固速率的不同,A在M a1A b1T c1内生合金粉中的固溶度也会有所不同。对于确定的M-A-T合金 熔体,一般来说,当T含量较高,且熔体凝固速率较高并形成较小的内生合金粉,如纳米粉时,M a1A b1T c1内生合金粉中可以固溶较多的A元素。A元素在M a1A b1T c1内生合金粉中的固溶,使得内生合金粉具有了固溶合金化合金粉末的某些特性,具有积极的意义。
需要说明的是,A元素在M a1A b1T c1内生合金粉中的固溶合金化是其所对应初始合金熔体中含有足够多A元素情况下获得的结果(其它大部分的A元素形成基体相A b2T c2),这与直接将少量A元素加入M中以获得M-A合金的情况完全不同。例如,工业上一般采用微量(如0.3wt%)Y添加到Ti金属中(补充说明:其对应Y的原子百分比含量为0.16at%),以提高Ti-Y合金的强度与塑性。其机理是,微量添加的Y进入Ti金属后一般与Ti金属中的O等杂质元素结合,形成Y 2O 3氧化物。Y 2O 3氧化物的存在可以作为异质形核的质点增加形核率,使得Ti金属凝固过程中获得更为细小的晶粒,从而通过细化晶粒的原理来同时提高Ti金属的强度与塑性。这种合金化并非严格意义的合金化,因为少量Y加入到非绝对纯度的Ti金属后是以Y 2O 3氧化物的形式存在。本发明可以通过含有杂质T的Ti原料与含有杂质T的Y原料熔炼获得Ti-Y-T合金熔体,该合金熔体凝固后可以获得固溶有少量Y的Ti-Y-T内生合金粉,此处的Y是真正的参与固溶合金化的合金元素。这种不同,可以使Ti-Y-T内生合金粉获得明显不同且有益的应用效果。例如,当采用去除了包覆基体相并进行球化处理后的Ti-Y-T合金微米粉应用于金属3D打印领域时,在粉末的激光重熔过程中,Ti-Y-T合金粉中“储存”固溶的Y元素可以吸收Ti-Y-T合金粉表面或表层的O元素(去除包覆基体相并进行球化处理过程引入)形成Y 2O 3氧化物。以Y 2O 3氧化物作为异质形核的质点,就可以显著细化激光重熔凝固后Ti-Y-T合金组织中的晶粒,从而提高3D打印器件的强度与塑性。而通过传统Ti-Y合金雾化制粉制备的Ti-Y粉末中Y已经被O结合成Y 2O 3氧化物,且又在制粉过程中引入了新的O进入粉体,使得粉末激光重熔过程中没有“自由”的Y可以与O进一步结合;或者要达到这一目的,需要在传统Ti-Y合金粉末中添加更多的Y才能使除Y 2O 3氧化物外,Ti-Y合金粉末中能够固溶一些“自由”的Y。这无疑没有本发明所涉及的仅固溶有Y元素的Ti-Y-T合金粉性能优越。
第三,可以获得以单晶颗粒为主的合金粉末。相比多晶粉末,单晶粉末可以获得诸多显著且有益效果。在所述初始合金熔体凝固过程中,每一个内生颗粒都是从熔体中某个位置形核后按照特定的原子排列方式长大生成。通过控制基体相的体积百分含量,确保每个内生颗粒可以弥散分布的情况下,各个内生颗粒之间难以发生合并长大。因此,最终获得的各个弥散分布的颗粒相大体都是单晶相。即使尺度大到数十微米的枝晶颗粒,其每个次级枝晶的生长方向都与主枝晶的生长方向保持一定的位相关系,其仍然属于单晶颗粒。
对于多晶材料来说,其晶界一般容易含有凝固过程中从晶内排出来的杂质元素,因此很难 获得高纯的多晶粉体材料。而当粉体材料主要由单晶颗粒组成时,其纯度必然能得到保障。而且,单晶颗粒表面原子具有特定的排列方式,如(111)面排列等,这些特定的排列方式会赋予材料特殊的力学、物理、化学性能,从而产生有益的效果。
第四,所述由内生合金粉与包覆体构成的金属材料,创造性地利用原位生成的包覆体包裹内生合金粉,保持了内生合金粉的高纯度与高活性。无论传统化学方法还是物理方法所制备的金属或合金粉,尤其比表面积极大的纳米粉,极易自然氧化,都面临粉末的保存困难问题。针对这一问题,本发明制备出由内生合金粉与包覆体构成的金属材料之后,并不急于将包覆体去除后再想其它办法保护内生合金粉不被氧等杂质污染,而是直接利用包覆体保护内生合金粉。这种由内生合金粉与包覆体构成的金属材料可以直接作为下游生产的原料。下游生产需要使用内生合金粉时,可以根据下一工序的特点,选择合适的时机并在合适的环境下将内生合金粉释放,再在尽可能短的时间使释放出来的内生合金粉进入下一生产流程,从而使合金粉受到污染的机会大大减少。例如,当内生合金粉为纳米尺度时,可以在合金粉释放的同时或者随后马上与树脂复合,制备具有高活性纳米合金粉添加的树脂基复合材料。
第五,通过控制初始合金熔体的凝固速率,可以实现不同且连续粒径的内生合金粉的制备,包括纳米粉、亚微米粉体、微米粉、甚至毫米级粉的制备。相比传统自上而下(通过块体碎化成小颗粒)或者自下而上(通过原子聚合成大颗粒)的物理或者化学方法,本发明所涉及的“初晶颗粒相析出-去相法”是一类全新的制备从纳米到毫米粒径粉体材料的方法。
补充说明:在粉体材料的制备领域,通过自下而上的途径(如离子还原)从原子或离子尺度可以很容易地制备数纳米或数十纳米的纳米颗粒;通过自上而下的途径(如球磨破碎)可以很容易地制备数十微米的微米颗粒。但无论是自下而上的途径,还是自上而下的途径,均很难制备1μm左右的粉体材料。因为自下而上从原子长大到1μm级太困难,而从上而下把块体材料破碎到1μm级同样也极为困难。传统方法制备粉体材料均只在某个粒度范围比较合适。如离子还原制备100nm以下的纳米颗粒,雾化法制备10μm以上的微米颗粒。但本发明所涉及的方法非常适合制备从数纳米到数毫米的粉体材料,只需要控制初始合金熔体的凝固速率即可,完美地解决了1μm左右粒径粉体材料的制备难点。
特别地,本发明还特别适合某些特殊的纳米金属粉体(如纳米Ti粉)的大规模、低成本制备。由于Ti元素的特殊性,其难以或不能像Ag、Cu那样通过Ag +,Cu 2+的化学还原来制备纳米Ag或Cu,其一般只能通过诸如爆炸法的物理方法小批量的制备纳米Ti粉,其成本极高,即使纳米Ti粉用途很大,但数千元每公斤的成本极大地限制了其工业应用。而本发明通过低纯原料极为巧妙地解决了高纯且固溶合金化的纳米Ti粉的大规模、低成本制备,具有无可估量的价值。
第六,补充说明:通过精心的A-M元素组合设计,采用低纯A、M原料,同时巧妙地利用T类元素(O、H、N、P、S、F、Cl),尤其是必要特征O元素,对M-A-T初始合金熔体凝固过程中A、M、T类元素的扩散与相分配规律的热力学影响,不仅实现了T在M-A-T内生合金粉中的纯化,同时巧妙地实现并提高了A在M-A-T内生合金粉中的可观固溶量。
第七,补充说明:本发明所述M与所述A之间包含一组或多组不形成金属间化合物的M 1-A 1元素组合,为了满足这一关键要求,需要在合金成分的选择上进行精心的设计。所述M 1-A 1元素组合的凝固组织不形成M 1-A 1金属间化合物;所述A包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Mg、Ca、Li、Na、K、In、Pb、Zn、Cu中至少一种;虽然上述元素看似比较多,但Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu均为稀土元素,如果将稀土元素由RE代替,则A仅仅包含RE、Mg、Ca、Li、Na、K、In、Pb、Zn、Cu中的至少一种;其中,RE、Mg、Ca、Li、Na、K、In、Pb、Zn为极活泼、或熔点极低,或极软的金属元素,其一般不与其它元素形成合金以提高强度或耐腐蚀性(与M形成的合金,A为包覆体,不能达到这个效果),也一般极少得到应用,为冷门的学术研究与工业应用元素。而Cu则极少与冷门贵金属Ir、Ru、Re、Os、Tc做成合金,而其即使与W、Cr、Mo、V、Ta、Nb做成合金,一般也是采用粉末冶金的方式,通过Cu粉与W、Cr、Mo、V、Ta、Nb粉混合后进行烧结得到相应的材料。因此,本发明选择的M 1-A 1元素组合均为学术界、工业界极少涉足的冷门元素组合。但本发明另辟蹊径,将上述冷门元素组合的缺点变成优点,应用于粉体材料的制备领域,具有极大的创造性。
本发明巧妙地利用了上述冷门元素组合的特点,通过利用合金凝固过程中A与M的分离现象以及M为主的初晶颗粒的首先析出,以A为主体的基体相的后析出,成功地实现了由内生合金粉与包覆体构成的金属材料的制备。而RE、Mg、Ca、Li、Na、K、In、Pb、Zn等元素极活泼、或熔点极低,或极软的特点,恰好为去除以这些元素为主的包覆体提供了便利。因此,上述巧妙地利用冷门元素组合实现一类合金粉的制备,具有很明显的积极意义。
因此,本发明创造性地采用低纯原料,将单晶合金粉末生成、合金粉末提纯及保存、粉末固溶合金化等多个有益的技术方案集中在一起,可以实现高纯的纳米级、亚微米级、微米级、以及毫米级固溶合金粉的制备,在催化、粉末冶金、复合材料、磁性材料、杀菌、金属注射成型、金属粉3D打印、涂料、复合材料等领域具有很好的应用前景。
附图说明
图1为本发明实施例3的内生纳米Ti合金粉与Gd包覆体局部的背散射SEM图;
图2为本发明实施例3的纳米Ti合金粉的SEM图;
图3为本发明实施例6的内生Ti-Co枝晶合金粉及其Gd包覆体局部的背散射SEM图;
图4为本发明实施例6的Ti-Co枝晶合金粉的SEM图;
具体实施方式
下面结合实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
实施例1
本实施例提供了一种由内生纳米Ti合金粉与Ce包覆体构成的金属条带、一种纳米Ti合金粉、及其制备方法与应用,包括如下步骤:
(1)选用低纯钛,其含有重量百分含量分别为0.3wt%,0.1wt%,0.3wt%,以及0.03wt%的Cl,N,O,H。换算成原子百分含量后,Cl,N,O,H的原子百分比含量分别为0.4at%,0.33at%,0.88at%,与1.39at%,即总含量为3at%。选用低纯稀土Ce,其含有0.3wt%的O,换算成原子百分比含量后,Ce中O的含量为2.57at%。由于Ti-Ce为不形成金属间化合物的元素组合对,且Ti熔点高于Ce,因此可以以这一元素组合对为基础,制备Ti合金粉。
将低纯Ti与低纯Ce原料按体积比为1:3进行配比,并将原料可能存在的其它微量元素归为主元素中,以利于计算。根据元素密度以及原子量数据,所配合金原料的成分按照原子百分含量可以表达约为(Ti 97Cl 0.4N 0.33O 0.88H 1.39) 39(Ce 97.43O 2.57) 61,具体展开即为Ti 37.83Ce 59.435Cl 0.156N 0.129H 0.54O 1.91,其中Cl、N、H、O等杂质元素T的总含量约2.735at%。
(2)将上述低纯合金原料进行感应熔炼,得到成分约为Ti 37.83Ce 59.435T 2.735的初始合金熔体(T代表Cl、N、H、O等杂质元素)。初始合金熔体中某些杂质元素可能会变成炉渣与熔体分离,使杂质含量下降;而环境与气氛中的某些杂质,如氧,也可能进入熔体,使得熔体中的杂质含量上升。
(3)将初始合金熔体通过铜辊甩带的方式速凝为厚度100μm左右的条带,凝固过程中以Ti为主的弥散颗粒相镶嵌析出在以Ce为主的基体相中,即获得由内生纳米Ti合金粉与Ce包覆体构成的金属条带。其中,内生Ti合金粉的原子百分比组成约为Ti 99.1Ce 0.5T 0.4,其主要由单晶颗粒组成,颗粒粒径大小范围为3nm~300nm。内生Ti合金粉中固溶有少量Ce,且T杂质含量相比低纯Ti原料得到了极大的降低,而其它大量T杂质则富集在Ce包覆体中。所得由内生纳米Ti合金粉与Ce包覆体构成的金属条带中,内生Ti合金粉的体积百分含量与原料配制时Ti原料的体积百分含量相当,仍约为25vol%,确保了Ti合金粉在以Ce为主的基 体相中的弥散分布。
(4)通过稀盐酸溶液将由内生纳米Ti合金粉与Ce包覆体构成的金属条带中的Ce包覆体去除,由于Ti合金粉不与稀盐酸溶液反应,经过分离清洗干燥,即可获得Ti-Ce-T合金粉。由于Ti-Ce-T合金粉裸露后表层与表面原子的对氧等杂质的吸收作用,所得Ti-Ce-T合金粉中的T杂质的含量相比内生Ti-Ce-T合金粉要高。
步骤(3)之后也可以直接进行步骤(5)的过程:
(5)通过去除了溶解氧的稀盐酸溶液将由内生纳米Ti合金粉与Ce包覆体构成的金属条带中的Ce包覆体去除,在20min之内,在保护气氛下将Ti合金粉分离出来并与环氧树脂及其它涂料组分混合,从而制备得到钛合金纳米改性聚合物防腐涂料。
实施例2
本实施例提供了一种由内生微米Ti合金粉与Ce包覆体构成的金属薄板、一种微米Ti合金粉、及其制备方法与应用,包括如下步骤:
(1)选用低纯钛,其含有重量百分含量分别为0.3wt%,0.1wt%,0.3wt%,以及0.03wt%的Cl,N,O,H。换算成原子百分含量后,Cl,N,O,H的原子百分比含量分别为0.4at%,0.33at%,0.88at%,以及1.39at%。总含量为3at%。选用低纯稀土Ce,其含有0.3wt%的O,换算成原子百分百含量后,Ce中O的含量为2.57at%。由于Ti-Ce为不形成金属间化合物的元素组合对,且Ti熔点高于Ce,因此可以以这一元素组合对为基础,制备Ti合金粉。
将低纯Ti与低纯Ce原料以体积比为1:3进行配比,并将原料可能存在的其它微量元素归为主元素中,以利于计算。根据元素密度以及原子量数据,所配合金原料的成分按照原子百分含量表达约为(Ti 97Cl 0.4N 0.33O 0.88H 1.39) 39(Ce 97.43O 2.57) 61,即原子百分含量约为Ti 37.83Ce 59.435Cl 0.156N 0.129H 0.54O 1.91,其中Cl、N、H、O等杂质元素T的总含量约2.735at%。
(2)将上述低纯合金原料进行感应熔炼,得到成分约为Ti 37.83Ce 59.435T 2.735的初始合金熔体(T代表Cl、N、H、O等杂质元素)。初始合金熔体中某些杂质元素可能会变成炉渣与熔体分离,使杂质含量下降;而环境与气氛中的某些杂质,如氧,也可能进入熔体,使得熔体中的杂质含量上升。
(3)将初始合金熔体凝固为厚度约4mm左右的薄板,凝固过程中以Ti为主的中枝晶状弥散颗粒相镶嵌分布在以Ce为主的基体相中,即可以获得由内生微米Ti合金粉与Ce包覆体构成的金属薄板。其中,内生Ti合金枝晶粉的原子百分比组成约为Ti 99.4Ce 0.3T 0.3,其主要由单晶枝晶颗粒组成,颗粒粒径大小范围为1μm~150μm。内生Ti合金粉中固溶有Ce,且T杂质含量相比低纯Ti原料得到了极大的降低,而其它大量的T杂质则富集在Ce包覆体中。所得 由内生微米Ti合金粉与Ce包覆体构成的金属薄板中,内生Ti合金粉的体积百分数与原料配制时钛原料的体积百分含量相当,仍约为25vol%,确保了Ti合金枝晶粉在以Ce为主的基体相中的弥散分布。
(4)通过稀盐酸溶液将由内生微米Ti合金粉与Ce包覆体构成的金属薄板中的Ce包覆体去除,由于Ti合金枝晶粉不与稀盐酸溶液反应,经过分离清洗干燥,即可获得Ti-Ce-T合金枝晶粉。
(5)将Ti-Ce-T合金枝晶粉经过气流磨处理,使得凝固过程中缠结的枝晶颗粒分散,同时使得较大的枝晶颗粒碎化为较小的枝晶颗粒碎片。
(6)将上述获得的Ti合金枝晶粉筛分,选择粒径范围为15μm~53μm的Ti合金枝晶粉进行等离子球化处理,得到粒径范围变化不大的球形或近球形Ti合金粉。
(7)所述球形或近球形Ti合金粉用于金属粉3D打印领域。
实施例3
本实施例提供了一种由内生纳米Ti合金粉与Gd包覆体构成的金属条带、一种纳米Ti合金粉、及其制备方法,包括如下步骤:
(1)选用低纯Ti原料与主要由Gd组成的稀土原料。两类原料中的杂质T含量均约为3at%。由于Ti-Gd为不形成金属间化合物的元素组合对,且Ti的熔点高于Gd的熔点,因此可以以这一元素组合对为基础,制备Ti合金粉。
(2)将低纯Ti原料与主要由Gd组成的稀土原料按照体积比为15:85进行合金原料配比,将合金原料进行感应熔炼,得到原子百分比成分约为Ti 24Gd 73T 3初始合金熔体,其中T的含量约为3at%。
(3)将初始合金熔体通过铜辊甩带的方式速凝为厚度100μm左右的条带,凝固过程中组成以Ti为主的弥散颗粒相镶嵌分布在以Gd为主的基体相中,即可以获得由内生纳米Ti合金粉与Gd包覆体构成的金属条带,其显微形貌如图1所示。其中,内生Ti合金粉的原子百分比组成约为Ti 99.2Gd 0.5T 0.3,其主要由固溶有少量Gd的Ti纳米单晶颗粒组成,颗粒粒径大小范围为3nm~300nm。内生Ti合金粉中T杂质含量相比Ti原料得到了极大的降低,而其它大量的T杂质则富集在Gd包覆体中。所得内生Ti合金粉及其Gd包覆体条带中,内生Ti合金粉的体积百分数与原料配制时Ti原料的体积百分含量相当,仍约为15vol%,确保了Ti合金粉在以Gd为主的基体相中的弥散分布,如图1所示。
(4)通过稀盐酸溶液将由内生纳米Ti合金粉与Gd包覆体构成的金属条带中的Gd包覆体去除,由于Ti合金粉不与稀盐酸溶液反应,经过分离清洗干燥,即可获得主要组成为Ti的 Ti-Gd-Ti合金粉,其颗粒大小范围为3nm~300nm,如图2所示。
实施例4
本实施例提供了一种由内生纳米Ti-Nb-V合金粉与Ce-La-Nd-Pr包覆体构成的金属条带、一种纳米Ti-Nb-V合金粉、及其制备方法,包括如下步骤:
(1)选用低纯Ti、Nb、V原料与主要由Ce、La、Nd、Pr组成的混合稀土原料。两类原料中的杂质T含量均约为3at%。由于Ti-Ce、Ti-La、Ti-Nd、Ti-Pr、Nb-Ce、Nb-La、Nb-Nd、Nb-Pr、V-Ce、V-La、V-Nd、V-Pr均为不形成金属间化合物的元素组合对,且Ti、Nb、V的熔点高于Ce、La、Nd、Pr的熔点,因此可以以这些元素组合对为基础,制备Ti-Nb-V合金粉。
(2)将低纯Ti、Nb、V原料与主要由Ce、La、Nd、Pr组成的混合稀土按照体积比为1:2进行合金原料配比,其中Ti、Nb、V为等摩尔比。将合金原料进行感应熔炼,得到(Ti-Nb-V)-(Ce-La-Nd-Pr)-T初始合金熔体,其中T的含量约为3at%。
(3)将初始合金熔体通过铜辊甩带的方式速凝为厚度100μm左右的条带,凝固过程中组成以Ti-Nb-V为主的弥散颗粒相镶嵌分布在以Ce-La-Nd-Pr为主的基体相中,即可以获得由内生纳米Ti-Nb-V合金粉与Ce-La-Nd-Pr包覆体构成的金属条带。其中,内生Ti-Nb-V合金粉的原子百分比组成约为(Ti-Nb-V) 99.2(Ce-La-Nd-Pr) 0.5T 0.3,其主要由无限互溶的Ti-Nb-V单晶颗粒组成,颗粒粒径大小范围为3nm~300nm。内生Ti-Nb-V合金粉中固溶有Ce-La-Nd-Pr,且T杂质含量相比Ti、Nb、V原料得到了极大的降低,而其它大量的T杂质则富集在Ce-La-Nd-Pr包覆体中。所得由内生纳米Ti-Nb-V合金粉与Ce-La-Nd-Pr包覆体构成的金属条带中,内生Ti-Nb-V合金粉的体积百分数与原料配制时Ti、Nb、V原料的体积百分含量相当,仍约为33vol%,确保了Ti-Nb-V合金粉在以Ce-La-Nd-Pr为主的基体相中的弥散分布。
(4)通过稀盐酸溶液将由内生纳米Ti-Nb-V合金粉与Ce-La-Nd-Pr包覆体构成的金属条带中的Ce-La-Nd-Pr包覆体去除,由于Ti-Nb-V合金粉不与稀盐酸溶液反应,经过分离清洗干燥,即可获得主要组成为(Ti-Nb-V)-(Ce-La-Nd-Pr)-T的Ti-Nb-V合金粉。由于Ti-Nb-V合金粉裸露后表层与表面的对O等杂质的吸收作用,所得Ti-Nb-V合金粉中的T杂质的含量相比内生Ti-Nb-V合金粉要稍高。
实施例5
本实施例提供了一种由内生亚微米Ti-Co合金粉与Ce-La-Nd-Pr包覆体构成的金属条带、一种亚微米Ti-Co合金粉、及其制备方法,包括如下步骤:
(1)选用低纯Ti、Co原料与主要由Ce、La、Nd、Pr组成的混合稀土原料,其中Ti与Co原料的摩尔比为1:1,且两类原料中的杂质T含量均约为3at%。由于Ti-Ce、Ti-La、Ti-Nd、 Ti-Pr均为不形成金属间化合物的元素组合对,且Ti在Ti-Co原料中占比为50%,为主体元素;且CoTi金属间化合物的熔点高达1700℃,远高于Co与Ce、La、Nd、Pr等元素能够形成的金属间化合物的熔点,当Co:Ti为1:1时,Co主要与Ti结合成高熔点的CoTi金属间化合物。因此可以以这些元素组合为基础,制备金属间化合物CoTi合金粉。
(2)将低纯Ti、Co原料与主要由Ce、La、Nd、Pr组成的混合稀土按照体积比为1:2进行合金原料配比,其中Ti:Co为等摩尔比。将合金原料进行感应熔炼,得到(Ti-Co)-(Ce-La-Nd-Pr)-T初始合金熔体,其中T的含量约为3at%。
(3)将初始合金熔体通过铜辊甩带的方式速凝为厚度300μm左右的条带,凝固过程中组成以Ti-Co为主的弥散颗粒相镶嵌分布在以Ce-La-Nd-Pr为主的基体相中,即可以获得由内生亚微米Ti-Co合金粉与Ce-La-Nd-Pr包覆体构成的金属条带。其中,内生Ti-Co合金粉的原子百分比组成约为(Ti-Co) 99(Ce-La-Nd-Pr) 0.6T 0.4,其主要由金属间化合物的Ti-Co单晶颗粒组成,颗粒粒径大小范围为20nm~1μm。内生Ti-Co合金粉中固溶有Ce-La-Nd-Pr,且T杂质含量相比Ti、Co原料得到了极大的降低,而其它大量的T杂质则富集在Ce-La-Nd-Pr包覆体中。所得由内生亚微米Ti-Co合金粉与Ce-La-Nd-Pr包覆体构成的金属条带中,内生Ti-Co合金粉的体积百分数与原料配制时Ti、Co原料的体积百分含量相当,仍约为33vol%,确保了Ti-Co合金粉在以Ce-La-Nd-Pr为主的基体相中的弥散分布。
(4)通过稀盐酸溶液将由内生亚微米Ti-Co合金粉与Ce-La-Nd-Pr包覆体构成的金属条带中的Ce-La-Nd-Pr包覆体去除,由于Ti-Co合金粉不易与稀盐酸溶液反应,经过分离清洗干燥,即可获得主要组成为(Ti-Co)-(Ce-La-Nd-Pr)-T的Ti-Co合金粉。由于Ti-Co合金粉裸露后表层与表面的对O等杂质的吸收作用,所得Ti-Co合金粉中的T杂质的含量相比内生Ti-Co合金粉要稍高。
实施例6
本实施例提供了一种由内生微米Ti-Co合金粉与Gd包覆体构成的金属薄板、一种微米Ti-Co合金粉、及其制备方法,包括如下步骤:
(1)选用低纯Ti、Co原料与主要由Gd组成的稀土原料,其中Ti与Co原料的摩尔比为1:1,且两类原料中的杂质T含量均约为3at%。由于Ti-Gd为不形成金属间化合物的元素组合对,且Ti在Ti-Co原料中占比为50%,为主体元素;且CoTi金属间化合物的熔点高达1700℃,远高于Co与Gd等元素能够形成的金属间化合物的熔点,当Co:Ti为1:1时,Co主要与Ti结合成高熔点的CoTi金属间化合物。因此可以以这些元素组合为基础,制备金属间化合物CoTi合金粉。
(2)将低纯Ti、Co原料与主要由Gd组成的稀土原料按照体积比为30:70进行合金原料配比,其中Ti:Co为等摩尔比。将合金原料进行感应熔炼,得到TiCo-Gd-T初始合金熔体,其中T的含量约为3at%。
(3)将初始合金熔体凝固为厚度约2mm左右的薄板,凝固过程中组成以Ti-Co为主的枝晶颗粒相镶嵌分布在以Gd为主的基体相中,即获得由内生微米Ti-Co合金粉与Gd包覆体构成的金属薄板,其凝固组织形貌见图3所示。其中,内生Ti-Co合金粉的原子百分比组成约为(TiCo) 99.5Gd 0.3T 0.2,其主要由金属间化合物的Ti-Co单晶颗粒组成,颗粒粒径大小范围为1μm~60μm。内生Ti-Co合金粉中固溶有少量Gd,且T杂质含量相比Ti、Co原料得到了极大的降低,而其它大量的T杂质则富集在Gd包覆体中。所得内生Ti-Co合金粉及其Gd包覆体薄板中,内生Ti-Co合金粉的体积百分数与原料配制时Ti、Co原料的体积百分含量相当,仍约为30vol%,确保了Ti-Co合金粉在以Gd为主的基体相中的弥散分布。
(4)通过稀盐酸溶液将由内生微米Ti-Co合金粉与Gd包覆体构成的金属薄板中的Gd包覆体去除,由于Ti-Co合金粉不易与稀盐酸溶液反应,经过分离清洗干燥,即可获得主要组成为(Ti-Co)-Gd-T的Ti-Co合金粉,其单晶枝晶形貌如图4所示。由于Ti-Co合金粉裸露后表层与表面的对O等杂质的吸收作用,所得Ti-Co合金粉中的T杂质的含量相比内生Ti-Co合金粉要稍高。
实施例7
本实施例提供了一种由内生微米Fe合金粉与La包覆体构成的金属条带、一种微米Fe合金粉、及其制备方法,包括如下步骤:
(1)选用低纯Fe原料与主要由La组成的稀土原料,且两类原料中的杂质T含量均约为2.5at%。由于Fe-La为不形成金属间化合物的元素组合对,且两者均为主体元素,因此可以以Fe与La组合对为基础,制备Fe合金粉。
(2)将低纯Fe原料与主要由La组成的稀土原料按照体积比为1:2进行合金原料配比,将合金原料进行感应熔炼,得到Fe-La-T初始合金熔体,其中T的含量约为2.5at%。
(3)将初始合金熔体通过铜辊甩带的方式速凝为厚度约500μm左右的条带,凝固过程中组成以Fe为主的弥散颗粒相镶嵌分布在以La为主的基体相中,即可以获得由内生微米Fe合金粉与La包覆体构成的金属条带。其中,内生Fe合金粉的原子百分比组成约为Fe 99.4La 0.3T 0.3,其主要由Fe单晶颗粒组成,颗粒粒径大小范围为500nm~5μm。内生Fe合金粉中固溶有La,且T杂质含量相比Fe原料得到了极大的降低,而其它大量的T杂质则富集在La包覆体中。所得由内生微米Fe合金粉与La包覆体构成的金属条带中,内生Fe合金粉的体积百分数与原 料配制时的体积百分含量相当,仍约为33vol%,确保了Fe合金粉在以La为主的基体相中的弥散分布。
(4)通过La包覆体的自然氧化-粉化,使内生Fe合金粉与基体La的氧化物粉预分离,通过Fe合金粉的磁性特性,利用磁场将Fe合金粉与基体La的氧化物分离。然后通过少量稀酸溶液将Fe合金粉表面吸附的残余La氧化物彻底去除,同时通过控制酸的浓度与量,保证Fe合金粉能够得到保留。经清洗分离干燥,最终得到Fe合金粉。
实施例8
本实施例提供了一种由内生纳米Cu合金粉与Li包覆体构成的金属条带、一种纳米Cu合金粉、及其制备方法,包括如下步骤:
(1)选用低纯Cu原料与低纯Li原料,且两类原料中的杂质T含量均约为1at%。由于Cu-Li为不形成金属间化合物的元素组合对,且两者均为主体元素;因此可以以Cu与Li组合对为基础,制备Cu合金粉。
(2)将低纯Cu原料与低纯Li原料按照体积比为1:3进行合金原料配比,将合金原料进行感应熔炼,得到Cu-Li-T初始合金熔体,其中T的含量约为1at%。
(3)将初始合金熔体通过铜辊甩带的方式速凝为厚度约30μm左右的条带,凝固过程中组成以Cu为主的弥散颗粒相镶嵌分布在以Li为主的基体相中,即可以获得由内生纳米Cu合金粉与Li包覆体构成的金属条带。其中,内生Cu合金粉的原子百分比组成约为Cu 84.8Li 15T 0.2,其主要由固溶了大量Li的Cu单晶颗粒组成,颗粒粒径大小范围为3nm~150nm。且T杂质含量相比Cu原料得到了极大的降低,而其它大量的T杂质则富集在Li包覆体中。
(4)通过极稀的盐酸溶液将由内生纳米Cu合金粉与Li包覆体构成的金属条带中的Li包覆体去除,由于Cu合金粉不易与极稀盐酸溶液反应,经过分离清洗干燥,即可获得主要组成为Cu-Li-T的纳米级Cu合金粉。
实施例9
本实施例提供了一种由内生纳米Cu合金粉与Pb包覆体构成的金属条带、一种纳米Cu合金粉、及其制备方法,包括如下步骤:
(1)选用低纯Cu原料与Pb原料,且两类原料中的杂质T含量分别约为2at%与0.5at%。由于Cu-Pb为不形成金属间化合物的元素组合对,且两者均为主体元素,因此可以以Cu与Pb组合对为基础,制备Cu合金粉。
(2)将低纯Cu原料与Pb原料按照体积比为1:3进行合金原料配比,将合金原料进行感应 熔炼,得到Cu-Pb-T初始合金熔体,其中T的含量约为1at%。
(3)将初始合金熔体通过铜辊甩带的方式速凝为厚度约30μm左右的条带,凝固过程中组成以Cu为主的弥散颗粒相镶嵌分布在以Pb为主的基体相中,即可以获得由内生纳米Cu合金粉与Pb包覆体构成的金属条带。其中,内生Cu合金粉的原子百分比组成约为Cu 99.5Pb 0.3T 0.2,其主要由固溶了少量Pb的Cu单晶颗粒组成,颗粒粒径大小范围为3nm~150nm。且T杂质含量相比Cu原料得到了极大的降低,而其它大量的T杂质则富集在Pb包覆体中。所得由内生纳米Cu合金粉与Pb包覆体构成的金属条带中,内生Cu合金粉的体积百分数与原料配制时的体积百分含量相当,仍约为25vol%,确保了Cu合金粉在以Pb为主的基体相中的弥散分布。
(4)通过醋酸与稀盐酸混合溶液将由内生纳米Cu合金粉与Pb包覆体构成的金属条带中的Pb包覆体去除,由于Cu合金粉不易与醋酸与稀盐酸混合溶液反应,经过分离清洗干燥,即可获得主要组成为Cu-Pb-T的纳米级Cu合金粉。
实施例10
本实施例提供了一种由内生纳米Nb-V-Mo-W合金粉与Cu包覆体构成的金属条带、一种纳米Nb-V-Mo-W合金粉、及其制备方法,包括如下步骤:
(1)选用低纯Nb、V、Mo、W原料与Cu原料,且两类原料中的杂质T含量均约为1at%。由于Cu-Nb、Cu-V、Cu-Mo与Cu-W均为不形成金属间化合物的元素组合对,且Nb、V、Mo、W为相互互溶的主体元素,因此可以以这些组合对为基础,制备Nb-V-Mo-W合金粉。
(2)将低纯低纯Nb、V、Mo、W原料与Cu原料按照体积比为1:2进行合金原料配比,其中Nb:V:Mo:W摩尔比为2:1:1:1。将合金原料进行感应熔炼,得到(Nb 2VMoW)-Cu-T初始合金熔体,其中T的含量约为1at%。
(3)将初始合金熔体通过铜辊甩带的方式缓凝为厚度约30μm左右的条带,凝固过程中组成以Nb 2VMoW为主的弥散颗粒相镶嵌分布在以Cu为主的基体相中,即可以获得由内生纳米Nb-V-Mo-W合金粉与Cu包覆体构成的金属条带。其中,内生Nb 2VMoW合金粉的原子百分比组成约为(Nb 2VMoW) 99.3Cu 0.5T 0.2,其主要由固溶了少量Cu的高熵Nb 2VMoW单晶颗粒组成,颗粒粒径大小范围为3nm~200nm。且T杂质含量相比Cu原料得到了极大的降低,而其它大量的T杂质则富集在Cu包覆体中。所得由内生纳米Nb-V-Mo-W合金粉与Cu包覆体构成的金属条带中,内生Nb 2VMoW合金粉的体积百分数与原料配制时的体积百分含量相当,仍约为33vol%,确保了Nb 2VMoW合金粉在以Cu为主的基体相中的弥散分布。
(4)通过中等浓度的盐酸溶液将由内生纳米Nb-V-Mo-W合金粉与Cu包覆体构成的金属 条带中的Cu包覆体去除,由于Nb 2VMoW合金粉不易与中等浓度的盐酸溶液反应,经过分离清洗干燥,即可获得主要组成为Nb 2VMoW的纳米级合金粉。
实施例11
本实施例提供了一种由内生微米Nb-V-Mo-W合金粉与Cu包覆体构成的金属薄板、一种微米Nb-V-Mo-W合金粉、及其制备方法,包括如下步骤:
(1)选用低纯Nb、V、Mo、W原料与Cu原料,且两类原料中的杂质T含量均约为1at%。由于Cu-Nb、Cu-V、Cu-Mo与Cu-W均为不形成金属间化合物的元素组合对,且Nb、V、Mo、W为相互互溶的主体元素,因此可以以这些组合对为基础,制备Nb-V-Mo-W合金粉
(2)将低纯低纯Nb、V、Mo、W原料与Cu原料按照体积比为1:2进行合金原料配比,其中Nb:V:Mo:W摩尔比为1:1:1:1。将合金原料进行感应熔炼,得到(NbVMoW)-Cu-T初始合金熔体,其中T的含量约为1at%。
(3)将初始合金熔体凝固为厚度约4mm左右的薄板,凝固过程中组成以NbVMoW为主的弥散枝晶相镶嵌分布在以Cu为主的基体相中,即可以获得由内生微米Nb-V-Mo-W合金粉与Cu包覆体构成的金属薄板。其中,内生NbVMoW枝晶合金粉的原子百分比组成约为(NbVMoW) 99.6Cu 0.3T 0.1,其主要由固溶了少量Cu的高熵NbVMoW单晶颗粒组成,颗粒粒径大小范围为1μm~150μm。且T杂质含量相比Cu原料得到了极大的降低,而其它大量的T杂质则富集在Cu包覆体中。所得由内生微米Nb-V-Mo-W合金粉与Cu包覆体构成的金属薄板中,内生NbVMoW枝晶合金粉的体积百分数与原料配制时的体积百分含量相当,仍约为33vol%,确保了NbVMoW枝晶合金粉在以Cu为主的基体相中的弥散分布。
(4)通过中等浓度的热盐酸溶液将由内生微米Nb-V-Mo-W合金粉与Cu包覆体构成的金属薄板中的Cu包覆体去除,由于NbVMoW枝晶合金粉不易与中等浓度的热盐酸溶液反应,经过分离清洗干燥,即可获得主要组成为NbVMoW的微米级枝晶合金粉。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (38)

  1. 一种由内生合金粉与包覆体构成的金属材料的制备方法,其特征在于,通过如下步骤制备:
    步骤一:熔炼主要元素组成为M a0A b0T c0的初始合金熔体,a0、b0、c0代表对应组成元素的原子百分比含量,a0+b0+c0=100%,0<c0≤15%;
    步骤二:将所述M a0A b0T c0初始合金熔体凝固成固态,得到从熔体中内生析出的M a1A b1T c1弥散颗粒相与包覆弥散颗粒的A b2T c2基体相,其即为所述的由内生合金粉与包覆体构成的金属材料;其中,0<c1<c0<c2,即M a0A b0T c0初始合金熔体中T元素含量高于M a1A b1T c1弥散颗粒相中的T元素含量,同时低于A b2T c2基体相中T元素的含量;
    所述的由内生合金粉与包覆体构成的金属材料,通过合金熔体凝固制备,其构成包括初始合金凝固过程中内生析出的弥散颗粒相与包覆弥散颗粒的基体相,两者分别对应于所述内生合金粉与所述包覆体;所述内生合金粉的元素组成主要为M a1A b1T c1,所述包覆体的元素组成主要为A b2T c2
    所述M与A均包含一种或多种金属元素,T为包括氧元素在内的杂质元素,a1,b1,c1,b2,c2分别代表相应元素组成的原子百分比含量,且a1+b1+c1=100%,b2+c2=100%,c2>c1>0,b1>0;所述内生合金粉的熔点高于所述包覆体的熔点;所述内生合金粉M a1A b1T c1中固溶有A元素;所述M与所述A之间包含一组或多组不形成金属间化合物的M 1-A 1元素组合,其中,M 1代表M中的任意一种元素,A 1代表A中的任意一种元素,且M中的主体元素由满足M 1-A 1元素组合条件的各M 1元素构成,A中的主体元素由满足M 1-A 1元素组合条件的各A 1元素构成,使得所述由内生合金粉与包覆体构成的金属材料完全熔化后重新凝固仍不生成由M中主体元素与A中主体元素组成的金属间化合物,而是生成所述内生合金粉M a1A b1T c1与所述包覆体A b2T c2
  2. 根据权利要求1所述的一种由内生合金粉与包覆体构成的金属材料的制备方法,其特征在于,所述由内生合金粉与包覆体构成的金属材料的形状与凝固方式相关:当凝固方式为连续铸造时,其形状一般主要为板条状;当凝固方式为熔体甩带时,其形状一般主要为条带状或薄板状;当凝固方式为熔体抽拉时,其形状一般主要为丝状。
  3. 根据权利要求1所述的一种由内生合金粉与包覆体构成的金属材料的制备方法,其特征在于,所述T为包含O在内的O、H、N、P、S、F、Cl元素,且0<c1≤1.5%。
  4. 根据权利要求1所述的一种由内生合金粉与包覆体构成的金属材料的制备方法,其特征在于,所述M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti、Fe、Co、Ni、Mn、Cu、Ag中的 至少一种,A包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Mg、Ca、Li、Na、K、In、Pb、Zn中的至少一种。
  5. 根据权利要求1所述的一种由内生合金粉与包覆体构成的金属材料的制备方法,其特征在于,所述M包括Ir、Ru、Re、Os、Tc、W、Cr、Mo、V、Ta、Nb中的至少一种,A包括Cu。
  6. 根据权利要求5所述的一种由内生合金粉与包覆体构成的金属材料的制备方法,其特征在于,所述内生合金粉与包覆体构成的金属材料为厚度为10μm~5mm的由内生合金粉与包覆体构成的金属材料条带,所包含内生合金粉的粒径范围为3nm~200μm。
  7. 根据权利要求1所述的一种由内生合金粉与包覆体构成的金属材料的制备方法,其特征在于,0<b1≤15%。
  8. 根据权利要求1所述的一种由内生合金粉与包覆体构成的金属材料的制备方法,其特征在于,所述内生合金粉中的单晶颗粒数目在所有颗粒数目中的占比不低于60%。
  9. 根据权利要求1所述的一种由内生合金粉与包覆体构成的金属材料的制备方法,其特征在于,所述M a0A b0T c0初始合金熔体通过包含第一原料与第二原料的合金原料熔炼而成;其中,第一原料的主要元素组成为M d1T e1,第二原料的主要元素组成为A d2T e2,d1,e1,d2,e2分别代表相应元素组成的原子百分比含量,且0<e1≤10%,0<e2≤10%,d1+e1=100%,d2+e2=100%。
  10. 根据权利要求9所述的一种由内生合金粉与包覆体构成的金属材料的制备方法,其特征在于,所述内生M a1A b1T c1合金粉中T杂质含量相比M d1T e1原料得到了极大的降低,即c1小于e1。
  11. 根据权利要求9所述的一种由内生合金粉与包覆体构成的金属材料的制备方法,其特征在于,所述内生合金粉与包覆体构成的金属材料中,内生M a1A b1T c1合金粉的体积百分数与原料配制时M d1T e1原料的体积百分含量相当。
  12. 根据权利要求1所述的一种由内生合金粉与包覆体构成的金属材料的制备方法,其特征在于,所述内生合金粉在所述由内生合金粉与包覆体构成的金属材料中的体积百分比含量下限为1%,上限为满足所述内生合金粉可以弥散分布于所述包覆体中对应的体积百分比含量。
  13. 根据权利要求1所述的一种由内生合金粉与包覆体构成的金属材料的制备方法,其特征在于,所述内生合金粉在所述由内生合金粉与包覆体构成的金属材料中的体积百分比含量范围为1%~50%。
  14. 一种合金粉的制备方法,其特征在于,通过去除权利要求1-13任一项所述方法制备的由内生合金粉与包覆体构成的金属材料中的包覆体部分,同时保留不能被同时去除的内生合金粉制备。
  15. 根据权利要求14所述的一种合金粉的制备方法,其特征在于,去除所述包覆体并保留内生合金粉的方法包括酸溶液溶解反应去除、碱溶液溶解反应去除、真空挥发去除、包覆体自然氧化-粉化去除中的至少一种。
  16. 根据权利要求14所述的一种合金粉的制备方法,其特征在于,所述M包含Fe,所述A包含La,所述内生合金粉与包覆体构成的金属材料为内生Fe合金粉与La包覆体构成的金属条带,内生Fe合金粉中固溶有La;通过La包覆体的自然氧化-粉化,使内生Fe合金粉与基体La的氧化物粉预分离,通过Fe合金粉的磁性特性,利用磁场将Fe合金粉与基体La的氧化物分离。
  17. 根据权利要求14所述的一种合金粉的制备方法,其特征在于,所述合金粉的颗粒大小范围为3nm~10mm。
  18. 一种球形或近球形合金粉的制备方法,其特征在于,将权利要求14所述合金粉进行等离子球化处理,即得到球形或近球形的合金粉。
  19. 根据权利要求18所述的一种球形或近球形合金粉的制备方法,其特征在于,在等离子球化处理之前对所选颗粒进行气流磨预破碎处理或(和)筛分处理。
  20. 一种由内生合金粉与包覆体构成的金属材料,其特征在于,通过权利要求1-13任一项所述的内生合金粉与包覆体构成的金属材料的制备方法制备而成。
  21. 一种合金粉,其特征在于,通过权利要求14所述的合金粉的制备方法制备而成。
  22. 一种球形或近球形合金粉,其特征在于,通过权利要求18所述的球形或近球形合金粉的制备方法制备而成。
  23. 一种由内生合金粉与包覆体构成的金属材料在涂料、复合材料中的应用,其特征在于,所述内生合金粉与包覆体构成的金属材料通过权利要求1-13任一项所述的内生合金粉与包覆体构成的金属材料的制备方法制备而成。
  24. 根据权利要求23所述的一种由内生合金粉与包覆体构成的金属材料在涂料、复合材料中的应用,其特征在于,制备出由内生合金粉与包覆体构成的金属材料之后,并不急于将包覆体去除后再想其它办法保护内生合金粉不被氧等杂质污染,而是直接利用包覆体保护内生合 金粉;这种由内生合金粉与包覆体构成的金属材料可以直接作为下游生产的原料;下游生产需要使用内生合金粉时,可以根据下一工序的特点,选择合适的时机并在合适的环境下将内生合金粉释放,再在尽可能短的时间使释放出来的内生合金粉进入下一生产流程,从而使合金粉受到污染的机会大大减少。
  25. 根据权利要求23所述的一种由内生合金粉与包覆体构成的金属材料在涂料、复合材料中的应用,其特征在于,选择内生合金粉平均粒度低于1000nm的由内生合金粉与包覆体构成的金属材料,将包覆体去除;包覆体去除同时或去除后马上将所得合金粉与涂料或复合材料其它组分混合,以降低因合金粉表面裸露后粉末表面或表层新引入的包括O在内的杂质含量,获得表面高活性的合金粉并使涂料或复合材料其它组分与合金粉表面在原子尺度发生良好的结合,从而获得添加有高纯超细高活性合金粉的涂料或复合材料,可应用于包括抗菌涂料、耐候涂料、隐身涂料、吸波涂料、耐磨涂料、防腐涂料、树脂基复合材料在内的各个领域。
  26. 一种合金粉在粉末冶金、金属注射成型、磁性材料、涂料中的应用,其特征在于,所述合金粉通过权利要求14所述的一种合金粉的制备方法制备而成。
  27. 一种合金粉在催化、杀菌、金属粉3D打印、复合材料中的应用,其特征在于,所述合金粉通过权利要求14所述的一种合金粉的制备方法制备而成。
  28. 一种球形或近球形合金粉在粉末冶金、金属注射成型、金属粉3D打印中的应用,其特征在于,所述球形或近球形合金粉通过权利要求18所述的一种球形或近球形合金粉的制备方法制备而成。
  29. 一种由内生合金粉与包覆体构成的金属材料,其特征在于,通过合金熔体凝固制备,其构成包括初始合金凝固过程中内生析出的弥散颗粒相与包覆弥散颗粒的基体相,两者分别对应于所述内生合金粉与所述包覆体;所述内生合金粉的元素组成主要为M a1A b1T c1,所述包覆体的元素组成主要为A b2T c2,其中M与A均包含一种或多种金属元素,T为包括氧元素在内的杂质元素,a1,b1,c1,b2,c2分别代表相应元素组成的原子百分比含量,且a1+b1+c1=100%,b2+c2=100%,c2>c1>0,b1>0;所述内生合金粉的熔点高于所述包覆体的熔点;所述内生合金粉M a1A b1T c1中固溶有A元素;所述M与所述A之间包含一组或多组不形成金属间化合物的M 1-A 1元素组合,其中,M 1代表M中的任意一种元素,A 1代表A中的任意一种元素,且M中的主体元素由满足M 1-A 1元素组合条件的各M 1元素构成,A中的主体元素由满足M 1-A 1元素组合条件的各A 1元素构成,使得所述由内生合金粉与包覆体构成的金属材料完全熔化后重新凝固仍不生成由M中主体元素与A中主体元素组成的金属间化合物,而是生成所述内生 合金粉M a1A b1T c1与所述包覆体A b2T c2
  30. 根据权利要求29所述的一种由内生合金粉与包覆体构成的金属材料,其特征在于,所述M包含W、Cr、Mo、V、Ta、Nb、Zr、Hf、Ti、Fe、Co、Ni、Mn、Cu、Ag中的至少一种,A包含Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Mg、Ca、Li、Na、K、In、Pb、Zn中的至少一种,所述T为包含O在内的O、H、N、P、S、F、Cl等杂质元素,且0<c1≤1.5%,0<b1≤15%。
  31. 一种合金粉,通过去除权利要求29-30任一项所述的由内生合金粉与包覆体构成的金属材料中的包覆体制备,其特征在于,其元素组成主要为M a3A b3T c3,a3,b3,c3分别代表相应元素组成的原子百分比含量,b3>0,a3+b3+c3=100%,且所述合金粉中的T元素含量高于权利要求29-30任一项所述的内生合金粉中的T元素含量,即c3>c1>0。
  32. 一种球形或近球形合金粉,其特征在于,将权利要求31所述的合金粉进行等离子球化处理,即得到球形或近球形的合金粉。其特征在于,其元素组成主要为M a4A b4T c4,a4,b4,c4分别代表相应元素组成的原子百分比含量,b4>0,a4+b4+c4=100%,且所述球形或近球形合金粉中的T元素含量高于未等离子球化处理合金粉中的T元素含量,即c4>c3>c1>0。
  33. 一种由内生合金粉与包覆体构成的金属材料的制备方法,其特征在于,通过如下步骤制备:
    (1)熔炼主要元素组成为M a0A b0T c0的初始合金熔体,其中M与A均包含一种或多种金属元素,T为包括氧元素在内的杂质元素,a0、b0、c0代表对应组成元素的原子百分比含量,a0+b0+c0=100%,0<c0;所述M元素与所述A元素之间包含一组或多组不形成金属间化合物的M 1-A 1元素组合,其中,M 1代表M中的任意一种元素,A 1代表A中的任意一种元素;且M中的主体元素由满足M 1-A 1元素组合条件的各M 1元素构成,A中的主体元素由满足M 1-A 1元素组合条件的各A 1元素构成;
    (2)将所述M a0A b0T c0初始合金熔体凝固成固态,得到从熔体中内生析出的M a1A b1T c1弥散颗粒相与包覆弥散颗粒的A b2T c2基体相,其即为权利要求29-30任一项所述的由内生合金粉与包覆体构成的金属材料,其中,0<c1<c0<c2。
  34. 根据权利要求33所述的一种由内生合金粉与包覆体构成的金属材料的制备方法,其特征在于,所述M a0A b0T c0初始合金熔体通过包含第一原料与第二原料的合金原料熔炼而成;其中,第一原料的主要元素组成为M d1T e1,第二原料的主要元素组成为A d2T e2,d1,e1,d2,e2分别代表相应元素组成的原子百分比含量,且0<e1≤10%,0<e2≤10%,d1+e1=100%,d2+e2=100%。
  35. 一种合金粉的制备方法,其特征在于,通过去除权利要求29-30任一项所述的由内生合金粉与包覆体构成的金属材料中的包覆体部分,同时保留不能被同时去除的内生合金粉制备。
  36. 根据权利要求31所述的合金粉,或权利要求35所述的制备方法制得的合金粉在粉末冶金、金属注射成型、磁性材料、涂料中的应用。
  37. 根据权利要求32所述的球形或近球形合金粉在粉末冶金、金属注射成型、金属粉3D打印中的应用。
  38. 根据权利要求29-30任一项所述的由内生合金粉与包覆体构成的金属材料,或权利要求33-34任一项所述的制备方法制得的由内生合金粉与包覆体构成的金属材料在涂料、复合材料中的应用。
PCT/CN2021/120572 2020-09-30 2021-09-26 一类合金粉及其制备方法与用途 WO2022068710A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
BR112023005810A BR112023005810A2 (pt) 2020-09-30 2021-09-26 Liga em pó, método de preparação para a mesma e uso para a mesma
US18/029,572 US20230364677A1 (en) 2020-09-30 2021-09-26 Alloy powder, preparation method therefor, and use therefor
KR1020237014885A KR20230098581A (ko) 2020-09-30 2021-09-26 합금 분말 및 이의 제조방법과 용도
MX2023003660A MX2023003660A (es) 2020-09-30 2021-09-26 Polvo de aleacion, metodo de preparacion y uso.
CN202180064613.XA CN116367938A (zh) 2020-09-30 2021-09-26 一类合金粉及其制备方法与用途
EP21874370.6A EP4223436A1 (en) 2020-09-30 2021-09-26 Alloy powder, preparation method therefor, and use thereof
AU2021354564A AU2021354564A1 (en) 2020-09-30 2021-09-26 Alloy powder, preparation method therefor, and use thereof
IL301708A IL301708A (en) 2020-09-30 2021-09-26 Alloy powder, its preparation method and its use
CA3194475A CA3194475A1 (en) 2020-09-30 2021-09-26 Alloy powder, preparation method therefor, and use therefor
JP2023519406A JP2023544559A (ja) 2020-09-30 2021-09-26 合金粉末、及び、その製造方法、並びに、用途
ZA2023/04438A ZA202304438B (en) 2020-09-30 2023-04-14 Alloy powder, preparation method therefor, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011069507 2020-09-30
CN202011069507.4 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022068710A1 true WO2022068710A1 (zh) 2022-04-07

Family

ID=78494365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120572 WO2022068710A1 (zh) 2020-09-30 2021-09-26 一类合金粉及其制备方法与用途

Country Status (12)

Country Link
US (1) US20230364677A1 (zh)
EP (1) EP4223436A1 (zh)
JP (1) JP2023544559A (zh)
KR (1) KR20230098581A (zh)
CN (2) CN116367938A (zh)
AU (1) AU2021354564A1 (zh)
BR (1) BR112023005810A2 (zh)
CA (1) CA3194475A1 (zh)
IL (1) IL301708A (zh)
MX (1) MX2023003660A (zh)
WO (1) WO2022068710A1 (zh)
ZA (1) ZA202304438B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113684456A (zh) * 2021-08-25 2021-11-23 湖南稀土金属材料研究院有限责任公司 La-Ti合金靶及其制备方法
CN115958192A (zh) * 2023-01-09 2023-04-14 东北大学 一种高效抗菌的高熵合金纳米颗粒及其制备方法与应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023142563A1 (zh) * 2022-01-25 2023-08-03 赵远云 一种球形铁合金粉体材料及其制备方法与用途
WO2023142251A1 (zh) * 2022-01-25 2023-08-03 赵远云 一种球形铁合金粉体材料及其制备方法与用途
CN114951647A (zh) * 2022-05-31 2022-08-30 安徽安坤新材科技有限公司 一种铜铝复合材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406251A (zh) * 2015-03-18 2017-11-28 斐源有限公司 金属氧化物粒子以及其制造方法
CN111590084A (zh) * 2019-02-21 2020-08-28 刘丽 一种金属粉体材料的制备方法
CN112143926A (zh) * 2019-11-28 2020-12-29 刘丽 一种含铝合金粉体的制备方法及其应用及一种合金条带
CN112207285A (zh) * 2020-03-12 2021-01-12 赵远云 粉体材料的制备方法及其应用
CN112276101A (zh) * 2020-08-19 2021-01-29 赵远云 一种高纯粉体材料的制备方法及其应用及一种合金条带
CN112404445A (zh) * 2020-08-19 2021-02-26 赵远云 高纯粉体材料的制备方法及其应用及一种双相粉体材料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103317141B (zh) * 2013-06-17 2015-04-22 中国科学院宁波材料技术与工程研究所 一种金属纳米颗粒的制备方法
CN106811750B (zh) * 2015-11-30 2019-04-19 中国科学院宁波材料技术与工程研究所 一种纳米多孔金属颗粒及其制备方法
CN106917090B (zh) * 2015-12-28 2019-02-19 中国科学院宁波材料技术与工程研究所 一种纳米多孔mn金属薄膜的制备方法及其应用
CN108479799B (zh) * 2018-02-12 2021-09-21 嘉兴长维新材料科技有限公司 一种原位负载型泡沫微孔贵金属催化剂及其制备方法
CN111334682B (zh) * 2020-03-12 2020-12-29 东莞理工学院 一种纳米多孔金属粉末及其制备方法
CN111634938B (zh) * 2020-06-16 2021-11-09 东莞理工学院 一种纳米多孔粉体材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406251A (zh) * 2015-03-18 2017-11-28 斐源有限公司 金属氧化物粒子以及其制造方法
CN111590084A (zh) * 2019-02-21 2020-08-28 刘丽 一种金属粉体材料的制备方法
CN112143926A (zh) * 2019-11-28 2020-12-29 刘丽 一种含铝合金粉体的制备方法及其应用及一种合金条带
CN112207285A (zh) * 2020-03-12 2021-01-12 赵远云 粉体材料的制备方法及其应用
CN112276101A (zh) * 2020-08-19 2021-01-29 赵远云 一种高纯粉体材料的制备方法及其应用及一种合金条带
CN112404445A (zh) * 2020-08-19 2021-02-26 赵远云 高纯粉体材料的制备方法及其应用及一种双相粉体材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. PHYS CHEM C., vol. 113, 2009, pages 12629 - 12636

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113684456A (zh) * 2021-08-25 2021-11-23 湖南稀土金属材料研究院有限责任公司 La-Ti合金靶及其制备方法
CN115958192A (zh) * 2023-01-09 2023-04-14 东北大学 一种高效抗菌的高熵合金纳米颗粒及其制备方法与应用

Also Published As

Publication number Publication date
JP2023544559A (ja) 2023-10-24
MX2023003660A (es) 2023-04-26
CA3194475A1 (en) 2022-04-07
CN113649565A (zh) 2021-11-16
KR20230098581A (ko) 2023-07-04
US20230364677A1 (en) 2023-11-16
BR112023005810A2 (pt) 2023-05-02
AU2021354564A1 (en) 2023-06-08
IL301708A (en) 2023-05-01
CN116367938A (zh) 2023-06-30
ZA202304438B (en) 2023-10-25
EP4223436A1 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
WO2022068710A1 (zh) 一类合金粉及其制备方法与用途
CN112207285B (zh) 粉体材料的制备方法及其应用
WO2022036938A1 (zh) 高纯粉体材料的制备方法及其应用及一种双相粉体材料
WO2022036906A1 (zh) 一种高纯粉体材料的制备方法及其应用及一种合金条带
JP7365735B2 (ja) アルミニウム含有合金粉末の製造方法及びその使用、ならびに合金リボン
CN111940750B (zh) 一种合金粉体材料的制备方法
US11858047B2 (en) Preparation method of metal powder material
CN116056819A (zh) 一种包含贵金属元素的粉体材料的制备方法及其应用
WO2022100656A1 (zh) 一种含铝合金粉体的制备方法及其应用及一种合金条带
KR101309516B1 (ko) 자성 비정질 금속 나노 파우더 제조방법
WO2023142251A1 (zh) 一种球形铁合金粉体材料及其制备方法与用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874370

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2021354564

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2023519406

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3194475

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023005810

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 799433

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 112023005810

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230329

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021874370

Country of ref document: EP

Effective date: 20230502

ENP Entry into the national phase

Ref document number: 2021354564

Country of ref document: AU

Date of ref document: 20210926

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 523440057

Country of ref document: SA