WO2021227634A1 - 仿陶瓷电子设备壳体及其制备方法和电子设备 - Google Patents

仿陶瓷电子设备壳体及其制备方法和电子设备 Download PDF

Info

Publication number
WO2021227634A1
WO2021227634A1 PCT/CN2021/080238 CN2021080238W WO2021227634A1 WO 2021227634 A1 WO2021227634 A1 WO 2021227634A1 CN 2021080238 W CN2021080238 W CN 2021080238W WO 2021227634 A1 WO2021227634 A1 WO 2021227634A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
electronic device
layer
haze
substrate
Prior art date
Application number
PCT/CN2021/080238
Other languages
English (en)
French (fr)
Inventor
周亮
董康
蒋正南
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021227634A1 publication Critical patent/WO2021227634A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/12Stencil printing; Silk-screen printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/26Printing on other surfaces than ordinary paper
    • B41M1/30Printing on other surfaces than ordinary paper on organic plastics, horn or similar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/009After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using thermal means, e.g. infrared radiation, heat

Definitions

  • This application relates to the technical field of electronic equipment, and in particular to a ceramic-like electronic equipment housing, a preparation method thereof, and electronic equipment.
  • non-ceramic substrates mainly have two types of solutions to obtain ceramic feeling.
  • One is the use of vacuum plating ZrO 2 (the main component of ceramics) or thermal spraying of ZrO 2 to obtain a sense of ceramic; the other is spraying imitation ceramic paint + NCVM (non-conductive electroplating).
  • ZrO 2 the main component of ceramics
  • NCVM non-conductive electroplating
  • direct ZrO 2 plating it takes more than 1 ⁇ m to have a sense of ceramics. The cost is very high and the yield is low.
  • the effects of the above two types of solutions are quite different from the true ceramic effects, and quality accidents such as coating/paint loss are prone to occur.
  • the lamination is complicated or the stress is high, and 3D molding cannot be performed, and it can only be applied to the molded product.
  • This application aims to solve one of the technical problems in the related technology at least to a certain extent. For this reason, one purpose of the present application is to provide a ceramic-like electronic device housing with good ceramic appearance, simple preparation or low cost.
  • the present application provides an imitation ceramic electronic device housing.
  • the ceramic-like electronic device housing includes: a non-ceramic substrate, at least part of the outer surface of the non-ceramic substrate is a low-haze surface, and the low-haze surface has a haze of less than 2; Brightness enhancement coating film, the brightness enhancement coating film is arranged on the low haze surface of the non-ceramic substrate; and an ink layer, the ink layer is arranged on the surface of the brightness enhancement coating film away from the non-ceramic substrate.
  • the ink layer can realize the background color of the ceramic appearance, and the low haze surface and the brightness enhancement coating can realize the enamel texture of the ceramic.
  • the present application provides a method for preparing the aforementioned imitation ceramic electronic device housing.
  • the method includes: forming a brightness enhancement coating film on a low-haze surface of a non-ceramic substrate; and forming an ink layer on the surface of the brightness enhancement coating film away from the non-ceramic substrate. Only by coating and forming ink, the appearance effect that is very close to the real ceramic shell can be achieved, and the method has simple steps, easy operation, high yield, and the straight-through rate can reach 70%, and the cost is low, which can save about 50%. cost.
  • this application provides an electronic device.
  • the electronic device includes: the aforementioned imitated ceramic electronic device housing, the imitating ceramic electronic device housing defines an accommodation space; and a display screen, the display screen is arranged in the accommodation In space.
  • the electronic device housing achieves a better ceramic appearance effect with a simple preparation process and a lower cost, high aesthetics, and good user experience.
  • FIG. 1 is a schematic cross-sectional structure diagram of a ceramic-like electronic device casing according to an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional structure diagram of a ceramic-like electronic device casing according to another embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional structure diagram of a ceramic-like electronic device casing according to another embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional structure diagram of a ceramic-like electronic device casing according to another embodiment of the present application.
  • FIG. 5 is a schematic cross-sectional structure diagram of a ceramic-like electronic device casing according to another embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for preparing a ceramic-like electronic device casing according to an embodiment of the present application.
  • FIG. 7 is a schematic flow chart of a method for preparing a ceramic-like electronic device casing according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 9 is a photograph of a black ceramic-like electronic device casing and a real black ceramic casing of Example 1 of the present application.
  • FIG. 10 is a photograph of a white ceramic-like electronic device casing and a real white ceramic casing of Embodiment 2 of the present application.
  • Figure 11 is the reflection curve of a real ceramic shell.
  • FIG. 12 is a reflection curve of the case of the imitation ceramic electronic device of Embodiment 1.
  • FIG. 12 is a reflection curve of the case of the imitation ceramic electronic device of Embodiment 1.
  • FIG. 13 is a photograph of the film of the electronic device casing of Comparative Example 1 after being boiled off.
  • FIG. 14 is a reflection curve of the electronic device casing of Comparative Example 1.
  • FIG. 15 is a reflection curve of the electronic device casing of Comparative Example 2.
  • the present application provides an imitation ceramic electronic device housing.
  • the ceramic-like electronic device housing includes: a non-ceramic substrate 10, at least part of the outer surface of the non-ceramic substrate is a low-haze surface 101, and the low-haze surface The haze of 101 is less than 2; the brightness enhancement coating 20, the brightness enhancement coating 20 is provided on the low haze surface 101 of the non-ceramic substrate 10; and the ink layer 30, the ink layer 30 is provided on the enhancement
  • the bright plating film 20 is on the surface away from the non-ceramic substrate 10.
  • the ink layer can achieve the background color of the ceramic appearance, and the low haze surface and the brightening coating can achieve the enamel texture of the ceramic appearance.
  • the real ceramic reflection is divided into diffuse reflection (base color) and specular reflection (glaze texture).
  • the two effects work together to obtain the unique appearance of ceramics.
  • the low-haze surface is smoother and has a higher Gloss, more with ceramic "glaze" feeling, the product is more clear and translucent, and further combined with brightening coating, can effectively realize the enamel texture of ceramics, and the color of the shell can be adjusted through the ink layer to achieve the ceramic background color.
  • the combination and synergistic effect of the above factors make the shell have an appearance effect that is extremely close to the real ceramic shell. While reducing the cost, it achieves a higher aesthetics, thereby providing users with a better experience.
  • the haze of the above-mentioned low-haze surface can be less than 1.5, further can be less than 1, and further can be less than 0.5, such as 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.0, 0.9, 0.8 , 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 and so on.
  • the surface can be made smoother, with higher gloss, more ceramic "enamel” feeling, the shell is more clear and translucent, and closer to the appearance of a real ceramic shell.
  • the above-mentioned non-ceramic substrate may have a single-layer structure or a multi-layer structure, and specifically may be a single-layer plastic sheet, a multi-layer plastic composite sheet, a glass substrate, and the like.
  • the low-haze surface on the non-ceramic substrate may be the outer surface of the substrate body.
  • the substrate that meets the low-haze requirement can be used directly, and the substrate that does not meet the low-haze requirement can be used. Carry out appropriate surface treatment, such as polishing treatment, etc.
  • a low-haze surface can be formed by forming a coating on the surface of the substrate. Specifically, referring to FIG.
  • the non-ceramic substrate 10 includes: a substrate body 11; and a non-textured light
  • the surface layer 12, the non-textured smooth surface layer 12 is disposed on the surface of the substrate body 11, and the surface of the non-textured smooth surface layer 12 away from the substrate body 11 constitutes the low-haze surface 101.
  • the single-layer plastic sheet can be polycarbonate (injection PC), polyethylene terephthalate (PET film), etc.
  • the multi-layer plastic composite sheet can be polycarbonate/polymethacrylic acid.
  • Methyl ester (PC/PMMA) composite board PC layer on one side and PMMA layer on the other side.
  • the combination of PC layer and PMMA layer can be achieved by high-temperature lamination, bonding, etc.).
  • the thickness of the PC/PMMA composite sheet can be 330 to 850 microns (specifically, 330 microns, 350 microns, 400 microns, 450 microns, 500 microns, 550 microns, 600 microns, 650 microns, 700 microns, 750 microns, etc.
  • Micrometers, 800 micrometers, 850 micrometers, etc. where the thickness of the PC layer can be 300-700 micrometers (too thin and insufficient strength, too thick will increase the thickness of the shell), such as 300 micrometers, 350 micrometers, 400 micrometers, 450 micrometers, 500 microns, 550 microns, 600 microns, 650 microns, 700 microns, etc., and the thickness of the PMMA layer can be 30-150 microns (this side faces the outside, too thin steel wool has poor wear resistance, too thick high-pressure molding will crack and fall Poor performance), such as 30 microns, 40 microns, 50 microns, 60 microns, 70 microns, 80 microns, 90 microns, 100 microns, 110 microns, 120 microns, 130 microns, 140 microns, 150 microns, etc.
  • both sides of the composite board can be protected by a protective film to protect it from damage during transportation and processing.
  • the non-textured glossy surface layer can be a UV transfer layer or a sprayed layer, which can be selected according to actual needs.
  • the UV transfer layer and spray coating can produce a leveling effect and achieve a smooth and low-haze surface.
  • the haze can be lower than 0.5, and the gloss is higher, which is more conducive to achieving a better ceramic appearance.
  • the thickness of the non-textured smooth surface layer is 5-15 microns, such as 5 microns, 6 microns, 7 microns, 8 microns, 9 microns, 10 microns, 11 microns, 12 microns, 13 microns, 14 microns, 15 microns and so on.
  • suitable gloss and haze can be achieved, which is conducive to achieving a better ceramic appearance. If it is too thin, the gloss will be relatively poor, if it is too thick, the brittleness will increase. After high-pressure molding, it will be boiled and dropped. Performance will deteriorate.
  • the brightness enhancement coating 20 may include a plurality of sub-coating layers 21.
  • the number, thickness, and material of the specific sub-coating layers can be adjusted according to the actual effect to be achieved.
  • the thickness and material of each sub-coating layer It can be the same or different.
  • the number of sub-coating layers may be 2, 3, 4, etc.
  • the sub-coating layers of different layers and different materials cooperate with each other to achieve surface optical effects of different colors and different reflectivity, making the appearance of the shell closer to the real ceramic shell.
  • the thickness of the brightness enhancement coating film is 45-65 nanometers (specifically, 45 nanometers, 48 nanometers, 50 nanometers, 52 nanometers, 55 nanometers, 58 nanometers, 60 nanometers, 62 nanometers, 65 nanometers, etc.).
  • the reflectivity and reflected light of the shell are basically the same as those of the real ceramic shell (wherein, the reflectivity of the real ceramic shell is about 12-16%, and the reflected light is pure white light, which appears as "enamel").
  • the enamel texture is not enough, and if it is greater than 65nm, the enamel texture is too strong, and the reflected light will appear color, such as yellow, which is different from the reflected white light of the real ceramic shell, which will seriously affect the imitation ceramics. Effect.
  • a plurality of the sub-coating films may be formed of non-conductive oxides, specifically, metal oxides with different high and low refractive indexes, such as silicon dioxide, niobium pentoxide, titanium pentoxide, zirconium dioxide, and SiAlOx, can be selected.
  • metal oxides with different high and low refractive indexes such as silicon dioxide, niobium pentoxide, titanium pentoxide, zirconium dioxide, and SiAlOx
  • ZrO 2 /SiAlOx underlayer
  • Ti 3 O 5 /TiO 2 high refractive index layer
  • Nb 2 O 5 high refractive index layer
  • SiO 2 low refractive index layer
  • metal oxide coatings with high and low refractive index matching can be selected according to the needs of brightness and color.
  • the brightness enhancement coating with 4-layer sub-coating layer generally requires lower reflection brightness while ensuring warmer reflection hue.
  • a layer of 0-10nm SiO 2 can be inserted into Nb 2 O 5 or Ti 3 O 5 , and different thicknesses will give different colors, and different laminated structures will have different reflectivity effects.
  • the thickness range and lamination in this application The structure can obtain the appearance effect closer to the real ceramic shell.
  • a plurality of the sub-coating layers include a zirconium dioxide layer (specific thickness may be 2-5 nm), a niobium pentoxide layer (specific thickness may be 15-25 nm), and silicon dioxide layers stacked in sequence.
  • a plurality of the sub-coating layers include a SiAlOx layer (specific thickness may be 5-10nm), a titanium pentoxide layer (specific thickness may be 15-25nm), and a silicon dioxide layer stacked in sequence.
  • the specific thickness can be 0-10 nm and the titanium pentoxide layer (the specific thickness can be 15-25 nm).
  • the plurality of sub-coating layers include a SiAlOx layer (specific thickness may be 5-10 nm) and a titanium pentoxide layer (specific thickness may be 30-50 nm) stacked in sequence.
  • the multiple sub-coating layers include a zirconium dioxide layer (specific thickness may be 2-5 nm) and a niobium pentoxide layer (specific thickness may be 30-50 nm) stacked in sequence.
  • the ink layer 30 may include a plurality of sub-ink layers 31.
  • the specific number, thickness, material and color of the sub-ink layers can be selected and adjusted according to actual needs.
  • the number of sub-ink layers can be 3 or 4 layers; each of the sub-ink layers has a thickness of 5-8 microns (specifically, 5 microns, 5.5 microns, 6 microns, 6.5 microns, 7 microns).
  • the total thickness of the ink layer can be 20-30 microns (specifically, 20 microns, 21 microns, 22 microns, 23 microns, 24 microns, 25 microns, 26 microns, 27 microns, 28 microns, 29 microns, 30 microns, etc.).
  • the mechanical properties and adhesion of the ink layer are better, and the shading effect is better. If it is too thick, the brittleness is relatively high, the adhesion is relatively poor, and the shading effect is relatively poor if it is too thin, and the color performance effect is relatively Bad.
  • the ceramic-like electronic device housing may further include a hardened layer 40 disposed on the surface of the non-ceramic substrate 10 away from the brightness enhancement coating 20. Therefore, the wear resistance of the shell can be improved, it is not easy to be damaged, and the service life is longer.
  • the above-mentioned imitation ceramic electronic device casing of the present application can achieve an appearance effect that is extremely close to a real ceramic casing.
  • the difference between the L value of the imitation ceramic electronic device casing and the L value of the real ceramic casing of this application is within ⁇ 1 (specifically, ⁇ 1, ⁇ 0.9 , ⁇ 0.8, ⁇ 0.7, ⁇ 0.6, ⁇ 0.5, ⁇ 0.4, ⁇ 0.3, ⁇ 0.2, ⁇ 0.1, etc.), the difference between the a value of the imitation ceramic electronic device housing and the a value of the real ceramic housing The value is within ⁇ 0.5 (specifically, ⁇ 0.5, ⁇ 0.4, ⁇ 0.3, ⁇ 0.2, ⁇ 0.1, etc.), the difference between the b value of the imitation ceramic electronic device housing and the b value of the real ceramic housing is within ⁇ 0.5 (specifically, ⁇ 0.5, ⁇ 0.4, ⁇ 0.3, ⁇ 0.2, ⁇ 0.1, etc.); the average reflectance of the ceramic-
  • L, a, and b refer to the L value, a value, and b value in the Lab color space.
  • the L value represents the brightness. The larger the L value, the brighter the brightness (or the whiter the color). The smaller the L value, the darker (or the darker the color), the range of L value can be 0-100; a value is the color value, a is positive, which means red, the larger the value of a, the more red the color, a is negative, which means green, The smaller the value of a, the greener the color.
  • the range of a value is -120 ⁇ 120; the value of b is the color value, b is positive, which means yellow, the larger the value of b is, the yellower the color is; the negative of b means blue, and the smaller the value of b is.
  • the more blue, the b value ranges from -120 to 120.
  • the specific structure of the ceramic-like electronic device housing is not particularly limited. It can be a flat panel structure, a 2.5D structure or a 3D structure, etc., which can be selected according to actual needs.
  • the specific size and shape can be selected according to the actual electronic device. The size and shape are adjusted, so I won’t repeat them here.
  • the present application provides a method for preparing the aforementioned imitation ceramic electronic device housing. According to an embodiment of the present application, referring to FIG. 6, the method includes the following steps:
  • S100 Form a brightness enhancement coating on the low-haze surface of a non-ceramic substrate.
  • the non-ceramic substrate used in this step can be the same as the foregoing description, and will not be repeated here.
  • the outer surface of the substrate body can be subjected to appropriate surface treatment, such as polishing, etc.
  • appropriate surface treatment such as polishing, etc.
  • the non-ceramic substrate can be formed by the following steps: UV transfer or spraying on the surface of the substrate body to form a non-textured light
  • the surface layer, the surface of the non-textured smooth surface layer away from the substrate body constitutes the low-haze surface.
  • the haze of the surface of the obtained non-textured smooth surface layer can be less than 0.5, and the ceramic-like appearance effect of the shell is better.
  • the brightness enhancement coating can be formed by magnetron sputtering or evaporation coating.
  • a magnetron continuous line device or an electron gun evaporation coating device can be used to form the brightness enhancement coating layer. The specific steps and parameters can be selected according to actual needs, and will not be repeated here.
  • the ink layer can be formed by a printing method. Specifically, screen printing can be used to form the ink layer, which can be divided into 3-4 times of screen printing and baking curing.
  • the thickness of each layer of ink is 5-8 microns, and the total thickness is between 20-30 microns. As a result, the mechanical properties and light leakage resistance of the ink layer are better.
  • the method for preparing an electronic device housing may further include: forming a hardened layer on the surface of the non-ceramic substrate away from the brightness enhancement coating.
  • the hardened layer may be formed by a shower coating method, that is, a hardening liquid (such as UV paint) is showered on the surface to form a hardened layer.
  • the housing when the electronic device housing has a 2.5D or 3D structure, the housing can be formed into a suitable arc-edge structure by means of CNC, hot pressing or high-pressure forming.
  • the preparation process of the shell of 2.5D structure may be UV texture transfer, coating, silk screen, CNC and curtain coating.
  • the above-mentioned non-textured smooth surface layer, brightness enhancement coating and ink layer can be directly formed on the substrate body in sequence, or a laminated structure of non-textured smooth surface layer, brightness enhancement coating and ink layer can be formed in advance, and then laminated The layer structure is attached to the substrate body, or the substrate body is formed by injection molding directly on the laminated structure.
  • the method for preparing an electronic device housing may include the following steps:
  • UV transfer printing After tearing off the protective film on the PC surface and performing electrostatic dust removal treatment (the tearing film will generate static electricity, causing dust particles to be adsorbed), use UV transfer equipment to transfer a transparent UV coating on the surface of the PC layer, and the transfer will be cured at the same time. UV thickness is 6-15 microns.
  • Ink cover bottom The bottom cover ink is printed on the surface of the electroplating layer to ensure that the plate does not transmit light, and the bottom cover is made of black ink (or other colors). In order to obtain good results, you can prevent light leakage through multiple printing and curing methods. 5-8 microns each time (one time is too thick and brittle, poor adhesion), the total thickness is 20-30 microns (too low, no shading, too high, brittle, poor adhesion).
  • 3D high pressure forming The plate is placed in a high-pressure forming machine for 3D forming to obtain a 3D shell with the required curvature.
  • PMMA is the outer surface, and the inner surface of PC, ink, etc. (PMMA surface is harder and more wear-resistant after spray coating, so it faces outward; PC surface has better bonding force with UV glue, and silk screen ink surface is non-appearance surface. It is not wear-resistant, so it faces inward), where the hot pressing temperature can be 130-250°C, the molding pressure can be 60-120bar, and the hot pressing time can be 0.4-1.8min.
  • the method of the present application can achieve an appearance effect that is extremely close to the real ceramic shell only by coating and forming ink, and the method has simple steps and procedures, easy operation, high yield, and a straight-through rate of up to 70%, and the cost is low , Can save about 50% of the cost.
  • this application provides an electronic device.
  • the electronic device includes: the aforementioned imitated ceramic electronic device housing, the imitating ceramic electronic device housing defines an accommodation space; and a display screen, the display screen is arranged in the accommodation In space.
  • the electronic device housing achieves a better ceramic appearance effect with a simple preparation process and a lower cost, high aesthetics, and good user experience.
  • the specific type of the electronic device is not particularly limited.
  • the specific type of the electronic device may be a mobile phone (see FIG. 8 for a structural diagram, including the above-mentioned imitation ceramic electronic device housing 100), a tablet computer, a game console, an electronic paper, a wearable device, a watch, Battery modules, home appliances, etc.
  • the electronic device can also include the structure and components that a conventional electronic device must have. Taking a mobile phone as an example, it can also include a display screen, a touch screen, a motherboard, a memory, and fingerprint recognition. Modules, camera modules, etc., will not be repeated here.
  • UV transfer printing After tearing off the protective film on the PC surface and performing electrostatic dust removal treatment (the tearing film will generate static electricity, causing dust particles to be adsorbed), use the UV transfer equipment to transfer a transparent UV gloss coating on the surface of the PC layer, and the transfer will be performed at the same time Cured, the thickness of the UV glossy coating is 10 microns, and the haze is less than 0.5.
  • the bottom cover ink is printed on the surface of the electroplating layer to ensure that the plate does not transmit light.
  • the bottom cover color is selected according to the requirements of the background color, and the black ink is specifically printed and cured for multiple times, 5-8 microns each time, and the total thickness is 20-30 microns.
  • 3D high pressure forming Place the sheet into a high-pressure forming machine for 3D molding to obtain a 3D shell with the required radian, where the high-pressure temperature can be 140° C., the molding pressure can be 68 bar, and the high-pressure time can be 1.5 min.
  • CNC processing Carry out CNC machining of the 3D shaped shell, milling off the excess leftover material, and obtain the final required assembly size.
  • Example 1 Same as Example 1, the difference is that the ink layer is white ink, and the obtained photo of the imitation ceramic electronic device casing (right image in FIG. 10) and the photo of the real white ceramic casing (left image in FIG. 10) are shown in FIG.
  • a vacuum multi-arc ion plating method is used to plate a ZrO 2 film with a thickness greater than 1 micron on the PC/PET composite sheet to obtain an electronic device shell.
  • the coating stress can be as high as 500MPa or more, and the thickness is as high as 1 ⁇ m or more. It cannot be effectively combined with the organic substrate, and it is easy to peel off under temperature changes (see Figure 13 for the photo after boiling).
  • Comparative Example 2 According to the conventional process, the imitation ceramic paint + NCVM was sprayed on the PC/PET composite board to obtain the electronic device casing. Specifically, the appearance effect of this process is poor, and the glaze of ceramics is too poor, mainly reflected in the low reflectivity (within 10%, the reflectivity curve is shown in Figure 15), and the refractive index of the paint is similar to that of the base material. Around 1.6, there is no high refractive index material, and it is impossible to increase the reflectivity to obtain the glaze feeling of ceramics.
  • Reflectance test Test the reflection curves of the ceramic-like electronic device casings obtained in Example 1-2 and Comparative Example 1-2 by spectrophotometer and real ceramic (zirconia) casings of different colors, Examples The reflection curve test results of 1 and 2 are shown in Fig. 12, the test results of real ceramic shells of different colors are shown in Fig. 11, and the reflection curve test results of Comparative Examples 1 and 2 are shown in Fig. 14 and Fig. 15, respectively.
  • the reflection curve of the ceramic-like electronic device casing of the present application is very close to the reflection curve of the real ceramic casing.

Abstract

提供了仿陶瓷电子设备壳体(100)及其制备方法和电子设备,该仿陶瓷电子设备壳体(100)包括:非陶瓷基材(10),所述非陶瓷基材(10)的至少部分外表面为低雾度表面(101),所述低雾度表面(101)的雾度小于2;增亮镀膜(20),所述增亮镀膜(20)设置在所述非陶瓷基材(10)的低雾度表面(101)上;及油墨层(30),所述油墨层(30)设置在所述增亮镀膜(20)远离所述非陶瓷基材(10)的表面上。

Description

仿陶瓷电子设备壳体及其制备方法和电子设备 技术领域
本申请涉及电子设备技术领域,具体的,涉及仿陶瓷电子设备壳体及其制备方法和电子设备。
背景技术
目前,仿陶瓷电子设备壳体领域中非陶瓷基材为获得陶瓷感,主要有2类方案。一类是采用真空镀ZrO 2(陶瓷主要成分)或者热喷涂ZrO 2来获得陶瓷感;另一类是喷涂仿陶瓷漆+NCVM(不导电电镀)。但直接镀ZrO 2,要镀1μm以上才有陶瓷感,成本非常高,良率低,同时上述两类方案效果与真陶瓷效果相差较大,容易发生掉镀层/漆等品质事故,且上述方案叠层复杂或者应力大,无法进行3D成型,只能应用在成型后的产品上。
因而,目前的仿陶瓷电子设备壳体陶瓷外观相关技术仍有待改进。
申请内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的一个目的在于提出一种陶瓷外观效果好、制备简单或者成本较低的仿陶瓷电子设备壳体。
在本申请的一个方面,本申请提供了一种仿陶瓷电子设备壳体。根据本申请的实施例,该仿陶瓷电子设备壳体包括:非陶瓷基材,所述非陶瓷基材的至少部分外表面为低雾度表面,所述低雾度表面的雾度小于2;增亮镀膜,所述增亮镀膜设置在所述非陶瓷基材的低雾度表面上;及油墨层,所述油墨层设置在所述增亮镀膜远离所述非陶瓷基材的表面上。该壳体中,油墨层可以实现陶瓷外观的底色,低雾度表面和增亮镀膜可以实现陶瓷的釉质感,三者共同作用实现了极其接近真实陶瓷壳体的外观效果,且结构简单,制备容易,制备良率高,成本较低。
在本申请的另一方面,本申请提供了一种制备前面所述的仿陶瓷电子设备壳体的方法。根据本申请的实施例,该方法包括:在非陶瓷基材的低雾度表面上形成增亮镀膜;在所述增亮镀膜远离所述非陶瓷基材的表面上形成油墨层。仅通过镀膜和形成油墨即可实现极其接近真实陶瓷壳体的外观效果,且该方法步骤工序简单,操作容易,良率高,直通率可达70%,且成本较低,能够节省约50%成本。
在本申请的又一方面,本申请提供了一种电子设备。根据本申请的实施例,该电子设 备包括:前面所述的仿陶瓷电子设备壳体,所述仿陶瓷电子设备壳体中限定出容纳空间;及显示屏,所述显示屏设置在所述容纳空间中。该电子设备壳体以简单的制备工序、较低的成本实现的较好的陶瓷外观效果,美观度高,用户体验好。
本申请至少存在以下有益效果:
1)工序简单:只通过镀膜和丝印油墨达到仿陶瓷效果,工序简单、成熟,直通率可达约70%以上,远高于相关技术中的其他方案(约50%以下)。
2)成本低:增亮镀膜和丝印油墨成本低,成品(3D电池后盖)价格在20块以内,远低于真实陶瓷和相关技术中的其他解决方案。
3)陶瓷效果好:本申请的壳体外观效果与真实陶瓷效果极其接近,效果远远优于相关技术中的仿陶瓷方案。
附图说明
图1是本申请一个实施例的仿陶瓷电子设备壳体的剖面结构示意图。
图2是本申请另一个实施例的仿陶瓷电子设备壳体的剖面结构示意图。
图3是本申请另一个实施例的仿陶瓷电子设备壳体的剖面结构示意图。
图4是本申请另一个实施例的仿陶瓷电子设备壳体的剖面结构示意图。
图5是本申请另一个实施例的仿陶瓷电子设备壳体的剖面结构示意图。
图6是本申请一个实施例的制备仿陶瓷电子设备壳体的方法的流程示意图。
图7是本申请一个实施例的制备仿陶瓷电子设备壳体的方法的流程示意图。
图8是本申请一个实施例的电子设备的结构示意图。
图9是本申请实施例1的黑色仿陶瓷电子设备壳体和真实黑色陶瓷壳体的照片。
图10是本申请实施例2的白色仿陶瓷电子设备壳体和真实白色陶瓷壳体的照片。
图11是真实陶瓷壳体的反射曲线。
图12是实施例1的仿陶瓷电子设备壳体反射曲线。
图13是对比例1的电子设备壳体的水煮掉膜照片。
图14是对比例1的电子设备壳体的反射曲线。
图15是对比例2的电子设备壳体的反射曲线。
具体实施方式
下面详细描述本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献 所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
在本申请的一个方面,本申请提供了一种仿陶瓷电子设备壳体。根据本申请的实施例,参照图1,该仿陶瓷电子设备壳体包括:非陶瓷基材10,所述非陶瓷基材的至少部分外表面为低雾度表面101,所述低雾度表面101的雾度小于2;增亮镀膜20,所述增亮镀膜20设置在所述非陶瓷基材10的低雾度表面101上;及油墨层30,所述油墨层30设置在所述增亮镀膜20远离所述非陶瓷基材10的表面上。该壳体中,油墨层可以实现陶瓷外观的底色,低雾度表面和增亮镀膜可以实现陶瓷外观的釉质感,三者共同作用实现了极其接近真实陶瓷壳体的外观效果,且结构简单,制备容易,制备良率高,成本较低。
具体的,真实陶瓷反射分漫反射(底色)和镜面反射(釉质感),两个效果共同作用才得到陶瓷特有的外观效果,上述壳体中,低雾度表面更光滑,具有更高的光泽度,更具有陶瓷的“釉质”感,产品目视更清澈透亮,进一步结合增亮镀膜,可以有效实现陶瓷的釉质感,而通过油墨层可以调节壳体外观的颜色,实现陶瓷底色,上述因素配合、协同作用,使得该壳体具有极其接近真实陶瓷壳体的外观效果,在降低成本的同时,实现了更高的美观度,进而为用户提供更好的使用体验。
具体的,上述低雾度表面的雾度具体可以小于1.5,进一步可以小于1,更进一步可以小于0.5,具体如1.9、1.8、1.7、1.6、1.5、1.4、1.3、1.2、1.0、0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2、0.1等等。在该雾度范围内,可以使得表面更光滑,具有更高的光泽度,更具有陶瓷的“釉质”感,壳体目视更清澈透亮,更接近真实陶瓷壳体的外观效果。
具体的,上述非陶瓷基材可以为单层结构,可以多层结构,具体可以为单层塑胶板材,多层的塑胶复合板材,玻璃基材等。一些具体实施例中,非陶瓷基材上的低雾度表面可以为基材本体的外表面,此时,满足低雾度要求的基材可以直接使用,不满足低雾度要求的基材可以进行合适的表面处理,如抛光处理等。而另一些具体实施例中,可以通过在基材表面形成涂层,来形成低雾度表面,具体的,参照图2,所述非陶瓷基材10包括:基材本体11;及无纹理光面层12,所述无纹理光面层12设置在所述基材本体11的表面上,所述无纹理光面层12远离所述基材本体11的表面构成所述低雾度表面101。
具体的,上述单层塑胶板材可以为聚碳酸酯(注塑PC),聚对苯二甲酸乙二醇酯(PET膜片)等,多层的塑胶复合板材可以为聚碳酸酯/聚甲基丙烯酸甲酯(PC/PMMA)复合板材(一面是PC层,另一面是亚克力(PMMA)层,PC层和PMMA层复合在一起的实现方式可以为高温层压、粘接方式等)。一些具体实施例中,PC/PMMA复合板材的厚度可以为330~850微米(具体如330微米、350微米、400微米、450微米、500微米、550微米、 600微米、650微米、700微米、750微米、800微米、850微米等),其中,PC层厚度可以为300-700微米(太薄强度不够,太厚导致壳体厚度增加),具体如300微米、350微米、400微米、450微米、500微米、550微米、600微米、650微米、700微米等,而PMMA层的厚度可以为30-150微米(此面朝外侧,太薄钢丝绒耐磨表现差,太厚高压成型会开裂,跌落性能差),具体如30微米、40微米、50微米、60微米、70微米、80微米、90微米、100微米、110微米、120微米、130微米、140微米、150微米等。其中,复合板材两侧可以均设有保护膜保护,以保护其在运输、加工过程中不受损伤。
具体的,无纹理光面层可以为UV转印层,也可以为喷涂层,具体可以根据实际需要进行选择。UV转印层和喷涂层能够产生流平效果,实现光滑和低雾度的表面,雾度可以低于0.5,光泽度更高,更利于实现更好的陶瓷外观效果。
具体的,所述无纹理光面层的厚度为5~15微米,具体如5微米、6微米、7微米、8微米、9微米、10微米、11微米、12微米、13微米、14微米、15微米等等。该厚度范围内,能够实现合适的光泽度和雾度,利于实现更好的陶瓷外观效果,如果太薄光泽度效果相对不好,如果太厚则脆性提高,高压成型后水煮百格和跌落性能会变差。
具体的,参照图3,所述增亮镀膜20可以包括多个子镀膜层21,具体子镀膜层的数量、厚度和材质均可以根据实际要达到的效果进行调整,各个子镀膜层的厚度和材质可以相同也可以不同。一些具体实施例中,参照图3,子镀膜层的数量可以为2层、3层、4层等。不同层数,不同材质的子镀膜层相互配合作用,可以实现不同颜色,不同反射率的表面光学效果,使壳体的外观更接近真实陶瓷壳体。
具体的,所述增亮镀膜的厚度为45~65纳米(具体如45纳米、48纳米、50纳米、52纳米、55纳米、58纳米、60纳米、62纳米、65纳米等)。该厚底范围内,壳体的反射率和反射光与真实陶瓷壳体(其中,真实陶瓷壳体的反射率大概在12-16%,反射光为纯白光,表现为“釉质”)基本一致,如果低于45nm,则釉质感不够,而大于65nm,则釉质感太强,偏镜面感,且反射光会出现颜色,如黄色等,与真实陶瓷壳体的反射白光不一样,严重影响仿陶瓷效果。
具体的,多个所述子镀膜可以由非导电氧化物形成,具体可以选用高低折射率不同的金属氧化物,如二氧化硅、五氧化二铌、五氧化三钛、二氧化锆和SiAlOx等,具体可以为ZrO 2/SiAlOx(打底层)、Ti 3O 5/TiO 2(高折射率层)、Nb 2O 5(高折射率层)、SiO 2(低折射率层)或者其他不导电镀层。由此,可以有效避免屏蔽天线信号。
具体的,可以根据亮度和颜色的需求,选择高低折射率搭配的金属氧化物镀层,其中,具有4层子镀膜层的增亮镀膜一般需要较低的反射亮度,同时保证反射色相更暖,具体可 以在Nb 2O 5或Ti 3O 5中插入一层0-10nm的SiO 2,而不同厚度会得到不同颜色,不同叠层结构会得到不同反射率的效果,本申请中的厚度范围和层叠结构可以获得更接近真实陶瓷壳体的外观效果。
一些具体实施例中,多个所述子镀膜层包括依次层叠设置的二氧化锆层(具体厚度可以为2-5nm)、五氧化二铌层(具体厚度可以为15-25nm)、二氧化硅层(具体厚度可以为0-10nm)和五氧化二铌层(具体厚度可以为15-25nm)。另一些具体实施例中,多个所述子镀膜层包括依次层叠设置的SiAlOx层(具体厚度可以为5-10nm)、五氧化三钛层(具体厚度可以为15-25nm)、二氧化硅层(具体厚度可以为0-10nm)和五氧化三钛层(具体厚度可以为15-25nm)。又一些具体实施例中,多个所述子镀膜层包括依次层叠设置的SiAlOx层(具体厚度可以为5-10nm)和五氧化三钛层(具体厚度可以为30-50nm)。再一些具体实施例中,多个所述子镀膜层包括依次层叠设置的二氧化锆层(具体厚度可以为2-5nm)和五氧化二铌层(具体厚度可以为30-50nm)。
具体的,参照图4,所述油墨层30可以包括多个子油墨层31。子油墨层的具体数量、厚度、材料和颜色可以根据实际需要进行选择和调整。一些具体实施例中,子油墨层的数量可以为3层或者4层;每个所述子油墨层的厚度为5~8微米(具体如5微米、5.5微米、6微米、6.5微米、7微米、7.5微米、8微米等);而所述油墨层的总厚度可以为20~30微米(具体如20微米、21微米、22微米、23微米、24微米、25微米、26微米、27微米、28微米、29微米、30微米等)。在该厚度范围内,油墨层的力学性能和附着力较好,且遮光效果较佳,如果太厚则脆性相对较高,附着力相对边差,太薄遮光效果相对变差,颜色表现效果相对不佳。
可以理解,参照图5,该仿陶瓷电子设备壳体还可以包括:硬化层40,所述硬化层40设置在所述非陶瓷基材10远离所述增亮镀膜20的表面上。由此,可以提高壳体的耐磨性,不易损伤,使用寿命更长。
具体的,本申请的上述仿陶瓷电子设备壳体,能够实现极其接近真实陶瓷壳体的外观效果。经过测试,与同颜色的真实陶瓷壳体相比,本申请的该仿陶瓷电子设备壳体的L值与该真实陶瓷壳体的L值的差值在±1(具体如±1、±0.9、±0.8、±0.7、±0.6、±0.5、±0.4、±0.3、±0.2、±0.1等)以内,所述仿陶瓷电子设备壳体的a值与该真实陶瓷壳体的a值的差值在±0.5(具体如±0.5、±0.4、±0.3、±0.2、±0.1等)以内,所述仿陶瓷电子设备壳体的b值与该真实陶瓷壳体的b值的差值在±0.5(具体如±0.5、±0.4、±0.3、±0.2、±0.1等)以内;所述仿陶瓷电子设备壳体的平均反射率(即380nm~780nm波长范围内的平均反射率)与所述陶瓷壳体的平均反射率的差值在±4%(具体如±4、±3.5、±3、±2.5、±2、±1.5、±1、±0.5等)以 内。由此,该仿陶瓷电子设备壳体的颜色值稳定可调可控,且能够达到真实陶瓷壳体本身色差波动,获得更接近真实陶瓷壳体的外观效果。
其中,需要说明的是,上述L、a和b是指Lab色彩空间中的L值、a值和b值,其中,L值表示亮度,L值越大亮度越亮(或者颜色越白),L值越小越暗(或者颜色越黑),L值范围可以为0-100;a值为颜色值,a为正,表示红色,a值越大颜色越红,a为负,表示绿色,a值越小颜色越绿a值范围为-120~120;b值为颜色值,b为正,表示黄色,b值越大颜色越黄;b为负,表示蓝色,b值越小颜色越蓝,b值范围为-120~120。
可以理解,该仿陶瓷电子设备壳体的具体结构没有特别限制,可以为平板结构、2.5D结构或者3D结构等,具体可以根据实际需要进行选择,具体尺寸、形状等均可以根据实际电子设备的尺寸和形状进行调整,在此不再一一赘述。
在本申请的另一方面,本申请提供了一种制备前面所述的仿陶瓷电子设备壳体的方法。根据本申请的实施例,参照图6,该方法包括以下步骤:
S100:在非陶瓷基材的低雾度表面上形成增亮镀膜。
具体的,该步骤中采用的非陶瓷基材可以与前文描述一致,在此不再一一赘述。利用基材本体的外表面构成低雾度表面时,可以对基材本体的外表面进行合适的表面处理,如抛光等操作,当然如果基材本体的外表面直接即可满足低雾度要求,则不需进行额外的表面处理操作。如果通过在基材本体的表面形成其他膜层以构成低雾度表面,此时非陶瓷基材可以通过以下步骤形成:通过UV转印或者喷涂在所述基材本体的表面上形成无纹理光面层,所述无纹理光面层远离所述基材本体的表面构成所述低雾度表面。通过UV转印和喷涂的方法,得到的无纹理光面层表面的雾度可以小于0.5,壳体的仿陶瓷外观效果更佳。
具体的,所述增亮镀膜可以通过磁控溅射或者蒸发镀方法形成。具体的,可以采用磁控连续线设备或者电子枪蒸发镀设备形成增亮镀膜层。具体步骤和参数可以根据实际需要选择,在此不再一一赘述。
S200:在所述增亮镀膜远离所述非陶瓷基材的表面上形成油墨层。
具体的,所述油墨层可以通过印刷方法形成。具体的,可以采用丝网印刷形成油墨层,具体可以分3-4次丝印和烘烤固化,每层油墨厚度为5-8微米,总厚度在20-30微米之间。由此,油墨层的力学性能和防漏光性能较好。
具体的,参照图7,该制备电子设备壳体的方法还可以包括:在所述非陶瓷基材远离所述增亮镀膜的表面上形成硬化层。具体的,所述硬化层可以通过淋涂方法形成,即在表面淋涂硬化液(如UV漆),形成硬化层。
可以理解,当该电子设备壳体为2.5D或者3D的结构时,可以通过CNC、热压或者高 压成型等方式使得壳体形成合适的弧边结构。一个具体实施例中,2.5D结构的壳体的制备工序可以为UV纹理转印,镀膜,丝印、CNC和淋涂。另外,上述无纹理光面层、增亮镀膜和油墨层可以依次直接形成在基材本体上,也可以预先形成无纹理光面层、增亮镀膜和油墨层的叠层结构,然后再将叠层结构和基材本体贴合,或者直接在叠层结构上注塑形成基材本体。
一些具体实施例中,该制备电子设备壳体的方法可以包括以下步骤:
1、复合板材准备。将PC+PMMA复合板裁切成所需要的尺寸。其中复合板的PC层厚度为300-700微米,PMMA层的厚度为30-150微米,板材两侧都有保护膜保护,PC+PMMA复合的实现方式可以为高温层压,也可以为粘接方式。
2、UV转印。撕去PC面的保护膜并进行静电除尘处理(撕膜会有静电产生,导致灰尘颗粒吸附)后,利用UV转印设备在PC层表面转印透明的UV涂层,转印同时进行固化,UV厚度6-15微米。
3、真空镀膜。通过磁控溅射或者蒸发镀的方法,根据亮度和颜色的需求,在UV转印层上电镀2层或4层高低折射率搭配的金属氧化物镀层,电镀层总厚度45nm-65nm。
4、油墨盖底。在电镀层表面印刷盖底油墨,保证板材不会透光,盖底为黑色油墨(或其他颜色)。为获得好的效果,可以通过多次印刷和固化的方法防止漏光。每次5-8微米(一次太厚脆性高,附着力差),总厚度为20-30微米(太低了不遮光,太高了脆性高,附着力差)。
5、3D高压成型。将板材置入高压成型机进行3D成型,获得所需要弧度的3D壳体。热压后PMMA为外表面,PC、油墨等在内表面(PMMA面更硬,淋涂后更耐磨,所以朝外;PC面与UV胶结合力更好,丝印油墨面为非外观面,也不耐磨,所以朝内),其中,热压温度可以为130-250℃,成型压力可以为60-120bar,热压时间可以为0.4-1.8min。
6、CNC加工。将3D热弯后的壳体进行CNC加工,铣去多余的边角料,获得最终所需组装配合的尺寸。
7、淋涂。撕去PMMA表面的保护膜并进行静电除尘处理,在表面淋涂硬化液(UV漆),形成硬化层。
本申请的该方法,仅通过镀膜和形成油墨即可实现极其接近真实陶瓷壳体的外观效果,且该方法步骤工序简单,操作容易,良率高,直通率可达70%,且成本较低,能够节省约50%成本。
在本申请的又一方面,本申请提供了一种电子设备。根据本申请的实施例,该电子设备包括:前面所述的仿陶瓷电子设备壳体,所述仿陶瓷电子设备壳体中限定出容纳空间; 及显示屏,所述显示屏设置在所述容纳空间中。该电子设备壳体以简单的制备工序、较低的成本实现的较好的陶瓷外观效果,美观度高,用户体验好。
可以理解,该电子设备的具体种类没有特别限制,具体可以为手机(结构示意图参见图8,包括上述仿陶瓷电子设备壳体100)、平板电脑、游戏机、电子纸、可穿戴设备、手表、电池模组、家电等等。另外,除了前面描述的电池盖板和电池,该电子设备还可以包括常规电子设备必须具备的结构和部件,以手机为例,还可以包括显示屏、触控屏、主板、储存器、指纹识别模组、照相模组等等,在此不再一一赘述。
下面详细描述本申请的实施例。
实施例1
1、复合板材准备。将PC+PMMA复合板裁切成所需要的尺寸。其中复合板的PC层厚度为590微米,PMMA层的厚度为50微米,板材两侧都有保护膜保护,PC+PMMA复合的实现方式可以为高温层压,也可以为粘接方式。
2、UV转印。撕去PC面的保护膜并进行静电除尘处理(撕膜会有静电产生,导致灰尘颗粒吸附)后,利用UV转印设备在PC层表面转印透明的UV光面涂层,转印同时进行固化,UV光面涂层厚度10微米,雾度小于0.5。
3、真空镀膜。通过磁控溅射或者蒸发镀的方法,根据亮度和颜色的需求,在UV转印层上电镀4层高低折射率搭配的金属氧化物镀层,具体为2nm后的二氧化锆层、16nm厚的五氧化二铌层、10nm厚的二氧化硅层和25nm厚的五氧化二铌层。
4、油墨盖底。在电镀层表面印刷盖底油墨,保证板材不会透光,盖底颜色根据底色要求选定黑色油墨具体进行多次印刷和固化,每次5-8微米,总厚度为20-30微米。
5、3D高压成型。将板材置入高压成型机进行3D成型,获得所需要弧度的3D壳体,其中,高压温度可以为140℃,成型压力可以为68bar,高压时间可以为1.5min。
6、CNC加工。将3D成型后的壳体进行CNC加工,铣去多余的边角料,获得最终所需组装配合的尺寸。
7、淋涂。撕去PMMA表面的保护膜并进行静电除尘处理,在表面淋涂硬化液(UV漆),形成硬化层,得到仿陶瓷电子设备壳体,其照片(图9中右图)和真实黑色陶瓷壳体的照片(图9中左图)见图9。
实施例2
同实施例1,区别在于油墨层为白色油墨,得到的仿陶瓷电子设备壳体的照片(图10中右图)和真实白色陶瓷壳体的照片(图10中左图)见图10。
对比例1:
采用真空多弧离子镀方法在PC/PET复合板材上镀厚度大于1微米的ZrO 2膜,得到电子设备壳体。
其中,镀层应力较大,可高达500MPa以上,厚度又高达1μm以上,无法与有机基材有效结合,遇到温度变化,等情况易脱膜露底(水煮后照片见图13)。
对比例2:根据常规工艺在PC/PET复合板材上喷涂仿陶瓷漆+NCVM,得到电子设备壳体。具体的,这种工艺外观效果较差,陶瓷的釉感太差,主要体现在反射率较低(10%以内,反射率曲线见图15),油漆的折射率与基材差不多,一般都在1.6左右,没有高折射率材质,无法提高反射率得到陶瓷的釉感。
性能检测:
1、反射率测试:通过分光光度仪测试测试实施例1-2、对比例1-2得到的仿陶瓷电子设备壳体和不同颜色的真实陶瓷(二氧化锆)壳体的反射曲线,实施例1和2的反射曲线测试结果见图12,不同颜色的真实陶瓷壳体的测试结果见图11,对比例1和2的反射曲线测试结果分别见图14和图15。通过对比反射曲线可以看出,本申请的仿陶瓷电子设备壳体的反射曲线和真实陶瓷壳体的反射曲线极其接近。
2、色差测试:通过色差计测试实施例1-2、对比例1-2得到的仿陶瓷电子设备壳体和黑色和白色真实陶瓷壳体的L、a、b值。测试结果显示,实施例1(黑色)的壳体的L、a、b值分别为40.17、-2和-0.25;实施例2(白色)的壳体的L、a、b值分别为91.24、1.23、-0.15,对比例1的壳体(白色)的L、a、b值分别为89.84、1.68、0.36,对比例2的壳体(白色)的L、a、b值分别为88.56、1.21、0.29,真实陶瓷壳体黑色的L、a、b值分别为40、-1.9、-3。真实陶瓷壳体白色的L、a、b值分别为91.54、1.08、0.33。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种仿陶瓷电子设备壳体,其特征在于,包括:
    非陶瓷基材,所述基材的至少部分外表面为低雾度表面,所述低雾度表面的雾度小于2;
    增亮镀膜,所述增亮镀膜设置在所述非陶瓷基材的低雾度表面上;及
    油墨层,所述油墨层设置在所述增亮镀膜远离所述非陶瓷基材的表面上。
  2. 根据权利要求1所述的仿陶瓷电子设备壳体,其特征在于,所述非陶瓷基材包括:
    基材本体;及
    无纹理光面层,所述无纹理光面层设置在所述基材本体的表面上,所述无纹理光面层远离所述基材本体的表面构成所述低雾度表面。
  3. 根据权利要求1或2所述的仿陶瓷电子设备壳体,其特征在于,满足以下条件的任意一种:
    所述低雾度表面的雾度小于1.5;
    所述低雾度表面的雾度小于1;
    所述低雾度表面的雾度小于0.5。
  4. 根据权利要求2或3所述的仿陶瓷电子设备壳体,其特征在于,所述无纹理光面层的厚度为5~15微米。
  5. 根据权利要求1~4中任一项所述的仿陶瓷电子设备壳体,其特征在于,所述非陶瓷基材为塑胶基材和玻璃基材中的至少一种。
  6. 根据权利要求5所述的仿陶瓷电子设备壳体,其特征在于,所述塑胶基材满足以下条件的至少之一:
    所述塑胶基材包括聚碳酸酯/聚甲基丙烯酸甲酯复合板材、聚碳酸酯板材和聚对苯二甲酸乙二醇酯板材中的至少一种;
    所述塑胶基材的厚度为330~850微米。
  7. 根据权利要求1~6中任一项所述的仿陶瓷电子设备壳体,其特征在于,满足以下条件的至少之一:
    所述增亮镀膜包括多个子镀膜层,
    所述增亮镀膜的厚度为45~65纳米;
  8. 根据权利要求7所述的仿陶瓷电子设备壳体,其特征在于,多个所述子镀膜由非导电氧化物形成。
  9. 根据权利要求7或8所述的仿陶瓷电子设备壳体,其特征在于,多个所述子镀膜层满足以下条件的任意一种:
    多个所述子镀膜层包括依次层叠设置的二氧化锆层、五氧化二铌层、二氧化硅层和五氧化二铌层;
    多个所述子镀膜层包括依次层叠设置的SiAlOx层、五氧化三钛层、二氧化硅层和五氧化三钛层;
    多个所述子镀膜层包括依次层叠设置的SiAlOx层和五氧化三钛层;
    多个所述子镀膜层包括依次层叠设置的二氧化锆层和五氧化二铌层。
  10. 根据权利要求1~9中任一项所述的仿陶瓷电子设备壳体,其特征在于,所述油墨层包括多个子油墨层。
  11. 根据权利要求10所述的仿陶瓷电子设备壳体,其特征在于,每个所述子油墨层的厚度为5~8微米。
  12. 根据权利要求1~11中任一项所述的仿陶瓷电子设备壳体,其特征在于,所述油墨层的厚度为20~30微米。
  13. 根据权利要求1~12中任一项所述的仿陶瓷电子设备壳体,其特征在于,还包括:
    硬化层,所述硬化层设置在所述非陶瓷基材远离所述增亮镀膜的表面上。
  14. 根据权利要求1~13中任一项所述的仿陶瓷电子设备壳体,其特征在于,满足以下条件的至少之一:
    与同颜色的陶瓷壳体相比,所述仿陶瓷电子设备壳体的L值与所述陶瓷壳体的L值的差值在±1以内,所述仿陶瓷电子设备壳体的a值与所述陶瓷壳体的a值的差值在±0.5以内,所述仿陶瓷电子设备壳体的b值与所述陶瓷壳体的b值的差值在±0.5以内;所述仿陶瓷电子设备壳体的平均反射率与所述陶瓷壳体的平均反射率的差值在±4%以内。
  15. 一种制备权利要求1~14中任一项所述的仿陶瓷电子设备壳体的方法,其特征在于,包括:
    在非陶瓷基材的低雾度表面上形成增亮镀膜;
    在所述增亮镀膜远离所述非陶瓷基材的表面上形成油墨层。
  16. 根据权利要求15所述的方法,其特征在于,所述非陶瓷基材是通过以下步骤形成的:
    通过UV转印或者喷涂在所述基材本体的表面上形成无纹理光面层,所述无纹理光面层远离所述基材本体的表面构成所述低雾度表面。
  17. 根据权利要求15或16所述的方法,其特征在于,所述增亮镀膜是通过磁控溅射 或者蒸发镀方法形成的,
    所述油墨层是通过印刷方法形成的。
  18. 根据权利要求15~17中任一项所述的方法,其特征在于,还包括:
    在所述非陶瓷基材远离所述增亮镀膜的表面上形成硬化层。
  19. 根据权利要求18所述的方法,其特征在于,所述硬化层是通过淋涂方法形成的。
  20. 一种电子设备,其特征在于,包括:
    权利要求1~14中任一项所述的仿陶瓷电子设备壳体,所述仿陶瓷电子设备壳体中限定出容纳空间;
    显示屏,所述显示屏设置在所述容纳空间中。
PCT/CN2021/080238 2020-05-15 2021-03-11 仿陶瓷电子设备壳体及其制备方法和电子设备 WO2021227634A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010411692.4 2020-05-15
CN202010411692.4A CN111587000B (zh) 2020-05-15 2020-05-15 仿陶瓷电子设备壳体及其制备方法和电子设备

Publications (1)

Publication Number Publication Date
WO2021227634A1 true WO2021227634A1 (zh) 2021-11-18

Family

ID=72110841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080238 WO2021227634A1 (zh) 2020-05-15 2021-03-11 仿陶瓷电子设备壳体及其制备方法和电子设备

Country Status (2)

Country Link
CN (1) CN111587000B (zh)
WO (1) WO2021227634A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111587000B (zh) * 2020-05-15 2022-03-22 Oppo广东移动通信有限公司 仿陶瓷电子设备壳体及其制备方法和电子设备
CN112477337A (zh) * 2020-11-24 2021-03-12 宜宾市恒美科技有限公司 一种板材仿陶瓷黑id效果层及其加工工艺的方法
CN117800617A (zh) * 2022-09-26 2024-04-02 比亚迪股份有限公司 一种仿陶瓷结构及其制备方法、电子设备壳体
CN115458613A (zh) * 2022-11-09 2022-12-09 浙江爱旭太阳能科技有限公司 彩色太阳能电池片、彩色电池组件和光伏系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107949203A (zh) * 2017-11-07 2018-04-20 北京小米移动软件有限公司 壳体的制备方法、壳体及电子设备
CN108193172A (zh) * 2018-02-11 2018-06-22 北京亿海腾模型工业有限公司 具有陶瓷效果的手机模型外壳的制作方法
CN108559951A (zh) * 2018-01-31 2018-09-21 惠州Tcl移动通信有限公司 仿陶瓷壳体及其制作方法、电子设备
CN108642461A (zh) * 2018-04-23 2018-10-12 维沃移动通信有限公司 一种外壳的制造方法和外壳
US20190155339A1 (en) * 2017-11-21 2019-05-23 Corning Incorporated Articles with textured surfaces and methods of making same
CN111587000A (zh) * 2020-05-15 2020-08-25 Oppo广东移动通信有限公司 仿陶瓷电子设备壳体及其制备方法和电子设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101200128A (zh) * 2006-12-15 2008-06-18 比亚迪股份有限公司 一种锌合金制品及其制备方法
CN102378510A (zh) * 2010-08-12 2012-03-14 深圳富泰宏精密工业有限公司 电子装置外壳及其制备方法
CN103182804A (zh) * 2011-12-29 2013-07-03 鸿富锦精密工业(深圳)有限公司 镀膜件及其制备方法
CN103516843B (zh) * 2013-09-18 2016-08-17 广东欧珀移动通信有限公司 手机塑胶外观件的表面处理方法及手机塑胶外观件
US11088718B2 (en) * 2016-09-06 2021-08-10 Apple Inc. Multi-colored ceramic housings for an electronic device
CN106541768A (zh) * 2016-11-25 2017-03-29 维沃移动通信有限公司 一种金属表面瓷釉质感的制作方法、壳体及移动终端
CN107135621B (zh) * 2017-05-03 2020-05-08 Oppo广东移动通信有限公司 移动终端壳体、制备方法以及移动终端
CN107931075A (zh) * 2017-11-16 2018-04-20 珠海市魅族科技有限公司 终端外壳的制造方法、终端外壳与终端设备
CN107999361A (zh) * 2017-12-02 2018-05-08 陈来运 一种塑胶壳体的喷漆方法
CN108422795A (zh) * 2018-02-28 2018-08-21 广东欧珀移动通信有限公司 板材及其制备方法、壳体、电子设备
CN108277470A (zh) * 2018-04-04 2018-07-13 东莞市三诚嘉五金塑胶制品有限公司 一种pvd涂装工艺
CN108583130B (zh) * 2018-04-12 2020-06-05 Oppo广东移动通信有限公司 电子装置及其壳体和壳体的制造方法
CN108638729B (zh) * 2018-04-13 2022-10-18 Oppo广东移动通信有限公司 壳体及其制备方法、移动终端
CN109182986B (zh) * 2018-08-01 2021-04-13 Oppo(重庆)智能科技有限公司 板材及其制备方法、壳体以及电子设备
CN109894337A (zh) * 2019-02-15 2019-06-18 维沃通信科技有限公司 一种膜层结构制作方法及膜层结构、外壳及移动终端
CN111116237A (zh) * 2020-01-15 2020-05-08 广东阿特斯科技有限公司 一种手机后盖用3d氧化锆陶瓷的生产工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107949203A (zh) * 2017-11-07 2018-04-20 北京小米移动软件有限公司 壳体的制备方法、壳体及电子设备
US20190155339A1 (en) * 2017-11-21 2019-05-23 Corning Incorporated Articles with textured surfaces and methods of making same
CN108559951A (zh) * 2018-01-31 2018-09-21 惠州Tcl移动通信有限公司 仿陶瓷壳体及其制作方法、电子设备
CN108193172A (zh) * 2018-02-11 2018-06-22 北京亿海腾模型工业有限公司 具有陶瓷效果的手机模型外壳的制作方法
CN108642461A (zh) * 2018-04-23 2018-10-12 维沃移动通信有限公司 一种外壳的制造方法和外壳
CN111587000A (zh) * 2020-05-15 2020-08-25 Oppo广东移动通信有限公司 仿陶瓷电子设备壳体及其制备方法和电子设备

Also Published As

Publication number Publication date
CN111587000A (zh) 2020-08-25
CN111587000B (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2021227634A1 (zh) 仿陶瓷电子设备壳体及其制备方法和电子设备
CN109927471A (zh) 电子设备壳体及其制备方法和电子设备
WO2021136273A1 (zh) 壳体组件、壳体组件的制备方法及电子设备
CN111447776A (zh) 壳体组件、壳体组件的制备方法及电子设备
CN112123899B (zh) 电子设备壳体及其制作方法和电子设备
CN111901996A (zh) 壳体组件及其制备方法、电子设备
CN108989526B (zh) 机壳及其制备方法、智能终端
CN101162270A (zh) 一种彩色显示屏镜片的制造工艺
CN108337842B (zh) 电子装置及其壳体和壳体的制造方法
CN101873774B (zh) 可变色电子装置及其外壳
CN207760231U (zh) 一种陶瓷蓝的玻璃盖板
CN112297538B (zh) 仿陶瓷壳体及其制备方法和电子设备
CN114096092A (zh) 电子设备壳体及其制备方法、电子设备
CN108617120A (zh) 电子装置及其壳体和壳体的制造方法
CN111683484B (zh) 有色基板及其制作方法及电子设备的外壳
CN108617123A (zh) 电子装置及其壳体和壳体的制造方法
CN211364123U (zh) 增亮装饰膜
CN114683630A (zh) 壳体组件、壳体组件的制备方法及电子设备
CN113365448B (zh) 一种壳体组件的制作方法、壳体组件和电子设备
CN114466542A (zh) 装饰件的制备方法、装饰件以及电子设备
CN114697430A (zh) 壳体组件及其制备方法和电子设备
CN114054317A (zh) 一种涂层结构及其制备方法、包括该涂层结构的材料制品和电子产品
CN110109207A (zh) 一种多色感光雷达镀膜结构及镀膜方法
CN214845849U (zh) 一种抗静电的ar膜
JP2009066763A (ja) 被膜成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803552

Country of ref document: EP

Kind code of ref document: A1