WO2021251491A1 - 樹脂組成物およびフィルム - Google Patents

樹脂組成物およびフィルム Download PDF

Info

Publication number
WO2021251491A1
WO2021251491A1 PCT/JP2021/022336 JP2021022336W WO2021251491A1 WO 2021251491 A1 WO2021251491 A1 WO 2021251491A1 JP 2021022336 W JP2021022336 W JP 2021022336W WO 2021251491 A1 WO2021251491 A1 WO 2021251491A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
film
repeating unit
layer
mass
Prior art date
Application number
PCT/JP2021/022336
Other languages
English (en)
French (fr)
Inventor
英恵 三好
茂樹 古川
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020102135A external-priority patent/JP2021195435A/ja
Priority claimed from JP2020183546A external-priority patent/JP2022073517A/ja
Priority claimed from JP2020184197A external-priority patent/JP2022074283A/ja
Priority claimed from JP2021024174A external-priority patent/JP2022126231A/ja
Priority claimed from JP2021024267A external-priority patent/JP2022126279A/ja
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to EP21822068.9A priority Critical patent/EP4166322A4/en
Priority to CN202180042688.8A priority patent/CN115885011A/zh
Publication of WO2021251491A1 publication Critical patent/WO2021251491A1/ja
Priority to US18/079,404 priority patent/US20230139240A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6225Polymers of esters of acrylic or methacrylic acid
    • C08G18/6229Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • C08G18/718Monoisocyanates or monoisothiocyanates containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/035Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyurethanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/46Bags
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2335/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2335/02Characterised by the use of homopolymers or copolymers of esters

Definitions

  • the present invention relates to a resin composition and a film.
  • Thermoplastic resins such as polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, polyurethane, acrylonitrile butadiene styrene resin, and acrylic resin are used in various daily necessities and industrial products due to their good processability. It is a general-purpose resin.
  • the thermoplastic resin is, for example, a resist for lithography in the field of semiconductor manufacturing (see, for example, Patent Documents 1 to 3), a gas barrier laminated film for protecting an object to be packaged from gas as a packaging material (for example, Patent Documents 4 to 9, etc.). ), Hard-coated films used as protective films for liquid crystal polarizing plates and the like (see, for example, Patent Documents 10 to 12 and the like).
  • Patent Documents 13 to 15 disclose a technique for increasing the molecular weight of the additive.
  • an object of the present invention is to provide a resin composition and a film containing the same, which can suppress the thermal deterioration of the additive and can be used for various purposes.
  • the present invention has been developed by using a resin composition containing a specific resin having excellent heat resistance.
  • the present invention is, for example, as follows.
  • Q A represents the ester bond shown in the formula
  • RA represents a substituent
  • n1 represents an integer of 1 to 5
  • * represents the binding site with the rest of the repeating unit.
  • ** represent the binding site with the phenyl group in the formula.
  • Q B represents a linking group or a single bond other than an ester bond represented by Q A in the formula (I)
  • R B represents a substituent
  • n2 is an integer of 1 to 5
  • at least one of R B represents a hydroxyl group.
  • the repeating unit is one of a repeating unit derived from a (meth) acrylate-based monomer, a repeating unit derived from a (meth) acrylamide-based monomer, and a repeating unit derived from an N-substituted maleimide-based monomer [1].
  • the resin composition according to any one of [3].
  • the resin R has a (meth) acrylate-based repeating unit having a linear or branched alkyl group having 1 to 5 carbon atoms in the side chain, and / or a hydroxyl group other than the phenolic hydroxyl group.
  • the repeating unit is one of a repeating unit derived from a (meth) acrylate-based monomer, a repeating unit derived from a (meth) acrylamide-based monomer, and a repeating unit derived from an N-substituted maleimide-based monomer [9]. Or the resin composition according to [10].
  • a gas barrier laminated film comprising a resin base material, a primer layer, and a thin-film deposition film layer, in which the primer layer and the thin-film deposition film layer are laminated in this order on at least one surface of the resin base material.
  • the repeating unit is one of a repeating unit derived from a (meth) acrylate-based monomer, a repeating unit derived from a (meth) acrylamide-based monomer, and a repeating unit derived from an N-substituted maleimide-based monomer [13].
  • the gas barrier laminated film according to [14].
  • a gas barrier coating layer which is a dry film of a thin film composed of a coating liquid containing a water-soluble polymer and alkoxysilane or a hydrolysis product thereof, is provided on the surface of the vapor-deposited film layer [13]. ] To [16].
  • the gas barrier laminated film according to any one of.
  • a packaging bag for heat sterilization comprising a laminate in which a base film, a primer layer, a silicon oxide vapor deposition layer, a gas barrier coating layer, and a heat fusion layer are laminated in this order.
  • the primer layer is a layer derived from the resin composition according to [1], contains a reaction product of an acrylic polyol, an isocyanate, and a silane coupling agent, and the resin R is the acrylic polyol.
  • the gas barrier coating layer comprises a dry coating film of a coating liquid containing a silicon compound, a hydrolyzate or a condensate thereof, and a water-soluble polymer having a hydroxyl group.
  • the silicon compound contains the following two types (a) and (b), and the component (a) and the component (b) are such that the component (a) is in SiO 2 and the component (b) is R 2 Si ( OH)
  • the solid content of R 2 Si (OH) 3 is 1 to 50% by mass with respect to the total solid content
  • (a) component is SiO 2 and (b) component is R.
  • B A silicon compound represented by the general formula (IV), or a hydrolyzate or condensate thereof.
  • the content of the repeating unit having the partial structure represented by the general formula (I) or (II) in the acrylic polyol is 2 mol% or more and 50 mol% or less with respect to all the repeating units of the acrylic polyol.
  • the repeating unit having a partial structure represented by the above general formula (I) or (II) is a repeating unit derived from a (meth) acrylate-based monomer, a repeating unit derived from a (meth) acrylamide-based monomer, and N-.
  • the acrylic polyol has a linear or branched alkyl group having 1 to 5 carbon atoms in the side chain (meth).
  • the heat sterilization package according to any one of [18] to [20], further containing an acrylate-based repeating unit and / or a (meth) acrylate-based repeating unit having a hydroxyl group other than the phenolic hydroxyl group in the side chain. bag.
  • the acrylic polyol further contains an olefin-based repeating unit in addition to the repeating unit having a partial structure represented by the general formula (I) or (II).
  • the described heat sterilization packaging bag is not limited to:
  • the component (b) is a trimer 1,3,5-tris (3-trialkoxysilylalkyl) isocyanate represented by the following general formula (V).
  • R 4 represents (CH 2 ) n
  • R 3 represents CH 3 , C 2 H 5 , or C 2 H 4 OCH 3 .
  • n represents 1 or more.
  • the resin composition according to [1] is a composition for forming a hard coat layer.
  • Polyfunctional (meth) acrylic monomer (A) selected from dipentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate toluene diisocyanate urethane prepolymer and dipentaerythritol pentaacrylate isophorone diisocyanate urethane prepolymer, and
  • the monomer (B) having the above-mentioned partial structure represented by the above-mentioned general formula (I) or (II) and the above-mentioned monomer (B).
  • Photo-radical polymerization initiator (C) and It contains a fluorine-containing compound (D) having a polymerizable group and a non-polymerizable additive (E) as raw materials.
  • the content of the monomer (B) having a partial structure represented by the general formula (I) or (II) in the composition for forming a hard coat layer is higher than that of the polyfunctional (meth) acrylic monomer and the above.
  • the monomer (B) having a partial structure represented by the above general formula (I) or (II) is any of a (meth) acrylate-based monomer, a (meth) acrylamide-based monomer, and an N-substituted maleimide-based monomer.
  • the amount of the fluorine-containing compound (D) having a polymerizable group added is the polyfunctional (meth) acrylic monomer (A) and the partial structure represented by the general formula (I) or (II).
  • the amount of the photoradical polymerization initiator (C) added is the polyfunctional (meth) acrylic monomer (A) and the monomer having a partial structure represented by the general formula (I) or (II).
  • a hard coat layer made of a cured product of the composition for forming a hard coat layer according to any one of [28] to [33] is provided on a transparent substrate, and the surface free energy of the surface of the hard coat layer is obtained.
  • FIG. 1 is a cross-sectional view schematically showing an example of a gas barrier laminated film according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing another example of the gas barrier laminated film according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing an example of a gas barrier laminated film having a double-sided laminated structure according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing an example of a packaging material constituting a heat sterilizing bandage bag according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing another example of the packaging material constituting the heat sterilization bandage bag according to the embodiment of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing an example of a hardcourt film according to an embodiment of the present invention.
  • the resin composition according to the present embodiment contains a specific resin having excellent heat resistance (hereinafter referred to as "resin R").
  • resin R a specific resin having excellent heat resistance
  • a resin with low heat resistance such as a thermoplastic resin commonly used in daily necessities and industrial products
  • it has excellent heat resistance because it accelerates the thermal deterioration of the additive used in combination with the pyrolysis product of the resin. It becomes difficult to obtain a resin composition to which the desired function is imparted.
  • the resin composition according to the present embodiment which will be described in detail below, contains the resin R having excellent heat resistance and suppresses thermal deterioration of additives that can be used in combination, so that the resin composition has excellent heat resistance and a desired function. A film having can be provided. Therefore, the resin composition according to this embodiment can be used for various purposes.
  • the resin R contained in the resin composition according to the present embodiment is a repeating unit having a partial structure represented by the following general formula (I) or (II) (hereinafter, referred to as “repeating unit (a)”). Contains.
  • Q A represents the ester bond shown in the formula
  • RA represents a substituent
  • n1 represents an integer of 1 to 5
  • * represents a bond with the rest of the repeating unit (a).
  • the site is represented, and ** represents the binding site with the phenyl group in the formula.
  • Examples of the substituent represented by RA include an alkyl group (for example, an alkyl group having 1 to 5 carbon atoms), a cycloalkyl group (for example, a cycloalkyl group having 3 to 6 carbon atoms), and an alkoxy group (for example, an alkoxy group). Examples thereof include a methoxy group or an ethoxy group), a hydroxyl group, an acetyl group, a nitro group, a cyano group, a carboxyl group, an amino group, an ester group, a halogen atom and the like.
  • n1 represents an integer of 1 to 5 as described above, and may be an integer of 1 to 3. If n1 is an integer of 2 or more, R A is may be the same there are a plurality, may be different.
  • Q B represents a linking group or a single bond other than an ester bond represented by Q A in the formula (I), R B represents a substituent, n2 is an integer of 1 to 5 , * Represent the binding site with the rest of the repeating unit (a). Provided that at least one of R B represents a hydroxyl group.
  • Q B represents a linking group or a single bond other than an ester bond represented by Q A, the linking groups other than an ester bond represented by Q A, for example, -CONR- (R is It represents a hydrogen atom or an alkyl group), an alkylene group (for example, an alkylene group having 1 to 4 carbon atoms), a urethane bond, an ether bond, and an ester bond represented by * -O-CO-** (** is.
  • R is It represents a hydrogen atom or an alkyl group
  • an alkylene group for example, an alkylene group having 1 to 4 carbon atoms
  • a urethane bond for example, an ether bond
  • * -O-CO-** ** is.
  • the binding site with the phenyl group in the formula (II) is represented.) And the like.
  • R B examples of the substituent represented by R B, for example, an alkyl group (e.g., an alkyl group having 1 to 5 carbon atoms), a cycloalkyl group (e.g., a cycloalkyl group having 3 to 6 carbon atoms), alkoxy groups (e.g., methoxy group, ethoxy group), a hydroxyl group, (acetyl group, a nitro group, a cyano group, a carboxyl group, an amino group, an ester group, and a halogen atom.
  • R B represents a hydroxyl group ..
  • n2 represents an integer of 1 to 5 as described above, or may be an integer of 1 to 3. If n2 is an integer of 2 or more, to the R B, which are present in plural, it may be the same or may be different.
  • the repeating unit (a) may have a partial structure represented by the above-mentioned general formula (I) or (II), but may be, for example, a repeating unit derived from a (meth) acrylate-based monomer. , It may be a repeating unit derived from a (meth) acrylamide-based monomer, it may be a repeating unit derived from an N-substituted maleimide-based monomer, or it may be a repeating unit derived from a styrene-based monomer.
  • the (meth) acrylate-based monomer may be, for example, 4-methoxyphenyl (meth) acrylate, 4-hydroxyphenyl (meth) acrylate, 2 , 6-di-tert-butylphenyl (meth) acrylate, 2,6-di-tert-butyl-4-methoxyphenyl (meth) acrylate, 2-tert-butyl-4-hydroxyphenyl (meth) acrylate, 3- tert-butyl-4-hydroxyphenyl (meth) acrylate, 2,6-di-tert-butyl-4-methylphenyl (meth) acrylate, 2-hydroxy-4-tert-butylphenyl (meth) acrylate, 2,4 -Di-methyl-6-tert-butylphenyl (meth) acrylate and the like can be mentioned.
  • repeating unit (a) is a repeating unit derived from a (meth) acrylamide-based monomer
  • examples of the (meth) acrylamide-based monomer include N- (4-hydroxyphenyl) (meth) acrylamide and the like.
  • repeating unit (a) is a repeating unit derived from an N-substituted maleimide-based monomer
  • examples of the N-substituted maleimide-based monomer include 4-hydroxyphenylmaleimide and 3-hydroxyphenylmaleimide.
  • repeating unit (a) is a repeating unit derived from a styrene-based monomer
  • examples of the styrene-based monomer include ⁇ -methyl-p-hydroxystyrene.
  • the resin R is preferably a binary or ternary copolymer further containing one or more repeating units different from the repeating unit (a).
  • the content of the repeating unit (a) in the resin R is preferably in the range of 2 mol% or more and 50 mol% with respect to all the repeating units in the resin R.
  • the thermal decomposition of the additive can be more effectively suppressed when the resin R and the additive are contained.
  • the content of the repeating unit (a) in the resin R is 50 mol% or less, the yellowing of the resin R during heating is maintained while maintaining the effect of suppressing thermal decomposition of the resin R and the additive used in combination. It is possible to effectively suppress the generation and the resin R becoming hard and brittle.
  • the content of the repeating unit (a) in the resin R may be 2 mol% or more and 30 mol% or less, or 2 mol% or more and 20 mol% or less.
  • the repeating unit different from the repeating unit (a) (hereinafter, referred to as “copolymer component”) that can be contained when the resin R is a copolymer is, for example, (meth) acrylate.
  • copolymer component examples thereof include a system-based repeating unit, an olefin-based repeating unit, a halogen atom-containing repeating unit, a styrene-based repeating unit, a vinyl acetate-based repeating unit, and a vinyl alcohol-based repeating unit.
  • the (meth) acrylate-based repeating unit which is a copolymerization component for example, a repeating unit derived from a (meth) acrylate-based monomer having a linear or branched alkyl group in the side chain and a hydroxyl group (excluding phenolic hydroxyl group) are side chains. Examples thereof include repeating units derived from the (meth) acrylate-based monomer contained in the above.
  • Examples of the repeating unit derived from the (meth) acrylate-based monomer having the linear or branched alkyl group in the side chain include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and (meth).
  • a (meth) acrylate-based repeating unit having a linear or branched alkyl group having 1 or more and 4 or less carbon atoms in the side chain can be preferably used.
  • Examples of the repeating unit derived from the (meth) acrylic monomer having a hydroxyl group other than the phenolic hydroxyl group in the side chain include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and (meth).
  • Monomer-derived components such as 4-hydroxybutyl acrylate and 6-hydroxyhexyl (meth) acrylate can be mentioned. These may be used alone or in combination of two or more.
  • olefin-based repeating unit examples include components derived from olefin-based monomers such as ethylene, propylene, isoprene, and butadiene. These may be used alone or in combination of two or more.
  • halogen atom-containing repeating unit examples include monomer-derived components such as vinyl chloride and vinylidene chloride. These may be used alone or in combination of two or more.
  • styrene-based repeating unit examples include components derived from styrene-based monomers such as styrene, ⁇ -methylstyrene, and vinyltoluene. These may be used alone or in combination of two or more.
  • the copolymer may have any structure of a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer. If the structure of the copolymer is a random copolymer, the production process and preparation with a cyanine dye are easy. Therefore, the random copolymer is preferable to other copolymers.
  • Radical polymerization can be used as a polymerization method for obtaining a copolymer. Radical polymerization is preferable because it is easy to produce industrially.
  • the radical polymerization may be a solution polymerization method, an emulsion polymerization method, a bulk polymerization method, a suspension polymerization method or the like. It is preferable to use a solution polymerization method for radical polymerization. By using the solution polymerization method, it is easy to control the molecular weight of the copolymer.
  • the above-mentioned monomer may be diluted with a polymerization solvent, and then a polymerization initiator may be added to polymerize the monomer.
  • the polymerization solvent may be, for example, an ester solvent, an alcohol ether solvent, a ketone solvent, an aromatic solvent, an amide solvent, an alcohol solvent, or the like.
  • the ester solvent may be, for example, methyl acetate, ethyl acetate, n-butyl acetate, isobutyl acetate, t-butyl acetate, methyl lactate, ethyl lactate and the like.
  • the alcohol ether-based solvent examples include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, 3-methoxy-1-butanol, and 3-methoxy-. It may be 3-methyl-1-butanol or the like.
  • the ketone solvent may be, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone or the like.
  • the aromatic solvent may be, for example, benzene, toluene, xylene and the like.
  • the amide-based solvent may be, for example, formamide, dimethylformamide, or the like.
  • the alcohol solvent may be, for example, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, s-butanol, t-butanol, diacetone alcohol, 2-methyl-2-butanol and the like. ..
  • one kind may be used alone, or two or more kinds may be mixed and used.
  • the amount of the polymerization solvent used is not particularly limited, but when the total amount of the monomers is set to 100 parts by mass, the amount of the polymerization solvent used is preferably 1 part by mass or more and 1000 parts by mass or less. It is more preferably 10 parts by mass or more and 500 parts by mass or less.
  • the radical polymerization initiator may be, for example, a peroxide or an azo compound.
  • the peroxide may be, for example, benzoyl peroxide, t-butylperoxyacetate, t-butylperoxybenzoate, di-t-butyl peroxide and the like.
  • the azo compounds include, for example, azobisisobutyronitrile, azobisamidinopropane salt, azobiscyanovaleric acid (salt), and 2,2'-azobis [2-methyl-N- (2-hydroxyethyl)). Propionamide] and the like.
  • the amount of the radical polymerization initiator used is preferably 0.0001 part by mass or more and 20 parts by mass or less, and 0.001 part by mass or more and 15 parts by mass or less when the total amount of the monomers is set to 100 parts by mass. It is more preferably 0.005 part by mass or more and 10 parts by mass or less.
  • the radical polymerization initiator may be added to the monomer and the polymerization solvent before the initiation of the polymerization, or may be added dropwise to the polymerization reaction system. It is preferable to drop the radical polymerization initiator into the polymerization reaction system with respect to the monomer and the polymerization solvent in that the heat generation due to the polymerization can be suppressed.
  • the reaction temperature of radical polymerization is appropriately selected depending on the type of radical polymerization initiator and polymerization solvent.
  • the reaction temperature is preferably 60 ° C. or higher and 110 ° C. or lower from the viewpoint of ease of production and reaction controllability.
  • the resin composition according to the present embodiment preferably contains an additive in order to realize the effect of suppressing thermal deterioration of the additive by using the resin R containing the repeating unit (a) and having excellent heat resistance. ..
  • the additive may be blended with respect to the resin R in a blending ratio of, for example, 50% by mass or less.
  • the compounding ratio of the additive to the resin R may be 30% by mass or less, or 10% by mass or less.
  • the lower limit of the blending ratio of the additive can be appropriately set according to the purpose of use of the additive, the desired function, and the like, and is not particularly limited. As an example, the lower limit of the compounding ratio of the additive may be 0.01% by mass or more.
  • the resin composition according to the present embodiment may contain one kind of additive alone or two or more kinds of additives.
  • the above-mentioned compounding ratio indicates the total mass ratio of the additives to the resin R.
  • the additive is added to the resin R in the above-mentioned compounding ratio for the purpose of maintaining the function of the resin R or imparting a new function, and means an organic additive.
  • the "organic additive” is an additive selected from compounds containing carbon atoms, and may be a low molecular weight compound, a high molecular weight compound, or an oligomer. Organic metal salts are also included.
  • the additive does not chemically react with the resin R and is assumed to be present in the composition with the same chemical structure as when it was added, and is a cross-linking agent or curing that cross-links the resin chains by heat or light. Does not contain agents. Specific examples of the additives are shown in Table 1.
  • the resin composition according to the present embodiment is suitably used as a thin film application such as a coating film, a film substrate, and an adhesive layer used when bonding film substrates to each other in various applications requiring heat resistance.
  • a thin film application such as a coating film, a film substrate, and an adhesive layer used when bonding film substrates to each other in various applications requiring heat resistance.
  • gas barrier films for packaging materials for foods, medical supplies, chemicals, etc. optical films used for security products with anti-counterfeiting structures, coating films (surface protective layers) used for building materials sheets such as decorative sheets, and liquid crystals. Examples thereof include color filters and hard coat films used in displays and the like, and resist films for electron beam lithography.
  • the resin composition according to the present embodiment is an electron beam resist composition containing a resin R containing a repeating unit (a) containing a partial structure represented by the above general formula (I) or (II). be.
  • Patent Document 1 As a highly sensitive positive electron beam resist, an example of using a copolymer resin (Patent Document 1) having an aromatic ring in the side chain and suppressing the molecular weight distribution to 1.7 or less as a main chain breaking resist.
  • Patent Documents 2 and 3 A two-component resist in which an alkali-soluble novolak resin and diazonafuquinone are mixed, a chemically amplified resist using a catalytic reaction with an acid, and the like have been proposed (Patent Documents 2 and 3).
  • the dry etching resistance was insufficient, and selective etching was difficult.
  • the electron beam resist composition according to the present embodiment described in detail below it is possible to provide an electron beam resist film having excellent dry etching resistance.
  • the electron beam resist composition according to this embodiment is applicable to both positive type resist and negative type resist.
  • the positive resist is a resist in which the solubility of the exposed pattern in the developing solution is increased and the unexposed portion remains.
  • the negative resist is a resist in which the solubility of the pattern exposed after development in a developing solution is lowered, and the exposed portion remains after development.
  • the electron beam resist composition according to the present embodiment contains a resin R containing a repeating unit (a) containing a partial structure represented by the above general formula (I) or (II).
  • the resin R is preferably a binary or ternary copolymer further containing one or more repeating units different from the repeating unit (a).
  • the content of the repeating unit (a) in the resin R is preferably in the range of 2 mol% or more and 50 mol% or less with respect to all the repeating units in the resin R.
  • the content of the repeating unit (a) in the resin R is 2 mol% or more, the dry etching resistance can be further improved.
  • the content of the repeating unit (a) in the resin R when the content of the repeating unit (a) in the resin R is 50 mol% or less, yellowing of the resist occurs during heating and the resist becomes hard while maintaining the effect of suppressing thermal decomposition of the resin R. It is possible to effectively suppress the brittleness.
  • the content of the repeating unit (a) in the resin R may be 2 mol% or more and 30 mol% or less, or 2 mol% or more and 20 mol% or less.
  • examples of the copolymerization component that can be contained when the resin R is a copolymer include a (meth) acrylate-based repeating unit, an olefin-based repeating unit, a halogen atom-containing repeating unit, and a styrene-based repeating unit.
  • examples thereof include vinyl acetate-based repeating units and vinyl alcohol-based repeating units.
  • the (meth) acrylate-based repeating unit which is a copolymerization component for example, a repeating unit derived from a (meth) acrylate-based monomer having a linear or branched alkyl group in the side chain and a hydroxyl group (excluding phenolic hydroxyl group) are side chains. Examples thereof include repeating units derived from the (meth) acrylate-based monomer contained in the above.
  • the resin When using the resin as a positive resist, it is desirable to use a methacrylate-based repeating unit.
  • the methacrylate-based repeating unit By using the methacrylate-based repeating unit, only the portion irradiated with the electron beam is selectively decomposed into the main chain, and it becomes easy to dissolve during development.
  • the content of the methacrylate-based repeating unit in the resin is preferably 30 mol% or more, more preferably 50 mol% or more of all the repeating units.
  • the resin When using the resin as a negative resist, it is desirable to use an acrylate-based repeating unit.
  • the acrylate-based repeating unit By using the acrylate-based repeating unit, only the portion irradiated with the electron beam is selectively crosslinked, and only the portion not irradiated with the electron beam during development can be selectively dissolved.
  • the content of the acrylate-based repeating unit in the resin is preferably 30 mol% or more, more preferably 50 mol% or more of all the repeating units.
  • Examples of the repeating unit derived from the (meth) acrylate-based monomer having the linear or branched alkyl group in the side chain include the same specific examples as those given in the first embodiment.
  • Examples of the repeating unit derived from the (meth) acrylic monomer having a hydroxyl group other than the phenolic hydroxyl group in the side chain include the same specific examples as those given in the first embodiment.
  • 2-Hydroxyethyl methacrylate can also be used as the copolymerization component. By using 2-hydroxyethyl methacrylate, it is possible to improve the adhesion between the resist and the substrate.
  • a monomer having a crosslinkable functional group can also be used as the copolymerization component.
  • the monomer having a crosslinkable functional group include glycidyl (meth) acrylate. When such a component is used, it can be used as a negative resist.
  • Methacrylic acid can also be used as the copolymerization component.
  • the use of methacrylic acid improves the solubility in a developer during alkaline development and improves the resolution of the pattern.
  • Examples of the olefin-based repeating unit as the copolymerization component include the same specific examples as those given in the first embodiment.
  • halogen atom-containing repeating unit which is a copolymerization component
  • examples of the halogen atom-containing repeating unit, which is a copolymerization component include the same specific examples as those given in the first embodiment.
  • Examples of the styrene-based repeating unit, which is a copolymerization component, include the same specific examples as those given in the first embodiment.
  • the molecular weight of the resin R is not particularly specified, but specifically, the mass average molecular weight is 100,000 or more and 2 million or less, preferably 200,000 or more and 1 million or less. If the molecular weight is too large, a uniform thin film cannot be obtained because there is no solvent with good solubility required for thin film coating, and gel is formed in the solution, which makes it impossible to filter. .. Further, if the molecular weight is too small, the sensitivity is lowered, and it becomes difficult to obtain a uniform thin film having an appropriate thickness.
  • the copolymer may have any structure of a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer. If the structure of the copolymer is a random copolymer, the manufacturing process is easy. Therefore, the random copolymer is preferable to other copolymers.
  • the polymerization method for obtaining the copolymer is as described in the first embodiment.
  • Additives such as a surfactant, a dissolution inhibitor, a plasticizer, a stabilizer, a colorant, and an antihalation agent for improving the coatability can be appropriately added to the resist composition of the present embodiment. ..
  • the thermal deterioration of the organic additive can be suppressed by using the resin R containing the repeating unit (a) and having excellent heat resistance.
  • the "organic additive” is an additive selected from compounds containing carbon atoms, and may be a low molecular weight compound, a high molecular weight compound, or an oligomer. Organic metal salts are also included. Specific examples of the additives are shown in Table 2.
  • Examples of the solvent used when using the resist of the present embodiment include methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, isobutyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol methyl ether acetate, ethyl lactate, and toluene. , Xylene, 1,2-dichloroethane and the like are used.
  • the resist pattern forming method of the present embodiment can be performed as follows, for example. That is, first, the resist composition is applied onto a substrate such as a silicon wafer or a glass substrate with a spinner or the like, prebaked, and then an electron beam is applied to the substrate via an electron beam drawing device, for example, via a desired mask pattern. Irradiate selectively. Next, this substrate is developed with a developer. In this way, a resist pattern faithful to the mask pattern can be obtained. An organic or inorganic antireflection film may be provided between the substrate and the coating layer of the resist composition.
  • the developing solution may be any one as long as it distinguishes between the exposed part and the unexposed part and selectively dissolves the exposed part or the unexposed part, but generally, it is a soluble solvent for the polymer mixture, that is, the unexposed part. It is selected from the combination with an insoluble solvent.
  • Soluble solvents include acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl isoamyl ketone, cyclopentanone, cyclohexanone, 4-methoxy-4-methyl-2-pentanone, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, acetic acid.
  • insoluble solvent examples include methanol, ethanol, 1-propanol, isopropanol, 1-butanol, 2-butanol, cyclopentanol, cyclohexanol, ethyl cellosolve, propyl cellosolve, isopropyl cellosolve, butyl cellosolve, butyl carbitol, hexane, and heptane.
  • Cyclohexane, petroleum ether, water and the like can be mentioned.
  • etching is performed to selectively remove the substrate and the like in the portion not covered with the resist. Since the resist composition of the present embodiment has particularly improved dry etching resistance, it can be suitably used.
  • Known dry etching methods include chemical etching such as downflow etching and chemical dry etching; physical etching such as spatter etching and ion beam etching; and chemical / physical etching such as RIE (reactive ion etching). Method can be used.
  • This embodiment is a gas barrier laminated film provided with a primer layer derived from the resin composition according to the first embodiment described above.
  • the gas barrier laminated film has the role of protecting the object from moisture, oxygen, carbon dioxide and other gases in the air, and suppressing deterioration of quality and performance.
  • the gas barrier laminated film is also being considered for use as a substitute for glass and aluminum foil in the electronics field such as solar cell backsheets, electronic paper, and organic EL, as well as packaging materials for foods and pharmaceuticals.
  • gas barrier laminated films are single films such as ethylene vinyl alcohol copolymer resin, coextruded multilayer nylon (Ny) film, vinylidene chloride (PVDC) coat and polyvinyl alcohol (PVA) coated wet coat film, etc.
  • these types of films have a water vapor transmission rate of about 3 g / m 2 / day even if they have a high gas barrier property, and it is difficult to use them as packaging materials and electronic members that require a higher gas barrier property. Therefore, when a higher barrier property is required, a metal foil such as aluminum has to be laminated.
  • Patent Document 4 proposes a transparent gas barrier film in which an inorganic compound such as aluminum oxide, magnesium oxide, or silicon oxide is vapor-deposited on a polymer resin base material. ..
  • a primer layer is provided between the resin substrate and the vapor-filmed layer.
  • an acrylic resin is often used, and in particular, a reaction composite of an acrylic polyol and an isocyanate compound or a material to which a silane coupling agent is added is often used.
  • a gas barrier film having high boil resistance and retort resistance which does not deteriorate in physical properties even after boil sterilization or retort sterilization and does not generate delamination, is realized (for example, Patent Documents 5 to 7). ).
  • the transparent gas barrier laminated film according to the present embodiment which can maintain adhesion even after a high temperature test and has excellent durability, will be described in detail below with reference to the drawings. Elements having similar or similar functions are designated by the same reference numerals, and duplicate description will be omitted.
  • the gas barrier laminated film 10 of the present embodiment includes a resin base material 11, a primer layer 12, and a vapor-deposited film layer 13, and a primer layer 12 and a vapor-deposited film layer 13 are provided on one side of the resin base material 11. And are sequentially laminated.
  • the gas barrier laminated film may have a configuration in which the primer layer 12 and the vapor-deposited film layer 13 are sequentially laminated on both surfaces of the resin base material 11 in order to achieve higher water vapor barrier properties.
  • the resin base material 11 examples include polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefin films such as polyethylene and polypropylene, polyether sulfone (PES), polystyrene films, polyamide films, and polyvinyl chloride. Biodegradable plastic films such as films, polycarbonate films, polyacrylic nitrile films, polyimide films, and polylactic acid can be used.
  • the thickness of the resin base material 11 is not particularly limited, but may be practically 6 ⁇ m or more and 200 ⁇ m or less, preferably 12 ⁇ m or more and 125 ⁇ m or less, and more preferably 12 ⁇ m or more and 25 ⁇ m or less.
  • the surface of the resin base material 11 on the side where the other layers are laminated is subjected to physical treatment such as corona treatment, plasma treatment, frame treatment, and chemical treatment such as chemical treatment with acid or alkali. It may be treated.
  • the primer layer 12 is provided on the resin base material 11 to enhance the adhesion between the resin base material 11 and the vapor deposition film layer 13, various sterilization treatments such as boil sterilization and retort sterilization, and peeling of the vapor deposition layer by long-term outdoor installation. It is provided to prevent the occurrence.
  • the primer layer 12 contains a composite of a polyol and an isocyanate compound.
  • the primer layer 12 is a layer derived from the resin composition according to the first embodiment described above, and at this time, the repeating unit (a) containing a partial structure represented by the above general formula (I) or (II).
  • the resin R containing the above is a polyol.
  • Polyol is a general term for compounds having a plurality of hydroxyl groups in the molecule, and reacts with the isocyanate group of an isocyanate-based compound.
  • a polyether polyol having an ether bond in the main chain a polyester polyol having an ester bond in the main chain, an acrylic polyol which is a polymer compound obtained by polymerizing a (meth) acrylic acid derivative monomer, or (meth).
  • Acrylic polyol which is a polymer compound obtained by copolymerizing an acrylic acid derivative monomer and another monomer can be mentioned.
  • polyether polyol examples include a polyoxyalkylene polyol obtained by addition-polymerizing an alkylene oxide using a polyhydric alcohol or a polyamine as an initiator, and a polyoxytetramethylene glycol obtained by cationic polymerization of tetrahydrofuran.
  • Polyester polyols include indwelling polyester polyols obtained mainly from dibasic acids and glycols, and polycaprolactone polyols obtained by ring-opening polymerization of ⁇ -caprolactone.
  • dibasic acid used in the indwelling polyester polyol include adipic acid, terephthalic acid, isophthalic acid and the like
  • glycols include ethylene glycol, neopentyl glycol, 3-methyl-1,5-pentadiol and the like. Can be mentioned.
  • the acrylic polyol is a polymer compound obtained by polymerizing (meth) acrylic acid derivative monomers, or a polymer compound obtained by copolymerizing a (meth) acrylic acid derivative monomer and other monomers by radical polymerization, and having a hydroxyl group at the terminal. Is.
  • Examples of the monomer copolymerizable with the (meth) acrylic acid derivative monomer having a hydroxyl group at the terminal include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, and t-butyl (meth) acrylate.
  • Examples thereof include (meth) acrylic acid derivative monomers having a structure.
  • Other than the (meth) acrylic acid derivative monomer there are styrene monomer, cyclohexylmaleimide monomer, phenylmaleimide monomer and the like.
  • the polyol contains a repeating unit (a) containing a partial structure represented by the above general formula (I) or (II).
  • the polyol is preferably a binary or ternary copolymer further containing one or more repeating units different from the repeating unit (a).
  • the content of the repeating unit (a) in the polyol is preferably in the range of 2 mol% or more and 50 mol% or less with respect to all the repeating units in the polyol.
  • the thermal decomposition of the polyol can be suppressed more effectively.
  • the content of the repeating unit (a) in the polyol is 50 mol% or less, yellowing of the gas barrier film during heating is generated while maintaining the effect of suppressing thermal decomposition of the polyol and the additive used in combination. , It is possible to effectively prevent the primer layer 12 from becoming hard and brittle.
  • the content of the repeating unit (a) in the resin may be 2 mol% or more and 30 mol% or less, or 2 mol% or more and 20 mol% or less.
  • examples of the copolymerization component that can be contained when the polyol is a copolymer include (meth) acrylate-based repeating unit, olefin-based repeating unit, halogen atom-containing repeating unit, styrene-based repeating unit, and acetic acid.
  • examples include vinyl-based repeating units and vinyl alcohol-based repeating units.
  • the (meth) acrylate-based repeating unit which is a copolymerization component for example, a repeating unit derived from a (meth) acrylate-based monomer having a linear or branched alkyl group in the side chain and a hydroxyl group (excluding phenolic hydroxyl group) are side chains. Examples thereof include repeating units derived from the (meth) acrylate-based monomer contained in the above.
  • Examples of the repeating unit derived from the (meth) acrylate-based monomer having the linear or branched alkyl group in the side chain include the same specific examples as those given in the first embodiment.
  • Examples of the (meth) acrylic repeating unit having a hydroxyl group other than the phenolic hydroxyl group in the side chain include the same specific examples as those given in the first embodiment.
  • Examples of the olefin-based repeating unit as the copolymerization component include the same specific examples as those given in the first embodiment.
  • halogen atom-containing repeating unit which is a copolymerization component
  • examples of the halogen atom-containing repeating unit, which is a copolymerization component include the same specific examples as those given in the first embodiment.
  • Examples of the styrene-based repeating unit, which is a copolymerization component, include the same specific examples as those given in the first embodiment.
  • repeating unit (a) does not contain a hydroxyl group, it is necessary to contain 2 mol% or more of a component having a hydroxyl group as a copolymerization component.
  • the molecular weight of the polyol is not particularly specified, but specifically, it may be 3000 or more and 200,000 or less, preferably 5000 or more and 100,000 or less, and more preferably 5000 or more and 40,000 or less.
  • the copolymer may have any structure of a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer. If the structure of the copolymer is a random copolymer, the production process and preparation with a cyanine dye are easy. Therefore, the random copolymer is preferable to other copolymers.
  • the polymerization method for obtaining the copolymer is as described in the first embodiment.
  • An isocyanate-based compound has two or more isocyanate groups in its molecule.
  • the monomer-based isocyanate include aromatic isocyanates such as tolylene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), bisisocyanate methylcyclohexane (H6XDI), isophorone diisocyanate (IPDI), and dicyclohexylmethane diisocyanate.
  • aromatic isocyanates such as tolylene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), bisisocyanate methylcyclohexane (H6XDI), isophorone diisocyanate (IPDI), and dicyclohexylmethane diisocyanate.
  • aliphatic isocyanates such as (H12MDI), aromatic aliphatic isocyanates such as xylene diisocyanate (XDI) and tetramethylxylylene diisocyanate (TMXDI).
  • polymers or derivatives of these monomeric isocyanates can also be used.
  • the isocyanate-based compound may be arbitrarily selected from the above-mentioned isocyanate-based compounds or polymers or derivatives thereof, and may be used alone or in combination of two or more.
  • additives can be added depending on the application.
  • there are catalysts that accelerate the curing reaction light stabilizers such as ultraviolet absorbers (UVA) and hindered amine-based light stabilizers (HALS), antioxidants, antistatic agents, plasticizers, silane coupling agents and the like.
  • UVA ultraviolet absorbers
  • HALS hindered amine-based light stabilizers
  • the thermal deterioration of the organic additive can be suppressed by using the polyol containing the repeating unit (a) and having excellent heat resistance.
  • the "organic additive” is as described in the second embodiment. Specific examples of the additive include the same specific examples as those shown in Table 2 in the second embodiment.
  • the thermal deterioration of the additive can be suppressed.
  • a light stabilizer is used as an additive, a gas barrier laminated film having good light resistance is obtained even after heating.
  • the primer layer 12 is formed by applying a solution containing a complex of the above polyol and the above isocyanate compound and a solvent onto the resin base material 11 and react-curing it.
  • the solvent used may be any solvent that dissolves the above-mentioned polyol and isocyanate compound, and examples thereof include methyl acetate, ethyl acetate, butyl acetate, methyl ethyl ketone, dioxolane, tetrahydrofuran, cyclohexanone, acetone and the like. It can be used alone or in combination of two or more.
  • a normal coating method can be used.
  • well-known methods such as dipping method, roll coating, gravure coating, reverse coating, air knife coating, comma coating, die coating, screen printing method, spray coating, and gravure offset method can be used.
  • the drying method one type or a combination of two or more types can be used, such as hot air drying, hot roll drying, high frequency irradiation, infrared irradiation, and UV irradiation.
  • the film thickness of the primer layer 12 is preferably 30 nm or more and 200 nm or less, preferably 100 nm or more and 200 nm or less. If the thickness is thinner than this, the adhesion between the resin base material 11 and the vapor-film deposition film layer 13 becomes insufficient, and if it is thicker than 300 nm, the influence of internal stress becomes large, and the vapor-film deposition film layer 13 is not laminated neatly, and the barrier. There is a problem that the expression of sex is insufficient.
  • the thin-film film layer 13 is provided on the primer layer 12 and is provided to impart gas barrier properties to the entire film.
  • a vapor deposition material containing metallic silicon and silicon dioxide as the material of the vapor deposition film layer 13. Further, as the material of the vapor deposition film layer 13, a vapor deposition material containing another metallic tin or a metal oxide may be used.
  • a high gas barrier property can be imparted to the entire film. Further, by depositing a vapor-deposited material in which metallic tin or tin oxide is mixed with metallic silicon and silicon dioxide, a thin-film film layer 13 having a high film density is formed, a high water vapor barrier property is exhibited, and a polyol and an isocyanate-based compound are exhibited. Due to the synergistic effect with the primer layer 12 formed by the composite of the above, a gas barrier film having both high gas barrier properties and high durability can be obtained.
  • Metallic silicon and silicon dioxide may be mixed, for example, so that the element ratio O / Si is 1 or more and 1.8 or less, and preferably 1.2 or more and 1.7 or less.
  • the vapor-deposited film layer 13 As a method for forming the vapor-deposited film layer 13, known methods such as a vacuum vapor deposition method, a sputtering method, a plasma vapor deposition method, and an atomic layer deposition method may be appropriately used, but the vacuum vapor deposition method is preferable. Further, in order to increase the transparency of the thin-film film layer 13, when the vapor-deposited material is vapor-deposited, the evaporated particles may be reacted with oxygen gas introduced into the atmosphere to be vapor-deposited. By performing reaction deposition with oxygen gas or argon gas, the metal component in the vapor deposition material is oxidized, and the transparency of the vapor deposition film layer 13 can be improved.
  • the pressure in the film forming chamber is 2 ⁇ 10 -1 Pa or less. If the pressure in the film forming chamber becomes larger than 2 ⁇ 10 -1 Pa, the vapor-deposited film layer 13 may not be laminated neatly and the water vapor barrier property may be deteriorated.
  • the film thickness of the thin-film film layer 13 is preferably 0.005 ⁇ m or more and 0.3 ⁇ m or less, and more preferably 0.03 ⁇ m or more and 0.05 ⁇ m or less. If it is smaller than 0.005 ⁇ m, sufficient barrier properties may not be exhibited, and if it exceeds 0.3 ⁇ m, it is brittle and cracks are likely to occur, which may cause a problem that barrier properties are not exhibited.
  • the gas barrier laminated film of the present embodiment comprises a coating liquid containing a water-soluble polymer and an alkoxysilane or a hydrolysis product thereof on a vapor-deposited film layer 13, as in the gas barrier laminated film 20 shown in FIG.
  • a gas barrier coating layer 21 which is a dry film of a thin film may be provided.
  • the gas barrier coating layer 21 is provided to protect the hard and brittle vapor-film film layer 13 and prevent the generation of cracks due to rubbing and bending, and is composed of a water-soluble polymer and a component containing alkoxysilane or its hydrolysis product. Become.
  • the gas barrier coating layer 21 is formed by applying a coating liquid containing a water-soluble polymer and alkoxysilane or a hydrolysis product thereof onto the vapor-deposited film layer 13 and drying it.
  • a normal coating method can be used as in the primer layer 12.
  • well-known methods such as dipping method, roll coating, gravure coating, reverse coating, air knife coating, comma coating, die coating, screen printing method, spray coating, and gravure offset method can be used.
  • the drying method one type or a combination of two or more types can be used, such as hot air drying, hot roll drying, high frequency irradiation, infrared irradiation, and UV irradiation.
  • polyvinyl alcohol resin PVA
  • EVOH ethylene-vinyl alcohol copolymer resin
  • PVP polyvinylpyrrolidone resin
  • alkoxysilane tetraethoxysilane, tetramethoxysilane, tetrapropoxysilane, methyltriethoxysilane, methyltrimethoxysilane and the like can be used.
  • hydrolysis product of alkoxysilane include those prepared by dissolving alkoxysilane in an alcohol such as methanol, adding an aqueous solution of an acid such as hydrochloric acid to the solution, and causing a hydrolysis reaction.
  • a silane coupling agent may be added to the gas barrier coating layer 21 in order to improve the adhesion to the vapor-deposited film layer 13.
  • the silane coupling agent include those having an epoxy group such as 3-glycidoxypropyltrimethoxysilane, those having an amino group such as 3-aminopropyltrimethoxysilane, and mercapto groups such as 3-mercaptopropyltrimethoxysilane.
  • Those having an isocyanate group such as 3-isocyanatepropyltriethoxysilane, and the like, and these silane coupling agents can be used alone or in combination of two or more.
  • the gas barrier laminated film of the present embodiment has a configuration in which a laminated resin layer 32 is provided on both sides of the gas barrier laminated film 20 shown in FIG. 2 via an adhesive layer 31, like the gas barrier laminated film 30 shown in FIG. You may. Further, by providing the laminated resin layer 32, a highly practical gas barrier laminated film can be obtained.
  • the laminated resin layer 32 is used as an adhesive portion when forming a bag-shaped package or the like by laminating a sealant film having a heat-sealing property.
  • the laminated resin layer 32 includes, for example, polyethylene, polypropylene, an ethylene-vinyl acetate copolymer, an ethylene-methacrylate copolymer, an ethylene-methacrylate copolymer, an ethylene-acrylic acid copolymer, or an ethylene-acrylic acid. Resins such as ester copolymers and their metal crosslinked products are used.
  • the thickness of the laminated resin layer 32 is determined according to the purpose, but is generally in the range of 15 ⁇ m or more and 200 ⁇ m or less.
  • the laminated resin layer 32 may be provided on only one side of the gas barrier laminated film 20 via the adhesive layer 31.
  • a polyethylene terephthalate film or a polyethylene naphthalate film on one side or both sides of the gas barrier laminated films 10, 20 and 30 of the present embodiment, it is transparent to be used in a liquid crystal display element, a solar cell, an electromagnetic wave shield, and a touch panel. It can also be used as a sealing material for conductive sheets and the like.
  • This embodiment is a heat sterilization packaging bag provided with a primer layer derived from the resin composition according to the first embodiment described above.
  • packaging materials used for packaging foods and non-food products such as pharmaceuticals and electronic components have oxygen and water vapor that permeate the packaging bag in order to suppress deterioration of the contents and maintain the functions and properties of the contents.
  • a resin film such as polyvinyl alcohol and ethylene vinyl copolymer, polyvinylidene chloride, or polyacrylonitrile
  • a plastic film coated with these resins a metal foil made of a metal such as aluminum, or a metal-deposited film thereof has been used. Etc. have been mainly used.
  • the gas barrier resin film includes, for example, a composition containing an alkoxysilane such as Si (O—CH 3 ) 4, a silane coupling agent such as epoxysilane, and polyvinyl alcohol on a substrate made of a resin.
  • a laminated film provided with a coating layer obtained by polycondensation by a sol-gel method is known (see Patent Document 8).
  • this coating layer is composed of hydrogen bonds, it is easily swollen and dissolved by water. Therefore, the gas barrier property tends to deteriorate under harsh conditions such as boiling and retort treatment.
  • metal foils and metal-deposited films have excellent gas barrier properties, but the contents cannot be confirmed through the packaging bag, the metal detector cannot be used during inspection, and they are treated as incombustibles at the time of disposal. There were issues such as what had to be done. Further, the gas barrier resin film and the film coated with the gas barrier resin are highly dependent on temperature and humidity, and cannot maintain sufficient gas barrier properties. Further, vinylidene chloride, polyacrylonitrile and the like used as gas barrier resins may be raw materials for harmful substances at the time of disposal and incineration.
  • Patent Document 9 a vapor-filmed layer made of an inorganic compound is used as the first layer, a solution containing metal alkoxide or tin chloride and a water-soluble polymer is applied, and the gas barrier coating is heat-dried.
  • a gas barrier packaging material in which layers are sequentially laminated as a second layer has been proposed.
  • This gas barrier packaging material exhibits high gas barrier properties, has water resistance and moisture resistance, and has a certain degree of heat resistance.
  • the second layer of the coating material of the gas barrier packaging material consists of hydrogen bonds between the metal alkoxide hydrolyzate and the water-soluble polymer having a hydroxyl group, it is used as a packaging material that requires treatment such as boiling and retort sterilization.
  • the package for heat sterilization according to the present embodiment solves the above-mentioned problems of the prior art, has excellent transparency, allows the contents to be seen through, and has high gas barrier properties (oxygen barrier property and water vapor barrier property). Sex). Further, the heat sterilization package according to the present embodiment is not only applicable to a metal detector, but also has a high gas barrier property (oxygen barrier property and oxygen barrier property) even after being subjected to heat sterilization treatment such as boiling and retort sterilization. (Water vapor barrier property) is maintained, and bag breakage and delamination are unlikely to occur.
  • the heat sterilization package (hereinafter, also referred to as “package”) according to the present embodiment will be described with reference to the drawings. Elements having similar or similar functions are designated by the same reference numerals, and duplicate description will be omitted.
  • the packaging bag according to the present embodiment is a packaging material in which a base film 101, a primer layer 102, a silicon oxide vapor deposition layer 103, a gas barrier coating layer 104, and a heat fusion layer 105 are laminated in this order. It may be composed of a laminated body 100).
  • the gas barrier coating layer 104 and the heat-sealing layer 105 can be bonded by an adhesive layer ad1 formed from a dry lamination adhesive.
  • the packaging bag according to the present embodiment is composed of a packaging material (laminated body 200) in which a polyamide film 206 is laminated between a gas barrier coating layer 104 and a heat fusion layer 105. You may.
  • the gas barrier coating layer 104 and the polyamide film 206, and the polyamide film 206 and the heat-sealing layer 105 can be adhered by the adhesive layers ad2 and ad3 formed from the dry lamination adhesive, respectively.
  • Examples of the base film 101 used in the present embodiment include polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefin films such as polyethylene and polypropylene, polystyrene films, 6,6-nylon and the like. Examples thereof include an empra film such as a polyamide film, a polycarbonate film, a polyacrylonitrile film, and a polyimide film.
  • the base film 101 may be stretched or unstretched, and may have mechanical strength and dimensional stability. In particular, among these, a film arbitrarily stretched in the biaxial direction is preferably used.
  • a polyamide film and a polyester film are preferable, and a polyester film is more preferable, in consideration of price, moisture resistance, filling suitability, texture, and disposability.
  • the base film 101 may be added with various well-known additives and stabilizers such as antistatic agents, plasticizers, lubricants, and antioxidants.
  • the thickness of the base film 101 is not particularly limited, but in consideration of suitability as a packaging material and processability, it is practically preferably 3 to 200 ⁇ m, and more preferably 6 to 30 ⁇ m.
  • the surface of the base film 101 can be subjected to corona treatment, plasma treatment, ozone treatment or the like as pretreatment. Further, the surface of the base material can be treated with a chemical, a solvent, or the like. In particular, plasma treatment is preferable because it strengthens the adhesion between the surface of the base material and the primer layer 102 to be laminated next.
  • the primer layer 102 is a layer derived from the resin composition according to the first embodiment described above, and the primer layer 102 contains a reaction product of an acrylic polyol, an isocyanate, and a silane coupling agent.
  • the above-mentioned resin R is an acrylic polyol and contains a repeating unit (a) containing a partial structure represented by the general formula (I) or (II).
  • the acrylic polyol is preferably a binary or ternary copolymer further containing one or more repeating units different from the repeating unit (a).
  • the content of the repeating unit (a) in the acrylic polyol is preferably in the range of 2 mol% or more and 50 mol% with respect to all the repeating units in the acrylic polyol.
  • the thermal deterioration of the primer layer can be suppressed more effectively.
  • the content of the repeating unit (a) in the acrylic polyol is 50 mol% or less, it is possible to suppress the occurrence of yellowing and cracks during heating while maintaining the effect of suppressing thermal deterioration of the primer layer. can.
  • the content of the repeating unit (a) in the acrylic polyol may be 2 mol% or more and 30 mol% or less, or 2 mol% or more and 20 mol% or less.
  • examples of the copolymerization component that can be contained when the acrylic polyol is a copolymer include a (meth) acrylate-based repeating unit, an olefin-based repeating unit, a halogen atom-containing repeating unit, and a styrene-based repeating unit.
  • examples thereof include vinyl acetate-based repeating units and vinyl alcohol-based repeating units.
  • the (meth) acrylate-based repeating unit which is a copolymerization component for example, a repeating unit derived from a (meth) acrylate-based monomer having a linear or branched alkyl group in the side chain and a hydroxyl group (excluding phenolic hydroxyl group) are side chains. Examples thereof include repeating units derived from the (meth) acrylate-based monomer contained in the above.
  • Examples of the repeating unit derived from the (meth) acrylate-based monomer having the linear or branched alkyl group in the side chain include the same specific examples as those given in the first embodiment.
  • Examples of the (meth) acrylic repeating unit having a hydroxyl group other than the phenolic hydroxyl group in the side chain include the same specific examples as those given in the first embodiment.
  • Examples of the olefin-based repeating unit as the copolymerization component include the same specific examples as those given in the first embodiment.
  • halogen atom-containing repeating unit which is a copolymerization component
  • examples of the halogen atom-containing repeating unit, which is a copolymerization component include the same specific examples as those given in the first embodiment.
  • Examples of the styrene-based repeating unit, which is a copolymerization component, include the same specific examples as those given in the first embodiment.
  • the copolymer may have any structure of a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer. If the structure of the copolymer is a random copolymer, the manufacturing process is easy. Therefore, the random copolymer is preferable to other copolymers.
  • the polymerization method for obtaining the copolymer is as described in the first embodiment.
  • the isocyanate used for the primer layer 102 may have at least two NCO groups in the molecule.
  • the monomer-based isocyanate include aromatic isocyanates such as tolylene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), bisisocyanate methylcyclohexane (H6XDI), isophorone diisocyanate (IPDI), and dicyclohexylmethane diisocyanate.
  • aromatic isocyanates such as tolylene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI), bisisocyanate methylcyclohexane (H6XDI), isophorone diisocyanate (IPDI), and dicyclohexylmethane diisocyanate.
  • An aliphatic isocyanate such as (H12MDI), an aromatic aliphatic isocyanate such as xylene diisocyanate (XDI) and tetramethylxylylene diisocyanate (TMXDI) may be used.
  • polymers or derivatives of these monomeric isocyanates may also be used. Examples of such a polymer or derivative include a trimer nurate type, an adduct type reacted with 1,1,1-trimethylolpropane and the like, and a biuret type reacted with biuret.
  • the isocyanate compound may be arbitrarily selected from the above-mentioned monomeric isocyanates, polymers thereof, derivatives and the like, and one type may be used alone or two or more types may be used in combination.
  • the silane coupling agent used for the primer layer 102 is, for example, one having an epoxy group such as 3-glycidoxypropyltrimethoxysilane, one having an amino group such as 3-aminopropyltrimethoxysilane, and the like. Examples thereof include those having a mercapto group such as 3-mercaptopropyltrimethoxysilane and those having an isocyanate group such as 3-isocyanatepropyltriethoxysilane. Further, as the silane coupling agent, one type may be used alone or two or more types may be used in combination.
  • the thickness of the primer layer 102 is generally the thickness after drying, preferably coated so as to be in the range of 0.005 to 5 ⁇ m, and more preferably 0.01 to 1 ⁇ m. If the thickness is less than 0.01 ⁇ m, it tends to be difficult to obtain a uniform coating film from the viewpoint of coating technology, while if it exceeds 1 ⁇ m, it tends to be uneconomical.
  • the silicon oxide vapor deposition layer 103 can be formed by using, for example, a vacuum vapor deposition method.
  • vapor deposition may be performed using a plasma assist method or an ion beam assist method.
  • reaction vapor deposition method in which vapor deposition is performed while blowing oxygen gas, the transparency of the formed silicon oxide vapor deposition layer 103 can be further enhanced.
  • the silicon oxide vapor deposition layer 103 It is desirable to determine the thickness of the silicon oxide vapor deposition layer 103 in consideration of its flexibility as well as its gas barrier property. If the thickness of the silicon oxide vapor-deposited layer 103 is too thin, it becomes difficult to sufficiently fulfill the function as a gas barrier layer. On the other hand, if the thickness of the silicon oxide vapor deposition layer 103 is too thick, the flexibility cannot be maintained due to the residual stress, and cracks may occur due to external factors after the film formation.
  • the silicon oxide vapor deposition layer 103 having a thickness in the range of 5 to 300 nm has sufficient gas barrier properties and flexibility.
  • the thickness of the silicon oxide-deposited layer 103 is preferably 10 to 300 nm.
  • the gas barrier coating layer 104 contains the component (a) described below as a main component, a water-soluble polymer is added thereto, and the component (b) described below is further added to prepare a coating liquid, and this coating liquid is applied.
  • the film was formed by hydrolyzing the component (a) and the component (b) by heating and drying.
  • the reason why the water-soluble polymer is added to the component (a) is to improve the flexibility while maintaining its gas barrier property.
  • the component is added to improve water resistance.
  • B A silicon compound represented by the general formula (IV), or a hydrolyzate thereof or a condensate thereof.
  • R 2 represents an organic functional group
  • R 3 represents CH 3 , C 2 H 5 , or C 2 H 4 OCH 3 .
  • n represents 1 or more.
  • the component (a) is the main component of the gas barrier coating layer 104, and is a compound represented by the above general formula (III).
  • tetramethoxysilane, tetraethoxysilane, and the like can be exemplified.
  • the water-soluble polymer improves the flexibility of the gas barrier coating layer 104 containing the component (a) as a main component while maintaining its gas barrier property, and for example, polyvinyl alcohol, starch, and cellulose are preferably used. can.
  • polyvinyl alcohol hereinafter referred to as PVA
  • the gas barrier property is the best. Because PVA is a polymer containing the largest number of hydroxyl groups in the monomer unit, it forms a very strong hydrogen bond with the hydroxyl group of the metal alkoxide after hydrolysis.
  • the PVA referred to here is generally obtained by saponifying polyvinyl acetate, and is completely saponified with only a few percent of acetic acid groups remaining from the so-called partially saponified PVA in which several tens of percent of acetic acid groups remain. Including up to PVA.
  • the molecular weight of PVA varies from 300 to several thousand, but there is no problem in the effect regardless of which molecular weight is used. However, in general, a high molecular weight PVA having a high degree of saponification and a high degree of polymerization is preferable because it has high water resistance.
  • the component (b) improves the water resistance of the gas barrier coating layer 104, and is a silicon compound represented by the above general formula (IV) or a hydrolyzate thereof.
  • the component (b), the organic functional group R 2 is a vinyl group, an epoxy group, a methacryloxy group, a ureido group, and a compound which is a non-aqueous functional group such as isocyanate groups can be used. Since the functional group of the non-aqueous functional group is hydrophobic, the water resistance is further improved.
  • the organic functional group (R 2 ) is a ureido group, it has an odor peculiar to the compound, and when it is an isocyanate group, it has a drawback that it is highly reactive and has a short pot life.
  • the organic functional groups when using a compound having a 3-glycidoxypropyl group or 2- (3,4-epoxycyclohexyl) group as the organic functional group R 2, the organic functional groups by hydrolysis, the general formula (III) Since it forms a hydrogen bond with Si (OR 1 ) 4 and a water-soluble polymer, it is unlikely to form a pore in the barrier, and water resistance can be improved without impairing the gas barrier property. However, some of these epoxy-based silane compounds may have mutagenicity. Further, when the organic functional group (R 2 ) is vinyl or methacryloxy, irradiation with ultraviolet rays or electron beams is required in the manufacturing process, which tends to lead to high cost due to an increase in equipment and processes.
  • trimer 1,3,5-tris (3-trialkoxysilylpropyl) isocyanurate represented by the following general formula (V) is used as the component (b), these drawbacks are eliminated. It is possible to improve the water resistance and prevent the deterioration of the gas barrier property. (NCO-R 4 Si (OR 3 ) 3 ) 3 (V) (However, in the general formula (V), R 4 represents (CH 2 ) n, R 3 represents CH 3 , C 2 H 5 , or C 2 H 4 OCH 3 , and n represents 1 or more. ).
  • this 1,3,5-tris (3-trialkoxysilylpropyl) isocyanurate is a condensate of 3-isocyanatepropylalkoxysilane, and the isocyanurate portion loses its chemical reactivity due to the condensation. It is known that the polarity of the nurate portion exhibits the same performance as that of 3-isocyanatepropylalkoxysilane before condensation. Therefore, by adding 1,3,5-tris (3-trialkoxysilylpropyl) isocyanurate, the gas barrier coating layer 104 can be prevented from swelling due to water, similar to the addition of 3-isocyandiapropylalkoxysilane. Water resistance can be improved.
  • the nurate portion is not water-soluble due to its polarity, but it is easily dispersed in an aqueous liquid and keeps the liquid viscosity stable.
  • the water resistance is equivalent to that of 3-isocyanatepropylalkoxysilane.
  • the nurate portion is not only water resistant, but also Si (OR 1 ) 4 and the water-soluble polymer having a hydroxyl group are less likely to form barrier pores due to its polarity, and deterioration of gas barrier property can be prevented.
  • 1,3,5-tris (3-trialkoxysilylpropyl) isocyanurate may be produced by thermal condensation of 3-isocyanatepropylalkoxysilane, and may contain 3-isocyanatepropylalkoxysilane as a raw material. There are some, but there is no particular problem. More preferably, it is 1,3,5-tris (3-trimethoxysilylpropyl) isocyanate. Since methoxy groups have a high hydrolysis rate and those containing propyl groups can be obtained at a relatively low cost, 1,3,5-tris (3-trimethoxysilylpropyl) isocyanurate is practically advantageous. be.
  • the components (a) and (b) are R 2 Si (OH) 3 when the component (a) is converted into SiO 2 and the component (b) is converted into R 2 Si (OH) 3 .
  • the solid content is preferably 1 to 50% by mass with respect to the total solid content (total of the components (a) and (b)).
  • the gas barrier coating layer 104 can obtain a highly water-resistant gas barrier property that does not deteriorate even under severe treatment such as boiling and retort sterilization treatment. If it is less than 1% by mass, the water resistance effect tends to be low, and if it exceeds 50% by mass, the functional group becomes a pore of the gas barrier coating layer, so that the gas barrier property tends to be lowered.
  • the solid content is more preferably 5 to 30% by mass with respect to the total solid content.
  • the mixing ratio of the solid content is SiO 2 / (R 2 Si (OH) 3 +) in terms of mass ratio.
  • Water-soluble polymer 100/100 to 100/30, as well as water resistance and high gas barrier properties required for boiling and retort sterilization treatment, as well as flexibility due to film flexibility when considered as a packaging material. Is sufficiently imparted and is preferable.
  • the order of mixing these three components may be arbitrary. The effect is exhibited regardless of the order of mixing.
  • the component (a) or the component (b) does not disperse in the coating liquid and exists in the form of oil droplets, it is preferable to hydrolyze and finely disperse the components as described above.
  • the thickness of the gas barrier coating layer 104 after drying is not particularly limited, but if the thickness exceeds 50 ⁇ m, cracks may easily occur, so it is desirable to set it to 0.01 to 50 ⁇ m.
  • a normal coating method can be used as a method for forming the gas barrier coating layer 104.
  • a dipping method, a roll coat, a gravure coat, a reverse coat, an air knife coat, a comma coat, a die coat, a screen printing method, a spray coat, a gravure offset method and the like can be used as a method for forming the gas barrier coating layer 104.
  • a dipping method, a roll coat, a gravure coat, a reverse coat, an air knife coat, a comma coat, a die coat, a screen printing method, a spray coat, a gravure offset method and the like can be used as a gravure offset method and the like.
  • the method for drying the coating film is any of these, as long as it is a method of applying heat to the gas barrier coating layer such as hot air drying, hot roll drying, high frequency irradiation, infrared irradiation, and UV irradiation to blow off water molecules. You can combine more than one.
  • the component (a) and the component (b) are hydrolyzed to form the gas barrier coating layer 104 having a gas barrier property.
  • the heat fusion layer 105 will be described.
  • the heat-sealing layer 105 for example, an unstretched polyolefin film can be used.
  • the thickness may be 5 to 300 ⁇ m. It is preferably 10 to 100 ⁇ m.
  • the heat-sealing layer 105 and the gas barrier coating layer 104 can be adhered to each other by the dry lamination adhesive ad1.
  • the adhesive ad1 can be applied by roll coating, gravure coating, knife coating, dip coating, spray coating, or other coating method.
  • the coating amount is preferably about 0.1 to 5.0 g / m 2 (dry state).
  • the polyamide film 206 improves the pinhole resistance and impact resistance of the packaging bag, and for example, 6-nylon, 6,6-nylon, MXD nylon and the like can be used.
  • a biaxially stretched polyamide film is desirable, and the thickness thereof may be 5 to 100 ⁇ m. It is preferably 10 to 50 ⁇ m.
  • the polyamide film 206 and the gas barrier coating layer 104 can be adhered to each other by the dry lamination adhesive layer ad2. Further, the polyamide film 206 and the heat-sealing layer 105 can be adhered to each other by the dry lamination adhesive ad3.
  • the gas barrier coating layer is sufficiently insolubilized by using a silicon compound as a metal alkoxide and reacting it with a water-soluble polymer having a hydroxyl group.
  • the silicon compound condenses after hydrolysis to form a ceramic film.
  • silicon oxide is hard and easily cracked due to strain due to volume reduction during condensation, it is very difficult to form a thin, transparent and uniform condensate film on the film. Therefore, by adding a polymer, it is possible to impart flexibility to the ceramic film and prevent cracks to form a film.
  • the addition of the polymer is uniform visually, it is often microscopically separated into the metal oxide and the polymer portion, which tends to form holes in the barrier, and thus the gas barrier property is deteriorated.
  • the hole of the barrier means a portion in the membrane that facilitates the permeation of gas without forming a dense network.
  • a water-soluble polymer having a hydroxyl group As the polymer, a strong hydrogen bond between the hydroxyl group of the polymer and the hydroxyl group of the hydrolyzate of the metal alkoxide is utilized, and the metal oxide is placed between the polymer and the polymer during condensation. It can disperse well and maintain flexibility while exhibiting high gas barrier properties close to those of ceramics.
  • the gas barrier coating layer composed of the silicon compound and the water-soluble polymer is composed of hydrogen bonds, it swells and dissolves in water.
  • the swelling of the gas barrier coating layer is prevented and the water resistance is remarkably improved. That is, since the component (b) forms a hydrogen bond with the component of the general formula (a) and the water-soluble polymer by hydrolysis, it is difficult to form a pore in the barrier, and on the other hand, the organic functional group forms a network. Therefore, the water-soluble polymer is prevented from swelling due to the addition of water to its hydrogen bond, and the water resistance is significantly improved.
  • the gas barrier coating layer 104 obtained by reacting the above-mentioned components (a) to (b) and the water-soluble polymer has excellent gas barrier properties and flexibility, as well as heat sterilization treatment of retort, boil, etc. It has water resistance to withstand.
  • the package according to the present embodiment has a primer layer containing an acrylic polyol containing a partial structure represented by the general formula (I) or (II) between the base film and the silicon oxide vapor deposition layer. .. Therefore, even after the boil sterilization treatment and the retort sterilization treatment, deterioration of oxygen permeability, laminating strength, etc. is not observed, and the vapor deposition layer is hardly peeled off from the base film.
  • the resin composition according to the present embodiment is a composition for forming a hard coat layer containing a resin R containing a repeating unit (a) containing a partial structure represented by the above general formula (I) or (II). It is a thing.
  • the repeating unit (a) is a repeating unit derived from the monomer (B) described later.
  • a resin layer is formed on the polarizing plate protective film for liquid crystal displays and the protective film for circularly polarizing plates used for organic EL displays and the like in order to have various functions.
  • the resin layer is, for example, an antistatic layer for providing an antistatic function, an antireflection layer for suppressing reflection, and a hard coat layer for improving the surface hardness.
  • it is essential to provide a hard coat layer for display applications, and the hard coat layer is not only used as a single layer, but also plays an important role as a lower layer when an antireflection layer is laminated. ..
  • Patent Document 10 an antifouling and abrasion-resistant antireflection article is provided on the surface of a base material, which is provided with an antireflection film mainly made of silicon dioxide and further treated with a compound containing an organosilicon substituent on the surface.
  • Patent Document 11 also proposes an antifouling and abrasion-resistant CRT filter in which the surface of a substrate is coated with a terminal silanol organic polysiloxane.
  • Patent Document 12 proposes an antifouling and low-reflection plastic having an antireflection film on the surface thereof containing a mono- and disilane compound containing a polyfluoroalkyl group and a halogen, alkyl or alkoxy silane compound. Has been done.
  • Patent Documents 13 to 15 disclose a technique for increasing the molecular weight of the additive.
  • none of the conventional hard coat films can achieve both antifouling properties such as fingerprint wiping properties and high heat resistance, and additives mixed for the purpose of imparting functions to the hard coat are also mixed at high temperatures to some extent. Decomposition of the additive in the above occurs, and it is difficult to fully exert its function. In addition, the thermal decomposition products of the additives often accelerate the deterioration of the hard coat. Under such circumstances, it is desired to develop a composition for forming a hardcoat layer that meets the high heat resistance requirements of recent years.
  • composition for forming a hard coat layer according to the present embodiment it is possible to provide a hard coat layer having excellent heat resistance, antifouling function, curl resistance, scratch resistance, and surface hardness. Further, the hard coat layer formed by using the composition for forming a hard coat layer according to the present embodiment has high adhesion to a base material, is easy to remove stains, and does not require an antifouling layer to be installed. Further, the characteristics of the hard coat layer do not deteriorate, and the visibility is always high.
  • This embodiment is used for the purpose of protecting the surface of a display such as a cathode ray tube display device (CRT), a liquid crystal display device (LCD), a plasma display panel (PDP), and a field emission display (FED). It relates to a composition for forming a coat layer and a hard coat film. More specifically, the present embodiment is for forming a hard coat layer which has high adhesion to a base material, is excellent in heat resistance and stain resistance, and can impart excellent curl resistance, scratch resistance, and surface hardness. Concerning compositions and hardcourt films.
  • CTR cathode ray tube display device
  • LCD liquid crystal display device
  • PDP plasma display panel
  • FED field emission display
  • the present inventors have obtained the specific polyfunctional (meth) acrylic monomer (A) and the above general formula (I) or (II).
  • the above-mentioned conventional problems can be solved in the layer-forming composition.
  • the blending ratio of the non-polymerizable additive (E) is adjusted to a specific range.
  • composition for forming a hardcourt layer will be described in detail below with reference to the drawings.
  • the polyfunctional (meth) acrylic monomer (A) constituting the composition for forming a hard coat layer of the present embodiment has two or more hydroxyl groups of a polyhydric alcohol having two or more alcoholic hydroxyl groups in one molecule.
  • the compound which is an esterified product of (meth) acrylic acid is preferable.
  • urethane (meth) acrylate monomers and / or oligomers can be used to significantly improve the hardness and flexibility of the hardcourt layer.
  • the "(meth) acrylic monomer” means both “acrylic monomer” and “methacrylic monomer”.
  • polyfunctional (meth) acrylic monomer indicates both “polyfunctional acrylic monomer” and “polyfunctional methacrylic monomer”.
  • the polyfunctional (meth) acrylic monomer (A) of the present embodiment and the monomer (B) having a partial structure represented by the general formula (I) or (II) may be an oligomer.
  • the preferred urethane acrylate used as the polyfunctional (meth) acrylic monomer (A) is generally an acrylate monomer having a hydroxyl group in a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. Can be mentioned as those easily formed by reacting with.
  • pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer dipentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymer
  • pentaerythritol triacrylate toluene diisocyanate urethane prepolymer pentaerythritol triacrylate toluene diisocyanate urethane prepolymer
  • dipentaerythritol pentaacrylate toluene diisocyanate urethane prepolymer dipentaerythritol pentaacrylate toluene diisocyanate urethane prepolymer.
  • Pentaerythritol triacrylate isophorone diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate isophorone diisocyanate urethane prepolymer and the like can be used.
  • these monomers can be used alone or in admixture of two or more. Further, these may be monomers in the coating liquid, or may be partially polymerized oligomers.
  • polyfunctional acrylic monomers include Mitsubishi Chemical Co., Ltd. [trade name “Shikou” series, etc.], Shin-Nakamura Chemical Co., Ltd. [trade name “NK ester” series, etc.], DIC Co., Ltd. [trade name "" Luxidia “series, etc.], Toa Synthetic Co., Ltd. [Product name” Aronix “series, etc.], Nichiyu Co., Ltd. [Product name” Brenmer “series, etc.], Nihon Kayaku Co., Ltd. [Product name” KAYARAD “series, etc.], Kyoeisha Products such as Chemical Co., Ltd. [trade name "light ester” series, "light acrylate” series, etc.] can be used.
  • composition for forming a hardcourt layer contains a monomer (B) having a partial structure represented by the above general formula (I) or (II).
  • the above-mentioned repeating unit (a) is a repeating unit derived from the monomer (B).
  • the monomer (B) having a partial structure represented by the above general formula (I) or (II) may be, for example, a (meth) acrylate-based monomer or a (meth) acrylamide-based monomer. , N-substituted maleimide-based monomer, or may be a styrene-based monomer.
  • the monomer having the partial structure represented by the above general formula (I) or (II) is a (meth) acrylate-based monomer, for example, 4-methoxyphenyl (meth) acrylate, 4-hydroxyphenyl (meth).
  • the monomer having the partial structure represented by the above general formula (I) or (II) is a (meth) acrylamide-based monomer
  • N- (4-hydroxyphenyl) (meth) acrylamide and the like can be mentioned. ..
  • the monomer having a partial structure represented by the above general formula (I) or (II) is an N-substituted maleimide-based monomer, for example, 4-hydroxyphenylmaleimide, 3-hydroxyphenylmaleimide and the like can be mentioned.
  • the monomer having the partial structure represented by the above general formula (I) or (II) is a styrene-based monomer, for example, ⁇ -methyl-p-hydroxystyrene and the like can be mentioned.
  • the ratio of the polyfunctional (meth) acrylic monomer (A) used is the sum of the polyfunctional (meth) acrylic monomer (A) and the monomer (B) having a partial structure represented by the general formula (I) or (II). It is preferably 1 to 99% by mass, more preferably 50% by mass or more and 95% by mass or less.
  • the ratio of the polyfunctional (meth) acrylic monomer (A) used is less than 50% by mass, it may be insufficient to obtain a hardcoat layer having sufficient hardness, and the formed hardcoat layer may be insufficient. It may cause inconveniences such as a decrease in pencil hardness.
  • the proportion of the polyfunctional (meth) acrylic monomer (A) used exceeds 95% by mass, the hard coat film is greatly curled on the cured film side due to the curing shrinkage of the polyfunctional (meth) acrylic monomer (A). It may cause inconvenience such as. Further, since the proportion of the monomer (B) having a partial structure represented by the general formula (I) or (II) is small, the compatibility of the fluorine-containing compound (D) having a polymerizable group is not sufficient, and the coating is applied. The liquid may become cloudy and precipitates may be generated, which may be insufficient in obtaining a hard coat composition having good storage stability.
  • the photoradical polymerization initiator (C) constituting the hard coat layer forming composition of the present embodiment a compound that generates radicals by irradiating with ionizing radiation and initiates the polymerization reaction of the acrylic monomer is preferable.
  • photoradical polymerization initiator (C) examples include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, p-dimethylaminopropiophenone, benzophenone, 2-chlorobenzophenone, 4,4'.
  • the amount of the photoradical polymerization initiator (C) used has a polyfunctional (meth) acrylic monomer (A) of the composition for forming a hard coat layer and a partial structure represented by the general formula (I) or (II). 0.01% by mass or more and 10% by mass or less is appropriate with respect to the total amount of the monomers (B). If it is less than 0.01% by mass, a sufficient curing reaction does not proceed when it is irradiated with ionizing radiation, and if it exceeds 10% by mass, the ionizing radiation does not sufficiently reach the lower part of the hard coat layer.
  • a fluorine-based additive By adding a fluorine-based additive to the fluorine-containing compound (D) having a polymerizable group constituting the composition for forming a hard coat layer of the present embodiment, it is possible to impart antifouling properties to the surface of the hard coat layer. be.
  • a fluorine-based additive when added to a fluorine compound having no polymerizable group, the additive is in a state of floating on the surface of the hard coat layer, so that when wiped with a cloth or the like, the additive is present from the surface of the hard coat. It will be removed. For this reason, once the surface is wiped with a cloth or the like, there is a drawback that the antifouling property is lost.
  • a fluorine-based additive is also polymerized when the hard coat layer is formed, and the antifouling properties can be obtained even if the surface is wiped with a cloth or the like. It has the advantage of being maintained.
  • the polymerizable group of the fluorine-containing compound (D) having a polymerizable group is a compound having a (meth) acrylate group. This is because the fluorine-containing compound (D) having a polymerizable group can be copolymerized with a polyfunctional (meth) acrylate compound, and the hardness can be increased by radical polymerization by ionizing radiation.
  • fluorine-containing compound (D) having a polymerizable group in the present embodiment examples include Optool DAC (manufactured by Daikin Industries, Ltd.), Defensa TF3001, Defensa TF3000, Defensa TF3028 (manufactured by DIC Corporation), and the like. Be done.
  • the amount of the fluorine-containing compound (D) having a polymerizable group of the present embodiment is the polyfunctional (meth) acrylic monomer (A) of the composition for forming a hard coat layer and the general formula (I) or (II). 0.01 to 10% by mass is appropriate with respect to the total of the monomers (B) having the represented partial structure. When it is less than 0.01% by mass, sufficient antifouling properties are not exhibited and the surface energy also shows a value larger than 20 mN / m. If it exceeds 10% by mass, the compatibility with the polymerizable monomer and the solvent is not good, so that the coating liquid becomes cloudy and precipitates occur, which causes inconveniences such as defects in the coating liquid and the hard coat layer. In some cases.
  • the content of the monomer (B) having a partial structure represented by the general formula (I) or (II) is the fluorine-containing compound (D) having a polymerizable group with the (meth) acrylic monomer (A). ), It is preferably in the range of 2 mol% or more and 50 mol%.
  • the content of the monomer (B) having a partial structure represented by the general formula (I) or (II) is 2 mol% or more, the thermal decomposition of the hard coat film and the additive used in combination is more effectively suppressed. can do.
  • the content of the monomer (B) having a partial structure represented by the general formula (I) or (II) is 50 mol% or less, the effect of suppressing thermal decomposition of the resin and the additive used in combination is maintained. On the other hand, it is possible to effectively suppress the occurrence of yellowing of the resin during heating and the hardening and brittleness of the resin.
  • the content of the monomer (B) having a partial structure represented by the general formula (I) or (II) may be 2 mol% or more and 30 mol% or less, or 2 mol% or more and 20. It may be less than or equal to mol%.
  • a coatability improver As the modifier of the hard coat layer, a coatability improver, a defoaming agent, a thickener, an antistatic agent, an inorganic particle, an organic particle, an organic lubricant, an organic polymer compound, and the like.
  • Non-polymerizable additives (E) such as UV absorbers, light stabilizers, dyes, pigments or stabilizers can be further added. These additives are used as composition components of the coating layer constituting the hard coat layer within a range that does not impair the reaction by the active rays, and the characteristics of the hard coat layer can be improved depending on the application.
  • the blending ratio of the non-polymerizable additive (E) is 50% by mass or less of the total mass of the components other than the solvent in the composition for forming the hard coat layer.
  • Specific examples of the non-polymerizable additive (E) include the same specific examples as those shown in Table 1 in the first embodiment.
  • a method for curing the composition for forming a hard coat layer of the present embodiment a method of irradiating with active rays, particularly ultraviolet rays, is preferable, and an ultraviolet radical polymerization initiator is added to the composition for forming a hard coat layer to obtain ultraviolet rays.
  • an ultraviolet radical polymerization initiator is added to the composition for forming a hard coat layer to obtain ultraviolet rays.
  • light containing a wavelength of 400 nm or less may be used, and for example, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a medium pressure mercury lamp, a low pressure mercury lamp, a xenon lamp, a halogen lamp and the like can be used. Further, a heating step may be added if necessary.
  • the composition for forming a hard coat layer of the present embodiment contains hydroquinone, hydroquinone monomethyl ether, or 2,5-t-butyl hydroquinone to prevent thermal polymerization in order to prevent thermal polymerization during production and dark reaction during storage. It is desirable to add the agent.
  • the amount of the thermal polymerization inhibitor added is preferably 0.005 to 0.05% by mass with respect to the solid content of the composition for forming a hard coat layer.
  • FIG. 6 is a cross-sectional view of a hard coat film according to an embodiment of the present invention.
  • the hard coat film 300 of the present embodiment includes a hard coat layer 302 on a transparent base material 301.
  • the hard coat layer 302 is formed by applying the composition for forming a hard coat layer of the present embodiment onto the transparent base material 301.
  • known coating means such as a bar coater, an applicator, a doctor blade, a roll coater, a die coater, and a commer coater can be used.
  • a solvent is added to the composition for forming the hard coat layer, if necessary.
  • Solvents include methylisobutylketone, cyclohexanone, acetone, methylethylketone, diethylketone, dipropylketone, cyclopentanone, methylcyclohexanone, ethylcyclohexanone, 2-butanone, ethyl lysate, propyl riate, n-pentyl lysate, methyl acetate, acetic acid.
  • Ethyl, methyl propionate, ethyl propionate, n-pentyl acetate, and ⁇ -petitrolactone isobutyl acetate, butyl acetate, toluene, xylene, 2-propanol, 1-butanol, cyclopentanol, diacetone alcohol, ethylene glycol monomethyl ether , Propylene glycol monomethyl ether, dibutyl ether, dimethoxymethane, dimethoxyethane, diethoxyethane, propylene oxide, dioxane, dioxolan, trioxane, tetrahydrofuran, anisole, phenetol, methyl cellosolve, cellosolve, butyl cellosolve, cellosolve acetate, dichloromethane, trichloromethane, trichloroethylene , Ethyl chloride, trichloroethane, tetrachloro
  • the transparent base material 301 is preferably in the form of a film having translucency, and may have appropriate transparency and mechanical strength as the base material.
  • a film having translucency may have appropriate transparency and mechanical strength as the base material.
  • PET polyethylene terephthalate
  • TAC cellulose triacetate
  • PEN polyethylene naphthalate
  • cycloolefin polymer polyimide
  • PES polyether sulfone
  • PMMA polymethylmethacrylate
  • PC polycarbonate
  • PC polycarbonate
  • cellulose triacetate (TAC) is preferably used because it has no optical anisotropy.
  • the hard coat film 300 of the present embodiment includes a hard coat layer 302 on the outermost layer.
  • the surface energy of the surface of the hard coat layer 302 is preferably 20 mN / m or less.
  • the surface free energy can be used as an index of the evaluation method of the antifouling property of the surface of the hard coat layer 302, and the presence or absence and the magnitude of the antifouling property of the hard coat surface can be estimated from this surface free energy.
  • the surface free energy can be obtained from the contact angle on the surface of the hard coat layer by the equation of extended Fowkes, and the smaller this value is, the better the antifouling property is. Since the hard coat film 300 of the present embodiment has a surface free energy of 20 mN / m or less, it has high antifouling properties.
  • the surface free energy of the surface of the hard coat layer is preferably 15 mN / m or more.
  • the surface free energy of the surface of the hard coat layer is set to less than 15 mN / m, it is necessary to add a considerable amount of the fluorine-containing compound (D) having a polymerizable group, and at this time, the composition for forming the hard coat layer is Since the hard-coated film formed by whitening becomes whitish, the obtained hard-coated film may not be suitable for being provided on the surface of the display.
  • the film thickness of the hard coat layer 302 obtained by coating is determined by the required hardness, and is preferably 3 to 30 ⁇ m, more preferably 5 to 25 ⁇ m. If the film thickness is less than 3 ⁇ m, sufficient hardness cannot be obtained, while if it exceeds 30 ⁇ m, the transparent substrate is extremely curled due to the curing shrinkage of the hard coat layer 302, causing problems such as breakage in the next step. It ends up.
  • the hard coat film 300 of the present embodiment is provided with a functional layer as needed.
  • the functional layer is provided between the transparent base material 301 and the hard coat layer 302, or on the surface of the transparent base material on the side where the hard coat layer 302 is not provided.
  • these functional layers include an antireflection layer, an antistatic layer, an antiglare layer, an electromagnetic wave shielding layer, an infrared absorbing layer, an ultraviolet absorbing layer, and a color correction layer. It should be noted that these functional layers may be used as a single layer, or a plurality of layers having different functions may be used.
  • a hard coat film having a hard coat layer formed on a transparent base material 301 and a hard coat film having these functional layers are bonded to various display surfaces such as a liquid crystal display, a plasma display, and a CRT display. This makes it possible to provide a display having excellent scratch resistance and stain resistance.
  • Resin P-2a which will be described later, is the same as in Synthesis Example 1 except that 4-hydroxyphenyl methacrylate (HPMA) is used instead of 4-methoxyphenyl methacrylate (MPhMA). 2a was obtained.
  • HPMA 4-hydroxyphenyl methacrylate
  • MPhMA 4-methoxyphenyl methacrylate
  • Resin P-102a For comparison, the resin P described below was prepared in the same manner as in Synthesis Example 1 except that phenyl methacrylate (PhMA) was used instead of 4-methoxyphenyl methacrylate (MPhMA). -102a was obtained.
  • PhMA phenyl methacrylate
  • MPhMA 4-methoxyphenyl methacrylate
  • a resin solution was prepared by dissolving 20 parts by mass of the obtained resin in 80 parts by mass of cyclohexanone. Add a hindered amine-based light stabilizer (trade name: Tinuvin (registered trademark) 123, manufactured by BASF Japan Ltd.) or Tris (pentafluoroethyl) trifluorophosphate (FAP) as an additive to the obtained resin solution.
  • a resin solution was obtained by adding 0.1 parts by mass of a cyanine dye having a structure represented by the following formula (1) as a counter anion. The above resin solution was applied onto a glass substrate using spin coating, heated on a hot plate set at 200 ° C. for 10 minutes and dried to form a coating film having a thickness of 1 ⁇ m.
  • the glass substrate on which the coating film was formed was heated at 250 ° C. for 10 minutes, and the residual ratio of the additive in the coating film was measured.
  • a glass substrate was cut into a size of 1 cm 2 , immersed in 1.5 mL of acetone, and extracted in an ultrasonic cleaner for 60 minutes.
  • Addition into glass substrate extract by ultra-high performance liquid chromatography / mass spectrometry (UHPLC / MS) (ultra-high performance liquid chromatograph / mass spectrometer (UHPLC / MS), Agilent 1260 LC System / 6130B Single Quad MS System) The agent was quantified.
  • the additive residual ratio ([V 1 / V 0 ] ⁇ 100) (%) was calculated by dividing the amount of the additive remaining after heating (V 1 ) by the initial amount of the additive (V 0) before heating.
  • the higher the residual ratio of the additive the better the ability to suppress the thermal deterioration of the additive.
  • Resin P-2b which will be described later, is the same as in Synthesis Example 2 except that 4-hydroxyphenyl methacrylate (HPMA) is used instead of 4-methoxyphenyl methacrylate (MPhMA) for Synthesis Example 2. 2b was obtained.
  • HPMA 4-hydroxyphenyl methacrylate
  • MPhMA 4-methoxyphenyl methacrylate
  • the additive residual ratio ([V 1 / V 0 ] ⁇ 100) (%) was calculated by dividing the amount of the additive remaining after heating (V 1 ) by the initial amount of the additive (V 0) before heating.
  • the higher the residual ratio of the additive the better the ability to suppress the thermal deterioration of the additive.
  • the emulsion solution was freeze-dried to recover the polyvinyl chloride precipitate, washed with warm water, and then dried under reduced pressure.
  • the obtained powder was dissolved in tetrahydrofuran, and polyvinyl alcohol, which was an insoluble matter, was removed by filtration. This tetrahydrofuran solution was poured into a large amount of methanol and the precipitate was filtered off to give polyvinyl chloride (PVC).
  • A is when the mass reduction rate is less than 30% in both the measurement under the air atmosphere and the nitrogen atmosphere, and the mass loss rate is 30% or more in one or both measurements under the air atmosphere and the nitrogen atmosphere.
  • the case was set to "B”.
  • the results are shown in Table 5.
  • the glass substrate on which the coating film was formed was heated at 250 ° C. for 10 minutes, and the residual ratio of the additive in the coating film was measured.
  • a glass substrate was cut into a size of 1 cm 2 , immersed in 1.5 mL of acetone, and extracted in an ultrasonic cleaner for 60 minutes.
  • Addition into glass substrate extract by ultra-high performance liquid chromatography / mass spectrometry (UHPLC / MS) (ultra-high performance liquid chromatograph / mass spectrometer (UHPLC / MS), Agilent 1260 LC System / 6130B Single Quad MS System) The agent was quantified.
  • the additive residual ratio ([V 1 / V 0 ] ⁇ 100) (%) was calculated by dividing the amount of the additive remaining after heating (V 1 ) by the initial amount of the additive (V 0) before heating.
  • the higher the residual ratio of the additive the better the ability to suppress the thermal deterioration of the additive.
  • a resin composition was obtained by adding 0.4 parts by mass of (manufactured by Japan Co., Ltd.) and 0.1 parts by mass of Chimassorb 2020 (manufactured by BASF Japan Ltd.). This resin composition was melt-extruded to obtain a polypropylene resin film having a thickness of 80 ⁇ m.
  • a base material is provided by gravure printing a wood grain pattern using a two-component urethane ink (V180; manufactured by Toyo Ink Co., Ltd.) on a concealing polyethylene raw fabric (thickness 70 ⁇ m) and providing a pattern layer (thickness 3 ⁇ m).
  • V180 two-component urethane ink
  • Thickness 70 ⁇ m a concealing polyethylene raw fabric
  • thickness 3 ⁇ m a pattern layer
  • Got A laminate of the film was obtained by dry-laminating the polypropylene resin film on this substrate via a dry-laminating adhesive (Takelac A540; manufactured by Mitsui Chemicals, Inc.) (thickness 2 ⁇ m).
  • a polymer solution containing each of the resins (acrylic copolymers) obtained above is applied onto the polypropylene resin film of the laminate so as to have a layer thickness of 8 ⁇ m using a bar coater, and the surface is dried. A protective layer was formed and a decorative sheet was obtained.
  • the polymer solution for the surface protective layer four kinds of polymer solutions were prepared and used for each resin. That is, the polymer solution itself containing the resin obtained above and xylylene diisocyanate (XDI) (trade name: Takenate (registered trademark) 500; manufactured by Mitsui Kagaku Co., Ltd.) are used as curing agents in terms of solid content mass ratio.
  • XDI xylylene diisocyanate
  • a hindered amine-based light stabilizer (trade name: Chinubin 123; manufactured by BASF Japan Co., Ltd.) is added or not added as an additive.
  • Chinubin 123 manufactured by BASF Japan Co., Ltd.
  • the above-mentioned film laminate having no surface protective layer formed was prepared, cut into 1 cm 2 in the same manner as described above, and subjected to the same heat treatment and extraction operation as described above, in the extract of the film laminate.
  • the amount of additives was quantified.
  • the amount of the additive in the surface protective layer of the decorative sheet was quantified by taking the difference between the amount of the additive in the extract of the decorative sheet and the amount of the additive in the extract of the film laminate.
  • the additive residual ratio ([V 1 / V 0 ] ⁇ 100) (%) was calculated by dividing the amount of the additive remaining after heating (V 1 ) by the initial amount of the additive (V 0) before heating.
  • the residual additive ratio was 90% or more, it was designated as "A”, and when it was less than 90%, it was designated as "B".
  • the results are shown in Table 6.
  • Synthesis Example 1 Synthesis of resin PA 80 parts by mass of cyclohexanone was prepared as a polymerization solvent. Further, 3 parts by mass of 2-hydroxyethyl methacrylate (HEMA), 14 parts by mass of methyl methacrylate (MMA), and 1 part by mass of 4-methoxyphenyl methacrylate (MPhMA) were prepared as acrylic monomers. Further, 0.22 parts by mass of benzoyl peroxide (BPO) was prepared as a polymerization initiator. These were placed in a reaction vessel equipped with a stirrer and a reflux tube, and the mixture was stirred and refluxed for 8 hours while being heated to 80 ° C. while introducing nitrogen gas into the reaction vessel.
  • HEMA 2-hydroxyethyl methacrylate
  • MMA methyl methacrylate
  • MPhMA 4-methoxyphenyl methacrylate
  • BPO benzoyl peroxide
  • a polymer solution containing an acrylic copolymer formed from a repeating unit derived from HEMA, a repeating unit derived from MMA, and a repeating unit derived from MPhMA was obtained.
  • the obtained polymer solution was added dropwise to a large amount of methanol, reprecipitated and purified, and dried under reduced pressure at room temperature for 24 hours to obtain a resin PA.
  • Synthesis Example 2 Synthesis of Resin P-b Resin P is synthesized in the same manner as in Synthesis Example 1 except that 4-hydroxyphenyl methacrylate (HPMA) is used instead of 4-methoxyphenyl methacrylate (MPhMA). -B was obtained.
  • HPMA 4-hydroxyphenyl methacrylate
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 3 Synthesis of Resin P-c With respect to Synthesis Example 2, except that methyl methacrylate (MMA) is 16.6 parts by mass and 4-hydroxyphenyl methacrylate (HPMA) is 0.4 parts by mass, it is the same as Synthesis Example 2. Resin P-c was obtained in the same manner.
  • MMA methyl methacrylate
  • HPMA 4-hydroxyphenyl methacrylate
  • Synthesis Example 4 Synthesis of Resin Pd The same method as in Synthesis Example 2 except that methyl methacrylate (MMA) is 15 parts by mass and 4-hydroxyphenyl methacrylate (HPMA) is 2 parts by mass with respect to Synthesis Example 2. Resin P-d was obtained.
  • MMA methyl methacrylate
  • HPMA 4-hydroxyphenyl methacrylate
  • Synthesis Example 5 Synthesis of Resin P-e A resin is used in the same manner as in Synthesis Example 1 except that 4-hydroxyphenylmethacrylamide (HPMAA) is used instead of 4-methoxyphenyl methacrylate (MPhMA). Obtained P-e.
  • HPMAA 4-hydroxyphenylmethacrylamide
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 6 Synthesis of Resin Pf Resin P is synthesized in the same manner as in Synthesis Example 1 except that 4-hydrokiphenylmaleimide (HPhMI) is used instead of 4-methoxyphenyl methacrylate (MPhMA). -F was obtained.
  • HPMI 4-hydrokiphenylmaleimide
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 7 Synthesis of Resin Pg Synthesis Example 1 except that 2,6-di-tert-butylphenyl methacrylate (t-BuPhMA) was used instead of 4-methoxyphenyl methacrylate (MPhMA). Resin Pg was obtained in the same manner as in 1.
  • t-BuPhMA 2,6-di-tert-butylphenyl methacrylate
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 8 Synthesis of Resin P-h
  • t-BuMPhMA 2,6-di-tert-butyl-4-methoxyphenyl methacrylate
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 9 Synthesis of Resin P-i
  • HPA 4-hydroxyphenyl acrylate
  • HEMA 2-hydroxyethyl methacrylate
  • MMA methyl methacrylate
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 10 Synthesis of Resin P-j Resin P-in the same manner as in Synthesis Example 1 except that 17 parts by mass of methyl methacrylate (MMA) and 4-methoxyphenyl methacrylate (MPhMA) are not used with respect to Synthesis Example 1. I got j.
  • MMA methyl methacrylate
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 11 Synthesis of Resin P-k Resin P-k is obtained in the same manner as in Synthesis Example 1 except that styrene (St) is used instead of 4-methoxyphenyl methacrylate (MPhMA) for Synthesis Example 1. rice field.
  • St styrene
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 12 Synthesis of Resin P-l Resin P-l is prepared in the same manner as in Synthesis Example 1 except that phenyl methacrylate (PhMA) is used instead of 4-methoxyphenyl methacrylate (MPhMA). Obtained.
  • PhMA phenyl methacrylate
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 13 Synthesis of Resin Pm Resin Pm is the same method as in Synthesis Example 1 except that phenylmethacrylamide (PhMAA) is used instead of 4-methoxyphenyl methacrylate (MPhMA). Got
  • Synthesis Example 14 Synthesis of Resin Pn Resin Pn was prepared in the same manner as in Synthesis Example 1 except that phenylmaleimide (PhMI) was used instead of 4-methoxyphenyl methacrylate (MPhMA). Obtained.
  • PhMI phenylmaleimide
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 15 Synthesis of Resin P-o Resin P-in the same manner as in Synthesis Example 1 except that 4-methoxystyrene (MSt) was used instead of 4-methoxyphenyl methacrylate (MPhMA) for Synthesis Example 1. I got o.
  • MSt 4-methoxystyrene
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 16 Synthesis of Resin Pp The same method as in Synthesis Example 1 except that 2,4,6-trimethylstyrene (TMSt) was used instead of 4-methoxyphenyl methacrylate (MPhMA) for Synthesis Example 1. The resin P-p was obtained.
  • TMSt 2,4,6-trimethylstyrene
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 17 Synthesis of resin Pq Resin Pq was obtained in the same manner as in Synthesis Example 9 except that styrene (St) was used instead of 4-hydroxyphenyl acrylate (HPA) for Synthesis Example 9. rice field.
  • St styrene
  • HPA 4-hydroxyphenyl acrylate
  • Example 202 A positive resist solution was prepared in the same manner as in Example 201, except that a 6 mass% propylene glycol monomethyl ether acetate (PGMEA) solution of the resin Pb was used.
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 203 A positive resist solution was prepared in the same manner as in Example 201, except that a 6 mass% propylene glycol monomethyl ether acetate (PGMEA) solution of the resin P-c was used.
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 204 A positive resist solution was prepared in the same manner as in Example 201, except that a 6 mass% propylene glycol monomethyl ether acetate (PGMEA) solution of the resin Pd was used.
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 205 A positive resist solution was prepared in the same manner as in Example 201, except that a 6 mass% propylene glycol monomethyl ether acetate (PGMEA) solution of the resin Pe was used.
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 206 A positive resist solution was prepared in the same manner as in Example 201, except that a 6 mass% propylene glycol monomethyl ether acetate (PGMEA) solution of the resin Pf was used.
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 207 A positive resist solution was prepared in the same manner as in Example 201, except that a 6 mass% propylene glycol monomethyl ether acetate (PGMEA) solution of the resin Pg was used.
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 208 A positive resist solution was prepared in the same manner as in Example 201, except that a 6 mass% propylene glycol monomethyl ether acetate (PGMEA) solution of the resin Ph was used.
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 209 A negative resist solution was prepared in the same manner as in Example 201, except that a 6 mass% propylene glycol monomethyl ether acetate (PGMEA) solution of the resin P-i was used.
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 201C A positive resist solution was prepared in the same manner as in Example 201, except that a 6 mass% propylene glycol monomethyl ether acetate (PGMEA) solution of resin Pj was used.
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 202C A positive resist solution was prepared in the same manner as in Example 201, except that a 6 mass% propylene glycol monomethyl ether acetate (PGMEA) solution of the resin Pk was used.
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 203C A positive resist solution was prepared in the same manner as in Example 201, except that a 6 mass% propylene glycol monomethyl ether acetate (PGMEA) solution of the resin Pl was used.
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 204C A positive resist solution was prepared in the same manner as in Example 201, except that a 6 mass% propylene glycol monomethyl ether acetate (PGMEA) solution of resin Pm was used.
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 205C A positive resist solution was prepared in the same manner as in Example 201, except that a 6 mass% propylene glycol monomethyl ether acetate (PGMEA) solution of resin Pn was used.
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 206C A positive resist solution was prepared in the same manner as in Example 201, except that a 6 mass% propylene glycol monomethyl ether acetate (PGMEA) solution of the resin P-schreib was used.
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 207C A positive resist solution was prepared in the same manner as in Example 201, except that a 6 mass% propylene glycol monomethyl ether acetate (PGMEA) solution of resin Pp was used.
  • PGMEA propylene glycol monomethyl ether acetate
  • Example 208C A negative resist solution was prepared in the same manner as in Example 201, except that a 6 mass% propylene glycol monomethyl ether acetate (PGMEA) solution of resin Pq was used.
  • PGMEA propylene glycol monomethyl ether acetate
  • Tables 7-1 and 7-2 show the components of the resins used in Examples 201 to 209 and 201C to 208C, respectively.
  • the resin forming the resist film contains a repeating unit (a) having a partial structure represented by the general formula (I) or (II), so that the selection ratio is large. It showed good dry etching resistance. However, in all of the substrates of Examples 201C to 208C, since the resin forming the resist film does not contain the repeating unit (a), the selection ratio is small and the dry etching resistance is insufficient.
  • the fact that the resin forming the resist film contains the repeating unit (a) is effective for improving the dry etching resistance of the resist film.
  • the present invention is not limited to the above embodiment, and can be variously modified at the implementation stage without departing from the gist thereof. Further, the above-described embodiment includes various inventions, and various inventions can be extracted by a combination selected from a plurality of disclosed constituent requirements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, if the problem can be solved and the effect is obtained, the configuration in which the constituent elements are deleted can be extracted as an invention.
  • the resist composition according to this embodiment is expected to have a great effect on improving productivity and quality in the production of photomasks and the production of LSIs and superLSIs.
  • Synthesis Example 1 Synthesis of polyol PA 80 parts by mass of cyclohexanone was prepared as a polymerization solvent. Further, 5 parts by mass of 2-hydroxyethyl methacrylate (HEMA), 14 parts by mass of methyl methacrylate (MMA), and 1 part by mass of 4-methoxyphenyl methacrylate (MPhMA) were prepared as acrylic monomers. Further, 0.22 parts by mass of benzoyl peroxide (BPO) was prepared as a polymerization initiator. These were placed in a reaction vessel equipped with a stirrer and a reflux tube, and the mixture was stirred and refluxed for 8 hours while being heated to 80 ° C. while introducing nitrogen gas into the reaction vessel.
  • HEMA 2-hydroxyethyl methacrylate
  • MMA methyl methacrylate
  • MPhMA 4-methoxyphenyl methacrylate
  • BPO benzoyl peroxide
  • a polymer solution containing an acrylic copolymer formed from a repeating unit derived from HEMA, a repeating unit derived from MMA, and a repeating unit derived from MPhMA was obtained.
  • the obtained polymer solution was added dropwise to a large amount of methanol, reprecipitated and purified, and dried under reduced pressure at room temperature for 24 hours to obtain polyol PA.
  • Synthesis Example 2 Synthesis of Polyol P-b Polyol P is synthesized in the same manner as in Synthesis Example 1 except that 4-hydroxyphenyl methacrylate (HPMA) is used instead of 4-methoxyphenyl methacrylate (MPhMA). -B was obtained.
  • HPMA 4-hydroxyphenyl methacrylate
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 3 Synthesis of polyol P-c Synthesized with respect to Synthesis Example 2 except that 2-hydroxyethyl methacrylate (HEMA) was 5.6 parts by mass and 4-hydroxyphenyl methacrylate (HPMA) was 0.4 parts by mass. Polyol P-c was obtained in the same manner as in Example 2.
  • HEMA 2-hydroxyethyl methacrylate
  • HPMA 4-hydroxyphenyl methacrylate
  • Synthesis Example 4 Synthesis of Polyol Pd Same as in Synthesis Example 2 except that 2-hydroxyethyl methacrylate (HEMA) is 4 parts by mass and 4-hydroxyphenyl methacrylate (HPMA) is 2 parts by mass with respect to Synthesis Example 2.
  • the polyol P-d was obtained by the above method.
  • Synthesis Example 5 Synthesis of polyol P-e A polyol is prepared in the same manner as in Synthesis Example 1 except that 4-hydroxyphenylmethacrylamide (HPMAA) is used instead of 4-methoxyphenyl methacrylate (MPhMA). Obtained P-e.
  • HPMAA 4-hydroxyphenylmethacrylamide
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 6 Synthesis of Polyol P-f Polyol P is synthesized in the same manner as in Synthesis Example 1 except that 4-hydrokiphenylmaleimide (HPhMI) is used instead of 4-methoxyphenyl methacrylate (MPhMA). -F was obtained.
  • HPMI 4-hydrokiphenylmaleimide
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 7 Synthesis of polyol P-g Synthesis example except that 2,6-di-tert-butylphenyl methacrylate (t-BuPhMA) was used in place of 4-methoxyphenyl methacrylate (MPhMA) for Synthesis Example 1. Polyol P-g was obtained in the same manner as in 1.
  • t-BuPhMA 2,6-di-tert-butylphenyl methacrylate
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 8 Synthesis of polyol Ph
  • 2,6-di-tert-butyl-4-methoxyphenyl methacrylate (t-BuMPhMA) was used instead of 4-methoxyphenyl methacrylate (MPhMA).
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 9 Synthesis of polyol Pi 80 parts by mass of cyclohexanone was prepared as a polymerization solvent. Further, 5 parts by mass of 2-hydroxyethyl methacrylate (HEMA), 14 parts by mass of methyl methacrylate (MMA), and 1 part by mass of 4-acetoxystyrene (AcSt) were prepared as acrylic monomers. Further, 0.22 parts by mass of benzoyl peroxide (BPO) was prepared as a polymerization initiator. These were placed in a reaction vessel equipped with a stirrer and a reflux tube, and the mixture was stirred and refluxed for 8 hours while being heated to 80 ° C. while introducing nitrogen gas into the reaction vessel.
  • HEMA 2-hydroxyethyl methacrylate
  • MMA methyl methacrylate
  • AcSt 4-acetoxystyrene
  • BPO benzoyl peroxide
  • a polymer solution containing an acrylic copolymer formed from a repeating unit derived from HEMA, a repeating unit derived from MMA, and a repeating unit derived from AcSt was obtained.
  • the obtained polymer solution was added dropwise to a large amount of methanol, reprecipitated and purified, and dried under reduced pressure at room temperature for 24 hours to obtain a HEMA / MMA / AcSt copolymer.
  • To 1 part by mass of the obtained HEMA / MMA / AcSt copolymer 2 parts by mass of 1 mol / l sodium hydroxide ethanol solution and 10 parts by mass of tetrahydrofuran were added, and the mixture was stirred for 2 hours. This solution was added dropwise to a large amount of methanol to obtain polyol Pi.
  • Synthesis Example 10 Synthesis of polyol Pj The same method as in Synthesis Example 1 except that 6 parts by mass of 2-hydroxyethyl methacrylate (HEMA) and 4-methoxyphenyl methacrylate (MPhMA) are not used with respect to Synthesis Example 1. Polyol P-j was obtained.
  • HEMA 2-hydroxyethyl methacrylate
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 11 Synthesis of polyol P-k Polyol P-k is obtained in the same manner as in Synthesis Example 1 except that styrene (St) is used instead of 4-methoxyphenyl methacrylate (MPhMA) for Synthesis Example 1. rice field.
  • St styrene
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 12 Synthesis of polyol P-l Polyol Pl is prepared in the same manner as in Synthesis Example 1 except that phenyl methacrylate (PhMA) is used instead of 4-methoxyphenyl methacrylate (MPhMA) for Synthesis Example 1. Obtained.
  • PhMA phenyl methacrylate
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 13 Synthesis of polyol Pm Polyol Pm is the same method as in Synthesis Example 1 except that phenylmethacrylamide (PhMAA) is used instead of 4-methoxyphenyl methacrylate (MPhMA). Got
  • Synthesis Example 14 Synthesis of polyol Pn Polyol Pn is prepared in the same manner as in Synthesis Example 1 except that phenylmaleimide (PhMI) is used instead of 4-methoxyphenyl methacrylate (MPhMA). Obtained.
  • PhMI phenylmaleimide
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 15 Synthesis of polyol Po
  • polyol P- is used in the same manner as in Synthesis Example 1 except that 4-methoxystyrene (MSt) is used instead of 4-methoxyphenyl methacrylate (MPhMA). I got o.
  • MSt 4-methoxystyrene
  • MPhMA 4-methoxyphenyl methacrylate
  • Synthesis Example 16 Synthesis of polyol Pp The same method as in Synthesis Example 1 except that 2,4,6-trimethylstyrene (TMSt) was used in place of 4-methoxyphenyl methacrylate (MPhMA) for Synthesis Example 1. Obtained a polyol P-p.
  • TMSt 2,4,6-trimethylstyrene
  • MPhMA 4-methoxyphenyl methacrylate
  • the gas barrier laminated films of Examples 301 to 311 and Examples 301C to 308C were produced by the following steps (1) to (6).
  • Example 301 A 7: 3 mixture of a methyl ethyl ketone solution of polyol PA adjusted to a solid content concentration of 5% and a methyl ethyl ketone solution of an isocyanate compound adjusted to a solid content concentration of 5% was prepared.
  • an adduct body of tolylene diisocyanate (Coronate T-65 manufactured by Tosoh Corporation) was used.
  • Example 302 A primer layer solution was prepared in the same manner as in Example 301, except that a methyl ethyl ketone solution of polyol P-b adjusted to a solid content concentration of 5% was used.
  • Example 303 Using a methyl ethyl ketone solution of polyol P-b adjusted to a solid content concentration of 5%, a methyl ethyl ketone solution of an isocyanate compound adjusted to a solid content concentration of 5% was mixed at a ratio of 7: 3, and then a light stabilizer (BASF Japan) was used as an additive.
  • the primer layer solution was prepared in the same manner as in Example 301, except that Chinubin (registered trademark) 292) manufactured by Co., Ltd. was mixed in an amount of 1% by mass of the solid content.
  • Example 304 A primer layer solution was prepared in the same manner as in Example 301, except that a methyl ethyl ketone solution of polyol PC adjusted to a solid content concentration of 5% was used.
  • Example 305 A primer layer solution was prepared in the same manner as in Example 301, except that a methyl ethyl ketone solution of polyol Pd adjusted to a solid content concentration of 5% was used.
  • Example 306 A primer layer solution was prepared in the same manner as in Example 301, except that a methyl ethyl ketone solution of polyol P adjusted to a solid content concentration of 5% was used.
  • Example 307 Using a methyl ethyl ketone solution of polyol P-e adjusted to a solid content concentration of 5%, a methyl ethyl ketone solution of an isocyanate compound adjusted to a solid content concentration of 5% was mixed at a ratio of 7: 3, and then a light stabilizer (BASF Japan) was used as an additive.
  • the primer layer solution was prepared in the same manner as in Example 301, except that Chinubin 292) manufactured by Co., Ltd. was mixed in an amount of 1% by mass of the solid content.
  • Example 308 A primer layer solution was prepared in the same manner as in Example 301, except that a methyl ethyl ketone solution of polyol Pf adjusted to a solid content concentration of 5% was used.
  • Example 309 A primer layer solution was prepared in the same manner as in Example 301, except that a methyl ethyl ketone solution of polyol Pg adjusted to a solid content concentration of 5% was used.
  • Example 310 A primer layer solution was prepared in the same manner as in Example 301, except that a methyl ethyl ketone solution of polyol Ph adjusted to a solid content concentration of 5% was used.
  • Example 311 A primer layer solution was prepared in the same manner as in Example 301, except that a methyl ethyl ketone solution of polyol Pi adjusted to a solid content concentration of 5% was used.
  • Example 301C A primer layer solution was prepared in the same manner as in Example 301, except that a methyl ethyl ketone solution of polyol Pj adjusted to a solid content concentration of 5% was used.
  • Example 302C A primer layer solution was prepared in the same manner as in Example 301, except that a methyl ethyl ketone solution of polyol P-k adjusted to a solid content concentration of 5% was used.
  • Example 303C A primer layer solution was prepared in the same manner as in Example 301, except that a methyl ethyl ketone solution of polyol Pl adjusted to a solid content concentration of 5% was used.
  • Example 304C Using a methyl ethyl ketone solution of polyol Pl adjusted to a solid content concentration of 5%, a methyl ethyl ketone solution of an isocyanate compound adjusted to a solid content concentration of 5% was mixed at a ratio of 7: 3, and then a light stabilizer (BASF Japan) was used as an additive.
  • the primer layer solution was prepared in the same manner as in Example 301, except that Chinubin 292) manufactured by Co., Ltd. was mixed in an amount of 1% by mass of the solid content.
  • Example 305C A primer layer solution was prepared in the same manner as in Example 301, except that a methyl ethyl ketone solution of polyol Pm adjusted to a solid content concentration of 5% was used.
  • Example 306C A primer layer solution was prepared in the same manner as in Example 301, except that a methyl ethyl ketone solution of polyol Pn adjusted to a solid content concentration of 5% was used.
  • Example 307C A primer layer solution was prepared in the same manner as in Example 301, except that a methyl ethyl ketone solution of polyol Po adjusted to a solid content concentration of 5% was used.
  • Example 308C A primer layer solution was prepared in the same manner as in Example 301, except that a methyl ethyl ketone solution of polyol P adjusted to a solid content concentration of 5% was used.
  • Table 9 shows the components and additive contents of the polyols used in Examples 301 to 311 and Examples 301C to 308C, respectively.
  • Laminating step of thin-film deposition film layer A material in which metallic silicon powder and silicon dioxide powder are mixed so that the element ratio O / Si is 1.5 is prepared, and a vacuum vapor deposition machine is used to put it on the primer layer.
  • a thin-film deposition film layer having a thickness of 0.05 ⁇ m was laminated to prepare gas barrier laminated films of Examples 301 to Example 311 and Examples 301C to 308C having a structure of a resin base material / primer layer / thin-film deposition film layer.
  • the polyol forming the primer layer 12 contains a repeating unit (a) having a partial structure represented by the general formula (I) or (II). Even after the high temperature test, it had an adhesion strength of 1 N / 10 mm width or more. However, in all of the gas barrier laminated films of Examples 301C to 308C, since the polyol forming the primer layer 12 does not contain the repeating unit (a), the adhesion strength after the high temperature test is less than 1N / 10 mm width. rice field.
  • the gas barrier laminated film of Example 302 was rejected due to a decrease in adhesion strength after the light resistance test, but under the same conditions except that a light stabilizer was added when preparing the primer layer solution.
  • the produced gas barrier laminated film of Example 303 had an adhesion strength within the acceptable range even after the light resistance test.
  • the adhesion strength was within the acceptable range even after the light resistance test only in Example 307 using the light stabilizer.
  • the adhesion strength is insufficient at the time of the high temperature test, which is not possible. It passed. This is because the thermal deterioration of the light stabilizer as an additive could be suppressed by using the polyol containing the repeating unit (a).
  • the fact that the polyol forming the primer layer contains the repeating unit (a) is useful for improving the adhesion of the gas barrier laminated film.
  • the gas barrier film laminate of the present embodiment is expected to be suitably used in the fields of packaging for foods, daily necessities, pharmaceuticals, etc., and fields such as electronic device-related members, especially when high durability is required.
  • a polyester film having a thickness of 12 ⁇ m is used as a base film 101, and the base film 101 contains an acrylic polyol containing 20 mol% of a partial structure derived from 4-hydroxyphenylmethacrylate, a TDI-based curing agent as an isocyanate, and a silane coupling agent.
  • a coating liquid containing ⁇ -isocyanatepropyltrimethoxysilane was applied and dried by heating to form a primer layer 102 having a thickness of 1 ⁇ m.
  • silicon oxide was vapor-deposited on the primer layer 102 to form a silicon oxide-deposited layer 103 having a thickness of 200 nm.
  • a coating solution containing tetramethoxysilane, 1,3,5-tris (3-trimethoxysilylpropyl) isocyanurate, and PVA is applied onto the silicon oxide vapor-deposited layer 103, and silicon is dried by heating.
  • the compounds were condensed to form a gas barrier coating layer 104 having a thickness of 1 ⁇ m.
  • this film is referred to as a "silicon-based gas barrier film" in order to distinguish it from a comparative film described later.
  • an adhesive dry lamination adhesive manufactured by Mitsui Chemicals, Inc., trade name: A525
  • A525 dry lamination adhesive manufactured by Mitsui Chemicals, Inc., trade name: A525
  • a laminate was produced by laminating with a polyolefin-based non-stretched coextruded film (manufactured by Mitsui Chemicals Tohcello Corporation, trade name: RXC22). Then, the laminated bodies were superposed on each other and the periphery was heat-sealed to produce a three-sided bag for heat sterilization having a length of 125 mm and a width of 95 mm.
  • Example 402 In contrast to Example 401, a silicon-based gas barrier film and heat sterilization were carried out in the same manner as in Example 401 except that a compound having a partial structure derived from phenyl methacrylate was used as the acrylic polyol instead of the partial structure derived from 4-hydroxyphenyl methacrylate. Manufactured a three-way bag.
  • Example 403 A silicon-based gas barrier film in the same manner as in Example 401 except that a compound having a partial structure derived from 4-hydroxyphenylmethacrylamide was used as the acrylic polyol instead of the partial structure derived from 4-hydroxyphenylmethacrylate. And manufactured a three-sided bag for heat sterilization.
  • Example 404 An adhesive (adhesive for dry lamination manufactured by Mitsui Chemicals, Inc., trade name: A525) was applied to the silicon-based gas barrier film of Example 401 using a dry lamination machine, and a polyamide film having a thickness of 15 ⁇ m (Kojin (Kojin) Bonded with Bonil W) manufactured by Mitsui Chemicals, Inc., and further coated with an adhesive (adhesive for dry lamination manufactured by Mitsui Chemicals, Inc., trade name: A525) on this polyamide film using a dry lamination machine.
  • a laminate was produced by laminating the heat-sealed layer 105 with a 70 ⁇ m-thick polyolefin-based non-stretched coextruded film (manufactured by Mitsui Chemicals Tosero Co., Ltd., trade name: RXC22). Then, the laminated bodies were superposed on each other and the periphery was heat-sealed to produce a three-sided bag for heat sterilization having a length of 125 mm and a width of 95 mm.
  • Example 401C In contrast to Example 401, a silicon-based gas barrier film and a three-way heat sterilizer were used in the same manner as in Example 401 except that a compound having a styrene-derived partial structure was used instead of the 4-hydroxyphenyl methacrylate-derived partial structure as the acrylic polyol. Manufactured a bag.
  • Example 402C In contrast to Example 401, a silicon-based gas barrier film and heat sterilization were carried out in the same manner as in Example 401 except that a compound having a partial structure derived from hydroxyethyl methacrylate was used as the acrylic polyol instead of the partial structure derived from 4-hydroxyphenyl methacrylate. Manufactured a three-way bag for use.
  • Example 403C Aluminum oxide was vapor-deposited on the primer layer 102 with respect to Example 401 to form an aluminum oxide-deposited layer having a thickness of 200 nm. Next, a coating liquid containing a metal alkoxide and a water-soluble polymer having a hydroxyl group is applied onto the aluminum oxide vapor-deposited layer, and the metal alkoxide is condensed with drying by heating to cause a gas barrier coating layer 104 having a thickness of 1 ⁇ m. Formed.
  • this film is referred to as an "aluminum-based gas barrier film".
  • an adhesive (adhesive for dry lamination manufactured by Mitsui Chemicals, Inc., trade name: A525) was applied to this aluminum-based gas barrier film using a dry lamination machine to form a heat-sealing layer 105 having a thickness of 70 ⁇ m.
  • a laminate was produced by laminating with a polyolefin-based non-stretched coextruded film (manufactured by Mitsui Chemicals Tohcello Corporation, trade name: RXC22). Then, the laminated bodies were superposed on each other and the periphery was heat-sealed to produce a three-sided bag for heat sterilization having a length of 125 mm and a width of 95 mm.
  • Example 404C An adhesive (dry lamination adhesive manufactured by Mitsui Chemicals, Inc., trade name: A525) is applied to the aluminum gas barrier film using a dry lamination machine, and a polyamide film having a thickness of 15 ⁇ m (Kojin Co., Ltd.) (Mitsui Chemicals, Inc., trade name: Bonil W), and then apply an adhesive (Mitsui Chemicals, Inc. dry lamination adhesive, trade name: A525) on this polyamide film using a dry lamination machine.
  • an adhesive Mitsubishin Co., Ltd.
  • a laminate was produced by laminating a 70 ⁇ m-thick polyolefin-based non-stretched coextruded film (manufactured by Mitsui Chemicals Tosero Co., Ltd., trade name: RXC22) as the heat-sealed layer 105. Then, the laminated bodies were superposed on each other and the periphery was heat-sealed to produce a three-sided bag for heat sterilization having a length of 125 mm and a width of 95 mm.
  • the oxygen barrier property was evaluated by measuring the oxygen permeability by the Mokon method in accordance with JIS K7126 under the conditions of a temperature of 30 ° C. and a humidity of 70% RH.
  • the water vapor barrier property was evaluated by measuring the oxygen permeability by the Mocon method in accordance with JIS K7129 under the conditions of a temperature of 40 ° C. and a humidity of 90% RH. In both cases, the lower the value, the better the barrier property.
  • the delamination occurrence situation was observed by bending the seal part of the pouch by 180 ° after the retort sterilization treatment. Then, as a result of visual observation, when it was recognized that the inorganic oxide vapor-filmed layer was delaminated from the base film, it was represented by B, and when no delamination was observed, it was represented by A.
  • Example 401 to Example 404 there is no significant difference between Example 401 to Example 404 and Example 401C to Example 404C in terms of pressure resistance test and drop test. Both have excellent bag breaking strength. In addition, there is no significant difference in oxygen barrier properties before and after retort sterilization between Examples 401 to 404 and Examples 401C to 404C.
  • the three-way bag of Examples 403C to 404C was significantly deteriorated after the retort sterilization, whereas the three-way bag of Examples 401 to 404 and Example 401C to 402C was also after the retort sterilization. High barrier properties are maintained.
  • the packaging bag according to the present embodiment maintains excellent bag breaking strength and oxygen barrier property before and after retort sterilization, and further improves the water vapor barrier property after retort sterilization, and can be used as a base material. It can be seen that the adhesion of the inorganic vapor film layer is good.
  • Total light transmittance Measurement was performed according to JIS-K7105 using NDH-2000 manufactured by Nippon Denshoku Co., Ltd., and the transmittance (%) of the hard coat film was determined.
  • Pencil hardness Evaluation was performed according to JIS-K5400, and the hardness of the hard coat layer of the hard coat film was determined.
  • Scratch resistance The hard coat layer of the hard coat film was reciprocated 10 times while applying a load of 250 g / cm 2 using # 0000 steel wool, and the presence or absence of scratches was confirmed. The judgment criteria were as follows. A: No scratches B: Scratches
  • Fingerprints are attached to the surface of the hard coat layer of the hard coat film, and the fingerprints are wiped off while applying a load of 250 g / cm2 using a cellulose non-woven fabric (Pencot M-3: manufactured by Asahi Kasei Corporation). The ease was visually determined. The judgment criteria were as follows. A: Fingerprints can be wiped off completely B: Fingerprints are left behind C: Fingerprints cannot be wiped off
  • Heat resistance After forming a coating film of the composition for forming a hard coat layer on a glass substrate, about several mg is cut out from the glass substrate and sealed in an aluminum pan, and the mass reduction rate (%) under a nitrogen atmosphere is as follows. It was measured by the method of. A differential thermogravimetric simultaneous measuring device (STA7000, manufactured by Hitachi High-Tech Science Co., Ltd.) was used to measure the mass reduction rate (%). Samples were heated for 20 minutes at 250 ° C.
  • STA7000 differential thermogravimetric simultaneous measuring device
  • Thermal deterioration of additives In the composition for forming a hard coat layer, 0.1 mass of a hindered amine-based light stabilizer (trade name: Tinuvin (registered trademark) 123, manufactured by BASF Japan Ltd.) is used as an additive. A hard coat layer to which the above-mentioned light stabilizer was added was formed on a glass substrate. The glass substrate on which the coating film was formed was heated at 250 ° C. for 10 minutes, and the residual ratio of the additive in the coating film was measured by the following method. A glass substrate was cut into a size of 1 cm 2 , immersed in 1.5 mL of acetone, and extracted in an ultrasonic cleaner for 60 minutes.
  • a hindered amine-based light stabilizer trade name: Tinuvin (registered trademark) 123, manufactured by BASF Japan Ltd.
  • Example 501 A cellulose triacetate film substrate having a thickness of 80 ⁇ m was used as the transparent substrate.
  • the ingredients shown below ie Urethane Acrylate: Dipentaerythritol Pentaacrylate Hexamethylene diisocyanate Urethane Prepolymer, UA-306H (Kyoeisha Chemical Co., Ltd.) 80 parts by mass Acrylic monomer: 4-Hydroxyphenyl methacrylate (Showa Denko) 10 parts by weight
  • Initiator Omnirad184 (IGM Resins B.V.) 1.5 parts by mass
  • Additive Tinuvin 123 (BASF Japan) 0.1 parts by mass
  • Solvent Ethyl acetate 100 parts by mass Stir and mix the coating solution.
  • a hard coat layer was formed by irradiating an ultraviolet ray of 400 mJ / cm 2 with a metal halide lamp to prepare a hard coat film of Example 501.
  • Table 12 summarizes the measurement results of the total light transmittance, haze, scratch resistance test, pencil hardness, antifouling property, and heat resistance of this hard coat film.
  • Example 502> A cellulose triacetate film substrate having a thickness of 80 ⁇ m was used as the transparent substrate.
  • Additive Tinuvin 123 (BASF Japan) 0.1 parts by mass
  • Solvent Ethyl acetate 100 parts by mass Stir and mix the coating solution.
  • a hard coat layer was formed by irradiating an ultraviolet ray of 400 mJ / cm 2 with a metal halide lamp to prepare a hard coat film of Example 502.
  • Table 12 summarizes the measurement results of the total light transmittance, haze, scratch resistance test, pencil hardness, antifouling property, and heat resistance of this hard coat film.
  • Example 503> A cellulose triacetate film substrate having a thickness of 80 ⁇ m was used as the transparent substrate.
  • Additive Tinuvin 123 (BASF Japan) 0.1 part by mass
  • Solvent Ethyl acetate 100 parts by mass Stir and mix the coating liquid.
  • a hard coat layer was formed by irradiating an ultraviolet ray of 400 mJ / cm 2 with a metal halide lamp to prepare a hard coat film of Example 503.
  • Table 12 summarizes the measurement results of the total light transmittance, haze, scratch resistance test, pencil hardness, antifouling property, and heat resistance of this hard coat film.
  • Example 504> A cellulose triacetate film substrate having a thickness of 80 ⁇ m was used as the transparent substrate.
  • Solvent Methyl isobutyl ketone 100 parts by mass Stir and mix the coating solution.
  • the substrate was coated and dried by a bar coating method so as to have a cured film thickness of 12 ⁇ m.
  • a hard coat layer was formed by irradiating an ultraviolet ray of 400 mJ / cm 2 with a metal halide lamp to prepare a hard coat film of Example 504.
  • Table 12 summarizes the measurement results of the total light transmittance, haze, scratch resistance test, pencil hardness, antifouling property, and heat resistance of this hard coat film.
  • Example 501C A cellulose triacetate film substrate having a thickness of 80 ⁇ m was used as the transparent substrate.
  • the ingredients shown below ie Urethane acrylate: UA-306H (Kyoeisha Chemical Co., Ltd.) 80 parts by mass Acrylic monomer: 4-Hydroxyphenyl methacrylate (Showa Denko) 10 parts by weight
  • Non-polymerizable fluorinated compound Megafuck F470 (DIC) 1.0 part by mass
  • Additive Tinuvin 123 (BASF Japan) 0.1 part by mass
  • Solvent Ethyl acetate 100 parts by mass of the coating liquid mixed by stirring is applied to the above substrate by the bar coating method to a cured film thickness of 12 ⁇ m.
  • a hard coat layer was formed by irradiating an ultraviolet ray of 400 mJ / cm 2 with a metal halide lamp to prepare a hard coat film of Example 501C.
  • Table 12 summarizes the measurement results of the total light transmittance, haze, scratch resistance test, pencil hardness, and antifouling property of this hard-coated film.
  • Example 502C> A cellulose triacetate film substrate having a thickness of 80 ⁇ m was used as the transparent substrate.
  • a hard coat layer was formed by irradiating an ultraviolet ray of 400 mJ / cm 2 with a metal halide lamp to prepare a hard coat film of Example 502C.
  • Table 12 summarizes the measurement results of the total light transmittance, haze, scratch resistance test, pencil hardness, and antifouling property of this hard-coated film.
  • Example 503C> A cellulose triacetate film substrate having a thickness of 80 ⁇ m was used as the transparent substrate.
  • Example 504C> A cellulose triacetate film substrate having a thickness of 80 ⁇ m was used as the transparent substrate.
  • Table 12 summarizes the evaluation results of Examples 501 to 504, and Examples 501C and Example 502C.
  • the hard coat films of Examples 501 to 504 using the fluorine-containing compound (D) having a polymerizable group have sufficient antifouling properties.
  • the surface energy was good at 20 mN / m or less, whereas in Examples 501C and Example 502C in which the fluorine-containing compound having a polymerizable group was not used, sufficient antifouling properties were not exhibited and the surface energy was 20 mN. It was over / m.
  • the monomer (B) having a partial structure represented by the general formula (I) or (II) it is possible to suppress the mass reduction and the deterioration of the additive due to heating.
  • Example 501C and Example 502C since the non-polymerizable fluorine-based compound and the non-polymerizable silicone-based compound are used, the uniformity inside the coating film after photo-curing deteriorates, and the portion easily deteriorated by heat is present. It is probable that the mass reduction rate was high and the survival rate was low due to the occurrence. The mass reduction rate is good when it is 3% or less, and the residual rate is good when it is 95% or more.
  • the invention of the present application is not limited to the above embodiment, and can be variously modified at the implementation stage without departing from the gist thereof.
  • each embodiment may be carried out in combination as appropriate as possible, in which case the combined effect can be obtained.
  • the above-described embodiment includes inventions at various stages, and various inventions can be extracted by an appropriate combination in a plurality of disclosed constituent requirements.

Abstract

本発明の実施形態により、下記一般式(I)または(II)で表される部分構造を有する繰り返し単位を含有する樹脂Rを含む樹脂組成物が提供される。一般式(I)中、Qは式中に示されるエステル結合を表し、Rは置換基を表し、n1は1~5の整数を表し、*は前記繰り返し単位の残部との結合部位を表し、**は式中のフェニル基との結合部位を表す。一般式(II)中、Qは式(I)中のQで表されるエステル結合以外の連結基又は単結合を表し、Rは置換基を表し、n2は1~5の整数を表し、*は前記繰り返し単位の残部との結合部位を表す。但し、少なくとも1つのRは水酸基を表す。

Description

樹脂組成物およびフィルム
 本発明は、樹脂組成物およびフィルムに関する。
 ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、アクリロニトリルブタジエンスチレン樹脂、アクリル樹脂などの熱可塑性樹脂は、加工性が良好であることから、様々な日用品や工業用製品に使用される汎用樹脂である。熱可塑性樹脂は、例えば、半導体製造分野におけるリソグラフィー用レジスト(例えば、特許文献1~3等を参照)、包装材料として被包装物をガスから守るガスバリア性積層フィルム(例えば、特許文献4~9等を参照)、液晶偏光板等の保護フィルムとして用いられるハードコートフィルム(例えば、特許文献10~12等を参照)などに使用されている。
 一方で、これらの汎用樹脂は、耐熱性が低いため、耐熱性が要求される用途においての使用が難しい場合が多く、その代りに、エンジニアリングプラスチック、スーパーエンジニアリングプラスチックといった融点が高い樹脂が用いられることがある。しかしながら、これらのエンジニアリングプラスチックは加工性が悪い、また、一般的な有機溶剤への溶解性が低いためにコーティング膜などの薄膜用途での利用が難しいといったデメリットが存在する。
 また、樹脂を使用する際には、加工性の向上や耐候性の向上など、用途に応じて各種添加剤を樹脂に混合することにより樹脂組成物を調製して利用することが一般的となっている。このため添加剤においても、樹脂組成物の加工温度や使用温度に十分耐える耐熱性が必要となる。添加剤の耐熱性を高めるために、例えば、特許文献13~15には、添加剤の分子量を高分子量化するという技術が開示されている。
国際公開第2020/066806号 日本国特開2005-234534号公報 日本国特開2010-181730号公報 日本国特公昭63-28017号公報 日本国特開2004-106443号公報 日本国特開2007-69456号公報 日本国特開2002-36419号公報 日本国特許第2556940号公報 日本国特許第2790054号公報 日本国特開平1-086101号公報 日本国特開平4-338901号公報 日本国特開昭61-247743号公報 日本国特開平10-338777号公報 日本国特開2003-40937号公報 国際公開第2008/062860号
 上記の通り耐熱性が改善された種々の添加剤が開発されているが、高温下ではある程度の添加剤の分解が生じ、その機能を十分に発揮することが困難となっている。さらに、添加剤の熱分解生成物が樹脂の劣化を促進することも多い。このような状況下において近年における高度な耐熱性要求を満たした樹脂組成物の開発が所望される。
 そこで本発明は、添加剤の熱劣化を抑制することが可能であり、様々な用途に利用することが可能な樹脂組成物およびそれを含むフィルムを提供することを目的とする。
 本発明者らによる鋭意検討の結果、耐熱性に優れる特定の樹脂を含む樹脂組成物を用いることにより、本発明は開発された。
 本発明は、例えば、以下の通りである。
 [1] 下記一般式(I)または(II)で表される部分構造を有する繰り返し単位を含有する樹脂Rを含む樹脂組成物。
Figure JPOXMLDOC01-appb-C000003
 式(I)中、Qは式中に示されるエステル結合を表し、Rは置換基を表し、n1は1~5の整数を表し、*は上記繰り返し単位の残部との結合部位を表し、**は式中のフェニル基との結合部位を表す。
Figure JPOXMLDOC01-appb-C000004
 式(II)中、Qは式(I)中のQで表されるエステル結合以外の連結基又は単結合を表し、Rは置換基を表し、n2は1~5の整数を表し、*は上記繰り返し単位の残部との結合部位を表す。但し、少なくとも1つのRは水酸基を表す。
 [2] 更に添加剤を含有し、上記樹脂Rに対する上記添加剤の配合比が50質量%以下である、[1]に記載の樹脂組成物。
 [3] 上記樹脂R中の上記繰り返し単位の含有率が、上記樹脂R中の全繰り返し単位に対し2モル%以上50モル%以下である、[1]又は[2]に記載の樹脂組成物。
 [4] 上記繰り返し単位が、(メタ)アクリレート系モノマー由来の繰り返し単位、(メタ)アクリルアミド系モノマー由来の繰り返し単位、およびN-置換マレイミド系モノマー由来の繰り返し単位のいずれかである、[1]~[3]のいずれかに記載の樹脂組成物。
 [5] 上記樹脂Rが上記繰り返し単位に加え、炭素数1~5個の直鎖又は分岐アルキル基を側鎖に有する(メタ)アクリレート系繰り返し単位、及び/又は、フェノール性水酸基以外の水酸基を側鎖に有する(メタ)アクリレート系繰り返し単位を更に含有する、[1]~[4]のいずれかに記載の樹脂組成物。
 [6] 上記樹脂Rが上記繰り返し単位に加え、オレフィン系繰り返し単位を更に含有する、[1]~[4]のいずれかに記載の樹脂組成物。
 [7] 上記樹脂Rが上記繰り返し単位に加え、ハロゲン原子含有繰り返し単位を更に含有する、[1]~[4]のいずれかに記載の樹脂組成物。
 [8] [1]~[7]のいずれかに記載の樹脂組成物を含むフィルム。
 [9] 電子線レジスト組成物である、[1]に記載の樹脂組成物。
 [10] 上記樹脂R中の上記繰り返し単位の含有率が、上記樹脂R中の全繰り返し単位に対し2モル%以上50モル%以下である、[9]に記載の樹脂組成物。
 [11] 上記繰り返し単位が、(メタ)アクリレート系モノマー由来の繰り返し単位、(メタ)アクリルアミド系モノマー由来の繰り返し単位、およびN-置換マレイミド系モノマー由来の繰り返し単位のいずれかである、[9]又は[10]に記載の樹脂組成物。
 [12] 上記樹脂Rが、さらに2-ヒドロキシエチルメタクリレートを繰り返し単位として含有する、[9]に記載の樹脂組成物。
 [13] 樹脂基材とプライマー層と蒸着膜層とを備え、上記樹脂基材の少なくとも片面に、上記プライマー層と上記蒸着膜層とがこの順に積層されたガスバリア積層フィルムであって、
 上記プライマー層が[1]に記載の樹脂組成物由来の層であり、ポリオールとイソシアネート系化合物との複合物を含み、前記樹脂Rが前記ポリオールであるガスバリア積層フィルム。
 [14] 上記ポリオール中の上記繰り返し単位の含有率が、上記ポリオール中の全繰り返し単位に対し2モル%以上50モル%以下である、[13]に記載のガスバリア積層フィルム。
 [15] 上記繰り返し単位が、(メタ)アクリレート系モノマー由来の繰り返し単位、(メタ)アクリルアミド系モノマー由来の繰り返し単位、およびN-置換マレイミド系モノマー由来の繰り返し単位のいずれかである、[13]又は[14]に記載のガスバリア積層フィルム。
 [16] 上記プライマー層が、さらに有機系添加剤を含むことを特徴とする、[13]~[15]のいずれかに記載のガスバリア積層フィルム。
 [17] 上記蒸着膜層の表面に、水溶性高分子とアルコキシシランまたはその加水分解生成物とを含有するコーティング液からなる薄膜の乾燥被膜であるガスバリア性被覆層が設けられている、[13]~[16]のいずれかに記載のガスバリア積層フィルム。
 [18] 基材フィルム、プライマー層、酸化珪素蒸着層、ガスバリア被覆層、熱融着層をこの順に積層した積層体から成る加熱殺菌用包装袋であって、
 上記プライマー層が[1]に記載の樹脂組成物由来の層であり、アクリルポリオールとイソシアネートとシランカップリング剤との反応物を含み、上記樹脂Rが上記アクリルポリオールであり、
 上記ガスバリア被覆層が、ケイ素化合物、又は、その加水分解物もしくは縮合体と、水酸基を有する水溶性高分子とを含有する塗布液の乾燥塗膜からなり、
 上記ケイ素化合物が、下記(a)及び(b)の2種類を含有し、(a)成分と(b)成分とは、(a)成分をSiOに、(b)成分をRSi(OH)に質量換算した場合、RSi(OH)の固形分が全固形分に対し1~50質量%であり、かつ、(a)成分をSiOに、(b)成分をRSi(OH)に質量換算した場合、固形分の配合比が質量比でSiO/(RSi(OH)+上記水溶性高分子)=100/100~100/30の範囲内である加熱殺菌用包装袋。
(a)下記一般式(III)で表されるケイ素化合物又はその加水分解物。
 Si(OR   (III)
 ただし、一般式(III)中、RはCH、C、またはCOCHを表す。(b)一般式(IV)で表されるケイ素化合物、又は、その加水分解物もしくは縮合体。
 (RSi(OR)n   (IV)
 ただし、一般式(IV)中、Rは有機官能基を表し、RはCH、C、またはCOCHを表す。また、nは1以上を表す。
 [19] 上記アクリルポリオール中の上記一般式(I)または(II)で表される部分構造を有する繰り返し単位の含有率が、上記アクリルポリオールの全繰り返し単位に対し2モル%以上50モル%以下である、[18]に記載の熱殺菌用包装袋。
 [20] 上記一般式(I)または(II)で表される部分構造を有する繰り返し単位が、(メタ)アクリレート系モノマー由来の繰り返し単位、(メタ)アクリルアミド系モノマー由来の繰り返し単位、およびN-置換マレイミド系モノマー由来の繰り返し単位のいずれかである、[18]又は[19]に記載の熱殺菌用包装袋。
 [21] 上記アクリルポリオールが上記一般式(I)または(II)で表される部分構造を有する繰り返し単位に加え、炭素数1~5個の直鎖又は分岐アルキル基を側鎖に有する(メタ)アクリレート系繰り返し単位、及び/又は、フェノール性水酸基以外の水酸基を側鎖に有する(メタ)アクリレート系繰り返し単位を更に含有する、[18]~[20]のいずれかに記載の熱殺菌用包装袋。
 [22] 上記アクリルポリオールが上記一般式(I)または(II)で表される部分構造を有する繰り返し単位に加え、オレフィン系繰り返し単位を更に含有する、[18]~[21]のいずれかに記載の熱殺菌用包装袋。
 [23] 上記アクリルポリオールが上記一般式(I)または(II)で表される部分構造を有する繰り返し単位に加え、ハロゲン原子含有繰り返し単位を更に含有する、[18]~[22]のいずれかに記載の熱殺菌用包装袋。
 [24] 上記(b)成分が下記一般式(V)で表される三量体1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートである、[18]~[23]のいずれかに記載の加熱殺菌用包装袋。
 (NCO-RSi(OR   (V)
 ただし、一般式(V)中、Rは(CH)nを表し、RはCH、C、またはCOCHを表す。また、nは1以上を表す。
 [25] 上記ガスバリア被覆層と上記熱融着層とが、ドライラミネーション用接着剤により接着されている、[18]~[24]のいずれかに記載の加熱殺菌用包装袋。
 [26] 上記ガスバリア被覆層と上記熱融着層との間にポリアミドフィルムが積層されている、[18]~[25]のいずれかに記載の加熱殺菌用包装袋。
 [27] 透明性を有する、[18]~[26]のいずれかに記載の加熱殺菌用包装袋。
 [28] [1]に記載の樹脂組成物がハードコート層形成用組成物であり、
 ジペンタエリスリトールペンタアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートトルエンジイソシアネートウレタンプレポリマーおよびジペンタエリスリトールペンタアクリレートイソホロンジイソシアネートウレタンプレポリマーから選択された多官能(メタ)アクリルモノマー(A)と、
 上記一般式(I)または(II)で表される上記部分構造を有するモノマー(B)と、
 光ラジカル重合開始剤(C)と、
 重合性基を有する含フッ素化合物(D)と
 非重合性添加剤(E)と
を原料として含有してなり、
 上記組成物中の上記非重合性添加剤(E)の配合割合が50質量%以下であるハードコート層形成用組成物。
 [29] 上記ハードコート層形成用組成物中の上記一般式(I)または(II)で表される部分構造を有するモノマー(B)の含有率が、上記多官能(メタ)アクリルモノマーと上記重合性基を有する含フッ素化合物の和に対し2モル%以上50モル%以下である、[28]に記載のハードコート層形成用組成物。
 [30] 上記一般式(I)または(II)で表される部分構造を有するモノマー(B)が、(メタ)アクリレート系モノマー、(メタ)アクリルアミド系モノマー、およびN-置換マレイミド系モノマーのいずれかである、[28]又は[29]に記載のハードコート層形成用組成物。
 [31] 上記多官能(メタ)アクリルモノマー(A)と上記一般式(I)または(II)で表される部分構造を有するモノマー(B)の合計に対し、上記多官能(メタ)アクリルモノマー(A)が50質量%以上95質量%以下の割合で含まれる、[28]~[30]のいずれかに記載のハードコート層形成用組成物。
 [32] 上記重合性基を有する含フッ素化合物(D)の添加量が、上記多官能(メタ)アクリルモノマー(A)と、上記一般式(I)または(II)で表される部分構造を有するモノマー(B)の合計に対して0.01質量%以上10質量%以下である、[28]~[31]のいずれかに記載のハードコート層形成用組成物。
 [33] 上記光ラジカル重合開始剤(C)の添加量が、上記多官能(メタ)アクリルモノマー(A)と、上記一般式(I)または(II)で表される部分構造を有するモノマー(B)の合計に対して0.01質量%以上10質量%以下である、[28]~[32]のいずれかに記載のハードコート層形成用組成物。
 [34] 透明基材上に、[28]~[33]のいずれかに記載のハードコート層形成用組成物の硬化物からなるハードコート層を有し、上記ハードコート層表面の表面自由エネルギーが20mN/m以下であり、且つ、上記ハードコート層の膜厚が5~25μmであるハードコートフィルム。
 本発明により、添加剤の熱劣化を抑制することが可能であり、様々な用途に利用することが可能な樹脂組成物およびそれを含むフィルムを提供することが可能となる。
図1は、本発明の一実施形態に係るガスバリア積層フィルムの一例を概略的に示す断面図である。 図2は、本発明の一実施形態に係るガスバリア積層フィルムの他の例を概略的に示す断面図である。 図3は、本発明の一実施形態に係る、両面ラミネート構成を有するガスバリア積層フィルムの一例を概略的に示す断面図である。 図4は、本発明の一実施形態に係る加熱殺菌用包帯袋を構成する包装材料の一例を概略的に示す断面図である。 図5は、本発明の一実施形態に係る加熱殺菌用包帯袋を構成する包装材料の他の例を概略的に示す断面図である。 図6は、本発明の一実施形態に係るハードコートフィルムの一例を概略的に示す断面図である。
 以下、本発明の実施形態について詳細に説明する。 
 <第1実施形態>
 以下に、本発明の第1実施形態について説明する。 
 本実施形態に係る樹脂組成物は、耐熱性に優れた特定の樹脂(以下、「樹脂R」という。)を含有してなる。日用品や工業製品に汎用される熱可塑性樹脂のように耐熱性が低い樹脂が使用される場合、樹脂の熱分解生成物が併用される添加剤の熱劣化を促進するため、耐熱性に優れ且つ所望される機能が付与された樹脂組成物を得ることが困難となる。以下に詳述する本実施形態に係る樹脂組成物は、耐熱性に優れた樹脂Rを含有し、併用され得る添加剤の熱劣化が抑制されるため、耐熱性に優れ且つ所望される機能を有するフィルムを提供することができる。このため、本実施形態に係る樹脂組成物は様々な用途に利用することができる。
 <樹脂R>
 本実施形態に係る樹脂組成物に含有される樹脂Rは、下記一般式(I)または(II)で表される部分構造を有する繰り返し単位(以下において、「繰り返し単位(a)」という。)を含有する。
Figure JPOXMLDOC01-appb-C000005
 式(I)中、Qは式中に示されるエステル結合を表し、Rは置換基を表し、n1は1~5の整数を表し、*は上記繰り返し単位(a)の残部との結合部位を表し、**は式中のフェニル基との結合部位を表す。
 Rにより表される置換基としては、例えば、アルキル基(例えば、炭素数1~5のアルキル基)、シクロアルキル基(例えば、炭素数3~6のシクロアルキル基)、アルコキシ基(例えば、メトキシ基又はエトキシ基)、水酸基、アセチル基、ニトロ基、シアノ基、カルボキシル基、アミノ基、エステル基、ハロゲン原子等が挙げられる。n1は、上記の通り1~5の整数を表し、1~3の整数であってもよい。n1が2以上の整数の場合、複数存在するRは同じでもよいし、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000006
 式(II)中、Qは式(I)中のQで表されるエステル結合以外の連結基又は単結合を表し、Rは置換基を表し、n2は1~5の整数を表し、*は上記繰り返し単位(a)の残部との結合部位を表す。但し、少なくとも1つのRは水酸基を表す。
 Qは、上記の通り、Qで表されるエステル結合以外の連結基又は単結合を表し、Qで表されるエステル結合以外の連結基としては、例えば、-CONR-(Rは、水素原子、又はアルキル基を表す。)、アルキレン基(例えば、炭素数1~4のアルキレン基)、ウレタン結合、エーテル結合、*-O-CO-**で表されるエステル結合(**は式(II)中のフェニル基との結合部位を表す。)等が挙げられる。
 Rにより表される置換基としては、例えば、アルキル基(例えば、炭素数1~5のアルキル基)、シクロアルキル基(例えば、炭素数3~6のシクロアルキル基)、アルコキシ基(例えば、メトキシ基、エトキシ基)、水酸基、(アセチル基、ニトロ基、シアノ基、カルボキシル基、アミノ基、エステル基、ハロゲン原子等が挙げられる。但し、上記の通り、少なくとも1つのRは水酸基を表す。
 n2は、上記の通り1~5の整数を表し、あるいは1~3の整数であってもよい。n2が2以上の整数の場合、複数存在するRは同じでもよいし、異なっていてもよい。
 繰り返し単位(a)は、上述した一般式(I)または(II)で表される部分構造を有するものであればよいが、例えば、(メタ)アクリレート系モノマーに由来する繰り返し単位であってよく、(メタ)アクリルアミド系モノマーに由来する繰り返し単位であってよく、N-置換マレイミド系モノマーに由来する繰り返し単位であってよく、またはスチレン系モノマーに由来する繰り返し単位であってよい。
 繰り返し単位(a)が(メタ)アクリレート系モノマー由来の繰り返し単位であるとき、(メタ)アクリレート系モノマーとしては、例えば、4-メトキシフェニル(メタ)アクリレート、4-ヒドロキシフェニル(メタ)アクリレート、2,6-ジ-tert-ブチルフェニル(メタ)アクリレート、2,6-ジ-tert-ブチル-4-メトキシフェニル(メタ)アクリレート、2-tert-ブチル-4-ヒドロキシフェニル(メタ)アクリレート,3-tert-ブチル-4-ヒドロキシフェニル(メタ)アクリレート、2,6-ジ-tert-ブチル-4-メチルフェニル(メタ)アクリレート、2-ヒドロキシ-4-tert-ブチルフェニル(メタ)アクリレート、2,4-ジ-メチル-6-tert-ブチルフェニル(メタ)アクリレート等が挙げられる。
 繰り返し単位(a)が(メタ)アクリルアミド系モノマー由来の繰り返し単位であるとき、(メタ)アクリルアミド系モノマーとしては、例えば、N-(4-ヒドロキシフェニル)(メタ)アクリルアミド等が挙げられる。
 繰り返し単位(a)がN-置換マレイミド系モノマー由来の繰り返し単位であるとき、N-置換マレイミド系モノマーとしては、例えば、4-ヒドロキシフェニルマレイミド、3-ヒドロキシフェニルマレイミド等が挙げられる。
 繰り返し単位(a)がスチレン系モノマー由来の繰り返し単位であるとき、スチレン系モノマーとしては、α-メチル-p-ヒドロキシスチレン等が挙げられる。
 本実施形態において、樹脂Rは、繰り返し単位(a)とは異なる1種又は2種以上の繰り返し単位をさらに含有する2元又は3元以上の共重合体であることが好ましい。この場合において、樹脂R中の繰り返し単位(a)の含有率は、樹脂R中の全繰り返し単位に対し、2モル%以上50モル%の範囲であることが好ましい。樹脂中の繰り返し単位(a)の含有率が2モル%以上の場合、樹脂Rおよび添加剤を含有する場合には添加剤の熱分解をより効果的に抑制することができる。
 また、樹脂R中の繰り返し単位(a)の含有率が50モル%以下の場合、樹脂Rおよび併用される添加剤の熱分解の抑制効果を維持しつつ、加熱時の樹脂Rの黄変の発生や、樹脂Rが硬くなり脆くなることを効果的に抑制することができる。同様の観点から、樹脂R中の繰り返し単位(a)の含有率は、2モル%以上30モル%以下であってよく、あるいは2モル%以上20モル%以下であってよい。
 本実施形態において、樹脂Rが共重合体である場合に含有し得る、繰り返し単位(a)とは異なる繰り返し単位(以下において、「共重合成分」という。)としては、例えば、(メタ)アクリレート系繰り返し単位、オレフィン系繰り返し単位、ハロゲン原子含有繰り返し単位、スチレン系繰り返し単位、酢酸ビニル系繰り返し単位、ビニルアルコール系繰り返し単位等が挙げられる。
 共重合成分である(メタ)アクリレート系繰り返し単位としては、例えば、直鎖または分岐アルキル基を側鎖に有する(メタ)アクリレート系モノマー由来の繰り返し単位、水酸基(フェノール性水酸基を除く)を側鎖に有する(メタ)アクリレート系モノマー由来の繰り返し単位等が挙げられる。
 上記直鎖または分岐アルキル基を側鎖に有する(メタ)アクリレート系モノマー由来の繰り返し単位としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ミリスチル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル等のモノマー由来成分が挙げられる。これらは単独でまたは2種以上併用してもよい。上記の中でも炭素数が1以上4以下の直鎖または分岐アルキル基を側鎖に有する(メタ)アクリレート系繰り返し単位を好適に用いることができる。
 上記フェノール性水酸基以外の水酸基を側鎖に有する(メタ)アクリル系モノマー由来の繰り返し単位としては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル等のモノマー由来成分が挙げられる。これらは単独で用いても良く、2種以上を組み合わせて用いてもよい。
 共重合成分であるオレフィン系繰り返し単位としては、例えば、エチレン、プロピレン、イソプレン、ブタジエン等のオレフィン系モノマー由来成分が挙げられる。これらは単独で用いても良く、2種以上を組み合わせて用いてもよい。
 共重合成分であるハロゲン原子含有繰り返し単位としては、例えば、塩化ビニル、塩化ビニリデン等のモノマー由来成分が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 共重合成分であるスチレン系繰り返し単位としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン等のスチレン系モノマー由来成分が挙げられる。これらは単独で用いても良く、2種以上を組み合わせて用いてもよい。
 共重合体は、ランダム共重合体、交互共重合体、ブロック共重合体、および、グラフト共重合体のいずれの構造を有していてもよい。共重合体の構造がランダム共重合体であれば、製造工程およびシアニン色素との調製が容易である。そのため、ランダム共重合体は、他の共重合体よりも好ましい。
 共重合体を得るための重合方法には、ラジカル重合を用いることができる。ラジカル重合は、工業的な生産が容易である点で好ましい。ラジカル重合は、溶液重合法、乳化重合法、塊状重合法、および、懸濁重合法などであってよい。ラジカル重合には、溶液重合法を用いることが好ましい。溶液重合法を用いることによって、共重合体における分子量の制御が容易である。
 ラジカル重合では、上述したモノマーを重合溶剤によって希釈した後に、重合開始剤を加えてモノマーの重合を行ってもよい。 
 重合溶剤は、例えば、エステル系溶剤、アルコールエーテル系溶剤、ケトン系溶剤、芳香族系溶剤、アミド系溶剤、および、アルコール系溶剤などであってよい。エステル系溶剤は、例えば、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸イソブチル、酢酸t-ブチル、乳酸メチル、および、乳酸エチルなどであってよい。アルコールエーテル系溶剤は、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、3-メトキシ-1-ブタノール、および、3-メトキシ-3-メチル-1-ブタノールなどであってよい。ケトン系溶剤は、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、および、シクロヘキサノンなどであってよい。芳香族系溶剤は、例えば、ベンゼン、トルエン、および、キシレンなどであってよい。アミド系溶剤は、例えば、ホルムアミド、および、ジメチルホルムアミドなどであってよい。アルコール系溶剤は、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、s-ブタノール、t-ブタノール、ジアセトンアルコール、および、2-メチル-2-ブタノールなどであってよい。なお、上述した重合溶剤において、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。
 ラジカル重合において、重合溶剤を使用する量は特に限定されないが、モノマーの合計を100質量部に設定する場合に、重合溶剤の使用量は、1質量部以上1000質量部以下であることが好ましく、10質量部以上500質量部以下であることがより好ましい。
 ラジカル重合開始剤は、例えば、過酸化物およびアゾ化合物などであってよい。過酸化物は、例えば、ベンゾイルペルオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、および、ジ-t-ブチルパーオキシドなどであってよい。アゾ化合物は、例えば、アゾビスイソブチロニトリル、アゾビスアミジノプロパン塩、アゾビスシアノバレリックアシッド(塩)、および、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]などであってよい。
 ラジカル重合開始剤の使用量は、モノマーの合計を100質量部に設定した場合に、0.0001質量部以上20質量部以下であることが好ましく、0.001質量部以上15質量部以下であることがより好ましく、0.005質量部以上10質量部以下であることがさらに好ましい。ラジカル重合開始剤は、モノマーおよび重合溶剤に対して、重合開始前に添加されてもよいし、重合反応系中に滴下されてもよい。ラジカル重合開始剤をモノマーおよび重合溶剤に対して重合反応系中に滴下することは、重合による発熱を抑制することができる点で好ましい。
 ラジカル重合の反応温度は、ラジカル重合開始剤および重合溶剤の種類によって適宜選択される。反応温度は、製造上の容易性、および、反応制御性の観点から、60℃以上110℃以下であることが好ましい。
 <添加剤>
 本実施形態に係る樹脂組成物は、繰り返し単位(a)を含有し耐熱性に優れる樹脂Rを使用することによる添加剤の熱劣化の抑制効果を実現するため、添加剤を含有することが好ましい。樹脂Rが添加剤を含有する場合、樹脂Rに対し、例えば50質量%以下の配合比において添加剤を配合してよい。この樹脂Rに対する添加剤の配合比は、30質量%以下であってよく、あるいは10質量%以下であってよい。添加剤の配合比の下限値は、添加剤の使用目的や所望される機能などに応じて適宜設定することができ、特に限定されるものではない。一例を挙げると、添加剤の配合比の下限値は0.01質量%以上であってよい。本実施形態に係る樹脂組成物は、添加剤を1種単独で含有してもよいし、2種以上を含有してもよい。本実施形態に係る樹脂組成物が2種以上の添加剤を含有する場合、上記配合比は樹脂Rに対する添加剤の合計の質量比を示す。
 本実施形態において、添加剤は、樹脂Rの機能を維持したり、新たな機能を付与したりする目的で樹脂Rに対して上記配合比で添加されるものであり、有機系添加剤を意味する。ここで「有機系添加剤」は、炭素原子を含有する化合物から選択される添加剤であり、低分子化合物であってもよく、高分子化合物であってもよく、オリゴマーであってもよく、有機金属塩も含まれる。
 但し、添加剤は、樹脂Rと化学反応せず、添加したときと同じ化学構造で組成物中に存在することを想定したものであり、熱又は光によって樹脂鎖同士を架橋させる架橋剤や硬化剤は含まない。 
 添加剤の具体例を表1に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本実施形態に係る樹脂組成物は、耐熱性が要求される様々な用途において、コーティング膜、フィルム基材、フィルム基材同士を貼り合わせる際に使用する接着層などの薄膜用途として好適に利用することができる。例えば、食品、医療用品、薬品等の包装材におけるガスバリアフィルム、偽造防止構造を備えたセキュリティ製品に用いられる光学フィルム、化粧シートなどの建装材シートに用いられるコーティングフィルム(表面保護層)、液晶ディスプレイなどに用いられるカラーフィルターやハードコートフィルム、電子線リソグラフィー用レジスト膜などが挙げられる。
 <第2実施形態>
 以下に、本発明の第2実施形態について説明する。 
 本実施形態に係る樹脂組成物は、上掲の一般式(I)または(II)で表される部分構造を含む繰り返し単位(a)を含有する樹脂Rを含んでなる電子線レジスト組成物である。
 半導体製造等の分野においては、電子線リソグラフィー技術が必要とされている。電子線リソグラフィーで用いられる電子線レジストに一般的に要求される特性は、「高感度」、「高解像度」、「ドライエッチング耐性」の3点である。これらの特性を向上させるために、これまでに種々の材料が提案されてきた。例えば、ポジ型電子線レジストの代表例としてポリメタクリル酸メチル(PMMA)を用いたものが主鎖切断型レジストとして古くから知られているが、解像度は高いものの、感度が低くスループットが低いという欠点がある。そこで、高感度なポジ型電子線レジストとして、側鎖に芳香環を有し、分子量分布を1.7以下に抑えた共重合体樹脂(特許文献1)を主鎖切断型レジストとして使用する例や、アルカリ可溶のノボラック樹脂とジアゾナフキノンを混合した二成分レジスト、酸による触媒反応を利用した化学増幅型レジストなどが提案されてきた(特許文献2、特許文献3)。
 しかし、これらの組成においては、ドライエッチング耐性が不十分で、選択的なエッチングが困難であった。以下に詳述する本実施形態に係る電子線レジスト組成物によれば、ドライエッチング耐性に優れた電子線レジスト膜を提供することが可能である。
 本実施形態に係る電子線レジスト組成物は、ポジ型レジスト、ネガ型レジストの両方に適応可能である。ポジ型レジストとは、露光されたパターンの現像液に対する溶解性が増大し、露光されなかった部分が残存するレジストである。ネガ型レジストは、現像後に露光されたパターンの現像液に対する溶解性が低下し、現像後に露光された部分が残存するレジストである。
 本実施形態に係る電子線レジスト組成物は、上掲の一般式(I)または(II)で表される部分構造を含む繰り返し単位(a)を含有する樹脂Rを含む。
 本実施形態において、樹脂Rは、繰り返し単位(a)とは異なる1種又は2種以上の繰り返し単位をさらに含有する2元又は3元以上の共重合体であることが好ましい。この場合において、樹脂R中の繰り返し単位(a)の含有率は、樹脂R中の全繰り返し単位に対し、2モル%以上50モル%以下の範囲であることが好ましい。樹脂R中の繰り返し単位(a)の含有率が2モル%以上の場合、ドライエッチング耐性をより向上させることができる。
 樹脂を2元又は3元以上の共重合体とすることにより、密着性を向上させる機能を付与することや、レジスト膜の硬度をコントロールすることが可能となる。
 また、樹脂R中の繰り返し単位(a)の含有率が50モル%以下の場合、樹脂Rの熱分解の抑制効果を維持しつつ、加熱時のレジストの黄変の発生や、レジストが硬くなり脆くなることを効果的に抑制することができる。同様の観点から、樹脂R中の繰り返し単位(a)の含有率は、2モル%以上30モル%以下であってよく、あるいは2モル%以上20モル%以下であってよい。
 本実施形態において、樹脂Rが共重合体である場合に含有し得る共重合成分としては、例えば、(メタ)アクリレート系繰り返し単位、オレフィン系繰り返し単位、ハロゲン原子含有繰り返し単位、スチレン系繰り返し単位、酢酸ビニル系繰り返し単位、ビニルアルコール系繰り返し単位等が挙げられる。
 共重合成分である(メタ)アクリレート系繰り返し単位としては、例えば、直鎖または分岐アルキル基を側鎖に有する(メタ)アクリレート系モノマー由来の繰り返し単位、水酸基(フェノール性水酸基を除く)を側鎖に有する(メタ)アクリレート系モノマー由来の繰り返し単位等が挙げられる。
 樹脂を、ポジ型レジストとして使用する場合は、メタクリレート系繰り返し単位を用いることが望ましい。メタクリレート系繰り返し単位を用いることにより、電子線を照射した箇所のみが選択的に主鎖分解し、現像時に溶解しやすくなる。この場合、樹脂中のメタクリレート系繰り返し単位の含有率は、全繰り返し単位の30モル%以上が好ましく、さらに好ましくは50モル%以上である。
 樹脂をネガ型レジストとして使用する場合は、アクリレート系繰り返し単位を用いることが望ましい。アクリレート系繰り返し単位を用いることにより、電子線を照射した箇所のみが選択的に架橋し、現像時に電子線が照射されなかった箇所のみが選択的に溶解しやすくなる。この場合、樹脂中のアクリレート系繰り返し単位の含有率は、全繰り返し単位の30モル%以上が好ましく、さらに好ましくは50モル%以上である。
 上記直鎖または分岐アルキル基を側鎖に有する(メタ)アクリレート系モノマー由来の繰り返し単位としては、第1実施形態において挙げた具体例と同様の具体例が挙げられる。
 フェノール性水酸基以外の水酸基を側鎖に有する(メタ)アクリル系モノマー由来の繰り返し単位としては、第1実施形態において挙げた具体例と同様の具体例が挙げられる。
 共重合成分として、2-ヒドロキシエチルメタクリレートを使用することもできる。2-ヒドロキシエチルメタクリレートを使用することで、レジストと基板との密着性を高めることが可能となる。
 共重合成分として、架橋性の官能基を有するモノマーを使用することもできる。架橋性の官能基を有するモノマーとしては、グリシジル(メタ)アクリレートなどが挙げられる。このような成分を使用した場合、ネガ型レジストとして使用することができる。
 共重合成分として、メタクリル酸を使用することもできる。メタクリル酸を使用すると、アルカリ現像する際の現像液への溶解性が向上し、パターンの解像度が向上する。
 共重合成分であるオレフィン系繰り返し単位としては、第1実施形態において挙げた具体例と同様の具体例が挙げられる。
 共重合成分であるハロゲン原子含有繰り返し単位としては、第1実施形態において挙げた具体例と同様の具体例が挙げられる。
 共重合成分であるスチレン系繰り返し単位としては、第1実施形態において挙げた具体例と同様の具体例が挙げられる。
 樹脂Rの分子量は特に規定しないが、具体的には、質量平均分子量10万以上200万以下、好ましくは20万以上100万以下である。分子量があまり大きいと薄膜塗布する際に必要となる溶解性の良好な溶剤がなかったり、また溶液中でゲルが生成することによって、濾過できなかったりする等、均一な薄膜を得ることができなくなる。また、分子量があまり小さいと感度が低下し、また、適当な厚さの均一な薄膜を得ることが難しくなる。
 共重合体は、ランダム共重合体、交互共重合体、ブロック共重合体、および、グラフト共重合体のいずれの構造を有していてもよい。共重合体の構造がランダム共重合体であれば、製造工程が容易である。そのため、ランダム共重合体は、他の共重合体よりも好ましい。
 共重合体を得るための重合方法は、第1実施形態において説明したとおりである。
 本実施形態のレジスト組成物には、塗布性を向上させるための界面活性剤、溶解抑制剤、可塑剤、安定剤、着色剤、ハレーション防止剤などの添加剤を適宜、添加含有させることができる。
 特に、本実施形態においては、繰り返し単位(a)を含み、耐熱性に優れる樹脂Rを使用することにより、有機系添加剤の熱劣化を抑制することができる。ここで「有機系添加剤」は、炭素原子を含有する化合物から選択される添加剤であり、低分子化合物であってもよく、高分子化合物であってもよく、オリゴマーであってもよく、有機金属塩も含まれる。添加剤の具体例を表2に示す。
Figure JPOXMLDOC01-appb-T000009
 本実施形態のレジストを使用する際に用いられる溶剤としては、例えば、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸イソブチル、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールメチルエーテルアセテート、乳酸エチル、トルエン、キシレン、1,2-ジクロロエタンなどが用いられる。
 本実施形態のレジストパターン形成方法は例えば以下の様にして行うことができる。すなわち、まずシリコンウェーハやガラス基板のような基板上に、上記レジスト組成物をスピンナーなどで塗布し、プレベークを施し、これに例えば電子線描画装置などにより、電子線を所望のマスクパターンを介して選択的に照射する。次いでこの基板を、現像液を用いて現像処理する。このようにして、マスクパターンに忠実なレジストパターンを得ることができる。なお、基板とレジスト組成物の塗布層との間には、有機系または無機系の反射防止膜を設けることもできる。
 現像液としては、露光部と未露光部とを区別し、露光部または未露光部を選択的に溶解するものであればなんでもよいが、一般には該重合体混合物すなわち未露光部に対する可溶性溶剤と不溶性溶剤との組合せの中から選ばれる。可溶性溶剤としてはアセトン、メチルエチルケトン、メチルイソブチルケトン、メチルイソアミルケトン、シクロペンタノン、シクロヘキサノン、4-メトキシ-4-メチル-2-ペンタノン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸アミル、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピルセロソルブアセテート、ブチルセロソルブアセテート、メチルカルビトールアセテート、エチルカルビトールアセテート、プロピルカルビトールアセテート、ブチルカルビトールアセテート、3-メチル-3-メトキシブチルアセテート、プロピレングリコールモノメチルエーテルアセテート、ギ酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、酪酸メチル、酪酸エチル、安息香酸エチル、エチル-3-エトキシプロピオネート、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、ジメチルセロソルブ、ジエチルセロソルブ、テトラヒドロフラン、メチルセロソルブ、メチルカルビトール、エチルカルビトール、プロピレングリコールモノメチルエーテル、ジアセトンアルコール、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ニトロメタン、ニトロエタン、1-ニトロプロパン、アセトニトリル、トルエン、キシレン、クロロホルム、ジクロロメタン等が挙げられる。また、不溶性溶剤としてはメタノール、エタノール、1-プロパノール、イソプロパノール、1-ブタノール、2-ブタノール、シクロペンタノール、シクロヘキサノール、エチルセロソルブ、プロピルセロソルブ、イソプロピルセロソルブ、ブチルセロソルブ、ブチルカルビトール、ヘキサン、ヘプタン、シクロヘキサン、石油エーテル、水等が挙げられる。
 ついで、一般的には、上述のようにして得られたレジストパターンをマスクとして、エッチングを行い、レジストで被覆されていない部分の基板等を選択的に除去する。本実施形態のレジスト組成物は、特にドライエッチング耐性が向上しているため、好適に用いることができる。
 ドライエッチングの方法としては、ダウンフローエッチングやケミカルドライエッチング等の化学的エッチング;スパッタエッチングやイオンビームエッチング等の物理的エッチング;RIE(反応性イオンエッチング)等の化学的・物理的エッチングなどの公知の方法を用いることができる。
 <第3実施形態>
 以下に、本発明の第3実施形態について説明する。 
 本実施形態は、上掲の第1実施形態に係る樹脂組成物由来のプライマー層を備えるガスバリア積層フィルムである。
 ガスバリア積層フィルムは、空気中の湿気、酸素、炭酸ガスなどのガスから対象物を守り、品質及び性能の劣化を抑制する役割を有している。ガスバリア積層フィルムは、食品、医薬品などの包装材料をはじめ、太陽電池バックシートや電子ペーパー、有機ELなどのエレクトロニクス分野でのガラスやアルミ箔などの代替としての採用も検討されている。
 現在、ガスバリア積層フィルムの主な種類としては、エチレンビニルアルコール共重合樹脂などの単体フィルム、共押出多層ナイロン(Ny)フィルム、塩化ビニリデン(PVDC)コートやポリビニルアルコール(PVA)コートのウェットコートフィルムなどがある。しかしながら、これらの種類のフィルムは、ガスバリア性が高いものでも水蒸気透過度3g/m/day程度であり、より高度なガスバリア性を要求される包装材や電子部材としての利用は難しい。従って、より高度なバリア性を要求される場合は、アルミニウムなどの金属箔を積層せざるを得なかった。
 しかしながら、金属箔を積層したフィルムを用いた包装材では、内容物が見えない、内容物検査に金属探知機を使用できない、などの問題があった。
 これらの問題を克服するために、例えば、特許文献4では、高分子樹脂基材上に、酸化アルミニウム、酸化マグネシウム、酸化ケイ素などの無機化合物を蒸着した透明なガスバリア性フィルムについて提案がなされている。
 さらに、蒸着層の樹脂基材への密着性を向上させるために、樹脂基材と蒸着層の間に、プライマー層を設けた構造のものが多く提案されている。これらのプライマー層の材料には、アクリル系の樹脂を用いることが多く、特に、アクリルポリオールとイソシアネート化合物との反応複合物あるいはそれにシランカップリング剤が添加されたものを用いることが多い。これにより、ボイル殺菌やレトルト殺菌後も物性の劣化がなく、デラミネーション等の発生がない、高い耐ボイル性、耐レトルト性を有するガスバリア性フィルムを実現している(例えば、特許文献5~7)。
 しかしながら、これらのフィルムは、太陽電池モジュールの耐久試験として一般的な高温試験(JIS C8917、C8938、C8990、C8991)後にも密着性を保持することが難しく、高い耐久性が要求される用途への利用は難しい。
 以下に、高温試験後も密着性を保持することができ、耐久性に優れた透明な本実施形態に係るガスバリア積層フィルムについて、図面を参照しながら詳述する。なお、同様又は類似した機能を有する要素については、同一の参照符号を付し、重複する説明は省略する。
 図1に示すように、本実施形態のガスバリア積層フィルム10は、樹脂基材11とプライマー層12と蒸着膜層13とを備え、樹脂基材11の片面に、プライマー層12と蒸着膜層13とを順次積層した構成となっている。ガスバリア積層フィルムは、より高い水蒸気バリア性を達成するために、樹脂基材11の両面にプライマー層12と蒸着膜層13とを順次積層した構成であってもよい。
 樹脂基材11としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステルフィルム、ポリエチレン、ポリプロピレンなどのポリオレフィンフィルム、ポリエーテルスルフォン(PES)、ポリスチレンフィルム、ポリアミドフィルム、ポリ塩化ビニルフィルム、ポリカーボネートフィルム、ポリアクリルニトリルフィルム、ポリイミドフィルム、ポリ乳酸などの生分解性プラスチックフィルムなどを使用することができる。樹脂基材11の厚みは、特に制限を設けないが、実用上6μm以上200μm以下程度であってよく、好ましくは12μm以上125μm以下、さらに好ましくは12μm以上25μm以下であってよい。
 また、樹脂基材11における他の層を積層する側の表面には、密着性を高めるため、コロナ処理、プラズマ処理、フレーム処理などの物理的処理や、酸やアルカリによる薬液処理などの化学的処理を施してもよい。
 プライマー層12は、樹脂基材11上に設けられ、樹脂基材11と蒸着膜層13との密着性を高め、ボイル殺菌やレトルト殺菌などの各種殺菌処理や、長期屋外設置による蒸着層の剥離発生を防止するために設けられる。
 プライマー層12は、ポリオールとイソシアネート系化合物との複合物を含む。プライマー層12は、上掲の第1実施形態に係る樹脂組成物由来の層であり、このとき上掲の一般式(I)または(II)で表される部分構造を含む繰り返し単位(a)を含有する樹脂Rはポリオールである。
 ポリオールとは、分子内に複数の水酸基を有する化合物の総称であり、イソシアネート系化合物のイソシアネート基と反応するものである。主なポリオールとして、主鎖にエーテル結合を有するポリエーテルポリオール、主鎖にエステル結合を有するポリエステルポリオール、(メタ)アクリル酸誘導体モノマーを重合させて得られる高分子化合物であるアクリルポリオール、又は(メタ)アクリル酸誘導体モノマーとその他のモノマーとを共重合させて得られる高分子化合物であるアクリルポリオールなどが挙げられる。
 ポリエーテルポリオールとしては、主にアルキレンオキサイドを多価アルコールやポリアミンを開始剤として付加重合したポリオキシアルキレンポリオール、テトラヒドロフランのカチオン重合によって得られるポリオキシテトラメチレングリコールなどが挙げられる。
 ポリエステルポリオールには、主に二塩基酸とグリコール類から得られる宿重合系ポリエステルポリオールと、ε-カプロラクトンの開環重合によって得られるポリカプロラクトンポリオールがある。宿重合系ポリエステルポリオールに使用される二塩基酸としては、アジピン酸、テレフタル酸、イソフタル酸などが挙げられ、グリコール類としてはエチレングリコール、ネオペンチルグリコール、3-メチル-1,5-ペンタジオールなどが挙げられる。
 アクリルポリオールは、(メタ)アクリル酸誘導体モノマー同士を重合した高分子化合物、あるいは(メタ)アクリル酸誘導体モノマーとその他のモノマーをラジカル重合により共重合した高分子化合物のうち、末端に水酸基を有するものである。
 末端にヒドロキシル基を有する(メタ)アクリル酸誘導体モノマーと共重合可能なモノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、及びt-ブチル(メタ)アクリレートなど、末端にアルキル基を有するモノマー;(メタ)アクリル酸など末端にカルボキシル基を有する(メタ)アクリル酸誘導体モノマー;ベンジル(メタ)アクリレート、及びシクロヘキシル(メタ)アクリレートなど、末端に芳香環や環状構造を有する(メタ)アクリル酸誘導体モノマーが挙げられる。(メタ)アクリル酸誘導体モノマー以外では、スチレンモノマー、シクロヘキシルマレイミドモノマー、フェニルマレイミドモノマーなどがある。
 ポリオールは、上述のとおり、上掲の一般式(I)または(II)で表される部分構造を含む繰り返し単位(a)を含有する。
 本実施形態において、ポリオールは、繰り返し単位(a)とは異なる1種又は2種以上の繰り返し単位をさらに含有する2元又は3元以上の共重合体であることが好ましい。この場合において、ポリオール中の繰り返し単位(a)の含有率は、ポリオール中の全繰り返し単位に対し、2モル%以上50モル%以下の範囲であることが好ましい。ポリオール中の繰り返し単位(a)の含有率が2モル%以上の場合、ポリオールの熱分解をより効果的に抑制することができる。
 また、ポリオール中の繰り返し単位(a)の含有率が50モル%以下の場合、ポリオールおよび併用される添加剤の熱分解の抑制効果を維持しつつ、加熱時のガスバリアフィルムの黄変の発生や、プライマー層12が硬くなり脆くなることを効果的に抑制することができる。同様の観点から、樹脂中の繰り返し単位(a)の含有率は、2モル%以上30モル%以下であってよく、あるいは2モル%以上20モル%以下であってよい。
 本実施形態において、ポリオールが共重合体である場合に含有し得る共重合成分としては、例えば、(メタ)アクリレート系繰り返し単位、オレフィン系繰り返し単位、ハロゲン原子含有繰り返し単位、スチレン系繰り返し単位、酢酸ビニル系繰り返し単位、ビニルアルコール系繰り返し単位等が挙げられる。
 共重合成分である(メタ)アクリレート系繰り返し単位としては、例えば、直鎖または分岐アルキル基を側鎖に有する(メタ)アクリレート系モノマー由来の繰り返し単位、水酸基(フェノール性水酸基を除く)を側鎖に有する(メタ)アクリレート系モノマー由来の繰り返し単位等が挙げられる。
 上記直鎖または分岐アルキル基を側鎖に有する(メタ)アクリレート系モノマー由来の繰り返し単位としては、第1実施形態において挙げた具体例と同様の具体例が挙げられる。
 上記フェノール性水酸基以外の水酸基を側鎖に有する(メタ)アクリル系繰り返し単位としては、第1実施形態において挙げた具体例と同様の具体例が挙げられる。
 共重合成分であるオレフィン系繰り返し単位としては、第1実施形態において挙げた具体例と同様の具体例が挙げられる。
 共重合成分であるハロゲン原子含有繰り返し単位としては、第1実施形態において挙げた具体例と同様の具体例が挙げられる。
 共重合成分であるスチレン系繰り返し単位としては、第1実施形態において挙げた具体例と同様の具体例が挙げられる。
 但し、繰り返し単位(a)が水酸基を含まない場合は、共重合成分として水酸基を有する成分を2モル%以上含有する必要がある。
 ポリオールの分子量は特に規定しないが、具体的には、3000以上200000以下であってよく、好ましくは5000以上100000以下であり、さらに好ましくは5000以上40000以下である。
 共重合体は、ランダム共重合体、交互共重合体、ブロック共重合体、および、グラフト共重合体のいずれの構造を有していてもよい。共重合体の構造がランダム共重合体であれば、製造工程およびシアニン色素との調製が容易である。そのため、ランダム共重合体は、他の共重合体よりも好ましい。
 共重合体を得るための重合方法は、第1実施形態において説明したとおりである。
 イソシアネート系化合物とは、その分子中に2個以上のイソシアネート基を有するものである。例えば、モノマー系イソシアネートとして、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)などの芳香族系イソシアネート、ヘキサメチレンジイソシアネート(HDI)、ビスイソシアネートメチルシクロヘキサン(H6XDI)、イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタンジイソシアネート(H12MDI)などの脂肪族系イソシアネート、キシレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)などの芳香脂肪族系イソシアネートなどがある。また、これらのモノマー系イソシアネートの重合体あるいは誘導体も使用可能である。例えば、3~5量体のヌレート型、1,1,1-トリメチロールプロパンなどと反応させたアダクト型、ビウレットと反応させたビウレット型などがある。
 イソシアネート系化合物は、上記のイソシアネート系化合物あるいはその重合体、誘導体から任意に選択してよく、1種類あるいは2種類以上組み合わせて用いることができる。
 また、上記ポリオール及びイソシアネート系化合物に加えて、用途に応じて添加剤を加えることもできる。例えば、硬化反応を促進させる触媒、紫外線吸収剤(UVA)やヒンダードアミン系光安定剤(HALS)などの光安定剤、酸化防止剤、帯電防止剤、可塑剤、シランカップリング剤などがある。特に、本実施形態においては、繰り返し単位(a)を含有し耐熱性に優れるポリオールを使用することにより、有機系添加剤の熱劣化も抑制することができる。ここで「有機系添加剤」は、第2実施形態で説明したとおりである。添加剤の具体例としては、第2実施形態において表2に挙げた具体例と同様の具体例が挙げられる。
 繰り返し単位(a)を含むポリオールを使用することにより、添加剤の熱劣化を抑制することができる。例えば、添加剤として光安定剤を使用した場合は、加熱した後も、耐光性が良好なガスバリア積層フィルムとなる。
 プライマー層12は、上記のポリオールと上記のイソシアネート系化合物との複合物と溶媒を含む溶液を、樹脂基材11上に塗工し、反応硬化させることにより形成される。用いられる溶媒としては、上記ポリオール及びイソシアネート系化合物を溶解する溶媒であればよく、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、メチルエチルケトン、ジオキソラン、テトラヒドロフラン、シクロヘキサノン、アセトンなどが挙げられ、これらの溶媒を1種類あるいは2種類以上組み合わせて用いることができる。
 プライマー層12の形成方法としては、通常のコーティング方法を用いることができる。例えば、ディッピング法、ロールコート、グラビアコート、リバースコート、エアナイフコート、コンマコート、ダイコート、スクリーン印刷法、スプレーコート、グラビアオフセット法等の周知の方法を用いることができる。乾燥方法は、熱風乾燥、熱ロール乾燥、高周波照射、赤外線照射、UV照射など熱をかける方法を、1種類あるいは2種類以上組み合わせて用いることができる。
 プライマー層12の膜厚は、30nm以上200nm以下が望ましく、好ましくは100nm以上200nm以下である。これよりも厚みが薄いと、樹脂基材11と蒸着膜層13との密着性が不十分となり、300nmよりも厚いと内部応力の影響が大きくなり、蒸着膜層13がきれいに積層されず、バリア性の発現が不十分となる問題がある。
 蒸着膜層13は、プライマー層12上に設けられ、フィルム全体にガスバリア性を付与するために設けられる。
 蒸着膜層13の材料には、金属珪素と二酸化珪素とを含有した蒸着材料を用いることが望ましい。また、蒸着膜層13の材料には、さらに他の金属錫または金属酸化物を含有した蒸着材料を用いてもよい。
 金属珪素と二酸化珪素とを含有した蒸着材料を蒸着させることで、フィルム全体に高いガスバリア性を付与することができる。さらに、金属珪素と二酸化珪素に金属錫または酸化錫を混合した蒸着材料を蒸着させることで、膜密度の高い蒸着膜層13が形成され、高い水蒸気バリア性が発現するとともに、ポリオールとイソシアネート系化合物との複合物によって形成されたプライマー層12との相乗効果により、高いガスバリア性と、高い耐久性を合わせ持つガスバリア性フィルムが得られる。
 金属珪素と二酸化珪素は、例えば、元素比O/Siが1以上1.8以下になるように混合してよく、好ましくは1.2以上1.7以下である。
 蒸着膜層13の形成方法としては、真空蒸着法、スパッタリング法、プラズマ気相成長法、原子層堆積法などの公知の方法を適宜用いてよいが、真空蒸着法が望ましい。また、蒸着膜層13の透明性を上げるために、蒸着材料を蒸着させる際に、蒸発した粒子と雰囲気中に導入した酸素ガスなどと反応させて蒸着させる反応蒸着をさせてもよい。酸素ガスやアルゴンガスとの反応蒸着を行うことにより、蒸着材料中の金属成分が酸化され、蒸着膜層13の透明性を向上させることができる。ガスを導入する際は、成膜室の圧力が2×10-1Pa以下にすることが望ましい。成膜室の圧力が2×10-1Paよりも大きくなってしまうと、蒸着膜層13がきれいに積層されず、水蒸気バリア性が低下してしまう場合がある。
 蒸着膜層13の膜厚は、0.005μm以上0.3μm以下が好ましく、さらに好ましくは0.03μm以上0.05μm以下である。0.005μmより小さいと十分なバリア性が発現しない場合があり、また0.3μmを超えると脆く、クラックが発生しやすくなり、バリア性が発現しない問題が生じ得る。
 本実施形態のガスバリア積層フィルムは、図2に示すガスバリア積層フィルム20のように、蒸着膜層13の上に、水溶性高分子とアルコキシシランまたはその加水分解生成物とを含有するコーティング液からなる薄膜の乾燥被膜であるガスバリア性被覆層21が設けられていてもよい。
 ガスバリア性被覆層21は、硬く脆い蒸着膜層13を保護し、擦れや屈曲によるクラックの発生を防止するために設けられ、水溶性高分子とアルコキシシランまたはその加水分解生成物を含有した成分からなる。ガスバリア性被覆層21は、水溶性高分子とアルコキシシランまたはその加水分解生成物とを含有するコーティング液を蒸着膜層13の上に塗工し、乾燥させることにより形成される。
 ガスバリア性被覆層21の形成方法としては、プライマー層12と同様に通常のコーティング方法を用いることができる。例えばディッピング法、ロールコート、グラビアコート、リバースコート、エアナイフコート、コンマコート、ダイコート、スクリーン印刷法、スプレーコート、グラビアオフセット法等の周知の方法を用いることができる。乾燥方法は、熱風乾燥、熱ロール乾燥、高周波照射、赤外線照射、UV照射など熱をかける方法を、1種類あるいは2種類以上組み合わせて用いることができる。
 水溶性高分子としては、ポリビニルアルコール樹脂(PVA)、エチレン-ビニルアルコール共重合樹脂(EVOH)、ポリビニルピロリドン樹脂(PVP)などを用いることができ、これらを単独あるいは複数組み合わせて用いてもよい。
 アルコキシシランとしては、テトラエトキシシラン、テトラメトキシシラン、テトラプロポキシシラン、メチルトリエトキシシラン、メチルトリメトキシシランなどを用いることができる。また、アルコキシシランの加水分解生成物としては、メタノールなどのアルコールにアルコキシシランを溶解し、その溶液に塩酸などの酸の水溶液を添加し、加水分解反応させることにより調製したものが挙げられる。
 また、蒸着膜層13との密着性を上げるために、ガスバリア性被覆層21にシランカップリング剤を添加してもよい。シランカップリング剤としては、3-グリシドキシプロピルトリメトキシシランなどのエポキシ基を有するもの、3-アミノプロピルトリメトキシシランなどのアミノ基を有するもの、3-メルカプトプロピルトリメトキシシランなどのメルカプト基を有するもの、3-イソシアネートプロピルトリエトキシシランなどのイソシアネート基を有するものなどが挙げられ、これらのシランカップリング剤を1種類あるいは2種類以上組み合わせて用いることができる。
 本実施形態のガスバリア積層フィルムは、図3に示すガスバリア積層フィルム30のように、図2に示すガスバリア積層フィルム20の両面に、接着剤層31を介してラミネート樹脂層32が設けられる構成であってもよい。更にラミネート樹脂層32を備えることにより、実用性の高いガスバリア積層フィルムとなる。ラミネート樹脂層32は、ヒートシール性のあるシーラントフィルムが積層されることで、袋状包装体などを形成する際の接着部に利用される。ラミネート樹脂層32には、例えば、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸エステル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体及びそれらの金属架橋物等の樹脂が用いられる。ラミネート樹脂層32の厚さは目的に応じて決められるが、一般的には15μm以上200μm以下の範囲である。なお、ラミネート樹脂層32は、接着剤層31を介してガスバリア積層フィルム20の片面にのみ設けられてもよい。
 また、ポリエチレンテレフタレートフィルムやポリエチレンナフタレートフィルムを、本実施形態のガスバリア積層フィルム10、20及び30の片面または両面に積層することで、液晶表示素子や、太陽電池、電磁波シールド、タッチパネルで使用する透明伝導シートなどの封止材として用いることもできる。
 <第4実施形態>
 以下に、本発明の第4実施形態について説明する。 
 本実施形態は、上掲の第1実施形態に係る樹脂組成物由来のプライマー層を備える加熱殺菌用包装袋である。
 近年、食品及び医薬品や電子部材等の非食品等の包装に用いられる包装材料は、内容物の変質を抑制し、内容物の機能や性質を保持するために、包装袋を透過する酸素、水蒸気、その他内容物を変質させる気体による影響を防止する必要があり、これら気体(ガス)を遮断するガスバリア性を備えることが求められている。
 従来、ガスバリア層としては、ポリビニルアルコールとエチレンビニル共重合体やポリ塩化ビニリデン、ポリアクリロニトリル等の樹脂フィルム、これらの樹脂をコーティングしたプラスチックフィルム、あるいはアルミニウム等の金属からなる金属箔やそれら金属蒸着フィルム等が主に用いられてきた。
 また、ガスバリア性樹脂フィルムとしては、例えば、樹脂からなる基材上に、Si(O-CH)4等のアルコキシシランと、エポキシシラン等のシランカップリング剤と、ポリビニルアルコールを含む組成物をゾル-ゲル法により重縮合して得られる被覆層を設けた積層フィルムが知られている(特許文献8参照)。しかしながら、この被覆層は、水素結合からなるため、水により膨潤して溶解しやすかった。このため、ボイルやレトルト処理等の過酷な条件下ではガスバリア性が劣化し易かった。
 一方、金属箔や金属蒸着フィルムは、ガスバリア性に優れるが、包装袋を透視して内容物が確認できないこと、検査の際に金属探知器が使用できないこと、及び廃棄の際に不燃物として処理しなければならないこと等の課題があった。また、ガスバリア性樹脂フィルム、及びガスバリア性樹脂をコーティングしたフィルムは、温湿度依存性が大きく、十分なガスバリア性を維持できない。更に、ガスバリア性樹脂として使用される塩化ビニリデンやポリアクリロニトリル等は、廃棄・焼却の際に有害物質の原料となりうる可能性がある。
 このようなことから、例えば、特許文献9に、無機化合物からなる蒸着層を第1層とし、金属アルコキシドまたは塩化錫と水溶性高分子とを含む溶液を塗布し、加熱乾燥してなるガスバリア被覆層を第2層として順次積層したガスバリア性包材が提案されている。このガスバリア包材は、高いガスバリア性を示し、かつ耐水性、耐湿性を有すると共に、ある程度の耐熱性は有する。しかしながら、ガスバリア包材の被膜第2層は金属アルコキシド加水分解物と水酸基を有する水溶性高分子との水素結合からなるため、ボイル及びレトルト殺菌のような処理が必要な包材として使用すると、被膜層が膨潤し、水蒸気バリア性等のガスバリア性が劣化するという問題があった。このような包材は、例えば輸液の一次包装袋などの非常に高いガスバリア性が要求される包材に関しては、多少の劣化でも使用することができない。
 また、基材へ無機酸化物蒸着層やガスバリア被覆層を積層したガスバリア性包材においては、ボイルやレトルト処理等の過酷な条件下で密着性が不十分である場合、基材と無機酸化物蒸着層の間でデラミネーションが生じ外観不良になったり、そのデラミネーション発生部分でガスバリア性が低下したりして、内容物が変質することが数多くあった。
 本実施形態に係る加熱殺菌用包装体は、以上のような従来技術の課題を解決したものであり、透明性に優れて内容物を透視可能であり、高いガスバリア性(酸素バリア性及び水蒸気バリア性)を有する。更に、本実施形態に係る加熱殺菌用包装体は、金属探知器に適用可能であるだけでなく、ボイル及びレトルト殺菌のような加熱殺菌処理を施した後にも、高いガスバリア性(酸素バリア性及び水蒸気バリア性)を維持し、また、破袋やデラミネーションが生じ難い。
 以下に、本実施形態に係る加熱殺菌用包装体(以下、「包装体」ともいう。)について、図面を参照しながら説明する。なお、同様又は類似した機能を有する要素については、同一の参照符号を付し、重複する説明は省略する。
 本実施形態に係る包装袋は、図4に示すように、基材フィルム101、プライマー層102、酸化珪素蒸着層103、ガスバリア被覆層104及び熱融着層105を、この順に積層した包装材料(積層体100)から構成されるものであってよい。ガスバリア被覆層104と熱融着層105とは、ドライラミネーション用接着剤から形成された接着剤層ad1で接着することができる。
 また、本実施形態に係る包装袋は、図5に示すように、ガスバリア被覆層104と熱融着層105との間にポリアミドフィルム206が積層された包装材料(積層体200)から構成されていてもよい。ガスバリア被覆層104とポリアミドフィルム206、ポリアミドフィルム206と熱融着層105とは、それぞれ、ドライラミネーション用接着剤から形成された接着剤層ad2、ad3で接着することができる。
 次に、本実施形態の積層体を構成する基材フィルム101及び各層102~106の材質を、各層の形成方法と併せて説明する。
 本実施形態に使用される基材フィルム101としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステルフィルム、ポリエチレンやポリプロピレン等のポリオレフィンフィルム、ポリスチレンフィルム、6,6-ナイロン等のポリアミドフィルム、ポリカーボネートフィルム、ポリアクリロニトリルフィルム、ポリイミドフィルム等のエンプラフィルム等があげられる。この基材フィルム101は、延伸、未延伸のどちらでもよく、また機械強度や寸法安定性を有するものがよい。特に、これらの中で二軸方向に任意に延伸されたフィルムが好ましく用いられる。更に、包装材料に使用する場合、価格面、防湿性、充填適性、風合い、及び廃棄性を考慮すると、ポリアミドフィルム、ポリエステルフィルムが好ましいが、中でもポリエステルフィルムがより好ましい。なお、この基材フィルム101は、周知の種々の添加剤や安定剤、例えば帯電防止剤、可塑剤、滑剤、酸化防止剤を添加したものであってもよい。
 基材フィルム101の厚さは特に制限を受けるものでないが、包装材料としての適性、および加工性を考慮すると、実用的には3~200μmが好ましく、より好ましくは6~30μmである。
 また、密着性を良くするために、基材フィルム101の表面に、前処理としてコロナ処理、プラズマ処理、オゾン処理などを施すことができる。更に、基材の表面に薬品処理、及び溶剤処理等を施すことができる。特に、プラズマ処理は基材表面と次に積層させるプライマー層102との密着を強固にするため好ましい。
 次に、プライマー層102について説明する。プライマー層102は上掲の第1実施形態に係る樹脂組成物由来の層であり、プライマー層102はアクリルポリオールとイソシアネートとシランカップリング剤との反応物を含む。このとき上掲の樹脂Rはアクリルポリオールであり、一般式(I)または(II)で表される部分構造を含む繰り返し単位(a)を含有する。
 本実施形態において、アクリルポリオールは、繰り返し単位(a)とは異なる1種又は2種以上の繰り返し単位をさらに含有する2元又は3元以上の共重合体であることが好ましい。この場合において、アクリルポリオール中の繰り返し単位(a)の含有率は、アクリルポリオール中の全繰り返し単位に対し、2モル%以上50モル%の範囲であることが好ましい。アクリルポリオール中の繰り返し単位(a)の含有率が2モル%以上の場合、プライマー層の熱劣化をより効果的に抑制することができる。
 また、アクリルポリオール中の繰り返し単位(a)の含有率が50モル%以下の場合、プライマー層の熱劣化の抑制効果を維持しつつ、加熱時の黄変の発生や、クラックを抑制することができる。同様の観点から、アクリルポリオール中の繰り返し単位(a)の含有率は、2モル%以上30モル%以下であってよく、あるいは2モル%以上20モル%以下であってよい。
 本実施形態において、アクリルポリオールが共重合体である場合に含有し得る共重合成分としては、例えば、(メタ)アクリレート系繰り返し単位、オレフィン系繰り返し単位、ハロゲン原子含有繰り返し単位、スチレン系繰り返し単位、酢酸ビニル系繰り返し単位、ビニルアルコール系繰り返し単位等が挙げられる。
 共重合成分である(メタ)アクリレート系繰り返し単位としては、例えば、直鎖または分岐アルキル基を側鎖に有する(メタ)アクリレート系モノマー由来の繰り返し単位、水酸基(フェノール性水酸基を除く)を側鎖に有する(メタ)アクリレート系モノマー由来の繰り返し単位等が挙げられる。
 上記直鎖または分岐アルキル基を側鎖に有する(メタ)アクリレート系モノマー由来の繰り返し単位としては、第1実施形態において挙げた具体例と同様の具体例が挙げられる。
 上記フェノール性水酸基以外の水酸基を側鎖に有する(メタ)アクリル系繰り返し単位としては、第1実施形態において挙げた具体例と同様の具体例が挙げられる。
 共重合成分であるオレフィン系繰り返し単位としては、第1実施形態において挙げた具体例と同様の具体例が挙げられる。
 共重合成分であるハロゲン原子含有繰り返し単位としては、第1実施形態において挙げた具体例と同様の具体例が挙げられる。
 共重合成分であるスチレン系繰り返し単位としては、第1実施形態において挙げた具体例と同様の具体例が挙げられる。
 共重合体は、ランダム共重合体、交互共重合体、ブロック共重合体、および、グラフト共重合体のいずれの構造を有していてもよい。共重合体の構造がランダム共重合体であれば、製造工程が容易である。そのため、ランダム共重合体は、他の共重合体よりも好ましい。
 共重合体を得るための重合方法は、第1実施形態において説明したとおりである。
 次に、プライマー層102に使用されるイソシアネートは、分子内にNCO基を少なくとも2個以上有するものであればよい。例えば、モノマー系イソシアネートとして、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)などの芳香族系イソシアネート、ヘキサメチレンジイソシアネート(HDI)、ビスイソシアネートメチルシクロヘキサン(H6XDI)、イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタンジイソシアネート(H12MDI)などの脂肪族系イソシアネート、キシレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)などの芳香脂肪族系イソシアネートなどを用いてもよい。また、これらのモノマー系イソシアネートの重合体又は誘導体も用いてもよい。このような重合体又は誘導体としては、例えば、3量体のヌレート型、1,1,1-トリメチロールプロパンなどと反応させたアダクト型、ビウレットと反応させたビウレット型などが挙げられる。イソシアネート化合物としては、上記のモノマー系イソシアネート、その重合体、誘導体等のなかから任意に選択してよく、1種を単独で又は2種類以上組み合わせて用いることができる。
 次に、プライマー層102に使用されるシランカップリング剤は、例えば、3-グリシドキシプロピルトリメトキシシランなどのエポキシ基を有するもの、3-アミノプロピルトリメトキシシランなどのアミノ基を有するもの、3-メルカプトプロピルトリメトキシシランなどのメルカプト基を有するもの、3-イソシアネートプロピルトリエトキシシランなどのイソシアネート基を有するものなどが挙げられる。また、シランカップリング剤としては1種類を単独で用いても2種類以上を併用してもよい。
 プライマー層102の厚みは、一般的には乾燥後の厚さで、0.005~5μmの範囲になるようにコーティングすることが望ましく、より好ましくは0.01~1μmである。厚みが0.01μm未満の場合は塗工技術の点から均一な塗膜が得られ難くなる傾向があり、一方、1μmを越える場合は不経済となる傾向がある。
 次に、酸化珪素蒸着層103について説明する。酸化珪素蒸着層103は、例えば、真空蒸着法を利用して形成することができる。緻密性やプライマー層102に対する密着性を向上させるため、プラズマアシスト法やイオンビームアシスト法を用いて蒸着してもよい。また、酸素ガスを吹き込みつつ蒸着を行う反応蒸着法を使用することによって、形成される酸化珪素蒸着層103の透明性を一層高めることができる。
 酸化珪素蒸着層103は、ガスバリア性と共にその柔軟性を考慮して、その厚みを決定すること望ましい。酸化珪素蒸着層103の厚みが薄過ぎると、ガスバリア層としての機能を十分に果たすことが困難になる。一方、酸化珪素蒸着層103の厚みが厚過ぎると、残留応力により柔軟性を維持できず、成膜後の外的要因によって亀裂が生じるおそれがある。5~300nmの範囲の厚さの酸化珪素蒸着層103は、十分なガスバリア性と柔軟性とを備えている。酸化珪素蒸着層103の厚さは、好ましくは10~300nmである。
 次に、ガスバリア被覆層104について説明する。ガスバリア被覆層104は、以下に説明する(a)成分を主成分とし、これに水溶性高分子を加え、更に、以下に説明する(b)成分を加えて塗布液とし、この塗布液を塗布して被膜を形成し、加熱乾燥することにより、(a)成分及び(b)成分を加水分解して形成したものである。ここで、(a)成分に水溶性高分子を加えるのは、そのガスバリア性を維持したまま柔軟性を向上するためである。(b)成分を加えるのは耐水性を向上させるためである。
 なお、(a)成分及び(b)成分の加水分解を制御するために、一般的に知られている触媒、塩化錫やアセチルアセトナートなどを添加しても問題ない。また、インキ、接着剤との密着性、濡れ性、収縮によるクラック発生防止を考慮して、イソシアネート化合物、コロイダルシリカやスメクタイトなどの粘土鉱物や、安定化剤、着色剤、粘度調整剤などの公知の添加剤などを、ガスバリア性や耐水性を阻害しない範囲で塗布液に添加することができる。
 (a)下記一般式(III)で表されるケイ素化合物又はその加水分解物。
  Si(OR   (III)
 ただし、一般式(III)中、RはCH、C、またはCOCHを表す。
 (b)一般式(IV)で表されるケイ素化合物、又は、その加水分解物もしくはその縮合体。
  (RSi(OR)n   (IV)
 ただし、一般式(IV)中、Rは有機官能基を表し、RはCH、C、またはCOCHを表す。また、nは1以上を表す。
 (a)成分はガスバリア被覆層104の主成分であり、上記一般式(III)で表される化合物である。例えば、テトラメトキシシラン、テトラエトキシシランなどが例示できる。
 また、水溶性高分子は、(a)成分を主成分とするガスバリア被覆層104に、そのガスバリア性を維持したまま柔軟性を向上させるもので、例えば、ポリビニルアルコール、でんぷん、セルロース類が好ましく使用できる。特にポリビニルアルコール(以下PVA)を本実施形態のコーティング剤に用いた場合にガスバリア性が最も優れる。なぜならPVAはモノマー単位中に最も多く水酸基を含む高分子であるため、加水分解後の金属アルコキシドの水酸基と非常に強固な水素結合を形成する。ここで言うPVAとは、一般にポリ酢酸ビニルをケン化して得られるもので、酢酸基が数十%残存している、いわゆる部分ケン化PVAから酢酸基が数%しか残存していない完全ケン化PVAまでを含む。PVAの分子量は重合度が300~数千まで多種あるが、どの分子量のものを用いても効果に問題はない。しかし一般的にケン化度が高く、また重合度が高い高分子量のPVAは耐水性が高いため好ましい。
 次に、(b)成分はガスバリア被覆層104の耐水性を向上させるもので、上記一般式(IV)で表されるケイ素化合物又はその加水分解物である。
 (b)成分としては、その有機官能基Rが、ビニル基、エポキシ基、メタクリロキシ基、ウレイド基、及びイソシアネート基等の非水性官能基である化合物が使用できる。非水官能基は、官能基が疎水性であるため、耐水性はさらに向上する。
 しかしながら、有機官能基(R)がウレイド基の場合は、その化合物に特有の臭気があり、また、イソシアネート基の場合は、反応性が高く、ポットライフが短いという欠点がある。
 また、有機官能基Rとして3-グリシドキシプロピル基あるいは2-(3,4エポキシシクロヘキシル)基を有する化合物を使用すると、これらの有機官能基は、加水分解により、一般式(III)のSi(OR及び水溶性高分子と水素結合を形成するために、バリアの孔になり難く、ガスバリア性を損なうことなく耐水性を向上することができる。しかしながら、このようなエポキシ系シラン化合物の一部は、変異原性を有する場合がある。また、有機官能基(R)が、ビニル及びメタクリロキシの場合、製造過程で紫外線または電子線等の照射が必要となり設備及び工程の増加によりコスト高を招く傾向がある。
 一方、(b)成分として、下記一般式(V)で表される三量体1,3,5-トリス(3-トリアルコキシシリルプロピル)イソシアヌレートを使用する場合には、これらの欠点がなく、耐水性を向上して、しかも、ガスバリア性の低下も防ぐことができる。
 (NCO-RSi(OR   (V)
(但し、一般式(V)中、Rは(CH)nを表し、RはCH、C,またはCOCHを表す。また、nは1以上を表す)。
 すなわち、この1,3,5-トリス(3-トリアルコキシシリルプロピル)イソシアヌレートは、3-イソシアネートプロピルアルコキシシランの縮合体であり、縮合によって、イソシアヌレート部には化学的反応性はなくなるけれども、ヌレート部の極性により、縮合前の3-イソシアネートプロピルアルコキシシランと同様の性能を示すことが知られている。よって、1,3,5-トリス(3-トリアルコキシシリルプロピル)イソシアヌレートを添加することにより、3-イソシアネートプロピルアルコキシシランの添加と同様に、ガスバリア被覆層104が水による膨潤することを防ぎ、耐水性を向上させることができる。また、3-イソシアネートプロピルアルコキシシランは、反応性が高く、液安定性が低いのに対し、ヌレート部はその極性により水溶性ではないが、水系液中に分散しやすく、液粘度を安定に保つことができ、その耐水性性能は3-イソシアネートプロピルアルコキシシランと同等である。さらに、ヌレート部は耐水性があるのみでなく、その極性によりSi(ORと、水酸基を有する水溶性高分子はバリアの孔になりにくく、ガスバリア性の低下を防ぐことができる。
 なお、1,3,5-トリス(3-トリアルコキシシリルプロピル)イソシアヌレートは、3-イソシアネートプロピルアルコキシシランの熱縮合により製造されるものもあり、原料の3-イソシアネートプロピルアルコキシシランが含まれる場合もあるが、特に問題はない。さらに好ましくは、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレートである。メトキシ基は、加水分解速度が早く、また、プロピル基を含むものは比較的安価に入手し得ることから、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレートは実用上有利である。
 次に、(a)成分と(b)成分とは、(a)成分をSiOに、(b)成分をRSi(OH)に質量換算した場合、RSi(OH)の固形分が全固形分((a)成分及び(b)成分の合計)の対し1~50質量%であることが好ましい。この範囲であれば、ガスバリア被覆層104は、ボイル及びレトルト殺菌処理のような過酷な処理にも劣化しない耐水性の高いガスバリア性が得られる。1質量%未満であると耐水性効果が低くなる傾向があり、50質量%を超えると、官能基がガスバリア被覆層の孔となるために、ガスバリア性が低下する傾向がある。ボイル、レトルト殺菌処理に必要な耐水性と、高いガスバリア性をより良好にするためには、より好ましくは、上記固形分は全固形分に対し5~30質量%である。
 また、(a)成分をSiOに、(b)成分をRSi(OH)に質量換算した場合、固形分の配合比が質量比でSiO/(RSi(OH)+水溶性高分子)=100/100~100/30の範囲内であれば、ボイル及びレトルト殺菌処理に必要な耐水性と高いガスバリア性はもちろん、包装材料として考えた場合の被膜柔軟性によるフレキシブル性が十分付与され好ましい。
 これら3成分の混合の順序は任意であってよい。どの順番で混合しても効果は発現する。(a)成分や(b)成分が塗布液中で分散せずに油滴状に存在するような場合は、上述のように加水分解を行い、微分散させることが好ましい。特に(a)成分と(b)成分を別々に加水分解してから水溶性高分子に添加することが、SiOの微分散およびSi(ORの加水分解効率の観点から望ましい。
 乾燥後のガスバリア被覆層104の厚みは特に限定しないが、厚みが50μm以上を越えるとクラックが生じ易くなる可能性があるため、0.01~50μmとすることが望ましい。
 ガスバリア被覆層104の形成方法としては、通常のコーティング方法を用いることができる。例えばディッピング法、ロールコート、グラビアコート、リバースコート、エアナイフコート、コンマコート、ダイコート、スクリーン印刷法、スプレーコート、グラビアオフセット法等を用いることができる。
 塗布膜の乾燥法は、熱風乾燥、熱ロール乾燥、高周波照射、赤外線照射、UV照射などガスバリア被覆層に熱をかけて、水分子を飛ばす方法であれば、これらのいずれでも、またこれらを2つ以上組み合わせてもかまわない。この乾燥により(a)成分及び(b)成分が加水分解して、ガスバリア性のガスバリア被覆層104を形成することができる。
 次に、熱融着層105について説明する。熱融着層105としては、例えば、無延伸ポリオレフィンフィルムを使用することができる。その厚みは5~300μmでよい。好ましくは10~100μmである。
 この熱融着層105とガスバリア被覆層104とはドライラミネーション用接着剤ad1により接着することができる。接着剤ad1は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート、その他のコーティング方法で塗布できる。また、その塗布量は0.1~5.0g/m(乾燥状態)程度が好ましい。
 次に、ポリアミドフィルム206について説明する。ポリアミドフィルム206は、包装袋の耐ピンホール性と耐衝撃性を向上させるもので、例えば、6-ナイロン、6,6-ナイロン、MXDナイロン等を使用することができる。二軸延伸したポリアミドフィルムが望ましく、その厚みは5~100μmでよい。好ましくは10~50μmである。このポリアミドフィルム206とガスバリア被覆層104とは、ドライラミネーション用接着剤層ad2により接着することができる。また、ポリアミドフィルム206と熱融着層105は、ドライラミネーション用接着剤ad3により接着することができる。
 本実施形態によれば、金属アルコキシドとしてケイ素化合物を使用し、これと水酸基を有する水溶性高分子とを反応させることにより、ガスバリア被覆層は十分に不溶化される。
 すなわち、ケイ素化合物は加水分解後に縮合し、セラミック膜を形成する。しかしケイ素酸化物は硬く、さらに縮合時の体積縮小による歪みによりクラックが入りやすいため、フィルム上に薄く透明で均一な縮合体被膜を形成することは非常に困難である。そこで、高分子を添加することによってセラミック膜に柔軟性を付与しクラックを防止して造膜することができる。しかし高分子の添加は目視では均一でも、微視的には金属酸化物と高分子部分とに分離していることが多く、バリアの孔になりやすく、このため、ガスバリア性が低下する。なお、ここで、バリアの孔とは、膜の中で緻密なネットワークを作らず気体の透過を容易にする部分をいう。
 高分子として水酸基をもつ水溶性高分子を使用することにより、高分子の水酸基と金属アルコキシドの加水分解物の水酸基との強い水素結合を利用して、金属酸化物が縮合に際し高分子との間にうまく分散して、柔軟性を維持しながら、しかも、セラミックに近い高いガスバリア性を発現することができる。
 ただし、この場合にも、ケイ素化合物と水溶性高分子とからなるガスバリア被覆層は、水素結合からなるため、水により膨潤して溶解する。
 そこで、ケイ素化合物として、上記(a)成分と(b)成分とを反応させることにより、ガスバリア被覆層の膨潤を防ぎ、耐水性を著しく向上させる。すなわち、上記(b)成分は加水分解により、一般式(a)成分及び水溶性高分子と水素結合を形成するため、バリアの孔になり難く、また一方で、有機官能基はネットワークをつくることで、水溶性高分子が、その水素結合に水が付加することにより膨潤することを防ぎ、耐水性を著しく向上させる。このため、上記(a)成分~(b)成分及び水溶性高分子を反応させて得られたガスバリア被覆層104は、優れたガスバリア性と柔軟性に加えて、レトルトやボイル等の加熱殺菌処理に耐える耐水性を有するのである。
 また、これに加えて、基材フィルム上に、上記ガスバリア被覆層を上記酸化珪素蒸着層と組み合わせて設けることにより、さらに高いガスバリア性が得られる。さらに、本実施形態に係る包装体は、基材フィルムと酸化珪素蒸着層との間に、一般式(I)または(II)で表される部分構造を含有するアクリルポリオールを含むプライマー層を有する。このためボイル殺菌処理及びレトルト殺菌処理後も、酸素透過率、及びラミネート強度等の劣化が見られず、さらに、蒸着層が基材フィルムから剥離することがほとんどない。
 <第5実施形態>
 以下に、本発明の第5実施形態について説明する。 
 本実施形態に係る樹脂組成物は、上掲の一般式(I)または(II)で表される部分構造を含む繰り返し単位(a)を含有する樹脂Rを含んでなるハードコート層形成用組成物である。ここで、繰り返し単位(a)は、後述するモノマー(B)由来の繰り返し単位である。
 液晶ディスプレイ用偏光板保護フィルムや、有機ELディスプレイ等に用いられる円偏光板の保護フィルムには、様々な機能を持たせるために樹脂層が形成されている。樹脂層は、例えば帯電防止機能を持たせるための帯電防止層、反射を抑えるための反射防止層、表面硬度を向上させるためのハードコート層といったものである。特にハードコート層を設けることはディプレイ用途では必須になっており、ハードコート層は単層で用いられるだけでなく、反射防止層を積層する場合はその下層となり、重要な役割を担っている。
 これらの偏光板の適用アプリケーションが液晶テレビ、ノートパソコンなどに広く広がるにつれて多様な特性が要求されるようになり、蛍光灯の映り込みが少ない反射防止機能、埃が付きにくい帯電防止機能、指紋等が拭取れる防汚機能などの特性も要求されるようになってきた。特にノートパソコンなどでは、人が使用することによって、指紋、皮脂、汗、化粧品などの汚れが付着する場合が多い。一般に、偏光板の表面エネルギーは大きいために、そのような汚れが付着しやすい。また、反射防止膜の表面には微細な凹凸があるため、汚れを除去することが容易ではない。さらに、そのような汚れが付着した部分だけ高反射となり、汚れが目立つという問題があった。
 そこで、これらの問題を解決するため、汚れが付着しにくく、付着しても拭き取りやすい性能を持つ防汚層を、光学部材の表面に形成する技術が種々提案されている。
 例えば、特許文献10には、基材の表面に、主として二酸化ケイ素からなる反射防止膜を設け、更にその表面に有機ケイ素置換基を含む化合物で処理した防汚性、耐摩擦性の反射防止物品が提案されている。特許文献11には、同様に基材表面を末端シラノール有機ポリシロキサンで被覆した防汚性、耐摩擦性のCRTフィルターが提案されている。また、特許文献12には、ポリフルオロアルキル基を含むモノ及びジシラン化合物及び、ハロゲン、アルキルまたはアルコキシのシラン化合物を含有する反射防止膜をその表面に有する、防汚性・低反射性プラスチックが提案されている。
 また、ハードコート層には、用途に応じて耐熱水性、耐候性、耐擦傷性、耐磨耗性などの性能を向上させるため、各種添加剤を混合することが一般的となっている。特にタッチパネル用途で使用する場合においては、様々な耐環境特性、たとえば、耐熱性や耐吸水性等が求められている。このため添加剤においても、ハードコート層形成用組成物の加工温度や使用温度に十分耐える耐熱性が必要となる。添加剤の耐熱性を高めるために、例えば、特許文献13~15には、添加剤の分子量を高分子量化するという技術が開示されている。
 しかしながら、従来のハードコートフィルムは、指紋拭き取り性などの防汚性と高度な耐熱性を両立できるものは無く、またハードコートに機能を付与する目的で混合される添加剤についても高温下ではある程度の添加剤の分解が生じ、その機能を十分に発揮することが困難となっている。さらに、添加剤の熱分解生成物がハードコートの劣化を促進することも多い。このような状況下において近年における高度な耐熱性要求を満たしたハードコート層形成用組成物の開発が所望される。
 本実施形態は、このような課題を鑑みてなされたものである。本実施形態に係るハードコート層形成用組成物によれば、耐熱性、防汚機能、耐カール性、耐擦傷性、表面硬度に優れたハードコート層を提供することができる。また、本実施形態に係るハードコート層形成用組成物を用いて形成されるハードコート層は、基材との密着性が高く、汚れの除去も簡単で防汚層を設置する必要がない。また、上記ハードコート層が有する特性は劣化することがなく、常に視認性が高い。
 本実施形態は、例えば陰極管表示装置(CRT)、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、フィールドエミッションディスプレイ(FED)のようなディスプレイの表面を保護する目的で利用される、ハードコート層形成用組成物およびハードコートフィルムに関するものである。さらに詳しくは、本実施形態は、基材との高い密着性を有するとともに、耐熱性、防汚性に優れ、なおかつ優れた耐カール性、耐擦傷性、表面硬度を付与できるハードコート層形成用組成物およびハードコートフィルムに関する。
 本発明者等は、透明基材上のハードコート層に防汚特性の付与を検討した結果、特定の多官能(メタ)アクリルモノマー(A)と、上記一般式(I)または(II)で表される部分構造を有するモノマー(B)と、光ラジカル重合開始剤(C)と、重合性基を有する含フッ素化合物(D)と、非重合性添加剤(E)を原料として含むハードコート層形成用組成物において、上記従来の課題を解決できることを見出した。本実施形態に係るハードコート層形成用組成物においては、非重合性添加剤(E)の配合割合が特定範囲に調整されている。
 以下に、本実施形態に係るハードコート層形成用組成物について、図面を参照しながら詳述する。
 本実施形態のハードコート層形成用組成物を構成する多官能(メタ)アクリルモノマー(A)は、1分子中に2個以上のアルコール性水酸基を有する多価アルコールの該水酸基が、2個以上の(メタ)アクリル酸のエステル化物となっている化合物が好ましい。その他にはアクリル系樹脂骨格に反応性のアクリル基が結合されたものを始めとして、ポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレートおよびポリエーテルアクリレート、また、メラミンやイソシアヌル酸などの剛直な骨格にアクリル基を結合したものなども用いられ得る。特にウレタン(メタ)アクリレートモノマーおよび/またはオリゴマーを用いると、ハードコート層の硬度ならびに可撓性を著しく向上させることができる。
 なお、本実施形態において「(メタ)アクリルモノマー」とは「アクリルモノマー」と「メタクリルモノマー」の両方を示している。たとえば、「多官能(メタ)アクリルモノマー」は「多官能アクリルモノマー」と「多官能メタクリルモノマー」の両方を示している。また、本実施形態の多官能(メタ)アクリルモノマー(A)および一般式(I)または(II)で表される部分構造を有するモノマー(B)はオリゴマーであっても構わない。
 本実施形態において、多官能(メタ)アクリルモノマー(A)として用いられる好ましいウレタンアクリレートは、一般に、ポリエステルポリオールにイソシアネートモノマー、もしくはプレポリマーを反応させて得られた生成物に、水酸基を有するアクリレートモノマーを反応させることで容易に形成されるものを挙げることができる。具体的な例としては、ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートトルエンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートトルエンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートイソホロンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートイソホロンジイソシアネートウレタンプレポリマーなどを用いることができる。また、これらの単量体は、1種または2種以上を混合して使用することができる。また、これらは塗液においてモノマーであってもよいし、一部が重合したオリゴマーであってもかまわない。
 市販されている多官能アクリル系モノマーとしては、三菱ケミカル株式会社[商品名“紫光”シリーズなど]、新中村化学工業株式会社[商品名“NKエステル”シリーズなど]、DIC株式会社[商品名“ルクシディア”シリーズなど]、東亜合成株式会社[商品名“アロニックス”シリーズなど]、日油株式会社[商品名“ブレンマー”シリーズなど]、日本化薬株式会社[商品名“KAYARAD”シリーズなど]、共栄社化学株式会社[商品名“ライトエステル”シリーズ、“ライトアクリレート”シリーズなど]などの製品を利用することができる。
 本実施形態に係るハードコート層形成用組成物は、上記一般式(I)または(II)で表される部分構造を有するモノマー(B)を含有する。上述のとおり、上掲の繰り返し単位(a)は、モノマー(B)由来の繰り返し単位である。
 上掲の一般式(I)または(II)で表される部分構造を有するモノマー(B)としては、例えば、(メタ)アクリレート系モノマーであってよく、(メタ)アクリルアミド系モノマーであってよく、N-置換マレイミド系モノマーであってよく、またはスチレン系モノマーであってよい。
 上掲の一般式(I)または(II)で表される部分構造を有するモノマーが(メタ)アクリレート系モノマーであるとき、例えば、4-メトキシフェニル(メタ)アクリレート、4-ヒドロキシフェニル(メタ)アクリレート、2,6-ジ-tert-ブチルフェニル(メタ)アクリレート、2,6-ジ-tert-ブチル-4-メトキシフェニル(メタ)アクリレート、2-tert-ブチル-4-ヒドロキシフェニル(メタ)アクリレート,3-tert-ブチル-4-ヒドロキシフェニル(メタ)アクリレート、2,6-ジ-tert-ブチル-4-メチルフェニル(メタ)アクリレート、2-ヒドロキシ-4-tert-ブチルフェニル(メタ)アクリレート、2,4-ジ-メチル-6-tert-ブチルフェニル(メタ)アクリレート等が挙げられる。
 上掲の一般式(I)または(II)で表される部分構造を有するモノマーが(メタ)アクリルアミド系モノマーであるとき、例えば、N-(4-ヒドロキシフェニル)(メタ)アクリルアミド等が挙げられる。
 上掲の一般式(I)または(II)で表される部分構造を有するモノマーがN-置換マレイミド系モノマーであるとき、例えば、4-ヒドロキシフェニルマレイミド、3-ヒドロキシフェニルマレイミド等が挙げられる。
 上掲の一般式(I)または(II)で表される部分構造を有するモノマーがスチレン系モノマーであるとき、例えば、α-メチル-p-ヒドロキシスチレン等が挙げられる。
 多官能(メタ)アクリルモノマー(A)の使用割合は、多官能(メタ)アクリルモノマー(A)と、一般式(I)または(II)で表される部分構造を有するモノマー(B)の合計に対して1~99質量%が好ましく、50質量%以上95質量%以下が更に好ましい。多官能(メタ)アクリルモノマー(A)の使用割合が50質量%未満の場合には、十分な硬度を有するハードコート層を得るという点で不十分な場合があり、形成されるハードコート層の鉛筆硬度が低下するなどの不都合を招く場合がある。また、多官能(メタ)アクリルモノマー(A)の使用割合が95質量%を超える場合には、多官能(メタ)アクリルモノマー(A)の硬化収縮により、硬化被膜側にハードコートフィルムが大きくカールするなどの不都合を招く場合がある。また、一般式(I)または(II)で表される部分構造を有するモノマー(B)の使用割合が少ないために重合性基を有する含フッ素化合物(D)の相溶性が十分でなく、塗液の白濁化、沈殿物の発生が起きてしまい、保存安定性が良好なハードコート用組成物を得るという点で不十分な場合がある。
 本実施形態のハードコート層形成用組成物を構成する光ラジカル重合開始剤(C)としては、電離放射線を照射することでラジカルを発生し、アクリルモノマーの重合反応を開始する化合物が好ましい。
 光ラジカル重合開始剤(C)の具体的な例としては、アセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、p-ジメチルアミノプロピオフェノン、ベンゾフェノン、2-クロロベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン、ミヒラーケトン、ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、p-イソプロピル-α-ヒドロキシイソブチルフェノン、α-ヒドロキシイソブチルフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトンなどのカルボニル化合物、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントンなどの硫黄化合物などを用いることができる。これらの光重合開始剤は単独で使用してもよいし、2種以上を組み合せて使用してもよい。
 光ラジカル重合開始剤(C)の使用量は、ハードコート層形成用組成物の多官能(メタ)アクリルモノマー(A)と、一般式(I)または(II)で表される部分構造を有するモノマー(B)の合計に対して、0.01質量%以上10質量%以下が適当である。0.01質量%よりも少ない場合は電離放射線が照射された際に十分な硬化反応が進行せず、10質量%を超える場合はハードコート層下部まで十分に電離放射線が届かなくなってしまう。
 本実施形態のハードコート層形成用組成物を構成する重合性基を有する含フッ素化合物(D)に、フッ素系添加剤を加えることでハードコート層表面に防汚特性を付与することが可能である。ここで、重合性基を有しないフッ素化合物にフッ素系添加剤を加えた場合は、添加剤がハードコート層表面に浮いて存在する状態となるため、布等で拭いた際にハードコート表面から取り去られてしまうこととなる。このことから、一度布等で表面を拭取ってしまうと、防汚性が無くなるという欠点を有している。本発明では、防汚特性を有するフッ素化合物に重合性基を持たせることで、ハードコート層形成時にフッ素系添加剤も合せて重合することとなり、布等で表面を拭いても防汚特性が維持されるという利点を有している。
 重合性基を有する含フッ素化合物(D)の重合性基が(メタ)アクリレート基を有する化合物であることがさらに好ましい。これは、重合性基を有する含フッ素化合物(D)が多官能(メタ)アクリレート化合物と共重合することも可能となり、電離放射線によるラジカル重合によって高硬度化が図れるためである。
 このような本実施形態における重合性基を有する含フッ素化合物(D)としては、オプツールDAC(ダイキン工業(株)製)、ディフェンサTF3001、ディフェンサTF3000、ディフェンサTF3028(DIC(株)製)などが挙げられる。
 本実施形態の重合性基を有する含フッ素化合物(D)の使用量は、ハードコート層形成用組成物の多官能(メタ)アクリルモノマー(A)と、一般式(I)または(II)で表される部分構造を有するモノマー(B)の合計に対して、0.01~10質量%が適当である。0.01質量%よりも少ない場合は十分な防汚特性は発現せず、表面エネルギーも20mN/mよりも大きい値を示す。10質量%を超える場合は、重合性モノマーおよび溶剤との相溶性が良くないために、塗液の白濁化、沈殿発生が起こってしまい、塗液やハードコート層の欠陥発生などの不都合を招く場合がある。
 本実施形態において、一般式(I)または(II)で表される部分構造を有するモノマー(B)の含有率は、(メタ)アクリルモノマー(A)と重合性基を有する含フッ素化合物(D)の和に対し、2モル%以上50モル%の範囲であることが好ましい。一般式(I)または(II)で表される部分構造を有するモノマー(B)の含有率が2モル%以上の場合、ハードコートフィルムおよび併用される添加剤の熱分解をより効果的に抑制することができる。
 また、一般式(I)または(II)で表される部分構造を有するモノマー(B)の含有率が50モル%以下の場合、樹脂および併用される添加剤の熱分解の抑制効果を維持しつつ、加熱時の樹脂の黄変の発生や、樹脂が硬くなり脆くなることを効果的に抑制することができる。同様の観点から、一般式(I)または(II)で表される部分構造を有するモノマー(B)の含有率は、2モル%以上30モル%以下であってよく、あるいは2モル%以上20モル%以下であってよい。
 また本実施形態では、ハードコート層の改質剤として、塗布性改良剤、消泡剤、増粘剤、帯電防止剤、無機系粒子、有機系粒子、有機系潤滑剤、有機高分子化合物、紫外線吸収剤、光安定剤、染料、顔料あるいは安定剤などの非重合性添加剤(E)をさらに加えることができる。これらの添加剤は活性線による反応を損なわない範囲内でハードコート層を構成する塗布層の組成物成分として使用され、用途に応じてハードコート層の特性を改良することができる。非重合性添加剤(E)の配合割合は、ハードコート層形成用組成物の溶剤以外の成分の質量合計の50質量%以下である。非重合性添加剤(E)の具体例としては、第1実施形態において表1に挙げた具体例と同様の具体例が挙げられる。
 本実施形態のハードコート層形成用組成物を硬化させる方法としては、活性線、特に紫外線を照射する方法が好適であり、ハードコート層形成用組成物に、光ラジカル重合開始剤を加えて紫外線を照射することで硬化させることができる。紫外線照射においては、400nm以下の波長を含む光であれば良く、例えば超高圧水銀灯、高圧水銀灯、中圧水銀灯、低圧水銀灯、キセノンランプ、ハロゲンランプ等を用いることができる。また、必要に応じて加熱工程を加えてもよい。
 本実施形態のハードコート層形成用組成物には、製造時の熱重合や貯蔵中の暗反応を防止するために、ハイドロキノン、ハイドロキノンモノメチルエーテルまたは2,5-t-ブチルハイドロキノンなどの熱重合防止剤を加えることが望ましい。熱重合防止剤の添加量は、ハードコート層形成用組成物の固形分に対し、0.005から0.05質量%が好ましい。
 図6は、本発明の一実施形態に係るハードコートフィルムの断面図である。図6に示すように、本実施形態のハードコートフィルム300は、透明基材301上にハードコート層302を備える。ハードコート層302は、本実施形態のハードコート層形成用組成物を透明基材301上に塗布することで形成される。
 ハードコート層形成用組成物の塗布方法としては、バーコーター、アプリケーター、ドクターブレード、ロールコーター、ダイコーター、コンマーコーター等の公知の塗工手段を用いることができる。このとき、ハードコート層形成用組成物には、必要に応じて溶媒が加えられる。溶媒としては、メチルイソブチルケトン、シクロヘキサノン、アセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、シクロペンタノン、メチルシクロヘキサノン、エチルシクロヘキサノン、2-ブタノン、蟻酸エチル、蟻酸プロピル、蟻酸n-ペンチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酢酸n-ペンチル、およびγ-プチロラクトン、酢酸イソブチル、酢酸ブチル、トルエン、キシレン、2-プロパノール、1-ブタノール、シクロペンタノール、ジアセトンアルコール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジブチルエーテル、ジメトキシメタン、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、ジオキサン、ジオキソラン、トリオキサン、テトラヒドロフラン、アニソール、フェネトール、メチルセロソルブ、セロソルブ、ブチルセロソルブ、セロソルブアセテート、ジクロロメタン、トリクロロメタン、トリクロロエチレン、エチレンクロライド、トリクロロエタン、テトラクロロエタン、N,N-ジメチルホルムアミド、クロロホルム等を用いることができる。なお、溶媒は1種類に限定されるものではなく、複数の溶媒を混合して混合溶媒としてもよい。
 透明基材301としては、透光性を有するフィルム状のものが好ましく、基材として適度の透明性、機械強度を有していれば良い。例えば、ポリエチレンテレフタレート(PET)、三酢酸セルロース(TAC)、ジアセチルセルロース、アセチルセルロースブチレート、ポリエチレンナフタレート(PEN)、シクロオレフィンポリマー、ポリイミド、ポリエーテルスルホン(PES)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)等のフィルムを用いることができる。中でも、液晶ディスプレイの前面にハードコートフィルムを設ける場合、三酢酸セルロース(TAC)は光学異方性がないため、好ましく用いられる。
 本実施形態のハードコートフィルム300は、最外層にハードコート層302を備える。このとき、本実施形態のハードコートフィルム300はハードコート層302の表面の表面エネルギーが20mN/m以下であることが好ましい。
 表面自由エネルギーは、ハードコート層302の表面の防汚特性の評価方法の指標として用いることができ、この表面自由エネルギーによりハードコート表面の防汚性の有無および大小を推測することが出来る。表面自由エネルギーはハードコート層表面における接触角から拡張Fowkesの式で求めることができ、この値が小さいほうが防汚特性に優れる。本実施形態のハードコートフィルム300は、表面自由エネルギーが20mN/m以下であるため、高い防汚特性を有する。
 また、本実施形態のハードコートフィルム300において、ハードコート層表面の表面自由エネルギーは、15mN/m以上であることが好ましい。表面自由エネルギーはその値が小さいほど防汚特性の高いハードコートフィルムとすることができる。しかし、ハードコート層表面の表面自由エネルギーを15mN/m未満とした場合には、重合性基を有する含フッ素化合物(D)を相当量入れる必要があり、このときハードコート層形成用組成物は白化し、形成されるハードコートフィルムは白っぽくなるため、得られるハードコートフィルムはディスプレイの表面に設けるのに適さないものとなる場合がある。
 塗布して得られたハードコート層302の膜厚は、必要とされる硬度によりその膜厚が決定されるが、好ましい膜厚としては3~30μm、さらに好ましくは5~25μmである。3μm未満の膜厚では十分な硬度が得られず、一方、30μmを超えるとハードコート層302の硬化収縮により透明基材が非常にカールしてしまい、次工程で破断等の不具合が発生してしまう。
 本実施形態のハードコートフィルム300には、必要に応じて、機能層が設けられる。機能層は透明基材301とハードコート層302の間、もしくはハードコート層302が設けられていない側の透明基材表面に設けられる。これらの機能層としては、反射防止層、帯電防止層、防眩層、電磁波遮蔽層、赤外線吸収層、紫外線吸収層、色補正層等が挙げられる。なお、これらの機能層は単層で用いてもかまわないし、異なる機能を有する層を複数用いてもかまわない。透明基材301上にハードコート層が形成されたハードコートフィルム、及び、さらにこれらの機能層を設けたハードコートィルムは、例えば、液晶ディスプレイ、プラズマディスプレイ、CRTディスプレイといった各種のディスプレイ表面と貼りあわせることができ、耐擦傷性と防汚性に優れたディスプレイを提供することが可能となる。
 ≪第1実施形態≫
 <樹脂(a群)の合成>
 合成例1:樹脂P-1aの合成
 80質量部のシクロヘキサノンを重合溶剤として準備した。また、85質量部のメチルメタクリレート(MMA)、および15質量部の4-メトキシフェニルメタクリレート(MPhMA)をアクリルモノマーとして準備した。さらに、0.22質量部の過酸化ベンゾイル(BPO)を重合開始剤として準備した。これらを攪拌装置と還流管とが設置された反応容器に入れ、反応容器に窒素ガスを導入しつつ、80℃に加熱しながら8時間にわたって攪拌および還流した。これにより、MMAに由来する繰り返し単位およびMPhMAに由来する繰り返し単位から形成されるアクリル共重合体を含むポリマー溶液を得た。得られたポリマー溶液を大量のメタノールに滴下して再沈精製をおこない、室温で24時間減圧乾燥することにより、後掲の樹脂P-1aを得た。
 樹脂P-2aの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えて4-ヒドロキシフェニルメタクリレート(HPMA)を使用した以外は合成例1と同様の方法で後掲の樹脂P-2aを得た。
 樹脂P-3aの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えてN-(4-ヒドロキシフェニル)メタクリルアミド(HPMAA)を使用した以外は合成例1と同様の方法で後掲の樹脂P-3aを得た。
 樹脂P-4aの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えて4-ヒドロキシマレイミド(HPhMI)を使用した以外は合成例1と同様の方法で後掲の樹脂P-4aを得た。
 樹脂P-101aの合成
 比較用として、合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)を使用しない以外は合成例1と同様の方法で後掲の樹脂P-101aを得た。
 樹脂P-102aの合成
 比較用として、合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えてフェニルメタクリレート(PhMA)を使用した以外は合成例1と同様の方法で後掲の樹脂P-102aを得た。
 樹脂P-103aの合成
 比較用として、合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えてスチレン(St)を使用した以外は合成例1と同様の方法で以下に示す樹脂P-103aを得た。
Figure JPOXMLDOC01-appb-C000010
 <評価>
 (評価1)樹脂の耐熱性評価
 上記で合成した各樹脂について、大気雰囲気下及び窒素雰囲気下での質量減少率(%)を以下の方法によって測定した。質量減少率(%)の測定には示差熱熱質量同時測定装置(STA7000、(株)日立ハイテクサイエンス製)を用いた。サンプルを大気雰囲気あるいは窒素雰囲気下において250℃で20分間加熱し、加熱前の初期質量(M)から加熱後の質量(M)を減算した質量減少量(M=M-M)を初期質量(M)で割ることによって、質量減少率([M/M]×100)(%)を算出した。質量減少率が低いほど耐熱性に優れる。
 大気雰囲気下及び窒素雰囲気下の両方の測定において質量減少率が20%未満である場合を「A」、大気雰囲気下と窒素雰囲気下の一方又は両方の測定において質量減少率が20%以上である場合を「B」とした。結果を表3に示す。
 (評価2)添加剤の熱劣化の抑制能評価
 得られた樹脂20質量部をシクロヘキサノン80質量部に溶解させた樹脂溶液を作製した。得られた樹脂溶液に添加剤としてヒンダードアミン系光安定剤(商品名:チヌビン(Tinuvin(登録商標))123、BASFジャパン(株)製)、あるいはトリス(ペンタフルオロエチル)トリフルオロリン酸(FAP)を対アニオンに有する下記式(1)で示す構造のシアニン色素を0.1質量部添加して樹脂溶液を得た。スピンコートを用いて、ガラス基板上に上記樹脂溶液を塗布し、200℃に設定したホットプレート上で10分間加熱して乾燥し、厚さ1μmの塗膜を形成した。
 上記塗膜が形成されたガラス基板を250℃で10分間加熱し、塗膜中の上記添加剤の残存率を測定した。ガラス基板を1cmの大きさで切り出し、アセトン1.5mLに浸漬して、超音波洗浄機中で60分間抽出を行った。超高速液体クロマトグラフィー/質量分析(UHPLC/MS)(超高速液体クロマトグラフ/質量分析計(UHPLC/MS)、Agilent 製 1260 LC System/6130B Single Quad MS System)によって、ガラス基板抽出液中の添加剤の定量を行った。加熱後に残存する添加剤量(V)を加熱前の初期添加剤量(V)で割ることによって、添加剤残存率([V/V]×100)(%)を算出した。添加剤残存率が高いほど、添加剤の熱劣化の抑制能に優れる。
 上記ヒンダードアミン系光安定剤を添加した樹脂組成物及び上記シアニン色素を添加した樹脂組成物の両方の測定において、添加剤残存率が90%以上である場合を「A」、一方又は両方の測定において添加剤残存率が90%未満である場合を「B」とした。結果を表3に示す。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-T000012
 <樹脂(b群)の合成>
 合成例2:樹脂P-1bの合成
 内容積300mLのオートクレーブ型反応器を用意し、4-メトキシフェニルメタクリレート(MPhMA)50質量%のメタノール溶液20mL、重合開始剤としてt-ブチルヒドロペルオキシド1gを入れ、溶解させた。反応器の内部を脱気した後に、エチレンガスを反応器内に導入して圧力100bar、重合温度175℃で共重合体を製造した。得られた共重合体をキシレンに溶解しメタノールで再沈精製して後掲の樹脂P-1bを得た。
 樹脂P-2bの合成
 合成例2に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えて4-ヒドロキシフェニルメタクリレート(HPMA)を使用した以外は合成例2と同様の方法で後掲の樹脂P-2bを得た。
 樹脂P-101bの合成
 比較用として、合成例2に対し、4-メトキシフェニルメタクリレート(MPhMA)を使用しない以外は合成例2と同様の方法で後掲の樹脂P-101bを得た。
 樹脂P-102bの合成
 比較用として、合成例2に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えてベンジルメタクリレート(BzMA)を使用した以外は合成例2と同様の方法で以下に示す樹脂P-102bを得た。
Figure JPOXMLDOC01-appb-C000013
 (評価3)樹脂の耐熱性評価
 上記で合成した各樹脂について、上掲の評価1と同様の方法で耐熱性を評価した。結果を表4に示す。
 (評価4)添加剤の熱劣化の抑制能評価
 上記で合成した各樹脂1gと、添加剤としてヒンダードアミン系光安定剤(商品名:チヌビン123、BASFジャパン(株)製)、あるいはトリス(ペンタフルオロエチル)トリフルオロリン酸(FAP)を対アニオンに有する上記式(1)で示す構造のシアニン色素0.01gとを混合した。得られた樹脂と添加剤との混合物をガラス基板上に置き、ガラス基板を200℃のホットプレート上で10分間加熱した。溶融した混合物の上に200℃に加熱したアルミブロックを置いて20kgfの力で10秒間プレスし、その後室温まで急冷した。プレスされたシート状の混合物をガラス基板から剥離し、アセトン1.5mLに浸漬して、超音波洗浄機中で60分間抽出を行った。超高速液体クロマトグラフィー/質量分析(UHPLC/MS)(超高速液体クロマトグラフ/質量分析計(UHPLC/MS)、Agilent 製 1260 LC System/6130B Single Quad MS System)によって、ガラス基板抽出液中の添加剤の定量を行った。加熱後に残存する添加剤量(V)を加熱前の初期添加剤量(V)で割ることによって、添加剤残存率([V/V]×100)(%)を算出した。添加剤残存率が高いほど、添加剤の熱劣化の抑制能に優れる。
 上記ヒンダードアミン系光安定剤を添加した樹脂組成物及び上記シアニン色素を添加した樹脂組成物の両方の測定において、添加剤残存率が90%以上である場合を「A」、一方又は両方の測定において添加剤残存率が90%未満である場合を「B」とした。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000014
 <樹脂(c群)の合成>
 合成例3:樹脂P-1cの合成
 内容積300mLのオートクレーブ型反応器を用意し、過硫酸カリウム0.1g、ラウリル硫酸ソーダ1.0g、部分けん化ポリビニルアルコール(重合度500、けん化度98.6%)の10%水溶液12mL、水50mLを入れて溶解させた。25gの塩化ビニルモノマーを加え、45℃で7時間反応させ、エマルジョン溶液を得た。エマルジョン溶液を凍結乾燥してポリ塩化ビニル沈殿物を回収し、温水洗浄した後に減圧乾燥させた。得られた粉末をテトラヒドロフランに溶解し、不溶物であるポリビニルアルコールを濾別して除去した。このテトラヒドロフラン溶液を大量のメタノールに注ぎ、沈殿物を濾別してポリ塩化ビニル(PVC)を得た。
 得られたPVC0.8gを10mLのシクロヘキサノンに溶解させ、4-ヒドロキシフェニルメタクリレート(HPMA)0.2g、過酸化ベンゾイル0.02gを加え、窒素雰囲気下において80℃で8時間反応させた。得られた反応溶液を大量のメタノールに注ぎ、沈殿物を濾別して、後掲の繰り返し単位を含むポリ塩化ビニル系グラフト共重合体P-1cを得た。
 樹脂P-2cの合成
 合成例3に対し、4-ヒドロキシフェニルメタクリレート(HPMA)に替えてN-(4-ヒドロキシフェニル)メタクリルアミド(HPMAA)を用いた以外は合成例3と同様の方法で、後掲の繰り返し単位を含むポリ塩化ビニル系グラフト共重合体P-2cを得た。
 樹脂P-3cの合成
 合成例3に対し、4-ヒドロキシフェニルメタクリレート(HPMA)に替えて4-メトキシフェニルメタクリレートを用いた以外は合成例3と同様の方法で、後掲の繰り返し単位を含むポリ塩化ビニル系グラフト共重合体P-3cを得た。
 樹脂P-101cの合成
 比較用として、合成例3に対し、4-ヒドロキシフェニルメタクリレート(HPMA)に替えて酢酸ビニル(VAc)を用いた以外は合成例3と同様の方法で、後掲の繰り返し単位を含むポリ塩化ビニル系グラフト共重合体P-101cを得た。
 樹脂P-102cの合成
 比較用として、合成例3に対し、4-ヒドロキシフェニルメタクリレート(HPMA)に替えてメタクリル酸メチル(MMA)を用いた以外は合成例3と同様の方法で、以下に示す繰り返し単位を含むポリ塩化ビニル系グラフト共重合体P-102cを得た。
Figure JPOXMLDOC01-appb-C000015
 <評価>
 (評価5)樹脂の耐熱性評価
 上記で合成した各樹脂について、評価1と同様の方法で大気雰囲気下及び窒素雰囲気下での質量減少率([M/M]×100)(%)を測定した。
 大気雰囲気下及び窒素雰囲気下の両方の測定において質量減少率が30%未満である場合を「A」、大気雰囲気下と窒素雰囲気下の一方又は両方の測定において質量減少率が30%以上である場合を「B」とした。結果を表5に示す。
 (評価6)添加剤の熱劣化の抑制能評価
 各ポリ塩化ビニル系グラフト共重合体1gを、トルエン:シクロヘキサノン=7:3(質量比)の溶液10gに溶解させ、ポリマー溶液を作製した。このポリマー溶液に、添加剤としてヒンダードアミン系光安定剤(商品名:チヌビン123、BASFジャパン(株)製)、あるいはトリス(ペンタフルオロエチル)トリフルオロリン酸(FAP)を対アニオンに有する上記式(1)で示す構造のシアニン色素0.01gを混合して樹脂溶液を得た。スピンコートを用いて、ガラス基板上に上記樹脂溶液を塗布し、200℃に設定したホットプレート上で10分間加熱して乾燥し、厚さ1μmの塗膜を形成した。
 上記塗膜を形成したガラス基板を250℃で10分間加熱し、塗膜中の上記添加剤の残存率を測定した。ガラス基板を1cmの大きさで切り出し、アセトン1.5mLに浸漬して、超音波洗浄機中で 60分間抽出を行った。超高速液体クロマトグラフィー/質量分析(UHPLC/MS)(超高速液体クロマトグラフ/質量分析計(UHPLC/MS)、Agilent 製 1260 LC System/6130B Single Quad MS System)によって、ガラス基板抽出液中の添加剤の定量を行った。加熱後に残存する添加剤量(V)を加熱前の初期添加剤量(V)で割ることによって、添加剤残存率([V/V]×100)(%)を算出した。添加剤残存率が高いほど、添加剤の熱劣化の抑制能に優れる。
 上記ヒンダードアミン系光安定剤を添加した樹脂組成物及び上記シアニン色素を添加した樹脂組成物の両方の測定において、添加剤残存率が80%以上である場合を「A」、一方又は両方の測定において添加剤残存率が80%未満である場合を「B」とした。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000016
 <樹脂(d群)の合成>
 合成例4:樹脂P-1dの合成
 80質量部のシクロヘキサノンを重合溶剤として準備した。また、13質量部のメチルメタクリレート(MMA)、4質量部の2-ヒドロキシエチルメタクリレート(HEMA)、3質量部の4-ヒドロキシフェニルメタクリレート(HPMA)をアクリルモノマーとして準備した。さらに、0.22質量部の過酸化ベンゾイル(BPO)を重合開始剤として準備した。これらを攪拌装置と還流管とが設置された反応容器に入れ、反応容器に窒素ガスを導入しつつ、80℃に加熱しながら8時間にわたって攪拌および還流した。これによりMMAに由来する繰り返し単位、HEMAに由来する繰り返し単位、HPMAに由来する繰り返し単位から形成される後掲の樹脂(アクリル共重合体)P-1dを含むポリマー溶液を得た。
 樹脂P-2dの合成
 合成例4に対し、4-ヒドロキシフェニルメタクリレート(HPMA)に替えてN-(4-ヒドロキシフェニル)メタクリルアミド(HPMAA)を使用した以外は合成例4と同様の方法で後掲の樹脂P-2dを含むポリマー溶液を得た。
 樹脂P-3dの合成
 合成例4に対し、4-ヒドロキシフェニルメタクリレート(HPMA)に替えて4-ヒドロキシフェニルマレイミド(4-HPhMI)を使用した以外は合成例4と同様の方法で後掲の樹脂P-3dを含むポリマー溶液を得た。
 樹脂P-4dの合成
 合成例4に対し、4-ヒドロキシフェニルメタクリレート(HPMA)に替えて3-ヒドロキシフェニルマレイミド(3-HPhMI)を使用した以外は合成例4と同様の方法で後掲の樹脂P-4dを含むポリマー溶液を得た。
 樹脂P-5dの合成
 合成例4に対し、4-ヒドロキシフェニルメタクリレート(HPMA)に替えて4-メトキシフェニルメタクリレート(MPhMA)を使用した以外は合成例4と同様の方法で後掲の樹脂P-5dを含むポリマー溶液を得た。
 樹脂P-6dの合成
 合成例4に対し、4-ヒドロキシフェニルメタクリレート(HPMA)に替えて2,6-ジ-tert-ブチルフェニルメタクリレート(t-BuPhMA)を使用した以外は合成例4と同様の方法で後掲の樹脂P-6dを含むポリマー溶液を得た。
 樹脂P-7dの合成
 合成例4に対し、4-ヒドロキシフェニルメタクリレート(HPMA)に替えて2,6-ジ-tert-ブチル-4-メトキシフェニルメタクリレート(t-BuMPhMA)を使用した以外は合成例4と同様の方法で後掲の樹脂P-7dを含むポリマー溶液を得た。
 樹脂P-101dの合成
 比較用として、合成例4に対し、4-ヒドロキシフェニルメタクリレート(HPMA)に替えてフェニルメタクリレート(PhMA)用した以外は合成例4と同様の方法で後掲の樹脂P-101dを含むポリマー溶液を得た。
 樹脂P-102dの合成
 比較用として、合成例4に対し、4-ヒドロキシフェニルメタクリレート(HPMA)に替えてN-フェニルメタクリルアミド(PhMAA)を使用した以外は合成例4と同様の方法で後掲の樹脂P-102dを含むポリマー溶液を得た。
 樹脂P-103dの合成
 比較用として、合成例4に対し、4-ヒドロキシフェニルメタクリレート(HPMA)に替えてN-フェニルマレイミド(PhMI)を使用した以外は合成例4と同様の方法で以下に示す樹脂P-103dを含むポリマー溶液を得た。
Figure JPOXMLDOC01-appb-C000017
 <化粧シートの作製>
 透明なホモポリプロピレン樹脂(プライムPP;(株)プライムポリマー製)100質量部に、紫外線吸収剤としてチヌビン326(BASFジャパン(株)製)を0.5質量部、光安定剤としてチヌビン622(BASFジャパン(株)製)0.4質量部およびキマソーブ(Chimassorb)2020(BASFジャパン(株)製)0.1質量部を添加することにより樹脂組成物を得た。この樹脂組成物を溶融押し出しすることで厚さ80μmのポリプロピレン樹脂フィルムを得た。
 隠蔽性のあるポリエチレン原反(厚さ70μm)に、2液型ウレタンインキ(V180;東洋インキ(株)製)を用い木目柄をグラビア印刷し絵柄層(厚さ3μm)を設けることで基材を得た。この基材上に、ドライラミネート用接着剤(タケラックA540;三井化学(株)製)(厚み2μm)を介して上記ポリプロピレン樹脂フィルムをドライラミネートすることによりフィルムの積層体を得た。
 上記積層体のポリプロピレン樹脂フィルム上に、上掲で得られた各樹脂(アクリル共重合体)を含むポリマー溶液を、バーコーターを使用して層厚8μmとなるように塗布、乾燥させることにより表面保護層を形成し、化粧シートを得た。ここで表面保護層用ポリマー溶液として、各樹脂について4種のポリマー溶液を用意し使用した。すなわち、上掲で得られた樹脂を含むポリマー溶液そのもの、およびキシリレンジイソシアネート(XDI)(商品名:タケネート(登録商標)500;三井化学(株)製)を硬化剤として、固形分質量比で樹脂:硬化剤が7:3となるように加えたポリマー溶液のそれぞれについて、添加剤としてヒンダードアミン系光安定剤(商品名:チヌビン123;BASFジャパン(株)製)を加えたもの、加えないものの4種を用意した。
 <評価>
 (評価7)表面保護層の耐熱性評価
 表面保護層における、大気雰囲気下での質量減少率(%)を以下の方法によって測定した。質量減少率(%)の測定には示差熱熱質量同時測定装置(STA7000、(株)日立ハイテクサイエンス製)を用いた。上掲で得た化粧シートから表面保護層を5mg削り出し、これをアルミパンに入れ測定サンプルを調製した。このサンプルを大気雰囲気下において250℃で20分間加熱し、加熱前の初期質量(M)から加熱後の質量(M)を減算した質量減少量(M=M-M)を初期質量(W)で割ることによって、質量減少率([M/M]×100)(%)を算出した。質量減少率が低いほど耐熱性に優れる。
 質量減少率が20%未満である場合を「A」、20%以上である場合を「B」とした。結果を表6に示す。
 (評価8)添加剤の熱劣化の抑制能評価
 上掲で得た化粧シート1cmを切り出し大気雰囲気において250℃で20分間加熱することで調整したサンプルをアセトン1.5mLに浸漬し、超音波洗浄機中で60分間抽出を行った。超高速液体クロマトグラフィー/質量分析(UHPLC/MS)(超高速液体クロマトグラフ/質量分析計(UHPLC/MS)、Agilent製 1260 LC System/6130B Single Quad MS System)によって、化粧シートの抽出液中の添加剤の定量を行った。
 また、表面保護層を形成していない上掲のフィルム積層体を用意し、これを上記と同様に1cm切り出し、上記と同様の加熱処理、抽出操作を行い、フィルム積層体の抽出液中の添加剤の定量を行った。
 化粧シートの抽出液中の添加剤量とフィルム積層体の抽出液中の添加剤量の差をとることで化粧シートの表面保護層における添加剤量の定量を行った。
 加熱後に残存する添加剤量(V)を加熱前の初期添加剤量(V)で割ることによって、添加剤残存率([V/V]×100)(%)を算出した。添加剤残存率が高いほど、添加剤の熱劣化の抑制能に優れる。添加剤残存率が90%以上である場合を「A」、90%未満である場合を「B」とした。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 ≪第2実施形態≫
 <樹脂の合成>
 樹脂を17種類合成し、それぞれをP-a~P-qとした。樹脂P-a~P-qが含有する繰り返し単位の構造式を後掲に示す。また、それぞれの合成方法を以下に説明する。
合成例1:樹脂P-aの合成
 80質量部のシクロヘキサノンを重合溶剤として準備した。また、3質量部の2-ヒドロキシエチルメタクリレート(HEMA)、および14質量部のメチルメタクリレート(MMA)、1質量部の4-メトキシフェニルメタクリレート(MPhMA)をアクリルモノマーとして準備した。さらに、0.22質量部の過酸化ベンゾイル(BPO)を重合開始剤として準備した。これらを攪拌装置と還流管とが設置された反応容器に入れ、反応容器に窒素ガスを導入しつつ、80℃に加熱しながら8時間にわたって攪拌および還流した。これにより、HEMAに由来する繰り返し単位およびMMAに由来する繰り返し単位およびMPhMAに由来する繰り返し単位から形成されるアクリル共重合体を含むポリマー溶液を得た。得られたポリマー溶液を大量のメタノールに滴下して再沈精製をおこない、室温で24時間減圧乾燥することにより、樹脂P-aを得た。
合成例2:樹脂P-bの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えて4-ヒドロキシフェニルメタクリレート(HPMA)を使用した以外は合成例1と同様の方法で樹脂P-bを得た。
合成例3:樹脂P-cの合成
 合成例2に対し、メチルメタクリレート(MMA)を16.6質量部、4-ヒドロキシフェニルメタクリレート(HPMA)を0.4質量部とした以外は合成例2と同様の方法で樹脂P-cを得た。
合成例4:樹脂P-dの合成
 合成例2に対し、メチルメタクリレート(MMA)を15質量部、4-ヒドロキシフェニルメタクリレート(HPMA)を2質量部とした以外は合成例2と同様の方法で樹脂P-dを得た。
合成例5:樹脂P-eの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えて4-ヒドロキシフェニルメタクリルアミド(HPMAA)を使用した以外は合成例1と同様の方法で樹脂P-eを得た。
合成例6:樹脂P-fの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えて4-ヒドロキフェニルマレイミド(HPhMI)を使用した以外は合成例1と同様の方法で樹脂P-fを得た。
合成例7:樹脂P-gの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えて2,6-ジ-tert-ブチルフェニルメタクリレート(t-BuPhMA)を使用した以外は合成例1と同様の方法で樹脂P-gを得た。
合成例8:樹脂P-hの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えて2,6-ジ-tert-ブチル-4-メトキシフェニルメタクリレート(t-BuMPhMA)を使用した以外は合成例1と同様の方法で樹脂P-hを得た。
合成例9:樹脂P-iの合成
 合成例1に対し、2-ヒドロキシエチルメタクリレート(HEMA)およびメチルメタクリレート(MMA)および4-メトキシフェニルメタクリレート(MPhMA)に替えて、4-ヒドロキシフェニルアクリレート(HPA)を14質量部、グリシジルアクリレート(GA)を6質量部使用した以外は合成例1と同様の方法で樹脂P-iを合成した。
合成例10:樹脂P-jの合成
 合成例1に対し、メチルメタクリレート(MMA)を17質量部、4-メトキシフェニルメタクリレート(MPhMA)を使用しない以外は合成例1と同様の方法で樹脂P-jを得た。
合成例11:樹脂P-kの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えてスチレン(St)を使用した以外は合成例1と同様の方法で樹脂P-kを得た。
合成例12:樹脂P-lの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えてフェニルメタクリレート(PhMA)を使用した以外は合成例1と同様の方法で樹脂P-lを得た。
合成例13:樹脂P-mの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えてフェニルメタクリルアミド(PhMAA)を使用した以外は合成例1と同様の方法で樹脂P-mを得た。
合成例14:樹脂P-nの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えてフェニルマレイミド(PhMI)を使用した以外は合成例1と同様の方法で樹脂P-nを得た。
合成例15:樹脂P-oの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えて4-メトキシスチレン(MSt)を使用した以外は合成例1と同様の方法で樹脂P-oを得た。
合成例16:樹脂P-pの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えて2,4,6-トリメチルスチレン(TMSt)を使用した以外は合成例1と同様の方法で樹脂P-pを得た。
合成例17:樹脂P-qの合成
 合成例9に対し、4-ヒドロキシフェニルアクリレート(HPA)に替えてスチレン(St)を使用した以外は合成例9と同様の方法で樹脂P-qを得た。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
<レジスト膜の形成>
 下記工程(1)~(4)の手順で例201~209および例201C~208Cのレジスト膜を形成し、評価を実施した。
(1)レジスト液の調液工程(例201)
 樹脂P‐aの6質量%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を作製し、0.1μmのテフロン(登録商標)メンブランフィルターで加圧ろ過してポジ型レジスト液とした。
(例202)
 樹脂P-bの6質量%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を用いたこと以外、例201と同様にポジ型レジスト液を調液した。
(例203)
 樹脂P-cの6質量%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を用いたこと以外、例201と同様にポジ型レジスト液を調液した。
(例204)
 樹脂P-dの6質量%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を用いたこと以外、例201と同様にポジ型レジスト液を調液した。
(例205)
 樹脂P-eの6質量%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を用いたこと以外、例201と同様にポジ型レジスト液を調液した。
(例206)
 樹脂P-fの6質量%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を用いたこと以外、例201と同様にポジ型レジスト液を調液した。
(例207)
 樹脂P-gの6質量%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を用いたこと以外、例201と同様にポジ型レジスト液を調液した。
(例208)
 樹脂P-hの6質量%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を用いたこと以外、例201と同様にポジ型レジスト液を調液した。
(例209)
 樹脂P-iの6質量%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を用いたこと以外、例201と同様にネガ型レジスト液を調液した。
(例201C)
 樹脂P-jの6質量%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を用いたこと以外、例201と同様にポジ型レジスト液を調液した。
(例202C)
 樹脂P-kの6質量%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を用いたこと以外、例201と同様にポジ型レジスト液を調液した。
(例203C)
 樹脂P-lの6質量%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を用いたこと以外、例201と同様にポジ型レジスト液を調液した。
(例204C)
 樹脂P-mの6質量%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を用いたこと以外、例201と同様にポジ型レジスト液を調液した。
(例205C)
 樹脂P-nの6質量%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を用いたこと以外、例201と同様にポジ型レジスト液を調液した。
(例206C)
 樹脂P-оの6質量%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を用いたこと以外、例201と同様にポジ型レジスト液を調液した。
(例207C)
 樹脂P-pの6質量%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を用いたこと以外、例201と同様にポジ型レジスト液を調液した。
(例208C)
 樹脂P-qの6質量%プロピレングリコールモノメチルエーテルアセテート(PGMEA)溶液を用いたこと以外、例201と同様にネガ型レジスト液を調液した。
 例201~例209、例201C~例208Cでそれぞれ使用した樹脂の成分を表7-1及び表7-2に示す。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
(2)レジスト液の塗工工程
 例201~例209および例201C~例208Cのレジスト液を使用し、膜厚100nmのクロム蒸着膜を有する6インチ石英ガラス基板上にスピンコートした後、120℃で30分間加熱して100nmのレジスト膜が形成された基板を得た。このような基板を2枚ずつ作製した。
(3)電子線照射工程
 (2)で作製した基板のうち1枚に対し、加速電圧50kVのポイントビームで、電子線照射をおこない、ライン:スペース=1:1のパターンを形成した。続いて、メチルイソブチルケトン/イソプロピルアルコール=85/15(容量比)に25℃にて1分浸漬した後、イソプロピルアルコールで30秒間リンスを行い、100℃で10分間加熱してポストベークをおこなった。得られたパターンを走査型電子顕微鏡により観察し、線幅50nmのライン(ライン:スペース=1:1)を解像する時の照射エネルギーを感度とした。この感度を示す照射エネルギーにより、ライン:スペース=1:1のパターンについて解像可能な最小サイズを走査型電子顕微鏡により観察して、解像度とした。結果を表8に示す。
(4)ドライエッチング耐性の評価
 (2)で作製した基板のうち1枚に対し、平行平板型リアクティブイオンエッチング装置を用いて、Cl2(50sccm)、O2(50sccm)の混合ガス中にて、温度23℃の条件でドライエッチングを行った。このときのドライエッチング選択比(=クロム蒸着膜のエッチングレート/レジスト膜のエッチングレート)を算出し、1.5以上をA、1.5未満をBとした。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000027
 例201~例209の基板はいずれも、レジスト膜を形成する樹脂が一般式(I)または(II)で表される部分構造を有する繰り返し単位(a)を含有するため、選択比が大きく、良好なドライエッチング耐性を示した。しかし、例201C~例208Cの基板はいずれも、レジスト膜を形成する樹脂が繰り返し単位(a)を含有していないため、選択比が小さく、ドライエッチング耐性が不十分な結果となった。
 以上のことから、レジスト膜を形成する樹脂が繰り返し単位(a)を含有することは、レジスト膜のドライエッチング耐性を向上させるために有効であるといえる。
 なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組合せにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
 本実施形態に係るレジスト組成物は、フォトマスクの製造やLSI、超LSIの製造において生産性、品質の向上に大きな効果をもたらすことが期待される。
 ≪第3実施形態≫
<ポリオールの合成>
 ポリオールを19種類合成し、それぞれをP-a~P-pとした。ポリオールP-a~P-pが含有する繰り返し単位の構造式を後掲に示す。また、それぞれの合成方法を以下に説明する。
合成例1:ポリオールP-aの合成
 80質量部のシクロヘキサノンを重合溶剤として準備した。また、5質量部の2-ヒドロキシエチルメタクリレート(HEMA)、14質量部のメチルメタクリレート(MMA)、および1質量部の4-メトキシフェニルメタクリレート(MPhMA)をアクリルモノマーとして準備した。さらに、0.22質量部の過酸化ベンゾイル(BPO)を重合開始剤として準備した。これらを攪拌装置と還流管とが設置された反応容器に入れ、反応容器に窒素ガスを導入しつつ、80℃に加熱しながら8時間にわたって攪拌および還流した。これにより、HEMAに由来する繰り返し単位およびMMAに由来する繰り返し単位およびMPhMAに由来する繰り返し単位から形成されるアクリル共重合体を含むポリマー溶液を得た。得られたポリマー溶液を大量のメタノールに滴下して再沈精製をおこない、室温で24時間減圧乾燥することにより、ポリオールP-aを得た。
合成例2:ポリオールP-bの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えて4-ヒドロキシフェニルメタクリレート(HPMA)を使用した以外は合成例1と同様の方法でポリオールP-bを得た。
合成例3:ポリオールP-cの合成
 合成例2に対し、2-ヒドロキシエチルメタクリレート(HEMA)を5.6質量部、4-ヒドロキシフェニルメタクリレート(HPMA)を0.4質量部とした以外は合成例2と同様の方法でポリオールP-cを得た。
合成例4:ポリオールP-dの合成
 合成例2に対し、2-ヒドロキシエチルメタクリレート(HEMA)を4質量部、4-ヒドロキシフェニルメタクリレート(HPMA)を2質量部とした以外は合成例2と同様の方法でポリオールP-dを得た。
合成例5:ポリオールP-eの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えて4-ヒドロキシフェニルメタクリルアミド(HPMAA)を使用した以外は合成例1と同様の方法でポリオールP-eを得た。
合成例6:ポリオールP-fの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えて4-ヒドロキフェニルマレイミド(HPhMI)を使用した以外は合成例1と同様の方法でポリオールP-fを得た。
合成例7:ポリオールP-gの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えて2,6-ジ-tert-ブチルフェニルメタクリレート(t-BuPhMA)を使用した以外は合成例1と同様の方法でポリオールP-gを得た。
合成例8:ポリオールP-hの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えて2,6-ジ-tert-ブチル-4-メトキシフェニルメタクリレート(t-BuMPhMA)を使用した以外は合成例1と同様の方法でポリオールP-hを得た。
合成例9:ポリオールP-iの合成
 80質量部のシクロヘキサノンを重合溶剤として準備した。また、5質量部の2-ヒドロキシエチルメタクリレート(HEMA)、14質量部のメチルメタクリレート(MMA)、および1質量部の4-アセトキシスチレン(AcSt)をアクリルモノマーとして準備した。さらに、0.22質量部の過酸化ベンゾイル(BPO)を重合開始剤として準備した。これらを攪拌装置と還流管とが設置された反応容器に入れ、反応容器に窒素ガスを導入しつつ、80℃に加熱しながら8時間にわたって攪拌および還流した。これにより、HEMAに由来する繰り返し単位およびMMAに由来する繰り返し単位およびAcStに由来する繰り返し単位から形成されるアクリル共重合体を含むポリマー溶液を得た。得られたポリマー溶液を大量のメタノールに滴下して再沈精製をおこない、室温で24時間減圧乾燥することにより、HEMA/MMA/AcSt共重合体を得た。得られたHEMA/MMA/AcSt共重合体1質量部に、1mol/lの水酸化ナトリウムエタノール溶液を2質量部、テトラヒドロフランを10質量部加え、2時間攪拌した。この溶液を大量のメタノールに滴下し、ポリオールP-iを得た。
合成例10:ポリオールP-jの合成
 合成例1に対し、2-ヒドロキシエチルメタクリレート(HEMA)を6質量部、4-メトキシフェニルメタクリレート(MPhMA)を使用しない以外は合成例1と同様の方法でポリオールP-jを得た。
合成例11:ポリオールP-kの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えてスチレン(St)を使用した以外は合成例1と同様の方法でポリオールP-kを得た。
合成例12:ポリオールP-lの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えてフェニルメタクリレート(PhMA)を使用した以外は合成例1と同様の方法でポリオールP-lを得た。
合成例13:ポリオールP-mの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えてフェニルメタクリルアミド(PhMAA)を使用した以外は合成例1と同様の方法でポリオールP-mを得た。
合成例14:ポリオールP-nの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えてフェニルマレイミド(PhMI)を使用した以外は合成例1と同様の方法でポリオールP-nを得た。
合成例15:ポリオールP-oの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えて4-メトキシスチレン(MSt)を使用した以外は合成例1と同様の方法でポリオールP-oを得た。
合成例16:ポリオールP-pの合成
 合成例1に対し、4-メトキシフェニルメタクリレート(MPhMA)に替えて2,4,6-トリメチルスチレン(TMSt)を使用した以外は合成例1と同様の方法でポリオールP-pを得た。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
<ガスバリア積層フィルムの作製>
 下記工程(1)~(6)の手順で例301~例311および例301C~例308Cのガスバリア積層フィルムを作製した。
(1)プライマー層溶液の調液工程
(例301)
 固形分濃度5%に調整したポリオールP-aのメチルエチルケトン溶液と、固形分濃度5%に調整したイソシアネート系化合物のメチルエチルケトン溶液を7:3で混合した溶液を調液した。イソシアネート系化合物として、トリレンジイソシアネートのアダクト体(東ソー株式会社製、コロネートT-65)を使用した。
(例302)
 固形分濃度5%に調整したポリオールP-bのメチルエチルケトン溶液を用いたこと以外、例301と同様にプライマー層溶液を調液した。
(例303)
 固形分濃度5%に調整したポリオールP-bのメチルエチルケトン溶液を用い、固形分濃度5%に調整したイソシアネート系化合物のメチルエチルケトン溶液を7:3で混合した後に、添加剤として光安定剤(BASFジャパン株式会社製、チヌビン(登録商標)292)を固形分の1質量%混合したこと以外、例301と同様にプライマー層溶液の調液を行った。
(例304)
 固形分濃度5%に調整したポリオールP-cのメチルエチルケトン溶液を用いたこと以外、例301と同様にプライマー層溶液を調液した。
(例305)
 固形分濃度5%に調整したポリオールP-dのメチルエチルケトン溶液を用いたこと以外、例301と同様にプライマー層溶液を調液した。
(例306)
 固形分濃度5%に調整したポリオールP-eのメチルエチルケトン溶液を用いたこと以外、例301と同様にプライマー層溶液を調液した。
(例307)
 固形分濃度5%に調整したポリオールP-eのメチルエチルケトン溶液を用い、固形分濃度5%に調整したイソシアネート系化合物のメチルエチルケトン溶液を7:3で混合した後に、添加剤として光安定剤(BASFジャパン株式会社製、チヌビン292)を固形分の1質量%混合したこと以外、例301と同様にプライマー層溶液の調液を行った。
(例308)
 固形分濃度5%に調整したポリオールP-fのメチルエチルケトン溶液を用いたこと以外、例301と同様にプライマー層溶液を調液した。
(例309)
 固形分濃度5%に調整したポリオールP-gのメチルエチルケトン溶液を用いたこと以外、例301と同様にプライマー層溶液を調液した。
(例310)
 固形分濃度5%に調整したポリオールP-hのメチルエチルケトン溶液を用いたこと以外、例301と同様にプライマー層溶液を調液した。
(例311)
 固形分濃度5%に調整したポリオールP-iのメチルエチルケトン溶液を用いたこと以外、例301と同様にプライマー層溶液を調液した。
(例301C)
 固形分濃度5%に調整したポリオールP-jのメチルエチルケトン溶液を用いたこと以外、例301と同様にプライマー層溶液を調液した。
(例302C)
 固形分濃度5%に調整したポリオールP-kのメチルエチルケトン溶液を用いたこと以外、例301と同様にプライマー層溶液を調液した。
(例303C)
 固形分濃度5%に調整したポリオールP-lのメチルエチルケトン溶液を用いたこと以外、例301と同様にプライマー層溶液を調液した。
(例304C)
 固形分濃度5%に調整したポリオールP-lのメチルエチルケトン溶液を用い、固形分濃度5%に調整したイソシアネート系化合物のメチルエチルケトン溶液を7:3で混合した後に、添加剤として光安定剤(BASFジャパン株式会社製、チヌビン292)を固形分の1質量%混合したこと以外、例301と同様にプライマー層溶液の調液を行った。
(例305C)
 固形分濃度5%に調整したポリオールP-mのメチルエチルケトン溶液を用いたこと以外、例301と同様にプライマー層溶液を調液した。
(例306C)
 固形分濃度5%に調整したポリオールP-nのメチルエチルケトン溶液を用いたこと以外、例301と同様にプライマー層溶液を調液した。
(例307C)
 固形分濃度5%に調整したポリオールP-oのメチルエチルケトン溶液を用いたこと以外、例301と同様にプライマー層溶液を調液した。
(例308C)
 固形分濃度5%に調整したポリオールP-pのメチルエチルケトン溶液を用いたこと以外、例301と同様にプライマー層溶液を調液した。
 例301~例311、例301C~例308Cでそれぞれ使用したポリオールの成分、添加剤内容を表9に示す。
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
(2)プライマー層溶液の塗工工程
 樹脂基材として、片面がコロナ処理された厚さ12μmの二軸延伸PETフィルム(東レフィルム加工株式会社製、P60)を使用した。例301~例311および例301C~例308Cのプライマー層溶液を、乾燥後の厚みが0.20μmとなるように、樹脂基材のコロナ処理面にグラビアコート機を用いて塗工することで、プライマー層を積層した。
(3)蒸着膜層の積層工程
 元素比O/Siが1.5になるように金属珪素粉末及び二酸化珪素粉末を混合した材料を作製し、真空蒸着機を使用して、プライマー層の上に厚さ0.05μmの蒸着膜層を積層し、樹脂基材/プライマー層/蒸着膜層の構成の、例301~例311および例301C~例308Cのガスバリア積層フィルムを作製した。
(4)ガスバリア性被覆層溶液の調液工程
 テトラエトキシシランを0.02mol/Lの塩酸で加水分解した溶液をけん化度99%、重合度2400のPVAの5%水溶液にSiO2/PVA=60/40となる割合で加え、ガスバリア性被覆層溶液とした。
(5)ガスバリア性被覆層溶液の塗工工程
 工程(3)で作製した、例301~例311および例301C~例308Cのガスバリア積層フィルムの蒸着膜層の上に、グラビアコート機を用いて上記ガスバリア性被覆層溶液を塗工し、乾燥後の厚みが0.40μmのガスバリア性皮膜層を積層して、例301~例311および例301C~例308Cのガスバリア積層フィルムを作製した。
(6)ガスバリア性積層フィルムへのラミネート樹脂層積層工程
 工程(5)で作製した、ガスバリア性被覆層が積層された例301~例311および例301C~例308Cのガスバリア性積層フィルムの両面に、5g/m2のポリウレタン系接着剤を介して厚さ50μmの耐加水分解PET(東レフィルム加工株式会社製、X10S)をドライラミネート法により積層し、例301~例311および例301C~例308Cのガスバリア積層フィルムを作製した。
<ガスバリア積層フィルムの評価>(1)水蒸気透過度の測定
 工程(3)で作製した、例301~例311及び例301C~例308Cのガスバリア積層フィルムについて、モダンコントロール社製の水蒸気透過度計(MOCON PERMATRAN-W 3/31)により、40℃-90%RH雰囲気下での水蒸気透過度(g/m2/day)を測定した。結果を表10に示す。
(2)高温試験の実施
 工程(6)で作製した、例301~例311および例301C~例308Cのガスバリア性積層フィルムを10mm巾に切り出し、JISC 8917記載の耐熱性試験の温度条件および時間条件で高温試験を実施した。
(3)耐光試験の実施
 高温試験実施後の例301~例311および例301C~例308Cのガスバリア性積層フィルムに対して耐光試験を実施した。耐光試験の条件は、JISC 8917記載の光照射試験において、照射時間を120時間としたものである。
(4)密着強度の測定
 高温試験後のみ実施した例301~例311および例301C~例308Cのガスバリア性積層フィルムと、高温試験と耐光試験後の両方を実施した例301~例311および例301C~例308Cのガスバリア性積層フィルムについて、テンシロン型万能試験器を使用して密着強度の測定を行った。具体的には、JISK 6854の試験方法であるT時剥離試験及び180度剥離試験をおこない、ラミネート強度(N/10mm巾)を測定した。T時剥離試験及び180度剥離試験の両方の試験において、ラミネート強度(密着強度)が1N/10mm巾以上であったものを合格「A」とし、1N/10mm巾未満であったものを不合格「B」とした。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000033
 例301~例311のガスバリア性積層フィルムはいずれも、プライマー層12を形成するポリオールが、一般式(I)または(II)で表される部分構造を有する繰り返し単位(a)を含有するため、高温試験後であっても1N/10mm巾以上の密着強度を有していた。しかし、例301C~例308Cのガスバリア性積層フィルムはいずれも、プライマー層12を形成するポリオールが繰り返し単位(a)を含有していないため、高温試験後の密着強度は1N/10mm巾未満であった。
 また、例302のガスバリア性積層フィルムは、耐光試験後には密着強度が低下して不合格となったのに対し、プライマー層溶液の調液の際に光安定剤を添加した以外は同条件で作製された例303のガスバリア性積層フィルムは、耐光試験後であっても密着強度は合格の範囲であった。また、同様に例306と例307とを比較しても、光安定剤を用いた例307のみが耐光試験後であっても密着強度は合格の範囲であった。しかし、同じく光安定剤を用いた例304Cであっても、プライマー層12を形成するポリオールが繰り返し単位(a)を含有していないため、高温試験の時点で密着強度が不足しており、不合格となった。これは、繰り返し単位(a)を含むポリオールを使用することにより、添加剤である光安定剤の熱劣化を抑制することができたことに起因する。
 以上のことから、プライマー層を形成するポリオールが繰り返し単位(a)を含有することは、ガスバリア性積層フィルムの密着性を向上させるために有用であるといえる。
 本実施形態のガスバリアフィルム積層体は、食品、日用品、医薬品などの包装分野、及び電子機器関連部材などの分野において、特に高耐久性が必要とされる場合に好適に利用が期待される。
 ≪第4実施形態≫
 (例401)
 厚さ12μmのポリエステルフィルムを基材フィルム101とし、この基材フィルム101に、4-ヒドロキシフェニルメタクリレート由来の部分構造を20モル%含有するアクリルポリオール、イソシアネートとしてTDI系硬化剤、シランカップリング剤としてγ-イソシアネートプロピルトリメトキシシランを含む塗布液を塗布して、加熱乾燥して、厚さ1μmのプライマー層102を形成した。次に、このプライマー層102の上に、酸化珪素を蒸着して、厚さ200nmの酸化珪素蒸着層103を形成した。次に、この酸化珪素蒸着層103の上に、テトラメトキシシラン、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、PVAを含む塗布液を塗布し、加熱により、乾燥と共に珪素化合物を縮合させて厚さ1μmのガスバリア被覆層104を形成した。以下、このフィルムを、後述する比較用のフィルムと区別するため、「珪素系ガスバリアフィルム」と呼ぶ。
 次に、この珪素系ガスバリアフィルムに、ドライラミネーション機を用いて接着剤(三井化学(株)製ドライラミネーション用接着剤、商品名:A525)を塗工し、熱融着層105として厚さ70μmのポリオレフィン系無延伸共押出フィルム(三井化学東セロ(株)製、商品名:RXC22)と貼り合せて積層体を製造した。そして、この積層体を互いに重ね合わせ、周囲をヒートシールして、長さ125mm、幅95mmの加熱殺菌用三方袋を製造した。
 (例402)
 例401に対し、アクリルポリオールとして、4-ヒドロキシフェニルメタクリレート由来の部分構造に替えてフェニルメタクリレート由来の部分構造を有する化合物を使用した以外は例401と同様の方法で珪素系ガスバリアフィルムおよび加熱殺菌用三方袋を製造した。
 (例403)
 例401に対し、アクリルポリオールとして、4-ヒドロキシフェニルメタクリレート由来の部分構造に替えて4-ヒドロキシフェニルメタクリルアミド由来の部分構造を有する化合物を使用した以外は例401と同様の方法で珪素系ガスバリアフィルムおよび加熱殺菌用三方袋を製造した。
 (例404)
 例401の珪素系ガスバリアフィルムに、ドライラミネーション機を用いて接着剤(三井化学(株)製ドライラミネーション用接着剤、商品名:A525)を塗工し、厚さ15μmのポリアミドフィルム(興人(株)製、商品名ボニールW)と貼り合わせ、さらに、このポリアミドフィルムの上に、ドライラミネーション機を用いて接着剤(三井化学(株)製ドライラミネーション用接着剤、商品名:A525)を塗工し、熱融着層105として厚さ70μmのポリオレフィン系無延伸共押出フィルム(三井化学東セロ(株)製、商品名:RXC22)と貼り合せて積層体を製造した。そして、この積層体を互いに重ね合わせ、周囲をヒートシールして、長さ125mm、幅95mmの加熱殺菌用三方袋を製造した。
 (例401C)
 例401に対し、アクリルポリオールとして、4-ヒドロキシフェニルメタクリレート由来の部分構造に替えてスチレン由来の部分構造を有する化合物を使用した以外は例401と同様の方法で珪素系ガスバリアフィルムおよび加熱殺菌用三方袋を製造した。
 (例402C)
 例401に対し、アクリルポリオールとして、4-ヒドロキシフェニルメタクリレート由来の部分構造に替えてヒドロキシエチルメタクリレート由来の部分構造を有する化合物を使用した以外は例401と同様の方法で珪素系ガスバリアフィルムおよび加熱殺菌用三方袋を製造した。
 (例403C)
 例401に対し、プライマー層102の上に、酸化アルミニウムを蒸着して、厚さ200nmの酸化アルミニウム蒸着層を形成した。次に、この酸化アルミニウム蒸着層の上に、金属アルコキシドと水酸基を有する水溶性高分子とを含む塗布液を塗布し、加熱により、乾燥と共に金属アルコキシドを縮合させて厚さ1μmのガスバリア被覆層104を形成した。以下、このフィルムを、「アルミ系ガスバリアフィルム」と呼ぶ。
 次に、このアルミ系ガスバリアフィルムに、ドライラミネーション機を用いて接着剤(三井化学(株)製ドライラミネーション用接着剤、商品名:A525)を塗工し、熱融着層105として厚さ70μmのポリオレフィン系無延伸共押出フィルム(三井化学東セロ(株)製、商品名:RXC22)と貼り合せて積層体を製造した。そして、この積層体を互いに重ね合わせ、周囲をヒートシールして、長さ125mm、幅95mmの加熱殺菌用三方袋を製造した。
 (例404C)
 前記アルミ系ガスバリアフィルムに、ドライラミネーション機を用いて接着剤(三井化学(株)製ドライラミネーション用接着剤、商品名:A525)を塗工し、厚さ15μmのポリアミドフィルム(興人(株)製、商品名ボニールW)と貼り合わせ、さらに、このポリアミドフィルムの上に、ドライラミネーション機を用いて接着剤(三井化学(株)製ドライラミネーション用接着剤、商品名:A525)を塗工し、熱融着層105として厚さ70μmのポリオレフィン系無延伸共押出フィルム(三井化学東セロ(株)製、商品名:RXC22)と貼り合せて積層体を製造した。そして、この積層体を互いに重ね合わせ、周囲をヒートシールして、長さ125mm、幅95mmの加熱殺菌用三方袋を製造した。
 (評価)
 例401~例404、例401C~例404Cの加熱殺菌用三方袋に50mlの純水を封入し、レトルト処理装置((株)日阪製作所製、商品名:RCS-40RTG.N)を使用して、温度130℃、時間30分の条件でレトルト殺菌した。
 そして、以下のように、レトルト殺菌前後の酸素バリア性、水蒸気バリア性を評価した。また、レトルト殺菌後の破袋強度について、耐圧試験及び落下試験によって評価した。さらに、基材と無機蒸着層の密着性については、レトルト殺菌後のデラミネーションの有無を目視で評価した。これらの結果を表11に示す。
 酸素バリア性は、温度30℃、湿度70%RHの条件で、JIS K7126に準拠してモコン法で酸素透過度を測定することによって評価した。また、水蒸気バリア性は、温度40℃、湿度90%RHの条件で、JIS K7129に準拠してモコン法で酸素透過度を測定することによって評価した。いずれも数値が低い方がバリア性に優れていることを意味する。
 耐圧試験は、レトルト殺菌後の三方袋に80kgの加重をかけて1分間保持し、破袋した袋の数を数えた。落下試験は、レトルト殺菌後の三方袋を5℃の冷蔵庫で24時間保存した後、80cmの高さから、コンクリート床面に対して三方袋の平面部が当たるように2回落下させて、破袋した袋の数を数えた。いずれの試験もサンプル数5個であり、表中「0/5」は一つの破袋もなかったことを意味している。
 デラミネーション発生状況の観察は、レトルト殺菌処理後、パウチのシール部を180°折り曲げて行った。そして、目視観察の結果、無機酸化物蒸着層が基材フィルムからデラミネーションしたと認められた場合はB、デラミネーションが認められなかった場合はAで表した。
Figure JPOXMLDOC01-appb-T000034
 表11の結果から分かるように、耐圧試験、落下試験の点では、例401~例404、例401C~例404Cの間で優位な相違はない。いずれも優れた破袋強度を有している。また、レトルト殺菌前後の酸素バリア性についても、これら例401~例404、例401C~例404Cの間で優位な相違はない。
 一方、水蒸気バリア性については、例403C~例404Cの三方袋はレトルト殺菌後に大きく低下しているのに対して、例401~例404、例401C~例402Cの三方袋では、レトルト殺菌後にも高いバリア性が維持されている。
 また、デラミネーションの評価においては、例401C~例402において、基材フィルムと無機酸化物蒸着層間の剥離が観察された。
 これらの結果から、本実施形態に係る包装袋は、レトルト殺菌の前後で優れた破袋強度、酸素バリア性を維持しながら、しかも、レトルト殺菌後の水蒸気バリア性を大きく改善し、基材と無機蒸着層の密着性が良好であることがわかる。
 ≪第5実施形態≫
 本実施形態に係るハードコートフィルムの性能は、下記の方法に従って評価した。
 Haze:日本電色製NDH-2000を用いJIS-K7105に準じ測定を行い、ハードコートフィルムのHAZE(%)を求めた。
 全光線透過率:日本電色製NDH-2000を用いJIS-K7105に準じ測定を行い、ハードコートフィルムの透過率(%)を求めた。
 鉛筆硬度:JIS-K5400に準じ評価を行い、ハードコートフィルムのハードコート層の硬度を求めた。
 耐擦傷性:ハードコートフィルムのハードコート層に#0000のスチールウールを用いて250g/cmの荷重をかけながら10往復し、傷の発生の有無を確認した。判定基準は次の通りとした。
 A:キズ無し
 B:キズ有り
 防汚特性:ハードコートフィルムのハードコート層表面に指紋をつけ、セルロース製不織布(ペンコットM-3:旭化成(株)製)を用いて250g/cm2の荷重をかけながら指紋を拭取り、その取れ易さを目視判定にて行った。判定基準は次の通りとした。
 A:指紋を完全に拭き取ることができる
 B:指紋の拭き取り跡が残る
 C:指紋を拭き取ることができない
 表面エネルギー:接触角計(CA-X型:協和界面科学(株)製)を用いて、乾燥状態(20℃-65%RH)で直径1.8mmの液滴を針先に作り、これをハードコート層の表面に接触させて液滴を作った。接触角とは、固体と液体とが接触する点における液体表面に対する接線と固体表面とがなす角であり、液体を含む側の角度で定義した。液体としては、蒸留水及びn-ヘキサデカンをそれぞれ使用した。この2種類の溶液の接触角を元に拡張Fowkes計算式にて求めた。
 耐熱性:ガラス基板上にハードコート層形成用組成物の塗膜を形成した後、数mg程度をガラス基板から切り出してアルミパンへ封入し、窒素雰囲気下での質量減少率(%)を以下の方法によって測定した。質量減少率(%)の測定には示差熱熱質量同時測定装置(STA7000、(株)日立ハイテクサイエンス製)を用いた。サンプルを窒素雰囲気下において250℃で20分間加熱し、加熱前の初期質量(M)から加熱後の質量(M)を減算した質量減少量(M=M-M)を初期質量(M)で割ることによって、質量減少率([M/M]×100)(%)を算出した。質量減少率が低いほど耐熱性に優れる。
 添加剤の熱劣化:ハードコート層形成用組成物には、添加剤としてヒンダードアミン系光安定剤(商品名:チヌビン(Tinuvin(登録商標))123、BASFジャパン(株)製)が0.1質量部添加されており、ガラス基板上に上記光安定剤が添加されたハードコート層を形成した。上記塗膜が形成されたガラス基板を250℃で10分間加熱し、塗膜中の上記添加剤の残存率を以下の方法によって測定した。ガラス基板を1cmの大きさで切り出し、アセトン1.5mLに浸漬して、超音波洗浄機中で60分間抽出を行った。超高速液体クロマトグラフィー/質量分析(UHPLC/MS)(超高速液体クロマトグラフ/質量分析計(UHPLC/MS)、Agilent製 1260 LC System/6130B Single Quad MS System)によって、ガラス基板抽出液中の添加剤の定量を行った。加熱後に残存する添加剤量(V)を加熱前の初期添加剤量(V)で割ることによって、添加剤残存率([V/V]×100)(%)を算出した。
 以上の評価では例501~例504、例501C~例504Cのハードコートフィルムを用いた。以下に当該ハードコートフィルムの作製方法を説明する。
<例501>
 透明基材として厚さ80μmの三酢酸セルロースフィルム基材を用いた。下記に示す成分、すなわち、
 ウレタンアクリレート:ジペンタエリスリトールペンタアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、UA-306H(共栄社化学)
                           80質量部
 アクリルモノマー:4-ヒドロキシフェニルメタクリレート(昭和電工)
                           10質量部
 開始剤:Omnirad184(IGM Resins B.V.)
                           1.5質量部
 フッ素系化合物:オプツールDAC(ダイキン工業)  0.5質量部
 添加剤:Tinuvin 123(BASFジャパン) 0.1質量部
 溶剤:酢酸エチル                  100質量部
を攪拌、混合した塗布液を、上記基材上に、バーコート法により硬化膜厚12μmになるように塗布、乾燥させた。次いで、メタルハライドランプにより400mJ/cmの紫外線を照射してハードコート層を形成し、例501のハードコートフィルムを作製した。このハードコートフィルムの全光線透過率、Haze、耐擦傷性試験、鉛筆硬度、防汚特性、耐熱性の測定結果を表12にまとめて示す。
<例502>
 透明基材として厚さ80μmの三酢酸セルロースフィルム基材を用いた。下記に示す成分、すなわち、
 ウレタンアクリレート:ペンタエリスリトールトリアクリレートイソホロンジイソシアネートウレタンプレポリマー、UA-306I(共栄社化学)
                           80質量部
 アクリルモノマー:4-ヒドロキシフェニルメタクリレート(昭和電工)
                           10質量部
 開始剤:Omnirad184(IGM Resins B.V.)
                           1.5質量部
フッ素系化合物:オプツールDAC(ダイキン工業)   0.5質量部
 添加剤:Tinuvin 123(BASFジャパン) 0.1質量部
 溶剤:酢酸エチル                  100質量部
を攪拌、混合した塗布液を、上記基材上に、バーコート法により硬化膜厚12μmになるように塗布、乾燥させた。次いで、メタルハライドランプにより400mJ/cmの紫外線を照射してハードコート層を形成し、例502のハードコートフィルムを作製した。このハードコートフィルムの全光線透過率、Haze、耐擦傷性試験、鉛筆硬度、防汚特性、耐熱性の測定結果を表12にまとめて示す。
<例503>
 透明基材として厚さ80μmの三酢酸セルロースフィルム基材を用いた。下記に示す成分、すなわち、
 ウレタンアクリレート:UA-306H(共栄社化学)  80質量部
 アクリルモノマー:4-ヒドロキシフェニルメタクリレート(昭和電工)
                            10質量部
 開始剤:Omnirad184(IGM Resins B.V.)
                            1.5質量部
 フッ素系化合物:ディフェンサTF3001(DIC)  1.0質量部
 添加剤:Tinuvin 123(BASFジャパン)  0.1質量部
 溶剤:酢酸エチル                   100質量部
を攪拌、混合した塗布液を、上記基材上に、バーコート法により硬化膜厚12μmになるように塗布、乾燥させた。次いで、メタルハライドランプにより400mJ/cmの紫外線を照射してハードコート層を形成し、例503のハードコートフィルムを作製した。このハードコートフィルムの全光線透過率、Haze、耐擦傷性試験、鉛筆硬度、防汚特性、耐熱性の測定結果を表12にまとめて示す。
<例504>
 透明基材として厚さ80μmの三酢酸セルロースフィルム基材を用いた。下記に示す成分、すなわち、
 ウレタンアクリレート:UA-306H(共栄社化学)  80質量部
 アクリルモノマー:N-(4-ヒドロキシフェニル)メタクリルアミド(富士フイルム和光純薬)
                            10質量部
 開始剤:Omnirad184(IGM Resins B.V.)
                            1.5質量部
 フッ素系化合物:オプツールDAC(ダイキン工業)   0.5質量部
 添加剤:Tinuvin 123(BASFジャパン)  0.1質量部
 溶剤:メチルイソブチルケトン             100質量部
を攪拌、混合した塗布液を、上記基材上に、バーコート法により硬化膜厚12μmになるように塗布、乾燥させた。次いで、メタルハライドランプにより400mJ/cmの紫外線を照射してハードコート層を形成し、例504のハードコートフィルムを作製した。このハードコートフィルムの全光線透過率、Haze、耐擦傷性試験、鉛筆硬度、防汚特性、耐熱性の測定結果を表12にまとめて示す。
<例501C>
 透明基材として厚さ80μmの三酢酸セルロースフィルム基材を用いた。下記に示す成分、すなわち、
 ウレタンアクリレート:UA-306H(共栄社化学)  80質量部
 アクリルモノマー:4-ヒドロキシフェニルメタクリレート(昭和電工)
                            10質量部
 開始剤:Omnirad184(IGM Resins B.V.)
                            1.5質量部
 非重合性フッ素系化合物:メガファックF470(DIC)
                            1.0質量部
 添加剤:Tinuvin 123(BASFジャパン)  0.1質量部
 溶剤:酢酸エチル                   100質量部
を攪拌、混合した塗布液を、上記基材上に、バーコート法により硬化膜厚12μmになるように塗布、乾燥させた。次いで、メタルハライドランプにより400mJ/cmの紫外線を照射してハードコート層を形成し、例501Cのハードコートフィルムを作製した。このハードコートフィルムの全光線透過率、Haze、耐擦傷性試験、鉛筆硬度、防汚特性の測定結果を表12にまとめて示す。
<例502C>
 透明基材として厚さ80μmの三酢酸セルロースフィルム基材を用いた。下記に示す成分、すなわち、
 ウレタンアクリレート:UA-306H(共栄社化学)  80質量部
 アクリルモノマー:4-ヒドロキシフェニルメタクリレート(昭和電工)
                            10質量部
 開始剤:Omnirad184(IGM Resins B.V.)
                            1.5質量部
 シリコーン系添加剤:BYK-UV3500(ビックケミー)
                            1.0質量部
 添加剤:Tinuvin 123(BASFジャパン)  0.1質量部
 溶剤:酢酸エチル                   100質量部
を攪拌、混合した塗布液を、上記基材上に、バーコート法により硬化膜厚12μmになるように塗布、乾燥させた。次いで、メタルハライドランプにより400mJ/cmの紫外線を照射してハードコート層を形成し、例502Cのハードコートフィルムを作製した。このハードコートフィルムの全光線透過率、Haze、耐擦傷性試験、鉛筆硬度、防汚特性の測定結果を表12にまとめて示す。
<例503C>
 透明基材として厚さ80μmの三酢酸セルロースフィルム基材を用いた。下記に示す成分、すなわち、
 ウレタンアクリレート:UA-306H(共栄社化学)  80質量部
 開始剤:Omnirad184(IGM Resins B.V.)
                            1.5質量部
 フッ素系化合物:オプツールDAC(ダイキン工業)   0.5質量部
 添加剤:Tinuvin 123(BASFジャパン)  0.1質量部
 溶剤:酢酸エチル                   100質量部
を攪拌したが、塗液が白濁してしまい評価不可であった。
<例504C>
 透明基材として厚さ80μmの三酢酸セルロースフィルム基材を用いた。下記に示す成分、すなわち、
 ウレタンアクリレート:UA-306H(共栄社化学)  90質量部
 アクリルモノマー:スチレン(東京化成工業)      10質量部
 開始剤:イルガキュアー184(チバスペシャリティケミカルズ)
                            1.5質量部
 フッ素系化合物:オプツールDAC(ダイキン工業)   0.5質量部
 添加剤:Tinuvin 123(BASFジャパン)  0.1質量部
 溶剤:酢酸エチル                   100質量部
を攪拌したが、塗液が白濁してしまい評価不可であった。
 以上の例501~例504、及び、例501C、例502Cの評価結果を表12にまとめて示す。
Figure JPOXMLDOC01-appb-T000035
 例501~例504、例501C及び例502Cにおいて、多官能(メタ)アクリルモノマー(A)としてウレタンアクリレートを用いたため、いずれのハードコートフィルムも鉛筆硬度は3Hであり、また、耐擦傷性も良好であった。
 例501~例504と、例501C及び例502Cとを比べると、重合性基を有する含フッ素化合物(D)を用いた例501~例504のハードコートフィルムは、十分な防汚特性を有し、表面エネルギーが20mN/m以下で良好であったのに対し、重合性基を有する含フッ素化合物を用いなかった例501C及び例502Cでは、十分な防汚特性が発揮されず、表面エネルギーが20mN/mを超えていた。また、一般式(I)または(II)で表される部分構造を有するモノマー(B)を使用することで加熱による質量減少及び添加剤の劣化を抑制することができる。しかし、例501Cおよび例502Cでは、非重合性フッ素系化合物および非重合性シリコーン系化合物を用いていることから、光硬化後の塗膜内部の均一性が悪化し、熱により劣化しやすい部分が生じたことが原因で、質量減少率が高く、残存率が低くなったと考えられる。なお、質量減少率は3%以下の場合を良好とし、残存率は95%以上の場合を良好とする。
 例501~例504と、例503C及び例504Cとを比べると、一般式(I)または(II)で表される部分構造を有するモノマー(B)を使用することで、フッ素系添加剤との相溶性が向上することが分かる。
 なお、本願発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は可能な限り適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適当な組み合わせにより種々の発明が抽出され得る。
10、20、30…ガスバリア積層フィルム、11…樹脂基材、12…プライマー層、13…蒸着膜層、21…ガスバリア性被覆層、31…接着剤層、32…ラミネート樹脂層、100、200…積層体(包装材料)、101…基材フィルム、102…プライマー層、103…酸化珪素蒸着層、104…ガスバリア被覆層、105…熱融着層、206…ポリアミドフィルム、ad1、ad2、ad3…接着剤層300…ハードコートフィルム、301…透明基材、302…ハードコート層

Claims (16)

  1.  下記一般式(I)または(II)で表される部分構造を有する繰り返し単位を含有する樹脂Rを含む樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     式(I)中、Qは式中に示されるエステル結合を表し、Rは置換基を表し、n1は1~5の整数を表し、*は前記繰り返し単位の残部との結合部位を表し、**は式中のフェニル基との結合部位を表す。
    Figure JPOXMLDOC01-appb-C000002
     式(II)中、Qは式(I)中のQで表されるエステル結合以外の連結基又は単結合を表し、Rは置換基を表し、n2は1~5の整数を表し、*は前記繰り返し単位の残部との結合部位を表す。但し、少なくとも1つのRは水酸基を表す。
  2.  更に添加剤を含有し、前記樹脂Rに対する前記添加剤の配合比が50質量%以下である、請求項1に記載の樹脂組成物。
  3.  前記樹脂R中の前記繰り返し単位の含有率が、前記樹脂R中の全繰り返し単位に対し2モル%以上50モル%以下である、請求項1又は2に記載の樹脂組成物。
  4.  前記繰り返し単位が、(メタ)アクリレート系モノマー由来の繰り返し単位、(メタ)アクリルアミド系モノマー由来の繰り返し単位、およびN-置換マレイミド系モノマー由来の繰り返し単位のいずれかである、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  前記樹脂Rが前記繰り返し単位に加え、炭素数1~5個の直鎖又は分岐アルキル基を側鎖に有する(メタ)アクリレート系繰り返し単位、及び/又は、フェノール性水酸基以外の水酸基を側鎖に有する(メタ)アクリレート系繰り返し単位を更に含有する、請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  前記樹脂Rが前記繰り返し単位に加え、オレフィン系繰り返し単位を更に含有する、請求項1~4のいずれか1項に記載の樹脂組成物。
  7.  前記樹脂Rが前記繰り返し単位に加え、ハロゲン原子含有繰り返し単位を更に含有する、請求項1~4のいずれか1項に記載の樹脂組成物。
  8.  請求項1~7のいずれか1項に記載の樹脂組成物を含むフィルム。
  9.  前記樹脂組成物が電子線レジスト組成物である、請求項1~7のいずれか1項に記載の樹脂組成物。
  10.  前記樹脂Rが、さらに2-ヒドロキシエチルメタクリレートを繰り返し単位として含有する、請求項9に記載の樹脂組成物。
  11.  樹脂基材とプライマー層と蒸着膜層とを備え、
     前記樹脂基材の少なくとも片面に、前記プライマー層と前記蒸着膜層とがこの順に積層されたガスバリア積層フィルムであって、
     前記プライマー層が請求項1~7のいずれか1項に記載の樹脂組成物由来の層であり、ポリオールとイソシアネート系化合物との複合物を含み、前記樹脂Rが前記ポリオールであるガスバリア積層フィルム。
  12.  前記蒸着膜層の表面に、水溶性高分子とアルコキシシランまたはその加水分解生成物とを含有するコーティング液からなる薄膜の乾燥被膜であるガスバリア性被覆層が設けられている、請求項11に記載のガスバリア積層フィルム。
  13.  基材フィルム、プライマー層、酸化珪素蒸着層、ガスバリア被覆層、熱融着層をこの順に積層した積層体から成る加熱殺菌用包装袋であって、
     前記プライマー層が請求項1~7のいずれか1項に記載の樹脂組成物由来の層であり、アクリルポリオールとイソシアネートとシランカップリング剤との反応物を含み、前記樹脂Rが前記アクリルポリオールであり、
     前記ガスバリア被覆層が、ケイ素化合物、又は、その加水分解物もしくは縮合体と、水酸基を有する水溶性高分子とを含有する塗布液の乾燥塗膜からなり、
     前記ケイ素化合物が、下記(a)および(b)の2種類を含有し、(a)成分と(b)成分とは、(a)成分をSiOに、(b)成分をRSi(OH)に質量換算した場合、RSi(OH)の固形分が全固形分に対し1~50質量%であり、かつ、(a)成分をSiOに、(b)成分をRSi(OH)に質量換算した場合、固形分の配合比が質量比でSiO/(RSi(OH)+前記水溶性高分子)=100/100~100/30の範囲内である加熱殺菌用包装袋。
    (a)下記一般式(III)で表されるケイ素化合物又はその加水分解物。
     Si(OR   (III)
     ただし、一般式(III)中、RはCH、C、またはCOCHを表す。(b)一般式(IV)で表されるケイ素化合物、又は、その加水分解物もしくは縮合体。
     (RSi(OR)n   (IV)
     ただし、一般式(IV)中、Rは有機官能基を表し、RはCH、C、またはCOCHを表す。また、nは1以上を表す。
  14.  前記(b)成分が下記一般式(V)で表される三量体1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートである、請求項13に記載の加熱殺菌用包装袋。
     (NCO-RSi(OR   (V)
     ただし、一般式(V)中、Rは(CH)nを表し、RはCH、C、またはCOCHを表す。また、nは1以上を表す。
  15.  請求項1~7のいずれか1項に記載の樹脂組成物がハードコート層形成用組成物であり、
     ジペンタエリスリトールペンタアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートトルエンジイソシアネートウレタンプレポリマーおよびジペンタエリスリトールペンタアクリレートイソホロンジイソシアネートウレタンプレポリマーから選択された多官能(メタ)アクリルモノマー(A)と、
     前記一般式(I)または(II)で表される前記部分構造を有するモノマー(B)と、
     光ラジカル重合開始剤(C)と、
     重合性基を有する含フッ素化合物(D)と
     非重合性添加剤(E)と
    を原料として含有してなり、
     前記組成物中の前記非重合性添加剤(E)の配合割合が50質量%以下であるハードコート層形成用組成物。
  16.  透明基材上に、請求項15に記載のハードコート層形成用組成物の硬化物からなるハードコート層を有し、前記ハードコート層表面の表面自由エネルギーが20mN/m以下であり、且つ、前記ハードコート層の膜厚が5~25μmであるハードコートフィルム。
PCT/JP2021/022336 2020-06-12 2021-06-11 樹脂組成物およびフィルム WO2021251491A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21822068.9A EP4166322A4 (en) 2020-06-12 2021-06-11 RESIN AND FILM COMPOSITION
CN202180042688.8A CN115885011A (zh) 2020-06-12 2021-06-11 树脂组合物及膜
US18/079,404 US20230139240A1 (en) 2020-06-12 2022-12-12 Resin composition and film

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2020-102135 2020-06-12
JP2020102135A JP2021195435A (ja) 2020-06-12 2020-06-12 樹脂組成物およびフィルム
JP2020183546A JP2022073517A (ja) 2020-11-02 2020-11-02 ガスバリア積層フィルム
JP2020-183546 2020-11-02
JP2020-184197 2020-11-04
JP2020184197A JP2022074283A (ja) 2020-11-04 2020-11-04 ハードコート層形成用組成物およびハードコートフィルム
JP2021-024174 2021-02-18
JP2021024174A JP2022126231A (ja) 2021-02-18 2021-02-18 電子線レジスト組成物
JP2021024267A JP2022126279A (ja) 2021-02-18 2021-02-18 加熱殺菌用包装袋
JP2021-024267 2021-02-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/079,404 Continuation US20230139240A1 (en) 2020-06-12 2022-12-12 Resin composition and film

Publications (1)

Publication Number Publication Date
WO2021251491A1 true WO2021251491A1 (ja) 2021-12-16

Family

ID=78846132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022336 WO2021251491A1 (ja) 2020-06-12 2021-06-11 樹脂組成物およびフィルム

Country Status (4)

Country Link
US (1) US20230139240A1 (ja)
EP (1) EP4166322A4 (ja)
CN (1) CN115885011A (ja)
WO (1) WO2021251491A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322292A (zh) * 2022-10-11 2022-11-11 河南博源新材料有限公司 一种抗氧化聚丙烯酰胺、制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072540A (ja) * 2008-09-22 2010-04-02 Toppan Printing Co Ltd 防眩フィルム、偏光板、透過型液晶ディスプレイ
JP2011209679A (ja) * 2009-10-16 2011-10-20 Fujifilm Corp 感光性樹脂組成物、硬化膜、硬化膜の形成方法、有機el表示装置、及び、液晶表示装置
JP2014186309A (ja) * 2013-02-19 2014-10-02 Jsr Corp ネガ型感放射線性樹脂組成物、表示素子用硬化膜、表示素子用硬化膜の形成方法及び表示素子
JP2016090667A (ja) * 2014-10-30 2016-05-23 日立化成株式会社 ポジ型感光性樹脂組成物、接着シート、接着剤パターン、接着剤層付半導体ウェハ及び半導体装置
JP2017140820A (ja) * 2016-02-10 2017-08-17 凸版印刷株式会社 ガスバリア性積層体およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641249A (ja) * 1992-07-23 1994-02-15 Toray Ind Inc 透明耐熱性樹脂材料
JPH06116338A (ja) * 1992-10-06 1994-04-26 Toray Ind Inc 透明耐熱樹脂
TW200613915A (en) * 2004-03-24 2006-05-01 Jsr Corp Positively radiation-sensitive resin composition
JP4742662B2 (ja) * 2005-04-26 2011-08-10 Jsr株式会社 感放射線性樹脂組成物、それから形成された突起およびスペーサー、ならびにそれらを具備する液晶表示素子
JP5492812B2 (ja) * 2010-03-11 2014-05-14 富士フイルム株式会社 感光性樹脂組成物、硬化膜、硬化膜の形成方法、有機el表示装置、及び、液晶表示装置
EP2613198B1 (en) * 2010-08-30 2016-12-28 FUJIFILM Corporation Photosensitive resin composition, oxime sulfonate compound, method for forming cured film, cured film, organic el display device, and liquid crystal display device
JP5536625B2 (ja) * 2010-12-15 2014-07-02 富士フイルム株式会社 感光性樹脂組成物、硬化膜の形成方法、硬化膜、有機el表示装置、及び、液晶表示装置
WO2014163100A1 (ja) * 2013-04-03 2014-10-09 日産化学工業株式会社 無溶剤型光硬化性樹脂組成物
CN108003290B (zh) * 2016-10-31 2021-03-05 固安鼎材科技有限公司 一种碱溶性树脂聚合物、其制备方法和感光性树脂组合物及它们的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072540A (ja) * 2008-09-22 2010-04-02 Toppan Printing Co Ltd 防眩フィルム、偏光板、透過型液晶ディスプレイ
JP2011209679A (ja) * 2009-10-16 2011-10-20 Fujifilm Corp 感光性樹脂組成物、硬化膜、硬化膜の形成方法、有機el表示装置、及び、液晶表示装置
JP2014186309A (ja) * 2013-02-19 2014-10-02 Jsr Corp ネガ型感放射線性樹脂組成物、表示素子用硬化膜、表示素子用硬化膜の形成方法及び表示素子
JP2016090667A (ja) * 2014-10-30 2016-05-23 日立化成株式会社 ポジ型感光性樹脂組成物、接着シート、接着剤パターン、接着剤層付半導体ウェハ及び半導体装置
JP2017140820A (ja) * 2016-02-10 2017-08-17 凸版印刷株式会社 ガスバリア性積層体およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4166322A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322292A (zh) * 2022-10-11 2022-11-11 河南博源新材料有限公司 一种抗氧化聚丙烯酰胺、制备方法及应用
CN115322292B (zh) * 2022-10-11 2023-02-28 河南博源新材料有限公司 一种抗氧化聚丙烯酰胺、制备方法及应用

Also Published As

Publication number Publication date
CN115885011A (zh) 2023-03-31
US20230139240A1 (en) 2023-05-04
EP4166322A1 (en) 2023-04-19
EP4166322A4 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
KR101415840B1 (ko) 하드코팅 필름
KR101470463B1 (ko) 하드코팅 필름
EP2599799B1 (en) Single-layer film and hydrophilic material comprising same
KR101671431B1 (ko) 플라스틱 필름
KR101470464B1 (ko) 하드코팅 필름
EP2583821A1 (en) Laminated film, manufacturing method for same, and electronic device
EP2346913B1 (en) Nano-structure coated sheets/films for optical electronic displays and photovoltaic modules
KR101617387B1 (ko) 코팅 조성물 및 이로부터 제조되는 플라스틱 필름
WO2007138850A1 (ja) 偏光子保護フィルム、偏光板、および画像表示装置
JP2013173871A (ja) 組成物、帯電防止性コート剤及び帯電防止性積層体
TW201800230A (zh) 障壁複合物
JP2009544825A (ja) ポリウレタンプライマーを有する自動車用窓パネル
JP4536417B2 (ja) ガスバリア性フィルム
US20230139240A1 (en) Resin composition and film
KR101870554B1 (ko) 친수성 단층막
WO2007111076A1 (ja) 透明バリア性シートおよび透明バリア性シートの製造方法
JP6074997B2 (ja) ガスバリア積層フィルム
WO2016152314A1 (ja) 光学部材保護用塗布フィルム
JP2011020381A (ja) 耐紫外線プラスチック成形体
JP5488064B2 (ja) 積層成形体の製造方法及び硬化皮膜転写フィルム
WO2018074137A1 (ja) 反射防止フィルム、偏光板、画像表示装置、反射防止物品、積層体の製造方法、および反射防止フィルムの製造方法
CN111741999B (zh) 含有功能性微粒的带硬涂层的基材的制造方法
JP4640762B2 (ja) ハードコートフィルム
JP2022073517A (ja) ガスバリア積層フィルム
KR20170142508A (ko) 광학 필름, 편광판 및 액정 디스플레이 장치 및 이들의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021822068

Country of ref document: EP

Effective date: 20230112