WO2021246426A1 - リポ蛋白コレステロールの定量方法およびキット - Google Patents

リポ蛋白コレステロールの定量方法およびキット Download PDF

Info

Publication number
WO2021246426A1
WO2021246426A1 PCT/JP2021/020923 JP2021020923W WO2021246426A1 WO 2021246426 A1 WO2021246426 A1 WO 2021246426A1 JP 2021020923 W JP2021020923 W JP 2021020923W WO 2021246426 A1 WO2021246426 A1 WO 2021246426A1
Authority
WO
WIPO (PCT)
Prior art keywords
cholesterol
reagent composition
lipoprotein
coupler
peroxidase
Prior art date
Application number
PCT/JP2021/020923
Other languages
English (en)
French (fr)
Inventor
康樹 伊藤
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to CN202180039652.4A priority Critical patent/CN115698316A/zh
Priority to US18/007,689 priority patent/US20230313266A1/en
Priority to EP21818510.6A priority patent/EP4155413A4/en
Publication of WO2021246426A1 publication Critical patent/WO2021246426A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/61Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving triglycerides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/30Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving catalase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/44Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving esterase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/60Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving cholesterol
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors

Definitions

  • the present invention relates to a method and a reagent for measuring cholesterol in lipoprotein.
  • Cholesterol is one of the major constituents of cells, but excess cholesterol is a clinically important component because it is taken up by macrophages under the endothelial cells of blood vessels to form foam cells, which presents the initial lesions of arteriosclerosis. Is. Cholesterol is carried in the blood in the form of lipoproteins, and lipoproteins include VLDL, HDL, and LDL, which have different functions. In addition, various lipoproteins are further classified into subfractions. As a lipoprotein subfraction, HDL is classified into HDL3, which has a smaller particle size and higher density, and HDL2, which has a larger particle size and a lower density.
  • HDL can be divided into apoE containing HDL and apoE deficient HDL based on the difference in the content of apolipoprotein E (apoE).
  • apoE apolipoprotein E
  • VLDL there is a remnant that is decomposed by lipoprotein lipase and miniaturized with respect to the normal size.
  • Cholesterol in lipoproteins including these subfractions can be measured using a general-purpose automatic analyzer.
  • a measurement kit for cholesterol in lipoprotein including a lipoprotein subfraction there are a measurement kit containing a first reagent generally used in the first step and a second reagent used in the second step, which are necessary for measurement.
  • the components are separately present in the first reagent composition and the second reagent composition.
  • the reagents included in the measurement kit for quantifying cholesterol in these lipoproteins are liquid, there is a problem that they naturally develop a yellow color with the passage of time, and therefore there is a problem in the storage stability of the reagents.
  • An object of the present invention is a method for suppressing spontaneous color development of a reagent during storage in a method for quantifying cholesterol in lipoprotein in two steps using an automatic analyzer without pretreatment of a sample. To provide a quantitative kit used in the method.
  • the present inventors have combined the components of the enzyme, hydrogen donor, coupler, and iron complex contained in the first reagent composition used in the first step and the second reagent composition used in the second step. It was found that the natural color development in the reagent can be suppressed and the reagent stability is improved by controlling the reagent.
  • the coupler, the iron complex, and the peroxidase are used in the first reagent composition for eliminating or protecting cholesterol in the lipoprotein other than the measurement target.
  • the coupler, the iron complex, and the peroxidase are used in the first reagent composition for eliminating or protecting cholesterol in the lipoprotein other than the measurement target.
  • the present invention is as follows. [1] Used in a method for quantifying cholesterol in lipoprotein in two steps. (1) A first reagent composition having cholesterol esterase and cholesterol oxidase and for guiding cholesterol in lipoproteins other than the measurement target to the outside of the reaction system. (2) A second reagent composition for quantifying cholesterol in the lipoprotein to be measured, and A lipoprotein cholesterol quantification kit in a subject sample containing Either the first reagent composition or the second reagent composition contains at least a coupler, an iron complex, a peroxidase, a hydrogen donor and a surfactant, and the coupler and the hydrogen donor are contained in the same reagent composition.
  • a lipoprotein cholesterol quantification kit comprising no coupler, iron complex, and peroxidase coexisting in the same reagent composition in any of the reagent compositions of the first reagent composition and the second reagent composition.
  • a second reagent composition for quantifying cholesterol in lipoprotein, and A lipoprotein cholesterol quantification kit in a subject sample containing Either the first reagent composition or the second reagent composition contains at least a coupler, an iron complex, a peroxidase, a hydrogen donor and a surfactant, and the coupler and the hydrogen donor are contained in the same reagent composition.
  • a lipoprotein cholesterol quantification kit which is characterized in that a coupler and an iron complex do not coexist in the same reagent composition in any of the reagent compositions of the first reagent composition and the second reagent composition.
  • the lipoprotein cholesterol quantification kit according to any one of [4], [6] and [8], wherein the first reagent composition further contains catalase.
  • the first reagent composition further comprises a surfactant that acts on lipoproteins other than lipoprotein
  • the second reagent composition further comprises a surfactant that acts on at least lipoprotein [10].
  • the lipoprotein cholesterol quantification kit according to any one of 1] to [9].
  • a method for quantifying cholesterol in lipoproteins in two steps (1) The first step of guiding cholesterol in lipoproteins other than those to be measured, which have cholesterol esterase and cholesterol oxidase, to the outside of the reaction system. (2) The second step of quantifying cholesterol in the lipoprotein to be measured remaining in the first step, A method for quantifying lipoprotein cholesterol in a sample of a subject containing In either step (1) or step (2), at least a coupler, an iron complex, a peroxidase, a hydrogen donor and a surfactant are used, and the coupler and the hydrogen donor are not used in the same step.
  • a method for quantifying lipoprotein cholesterol which comprises not using a coupler, an iron complex, and a peroxidase at the same time in any of the steps (1) or (2).
  • a method for quantifying cholesterol in lipoproteins in two steps (1) The first step of guiding cholesterol in lipoproteins other than those to be measured to the outside of the reaction system in the presence of cholesterol esterase and cholesterol oxidase, (2) The second step of quantifying cholesterol in the lipoprotein to be measured remaining in the first step, A method for quantifying lipoprotein cholesterol in a sample of a subject, which comprises the method of quantifying lipoprotein cholesterol, which comprises not using a coupler and an iron complex at the same time in any of the steps (1) and (2).
  • the first step further comprises a surfactant that acts on a lipoprotein other than the one to be measured
  • the second step further comprises the use of a surfactant that acts on at least the lipoprotein to be measured [14].
  • the method for quantifying lipoprotein cholesterol is LDL cholesterol, HDL cholesterol, HDL3 cholesterol, remnant cholesterol or apoE containing HDL-cholesterol.
  • FIG. It is a figure which shows the absorption spectrum immediately after the preparation and after the storage of the 2nd reagent composition in the comparative example 1.
  • FIG. It is a figure which shows the absorption spectrum immediately after the preparation and after the storage of the 1st reagent composition in the comparative example 2.
  • FIG. It is a figure which shows the absorption spectrum immediately after preparation and after storage of the 1st reagent composition in Example 1.
  • FIG. It is a figure which shows the absorption spectrum immediately after preparation and after storage of the 2nd reagent composition in Example 1.
  • FIG. It is a figure which shows the absorption spectrum immediately after preparation and after storage of the 1st reagent composition in Example 2.
  • FIG. It is a figure which shows the absorption spectrum immediately after preparation and after storage of the 2nd reagent composition in Example 2.
  • FIG. It is a figure which shows the absorption spectrum immediately after preparation and after storage of the 1st reagent composition in Example 3.
  • FIG. It is a figure which shows the absorption spectrum immediately after preparation and after storage of the 2nd reagent composition in Example 3.
  • FIG. It is a figure which shows the absorption spectrum immediately after preparation and after storage of the 1st reagent composition in Example 4.
  • FIG. It is a figure which shows the absorption spectrum immediately after preparation and after storage of the 2nd reagent composition in Example 4.
  • FIG. It is a figure which shows the absorption spectrum immediately after the preparation and after the storage of the 1st reagent composition in Example 5.
  • Lipoproteins are broadly divided into CM, VLDL, LDL and HDL, and each lipoprotein is further divided into subfractions. Some of these fractions and subfractions can be distinguished by particle size or density.
  • the diameter of the particle size varies depending on the reporter, but VLDL is 30 nm to 80 nm (30 nm to 75 nm), LDL is 22 nm to 28 nm (19 nm to 30 nm), HDL is 7 nm to 12 nm in diameter, and HDL3 is an HDL subfraction. The diameter is 7 nm to 8.5 nm, and the HDL2 diameter is 8.5 nm to 10 nm.
  • the specific gravity is 1.006 or less for VLDL, 1.019 to 1.063 for LDL, 1.063 to 1.21 for HDL, 1.063 to 1.125 for HDL2, and 1.125 to 1.210 for HDL3.
  • Particle diameter is gradient gel electrophoresis (GGE) (JAMA, 260, p.1917-21, 1988), NMR (HANDBOOK OF LIPOPROTEIN TESTING 2nd Edition, Nader Rifai et al. ANNIVERSARY ISSUE, Volume AVI No.3, p.15-16), and the specific density can be measured by ultracentrifugation analysis (Atherosclerosis, 106, p.241-253, 1994: Atherosclerosis, 83, p.59, 1990). Can be determined based on. HDL-cholesterol (HDL-C) and LDL cholesterol (LDL-C) can be measured with an automatic analyzer.
  • HDL-cholesterol HDL-C
  • LDL cholesterol LDL cholesterol
  • HDL can be classified into subfractions of ApoE-Containing HDL and ApoE deficient HDL based on the difference in the content ratio of ApoE.
  • ApoE-Containing HDL indicates that HDL contains ApoE
  • ApoE deficient HDL indicates that HDL does not contain ApoE.
  • HDL in which ApoE is present or has a high content is sometimes called ApoE-rich HDL, which is also included in ApoE-containing HDL.
  • ApoE containing HDL-cholesterol is quantified by subtracting tungstate-dextran sulfate-magnesium precipitation method (PT-DS-Mg method) (BIOCHEMICAL MEDICINE AND METABOLIC BIOLOGY 46, 329-343 (1991)). can do.
  • PF-DS-Mg method tungstate-dextran sulfate-magnesium precipitation method
  • apoE containing HDL-C can be measured with an automatic analyzer by utilizing the difference in reactivity depending on the concentration of the surfactant (Ann Clin Biochem 56, 123-132 (2019)).
  • Remnant (Remnant-like lipoprotein: RLP) is a special lipoprotein generated when lipid metabolism is delayed due to metabolic syndrome, etc., and is a metabolite of CM and VLDL decomposed by the action of lipoprotein lipase. Although not defined by a specific size or specific gravity, it can be quantified using an immobilized gel of an antibody against a constituent apoprotein in a lipoprotein, a phospholipid degrading enzyme, a surfactant, or the like.
  • RLP-cholesterol (RLP-C) can be measured with an automatic analyzer by utilizing the difference in reactivity depending on the molecular weight of cholesterol esterase (J Applied Laboratory Medicine 3,26-36, (2016)).
  • HDL-cholesterol HDL-C
  • LDL-cholesterol LDL-cholesterol
  • HDL3-cholesterol HDL3-C
  • RLP-C apoE containing HDL-C
  • the various lipoprotein quantification kits of the present invention are used in a method for quantifying cholesterol in lipoprotein in two steps.
  • the first reagent composition is used in the first step
  • the second reagent composition is used in the second step.
  • the first reagent composition in the cholesterol quantification kit in lipoprotein of the present invention contains cholesterol esterase and cholesterol oxidase, and in the presence of cholesterol esterase and cholesterol oxidase, cholesterol in lipoprotein other than the measurement target is guided out of the reaction system.
  • the first reagent composition for example, albumin, a buffer solution, a surfactant, a catalase, a peroxidase, a surfactant composed of a polyoxyethylene derivative, a hydrogen donor, a coupler and the like can be used, but the present invention is limited thereto. Not done.
  • the second reagent composition in the cholesterol quantification kit in lipoprotein of the present invention contains a component for quantifying cholesterol in lipoprotein to be measured.
  • the components of the second reagent composition differ depending on the first reagent composition, but are not particularly limited as long as they can quantify cholesterol in lipoprotein, and known substances can be used.
  • the second reagent composition for example, peroxidase, a polyoxyethylene derivative, a hydrogen donor, and a coupler can be used, but the component is not limited thereto.
  • the method of the present invention consists of two steps.
  • a surfactant capable of acting on a lipoprotein other than the object to be measured is allowed to act on a subject sample in the presence of cholesterol esterase and cholesterol oxidase to release it from the lipoprotein. It reacts with cholesterol oxidase and leads it out of the reaction system. At this time, it is possible to prevent the lipoprotein cholesterol to be measured from being guided out of the reaction system in the presence of a surfactant that protects the measurement target.
  • cholesterol in the lipoprotein remaining unreacted in the first step is quantified.
  • Either the first reagent composition or the second reagent composition contains at least a coupler, an iron complex, a peroxidase, a catalase, a hydrogen donor and a surfactant, and the coupler and the hydrogen donor are contained in the same reagent composition. Not included.
  • the method of the present invention is usually performed in an automatic analyzer.
  • a hydrogen donor and a coupler are coupled in the presence of peroxidase, and the absorbance at a specific wavelength is measured by the produced dye.
  • an iron complex is used as a reaction accelerator.
  • the coupler, peroxidase, and iron complex are present in the same reagent composition, there is a problem that the reagent gradually develops a natural color and affects the quantification of lipoprotein cholesterol. Therefore, in the present invention, by allowing any one of the coupler, peroxidase, and iron complex to be present in a reagent composition different from the others, it is possible to suppress and stabilize the natural color development of the reagent.
  • peroxidase means that an enzyme having peroxidase activity is present and a reaction catalyzed by peroxidase can occur.
  • peroxidase activity can also be referred to as “peroxidase activity is present”.
  • cholesterol esterase cholesterol esterase
  • cholesterol oxidase cholesterol oxidase
  • catalase a hydrophilic sulfate
  • these activities cause the catalytic reaction required for measurement. Therefore, the existence of these enzymes can be proved by measuring the activity of these enzymes.
  • the coupler, the peroxidase activity, and the iron complex are separately present in the first reagent composition used in the first step and in the second reagent composition used in the second step as follows. .. (1)
  • the coupler is present in the first reagent composition used in the first step, and the peroxidase activity and the iron complex are present in the second reagent composition used in the second step.
  • the coupler and peroxidase activity are present in the first reagent composition, and the iron complex is present in the second reagent composition.
  • Peroxidase activity is present in the first reagent composition, and the coupler and iron complex are present in the second reagent composition.
  • the coupler and the iron complex are present in the first reagent composition, and the peroxide activity is present in the second reagent composition.
  • Peroxider activity and iron complex are present in the first reagent composition, and the coupling is present in the second reagent composition.
  • the iron complex is present in the first reagent composition, and the peroxide activity and the coupler are present in the second reagent composition. Further, preferably, the coupler and the hydrogen donor are present separately in separate reagent compositions.
  • the kit of the present invention comprises a first reagent product used in the step of guiding cholesterol in a lipoprotein other than the measurement target to the outside of the reaction system, and a second reagent product used in the step of measuring cholesterol in the lipoprotein to be measured.
  • the cholesterol in the lipoproteins other than the measurement target is eliminated and led to the outside of the reaction system.
  • Known techniques such as inhibiting the reaction so as not to react can be used.
  • the first step that is, the step of erasing cholesterol in lipoproteins other than the measurement target and leading it to the outside of the reaction system is performed by one of the following methods.
  • Hydrogen peroxide produced by cholesterol esterase and cholesterol oxidase, and a method for forming colorless quinones in the presence of a coupler or hydrogen donor and (3) Degrading hydrogen peroxide in the presence of catalase, and at the same time.
  • a method of forming a colorless quinone in the presence of a coupler or hydrogen donor is performed by one of the following methods.
  • catalase needs to be present in the first reagent composition for which the first step is carried out. Further, in the method of forming the colorless quinone of (2), at least one of the coupler and the hydrogen donor needs to be present in the first reagent composition, and further, peroxidase is present in the first reagent composition. You need to be. In the method (3) in which hydrogen peroxide is decomposed by catalase and at the same time colorless quinone is formed in the presence of a coupler or a hydrogen donor, catalase and peroxidase and the coupler or hydrogen donor are contained in the first reagent composition. Must exist.
  • the coupler used for the coupling reaction used in the present invention for example, 4-aminoantipyrine, aminoantipyrine derivative, vanillindiamine sulfonic acid, methylbenzthiazolinone hydrazone, sulfonated methylbenzthiazolinone hydrazone and the like can be used. Not limited to these.
  • the hydrogen donor used in the present invention is preferably an aniline derivative
  • the aniline derivative is N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3-methylaniline (TOOS), N-ethyl-N- ( 2-Hydroxy-3-sulfopropyl) -3,5-dimethylaniline (MAOS), N-ethyl-N- (3-sulfopropyl) -3-methylaniline (TOPS), N- (2-hydroxy-3- Sulfopropyl) -3,5-dimethoxyaniline (HDAOS), N- (3-sulfopropyl) aniline (HALPS), N- (3-sulfopropyl) -3-methoxy-5-aniline (HMMPS), N-ethyl -N- (2-Hydroxy-3-sulfopropyl) -4-fluoro-3,5-dimethoxyaniline (FDAOS), N-ethyl
  • iron complex used in the present invention examples include potassium ferrocyanide, sodium ferrocyanide, porphyrin iron complex, EDTA-iron complex and the like.
  • concentration of the iron complex is preferably 0.001 to 0.05 mmol / L.
  • a surfactant composed of a polyoxyethylene derivative is used in the first step for erasing cholesterol in lipoproteins other than the measurement target of the method of the present invention and guiding it to the outside of the reaction system.
  • sphingomyelinase may be present in the first reagent composition used in the first step.
  • "The existence of sphingomyelinase” means that an enzyme having sphingomyelinase activity is present and a reaction for degrading sphingomyelin can occur.
  • the term "the presence of sphingomyelinase” can also be referred to as "there is sphingomyelinase activity”.
  • phosphoripases such as phosphoripase C and phosphoripase D have sphingomyelinase activity, these enzymes are also included.
  • the concentration of sphingomyelinase in the reagent is preferably 0.1 to 100 U / mL, more preferably 0.2 to 20 U / mL.
  • the concentration in the reaction solution at the time of reaction is preferably 0.05 to 100 U / mL, more preferably 0.1 to 20 U / mL.
  • sphingomyelinase include, but are not limited to, SPC (manufactured by Asahi Kasei Corporation), Sphingomyelinase from bacillus cereus, Sphingomyelinase from staphylococcus aureus (manufactured by SIGMA), and the like.
  • lipoprotein cholesterol other than the measurement target is eliminated in the presence of a surfactant that acts on the lipoprotein other than the measurement target but does not react with the measurement target lipoprotein.
  • a surfactant that acts on the lipoprotein other than the measurement target includes polyoxyethylene derivatives.
  • the polyoxyethylene derivative include polyoxyethylene alkyl ether, polyoxyethylene polycyclic phenyl ether derivative, and polyoxyethylene-polyoxypropylene block polymer.
  • polyoxyethylene polycyclic phenyl ether derivative examples include polyoxyethylene benzyl phenyl derivative and its sulfate ester salt, polyoxyethylene styrene phenyl ether derivative and its sulfate ester salt, and special phenol ethoxylate.
  • polyoxyethylene polycyclic phenyl ether derivatives include emulsifier A-60, emulsifier A-500, emulsifier B-66, emulsifier A-90 (manufactured by Kao Co., Ltd.), new call 703, new call 704, and new call 706.
  • polyoxyethylene polycyclic phenyl ether sulfate ester salt examples include high tenor NF-08, high tenor NF-13, high tenor NF-17, high tenor NF0825 (all manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and Newcol 707.
  • -SF New Call 707-SFC, New Call 707-SN, New Call 714-SF, New Call 714-SN, New Call 723-SF, New Call 740-SF, New Call 780-SF, New Call 2607-SF , 2614-SF (all manufactured by Nippon Ester Co., Ltd.) and the like.
  • the concentration of the surfactant in the reagent is preferably 0.3 to 5% (w / v), more preferably 0.5 to 3% (w / v).
  • the concentration in the reaction solution at the time of reaction is preferably 0.15 to 5%, more preferably 0.25 to 3% (w / v).
  • the surfactant in the reagent can be identified by a method of analysis in combination with IR, NMR, LC-MS and the like. Examples of the method for confirming the ionicity (nonionic, anionic, cationic) of the surfactant include an extraction method using an organic solvent under acidic or alkaline conditions and a solid-phase extraction method. Examples of the method for determining the structure of the surfactant include a method of analysis using LC-MSMS and NMR.
  • cholesterol esterase acts on the lipoproteins other than the measurement target in the presence of a surfactant that reacts with the lipoproteins other than the measurement target.
  • Cholesterol in these lipoproteins is guided out of the reaction system by reacting and eliminating cholesterol in the presence of an enzyme that reacts with cholesterol such as cholesterol oxidase.
  • the surfactant acts (reacts) means that the surfactant decomposes the lipoprotein and the cholesterol in the lipoprotein is released.
  • a surfactant that acts (reacts) on a lipoprotein other than the measurement target it is not required that the surfactant does not act on the lipoprotein at all, and it may mainly act on the lipoprotein other than the measurement target. ..
  • erasing is meant degrading a substance in a sample to be sampled so that the degradation product is not detected in the next step. That is, “erasing cholesterol in lipoproteins other than the measurement target” means that the lipoproteins other than the measurement target in the sample sample are decomposed, and the cholesterol in these lipoproteins, which is the decomposition product, is used in the subsequent steps. It means to prevent it from being detected.
  • leading to the outside of the reaction system means erasing, aggregating, or aggregating cholesterol so that cholesterol contained in a lipoprotein other than the measurement target does not affect the determination of cholesterol in the lipoprotein to be measured. It means that it inhibits the reaction in the process of.
  • HDL-C Polyoxyethylene-Polyoxypropylene Block Polymer
  • LDL-C Polyoxyethylene polycyclic phenyl ether
  • HDL3-C Polyoxyethylene-Polyoxypropylene Block Polymer Remnant-C: Polyoxyethylene Polycyclic Phenyl Ether apoE containing
  • HDL-C Polyoxyethylene polycyclic phenyl ether
  • Cholesterol esterase and cholesterol oxidase are allowed to act in the presence of the above-mentioned surfactant to generate hydrogen peroxide from cholesterol, and the generated hydrogen peroxide is eliminated.
  • the cholesterol esterase concentration in the reaction solution is preferably about 10 to 1000 U / L.
  • cholesterol oxidase derived from bacteria or yeast can be used, and the concentration of cholesterol oxidase in the reaction solution is preferably about 100 to 3500 U / L.
  • the concentration of catalase in the reaction solution is preferably about 40 to 2500 U / L.
  • the concentration of peroxidase in the reaction solution when converting hydrogen peroxide to colorless quinone is preferably 400 to 2000 U / L.
  • cholesterol in lipoproteins that acted and reacted with the above-mentioned surfactant and cholesterol esterase can be guided to the outside of the reaction system by reacting with cholesterol-reactive enzymes such as cholesterol oxidase. ..
  • cholesterol-reactive enzymes such as cholesterol oxidase. ..
  • cholesterol in the lipoprotein other than the measurement target is guided to the outside of the reaction system, so that only the measurement target remains as the lipoprotein in the reaction solution in the subsequent steps.
  • non-measurement target thus erasing lipoproteins other than the measurement target, guiding them out of the reaction system, and making it impossible to detect cholesterol of the lipoproteins other than the measurement target in the subsequent steps is described as "non-measurement target”. Differentiate between lipoprotein and lipoprotein to be measured. "
  • cholesterol in lipoproteins other than the measurement target may not be completely eliminated.
  • lipo A surface active agent that selectively measures cholesterol in protein may be used.
  • the concentration in the reaction solution in the step of scavenging cholesterol in lipoproteins other than those to be measured for cholesterol esterase and leading it to the outside of the reaction system is preferably 10 U / L to 10000 U / L, and more preferably 300 U / L to 2500 U / L. , 600 U / L to 2000 U / L are particularly preferable.
  • the cholesterol esterase in the present invention is not particularly limited as long as it is an enzyme that hydrolyzes cholesterol ester, and cholesterol esterase derived from animals or microorganisms can be used.
  • lipoprotein degrading enzyme can be optionally added to the reaction solution in the step of scavenging cholesterol in lipoproteins other than the measurement target.
  • lipoprotein degrading enzyme lipoprotein lipase can be used.
  • the lipoprotein lipase is not particularly limited as long as it is an enzyme having an ability to decompose lipoprotein, and lipoprotein lipase derived from an animal or a microorganism can be used.
  • the concentration of lipoprotein lipase in the reaction solution is preferably 10 to 10000 U / L, more preferably 10 to 5000 U / L, and particularly preferably 10 to 1000 U / L.
  • the cholesterol in the lipoprotein remaining unreacted in the step of guiding the cholesterol in the lipoprotein other than the measurement target to the outside of the reaction system is quantified in the subsequent second step.
  • a conventionally used quantification method can be used. For example, a method of quantifying the content of specific aggregates formed by adding an agglutinant by turbidimetric measurement, a method of using an antigen-antibody reaction with a specific antibody, a method of quantifying decomposition products using an enzyme, etc. There is. Of these, a method of quantifying decomposition products using an enzyme is preferable.
  • cholesterol measuring enzymes such as cholesterol esterase and cholesterol oxidase are added to release and decompose cholesterol of lipoprotein, and the reaction product thereof is quantified.
  • lipoprotein cholesterol other than the measurement target is guided to the outside of the reaction system in the first step, it acts on at least the measurement target lipoprotein in order to quantify the cholesterol in the measurement target lipoprotein.
  • Cholesterol may be used.
  • At least the surfactant that acts on the lipoprotein to be measured may be a surfactant that acts only on the lipoprotein to be measured, a surfactant that acts on other lipoproteins in addition to the lipoprotein to be measured, and all lipoproteins. It may be a surfactant that acts on.
  • surfactant that acts on all lipoproteins examples include polyoxyethylene derivatives, and any commercially available surfactant used in a reagent for measuring total cholesterol or the like can be used. Specific examples thereof include polyoxyethylene alkyl phenyl ether (Emargen 909 (Kao Corporation), TritonX100), polyoxyethylene alkyl ether (Emargen 707 (Kao Corporation), Emargen 709 (Kao Corporation)), and the like. Be done.
  • the concentration of the surfactant used in the step of quantifying lipoprotein in the reaction solution is preferably about 0.01 to 10% (w / v), more preferably about 0.1 to 5% (w / v). ..
  • the cholesterol esterase activity, cholesterol oxidase activity, sphingomyelinase activity, peroxidase activity, and catalase activity used in the present invention can be measured by the following methods.
  • the following description is exemplary and can be measured by any known method.
  • the substrate solution For the measurement of cholesterol oxidase activity, use a 6 mM cholesterol solution (dissolved in isopropanol) as the substrate solution. Add a diluted solution (0.1 M phosphate buffer, TritonX100, pH 7.0) so that the measurement target becomes 2-4 U / mL, heat 3 mL of the diluted solution at 37 ° C for 5 minutes, and then add 0.05 mL of the substrate solution. .. Then, the mixed solution is reacted at 37 ° C. and the amount of change in absorbance at a wavelength of 240 nm is measured. In the present invention, the amount of change in absorbance from 2 minutes to 7 minutes after the reaction at 37 ° C. was measured, and the cholesterol oxidase activity was calculated.
  • a diluted solution 0.1 M phosphate buffer, TritonX100, pH 7.0
  • the enzyme activity per unit amount converted from the amount of change in absorbance measured as described above is 3 U / L or more, it can be said that the measurement target has cholesterol oxidase activity, in other words, it can be said that "cholesterol oxidase" is contained. ..
  • substrate 0.04% cholesterol linolenate, 1% TritonX100, 0.6% sodium colate solution
  • 300U / mL cholesterol oxidase solution enzyme diluted solution (20mM phosphate buffer, 0.5mM EDTA ⁇ 2Na, 2mM) MgCl 2 , 0.2% BSA, pH 7.5) and reaction solution (0.06% 4 aminoantipyrine, 0.4% phenol, 7.5 KU / L peroxidase) are used.
  • enzyme diluted solution 20mM phosphate buffer, 0.5mM EDTA ⁇ 2Na, 2mM) MgCl 2 , 0.2% BSA, pH 7.5
  • reaction solution 0.06% 4 aminoantipyrine, 0.4% phenol, 7.5 KU / L peroxidase
  • the measurement target After heating at 37 ° C for 2 minutes, add 0.1 mL of the measurement target diluted with the diluted solution, react the mixed solution at 37 ° C, and measure the amount of change in absorbance at a wavelength of 500 nm.
  • the amount of change in absorbance from 0 minute to 3.5 minutes was measured, and the cholesterol esterase activity was calculated. If the enzyme activity per unit amount converted from the amount of change in absorbance measured as described above is 8 U / L or more, it can be said that the measurement target has cholesterol esterase activity, in other words, it can be said that "cholesterol esterase" is contained. ..
  • reaction solution 1 1.5 mM HDAOS, 0.05% TritonX100, 50 mM phosphate buffer, pH 7.0
  • reaction solution 2 5 mM 4 aminoantipyrine, 0.05% TritonX100, 1% hydrogen peroxide, 50 mM phosphate buffer) Liquid, pH 7.0
  • dilute solution 50 mM phosphate buffer, pH 7.0
  • the peroxidase activity was calculated by measuring the amount of change in absorbance from 2 minutes to 5 minutes after the reaction at 37 ° C. If the enzyme activity per unit amount converted from the amount of change in absorbance measured as described above is 10 U / L or more, it can be said that the measurement target has peroxidase activity, in other words, it can be said that "peroxidase" is contained.
  • a substrate (0.06% hydrogen peroxide, 50 mM phosphate buffer, pH 7.0) is used for catalase activity measurement. After preheating 2.9 mL of the substrate solution at 25 ° C, it was mixed with 0.1 mL of the measurement target, and the amount of change in absorbance at 240 nm was measured. In the present invention, after the reaction at 25 ° C., the amount of change in absorbance from 0 to 3 minutes was measured to calculate the catalase activity. If the enzyme activity per unit amount converted from the amount of change in absorbance measured as described above is 100 U / L or more, it can be said that the measurement target has catalase activity, in other words, it can be said that "catalase" is contained.
  • reaction solution 0.008% sphingomyelin, 0.05% TritonX100 solution, 10U / mL alkaline phosphatase, 10U / mL cholesterol oxidase, 2U / mL peroxidase, 0.02% 4aminoantipyrine, 0.02% TODB mixture
  • reaction stop solution 1% sodium dodecyl sulfate solution
  • a diluted solution 10 mM Tris buffer, 0.1% TritonX100, pH 8.0.
  • the reaction solution Mix 0.08 mL of the reaction solution and 0.003 mL of the measurement target diluted with the diluted solution, heat at 37 ° C for 5 minutes, and then add 0.16 mL of the reaction stop solution. After the reaction was stopped, the amount of change in absorbance at the main wavelength of 546 nm and the sub-wavelength of 700 nm was measured, and the sphingomyelinase activity was calculated. If the enzyme activity per unit amount converted from the amount of change in absorbance measured as described above is 2 U / L or more, it can be said that the measurement target has sphingomyelinase activity, in other words, "sphingomyelinase" is contained. It can be said that.
  • monovalent cations and / or divalent cations or salts thereof are further used as an ionic strength adjusting agent.
  • an ionic strength regulator By adding an ionic strength regulator, it becomes easy to differentiate the lipoprotein to be measured from other lipoproteins.
  • sodium chloride, potassium chloride, magnesium chloride, manganese chloride, calcium chloride, lithium chloride, ammonium chloride, sodium sulfate, magnesium sulfate, potassium sulfate, lithium sulfate, ammonium sulfate, magnesium acetate and the like can be used.
  • the concentration of the ionic strength adjusting agent at the time of reaction is preferably 0 to 100 mM.
  • the enzyme in the reagent can also be identified by the following method. That is, the fragment peptide obtained by degrading the sample containing the target enzyme with trypsin is detected by a hybrid mass spectrometer. Proteins can be obtained by searching the database (for example, Mascot search) for the mass of the peptide obtained by mass spectrometry and the spectrum (MS / MS data) of fragment ions obtained by colliding with argon gas in the mass spectrometer. Can be identified. If the sequence of the fragment peptide derived from the amino acid sequence in the sample matches the amino acid sequence registered in the database as a unique sequence, it can be considered to contain the target enzyme.
  • a hybrid mass spectrometer for example, Mascot search
  • MS / MS data spectrum of fragment ions obtained by colliding with argon gas in the mass spectrometer.
  • the enzyme in the reagent can be identified by quantification by the following method. That is, among the fragment peptides obtained by degrading the target enzyme with trypsin, a peptide that is specific to the target enzyme and that gives a strong signal in mass spectrometry is selected as the peptide to be quantified. For the peptide to be quantified, an unlabeled peptide and a peptide labeled with a stable isotope as an internal standard are prepared by chemical synthesis.
  • a sample containing the target enzyme was completely digested with trypsin, a known amount of stable isotope-labeled peptide was added, and MRM mode (LC-MS / MS) was used by a triple quadrupole mass spectrometer (LC-MS / MS) connected to HPLC. Measure in multiple reaction monitoring mode).
  • MRM mode LC-MS / MS
  • LC-MS / MS triple quadrupole mass spectrometer
  • the reaction temperature in each step of the present invention is preferably 2 ° C to 45 ° C, more preferably 25 ° C to 40 ° C.
  • the reaction time is preferably 1 to 10 minutes for each step, and more preferably 3 to 7 minutes.
  • Serum and plasma can be used as the subject sample of the present invention, but the sample is not limited thereto.
  • Examples of the automatic analyzer used in the present invention include TBA-120FR / 200FR (Toshiba), JCA-BM1250 / 1650/2250 (JEOL), HITACHI7180 / 7170 (Hitachi), AU2700 / 5800/680 (OLYMPUS), cobas c501. ⁇ 701 (Roche) etc. can be mentioned.
  • the reagent composition used in the step contains a surfactant that reacts with lipoproteins other than those to be measured.
  • Reagent compositions that eliminate cholesterol in lipoproteins other than lipoproteins include further cholesterol-degrading enzymes such as cholesterol esterase and cholesterol oxidase, hydrogen donors or couplers, and catalase that eliminates hydrogen peroxide. Should be included.
  • the reagent composition used in the step of measuring the lipoprotein to be measured includes a surfactant that reacts only with the lipoprotein to be measured or a surfactant that acts on all lipoproteins, a hydrogen donor or a coupler other than the lipoprotein. It can contain one that is not used in the process of scavenging cholesterol in the protein and leading it out of the reaction system.
  • a monovalent cation, a divalent cation or a salt thereof, or a polyanion may be added to the first reagent composition or the second reagent composition, if necessary.
  • serum albumin may be contained in the first reagent composition or the second reagent composition.
  • the pH of each reagent composition is near neutral, for example, pH 6 to pH 8, preferably pH 6.5 to 7.5, and the pH may be adjusted by adding a buffer solution.
  • the cholesterol in the lipoprotein other than the measurement target is added to the sample. It may be carried out by adding and reacting the reagent composition to be erased, then adding and reacting the reagent composition for measuring the lipoprotein to be measured, and measuring the absorbance.
  • the amount of the sample to be sample and the amount of each reagent composition are not limited and can be appropriately determined in consideration of the concentration of the reagent in each reagent composition, etc., but the amount is within the range applicable to the automatic analyzer. For example, 1 to 10 ⁇ L of the sample sample, 50 to 300 ⁇ L of the first reagent, and 25 to 200 ⁇ L of the second reagent may be used.
  • the types and concentrations of substances contained in the first reagent composition or the second reagent composition in various measurement targets other than hydrogen donors, couplers, catalase, potassium ferrocyanide, and peroxidase were as follows.
  • RLP-C First reagent composition PIPES buffer, pH 6.8 50 mM Cholesterol esterase (polymer; CEBP-M (62kDa)) 5000U / L Cholesterol oxidase 2500 U / L Sphingolipiderinase 2500 U / L Polyoxyethylene polycyclic phenyl ether 0.1% (w / v) BSA 1.0% (w / v) Second reagent composition PIPES buffer, pH 6.8 50 mM Cholesterol esterase (small molecule; CEN (29.5kDa)) 4000U / L Polyoxyethylene alkyl ether 0.1% (w / v)
  • Measurement target apoE containing HDL-C First reagent composition BES buffer, pH 7.0 100 mM Cholesterol esterase 800U / L Cholesterol oxidase 1600U / L Polyoxyethylene polycyclic phenyl ether 0.067% (w / v) Second reagent composition BES buffer, pH 7.0 100 mM Polyoxyethylene polycyclic phenyl ether 1.0% (w / v)
  • the second reagent composition to be subjected to the second step was prepared by adding the following components to each of the above-mentioned reagent components.
  • Second Reagent Composition Coupler (4 Amino Antipyrine) 4.0 mM Peroxidase 2.4U / mL Potassium ferrocyanide 0.11 mM Sodium azide 0.05% (w / v)
  • the second reagent composition was acceleratedly stored at 37 ° C. for 2 weeks, and the absorption spectrum of the natural color development during storage was measured at a wavelength of 320 nm to 480 nm.
  • FIG. 1 shows the absorption spectra immediately after preparation and after accelerated storage at 37 ° C. for 2 weeks.
  • immediately after preparation week 0
  • no increase in absorbance was observed in any of the measurement subjects.
  • the reagent after accelerated storage at 37 ° C. for 2 weeks had a peak showing maximum absorption near 360 nm (the reagent was pale yellow).
  • 1 week of storage was equivalent to 1.5 years of refrigeration.
  • the first reagent composition for which the first step was performed was prepared by adding the following components to each of the above-mentioned reagent components.
  • First Reagent Composition Coupler (4 Amino Antipyrine) 1.3 mM Peroxidase 1.7U / mL Potassium ferrocyanide 0.04 mM
  • the first reagent composition was acceleratedly stored at 37 ° C. for 2 weeks, and the absorption spectrum of the natural color development during storage was measured at a wavelength of 320 nm to 480 nm.
  • FIG. 2 shows the absorption spectra immediately after preparation and after accelerated storage at 37 ° C. for 2 weeks. As shown in FIG. 2, immediately after preparation (week 0), no increase in absorbance was observed in any of the measurement targets. The reagent after storage at 37 ° C. had a peak showing maximum absorption near 360 nm (the reagent was pale yellow).
  • the first reagent composition for which the first step was performed and the second reagent composition for which the second step was performed were prepared by adding the following components to each of the above-mentioned reagent components.
  • First reagent composition Catalase 1200 U / mL 4-Aminoantipyrine 1.3 mM Second reagent composition Hydrogen donor (HDAOS: HDL-C, apoE containing HDL-C) 2.1 mM (TOOS: LDL-C, HDL3-C, Remnant-C) 6.0mM Potassium ferrocyanide 0.11 mM Peroxidase 5.0 U / mL Sodium azide 0.05% (w / v)
  • the first reagent composition and the second reagent composition were acceleratedly stored at 37 ° C. for 2 weeks, and the absorption spectra of 320 nm to 480 nm for natural color development during storage were measured and compared with Comparative Examples 1 and 2.
  • FIG. 3a shows the absorption spectrum of the first reagent composition immediately after preparation and after accelerating storage at 37 ° C. for 2 weeks
  • FIG. 3b shows the absorption spectrum of the second reagent composition.
  • FIGS. 3a and 3b there was no significant difference between immediately after preparation (week 0) and after accelerated storage at 37 ° C. for 2 weeks, and the peak showing maximum absorption near 360 nm decreased as compared with Comparative Examples 1 and 2. , Disappeared.
  • the first reagent composition for which the first step was performed and the second reagent composition for which the second step was performed were prepared by adding the following components to each of the above-mentioned reagent components.
  • First reagent composition Peroxidase 1.7U / mL 4-Aminoantipyrine 1.3 mM
  • Second reagent composition Hydrogen donor Hydrogen donor (HDAOS: HDL-C, apoE containing HDL-C) 2.1 mM
  • TOOS LDL-C, HDL3-C, Remnant-C) 6.0mM Potassium ferrocyanide 0.11 mM
  • the first reagent composition and the second reagent composition were acceleratedly stored at 37 ° C. for 2 weeks, and the absorption spectra of 320 nm to 480 nm for natural color development during storage were measured and compared with Comparative Examples 1 and 2.
  • FIG. 4a shows the absorption spectrum of the first reagent composition immediately after preparation and after accelerating storage at 37 ° C. for 2 weeks
  • FIG. 4b shows the absorption spectrum of the second reagent composition.
  • FIGS. 4a and 4b there was no significant difference between immediately after preparation (week 0) and after accelerated storage at 37 ° C. for 2 weeks, and the peak showing maximum absorption near 360 nm decreased as compared with Comparative Examples 1 and 2. , Disappeared.
  • the first reagent composition for which the first step was performed and the second reagent composition for which the second step was performed were prepared by adding the following components to each of the above-mentioned reagent components.
  • First reagent composition 4-aminoantipyrine 1.3 mM Potassium ferrocyanide 0.04 mM Catalase 1200 U / mL
  • Second reagent composition Hydrogen donor (HDAOS: HDL-C, apoE containing HDL-C) 2.1 mM
  • TOOS LDL-C, HDL3-C, Remnant-C) 6.0mM Sodium azide 0.05% (w / v) Peroxidase 5.0 U / mL
  • the first reagent composition and the second reagent composition were acceleratedly stored at 37 ° C. for 2 weeks, and the absorption spectra of 320 nm to 480 nm for natural color development during storage were measured and compared with Comparative Examples 1 and 2.
  • FIG. 5a shows the absorption spectrum of the first reagent composition immediately after preparation and after accelerating storage at 37 ° C. for 2 weeks
  • FIG. 5b shows the absorption spectrum of the second reagent composition.
  • FIGS. 5a and 5b there was no significant difference between immediately after preparation (week 0) and after accelerated storage at 37 ° C. for 2 weeks, and the peak showing maximum absorption near 360 nm decreased as compared with Comparative Examples 1 and 2. , Disappeared.
  • the first reagent composition for which the first step was performed and the second reagent composition for which the second step was performed were prepared by adding the following components to each of the above-mentioned reagent components.
  • First reagent composition Peroxidase 1.7U / mL Hydrogen donor (HDAOS: HDL-C, apoE containing HDL-C) 0.7mM (TOOS: LDL-C, HDL3-C, Remnant-C) 2.0mM
  • the first reagent composition and the second reagent composition were acceleratedly stored at 37 ° C. for 2 weeks, and the absorption spectra of 320 nm to 480 nm for natural color development during storage were measured and compared with Comparative Examples 1 and 2.
  • FIG. 6a shows the absorption spectrum of the first reagent composition immediately after preparation and after accelerated storage at 37 ° C. for 2 weeks
  • FIG. 6b shows the absorption spectrum of the second reagent composition.
  • the first reagent composition for which the first step was performed and the second reagent composition for which the second step was performed were prepared by adding the following components to each of the above-mentioned reagent components.
  • the first reagent composition and the second reagent composition were acceleratedly stored at 37 ° C. for 2 weeks, and the absorption spectra of 320 nm to 480 nm for natural color development during storage were measured and compared with Comparative Examples 1 and 2.
  • FIG. 7a shows the absorption spectrum of the first reagent composition immediately after preparation and after accelerating storage at 37 ° C. for 2 weeks
  • FIG. 7b shows the absorption spectrum of the second reagent composition.
  • FIGS. 7a and 7b there was no significant difference between immediately after preparation (week 0) and after accelerated storage at 37 ° C. for 2 weeks, and the peak showing maximum absorption near 360 nm decreased as compared with Comparative Examples 1 and 2. , Disappeared.
  • the first reagent composition for which the first step was performed and the second reagent composition for which the second step was performed were prepared by adding the following components to each of the above-mentioned reagent components.
  • the first reagent composition and the second reagent composition were acceleratedly stored at 37 ° C. for 2 weeks, and the absorption spectra of 320 nm to 480 nm for natural color development during storage were measured and compared with Comparative Examples 1 and 2.
  • FIG. 8a shows the absorption spectrum of the first reagent composition immediately after preparation and after accelerating storage at 37 ° C. for 2 weeks
  • FIG. 8b shows the absorption spectrum of the second reagent composition.
  • FIGS. 8a and 8b there was no significant difference between immediately after preparation (week 0) and after accelerated storage at 37 ° C. for 2 weeks, and the peak showing maximum absorption near 360 nm decreased as compared with Comparative Examples 1 and 2. , Disappeared.
  • the first reagent composition for which the first step was performed and the second reagent composition for which the second step was performed were prepared by adding the following components to each of the above-mentioned reagent components.
  • First reagent composition 4-aminoantipyrine 1.3 mM Peroxidase 1.7U / mL Catalase 1200U / mL
  • Second reagent composition Hydrogen donor (HDAOS: HDL-C, apoE containing HDL-C) 2.1 mM
  • TOOS LDL-C, HDL3-C, Remnant-C) 6.0mM Potassium ferrocyanide 0.11 mM Sodium azide 0.05% (w / v)
  • the first reagent composition and the second reagent composition were acceleratedly stored at 37 ° C. for 2 weeks, and the absorption spectra of 320 nm to 480 nm for natural color development during storage were measured and compared with Comparative Examples 1 and 2.
  • FIG. 9a shows the absorption spectrum of the first reagent composition immediately after preparation and after accelerating storage at 37 ° C. for 2 weeks
  • FIG. 9b shows the absorption spectrum of the second reagent composition.
  • FIGS. 9a and 9b there was no significant difference between immediately after preparation (week 0) and after accelerated storage at 37 ° C. for 2 weeks, and the peak showing maximum absorption near 360 nm decreased as compared with Comparative Examples 1 and 2. , Disappeared.
  • the first reagent composition for which the first step was performed and the second reagent composition for which the second step was performed were prepared by adding the following components to each of the above-mentioned reagent components.
  • the first reagent composition and the second reagent composition were acceleratedly stored at 37 ° C. for 2 weeks, and the absorption spectra of 320 nm to 480 nm for natural color development during storage were measured and compared with Comparative Examples 1 and 2.
  • FIG. 10a shows the absorption spectrum of the first reagent composition immediately after preparation and after accelerating storage at 37 ° C. for 2 weeks
  • FIG. 10b shows the absorption spectrum of the second reagent composition.
  • the first reagent composition for which the first step was performed and the second reagent composition for which the second step was performed were prepared by adding the following components to each of the above-mentioned reagent components.
  • the first reagent composition and the second reagent composition were acceleratedly stored at 37 ° C. for 1 week and 2 weeks, and the absorption spectra of 320 nm to 480 nm were measured for the natural color development during storage and compared with Comparative Examples 1 and 2.
  • FIG. 11a shows the absorption spectrum of the first reagent composition immediately after preparation and after accelerating storage at 37 ° C. for 2 weeks
  • FIG. 11b shows the absorption spectrum of the second reagent composition.
  • FIGS. 11a and 11b there was no significant difference between immediately after preparation (week 0) and after accelerated storage at 37 ° C. for 2 weeks, and the peak showing maximum absorption near 360 nm decreased as compared with Comparative Examples 1 and 2. , Disappeared.
  • HDL-C, LDL-C, and HDL3-C are Denka's lipoprotein cholesterol measurement reagents HDL-EX "Seiken”, LDL-EX “Seiken”, and HDL3-C “SEIKEN", respectively.
  • the apoE containing HDL-C was compared with the method of Ann Clin Biochem 56, 123-132 (2019), and the Remnant-C was compared with the lipoprotein cholesterol concentration using the method of Ann Clin Biochem 56, 123-132 (2019).
  • Table 1 shows the correlation coefficient between the measurement results of cholesterol in each lipoprotein of each example and the measurement results of each comparative example for the same sample.
  • the method of this example showed a good correlation with the comparison target method.
  • HDL-C, LDL-C, HDL3-C, Remnant-C, and apoE containing HDL-C can be detected well by the quantitative kit of the present invention.
  • kits and methods of the present invention allow the determination of cholesterol in lipoproteins without compromising the stability of the reagents. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Endocrinology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

検体の前処理操作をすることなしに、自動分析装置を用いてリポ蛋白中コレステロールを2つの工程で定量する方法において、保管時の試薬の自然発色を抑える方法、およびこの方法に用いられる定量キット、ならびに調製方法の提供。 リポ蛋白中コレステロールを2つの工程で定量する方法において用いる、 (1)コレステロールエステラーゼ、コレステロールオキシダーゼ、コレステロールエステラーゼ、コレステロールオキシダーゼを有し、測定対象以外のリポ蛋白中のコレステロールを反応系外に導くための第1試薬組成物と、 (2)測定対象リポ蛋白中コレステロールを定量するための第2試薬組成物と、 を含む被検体試料中のリポ蛋白コレステロール定量キットであって、 第1試薬組成物および第2試薬組成物のいずれかに、少なくともカップラー、鉄錯体、ペルオキシダーゼ、カタラーゼ、水素供与体および界面活性剤が含まれ、カップラーと水素供与体が同一の試薬組成物中に含まれることはなく、第1試薬組成物および第2試薬組成物のいずれかの試薬組成物において同一試薬組成物中にカップラー、鉄錯体、およびペルオキシダーゼを共存させないことを特徴とするリポ蛋白コレステロール定量キット。

Description

リポ蛋白コレステロールの定量方法およびキット
 本発明は、リポ蛋白中のコレステロール測定方法および試薬に関する。
 コレステロールは細胞の主要な構成成分の1つだが、過剰なコレステロールは血管の内皮細胞下でマクロファージに取り込まれることにより泡沫細胞が形成され、動脈硬化の初期病変を呈することから臨床的に重要な成分である。コレステロールはリポ蛋白の形で血液中に運搬され、リポ蛋白には異なる機能を持ったVLDL、HDL、LDLなどが存在する。また各種リポ蛋白はさらに亜分画に分類される。リポ蛋白亜分画として、HDLは粒子サイズが小さくより高密度なHDL3と粒子サイズが大きく低密度なHDL2に分類される。またHDLはアポリポ蛋白質E(apoE)の含有率の違いからapoE containing HDLとapoE deficient HDLに分けることができる。VLDLには通常のサイズに対し、リポプロテインリパーゼにより分解され、小型化したレムナントが存在する。
 これらの亜分画を含めたリポ蛋白中コレステロールは汎用の自動分析装置を用いて測定することができる。
 リポ蛋白中コレステロールの測定技術が報告されている(特許文献1~5を参照)。
特許第3164829号公報 特許第3058602号公報 特許第5706418号公報 特許第5706418号公報 特許第6054051号公報
 リポ蛋白亜分画を含めたリポ蛋白中コレステロールの測定キットとしては、一般的に第1工程で用いられる第1試薬、第2工程で用いられる第2試薬を含む測定キットがあり、測定に必要な成分を第1試薬組成物、第2試薬組成物に分けて存在させる。
 しかしながら、これらのリポ蛋白中コレステロールを定量する測定キットに含まれる試薬は液状のため時間の経過とともに自然に黄色に発色してくるという問題があり、そのため試薬の保存安定性に問題があった。
 本発明の目的は、検体の前処理操作をすることなしに、自動分析装置を用いてリポ蛋白中コレステロールを2つの工程で定量する方法において、保管時の試薬の自然発色を抑える方法、およびこの方法に用いられる定量キットを提供することである。
 本発明者らは鋭意研究の結果、第1工程で用いる第1試薬組成物、および第2工程で用いる第2試薬組成物に含まれる酵素、水素供与体、カップラー、鉄錯体の各成分の組み合わせをコントロールすることにより、特に試薬中の自然発色を抑えることができ試薬安定性が改善されることを見いだした。
 すなわち、測定対象以外のリポ蛋白中のコレステロールを消去または保護するための第1試薬組成物、および測定対象リポ蛋白中コレステロールを定量するための第2試薬組成物において、カップラー、鉄錯体、ペルオキシダーゼを同一試薬組成物中に共存させることなく、特に、カップラーと鉄錯体を同一試薬組成物中に共存させることなく前記の成分を2つの試薬組成物中に分けて存在させることにより、試薬の自然発色を抑えることを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下のとおりである。
[1] リポ蛋白中コレステロールを2つの工程で定量する方法において用いる、
(1)コレステロールエステラーゼ、コレステロールオキシダーゼを有し、測定対象以外のリポ蛋白中のコレステロールを反応系外に導くための第1試薬組成物と、
(2)測定対象リポ蛋白中コレステロールを定量するための第2試薬組成物と、
を含む被検体試料中のリポ蛋白コレステロール定量キットであって、
 第1試薬組成物および第2試薬組成物のいずれかに、少なくともカップラー、鉄錯体、ペルオキシダーゼ、水素供与体および界面活性剤が含まれ、カップラーと水素供与体が同一の試薬組成物中に含まれることはなく、第1試薬組成物および第2試薬組成物のいずれかの試薬組成物において同一試薬組成物中にカップラー、鉄錯体、およびペルオキシダーゼを共存させないことを特徴とするリポ蛋白コレステロール定量キット。
[2] リポ蛋白中コレステロールを2つの工程で定量する方法において用いる、
(1)コレステロールエステラーゼ、コレステロールオキシダーゼを有し、測定対象以外のリポ蛋白中のコレステロールを反応系外に導くための第1試薬組成物と、
(2)リポ蛋白中コレステロールを定量するための第2試薬組成物と、  
を含む被検体試料中のリポ蛋白コレステロール定量キットであって、
 第1試薬組成物および第2試薬組成物のいずれかに、少なくともカップラー、鉄錯体、ペルオキシダーゼ、水素供与体および界面活性剤が含まれ、カップラーと水素供与体が同一の試薬組成物中に含まれることはなく、第1試薬組成物および第2試薬組成物のいずれかの試薬組成物において同一試薬組成物中にカップラーおよび鉄錯体を共存させないことを特徴とするリポ蛋白コレステロール定量キット。
[3]第1試薬組成物がカタラーゼおよびカップラーを含み、第2試薬組成物が、水素供与体、鉄錯体およびペルオキシダーゼを含むことを特徴とする[1]または[2]のリポ蛋白コレステロール定量キット。
[4]第1試薬組成物がペルオキシダーゼおよびカップラーを含み、第2試薬組成物が、水素供与体および鉄錯体を含むことを特徴とする[1]または[2]のリポ蛋白コレステロール定量キット。
[5]第1試薬組成物がカタラーゼ、カップラーおよび鉄錯体を含み、第2試薬組成物が、水素供与体およびペルオキシダーゼを含むことを特徴とする[1]のリポ蛋白コレステロール定量キット。
[6]第1試薬組成物がペルオキシダーゼおよび水素供与体を含み、第2試薬組成物が、カップラーおよび鉄錯体を含むことを特徴とする[1]のリポ蛋白コレステロール定量キット。
[7]第1試薬組成物がカタラーゼ、水素供与体および鉄錯体を含み、第2試薬組成物が、ペルオキシダーゼおよびカップラーを含むことを特徴とする[1]または[2]のリポ蛋白コレステロール定量キット。
[8]第1試薬組成物がペルオキシダーゼ、水素供与体および鉄錯体を含み、第2試薬組成物が、カップラーを含むことを特徴とする[1]または[2]のリポ蛋白コレステロール定量キット。
[9]第1試薬組成物が、さらにカタラーゼを含むことを特徴とする[4]、[6]および[8]のいずれかのリポ蛋白コレステロール定量キット。
[10]第1試薬組成物が、さらにリポ蛋白以外のリポ蛋白に作用する界面活性剤を含み、第2試薬組成物がさらに少なくともリポ蛋白に作用する界面活性剤を含むことを特徴とする[1]から[9]のいずれかのリポ蛋白コレステロール定量キット。
[11]測定対象の前記リポ蛋白コレステロールが、LDLコレステロール、HDLコレステロール、HDL3コレステロール、レムナントコレステロールまたはapoE containing HDL-コレステロールである、[1]から[10]のいずれかのリポ蛋白コレステロール定量キット。
[12]第1試薬組成物に含まれる界面活性剤がポリオキシエチレン多環フェニルエーテル誘導体またはポリオキシエチレン-ポリオキシプロピレンブロックポリマーを含むことを特徴とする[10]または[11]のリポ蛋白コレステロール定量キット。
[13]ポリオキシエチレン多環フェニルエーテル誘導体がポリオキシエチレンベンジルフェニルエーテル誘導体および/またはポリオキシエチレンスチレン化フェニルエーテル誘導体を含むことを特徴とする[12]のリポ蛋白コレステロール定量キット。
[14] リポ蛋白中コレステロールを2つの工程で定量する方法であって、
(1)コレステロールエステラーゼ、コレステロールオキシダーゼを有し測定対象以外のリポ蛋白中のコレステロールを反応系外に導く第1工程と、
(2)前記第1工程で残存する測定対象リポ蛋白中のコレステロールを定量する第2工程、
を含む被検体試料中のリポ蛋白コレステロール定量方法であって、
 (1)の工程または(2)の工程のいずれかで、少なくともカップラー、鉄錯体、ペルオキシダーゼ、水素供与体および界面活性剤を用い、カップラーと水素供与体が同一の工程で用いられることはなく、
 (1)または(2)いずれかの工程においてカップラー、鉄錯体、およびペルオキシダーゼを同時に用いないことを特徴とするリポ蛋白コレステロール定量方法。
[15] リポ蛋白中コレステロールを2つの工程で定量する方法であって、
(1)コレステロールエステラーゼ、コレステロールオキシダーゼの存在下で測定対象以外のリポ蛋白中のコレステロールを反応系外に導く第1工程と、
(2)前記第1工程で残存する測定対象リポ蛋白中のコレステロールを定量する第2工程、
を含む被検体試料中のリポ蛋白コレステロール定量方法であって、(1)または(2)いずれかの工程においてカップラーおよび鉄錯体を同時に用いないことを特徴とするリポ蛋白コレステロール定量方法。
[16]第1工程でカタラーゼおよびカップラーを用い、第2工程で、水素供与体、鉄錯体およびペルオキシダーゼを用いることを特徴とする[14]または[15]のリポ蛋白コレステロール定量方法。
[17]第1工程でペルオキシダーゼおよびカップラーを用い、第2工程で、水素供与体および鉄錯体を用いることを特徴とする[14]または[15]のリポ蛋白コレステロール定量方法。
[18]第1工程でカタラーゼ、カップラーおよび鉄錯体を用い、第2工程で、水素供与体およびペルオキシダーゼを用いることを特徴とする[14]のリポ蛋白コレステロール定量方法。
[19]第1工程でペルオキシダーゼおよび水素供与体を用い、第2工程で、カップラーおよび鉄錯体を用いることを特徴とする[14]のリポ蛋白コレステロール定量方法。
[20]第1工程でカタラーゼ、水素供与体および鉄錯体を用い、第2工程で、ペルオキシダーゼおよびカップラーを用いることを特徴とする[14]または[15]のリポ蛋白コレステロール定量方法。
[21]第1工程でペルオキシダーゼ、水素供与体および鉄錯体を用い、第2工程で、カップラーを用いることを特徴とする[14]または[15]のリポ蛋白コレステロール定量方法。
[22]第1工程でさらにカタラーゼを用いることを特徴とする[17]、[19]および[21]のいずれかのリポ蛋白コレステロール定量方法。
[23]第1工程で、さらに測定対象以外のリポ蛋白に作用する界面活性剤を含み、第2工程で、さらに少なくとも測定対象リポ蛋白に作用する界面活性剤を用いることを特徴とする[14]から[22]のいずれかのリポ蛋白コレステロール定量方法。
[24]測定対象の前記リポ蛋白コレステロールが、LDLコレステロール、HDLコレステロール、HDL3コレステロール、レムナントコレステロールまたはapoE containing HDL-コレステロールである、[14]から[23]いずれかのリポ蛋白コレステロール定量方法。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2020-096248号の開示内容を包含する。
 本発明により、測定対象であるリポ蛋白中コレステロールを他の測定対象外のリポ蛋白中コレステロールと分けて分別測定する場合において、2つの試薬組成物の保存中の自然発色を抑え、安定性が改善され安定してリポ蛋白中コレステロールを定量する方法、およびこの方法に用いられる定量キットおよびこの方法を実施するための製造方法が提供される。
比較例1における第2試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 比較例2における第1試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 実施例1における第1試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 実施例1における第2試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 実施例2における第1試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 実施例2における第2試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 実施例3における第1試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 実施例3における第2試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 実施例4における第1試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 実施例4における第2試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 実施例5における第1試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 実施例5における第2試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 実施例6における第1試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 実施例6における第2試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 実施例7における第1試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 実施例7における第2試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 実施例8における第1試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 実施例8における第2試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 実施例9における第1試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。 実施例9における第2試薬組成物の調製直後および保存後の吸収スペクトルを示す図である。
 以下、本発明について詳細に説明する。
 リポ蛋白は大きくCM、VLDL、LDLおよびHDLに分けられ、各リポ蛋白はさらに亜分画に分けられる。これらの分画および亜分画のいくつかは、粒子サイズまたは比重により区別できる。その粒子サイズの直径は、報告者により異なるがVLDLが30nm~80nm(30nm~75nm)で、LDLが22nm~28nm(19nm~30nm)、HDLが直径7nm~12nm、HDL亜分画であるHDL3は直径7nm~8.5nm、HDL2直径8.5nm~10nmである。比重はVLDLが1.006以下、LDLが1.019~1.063、HDLが1.063~1.21、HDL2が1.063~1.125、HDL3が1.125-1.210である。粒子直径はグラジエントゲル電気泳動(GGE)(JAMA, 260, p.1917-21, 1988)、NMR(HANDBOOK OF LIPOPROTEIN TESTING 2nd Edition、Nader Rifai他編、AACC PRESS:TheFats of Life Summer 2002、LVDD 15 YEAR ANNIVERSARY ISSUE、Volume AVI No.3、p.15-16)により測定でき、比重は超遠心分離による分析(Atherosclerosis, 106, p.241-253, 1994: Atherosclerosis, 83, p.59, 1990)に基づいて決定できる。HDL-コレステロール(HDL-C)、LDLコレステロール(LDL-C)は自動分析装置にて測定できる。
 HDLはApoEの含量比率の違いからApoE-Containing HDLとApoE deficient HDLの亜分画に分類することが出来る。通常、ApoE-Containing HDLはHDL中にApoEを含有したもの、ApoE deficient HDLはApoEを含有しないものを示す。ApoEが存在するか又は含有量が多いHDLをApoE-rich HDLと呼ぶことがあるが、これもApoE-containing HDLに含まれる。HDL内部に存在するApoE含有量の分布は連続しているので、リポ蛋白中のApoE含有比により、明確にApoE-Containing HDLとApoE deficient HDLを区別できるものではないが、例えばApoE-Containing HDL-C を含めた総HDL-Cを測定できる13%PEG法(J Lipid Research 38, 1204-16: 1997)からApoE-Containing HDL-Cを測定せずにApoE-deficient HDL-Cのみを測定できるリンタングステン酸-デキストラン硫酸-マグネシウム沈殿法(PT-DS-Mg法)(BIOCHEMICAL MEDICINE AND METABOLIC BIOLOGY 46, 329-343 (1991))を差し引くことによりapoE containing HDL-コレステロール(apoE containing HDL-C)を定量することができる。また界面活性剤の濃度による反応性の違いを利用してapoE containing HDL-Cを自動分析装置にて測定できる(Ann Clin Biochem 56, 123-132 (2019))。
 レムナント(レムナント様リポ蛋白:RLP)はメタボリックシンドロームなどで脂質代謝が滞った場合に発生する特殊リポ蛋白で、CMやVLDLがリポプロテインリパーゼの働きにより分解された代謝産物である。特定のサイズや比重により定義されないが、リポ蛋白中の構成アポ蛋白質に対する抗体の固定化ゲルや、リン脂質分解酵素または界面活性剤等を用いて定量することができる。またコレステロールエステラーゼの分子量による反応性の違いを利用してRLP-コレステロール(RLP-C)を自動分析装置にて測定できる(J Applied Laboratory Medicine 3,26-36, (2018))。
 本発明においては、HDL-コレステロール(HDL-C)、LDL-コレステロール(LDL-C)、HDL3-コレステロール(HDL3-C)、(RLP-C)、およびapoE containing HDL-Cが測定対象である。
 本発明の各種リポ蛋白定量キットは、リポ蛋白中コレステロールを2つの工程で定量する方法において用いられる。本発明の定量キットにおいて、第1試薬組成物は第1工程において用いられ、第2試薬組成物は第2工程において用いられる。
 本発明のリポ蛋白中コレステロール定量キットにおける第1試薬組成物は、コレステロールエステラーゼ、コレステロールオキシダーゼを含み、コレステロールエステラーゼ、コレステロールオキシダーゼの存在下で、測定対象以外のリポ蛋白中コレステロールを反応系外に導く。
 第1試薬組成物の成分としては、例えばアルブミン、緩衝液、界面活性剤、カタラーゼ、ペルオキシダーゼ、ポリオキシエチレン誘導体からなる界面活性剤、水素供与体、カップラー等を用いることができるが、これらに限定されない。
 本発明のリポ蛋白中コレステロール定量キットにおける第2試薬組成物は、測定対象リポ蛋白中コレステロールを定量するための成分を含む。第2試薬組成物の成分は、第1試薬組成物によって異なるが、リポ蛋白中コレステロールを定量できる成分であれば特に限定されず、公知の物質を用いることができる。
 第2試薬組成物の成分としては、例えばペルオキシダーゼ、ポリオキシエチレン誘導体、水素供与体、カップラーを用いることができるが、これらに限定されない。
 本発明の方法は2工程からなり、第1工程において、測定対象以外のリポ蛋白に作用し得る界面活性剤をコレステロールエステラーゼおよびコレステロールオキシダーゼの存在下で被検体試料に作用させ、リポ蛋白からの遊離により生じたコレステロールをコレステロールオキシダーゼと反応させ反応系外へ導く。この際、測定対象を保護する界面活性剤の存在下で測定対象リポ蛋白コレステロールが反応系外に導かれるのを防ぐことできる。さらに、第2工程において、第1工程で反応せずに残存したリポ蛋白中のコレステロールを定量する。
 第1試薬組成物および第2試薬組成物のいずれかに、少なくともカップラー、鉄錯体、ペルオキシダーゼ、カタラーゼ、水素供与体および界面活性剤が含まれ、カップラーと水素供与体が同一の試薬組成物中に含まれることはない。
 本発明の方法は通常、自動分析装置内で行われる。
 本発明の方法では、リポ蛋白コレステロールの濃度を定量する際に、水素供与体とカップラーをペルオキシダーゼの存在下でカップリング反応させ、生成した色素により特定波長の吸光度を測定する。その際反応促進剤として鉄錯体が使用される。しかしながら、カップラーとペルオキシダーゼ、鉄錯体が同一試薬組成物中に存在すると、試薬が徐々に自然発色し、リポ蛋白コレステロールの定量に影響を及ぼすという問題があった。そこで、本発明ではカップラー、ペルオキシダーゼ、および鉄錯体のうち、いずれかを他とは別の試薬組成物中に存在させることにより試薬の自然発色を抑え安定化させる事が可能となった。ここで、「ペルオキシダーゼが存在する」とは、ペルオキシダーゼ活性を持つ酵素が存在し、ペルオキシダーゼが触媒する反応が起こり得ることをいう。「ペルオキシダーゼが存在する」という語を「ペルオキシダーゼ活性が存在する」ということもできる。コレステロールエステラーゼ、コレステロールオキシダーゼ、カタラーゼについても同様である。ペルオキシダーゼ、コレステロールエステラーゼ、コレステロールオキシダーゼ、カタラーゼを含む場合、これらの活性が働くことにより測定に必要な触媒反応が起こる。従って、これらの酵素の存在は、これらの酵素活性を測定することで証明できる。
 本発明の方法においては、カップラー、ペルオキシダーゼ活性、および鉄錯体を、第1工程で用いる第1試薬組成物中と第2工程で用いる第2試薬組成物中に以下のように分離して存在させる。
(1)第1工程で用いる第1試薬組成物中にカップラーを存在させ、ペルオキシダーゼ活性および鉄錯体を第2工程で用いる第2試薬組成物中に存在させる。
(2)第1試薬組成物中にカップラーおよびペルオキシダーゼ活性を存在させ、鉄錯体を第2試薬組成物中に存在させる。
(3)第1試薬組成物中にペルオキシダーゼ活性を存在させ、カップラーおよび鉄錯体を第2試薬組成物中に存在させる。
(4)第1試薬組成物中にカップラーおよび鉄錯体を存在させ、ペルオキシダー活性を第2試薬組成物中に存在させる。
(5)第1試薬組成物中にペルオキシダー活性および鉄錯体を存在させ、カップラーゼを第2試薬組成物中に存在させる。
(6)第1試薬組成物中に鉄錯体を存在させ、ペルオキシダー活性およびカップラーゼを第2試薬組成物中に存在させる。
 さらに、好ましくは、カップラーと水素供与体は別々の試薬組成物中に分離して存在させる。
 以下各工程について詳述する。
 本発明のキットは、測定対象以外のリポ蛋白中のコレステロールを反応系外に導く工程で用いる第1の試薬生成物、および測定対象リポ蛋白中コレステロールを測定する工程で用いる第2試薬生成物を含む。
 測定対象以外のリポ蛋白中コレステロールを反応系外に導く工程では、測定対象以外のリポ蛋白中コレステロールを消去し反応系外に導く、測定対象以外のリポ蛋白中を凝集させたり、後の工程で反応しないよう阻害したりする等の公知の技術を用いることができる。
 第1工程である、測定対象以外のリポ蛋白中コレステロールを消去し反応系外に導く工程は以下のいずれかの方法で行われる。
(1)これらのリポ蛋白中コレステロールより、コレステロールエステラーゼおよびコレステロールオキシダーゼにより過酸化水素を生成させ、カタラーゼの存在下で過酸化水素を水と酸素に分解させる方法、
(2)コレステロールエステラーゼおよびコレステロールオキシダーゼにより生じた過酸化水素、ならびにカップラーもしくは水素供与体の存在下で無色キノンを形成させる方法、ならびに
(3)カタラーゼの存在下で過酸化水素を分解させ、かつ同時にカップラーまたは水素供与体の存在下で無色キノンを形成させる方法。
 (1)のカタラーゼの存在下で過酸化水素を分解させる方法では第1工程を実施する第1試薬組成物中にカタラーゼが存在する必要がある。また、(2)の無色キノンを形成させる方法では少なくともカップラー、水素供与体の一方が第1試薬組成物中に存在している必要があり、さらにペルオキシダーゼが第1試薬組成物中に存在している必要がある。(3)のカタラーゼにより過酸化水素を分解させ、かつそれと同時にカップラーまたは水素供与体の存在下で無色キノンを形成させる方法では、カタラーゼおよびペルオキシダーゼならびにカップラーもしくは水素供与体が第1試薬組成物中に存在している必要がある。
 本発明で用いるカップリング反応に用いるカップラーとしては例えば4-アミノアンチピリン、アミノアンチピリン誘導体、バニリンジアミンスルホン酸、メチルベンズチアゾリノンヒドラゾン、スルホン化メチルベンズチアゾリノンヒドラゾン等を用いることができるが、これらに限定されない。
 本発明で用いる水素供与体としてはアニリン誘導体が好ましく、アニリン誘導体としてはN-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3-メチルアニリン(TOOS)、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメチルアニリン(MAOS)、N-エチル-N-(3-スルホプロピル)-3-メチルアニリン(TOPS)、N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメトキシアニリン(HDAOS)、N-(3-スルホプロピル)アニリン(HALPS)、N-(3-スルホプロピル)-3-メトキシ-5-アニリン(HMMPS)、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-4-フルオロ-3,5-ジメトキシアニリン(FDAOS)、N-エチル-N-(3-メチルフェニル)-N’-サクシニルエチレンジアミン(EMSE)等があげられる。水素供与体の使用濃度は反応液中の最終濃度で0.1~8mmol/Lが好ましい。
 本発明に用いる鉄錯体としてフェロシアン化カリウム、フェロシアン化ナトリウム、ポルフィリン鉄錯体、EDTA-鉄錯体等があげられる。鉄錯体の濃度としては0.001~0.05mmol/Lが望ましい。
 本発明の方法の測定対象以外のリポ蛋白中コレステロールを消去し、反応系外に導くための第1工程においてはポリオキシエチレン誘導体からなる界面活性剤を用いる。さらに本発明におけるHDL3-C、RLP-C測定では、第1工程で用いる第1試薬組成物中にスフィンゴミエリナーゼが存在していても良い。「スフィンゴミエリナーゼが存在する」とはスフィンゴミエリナーゼ活性を持つ酵素が存在し、スフィンゴミエリンを分解する反応が起こり得ることをいう。「スフィンゴミエリナーゼが存在する」いう語を「スフィンゴミエリナーゼ活性が存在する」ということもできる。ホスフォリパーゼCやホスフォリパーゼDなどのホスフォリパーゼがスフィンゴミエリナーゼ活性を持つ場合は、これらの酵素も含まれる。スフィンゴミエリナーゼの試薬中濃度は0.1~100U/mLが好ましく、0.2~20U/mLがより好ましい。反応時の反応液中の濃度は、0.05~100U/mLが好ましく、0.1~20U/mLがより好ましい。スフィンゴミエリナーゼの好ましい具体例としては、SPC(旭化成社製)、Sphingomyelinase from bacillus cereus、Sphingomyelinase from staphylococcus aureus (SIGMA社製)等が挙げられるが、これらに限定されるものではない。
 測定対象以外のリポ蛋白中のコレステロールを消去する工程では測定対象以外のリポ蛋白に作用するが測定対象リポ蛋白とは反応しない界面活性剤の存在下で測定対象以外のリポ蛋白コレステロールを消去する。測定対象以外のリポ蛋白に作用反応する界面活性剤として、ポリオキシエチレン誘導体が挙げられる。ポリオキシエチレン誘導体の例としてはポリオキシエチレンアルキルエーテル、ポリオキシエチレン多環フェニルエーテル誘導体、ポリオキシエチレン-ポリオキシプロピレンブロックポリマーを挙げることができる。ポリオキシエチレン多環フェニルエーテル誘導体の好ましい例として、ポリオキシエチレンベンジルフェニル誘導体およびその硫酸エステル塩やポリオキシエチレンスチレン化フェニルエーテル誘導体およびその硫酸エステル塩、特殊フェノールエトキシレートが挙げられる。ポリオキシエチレン多環フェニルエーテル誘導体の具体例として、エマルゲンA-60、エマルゲンA-500、エマルゲンB-66、エマルゲンA-90(以上花王社製)、ニューコール703、ニューコール704、ニューコール706、ニューコール707、ニューコール708、ニューコール709、ニューコール710、ニューコール711、ニューコール712、ニューコール714、ニューコール719、ニューコール723、ニューコール729、ニューコール733、ニューコール740、ニューコール747、ニューコール780、ニューコール610、ニューコール2604、ニューコール2607、ニューコール2609、ニューコール2614(以上日本乳化剤社製)、ノイゲンEA-87、ノイゲンEA-137、ノイゲンEA-157、ノイゲンEA-167、ノイゲンEA-177、ノイゲンEA-197D、ノイゲンEA-207D(以上第一工業製薬社製)、ブラウノンDSP-9、ブラウノンDSP-12.5、ブラウノンTSP-7.5、ブラウノンTSP-16、ブラウノンTSP-50(以上青木油脂社製)等があげられる。ポリオキシエチレン多環フェニルエーテル硫酸エステル塩の具体例として、ハイテノールNF-08、ハイテノールNF-13、ハイテノールNF-17、ハイテノールNF0825(以上、第一工業製薬社製)、ニューコール707-SF、ニューコール707-SFC、ニューコール707-SN、ニューコール714-SF、ニューコール714-SN、ニューコール723-SF、ニューコール740-SF、ニューコール780-SF、ニューコール2607-SF、2614-SF(以上日本乳化剤社製)等が挙げられる。界面活性剤の試薬中濃度は0.3~5%(w/v)が好ましく、0.5~3%(w/v)がより好ましい。反応時の反応液中の濃度は、0.15~5%が好ましく、0.25~3%(w/v)がより好ましい。なお、試薬中の界面活性剤は、IR、NMR、LC-MS等を組み合わせて解析する方法によって同定できる。界面活性剤のイオン性(非イオン性、陰イオン性、陽イオン性)を確認する方法としては、酸性またはアルカリ性条件での有機溶媒による抽出法、固相抽出法があげられる。界面活性剤の構造を決定する方法としてはLC-MSMS、NMRを用いて解析する方法があげられる。
 上記測定対象以外のリポ蛋白中のコレステロールを消去する工程においては、測定対象以外のリポ蛋白に作用反応する界面活性剤の存在下で、コレステロールエステラーゼが測定対象以外のリポ蛋白に作用し、生じたコレステロールを、コレステロールオキシダーゼ、等のコレステロールと反応する酵素の存在下で反応させ消去することにより、これらリポ蛋白中のコレステロールを反応系外へ導く。ここで、「界面活性剤が作用(反応)する」とは、界面活性剤がリポ蛋白を分解し、リポ蛋白中のコレステロールが遊離することをいう。例えば「測定対象以外のリポ蛋白に作用(反応)する界面活性剤」という場合、界面活性剤がリポ蛋白に全く作用しないことは要求されず、主に測定対象以外のリポ蛋白に作用すればよい。「消去」とは、被検体試料中の物質を分解し、その分解物が次の工程において検出されないようにすることを意味する。すなわち、「測定対象以外のリポ蛋白中のコレステロールを消去する」とは、被検体試料中の測定対象以外のリポ蛋白を分解し、その分解産物であるこれらリポ蛋白中のコレステロールがその後の工程で検出されないようにすることをいう。
 本発明において、「反応系外に導く」とは、測定対象以外のリポ蛋白に含まれるコレステロールが測定対象リポ蛋白中コレステロールの定量に影響を及ぼさないように、コレステロールを消去、凝集させたり、後の工程で反応しないよう阻害したりする等のことを言う。
 当業者ならば、各測定対象リポ蛋白コレステロール以外のリポ蛋白コレステロールを反応系該に導くために適宜適切な界面活性剤を選択することができる。例えば、それぞれの測定対象のリポ蛋白コレステロールに対して以下の界面活性剤を用いることが好ましい。HDL-C:ポリオキシエチレン-ポリオキシプロピレンブロックポリマー
LDL-C:ポリオキシエチレン多環フェニルエーテル
HDL3-C:ポリオキシエチレン-ポリオキシプロピレンブロックポリマー
レムナント-C:ポリオキシエチレン多環フェニルエーテル
apoE containing HDL-C:ポリオキシエチレン多環フェニルエーテル
 上記界面活性剤の存在下でコレステロールエステラーゼ、コレステロールオキシダーゼを作用させコレステロールから過酸化水素を発生させ、発生した過酸化水素は消去される。反応液中のコレステロールエステラーゼ濃度は10~1000U/L程度が好ましい。また、コレステロールオキシダーゼは細菌や酵母由来のものを用いることができ、反応液中のコレステロールオキシダーゼの濃度は100~3500U/L程度が好ましい。さらに、カタラーゼの反応液中の濃度は40~2500U/L程度が好ましい。また、過酸化水素を無色キノンへ転化する場合の反応液中のペルオキシダーゼの濃度は400~2000U/Lが好ましい。
 測定対象以外のリポ蛋白中コレステロールを消去する工程において、上記界面活性剤およびコレステロールエステラーゼと作用・反応したリポ蛋白中のコレステロールはコレステロールオキシダーゼ等のコレステロール反応酵素と反応させ反応系外へ導くことができる。このような反応により、測定対象以外のリポ蛋白中のコレステロールを反応系外へ導くことにより、その後の工程においては、反応液中にリポ蛋白としては測定対象のみが残存することになる。本発明においては、このように測定対象以外のリポ蛋白を消去し、反応系外へ導き、その後の工程で測定対象以外のリポ蛋白のコレステロールを検出できないようにすることを、「測定対象以外のリポ蛋白と測定対象リポ蛋白を差別化する」ということがある。
 また測定対象以外のリポ蛋白中コレステロールを消去する工程では測定対象以外のリポ蛋白中コレステロールが完全に消去されていなくても良いが、その場合は測定対象リポ蛋白中コレステロールを定量する工程において、リポ蛋白中コレステロールが選択的に測定されるような界面活性剤を用いれば良い。
 コレステロールエステラーゼの測定対象以外のリポ蛋白中コレステロールを消去し反応系外に導く工程の反応液中の濃度として10 U/L~10000 U/Lが好ましく、300 U/L~2500U/Lがさらに好ましく、600 U/L~2000 U/Lが特に好ましい。本発明におけるコレステロールエステラーゼとしてはコレステロールエステルを加水分解する酵素であれば特に限定されず、動物または微生物由来のコレステロールエステラーゼを用いることができる。
 測定対象以外のリポ蛋白中コレステロールを消去する工程の反応液中には、各種リポ蛋白に対する作用を調整するために、任意的にリポ蛋白分解酵素を加えることもできる。リポ蛋白分解酵素としては、リポプロテインリパーゼを用いることができる。リポプロテインリパーゼはリポ蛋白質を分解する能力を有する酵素であれば特に限定されず動物または微生物由来のリポプロテインリパーゼを用いることができる。リポプロテインリパーゼの反応液中の濃度は10~10000U/Lが好ましく、10~5000U/Lがさらに好ましく、10~1000U/Lが特に好ましい。
 本発明では測定対象以外のリポ蛋白中のコレステロールを反応系外に導く工程において反応せずに残存したリポ蛋白中のコレステロールをその後の第2工程で定量する。この定量工程では従来から用いられている定量方法を用いることができる。例えば、凝集剤を添加して形成された特異的凝集物の含有量を比濁測定によって定量する方法、特異的な抗体による抗原抗体反応を用いる方法、酵素を用い分解生成物を定量する方法等がある。これらのうち、酵素を用い分解生成物を定量する方法が好ましい。
 該方法においては、コレステロールエステラーゼ、コレステロールオキシダーゼ等のコレステロール測定用酵素を加えてリポ蛋白のコレステロールを遊離・分解し、その反応生成物を定量する。この定量工程の際、第1工程で測定対象以外のリポ蛋白コレステロールが反応系外に導かれている場合は、測定対象のリポ蛋白中のコレステロールを定量するために、少なくとも測定対象リポ蛋白に作用する界面活性剤を用いればよい。少なくとも測定対象リポ蛋白に作用する界面活性剤とは測定対象リポ蛋白のみに作用する界面活性剤でもよいし、測定対象リポ蛋白以外に他のリポ蛋白にも作用する界面活性剤、全てのリポ蛋白に作用する界面活性剤であってもよい。
 第1工程で測定対象以外のリポ蛋白中のコレステロールが消去されずに、残っている場合は、第2工程では残ったリポ蛋白のうち測定対象のリポ蛋白のみに反応する界面活性剤を用いる必要がある。
 全てのリポ蛋白に作用する界面活性剤としては、ポリオキシエチレン誘導体をあげることができ、市販の総コレステロール測定用試薬等に用いられている界面活性剤であればどれでも使用することができる。具体的には、例えばポリオキシエチレンアルキルフェニルエーテル(エマルゲン909(花王社製)、TritonX100)、ポリオキシエチレンアルキルエーテル(エマルゲン707(花王社製)、エマルゲン709(花王社製))、等が挙げられる。
 リポ蛋白を定量する工程で用いられる界面活性剤の反応液中の濃度は、好ましくは0.01~10%(w/v)程度であり、さらに好ましくは0.1~5%(w/v)程度である。
 本発明で用いるコレステロールエステラーゼ活性、コレステロールオキシダーゼ活性、スフィンゴミエリナーゼ活性、ペルオキシダーゼ活性、カタラーゼ活性は以下の方法にて測定できる。以下の記載は例示であり、公知のいかなる方法によっても測定することができる。
 コレステロールオキシダーゼ活性の測定では、基質液として6mMコレステロール溶液(イソプロパノールに溶解)を用いる。測定対象を2-4U/mLとなるように希釈液(0.1M リン酸緩衝液、TritonX100、pH7.0)を加え、希釈後の溶液3mLを37℃5分加温後に基質液0.05mLを加える。その後、混合液を37℃で反応させ波長240nm吸光度変化量を測定する。本発明では37℃反応後、2分から7分までの吸光度変化量を測定し、コレステロールオキシダーゼ活性を算出した。上記のとおり測定した吸光度変化量から換算した単位量あたりの酵素活性が3U/L以上あれば、測定対象はコレステロールオキシダーゼ活性が存在すると言え、言い換えれば、「コレステロールオキシダーゼ」が含まれているといえる。
 コレステロールエステラーゼ活性測定では、基質(0.04%リノレン酸コレステロール、1%TritonX100、0.6%コール酸ナトリウム溶液)、300U/mLコレステロールオキシダーゼ溶液、酵素希釈液(20mMリン酸緩衝液、0.5mM EDTA・2Na、2mM MgCl2、0.2% BSA、pH7.5)、反応液(0.06% 4アミノアンチピリン、0.4% フェノール、7.5KU/L ペルオキシダーゼ)を用いる。反応液1.75mLと基質液1.0mLを混合後、37℃で5分加温し、0.1mLコレステロールオキシダーゼ溶液を加える。37℃、2分加温後に希釈液で希釈した測定対象0.1mLを加え、混合液を37℃で反応させ波長500nmの吸光度変化量を測定する。本発明では37℃反応後、0分から3.5分までの吸光度変化量を測定し、コレステロールエステラーゼ活性を算出した。上記のとおり測定した吸光度変化量から換算した単位量あたりの酵素活性が8U/L以上あれば、測定対象はコレステロールエステラーゼ活性が存在すると言え、言い換えれば、「コレステロールエステラーゼ」が含まれているといえる。
 ペルオキシダーゼ活性測定では反応液1(1.5mM HDAOS、0.05% TritonX100、50mM リン酸緩衝液、pH7.0)、反応液2(5mM 4アミノアンチピリン、0.05% TritonX100、1% 過酸化水素、50mMリン酸緩衝液、pH7.0)、希釈液(50mM リン酸緩衝液、pH7.0)を用いる。0.3mLの反応液1と希釈液で希釈した測定対象0.08mLを混合し37℃で5分加温する。その後0.1mLの反応液2を加え、37℃で反応させ主波長600nm、副波長700nmの吸光度変化量を測定する。本発明では37℃反応後、2分から5分までの吸光度変化量を測定しペルオキシダーゼ活性を算出した。上記のとおり測定した吸光度変化量から換算した単位量あたりの酵素活性が10U/L以上あれば、測定対象はペルオキシダーゼ活性が存在すると言え、言い換えれば、「ペルオキシダーゼ」が含まれているといえる。
 カタラーゼ活性測定では基質(0.06% 過酸化水素、50mM リン酸緩衝液、pH7.0)を用いる。基質溶液2.9mLを25℃で予備加温後、測定対象0.1mLと混合し、240nmにおける吸光度変化量を測定した。本発明では25℃反応後、0分から3分までの吸光度変化量を測定しカタラーゼ活性を算出した。上記のとおり測定した吸光度変化量から換算した単位量あたりの酵素活性が100U/L以上あれば、測定対象はカタラーゼ活性が存在すると言え、言い換えれば、「カタラーゼ」が含まれているといえる。
 スフィンゴミエリナーゼ活性測定では、反応液(0.008% スフィンゴミエリン、0.05% TritonX100溶液、10U/mL アルカリ性フォスファターゼ、10U/mL コレステロールオキシダーゼ、2U/mL ペルオキシダーゼ、0.02% 4アミノアンチピリン、0.02% TODB混合液)、反応停止液(1% ドデシル硫酸ナトリウム溶液)、希釈液(10mM トリス緩衝液、0.1% TritonX100、pH8.0)を用いる。反応液0.08mLと希釈液で希釈した測定対象0.003mL を混合し37℃で5分加温後に反応停止液0.16mLを加える。反応停止後に主波長546nm、副波長700nmの吸光度変化量を測定し、スフィンゴミエリナーゼ活性を算出した。上記のとおり測定した吸光度変化量から換算した単位量あたりの酵素活性が2U/L以上あれば、測定対象はスフィンゴミエリナーゼ活性が存在すると言え、言い換えれば、「スフィンゴミエリナーゼ」が含まれているといえる。
 本発明の方法の測定対象以外のリポ蛋白中コレステロールを消去し反応系外に導く工程において、イオン強度調整剤として1価の陽イオンおよび/または2価の陽イオンまたはそれらの塩をさらに用いることができる。イオン強度調整剤を添加することにより、測定対象リポ蛋白とそれ以外のリポ蛋白を差別化しやすくなる。具体的には塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化マンガン、塩化カルシウム、塩化リチウム、塩化アンモニウム、硫酸ナトリウム、硫酸マグネシウム、硫酸カリウム、硫酸リチウム、硫酸アンモニウム、酢酸マグネシウム等を用いることができる。イオン強度調整剤の反応時の濃度は0~100mMが好ましい。
 なお、試薬中の酵素は以下の方法でも同定できる。すなわち、標的酵素を含む試料をトリプシンで分解することにより得られた断片ペプチドをハイブリッド型質量分析計で検出する。質量分析計により得られたペプチドの質量、および質量分析計内でアルゴンガスと衝突させることにより得られたフラグメントイオンのスペクトル(MS/MSデータ)をデータベース検索(例えばMascot サーチ)することにより蛋白質を同定することができる。試料中のアミノ酸配列由来の断片ペプチドの配列がデータベースに登録されているアミノ酸配列とユニークな配列として一致する場合、対象酵素を含んでいると見なせる。
 また、試薬中の酵素は以下の方法による定量で同定できる。すなわち、標的酵素をトリプシンで分解することにより得られる断片ペプチドのうち標的酵素に特異的で、かつ質量分析において強いシグナルが得られるペプチドを定量対象ペプチドとして選択する。定量対象ペプチドについて、非標識のペプチドおよび内部標準としての安定同位体で標識したペプチドを化学合成によって作製する。標的酵素を含む試料をトリプシンによって完全に消化し、既知量の安定同位体標識ペプチドを添加して、HPLC に接続した三連四重極型質量分析計(LC-MS/MS)によりMRMモード(多重反応モニタリングモード)で測定する。定量対象ペプチドの非標識ペプチドと既知量の安定同位体標識ペプチドの混合液を同様に測定して内部標準の濃度比とピーク面積比の検量線を作成し、試料中の定量対象ペプチドの絶対量を計算することにより標的酵素を定量することができる。
 本発明の各工程における、反応温度は2℃~45℃で行うことが好ましく、25℃~40℃で行うことがさらに好ましい。
 反応時間は各工程とも1~10分間で行うことが好ましく、3~7分で行うことがさらに好ましい。
 本発明の被検体試料としては、血清、血漿を使用することができるが、これらに限定されるものではない。
 本発明で用いる自動分析装置として、例えば、TBA-120FR・200FR(東芝)、JCA-BM1250・1650・2250(日本電子)、HITACHI7180・7170(日立)、AU2700・5800・680(OLYMPUS)、cobas c501・701(Roche)等が挙げられる。
 測定対象以外のリポ蛋白中コレステロールを消去し反応系外に導く工程、測定対象リポ蛋白を測定する工程の2つの工程がある場合、測定対象以外のリポ蛋白中コレステロールを消去し反応系外に導く工程に用いる試薬組成物には、測定対象以外のリポ蛋白に反応する界面活性剤が含まれる。リポ蛋白以外のリポ蛋白中コレステロールを消去する試薬組成物には、さらに、コレステロールエステラーゼやコレステロールオキシダーゼ等のコレステロールを分解する酵素、水素供与体またはカップラーのいずれか一方、過酸化水素を消去するカタラーゼ等を含ませればよい。測定対象リポ蛋白を測定する工程に用いる試薬組成物には、測定対象リポ蛋白のみに反応する界面活性剤もしくは全てのリポ蛋白に作用する界面活性剤、水素供与体またはカップラーでリポ蛋白以外のリポ蛋白中コレステロールを消去し反応系外に導く工程で用いられていない一方を含ませることができる。この際、第1試薬組成物または第2試薬組成物には、必要に応じて、1価の陽イオン、2価の陽イオンもしくはそれらの塩、またはポリアニオンを添加してもよい。また、第1試薬組成物または第2試薬組成物には、血清アルブミンが含まれていてもよい。各試薬組成物のpHは、中性付近、例えばpH6~pH8、好ましくはpH6.5~7.5であり、緩衝液を添加してpHを調整すればよい。
 本発明の方法を測定対象以外のリポ蛋白中コレステロールを消去し反応系外に導く工程、測定対象リポ蛋白を測定する工程の順で行う場合、被検体試料に測定対象以外のリポ蛋白中コレステロールを消去させる試薬組成物を添加し反応させ、次いで測定対象リポ蛋白を測定させる試薬組成物を添加し反応させ、吸光度を測定することにより行えばよい。
 被検体試料の量、各試薬組成物の量は限定されず、各試薬組成物中の試薬の濃度等を考慮して適宜決定できるが、自動分析装置に適用可能な範囲で行う。例えば、被検体試料1~10μL、第1試薬50~300μL、第2試薬25~200μLを用いればよい。
 以下、本発明を実施例に基づき具体的に説明するが、本発明は下記実施例に限定されるものではない。
 下記実施例および比較例で用いる成分は以下のとおりである。
 下記実施例および比較例において、吸収スペクトルの測定には、HITACHI 社製のU-3900を用いた。
 水素供与体、カップラー、カタラーゼ、フェロシアン化カリウム、ペルオキシダーゼ以外の各種測定対象における第1試薬組成物または第2試薬組成物に含まれる物質の種類および濃度は以下の通りであった。
測定対象:HDL-C
第1試薬組成物
BES緩衝液,pH7.0                     100mM
コレステロールエステラーゼ                800U/L
コレステロールオキシダーゼ                1400U/L
ポリオキシエチレン-ポリオキシプロピレンブロックポリマー  0.1%(w/v)
第2試薬組成物
BES緩衝液,pH7.0                     100mM
ポリオキシエチレン多環フェニルエーテル          1.0%(w/v)
測定対象:LDL-C
第1試薬組成物
PIPES緩衝液,pH7.0                    50mM
コレステロールエステラーゼ                600U/L
コレステロールオキシダーゼ                500U/L
ポリオキシエチレン多環フェニルエーテル          0.2%(w/v)
BSA                            1.0%(w/v)
第2試薬組成物
PIPES緩衝液,pH7.0                    50mM
ポリオキシエチレンアルキルエーテル            1.0%(w/v)
測定対象:HDL3-C
第1試薬組成物
BES緩衝液,pH7.0                     100mM
コレステロールエステラーゼ                2000U/L
コレステロールオキシダーゼ                300U/L
スフィンゴミエリナーゼ                  500U/L
ポリオキシエチレン-ポリオキシプロピレンブロックポリマー  0.05%(w/v)
BSA                            1.0%(w/v)
第2試薬組成物
BES緩衝液,pH7.0                     100mM
ポリオキシエチレン多環フェニルエーテル          2.0%(w/v)
測定対象:RLP-C
第1試薬組成物
PIPES緩衝液,pH6.8                    50mM
コレステロールエステラーゼ(高分子;CEBP-M(62kDa))   5000U/L
コレステロールオキシダーゼ                2500U/L
スフィンゴミエリナーゼ                  2500U/L
ポリオキシエチレン多環フェニルエーテル          0.1%(w/v)
BSA                            1.0%(w/v)
第2試薬組成物
PIPES緩衝液,pH6.8                    50mM
コレステロールエステラーゼ(低分子;CEN(29.5kDa))    4000U/L
ポリオキシエチレンアルキルエーテル            0.1%(w/v)
測定対象:apoE containing HDL-C
第1試薬組成物
BES緩衝液,pH7.0                     100mM
コレステロールエステラーゼ                800U/L
コレステロールオキシダーゼ                1600U/L
ポリオキシエチレン多環フェニルエーテル          0.067%(w/v)
第2試薬組成物
BES緩衝液,pH7.0                     100mM
ポリオキシエチレン多環フェニルエーテル          1.0%(w/v)
[比較例1]
 第2工程を行う第2試薬組成物について、上述の各試薬成分に以下の成分を加え調製した。
第2試薬組成物
カップラー(4アミノアンチピリン)             4.0mM
ペルオキシダーゼ                     2.4U/mL
フェロシアン化カリウム                  0.11mM
アジ化ナトリウム                     0.05%(w/v)
 第2試薬組成物を37℃にて2週間加速保存し、保存中の自然発色について波長320nm~480nmの吸収スペクトルを測定した。
 図1に調製直後、および37℃にて2週間加速保存した後の吸収スペクトルを示す。図1に示すように、調製直後(0週)はいずれの測定対象の場合も吸光度の上昇は認められなかった。37℃にて2週間加速保存後の試薬は、360nm付近に極大吸収を示すピークが発生(試薬が淡黄色)した。37℃加速では1週間の保存が冷蔵1.5年間の保存と同等であった。
[比較例2]
 第1工程を行う第1試薬組成物について、上述の各試薬成分に以下の成分を加え調製した。
第1試薬組成物
カップラー(4アミノアンチピリン)             1.3mM
ペルオキシダーゼ                     1.7U/mL
フェロシアン化カリウム                   0.04mM
 第1試薬組成物を37℃にて2週間加速保存し、保存中の自然発色について波長320nm~480nmの吸収スペクトルを測定した。
 図2に調製直後および37℃にて2週間加速保存した後の吸収スペクトルを示す。図2に示すように、調製直後(0週)はいずれの測定対象の場合も吸光度の上昇は認められなかった。37℃保存後の試薬は、360nm付近に極大吸収を示すピークが発生(試薬が淡黄色)した。
[実施例1]
 第1工程を行う第1試薬組成物、および第2工程を行う第2試薬組成物について、上述の各試薬成分に以下の成分を加え調製した。
第1試薬組成物
カタラーゼ                        1200U/mL
4-アミノアンチピリン                  1.3mM
第2試薬組成物
水素供与体
 (HDAOS:HDL-C、apoE containing HDL-C)         2.1mM
 (TOOS:LDL-C、HDL3-C、レムナント-C)          6.0mM
フェロシアン化カリウム                  0.11mM
ペルオキシダーゼ                     5.0U/mL
アジ化ナトリウム                     0.05%(w/v)
 第1試薬組成物および第2試薬組成物を37℃にて2週間加速保存し、保存中の自然発色について320nm~480nmの吸収スペクトルを測定し、比較例1、2と比較した。
 図3aに調製直後、および37℃にて2週間加速保存した後の第1試薬組成物の吸収スペクトルを、図3bに第2試薬組成物の吸収スペクトルを示す。図3a、図3bに示すように、調製直後(0週)および37℃にて2週間加速保存した後も大きな違いはなく、比較例1、2に比べ360nm付近の極大吸収を示すピークが減少、消失した。
[実施例2]
 第1工程を行う第1試薬組成物、および第2工程を行う第2試薬組成物について、上述の各試薬成分に以下の成分を加え調製した。
第1試薬組成物
ペルオキシダーゼ                     1.7U/mL
4-アミノアンチピリン                  1.3mM
第2試薬組成物
水素供与体
 (HDAOS:HDL-C、apoE containing HDL-C)         2.1mM
 (TOOS:LDL-C、HDL3-C、レムナント-C)          6.0mM
フェロシアン化カリウム                  0.11mM
 第1試薬組成物および第2試薬組成物を37℃にて2週間加速保存し、保存中の自然発色について320nm~480nmの吸収スペクトルを測定し、比較例1、2と比較した。
 図4aに調製直後、および37℃にて2週間加速保存した後の第1試薬組成物の吸収スペクトルを、図4bに第2試薬組成物の吸収スペクトルを示す。図4a、図4bに示すように、調製直後(0週)および37℃にて2週間加速保存した後も大きな違いはなく、比較例1、2に比べ360nm付近の極大吸収を示すピークが減少、消失した。
[実施例3]
 第1工程を行う第1試薬組成物、および第2工程を行う第2試薬組成物について、上述の各試薬成分に以下の成分を加え調製した。
第1試薬組成物
4-アミノアンチピリン                  1.3mM
フェロシアン化カリウム                  0.04mM
カタラーゼ                        1200U/mL
第2試薬組成物
水素供与体
 (HDAOS:HDL-C、apoE containing HDL-C)         2.1mM
 (TOOS:LDL-C、HDL3-C、レムナント-C)          6.0mM
アジ化ナトリウム                     0.05%(w/v)
ペルオキシダーゼ                     5.0U/mL
 第1試薬組成物および第2試薬組成物を37℃にて2週間加速保存し、保存中の自然発色について320nm~480nmの吸収スペクトルを測定し、比較例1、2と比較した。
 図5aに調製直後、および37℃にて2週間加速保存した後の第1試薬組成物の吸収スペクトルを、図5bに第2試薬組成物の吸収スペクトルを示す。図5a、図5bに示すように、調製直後(0週)および37℃にて2週間加速保存した後も大きな違いはなく、比較例1、2に比べ360nm付近の極大吸収を示すピークが減少、消失した。
[実施例4]
 第1工程を行う第1試薬組成物、および第2工程を行う第2試薬組成物について、上述の各試薬成分に以下の成分を加え調製した。
第1試薬組成物
ペルオキシダーゼ                     1.7U/mL
水素供与体
 (HDAOS:HDL-C、apoE containing HDL-C)         0.7mM
 (TOOS:LDL-C、HDL3-C、レムナント-C)          2.0mM
第2試薬組成物
4-アミノアンチピリン                  4.0mM
フェロシアン化カリウム                  0.11mM
 第1試薬組成物および第2試薬組成物を37℃にて2週間加速保存し、保存中の自然発色について320nm~480nmの吸収スペクトルを測定し、比較例1、2と比較した。
 図6aに調製直後、および37℃にて2週間加速保存した後の第1試薬組成物の吸収スペクトルを、図6bに第2試薬組成物の吸収スペクトルを示す。第1試薬組成物(図6a)では調製直後(0週)および37℃にて2週間加速保存した後も大きな違いはなく、第2試薬組成物(図6b)では、2週後にやや360nm付近の極大吸収を示すピークが高かったが、比較例1、2に比べ360nm付近の極大吸収を示すピークが減少、消失した。
[実施例5]
 第1工程を行う第1試薬組成物、および第2工程を行う第2試薬組成物について、上述の各試薬成分に以下の成分を加え調製した。
第1試薬組成物
水素供与体
 (HDAOS:HDL-C、apoE containing HDL-C)         0.7mM
 (TOOS:LDL-C、HDL3-C、レムナント-C)          2.0mM
フェロシアン化カリウム                  0.04mM
カタラーゼ                        1200U/mL
第2試薬組成物
4-アミノアンチピリン                  4.0mM
ペルオキシダーゼ                     5.0U/mL
アジ化ナトリウム                     0.05%(w/v)
 第1試薬組成物および第2試薬組成物を37℃にて2週間加速保存し、保存中の自然発色について320nm~480nmの吸収スペクトルを測定し、比較例1、2と比較した。
 図7aに調製直後、および37℃にて2週間加速保存した後の第1試薬組成物の吸収スペクトルを、図7bに第2試薬組成物の吸収スペクトルを示す。図7a、図7bに示すように、調製直後(0週)および37℃にて2週間加速保存した後も大きな違いはなく、比較例1、2に比べ360nm付近の極大吸収を示すピークが減少、消失した。
[実施例6]
 第1工程を行う第1試薬組成物、および第2工程を行う第2試薬組成物について、上述の各試薬成分に以下の成分を加え調製した。
第1試薬組成物
水素供与体
 (HDAOS:HDL-C、apoE containing HDL-C)         0.7mM
 (TOOS:LDL-C、HDL3-C、レムナント-C)          2.0mM
フェロシアン化カリウム                   0.04mM
ペルオキシダーゼ                      1.7U/mL
第2試薬組成物
4-アミノアンチピリン                   4.0mmol/L
 第1試薬組成物および第2試薬組成物を37℃にて2週間加速保存し、保存中の自然発色について320nm~480nmの吸収スペクトルを測定し、比較例1、2と比較した。
 図8aに調製直後、および37℃にて2週間加速保存した後の第1試薬組成物の吸収スペクトルを、図8bに第2試薬組成物の吸収スペクトルを示す。図8a、図8bに示すように、調製直後(0週)および37℃にて2週間加速保存した後も大きな違いはなく、比較例1、2に比べ360nm付近の極大吸収を示すピークが減少、消失した。
[実施例7]
 第1工程を行う第1試薬組成物、および第2工程を行う第2試薬組成物について、上述の各試薬成分に以下の成分を加え調製した。
第1試薬組成物
4-アミノアンチピリン                   1.3mM
ペルオキシダーゼ                      1.7U/mL
カタラーゼ                         1200U/mL
第2試薬組成物
水素供与体
 (HDAOS:HDL-C、apoE containing HDL-C)         2.1mM
 (TOOS:LDL-C、HDL3-C、レムナント-C)          6.0mM
フェロシアン化カリウム                   0.11mM
アジ化ナトリウム                      0.05%(w/v)
 第1試薬組成物および第2試薬組成物を37℃にて2週間加速保存し、保存中の自然発色について320nm~480nmの吸収スペクトルを測定し、比較例1、2と比較した。
 図9aに調製直後、および37℃にて2週間加速保存した後の第1試薬組成物の吸収スペクトルを、図9bに第2試薬組成物の吸収スペクトルを示す。図9a、図9bに示すように、調製直後(0週)および37℃にて2週間加速保存した後も大きな違いはなく、比較例1、2に比べ360nm付近の極大吸収を示すピークが減少、消失した。
[実施例8]
 第1工程を行う第1試薬組成物、および第2工程を行う第2試薬組成物について、上述の各試薬成分に以下の成分を加え調製した。
第1試薬組成物
水素供与体
 (HDAOS:HDL-C、apoE containing HDL-C)          0.7mM
 (TOOS:LDL-C、HDL3-C、レムナント-C)           2.0mM
ペルオキシダーゼ                      1.7U/mL
カタラーゼ                         1200U/mL
第2試薬組成物
4-アミノアンチピリン                   4.0mM
フェロシアン化カリウム                   0.11mM
アジ化ナトリウム                      0.05%(w/v)
 第1試薬組成物および第2試薬組成物を37℃にて2週間加速保存し、保存中の自然発色について320nm~480nmの吸収スペクトルを測定し、比較例1、2と比較した。
 図10aに調製直後、および37℃にて2週間加速保存した後の第1試薬組成物の吸収スペクトルを、図10bに第2試薬組成物の吸収スペクトルを示す。第1試薬組成物(図10a)では調製直後(0週)および37℃にて2週間加速保存した後も大きな違いはなく、第2試薬組成物(図10b)では、2週後にやや360nm付近の極大吸収を示すピークが高かったが、比較例1、2に比べ360nm付近の極大吸収を示すピークが減少、消失した。
[実施例9]
 第1工程を行う第1試薬組成物、および第2工程を行う第2試薬組成物について、上述の各試薬成分に以下の成分を加え調製した。
第1試薬組成物
水素供与体
 (HDAOS:HDL-C、apoE containing HDL-C)          0.7mM
 (TOOS:LDL-C、HDL3-C、レムナント-C)           2.0mM
フェロシアン化カリウム                   0.04mM
ペルオキシダーゼ                      1.7U/mL
カタラーゼ                         1200U/mL
第2試薬組成物
4-アミノアンチピリン                   4.0mM
アジ化ナトリウム                      0.05%(w/v)
 第1試薬組成物および第2試薬組成物を37℃にて1週間2週間加速保存し、保存中の自然発色について320nm~480nmの吸収スペクトルを測定し、比較例1、2と比較した。
 図11aに調製直後、及び37℃にて2週間加速保存した後の第1試薬組成物の吸収スペクトルを、図11bに第2試薬組成物の吸収スペクトルを示す。図11a、図11bに示すように、調製直後(0週)および37℃にて2週間加速保存した後も大きな違いはなく、比較例1、2に比べ360nm付近の極大吸収を示すピークが減少、消失した。
[検証1]
 実施例1から実施例9までの定量キットを用いてリポ蛋白コレステロールを測定した。比較対象法として、HDL-C、LDL-C、HDL3-Cはそれぞれデンカ社製のリポ蛋白コレステロール測定用試薬HDL-EX「生研」、LDL-EX「生研」、HDL3-C“SEIKEN”を、apoE containing HDL-CはAnn Clin Biochem 56, 123-132 (2019)の方法を、レムナント-CはAnn Clin Biochem 56, 123-132 (2019)の方法を用いてリポ蛋白コレステロール濃度を比較した。同じサンプルに対する、各実施例の各リポ蛋白中コレステロールの測定結果と各比較例の測定結果の相関係数を表1に示す。
 表1に示すように、本実施例の方法は比較対象法と良好な相関関係を示した。
Figure JPOXMLDOC01-appb-T000001
 この検証結果から、本発明の定量キットにより、HDL-C、LDL-C、HDL3-C、レムナント-C、apoE containing HDL-Cが良好に検出できることが分かる。
 本発明のキットおよび方法により、試薬の安定性を損なうことなくリポ蛋白中コレステロールを定量することができる。
 本明細書で引用した全ての刊行物、特許および特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (24)

  1.  リポ蛋白中コレステロールを2つの工程で定量する方法において用いる、
    (1)コレステロールエステラーゼ、コレステロールオキシダーゼを有し、測定対象以外のリポ蛋白中のコレステロールを反応系外に導くための第1試薬組成物と、
    (2)測定対象リポ蛋白中コレステロールを定量するための第2試薬組成物と、
    を含む被検体試料中のリポ蛋白コレステロール定量キットであって、
     第1試薬組成物および第2試薬組成物のいずれかに、少なくともカップラー、鉄錯体、ペルオキシダーゼ、水素供与体および界面活性剤が含まれ、カップラーと水素供与体が同一の試薬組成物中に含まれることはなく、第1試薬組成物および第2試薬組成物のいずれかの試薬組成物において同一試薬組成物中にカップラー、鉄錯体、およびペルオキシダーゼを共存させないことを特徴とするリポ蛋白コレステロール定量キット。
  2.  リポ蛋白中コレステロールを2つの工程で定量する方法において用いる、
    (1)コレステロールエステラーゼ、コレステロールオキシダーゼを有し、測定対象以外のリポ蛋白中のコレステロールを反応系外に導くための第1試薬組成物と、
    (2)リポ蛋白中コレステロールを定量するための第2試薬組成物と、  
    を含む被検体試料中のリポ蛋白コレステロール定量キットであって、
     第1試薬組成物および第2試薬組成物のいずれかに、少なくともカップラー、鉄錯体、ペルオキシダーゼ、水素供与体および界面活性剤が含まれ、カップラーと水素供与体が同一の試薬組成物中に含まれることはなく、第1試薬組成物および第2試薬組成物のいずれかの試薬組成物において同一試薬組成物中にカップラーおよび鉄錯体を共存させないことを特徴とするキリポ蛋白コレステロール定量キット。
  3.  第1試薬組成物がカタラーゼおよびカップラーを含み、第2試薬組成物が、水素供与体、鉄錯体およびペルオキシダーゼを含むことを特徴とする請求項1または2に記載のリポ蛋白コレステロール定量キット。
  4.  第1試薬組成物がペルオキシダーゼおよびカップラーを含み、第2試薬組成物が、水素供与体および鉄錯体を含むことを特徴とする請求項1または2に記載のリポ蛋白コレステロール定量キット。
  5.  第1試薬組成物がカタラーゼ、カップラーおよび鉄錯体を含み、第2試薬組成物が、水素供与体およびペルオキシダーゼを含むことを特徴とする請求項1記載のリポ蛋白コレステロール定量キット。
  6.  第1試薬組成物がペルオキシダーゼおよび水素供与体を含み、第2試薬組成物が、カップラーおよび鉄錯体を含むことを特徴とする請求項1記載のリポ蛋白コレステロール定量キット。
  7.  第1試薬組成物がカタラーゼ、水素供与体および鉄錯体を含み、第2試薬組成物が、ペルオキシダーゼおよびカップラーを含むことを特徴とする請求項1または2に記載のリポ蛋白コレステロール定量キット。
  8.  第1試薬組成物がペルオキシダーゼ、水素供与体および鉄錯体を含み、第2試薬組成物が、カップラーを含むことを特徴とする請求項1または2に記載のリポ蛋白コレステロール定量キット。
  9.  第1試薬組成物が、さらにカタラーゼを含むことを特徴とする請求項4、6および8のいずれか1項に記載のリポ蛋白コレステロール定量キット。
  10.  第1試薬組成物が、さらにリポ蛋白以外のリポ蛋白に作用する界面活性剤を含み、第2試薬組成物がさらに少なくともリポ蛋白に作用する界面活性剤を含むことを特徴とする請求項1~9のいずれか1項に記載のリポ蛋白コレステロール定量キット。
  11.  測定対象の前記リポ蛋白コレステロールが、LDLコレステロール、HDLコレステロール、HDL3コレステロール、レムナントコレステロールまたはapoE containing HDL-コレステロールである、請求項1~10のいずれか1項に記載のリポ蛋白コレステロール定量キット。
  12.  第1試薬組成物に含まれる界面活性剤がポリオキシエチレン多環フェニルエーテル誘導体またはポリオキシエチレン-ポリオキシプロピレンブロックポリマーを含むことを特徴とする請求項10または11に記載のリポ蛋白コレステロール定量キット。
  13.  ポリオキシエチレン多環フェニルエーテル誘導体がポリオキシエチレンベンジルフェニルエーテル誘導体および/またはポリオキシエチレンスチレン化フェニルエーテル誘導体を含むことを特徴とする請求項12記載のリポ蛋白コレステロール定量キット。
  14.  リポ蛋白中コレステロールを2つの工程で定量する方法であって、
    (1)コレステロールエステラーゼ、コレステロールオキシダーゼの存在下で測定対象以外のリポ蛋白中のコレステロールを反応系外に導く第1工程と、
    (2)前記第1工程で残存する測定対象リポ蛋白中のコレステロールを定量する第2工程、
    を含む被検体試料中のリポ蛋白コレステロール定量方法であって、
     (1)の工程または(2)の工程のいずれかで、少なくともカップラー、鉄錯体、ペルオキシダーゼ、水素供与体および界面活性剤を用い、カップラーと水素供与体が同一の工程で用いられることはなく、
     (1)または(2)いずれかの工程においてカップラー、鉄錯体、およびペルオキシダーゼを同時に用いないことを特徴とするリポ蛋白コレステロール定量方法。
  15.  リポ蛋白中コレステロールを2つの工程で定量する方法であって、
    (1)コレステロールエステラーゼ、コレステロールオキシダーゼの存在下で測定対象以外のリポ蛋白中のコレステロールを反応系外に導く第1工程と、
    (2)前記第1工程で残存する測定対象リポ蛋白中のコレステロールを定量する第2工程、
    を含む被検体試料中のリポ蛋白コレステロール定量方法であって、(1)または(2)いずれかの工程においてカップラーおよび鉄錯体を同時に用いないことを特徴とするリポ蛋白コレステロール定量方法。
  16.  第1工程でカタラーゼおよびカップラーを用い、第2工程で、水素供与体、鉄錯体およびペルオキシダーゼを用いることを特徴とする請求項14または15に記載のリポ蛋白コレステロール定量方法。
  17.  第1工程でペルオキシダーゼおよびカップラーを用い、第2工程で、水素供与体および鉄錯体を用いることを特徴とする請求項14または15に記載のリポ蛋白コレステロール定量方法。
  18.  第1工程でカタラーゼ、カップラーおよび鉄錯体を用い、第2工程で、水素供与体およびペルオキシダーゼを用いることを特徴とする請求項14記載のリポ蛋白コレステロール定量方法。
  19.  第1工程でペルオキシダーゼおよび水素供与体を用い、第2工程で、カップラーおよび鉄錯体を用いることを特徴とする請求項14記載のリポ蛋白コレステロール定量方法。
  20.  第1工程でカタラーゼ、水素供与体および鉄錯体を用い、第2工程で、ペルオキシダーゼおよびカップラーを用いることを特徴とする請求項14または15に記載のリポ蛋白コレステロール定量方法。
  21.  第1工程でペルオキシダーゼ、水素供与体および鉄錯体を用い、第2工程で、カップラーを用いることを特徴とする請求項14または15に記載のリポ蛋白コレステロール定量方法。
  22.  第1工程でさらにカタラーゼを用いることを特徴とする請求項17、19および21のいずれか1項に記載のリポ蛋白コレステロール定量方法。
  23.  第1工程で、さらに測定対象以外のリポ蛋白に作用する界面活性剤を含み、第2工程で、さらに少なくとも測定対象リポ蛋白に作用する界面活性剤を用いることを特徴とする請求項14から22のいずれか1項に記載のリポ蛋白コレステロール定量方法。
  24.  測定対象の前記リポ蛋白コレステロールが、LDLコレステロール、HDLコレステロール、HDL3コレステロール、レムナントコレステロールまたはapoE containing HDL-コレステロールである、請求項14から23のいずれか1項に記載のリポ蛋白コレステロール定量方法。
PCT/JP2021/020923 2020-06-02 2021-06-02 リポ蛋白コレステロールの定量方法およびキット WO2021246426A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180039652.4A CN115698316A (zh) 2020-06-02 2021-06-02 脂蛋白胆固醇的定量方法及试剂盒
US18/007,689 US20230313266A1 (en) 2020-06-02 2021-06-02 Method and kit for quantification of lipoprotein cholesterol
EP21818510.6A EP4155413A4 (en) 2020-06-02 2021-06-02 METHOD AND KIT FOR QUANTIFYING LIPOPROTEIN CHOLESTEROL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-096248 2020-06-02
JP2020096248A JP7437239B2 (ja) 2020-06-02 2020-06-02 リポ蛋白コレステロールの定量方法およびキット

Publications (1)

Publication Number Publication Date
WO2021246426A1 true WO2021246426A1 (ja) 2021-12-09

Family

ID=78831081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020923 WO2021246426A1 (ja) 2020-06-02 2021-06-02 リポ蛋白コレステロールの定量方法およびキット

Country Status (5)

Country Link
US (1) US20230313266A1 (ja)
EP (1) EP4155413A4 (ja)
JP (1) JP7437239B2 (ja)
CN (1) CN115698316A (ja)
WO (1) WO2021246426A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024097357A1 (en) * 2022-11-04 2024-05-10 Wisconsin Alumni Research Foundation A high-throughput low-density lipoprotein cholesterol level screening method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7134667B2 (ja) 2018-03-28 2022-09-12 デンカ株式会社 リポ蛋白コレステロールの定量方法、定量試薬及び定量キット

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3058602B2 (ja) 1996-04-15 2000-07-04 デンカ生研株式会社 低密度リポ蛋白中のコレステロールの定量方法
JP3164829B2 (ja) 1996-12-09 2001-05-14 デンカ生研株式会社 高密度リポ蛋白中のコレステロールの定量方法
WO2009048143A1 (ja) * 2007-10-10 2009-04-16 Denka Seiken Co., Ltd. small,dense LDLコレステロールの定量方法およびキット
JP5706418B2 (ja) 2010-07-23 2015-04-22 デンカ生研株式会社 高密度リポタンパク質3中のコレステロールの定量方法
JP6054051B2 (ja) 2012-04-11 2016-12-27 デンカ生研株式会社 高密度リポ蛋白(hdl)中のコレステロール(−c)の亜分画定量方法
JP2019174257A (ja) * 2018-03-28 2019-10-10 デンカ生研株式会社 リポ蛋白コレステロールの定量方法、定量試薬及び定量キット
JP2020096248A (ja) 2018-12-11 2020-06-18 株式会社Nttドコモ 呼制御システム
WO2021049518A1 (ja) * 2019-09-10 2021-03-18 デンカ株式会社 small,dense LDLコレステロールの定量方法およびキット

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3797603B2 (ja) * 2002-01-31 2006-07-19 デンカ生研株式会社 試薬組成物の安定化方法
JP4639287B2 (ja) * 2004-03-30 2011-02-23 株式会社シノテスト 酵素的測定試薬の安定化方法
JP4691627B2 (ja) * 2004-03-31 2011-06-01 株式会社シノテスト 非特異的発色の抑制方法
JP6203708B2 (ja) * 2012-04-27 2017-09-27 協和メデックス株式会社 検体中の測定対象成分の測定方法
BR112015006533B1 (pt) * 2012-09-25 2021-05-25 Stora Enso Oyj método para a fabricação de um produto de polímero com características super- ou extremamente hidrofóbicas, um produto obtenível a partir do referido método e seu uso
CN202882615U (zh) * 2012-09-26 2013-04-17 北汽福田汽车股份有限公司 一种防止滑动式车门与加油口门相撞的机构
JP6703175B1 (ja) * 2019-09-10 2020-06-03 デンカ生研株式会社 キットおよび方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3058602B2 (ja) 1996-04-15 2000-07-04 デンカ生研株式会社 低密度リポ蛋白中のコレステロールの定量方法
JP3164829B2 (ja) 1996-12-09 2001-05-14 デンカ生研株式会社 高密度リポ蛋白中のコレステロールの定量方法
WO2009048143A1 (ja) * 2007-10-10 2009-04-16 Denka Seiken Co., Ltd. small,dense LDLコレステロールの定量方法およびキット
JP5706418B2 (ja) 2010-07-23 2015-04-22 デンカ生研株式会社 高密度リポタンパク質3中のコレステロールの定量方法
JP6054051B2 (ja) 2012-04-11 2016-12-27 デンカ生研株式会社 高密度リポ蛋白(hdl)中のコレステロール(−c)の亜分画定量方法
JP2019174257A (ja) * 2018-03-28 2019-10-10 デンカ生研株式会社 リポ蛋白コレステロールの定量方法、定量試薬及び定量キット
JP2020096248A (ja) 2018-12-11 2020-06-18 株式会社Nttドコモ 呼制御システム
WO2021049518A1 (ja) * 2019-09-10 2021-03-18 デンカ株式会社 small,dense LDLコレステロールの定量方法およびキット

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"HANDBOOK OF LIPOPROTEIN TESTING", vol. AVI, 2002, AACC PRESS, pages: 15 - 16
ANN. CLIN. BIOCHEM., vol. 56, 2019, pages 123 - 132
ATHEROSCLEROSIS, vol. 106, 1994, pages 241 - 253
ATHEROSCLEROSIS, vol. 83, 1990, pages 59
BIOCHEMICAL MEDICINE AND METABOLIC BIOLOGY, vol. 46, 1991, pages 329 - 343
J. APPLIED LABORATORY MEDICINE, vol. 3, 2018, pages 26 - 36
J. LIPID RESEARCH, vol. 3, no. 8, 1997, pages 1204 - 16
JAMA, vol. 260, 1988, pages 1917 - 21
MIYAMOTO IKUMI: "Basic Evaluation of LDL-C Reagent-KL", SYSMEX JOURNAL WEB, vol. 8, no. 1, 1 January 2007 (2007-01-01), pages 1 - 7, XP093011516 *
See also references of EP4155413A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024097357A1 (en) * 2022-11-04 2024-05-10 Wisconsin Alumni Research Foundation A high-throughput low-density lipoprotein cholesterol level screening method

Also Published As

Publication number Publication date
JP2021185859A (ja) 2021-12-13
EP4155413A4 (en) 2023-11-22
CN115698316A (zh) 2023-02-03
EP4155413A1 (en) 2023-03-29
JP7437239B2 (ja) 2024-02-22
US20230313266A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
JP6869300B2 (ja) small,dense LDLコレステロールの定量方法およびキット
WO2021246426A1 (ja) リポ蛋白コレステロールの定量方法およびキット
KR20100091176A (ko) 소입자 고비중 ldl 콜레스테롤의 정량 방법 및 키트
WO2021049527A1 (ja) キットおよび方法
EP3779456A1 (en) Quantification method, quantification reagent and quantification kit for lipoprotein cholesterol
EP2639310B1 (en) Method for quantification of remnant-like lipoprotein cholesterol and kit for same
JP2001231597A (ja) レムナント様リポ蛋白中のコレステロールの測定方法および測定試薬
EP3467120B1 (en) Method and reagent for quantifying cholesterol in triglyceride-rich lipoprotein
WO2012011563A1 (ja) 高密度リポタンパク質3中のコレステロールの定量方法
JP7437263B2 (ja) 試薬組成物およびキット
JP7396965B2 (ja) small,dense LDLコレステロールの定量方法およびキット
WO2021246435A1 (ja) キットおよび方法
JP7427522B2 (ja) キットおよび方法
WO2023079599A1 (ja) 試薬組成物およびキット
WO2022224960A1 (ja) 試薬組成物およびキット
WO2023199890A1 (ja) 試薬組成物およびキット
WO2020032079A1 (ja) リポ蛋白コレステロールの定量方法及び定量キット
TW202346602A (zh) 試藥組成物及套組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021818510

Country of ref document: EP

Effective date: 20230102