WO2021244180A1 - 一种无碱铝硼硅酸盐玻璃 - Google Patents

一种无碱铝硼硅酸盐玻璃 Download PDF

Info

Publication number
WO2021244180A1
WO2021244180A1 PCT/CN2021/089349 CN2021089349W WO2021244180A1 WO 2021244180 A1 WO2021244180 A1 WO 2021244180A1 CN 2021089349 W CN2021089349 W CN 2021089349W WO 2021244180 A1 WO2021244180 A1 WO 2021244180A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mgo
sro
cao
alkali
Prior art date
Application number
PCT/CN2021/089349
Other languages
English (en)
French (fr)
Inventor
彭寿
张冲
沈玉国
曹志强
金良茂
朱明柳
Original Assignee
中建材蚌埠玻璃工业设计研究院有限公司
蚌埠中光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建材蚌埠玻璃工业设计研究院有限公司, 蚌埠中光电科技有限公司 filed Critical 中建材蚌埠玻璃工业设计研究院有限公司
Priority to KR1020227014715A priority Critical patent/KR20220071262A/ko
Priority to US17/773,527 priority patent/US20220380247A1/en
Priority to JP2022504076A priority patent/JP7340088B2/ja
Publication of WO2021244180A1 publication Critical patent/WO2021244180A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention belongs to the field of glass production, and relates to various glass substrates for displays, in particular to an alkali-free aluminoborosilicate glass.
  • Amorphous silicon (a-Si) TFT technology the processing temperature in the production process is 300-450 °C, low-temperature polysilicon TFT technology requires a higher heat treatment temperature during the panel manufacturing process, and the glass substrate cannot be processed during multiple high-temperature treatments.
  • the glass substrate generally requires the glass substrate to have a strain point higher than 650°C and have the smallest possible thermal contraction rate; at the same time, the expansion coefficient of the glass substrate needs to be close to that of silicon, so the linear thermal expansion coefficient of the glass substrate should be less than 38 ⁇ 10 -7 /°C; Therefore, the alkali-free aluminoborosilicate glass is required to have the following characteristics: low density, high strain point, suitable thermal expansion coefficient (less than 38 ⁇ 10 -7 /°C), high Young's modulus, chemical resistance Corrosion, low thermal shrinkage, no internal and surface defects (bubbles, ribs, inclusions, etc.), etc.
  • the purpose of the present invention is to solve the problems of large boron volatilization in the existing borosilicate glass system during the melting process, severe furnace corrosion, and poor product glass uniformity, and to provide an alkali-free aluminoborosilicate glass.
  • the technical solutions adopted by the present invention are as follows:
  • An alkali-free aluminoborosilicate glass made of the following raw materials in weight percentage: 60-72% SiO 2 , 13-18% Al 2 O 3 , 8.5-10% B 2 O 3 , 1- 4.5% MgO, 3-8% CaO, 1-5% SrO, 0.5-2% ZrO 2 , 1-5% P 2 O 5 , 0.1-0.5% SnO 2 , the total weight percentage of the raw materials Is 100%;
  • SiO 2 +Al 2 O 3 is 76-85%;
  • the total amount of alkaline earth metal oxides is 5-11.5%;
  • B 2 O 3 /(B 2 O 3 +ZrO 2 +P 2 O 5 ) is 0.6-0.9;
  • SiO 2 +Al 2 O 3 is 77.4-83.5%
  • B 2 O 3 /(B 2 O 3 +ZrO 2 +P 2 O 5 ) is 0.62-0.83;
  • the composition of the alkali-free aluminoborosilicate glass has a ⁇ -OH value of less than 0.5%, a boron volatilization rate of less than 11%, and a thermal expansion coefficient in the range of 50-350°C of less than 39.5 ⁇ 10 -7 /°C, Young’s modulus is higher than 78GPa, strain point is higher than 690°C, melting temperature is lower than 1662°C, and thermal shrinkage rate is lower than 11.5ppm.
  • the composition of the alkali-free aluminoborosilicate glass has a ⁇ -OH value of 0.11-0.47%, a boron volatilization rate of 5.67-10.37%, and a thermal expansion coefficient in the range of 50-350°C of 33.70- 39.5 ⁇ 10 -7 /°C, Young's modulus is 78.2-84.1GPa, strain point is 690-739°C, melting temperature is lower than 1662°C, and heat shrinkage rate is 7.68-11.45ppm.
  • SiO 2 is a glass forming body and constitutes a component of the glass skeleton. Increasing the content of SiO 2 will improve chemical resistance, mechanical strength, and strain point. If there is too much SiO 2 , the high temperature viscosity of the glass will increase, which will cause refractory and aggravate the corrosion of refractory materials. If the content of SiO 2 is low, it will be difficult to form glass, the strain point will decrease, the expansion coefficient will increase, and the acid resistance and alkali resistance will decrease; consider In terms of melting temperature, glass expansion coefficient, mechanical strength, glass frit properties and other properties, the present invention introduces 60-72wt% of SiO 2 .
  • Al 2 O 3 in the glass composition is an intermediate oxide, which is used to increase the strength and strain point of the glass structure, improve the chemical stability of the glass, and reduce the tendency of glass to crystallize. If the content of Al 2 O 3 is too much, the glass is difficult to Melting, short material properties, easy to devitrify, low Al 2 O 3 content, easy devitrification of glass, low mechanical strength, unfavorable for forming, the present invention introduces 13-18wt% of Al 2 O 3 .
  • the MgO in the glass composition has the effect of reducing high temperature viscosity and increasing low temperature viscosity, can increase the Young's modulus and specific modulus of glass, and inhibit the increase of glass brittleness.
  • the present invention introduces 1-4.5wt% MgO.
  • the alkaline earth metal oxide RO (CaO, SrO, BaO) in the glass composition can increase the glass strain point, Young's modulus, reduce the thermal expansion coefficient, and can effectively reduce the high-temperature viscosity of the glass to improve the glass's meltability and formability Too much content will increase the probability of devitrification and phase separation.
  • the present invention introduces 5-11.5wt% RO.
  • the introduction of ZrO 2 in the glass composition promotes glass melting, increases the glass Young’s modulus and breaking strength, reduces the high temperature resistivity of the glass, and promotes the stability of the glass. Too much will increase the density and thermal expansion coefficient of the glass.
  • the present invention introduces 0.5-2wt% of ZrO 2 .
  • P 2 O 5 is introduced into the glass composition to increase the strain point and devitrification resistance of the glass.
  • the present invention introduces 1 to 5 wt% of P 2 O 5 .
  • the glass composition defines B 2 O 3 /(B 2 O 3 +ZrO 2 +P 2 O 5 ) as 0.62-0.83; (ZrO 2 +P 2 O 5 )/(MgO+CaO+SrO) is 0.15-0.7, inhibit the volatilization of boron, control the ⁇ -OH value between 0.1-0.5, improve the glass meltability, which is conducive to industrial production.
  • the reason why the glass can have excellent comprehensive properties is mainly due to the mutual coordination between the components in the composition, especially SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, ZrO 2 , P 2 O 5 , and more particularly the coordination of the aforementioned components with specific content.
  • the glass of the present invention has the characteristics of high strain point, high Young's modulus, high hardness, high specific modulus, suitable thermal expansion coefficient, low thermal shrinkage rate, etc., especially reducing the boron volatilization rate to 5.6-10.5 %, effectively controlling the unevenness of the composition caused by boron volatilization.
  • the boron element in the glass is a volatile light element.
  • the volatilization of the boron element brings about the inhomogeneity of the glass composition, resulting in banded stripes on the glass substrate. In severe cases, crystallization occurs and the boron volatilization rate is low. In the subsequent manufacturing process of the substrate, the yield rate and product quality are improved.
  • the boron volatilization in the glass production process brings great harm to the process operation of the furnace.
  • the boron element volatilized is easy to condense again when cold Blocking of the burner muzzle can easily lead to changes in the combustion status of the kiln. In severe cases, the entire kiln process cannot operate normally.
  • a method for preparing alkali-free aluminoborosilicate glass using the ratio described in Table 1-5, wherein SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, ZrO 2 , P 2 O 5 means that the composition contains Si-containing compounds, Al-containing compounds, B-containing compounds, Mg-containing compounds, Ca-containing compounds, Sr-containing compounds, Zr-containing compounds, and P-containing compounds, such as carbonate and nitric acid containing the foregoing elements Salts, sulfates, oxides, etc., the content of each component is calculated based on the oxide of each element.
  • the composition contains a clarifying agent.
  • the clarifying agent there is no particular limitation on the specific selection of the clarifying agent.
  • Various options commonly used in the field under heating conditions, the SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, ZrO 2 , and P 2 O 5 are uniformly mixed and then melted at a high temperature (1450- 1650°C), clarification and homogenization, forming, annealing (above 600°C) to obtain an alkali-free aluminoborosilicate glass substrate, and then processing such as cutting, grinding and polishing.
  • the glass does not substantially contain alkali metal oxides and does not substantially contain BaO.
  • the clarifying agent may be any one of calcium sulfate, strontium nitrate, and calcium chloride, or may be a composite clarifying agent, such as containing at least one of sulfate, nitrate, and chloride.
  • the method of controlling the ⁇ -OH value of the present invention includes: selecting raw materials with low water content; adding ingredients that reduce the water content in the glass (such as adding sulfates, chlorides, etc.); making the furnace environment Reduce the water content in the molten glass; perform nitrogen bubbling in the molten glass; use a small furnace; accelerate the flow of the molten glass; use the electric melting method, these methods are well known to those skilled in the art, and will not be repeated here.
  • the alkali-free aluminoborosilicate glass of the present application can be prepared through the following steps:
  • the glass composition of the present invention has a ⁇ -OH value of 0.11-0.47%, a boron volatilization rate of 5.67-10.37%, and a thermal expansion coefficient in the range of 50-350°C of 33.70-39.5 ⁇ 10 -7 /°C.
  • the modulus is 78.2-84.1GPa
  • the strain point is 690-739°C
  • the melting temperature is lower than 1662°C
  • the thermal shrinkage rate is 7.68-11.45ppm.
  • the present invention provides the application of the glass composition of the present invention as alkali-free aluminosilicate glass in the preparation of display devices and/or optoelectronic devices, preferably in the preparation of TFT-LCD glass substrates and/or OLED glass substrates application.
  • the alkali-free aluminoborosilicate glass is prepared by the following steps:
  • Performance testing includes:
  • Boron volatilization rate It is obtained by comparing the boron content with the amount of boron in the glass raw material, and the unit is %.
  • ASTME-2208 use a horizontal dilatometer to measure the thermal expansion coefficient of glass at 50-350°C, the unit is 10 -7 /°C.
  • the unit is °C.
  • ASTMC-965 to use a rotating high temperature viscometer to measure the high temperature viscosity-temperature curve of glass, where the corresponding temperature at 200P viscosity is the melting temperature, and the unit is °C.
  • Thermal shrinkage is calculated by the difference method.
  • the initial length is marked as L0.
  • the heat treatment process conditions of the present invention are: heat the glass from room temperature to 600°C at a heating rate of 10°C/min and keep it for 10 minutes, and then heat it at 10°C/min. °C/min cooling rate down to room temperature), the length of the substrate shrinks by a certain amount, and the length is measured again, marked as Lt, and the thermal shrinkage Yt is expressed as:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

提供一种无碱铝硼硅酸盐玻璃,该玻璃由以下重量百分比的原料制成:60-72%的SiO 2、13-18%的Al 2O 3、8.5-10%的B 2O 3、1-4.5%的MgO、3-8%的CaO、1-5%的SrO、0.5-2%ZrO 2、1-5%的P 2O 5、0.1-0.5%的SnO 2;其中SiO 2+Al 2O 3为76-85%;(MgO+CaO+SrO)/Al 2O 3为0.4-0.7;碱土金属氧化物总量为5-11.5%;B 2O 3/(B 2O 3+ZrO 2+P 2O 5)为0.6-0.9;(ZrO 2+P 2O 5)/(MgO+CaO+SrO)为0.15-0.8。该玻璃具有较高的应变点、高杨氏模量、高硬度、高比模数、合适的热膨胀系数、低热收缩率等特性;且硼挥发率低至5.6-10.5%,从而能有效控制住硼挥发带来的成分不均的现象;适于浮法成型工艺,不含As 2O 3、Sb 2O 3等有毒物质,对环境友好,适合于大规模工业生产;特别适合于LCD/OLED显示器用玻璃基板。

Description

一种无碱铝硼硅酸盐玻璃
本申请要求于2020年06月05日提交中国专利局、申请号为202010506283.2、发明名称为“一种无碱铝硼硅酸盐玻璃”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属玻璃生产领域,涉及各种显示器用玻璃基板,具体涉及一种无碱铝硼硅酸盐玻璃。
背景技术
随着光电显示技术的发展,电子产品的普及,使得液晶显示器不断更新,人们对显示器的性能要求在不断提高,轻薄化、高解析度、超高清逐渐占领显示市场,成为主流特性。因此也带动显示器用玻璃基板技术在不断革新,使得玻璃基板的特性要求越来越苛刻。在平板显示器面板制程中,需要在玻璃基板表面镀金属或氧化物薄膜,基板玻璃中的碱金属离子向薄膜中扩散,损害薄膜特性,玻璃应不含有碱金属氧化物。随着显示器图像分辨率越来越高,在面板印刷、镀膜热处理过程中,要求玻璃基板的变形越来越低,需要严格控制玻璃基板的热收缩率。
非晶硅(a-Si)TFT技术,在生产过程中处理温度为300-450℃,低温多晶硅TFT技术,在面板制程过程中需要较高的热处理温度,玻璃基板在多次高温处理过程中不能变形,一般要求玻璃基板的应变点高于650℃,及具备尽量小的热收缩率;同时玻璃基板的膨胀系数需要与硅的膨胀系数相近,因此玻璃基板的线性热膨胀系数应低于38×10 -7/℃;因此要求无碱铝硼硅酸盐玻璃具备以下特性:低密度、高应变点、合适的热膨胀系数(低于38×10 -7/℃)、高杨氏模量、耐化学侵蚀性、低热收缩率、内部和表面没有缺陷(气泡、波筋、夹杂物等)等。
对于硼硅酸盐玻璃体系,硼是玻璃的重要组成部分,其影响玻璃的配料制备、熔化及基板的理化性能,并且还具有助熔作用,TFT玻璃中硼元素的引入方式为:硼酐、硼酸和硼酐/硼酸,但无论硼以哪种方式引入,在玻璃熔制过程中,都会存在硼挥发现象(高达15%),造成基板玻璃成分与原设计值 不同,破坏玻璃均一性,甚至还会造成环境污染,增大原材料消耗,侵蚀窑炉,缩短窑龄,增加产线运营成本。
发明内容
本发明的目的是为了解决现有硼硅酸盐玻璃体系在熔制过程中硼挥发量大,窑炉侵蚀严重,产品玻璃均一性差的问题,提供一种无碱铝硼硅酸盐玻璃。为了实现上述目的,本发明采用的技术方案如下:
一种无碱铝硼硅酸盐玻璃,由以下重量百分比的原料制成:60-72%的SiO 2、13-18%的Al 2O 3、8.5-10%的B 2O 3、1-4.5%的MgO、3-8%的CaO、1-5%的SrO、0.5-2%ZrO 2、1-5%的P 2O 5、0.1-0.5%的SnO 2,所述原料总重量百分比为100%;
其中SiO 2+Al 2O 3为76-85%;
(MgO+CaO+SrO)/Al 2O 3为0.4-0.7;
碱土金属氧化物总量为5-11.5%;
B 2O 3/(B 2O 3+ZrO 2+P 2O 5)为0.6-0.9;
(ZrO 2+P 2O 5)/(MgO+CaO+SrO)为0.15-0.8。
进一步,一种无碱铝硼硅酸盐玻璃,由以下重量百分比的原料制成:61.8-70.5%的SiO 2、13-17.5%的Al 2O 3、8.5-10%的B 2O 3、1-4.02%的MgO、3.05-6.2%的CaO、1.05-4.4%的SrO、0.5-1.96%ZrO 2、1-4.93%的P 2O 5、0.1-0.5%的SnO 2
其中SiO 2+Al 2O 3为77.4-83.5%;
(MgO+CaO+SrO)/Al 2O 3为0.42-0.65;
碱土金属氧化物总量为5.45-10.3%;
B 2O 3/(B 2O 3+ZrO 2+P 2O 5)为0.62-0.83;
(ZrO 2+P 2O 5)/(MgO+CaO+SrO)为0.15-0.7。
进一步,所述一种无碱铝硼硅酸盐玻璃,其组合物的β-OH值低于0.5%,硼挥发率低于11%,50-350℃范围内的热膨胀系数低于39.5×10 -7/℃,杨氏模量高于78GPa,应变点高于690℃,熔化温度低于1662℃,热收缩率低于11.5ppm。
进一步,所述一种无碱铝硼硅酸盐玻璃,其组合物的β-OH值为0.11-0.47%,硼挥发率为5.67-10.37%,50-350℃范围内的热膨胀系数为33.70-39.5×10 -7/℃, 杨氏模量为78.2-84.1GPa,应变点为690-739℃,熔化温度低于1662℃,热收缩率为7.68-11.45ppm。
本发明的玻璃组合物中:
所述的玻璃组合物中SiO 2是玻璃形成体,构成玻璃骨架的成分,增加SiO 2含量,会提升耐化学性、机械强度、应变点。如果SiO 2过多,玻璃的高温粘度增加,造成难熔,加剧耐材侵蚀,SiO 2含量较低则不易形成玻璃,应变点下降,膨胀系数增加,耐酸性和耐碱性均会下降;考虑到熔化温度、玻璃膨胀系数、机械强度、玻璃料性等性能,本发明引入60-72wt%的SiO 2
所述的玻璃组合物中Al 2O 3是中间体氧化物,用于提高玻璃结构的强度和应变点,改善玻璃化学稳定性,降低玻璃析晶倾向,Al 2O 3含量过多,玻璃难以熔制、料性短,易析晶,Al 2O 3含量较低,玻璃容易失透,机械强度较低,不利于成型,本发明引入13-18wt%的Al 2O 3
所述的玻璃组合物中B 2O 3能单独生成玻璃,是一种很好的助熔剂,能降低玻璃粘度、介电损耗、振动损耗,改善玻璃脆性、韧性和光透过率,在玻璃中具有[BO 4]四面体和[BO 3]三角体两种结构,高温熔化条件下B 2O 3难于形成[BO 4],可降低高温粘度,低温时B有夺取游离氧形成[BO 4]的趋势,使结构趋于紧密,提高玻璃的低温粘度,防止析晶现象的发生,本发明引入8.5-10wt%的B 2O 3
所述的玻璃组合物中MgO,具有降低高温粘度、增加低温粘度的作用,能够增加玻璃杨氏模量和比模数,抑制玻璃脆度增大的作用,本发明引入1-4.5wt%的MgO。
所述的玻璃组合物中碱土金属氧化物RO(CaO、SrO、BaO)可以提高玻璃应变点、杨氏模量、降低热膨胀系数,可有效降低玻璃的高温粘度从而提高玻璃的熔融性及成形性,含量过多,会增加失透分相的发生几率,本发明引入5-11.5wt%的RO。
所述的玻璃组合物中引入ZrO 2,促进玻璃熔解,提高玻璃杨氏模量和断裂强度,降低玻璃高温电阻率,促进玻璃稳定,过多会增大玻璃的密度、热膨胀系数,本发明引入0.5-2wt%的ZrO 2
所述的玻璃组合物中引入P 2O 5,提高玻璃应变点和耐失透性,本发明引 入1-5wt%的P 2O 5
所述的玻璃组合物通过限定B 2O 3/(B 2O 3+ZrO 2+P 2O 5)为0.62-0.83;(ZrO 2+P 2O 5)/(MgO+CaO+SrO)为0.15-0.7,抑制硼挥发,将β-OH值控制在0.1-0.5之间,提高玻璃熔融性,利于产业化生产。
本发明的玻璃用组合物中,利用其制备铝硼硅酸盐玻璃时,之所以能够使得玻璃具有优良的综合性能,主要归功于组合物中各组分之间的相互配合,尤其是SiO 2、Al 2O 3、B 2O 3、MgO、CaO、SrO、ZrO 2、P 2O 5之间的配合作用,更尤其是前述特定含量的各组分之间的相互配合。
本发明的有益效果:
(1)本发明所述玻璃具有较高的应变点、高杨氏模量、高硬度、高比模数、合适的热膨胀系数、低热收缩率等特性,尤其将硼挥发率降低至5.6-10.5%,有效控制住硼挥发带来的成分不均的现象。
(2)玻璃中的硼元素属于易挥发的轻质元素,硼元素的挥发一方面带来玻璃成分的不均质,导致玻璃基板出现带状条纹,严重时出现析晶物,硼挥发率的降低,在基板后续的制程中提升了良率和产品品质;另一方面在玻璃生产过程中硼挥发给窑炉工艺运行带来很大危害,挥发出来的硼元素遇冷容易再次凝结,凝结到烧枪口堵塞烧枪容易导致窑炉燃烧状况发生改变,严重时导致整个窑炉工艺无法正常运行,凝结到排烟管道处导致排烟阻力增大,窑炉燃烧压力增大,燃气燃烧不充分。硼挥发率的降低保证工艺运行平稳,窑炉温度持续保持控制指标,生产正常进行。
(3)适合于浮法成型制造工艺,不含As 2O 3、Sb 2O 3等有毒物质,属于环境友好性配方,符合平板显示行业的发展趋势,适合于大规模工业生产;特别适合于LCD/OLED显示器用玻璃基板。
具体实施方式
为使本发明的目的、技术方案、及优点更加清楚明白,以下参照实施例,对本发明进一步详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。本领域普通技术人员基于本申请中的实施例所获得的所有其他实施例,都属于本申请保护的范围。
一种无碱铝硼硅酸盐玻璃的制备方法,采用表1-5所述配比,其中SiO 2、 Al 2O 3、B 2O 3、MgO、CaO、SrO、ZrO 2、P 2O 5是指该组合物含有含Si化合物、含Al化合物、含B化合物、含Mg化合物、含Ca化合物、含Sr化合物、含Zr化合物、含P化合物,如含前述各元素的碳酸盐、硝酸盐、硫酸盐、氧化物等,各组分的含量均以各元素的氧化物计,根据玻璃制备工艺的不同,组合物含有澄清剂,对于澄清剂的具体选择没有特别的限定,可以为本领域常用的各种选择;在加热条件下,所述的SiO 2、Al 2O 3、B 2O 3、MgO、CaO、SrO、ZrO 2、P 2O 5混合均匀后进行高温熔融(1450-1650℃)、澄清均化、成型、退火(高于600℃下)得到无碱铝硼硅酸盐玻璃基板,然后进行切割、研磨、抛光等加工处理。
所述玻璃实质上不含有碱金属氧化物,实质上不含BaO。
所述澄清剂可为硫酸钙、硝酸锶、氯化钙中任一种,也可为复合澄清剂,如包含硫酸盐、硝酸盐、氯化物中的至少一种。
本领域技术人员应该理解的是,本发明控制β-OH值方式包括:选择含水量低的原材料;添加使玻璃中水分含量减少的成分(如添加硫酸盐、氯化物等);使炉内环境中的水含量降低;在熔融玻璃中进行氮气鼓泡;采用小型熔炉;加快熔融玻璃的流量;采用电熔法,这几种方式均为本领域技术人员所熟知,在此不再赘述。
示例性地,本申请的无碱铝硼硅酸盐玻璃可以通过以下步骤制备:
(1)称取配合料,充分混合均匀;
(2)混合后的玻璃配合料在1450-1650℃熔制7-12h,随后在1600-1700℃澄清60-120min;
(3)浇注成型,于600-750℃下退火5-10h。
优选地,本发明的玻璃组合物,β-OH值为0.11-0.47%,硼挥发率为5.67-10.37%,50-350℃范围内的热膨胀系数为33.70-39.5×10 -7/℃,杨氏模量为78.2-84.1GPa,应变点为690-739℃,熔化温度低于1662℃,热收缩率为7.68-11.45ppm。
本发明提供了本发明所述的玻璃组合物为无碱铝硅酸盐玻璃,在制备显示器件和/或光电器件中的应用,优选为在制备TFT-LCD玻璃基板和/或OLED玻璃基板中应用。
以下实施例和对比例中:
所述的无碱铝硼硅酸盐玻璃通过以下步骤制备:
(1)按表1-表5的配比称取配合料,充分混合均匀;
(2)混合后的玻璃配合料在1500℃熔制10h,随后在1650℃澄清90min;
(3)浇注成型,于650℃下退火10h;
(4)加工、性能测试。
性能测试包括:
使用傅里叶变换红外光谱仪分析计算玻璃中羟基含量,单位为%。
硼挥发率:根据硼含量与玻璃原料中硼的量进行对比得到,单位为%。
参照ASTME-228使用卧式膨胀仪测定50-350℃的玻璃热膨胀系数,单位为10 -7/℃。
参照GB/T4340.2-2012使用自动转塔数显显微维氏硬度仪测定维氏硬度(HV)。
参照ASTM C-623使用材料力学试验机测定玻璃杨氏模量,单位为GPa;由杨氏模量和密度的比值计算得到比模数,单位为GPa/(g×cm -3)。
参照ASTMC-336和ASTMC-338使用三点测试仪测定玻璃的退火点和应变点,单位为℃。
参照ASTMC-965使用旋转高温粘度计测定玻璃高温粘温曲线,其中,200P粘度时对应的温度为熔化温度,单位为℃。
热收缩采用差值计算法。无任何缺陷的玻璃基板,初始长度标记为L0,经过一定条件热处理之后(例如本发明热处理工艺条件为:将玻璃从室温以10℃/min的升温速率升温至600℃并保温10min,然后以10℃/min的降温速率降室温),基板长度发生一定量的收缩,再次测量其长度,标记为Lt,则热收缩Yt表示为:
Figure PCTCN2021089349-appb-000001
下面给出配方中各组份以重量百分计量的具体实施例和对比例,参见表1、2、3、4、5:
表1
Figure PCTCN2021089349-appb-000002
Figure PCTCN2021089349-appb-000003
表2
Figure PCTCN2021089349-appb-000004
表3
Figure PCTCN2021089349-appb-000005
Figure PCTCN2021089349-appb-000006
表4
Figure PCTCN2021089349-appb-000007
Figure PCTCN2021089349-appb-000008
表5
Figure PCTCN2021089349-appb-000009
Figure PCTCN2021089349-appb-000010
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (4)

  1. 一种无碱铝硼硅酸盐玻璃,其特征在于,由以下重量百分比的原料制成:60-72%的SiO 2、13-18%的Al 2O 3、8.5-10%的B 2O 3、1-4.5%的MgO、3-8%的CaO、1-5%的SrO、0.5-2%ZrO 2、1-5%的P 2O 5、0.1-0.5%的SnO 2,所述原料总重量百分比为100%;
    其中SiO 2+Al 2O 3为76-85%;
    (MgO+CaO+SrO)/Al 2O 3为0.4-0.7;
    碱土金属氧化物总量为5-11.5%;
    B 2O 3/(B 2O 3+ZrO 2+P 2O 5)为0.6-0.9;
    (ZrO 2+P 2O 5)/(MgO+CaO+SrO)为0.15-0.8。
  2. 根据权利要求1所述无碱铝硼硅酸盐玻璃,其特征在于,由以下重量百分比的原料制成:61.8-70.5%的SiO 2、13-17.5%的Al 2O 3、8.5-10%的B 2O 3、1-4.02%的MgO、3.05-6.2%的CaO、1.05-4.4%的SrO、0.5-1.96%ZrO 2、1-4.93%的P 2O 5、0.1-0.5%的SnO 2
    其中SiO 2+Al 2O 3为77.4-83.5%;
    (MgO+CaO+SrO)/Al 2O 3为0.42-0.65;
    碱土金属氧化物总量为5.45-10.3%;
    B 2O 3/(B 2O 3+ZrO 2+P 2O 5)为0.62-0.83;
    (ZrO 2+P 2O 5)/(MgO+CaO+SrO)为0.15-0.7。
  3. 根据权利要求1或2所述无碱铝硼硅酸盐玻璃,其特征在于:玻璃组合物的β-OH值低于0.5%,硼挥发率低于11%,50-350℃范围内的热膨胀系数低于39.5×10 -7/℃,杨氏模量高于78GPa,应变点高于690℃,熔化温度低于1662℃,热收缩率低于11.5ppm。
  4. 根据权利要求1或2所述无碱铝硼硅酸盐玻璃,其特征在于:玻璃组合物的β-OH值为0.11-0.47%,硼挥发率为5.67-10.37%,50-350℃范围内的热膨胀系数为33.70-39.5×10 -7/℃,杨氏模量为78.2-84.1GPa,应变点为690-739℃,熔化温度低于1662℃,热收缩率为7.68-11.45ppm。
PCT/CN2021/089349 2020-06-05 2021-04-23 一种无碱铝硼硅酸盐玻璃 WO2021244180A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227014715A KR20220071262A (ko) 2020-06-05 2021-04-23 무알칼리 알루미노붕규산염 유리
US17/773,527 US20220380247A1 (en) 2020-06-05 2021-04-23 Alkali-Free Aluminoborosilicate Glass
JP2022504076A JP7340088B2 (ja) 2020-06-05 2021-04-23 無アルカリアルミノホウケイ酸ガラス原料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010506283.2A CN111606560B (zh) 2020-06-05 2020-06-05 一种无碱铝硼硅酸盐玻璃
CN202010506283.2 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021244180A1 true WO2021244180A1 (zh) 2021-12-09

Family

ID=72197070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089349 WO2021244180A1 (zh) 2020-06-05 2021-04-23 一种无碱铝硼硅酸盐玻璃

Country Status (5)

Country Link
US (1) US20220380247A1 (zh)
JP (1) JP7340088B2 (zh)
KR (1) KR20220071262A (zh)
CN (1) CN111606560B (zh)
WO (1) WO2021244180A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111606560B (zh) * 2020-06-05 2022-03-11 中建材蚌埠玻璃工业设计研究院有限公司 一种无碱铝硼硅酸盐玻璃
CN117164214A (zh) * 2023-08-03 2023-12-05 中建材玻璃新材料研究院集团有限公司 一种高世代显示玻璃生产工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1284481A (zh) * 1999-07-23 2001-02-21 肖特玻璃制造厂 无碱铝硼硅酸盐玻璃及其应用和制备方法
JP2002029776A (ja) * 2000-07-14 2002-01-29 Nippon Electric Glass Co Ltd 耐クラック性に優れた無アルカリガラス
JP2003192377A (ja) * 2001-12-21 2003-07-09 Nippon Electric Glass Co Ltd ガラス及びディスプレイ用ガラス基板
JP2003335548A (ja) * 2002-05-16 2003-11-25 Nippon Electric Glass Co Ltd 無アルカリガラス及びこれを用いたディスプレイ用ガラス基板
CN102001825A (zh) * 2010-11-09 2011-04-06 彩虹集团公司 一种用于平板显示器的无碱玻璃及其熔制工艺
CN109052936A (zh) * 2018-09-04 2018-12-21 中国南玻集团股份有限公司 硅酸盐玻璃及其制备方法、玻璃基板和显示器
CN109678341A (zh) * 2018-12-11 2019-04-26 东旭科技集团有限公司 无碱玻璃组合物和无碱玻璃及应用
CN110330226A (zh) * 2019-06-26 2019-10-15 醴陵旗滨电子玻璃有限公司 无碱铝硼硅酸盐玻璃及其制备方法和应用
CN111217521A (zh) * 2020-03-10 2020-06-02 醴陵旗滨电子玻璃有限公司 铝硼硅酸盐玻璃及其制备方法
CN111606560A (zh) * 2020-06-05 2020-09-01 蚌埠中光电科技有限公司 一种无碱铝硼硅酸盐玻璃

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824127A (en) 1996-07-19 1998-10-20 Corning Incorporated Arsenic-free glasses
DE19939789A1 (de) * 1999-08-21 2001-02-22 Schott Glas Alkalifreie Aluminoborosilicatgläser und deren Verwendungen
JP2002308643A (ja) 2001-02-01 2002-10-23 Nippon Electric Glass Co Ltd 無アルカリガラス及びディスプレイ用ガラス基板
JP5172045B2 (ja) 2011-07-01 2013-03-27 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板及びその製造方法
JP6578774B2 (ja) * 2014-07-18 2019-09-25 Agc株式会社 無アルカリガラス
JP6852962B2 (ja) 2015-06-02 2021-03-31 日本電気硝子株式会社 ガラス
JP6770984B2 (ja) * 2018-01-17 2020-10-21 日本電気硝子株式会社 ガラス及びガラス基板
CN108503214B (zh) * 2018-04-02 2021-01-15 武汉理工大学 一种高应变点无碱铝硼硅酸盐玻璃及其制备方法
CN112020484B (zh) 2018-04-27 2023-03-21 Agc株式会社 无碱玻璃
CN108467197A (zh) * 2018-06-05 2018-08-31 中建材蚌埠玻璃工业设计研究院有限公司 一种适用于浮法成型的无碱玻璃配合料

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1284481A (zh) * 1999-07-23 2001-02-21 肖特玻璃制造厂 无碱铝硼硅酸盐玻璃及其应用和制备方法
JP2002029776A (ja) * 2000-07-14 2002-01-29 Nippon Electric Glass Co Ltd 耐クラック性に優れた無アルカリガラス
JP2003192377A (ja) * 2001-12-21 2003-07-09 Nippon Electric Glass Co Ltd ガラス及びディスプレイ用ガラス基板
JP2003335548A (ja) * 2002-05-16 2003-11-25 Nippon Electric Glass Co Ltd 無アルカリガラス及びこれを用いたディスプレイ用ガラス基板
CN102001825A (zh) * 2010-11-09 2011-04-06 彩虹集团公司 一种用于平板显示器的无碱玻璃及其熔制工艺
CN109052936A (zh) * 2018-09-04 2018-12-21 中国南玻集团股份有限公司 硅酸盐玻璃及其制备方法、玻璃基板和显示器
CN109678341A (zh) * 2018-12-11 2019-04-26 东旭科技集团有限公司 无碱玻璃组合物和无碱玻璃及应用
CN110330226A (zh) * 2019-06-26 2019-10-15 醴陵旗滨电子玻璃有限公司 无碱铝硼硅酸盐玻璃及其制备方法和应用
CN111217521A (zh) * 2020-03-10 2020-06-02 醴陵旗滨电子玻璃有限公司 铝硼硅酸盐玻璃及其制备方法
CN111606560A (zh) * 2020-06-05 2020-09-01 蚌埠中光电科技有限公司 一种无碱铝硼硅酸盐玻璃

Also Published As

Publication number Publication date
CN111606560A (zh) 2020-09-01
US20220380247A1 (en) 2022-12-01
KR20220071262A (ko) 2022-05-31
JP2022540262A (ja) 2022-09-14
CN111606560B (zh) 2022-03-11
JP7340088B2 (ja) 2023-09-06

Similar Documents

Publication Publication Date Title
JP5761025B2 (ja) 基板用ガラス板、その製造方法およびtftパネルの製造方法
US6096670A (en) Alkali metal-free aluminoborosilicate glass and its use
CN107129142B (zh) 无碱玻璃基板及其制备方法
JPH04325435A (ja) 無アルカリガラス
CN109678341B (zh) 无碱玻璃组合物和无碱玻璃及应用
JPWO2009131053A1 (ja) ディスプレイパネル用ガラス板、その製造方法およびtftパネルの製造方法
JP7219336B2 (ja) アルミノケイ酸塩ガラス組成物、アルミノケイ酸塩ガラス、その製造方法及び使用
WO2018192380A1 (zh) 玻璃用组合物、碱土铝硅酸盐玻璃及其制备方法和应用
WO2021244180A1 (zh) 一种无碱铝硼硅酸盐玻璃
CN111302619B (zh) 一种无碱铝硼硅酸盐玻璃及其制备方法
TW202235393A (zh) 玻璃
WO2019233291A1 (zh) 一种适用于浮法成型的无磷无碱玻璃配合料及其制备的无磷无碱玻璃
JPWO2010125981A1 (ja) 基板用ガラス板
CN110818251A (zh) 一种玻璃组合物及玻璃的制备方法
CN108503214B (zh) 一种高应变点无碱铝硼硅酸盐玻璃及其制备方法
CN102030475B (zh) 用于tft-lcd的环保型无碱铝硼硅酸盐玻璃
CN110330226B (zh) 无碱铝硼硅酸盐玻璃及其制备方法和应用
CN102584008B (zh) 一种用于lcd的轻质环保型无碱硼铝硅酸盐玻璃的配方
CN112441739B (zh) 一种超薄无碱硅酸盐玻璃及其制备方法、应用
CN112499964A (zh) 一种tft-lcd屏用基板玻璃及其制备方法
CN109052928B (zh) 玻璃澄清剂、硼铝硅酸盐玻璃及其制备方法、玻璃基板和显示器
CN102584007B (zh) 一种环保型tft-lcd基板玻璃的配方
CN113173702A (zh) 一种铝硅酸盐无碱玻璃澄清剂及玻璃的制备方法
CN112661406A (zh) 一种显示器用无碱铝硅酸盐玻璃
WO2020080164A1 (ja) 無アルカリガラス板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504076

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227014715

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817590

Country of ref document: EP

Kind code of ref document: A1