WO2021253652A1 - 一种汽车制动器总成质量追溯方法 - Google Patents

一种汽车制动器总成质量追溯方法 Download PDF

Info

Publication number
WO2021253652A1
WO2021253652A1 PCT/CN2020/114958 CN2020114958W WO2021253652A1 WO 2021253652 A1 WO2021253652 A1 WO 2021253652A1 CN 2020114958 W CN2020114958 W CN 2020114958W WO 2021253652 A1 WO2021253652 A1 WO 2021253652A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
brake assembly
plc
code
assembly
Prior art date
Application number
PCT/CN2020/114958
Other languages
English (en)
French (fr)
Inventor
贺强
李亮
邵立
王荣
Original Assignee
南京翱翔信息物理融合创新研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京翱翔信息物理融合创新研究院有限公司 filed Critical 南京翱翔信息物理融合创新研究院有限公司
Publication of WO2021253652A1 publication Critical patent/WO2021253652A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/28Databases characterised by their database models, e.g. relational or object models
    • G06F16/284Relational databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10821Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
    • G06K7/10861Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices sensing of data fields affixed to objects or articles, e.g. coded labels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the invention relates to the technical field of digital workshops, in particular to a method for tracing the quality of an automobile brake assembly.
  • one of the objectives of the present invention is to provide a method for tracing the quality of automobile brake assembly, which realizes the automatic collection of assembly process data and the automatic establishment of the association relationship between material batches, and reduces the production line.
  • step S10 preparing brake assembly parts materials, placing each material on the corresponding station, manually scanning the corresponding QR code data on the bearing, the circlip, and the PLC storing the material two-dimensional code data.
  • S20 Assemble the brake assembly, start the semi-automatic production line of the brake assembly, and assemble the brake assembly.
  • the assembly parameters during the assembly process of the brake assembly and the material batch data transmitted by the code scanner are automatically collected through PLC technology, and the relationship between the material batch, assembly parameters and the brake assembly is established according to the pallet RFID, and the data is finally stored in Relational database.
  • the brake assembly is traced forward.
  • the brake assembly is assembled, when you need to check the material composition relationship and assembly process parameters of a certain brake assembly, scan the QR code marked on the brake assembly and search for the relationship type
  • the data shows the assembly parameters and material batch composition relationship of the assembly.
  • the automatic collection of process parameters during the assembly process of the brake assembly and the scan code acquisition of material batch data are realized by the use of PLC technology; the establishment of the material batch relationship between the brake assembly and the parts is realized by the use of RFID technology , The relationship between the brake assembly and the assembly process parameters is established.
  • the material batch composition of the brake assembly can be inquired, and the material ratio problem can be realized. And design error issues for precise assembly recall.
  • the present invention can be further configured as: the step S20 further includes the following steps.
  • the pallet moves to the second station along with the production line, the RFID reader on the second station assigns the RFID tag on the pallet, and uses the current year, month, day, hour, minute, and second as the RFID value.
  • the RFID value in a station data table is supplemented.
  • the bearing is installed, the pallet moves to the third station along with the production line, the RFID reader on the third station reads the RFID tag value on the pallet, the station completes the automatic feeding of the bearing unit and presses it into
  • the PLC is responsible for collecting the press-in force and displacement of the press-fitted bearing unit, and stores the press-in force, displacement, RFID tag value, and the recorded two-dimensional code of the bearing unit in the third station data table through the PLC.
  • the circlip is installed, the pallet moves to the fourth station along with the production line, the RFID reader on the fourth station reads the RFID tag value on the pallet, and the station completes the automatic feeding of the circlip and presses it into
  • the PLC is responsible for collecting the press-in force and displacement of the press-fit circlip, and stores the press-in force, displacement, RFID tag value, and the recorded two-dimensional code of the circlip in the fourth station data table through the PLC.
  • the wheel hub is installed, the pallet is moved to the fifth station along the production line, and the QR code of the wheel hub unit is manually scanned and placed in the press-fitting position.
  • the RFID reader on the fifth station reads the value of the RFID tag on the pallet.
  • the press-fitting machine at this station automatically completes the press-fitting of the hub unit.
  • the PLC is responsible for collecting the press-fitting force and displacement of the press-fitting hub unit through the PLC. Store the pressing force, displacement, RFID tag value, and two-dimensional code of the wheel hub unit in the fifth station data table.
  • PLC is responsible for collecting the tightening force of the tightening machine, and stores the tightening force, RFID tag value, brake disc QR code, and cross recessed countersunk head screw QR code into the sixth station data table through PLC.
  • the caliper parts are installed, the tray moves to the seventh station along with the production line, the RFID reader on the seventh station reads the RFID tag value on the tray, and the bracket connection screw is tightened manually through the tightening machine, and the PLC is responsible for collecting and tightening
  • the tightening force of the machine, the tightening force, the RFID tag value, the QR code of the caliper parts, and the QR code of the bracket connection screw are stored in the seventh station data table through the PLC.
  • the pallet moves with the production line to the eighth station, the RFID reader on the eighth station reads the RFID tag value on the pallet, and the laser marking machine performs the QR code on the fender
  • the assembly QR code and RFID are stored on the eighth station table through the PLC, and the first station, the third station, the fourth station, the fifth station, the sixth station, and the The two-dimensional code data of the assembly in the data table of the seventh station and the eighth station are completed.
  • the RFID reader at each station reads the RFID tag value on the pallet, and writes it into the database together with the assembly parameter value, material code, and RFID tag value of the station, and the PLC controls the assembly
  • Each data is accurately detected and stored at all times, and the data is complete and highly accurate, which is conducive to the forward and reverse retrospective search when there are problems in the later period.
  • the present invention can be further configured as follows: after the step S28, the following steps are further included.
  • the pallet moves with the production line to the ninth station
  • the RFID reader on the eighth station reads the RFID tag value on the pallet
  • the disc jump detection device detects the brake disc
  • the PLC is responsible for collecting the pressure disc jump detection
  • the disk jump amount and starting torque are stored in the ninth station data table through the PLC.
  • the present invention can be further configured as: the step S291 further includes the following steps: when the PLC collects the disc jump amount and the starting torque obtained by the pressure disc jump detection, it compares with the rated value set in the PLC When it exceeds the qualified range, it will display the unqualified in the eighth station data table; the step S292 also includes the following steps: when the PLC collects the drag torque, it compares with the rated value set in the PLC, when When it exceeds the qualified range, it will display the unqualified in the eighth station data table.
  • the detected data is compared with the benchmark data in real time to determine whether the finished product meets the requirements, and the assembly parameters can be used to evaluate the quality of the system to a certain extent, and the assembly parameters can be optimized to reduce defects.
  • the number of qualified products further reduces maintenance costs.
  • the present invention can be further configured as: the PLC is connected with an alarm device.
  • the alarm device will give an alarm, so as to facilitate the staff to classify the finished product in time, and find the finished product that does not meet the testing requirements as soon as possible .
  • the present invention can be further configured as follows: the tray in step S20 includes a base and a turntable, the upper surface of the base is provided with a rotating groove that is compatible with the turntable, and the rotating set of the turntable and the rotating groove Inside.
  • the turntable can be rotated along its length in the rotating slot.
  • the turntable can be turned to facilitate the personnel to pick and place the product. , In order to improve the work efficiency of personnel.
  • the present invention can be further configured as: a drive motor is installed in the base, a rack is fixedly provided on the outer side wall of the turntable, and the length of the rack is arranged along the circumferential direction of the turntable, so The rotating shaft of the driving motor is fixedly connected with gears that mesh with the rack.
  • the gears are driven to rotate by the drive motor, and then the turntable is automatically rotated in the rotating groove.
  • the turntable automatically rotates, so that there is no need to manually rotate the turntable frequently, reducing manpower.
  • the bottom wall of the base is provided with a convex pattern.
  • the relief increases the coefficient of friction at the bottom of the base.
  • the present invention includes at least one of the following beneficial technical effects.
  • the assembly data generated on the production line and the QR code information read by the code scanning gun are collected through PLC technology, and then the PLC data is passed to the data processing layer through OPC communication technology; then, the data processing layer processes the discrete data and passes the overall Establish the relationship between material batches, assembly parameters and assembly into two-dimensional code and RFID tag value, and store the data in a relational database; finally, based on the constructed relational data, realize the positive and negative quality traceability of the brake assembly, It realizes the automatic collection of assembly process data and the automatic establishment of the association relationship between material batches, reduces the workload of manual data input by production line employees and avoids data input errors, ensures the accuracy of data, and clarifies quality problems and reduces The scope of the recall is reduced, and the effect of further reducing the repair cost of the enterprise is achieved.
  • Fig. 1 is a system schematic diagram of a method for tracing the quality of an automobile brake assembly in an embodiment.
  • Figure 2 is a schematic diagram showing the structure of the tray in the embodiment.
  • FIG. 1 is a method for tracing the quality of an automobile brake assembly disclosed in the present invention. Referring to FIG. 1, it includes.
  • Step S10 prepare brake assembly parts materials, pre-assemble 100 brake assemblies, and complete corresponding materials, except that the steering knuckle materials are divided into two material batches with 50 parts each, and the other materials are all in one batch.
  • Place each material on the corresponding station install the rotary bearing unit on the silo of the third station, and install the circlip on the silo of the fourth station.
  • step S20 the brake assembly is assembled, and the semi-automatic production line of the brake assembly is started to perform the assembly of the brake assembly.
  • the step S20 also includes the following steps.
  • the pallet moves to the second station along with the production line, the RFID reader on the second station assigns the RFID tag on the pallet, and uses the current year, month, day, hour, minute, and second as the RFID value.
  • the RFID value in a station data table is supplemented.
  • the bearing is installed, the pallet moves to the third station along with the production line, the RFID reader on the third station reads the RFID tag value on the pallet, the station completes the automatic feeding of the bearing unit and presses it into
  • the PLC is responsible for collecting the press-in force and displacement of the press-fitted bearing unit, and stores the press-in force, displacement, RFID tag value, and the recorded two-dimensional code of the bearing unit in the third station data table through the PLC.
  • the circlip is installed, the pallet moves to the fourth station along with the production line, the RFID reader on the fourth station reads the RFID tag value on the pallet, and the station completes the automatic feeding of the circlip and presses it into
  • the PLC is responsible for collecting the press-in force and displacement of the press-fit circlip, and stores the press-in force, displacement, RFID tag value, and the recorded two-dimensional code of the circlip in the fourth station data table through the PLC.
  • the wheel hub is installed, the pallet is moved to the fifth station along the production line, and the QR code of the wheel hub unit is manually scanned and placed in the press-fitting position.
  • the RFID reader on the fifth station reads the value of the RFID tag on the pallet.
  • the press-fitting machine at this station automatically completes the press-fitting of the hub unit.
  • the PLC is responsible for collecting the press-fitting force and displacement of the press-fitting hub unit through the PLC. Store the pressing force, displacement, RFID tag value, and two-dimensional code of the wheel hub unit in the fifth station data table.
  • PLC is responsible for collecting the tightening force of the tightening machine, and stores the tightening force, RFID tag value, brake disc QR code, and cross recessed countersunk head screw QR code into the sixth station data table through PLC.
  • the caliper parts are installed, the tray moves to the seventh station along with the production line, the RFID reader on the seventh station reads the RFID tag value on the tray, and the bracket connection screw is tightened manually through the tightening machine, and the PLC is responsible for collecting and tightening
  • the tightening force of the machine, the tightening force, the RFID tag value, the QR code of the caliper parts, and the QR code of the bracket connection screw are stored in the seventh station data table through the PLC.
  • the pallet moves with the production line to the eighth station, the RFID reader on the eighth station reads the RFID tag value on the pallet, and the laser marking machine performs the QR code on the fender
  • the assembly QR code and RFID are stored on the eighth station table through the PLC, and the first station, the third station, the fourth station, the fifth station, the sixth station, and the The two-dimensional code data of the assembly in the seven-station and eight-station data tables are complemented.
  • the assembly parameter values, material codes, and RFID tag values of each station are written into the database together, and the PLC performs various data during assembly. Accurate detection and storage, complete data and high accuracy.
  • the pallet moves with the production line to the ninth station
  • the RFID reader on the eighth station reads the RFID tag value on the pallet
  • the disc jump detection device detects the brake disc
  • the PLC is responsible for collecting the pressure disc jump detection
  • the amount of disc jump and the starting torque are stored in the ninth station data table through the PLC.
  • the PLC collects the amount of disc jump and the starting torque obtained by the pressure plate jump detection, it will be compared with the rated value set in the PLC. The value is compared, and when it exceeds the qualified range, it will display the unqualified in the eighth station data table.
  • the PLC is connected with an alarm device, which is a buzzer.
  • an alarm device which is a buzzer. During the basic inspection of the assembled brake, if a product is found to be unqualified, the alarm device will give an alarm, so that the staff can classify the finished product in time.
  • the tray 1 in step S20 includes a base 11 and a turntable 12.
  • the base 11 is placed on a conveyor belt in the production line.
  • the upper surface of the base 11 is provided with a rotating groove 111 that is compatible with the turntable 12, and the turntable 12 is rotated.
  • the rotating disk 12 can rotate in the rotating groove 111 along its circumferential direction; the outer side wall of the rotating disk 12 is integrally provided with a rack 3, the length of the rack 3 is arranged along the circumferential direction of the rotating disk 12, and the base 11
  • the drive motor 2 is fixedly installed inside, and the rotating shaft of the drive motor 2 is fixedly connected with a gear 21 that meshes with the rack 3.
  • the gear 21 is driven to rotate by the drive motor 2, thereby driving the turntable 12 to automatically rotate in the slot 111.
  • the turntable 12 automatically rotates, which is convenient for the staff at the work station to pick and place the products on the tray 1 for operation, so as to improve the work efficiency of the staff.
  • the bottom wall of the base 11 is integrally provided with a relief 4, which increases the coefficient of friction at the bottom of the base 11, and the tray 1 is more stable when it moves on the conveyor belt.
  • the implementation principle of this embodiment is: the assembly data generated on the production line and the two-dimensional code information read by the code scanning gun are collected through PLC technology, and then the PLC data is transferred to the data processing layer through OPC communication technology; then, the data processing layer pairs Discrete data is processed, and the relationship between material batches, assembly parameters and assembly are established through assembly QR codes and RFID tag values, and the data is stored in a relational database; finally, based on the constructed relational data, the brake total is realized Cheng's forward and reverse quality traceability realizes the automatic collection of assembly process data and the automatic establishment of material batch association relationships, which reduces the workload of production line employees to manually input data, avoids data input errors, and ensures the accuracy of data , Thus clarifying the quality problem and reducing the scope of the recall, achieving the effect of further reducing the repair cost of the enterprise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Databases & Information Systems (AREA)
  • Strategic Management (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Data Mining & Analysis (AREA)
  • Automation & Control Theory (AREA)
  • Operations Research (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Primary Health Care (AREA)
  • Automatic Assembly (AREA)
  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)

Abstract

一种汽车制动器总成质量追溯方法,其包括包括步骤S10,准备制动器总成零部件物料;S20,装配制动器总成,启动制动器总成半自动化生产线,进行制动器总成装配。通过PLC技术自动采集制动器总成装配过程中的装配参数及由扫码枪传递的物料批次数据,依据托盘RFID建立物料批次、装配参数与制动器总成的关联关系,并最终将数据存储到关系型数据库中;S30,制动器总成正向追溯;S40,制动器总成反向追溯;实现了装配工艺数据的自动采集及物料批次关联关系的自动建立,减免了产线员工手工输入数据的工作量并避免了数据输入错误,保证了数据的准确性,从而明确了质量问题并降低了召回范围,达到进一步降低了企业的返修成本的效果。

Description

一种汽车制动器总成质量追溯方法 技术领域
本发明涉及数字化车间技术领域,尤其是涉及一种汽车制动器总成质量追溯方法。
背景技术
目前在在汽车制动器总成召回过程中,主要会存在以下三种召回情况:(1)由于材料配比问题,导致材料性能满足不了设计要求,需要对同批次的材料进行召回;(2)由于设计错误问题,导致零件设计尺寸不满足实际要求,需要修改零件尺寸,此时对已加工完的零件进行召回;(3)装配过程中的工艺参数不符合实际要求,需要精准定位工艺参数不符合的总成进行召回。
在传统的制动器总成装配过程中,人工操作设备完成制动器总成的装配,并未对装配工艺参数进行采集。在制动盘盘跳检测工序中通过千分表进行检测并由人眼进行评估,拖滞力矩检测工位中由拖滞力矩检测仪器对制动器总成进行检测,也由人为进行判定。由于人的主观因素,会将不合格要求的制动器总成当作合格品发货至客户,影响了产品的质量,客户在发现问题后,需要在对不合格的产品进行召回时,而对在对零件和产品之间的追溯关系时,追溯起来非常困难,无法实现对不符合要求的产品进行精确快速的召回,造成企业需要耗费巨大返修成本的现象,因此有待改善。
技术问题
针对现有技术存在的不足,本发明的目的之一是提供一种汽车制动器总成质量追溯方法,该方法实现了装配工艺数据的自动采集及物料批次关联关系的自动建立,减免了产线员工手工输入数据的工作量并避免了数据输入错误,保证了数据的准确性,从而明确了质量问题并降低了召回范围,达到进一步降低了企业的返修成本的优势。
技术解决方案
本发明的上述发明目的是通过以下技术方案得以实现的。
一种汽车制动器总成质量追溯方法。
包括步骤S10,准备制动器总成零部件物料,将各物料放置到对应工位上,人工扫码轴承、卡簧上对应的二维码数据以及PLC存储物料二维码数据。
S20,装配制动器总成,启动制动器总成半自动化生产线,进行制动器总成装配。通过PLC技术自动采集制动器总成装配过程中的装配参数及由扫码枪传递的物料批次数据,依据托盘RFID建立物料批次、装配参数与制动器总成的关联关系,并最终将数据存储到关系型数据库中。
S30,制动器总成正向追溯,当制动器总成装配完成后,需要查看某个制动器总成的物料组成关系及装配工艺参数时,扫码制动器总成上打标的二维码,通过搜索关系型数据显示该总成的装配参数及物料批次组成关系。
S40,制动器总成反向追溯,在质量追溯系统中输入该转向节的二维码,逆向搜索出所有由该转向节组成的制动器总成二维码;然后手持终端下载数据并扫码制动器总成标刻的二维码,进行比对判断该制动器总成是否未不良品,最终遏制不良制动器总成出货或者召回不良制动器总成。
通过采用上述技术方案,通过采用PLC技术实现制动器总成装配过程中工艺参数的自动采集及物料批次数据的扫码获取;采用RFID技术实现制动器总成与零部件之间的物料批次关系建立、制动器总成与装配工艺参数的关系建立,在完成数据采集的基础上,通过扫码制动器总成二维码,即可查询该制动器总成的物料批次组成,而实现由于材料配比问题及设计错误问题进行总成精准召回,通过扫码制动器总成二维码,查询该制动器总成在各工位的装配数据,从而实现由于装配工艺参数不符合要求进行精准召回,从而明确了质量问题并降低了召回范围,进一步降低了企业的返修成本。
本发明在一较佳示例中可以进一步配置为:所述步骤S20中还包括如下步骤。
S21,装挡泥板,人工在第一工位通过扫码枪扫码转向节、挡泥板、挡泥板连接螺钉二维码,并通过挡泥板连接螺钉将挡泥板拧紧在转向节上,PLC负责采集物料二维码数据、挡泥板连接螺钉拧紧力,并将数据存储在第一工位数据表中,装配后的制动器放置在托盘上,托盘随生产线继续移动。
S22,赋值RFID值,托盘随生产线移动至第二工位,第二工位上的RFID读写器对托盘上的RFID标签进行赋值,以当时年月日小时分秒作为RFID值,同时对第一工位数据表中的RFID值进行补充。
S23,装轴承,托盘随生产线移动至第三工位,第三工位上的RFID读写器读取托盘上的RFID标签值,该工位完成轴承单元的自动上料并将其压入至转向节内,PLC负责采集压装轴承单元的压入力、位移,通过PLC将压入力、位移、RFID标签值、同时将记录的轴承单元二维码存储到第三工位数据表。
S24,装卡簧,托盘随生产线移动至第四工位,第四工位上的RFID读写器读取托盘上的RFID标签值,该工位完成卡簧的自动上料并将其压入至转向节卡槽内,PLC负责采集压装卡簧的压入力、位移,通过PLC将压入力、位移、RFID标签值、同时将记录的卡簧二维码存储到第四工位数据表。
S25,装轮毂,装托盘随生产线移动至第五工位,人工扫码轮毂单元二维码并将其安放至压装位置。第五工位上的RFID读写器读取托盘上的RFID标签值,该工位上的压入机自动完成轮毂单元的压装,PLC负责采集压装轮毂单元的压入力、位移,通过PLC将压入力、位移、RFID标签值、轮毂单元二维码存储到第五工位数据表。
S26,压装制动盘,装托盘随生产线移动至第六工位,第六工位上的RFID读写器读取托盘上的RFID标签值,人工通过拧紧机完成十字槽沉头螺钉的拧紧,PLC负责采集拧紧机的拧紧力,通过PLC将拧紧力、RFID标签值、制动盘二维码、十字槽沉头螺钉二维码存储到第六工位数据表。
S27,装卡钳部件,托盘随生产线移动至第七工位,第七工位上的RFID读写器读取托盘上的RFID标签值,人工通过拧紧机完成支架连接螺钉的拧紧,PLC负责采集拧紧机的拧紧力,通过PLC将拧紧力、RFID标签值、卡钳部件二维码、支架连接螺钉二维码存储到第七工位数据表。
S28,二维码打标,托盘随生产线移动至第八工位,第八工位上的RFID读写器读取托盘上的RFID标签值,激光打标机在挡泥板上进行二维码打标,通过PLC将总成二维码、RFID存储到第八工位表上,同时对第一工位、第三工位、第四工位、第五工位、第六工位、第七工位和第八工位数据表中的总成二维码数据进行补全。
通过采用上述技术方案,各个工位上的RFID读写器读取托盘上的RFID标签值,并与该工位的装配参数值、物料编码、RFID标签值一起写入到数据库内,PLC对装配时各个数据进行精确的检测和存储,数据完善,精确度高,有利于后期出现问题时进行正反向追溯寻找。
本发明在一较佳示例中可以进一步配置为:所述步骤S28后还包括如下步骤。
S291,托盘随生产线移动至第九工位,第八工位上的RFID读写器读取托盘上的RFID标签值,盘跳检测装置对制动盘进行检测,PLC负责采集压盘跳检测的盘跳量、启动力矩,通过PLC将盘跳量、启动力矩存储到第九工位数据表中。
S292,人工将抽检的制动器总成搬运到第十工位,扫码总成制动器挡泥板上的二维码并进行拖滞力矩检测,PLC负责采集拖滞力矩,通过PLC将总成二维码、拖滞力矩存储到第十工位数据表中。
通过采用上述技术方案,采用随机抽检的方式去检查装配完后制动器的质量,并且将检测数据进行存储,便于后期正反向追溯时对数据进行搜索和对比。
本发明在一较佳示例中可以进一步配置为:所述步骤S291中还包括如下步骤:PLC在采集压盘跳检测得到的盘跳量和启动力矩时,与PLC中设定的额定值进行比较,当超出合格范围时,将显示不合格在第八工位数据表中;所述步骤S292中还包括如下步骤:PLC在采集拖滞力矩时,与PLC中设定的额定值进行比较,当超出合格范围时,将显示不合格在第八工位数据表中。
通过采用上述技术方案,将检测得到的数据与基准数据进行实时的比较对比,以判断成品是否符合要求,以通过装配参数在一定程度上去评估制度其总成的质量,通过优化装配参数去减少不合格产品的数量,进一步减少了检修成本。
本发明在一较佳示例中可以进一步配置为:所述PLC连接有报警装置。
通过采用上述技术方案,在对装配完的制动器进行基本检测时,如果发现检测不合格的产品,报警装置会进行报警,从而便于工作人员对成品进行及时分类,最快找到不满足检测要求的成品。
本发明在一较佳示例中可以进一步配置为:所述步骤S20中的托盘包括底座和转盘,所述底座的上表面开设有与转盘相互适配的转槽,所述转盘转动设置与转槽内。
通过采用上述技术方案,转盘可以在转槽内沿其长度方向转动,在生产线旁工位上的操作人员需要对托盘上不同的制动器拿取进行组装时,可以转动转盘,便于人员进行拿放产品,以提高人员的工作效率。
本发明在一较佳示例中可以进一步配置为:所述底座内安装有驱动电机,所述转盘的外侧壁上固定设置有齿条,所述齿条的长度方向沿转盘的圆周方向设置,所述驱动电机的转轴固定连接有与齿条相互啮合的齿轮。
通过采用上述技术方案,通过驱动电机带动齿轮转动,进而带动转盘自动在转槽内转动,当托盘随生产线移动时,转盘自动转动,这样无需人为来频繁的转动转盘,减少了人力。
本发明在一较佳示例中可以进一步配置为:所述底座的底壁上设置有凸纹。
通过采用上述技术方案,凸纹增大了底座底部的摩擦系数,将托盘放置在输送装置上移动时,底座更加稳定,托盘不易在输送装置上发生滑动,托盘在移动时更加稳定。
有益效果
综上所述,本发明包括以下至少一种有益技术效果。
通过 PLC技术采集生产线上产生的装配数据及扫码枪读取的二维码信息,接着通过 OPC通信技术将 PLC 数据传递给数据处理层;然后,数据处理层对离散的数据进行处理,通过总成二维码、RFID标签值建立物料批次关系、装配参数与总成关系,并将数据存储到关系型数据库;最后,基于构建的关系型数据,实现制动器总成的正反向质量追溯,实现了装配工艺数据的自动采集及物料批次关联关系的自动建立,减免了产线员工手工输入数据的工作量并避免了数据输入错误,保证了数据的准确性,从而明确了质量问题并降低了召回范围,达到进一步降低了企业的返修成本的效果。
附图说明
图1是实施例中一种汽车制动器总成质量追溯方法的系统示意图。
图2是用于体现实施例中托盘的结构示意图。
附图标记:1、托盘;11、底座;111、转槽;12、转盘;2、驱动电机;21、齿轮;3、齿条;4、凸纹。
本发明的最佳实施方式
以下结合附图对本发明作进一步详细说明。
参照图1,为本发明公开的一种汽车制动器总成质量追溯方法,参照图1,其包括。
步骤S10,准备制动器总成零部件物料,预装配100件制动器总成,配齐对应物料,除转向节物料分为两个物料批次各50件,其他物料均为一个批次。挡泥板、轴承单元、卡簧、轮毂单元、制动盘、卡钳部件均为100件,挡泥板连接螺钉、十字槽沉头螺钉、支架连接螺钉分别为300件、200件、200件。将各物料放置到对应工位上,在第三工位的料仓上装转轴承单元,第四工位的料仓上装卡簧。
步骤S20,装配制动器总成,启动制动器总成半自动化生产线,进行制动器总成装配,其中步骤S20中还包括如下步骤。
S21,装挡泥板,人工在第一工位通过扫码枪扫码转向节、挡泥板、挡泥板连接螺钉二维码,并通过挡泥板连接螺钉将挡泥板拧紧在转向节上,PLC负责采集物料二维码数据、挡泥板连接螺钉拧紧力,并将数据存储在第一工位数据表中,装配后的制动器放置在托盘上,托盘随生产线继续移动。
S22,赋值RFID值,托盘随生产线移动至第二工位,第二工位上的RFID读写器对托盘上的RFID标签进行赋值,以当时年月日小时分秒作为RFID值,同时对第一工位数据表中的RFID值进行补充。
S23,装轴承,托盘随生产线移动至第三工位,第三工位上的RFID读写器读取托盘上的RFID标签值,该工位完成轴承单元的自动上料并将其压入至转向节内,PLC负责采集压装轴承单元的压入力、位移,通过PLC将压入力、位移、RFID标签值、同时将记录的轴承单元二维码存储到第三工位数据表。
S24,装卡簧,托盘随生产线移动至第四工位,第四工位上的RFID读写器读取托盘上的RFID标签值,该工位完成卡簧的自动上料并将其压入至转向节卡槽内,PLC负责采集压装卡簧的压入力、位移,通过PLC将压入力、位移、RFID标签值、同时将记录的卡簧二维码存储到第四工位数据表。
S25,装轮毂,装托盘随生产线移动至第五工位,人工扫码轮毂单元二维码并将其安放至压装位置。第五工位上的RFID读写器读取托盘上的RFID标签值,该工位上的压入机自动完成轮毂单元的压装,PLC负责采集压装轮毂单元的压入力、位移,通过PLC将压入力、位移、RFID标签值、轮毂单元二维码存储到第五工位数据表。
S26,压装制动盘,装托盘随生产线移动至第六工位,第六工位上的RFID读写器读取托盘上的RFID标签值,人工通过拧紧机完成十字槽沉头螺钉的拧紧,PLC负责采集拧紧机的拧紧力,通过PLC将拧紧力、RFID标签值、制动盘二维码、十字槽沉头螺钉二维码存储到第六工位数据表。
S27,装卡钳部件,托盘随生产线移动至第七工位,第七工位上的RFID读写器读取托盘上的RFID标签值,人工通过拧紧机完成支架连接螺钉的拧紧,PLC负责采集拧紧机的拧紧力,通过PLC将拧紧力、RFID标签值、卡钳部件二维码、支架连接螺钉二维码存储到第七工位数据表。
S28,二维码打标,托盘随生产线移动至第八工位,第八工位上的RFID读写器读取托盘上的RFID标签值,激光打标机在挡泥板上进行二维码打标,通过PLC将总成二维码、RFID存储到第八工位表上,同时对第一工位、第三工位、第四工位、第五工位、第六工位、第七工位和第八工位数据表中的总成二维码数据进行补全,各个工位的装配参数值、物料编码、RFID标签值一起写入到数据库内,PLC对装配时各个数据进行精确的检测和存储,数据完善,精确度高。
所述S28后还包括如下步骤。
S291,托盘随生产线移动至第九工位,第八工位上的RFID读写器读取托盘上的RFID标签值,盘跳检测装置对制动盘进行检测,PLC负责采集压盘跳检测的盘跳量、启动力矩,通过PLC将盘跳量、启动力矩存储到第九工位数据表中,PLC在采集压盘跳检测得到的盘跳量和启动力矩时,与PLC中设定的额定值进行比较,当超出合格范围时,将显示不合格在第八工位数据表中。
S292,人工将抽检的制动器总成搬运到第十工位,扫码总成制动器挡泥板上的二维码并进行拖滞力矩检测,PLC负责采集拖滞力矩,通过PLC将总成二维码、拖滞力矩存储到第十工位数据表中,PLC在采集拖滞力矩时,与PLC中设定的额定值进行比较,当超出合格范围时,将显示不合格在第八工位数据表中,以通过装配参数在一定程度上去评估制度其总成的质量,通过优化装配参数去减少不合格产品的数量,进一步减少了检修成本。
PLC连接有报警装置,报警装置为蜂鸣器,在对装配完的制动器进行基本检测时,如果发现检测不合格的产品,报警装置会进行报警,从而便于工作人员对成品进行及时分类。
参照图2,步骤S20中的托盘1包括底座11和转盘12,底座11放置在生产线中的输送带上,底座11的上表面开设有与转盘12相互适配的转槽111,转盘12转动设置与转槽111内,转盘12可以在转槽111沿沿其圆周方向进行转动;转盘12的外侧壁上一体设置有齿条3,齿条3的长度方向沿转盘12的圆周方向设置,底座11内固定安装有驱动电机2,驱动电机2的转轴固定连接有与齿条3相互啮合的齿轮21,通过驱动电机2带动齿轮21转动,进而带动转盘12自动在转槽111内转动,当托盘1随生产线移动时,转盘12自动转动,便于工位上的工作人员在托盘1上拿放产品进行操作,以提高人员的工作效率。底座11的底壁上一体设置有凸纹4,凸纹4增大了底座11底部的摩擦系数,托盘1在输送带上移动时更加稳定。
本实施例的实施原理为:通过 PLC技术采集生产线上产生的装配数据及扫码枪读取的二维码信息,接着通过 OPC通信技术将 PLC 数据传递给数据处理层;然后,数据处理层对离散的数据进行处理,通过总成二维码、RFID标签值建立物料批次关系、装配参数与总成关系,并将数据存储到关系型数据库;最后,基于构建的关系型数据,实现制动器总成的正反向质量追溯,实现了装配工艺数据的自动采集及物料批次关联关系的自动建立,减免了产线员工手工输入数据的工作量并避免了数据输入错误,保证了数据的准确性,从而明确了质量问题并降低了召回范围,达到进一步降低了企业的返修成本的效果。
本具体实施方式的实施例均为本发明的较佳实施例,并非依此限制本发明的保护范围,故:凡依本发明的结构、形状、原理所做的等效变化,均应涵盖于本发明的保护范围之内。

Claims (10)

  1. 一种汽车制动器总成质量追溯方法,其特征在于:
    包括步骤S10,准备制动器总成零部件物料,将各物料放置到对应工位上,人工扫码轴承、卡簧上对应的二维码数据以及PLC存储物料二维码数据;
    S20,装配制动器总成,启动制动器总成半自动化生产线,进行制动器总成装配。
  2. 通过PLC技术自动采集制动器总成装配过程中的装配参数及由扫码枪传递的物料批次数据,依据托盘RFID建立物料批次、装配参数与制动器总成的关联关系,并最终将数据存储到关系型数据库中;
    S30,制动器总成正向追溯,当制动器总成装配完成后,需要查看某个制动器总成的物料组成关系及装配工艺参数时,扫码制动器总成上打标的二维码,通过搜索关系型数据显示该总成的装配参数及物料批次组成关系;
    S40,制动器总成反向追溯,在质量追溯系统中输入该转向节的二维码,逆向搜索出所有由该转向节组成的制动器总成二维码;然后手持终端下载数据并扫码制动器总成标刻的二维码,进行比对判断该制动器总成是否未不良品,最终遏制不良制动器总成出货或者召回不良制动器总成。
  3. 根据权利要求2所述的一种汽车制动器总成质量追溯方法,其特征在于:所述步骤S20中还包括如下步骤:
    S21,装挡泥板,人工在第一工位通过扫码枪扫码转向节、挡泥板、挡泥板连接螺钉二维码,并通过挡泥板连接螺钉将挡泥板拧紧在转向节上,PLC负责采集物料二维码数据、挡泥板连接螺钉拧紧力,并将数据存储在第一工位数据表中,装配后的制动器放置在托盘上,托盘随生产线继续移动;
    S22,赋值RFID值,托盘随生产线移动至第二工位,第二工位上的RFID读写器对托盘上的RFID标签进行赋值,以当时年月日小时分秒作为RFID值,同时对第一工位数据表中的RFID值进行补充;
    S23,装轴承,托盘随生产线移动至第三工位,第三工位上的RFID读写器读取托盘上的RFID标签值,该工位完成轴承单元的自动上料并将其压入至转向节内,PLC负责采集压装轴承单元的压入力、位移,通过PLC将压入力、位移、RFID标签值、同时将记录的轴承单元二维码存储到第三工位数据表;
    S24,装卡簧,托盘随生产线移动至第四工位,第四工位上的RFID读写器读取托盘上的RFID标签值,该工位完成卡簧的自动上料并将其压入至转向节卡槽内,PLC负责采集压装卡簧的压入力、位移,通过PLC将压入力、位移、RFID标签值、同时将记录的卡簧二维码存储到第四工位数据表;
    S25,装轮毂,装托盘随生产线移动至第五工位,人工扫码轮毂单元二维码并将其安放至压装位置。
  4. 第五工位上的RFID读写器读取托盘上的RFID标签值,该工位上的压入机自动完成轮毂单元的压装,PLC负责采集压装轮毂单元的压入力、位移,通过PLC将压入力、位移、RFID标签值、轮毂单元二维码存储到第五工位数据表;
    S26,压装制动盘,装托盘随生产线移动至第六工位,第六工位上的RFID读写器读取托盘上的RFID标签值,人工通过拧紧机完成十字槽沉头螺钉的拧紧,PLC负责采集拧紧机的拧紧力,通过PLC将拧紧力、RFID标签值、制动盘二维码、十字槽沉头螺钉二维码存储到第六工位数据表;
    S27,装卡钳部件,托盘随生产线移动至第七工位,第七工位上的RFID读写器读取托盘上的RFID标签值,人工通过拧紧机完成支架连接螺钉的拧紧,PLC负责采集拧紧机的拧紧力,通过PLC将拧紧力、RFID标签值、卡钳部件二维码、支架连接螺钉二维码存储到第七工位数据表;
    S28,二维码打标,托盘随生产线移动至第八工位,第八工位上的RFID读写器读取托盘上的RFID标签值,激光打标机在挡泥板上进行二维码打标,通过PLC将总成二维码、RFID存储到第八工位表上,同时对第一工位、第三工位、第四工位、第五工位、第六工位、第七工位和第八工位数据表中的总成二维码数据进行补全。
  5. 根据权利要求2所述的一种汽车制动器总成质量追溯方法,其特征在于:所述步骤S28后还包括如下步骤:
    S291,托盘随生产线移动至第九工位,第八工位上的RFID读写器读取托盘上的RFID标签值,盘跳检测装置对制动盘进行检测,PLC负责采集压盘跳检测的盘跳量、启动力矩,通过PLC将盘跳量、启动力矩存储到第九工位数据表中;
    S292,人工将抽检的制动器总成搬运到第十工位,扫码总成制动器挡泥板上的二维码并进行拖滞力矩检测,PLC负责采集拖滞力矩,通过PLC将总成二维码、拖滞力矩存储到第十工位数据表中。
  6. 根据权利要求3所述的一种汽车制动器总成质量追溯方法,其特征在于:所述步骤S291中还包括如下步骤:PLC在采集压盘跳检测得到的盘跳量和启动力矩时,与PLC中设定的额定值进行比较,当超出合格范围时,将显示不合格在第八工位数据表中;所述步骤S292中还包括如下步骤:PLC在采集拖滞力矩时,与PLC中设定的额定值进行比较,当超出合格范围时,将显示不合格在第八工位数据表中。
  7. 根据权利要求4所述的一种汽车制动器总成质量追溯方法,其特征在于:所述PLC连接有报警装置。
  8. 根据权利要求2所述的一种汽车制动器总成质量追溯方法,其特征在于:所述步骤S20中的托盘(1)包括底座(11)和转盘(12),所述底座(11)的上表面开设有与转盘(12)相互适配的转槽(111),所述转盘(12)转动设置与转槽(111)内。
  9. .根据权利要求6所述的一种汽车制动器总成质量追溯方法,其特征在于:所述底座(11)内安装有驱动电机(2),所述转盘(12)的外侧壁上固定设置有齿条(3),所述齿条(3)的长度方向沿转盘(12)的圆周方向设置,所述驱动电机(2)的转轴固定连接有与齿条(3)相互啮合的齿轮(21)。
  10. 根据权利要求7所述的一种汽车制动器总成质量追溯方法,其特征在于:所述底座(11)的底壁上设置有凸纹(4)。
PCT/CN2020/114958 2020-06-20 2020-09-14 一种汽车制动器总成质量追溯方法 WO2021253652A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010569669.8A CN111738592A (zh) 2020-06-20 2020-06-20 一种汽车制动器总成质量追溯方法
CN202010569669.8 2020-06-20

Publications (1)

Publication Number Publication Date
WO2021253652A1 true WO2021253652A1 (zh) 2021-12-23

Family

ID=72651930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114958 WO2021253652A1 (zh) 2020-06-20 2020-09-14 一种汽车制动器总成质量追溯方法

Country Status (2)

Country Link
CN (1) CN111738592A (zh)
WO (1) WO2021253652A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116205517A (zh) * 2023-01-03 2023-06-02 湖北赛乐氏信息技术有限公司 一种食品生产的质检方法及系统
CN116562714A (zh) * 2023-07-07 2023-08-08 南通汤姆瑞斯工业智能科技有限公司 一种应用于机械加工的工件信息追溯系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112435041A (zh) * 2020-11-25 2021-03-02 济南信邦信息工程有限公司 一种基于质量追溯的生产批次跟踪编码生成方法及装置
CN114683032A (zh) * 2020-12-30 2022-07-01 宝能汽车集团有限公司 汽车的部件紧固方法、装置及具有其的汽车
CN113837328A (zh) * 2021-09-03 2021-12-24 浙江吉利控股集团有限公司 一种用于汽车总成的装配和追溯方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140121806A1 (en) * 2012-10-25 2014-05-01 Roland Taiwan Electronic Music Corp. Mobility Product Traceability Building System and Production Line Operation Controlling Method
CN206441198U (zh) * 2017-01-16 2017-08-25 实用动力(中国)工业有限公司 一种基于rfid模块的乘用车执行器生产线追溯系统
CN107767069A (zh) * 2017-11-03 2018-03-06 河南科技大学 一种基于条码识别技术的装配线装配防错方法及系统
CN107862237A (zh) * 2017-11-29 2018-03-30 德盛镁汽车部件(芜湖)有限公司 一种零部件二维码扫描防错系统
CN109753001A (zh) * 2019-01-21 2019-05-14 江铃汽车股份有限公司 一种汽车总装智能监控系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2071909U (zh) * 1990-08-11 1991-02-27 马兆贤 组合式旋转托盘
CN105852537A (zh) * 2016-04-30 2016-08-17 袁僖蔚 自动旋转托盘
CN205739738U (zh) * 2016-06-27 2016-11-30 西继迅达(许昌)电梯有限公司 一种电梯线缆盘线装置
CN106733730A (zh) * 2017-02-09 2017-05-31 谷新运 旋转托盘传送带式猕猴桃损伤分选设备
CN107283091A (zh) * 2017-06-28 2017-10-24 太仓迪米克斯节能服务有限公司 一种自动检测生产运输线
CN108182463A (zh) * 2018-01-24 2018-06-19 南京理工大学 一种基于rfid标签的电子装配过程产品追溯方法
CN109204956A (zh) * 2018-09-06 2019-01-15 天津百诚阀门制造股份有限公司 一种阀门生产用包装装置及其使用方法
CN109051575A (zh) * 2018-09-30 2018-12-21 南京绿力新材料有限公司 一种旋转托盘及其装置
CN210311370U (zh) * 2019-06-27 2020-04-14 武汉裕大华纺织服装集团有限公司 一种带有卡紧装置的条桶输送托盘

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140121806A1 (en) * 2012-10-25 2014-05-01 Roland Taiwan Electronic Music Corp. Mobility Product Traceability Building System and Production Line Operation Controlling Method
CN206441198U (zh) * 2017-01-16 2017-08-25 实用动力(中国)工业有限公司 一种基于rfid模块的乘用车执行器生产线追溯系统
CN107767069A (zh) * 2017-11-03 2018-03-06 河南科技大学 一种基于条码识别技术的装配线装配防错方法及系统
CN107862237A (zh) * 2017-11-29 2018-03-30 德盛镁汽车部件(芜湖)有限公司 一种零部件二维码扫描防错系统
CN109753001A (zh) * 2019-01-21 2019-05-14 江铃汽车股份有限公司 一种汽车总装智能监控系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116205517A (zh) * 2023-01-03 2023-06-02 湖北赛乐氏信息技术有限公司 一种食品生产的质检方法及系统
CN116205517B (zh) * 2023-01-03 2023-11-21 湖北赛乐氏信息技术有限公司 一种食品生产的质检方法及系统
CN116562714A (zh) * 2023-07-07 2023-08-08 南通汤姆瑞斯工业智能科技有限公司 一种应用于机械加工的工件信息追溯系统及方法
CN116562714B (zh) * 2023-07-07 2023-12-08 南通汤姆瑞斯工业智能科技有限公司 一种应用于机械加工的工件信息追溯系统及方法

Also Published As

Publication number Publication date
CN111738592A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
WO2021253652A1 (zh) 一种汽车制动器总成质量追溯方法
CN202217318U (zh) 一种基于无线射频识别技术的轮胎供应链管理系统
CN105354753A (zh) 一种生产现场数据采集方法
CN109284953B (zh) 重型装备制造车间钢构件在制品追踪管理方法
CN110153705A (zh) 一种发动机气缸体轴承盖自动压装的装配工艺
CN207894623U (zh) 轮毂全尺寸自动化测量系统
CN111069904A (zh) 一种u盘智能装配生产线
CN111176249B (zh) 一种多工位冲压成形与成形模智能制造方法
CN115524604A (zh) 一种多功能显示屏检测设备
CN207866413U (zh) 轮毂轴螺纹检测打标一体机
CN113344500A (zh) 零件出入库系统和方法
CN109462315B (zh) 一种汽车座椅小电机自动化装配与测试生产系统
CN112288054B (zh) 一种用于记录产品工件维修履历的追溯系统及方法
CN112419081A (zh) 一种电子制造业全面质量正逆向追溯系统
CN112207999A (zh) 一种高精密石英石台面柔性自动生产流水线及其加工工艺
CN213730372U (zh) 一种动盘、静盘自动装配系统
CN112193716A (zh) 一种油漆板材的质检及补标系统
CN112486108A (zh) 一种基于rfid的数控制造现场刀具流转管控方法
CN214817114U (zh) 数控冰刀磨床系统
CN203865047U (zh) 自动贴膜机
CN209541670U (zh) 一种用于轮毂的非接触式测量装置
CN113793127A (zh) 一种用于电气设备生产的智能产线
CN210221792U (zh) 产品侧面缺陷检测装置
CN209532429U (zh) 一种自动扫码打标的装置
CN219483508U (zh) 一种标签识别预处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941183

Country of ref document: EP

Kind code of ref document: A1