WO2021223249A1 - 新型阴阳极电催化协同烟气脱硝的方法 - Google Patents

新型阴阳极电催化协同烟气脱硝的方法 Download PDF

Info

Publication number
WO2021223249A1
WO2021223249A1 PCT/CN2020/089711 CN2020089711W WO2021223249A1 WO 2021223249 A1 WO2021223249 A1 WO 2021223249A1 CN 2020089711 W CN2020089711 W CN 2020089711W WO 2021223249 A1 WO2021223249 A1 WO 2021223249A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
flue gas
anode
electrocatalysis
gas denitration
Prior art date
Application number
PCT/CN2020/089711
Other languages
English (en)
French (fr)
Inventor
江波
徐灿程
关雨欣
牛庆赫
刘树梁
孟宪哲
刘奕捷
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2021223249A1 publication Critical patent/WO2021223249A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Definitions

  • the invention belongs to the technical field of atmospheric treatment, and in particular relates to a novel method for cooperating with cathode and anode electrocatalysis for flue gas denitration.
  • NOx control technology started relatively late, and currently there are two main types: one is the use of low-NOx combustion technology, such as air staging combustion technology, which can reduce the NOx emission concentration to a certain extent.
  • low-NOx combustion technology such as air staging combustion technology
  • the single use of this technology cannot meet the environmental protection requirements; the other is to remove NOx from the flue gas after combustion, the main methods are dry flue gas denitrification and wet flue gas denitrification.
  • the large-scale commercial application of dry flue gas denitration mainly includes two types: selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR).
  • SCR selective catalytic reduction
  • SNCR selective non-catalytic reduction
  • reducing agents which can selectively react with NOx in the flue gas to reduce it to pollution-free N 2 and H 2 O.
  • the main advantages are high denitration efficiency, low reaction temperature, and the product will not cause secondary pollution to the environment.
  • the SCR law has shortcomings such as easy catalyst deactivation, narrow operating temperature range, ammonia leakage and high investment cost.
  • urea or ammonia compounds as reducing agents can convert NOx into pollution-free N 2 .
  • the denitration process of the selective non-catalytic reduction method is completed in the combustion chamber of the boiler. Due to the high temperature environment, there is no need for catalysts, no need to modify the flue, and the investment is small, and it does not affect the operation of the unit.
  • wet flue gas denitration technology mainly uses oxidants such as acids or alkalis to oxidize and absorb NO x to remove nitrogen oxides. Commonly used methods are: nitric acid absorption method, complex absorption method, oxidation absorption method, lye absorption method, acid absorption method and so on.
  • the wet flue gas denitrification technology has the advantages of simple equipment and process, easy operation, and labor cost saving. However, the regeneration problem of the absorption liquid of this method and the decrease of denitrification efficiency after regeneration are also a difficult problem of this technology.
  • the strong NOx oxidants represented by ozone, potassium permanganate, hydrogen peroxide, and hypochlorous acid consume large amounts of reagents and increase the subsequent treatment of the waste liquid, so the application of this technology is limited.
  • the purpose of the present invention is to provide a cathode-anode electrocatalytic synergistic flue gas denitration method, which operates at room temperature and pressure, is easy to operate, can be applied to the treatment of room temperature and low concentration NOx, and has high out-of-stock efficiency And the process has no chemical reagents, no secondary pollution, low cost, low consumption, and high safety performance.
  • a new type of cathode and anode electrocatalysis and flue gas denitrification method The anode and cathode electrodes are set in the reactor, and NaCl solution is used as the electrolyte.
  • the flue gas to be denitrated enters the solution from the bottom of the reactor through the microporous aeration device, and is anodized.
  • the generated strong oxidizing hydroxyl radicals and active chlorine oxidize NO in the flue gas to high-valence NOx that is easily soluble in water, and the NOx absorbed by the water phase is converted into nitrite and nitrate.
  • the dissolved nitrate nitrogen can be The cathode is converted into nitrogen or ammonium by catalytic reduction, and the generated ammonium can be finally oxidized to nitrogen by hypochlorous acid generated by anode electrolysis, thereby completing the electrocatalytic denitrification reaction.
  • the working current density in the electrocatalytic denitration reaction is 1-50 mA/cm 2 ; the input voltage waveform is direct current or pulse.
  • the anode is one of ruthenium iridium electrode, lead oxide, and Sb-SnO 2 .
  • the cathode is a nitrate reduction catalyst.
  • the cathode is one of precious metals or inexpensive metals and their oxides; more preferably, the cathode is Pd, P, copper, One of indium, cobalt or their oxides.
  • the electrode spacing between the anode and the cathode is 1-10 cm.
  • the concentration of the NaCl solution is 0.001-1.0M.
  • the microporous aeration device is one of a membrane type microporous aerator, a tube type aerator, a disc type aerator, and a microporous ceramic aerator.
  • a spray device is also provided on the top of the reactor, and part of the electrolyte is lifted to the spray device by a lift pump to form a spray, which absorbs and degrades part of the overflowing NO.
  • the principle of the technical scheme of the present invention is: NO passes through the microporous aeration tray 12 and enters the solution from the inlet hose 9 at the bottom of the reactor. Using NaCl solution as electrolyte, Cl - will oxidize at anode 10 to generate Cl free radicals and ClO - . The anodic oxidation will oxidize NO in the flue gas into high-valence NOx that is easily soluble in water, and the NOx absorbed by the water phase will be converted into sub Nitrate and nitrate, and the dissolved nitrate nitrogen can be converted into nitrogen or ammonium by catalytic reduction on the cathode 7.
  • the generated ammonium can be finally oxidized to nitrogen by the hypochlorous acid generated by the anode electrolysis.
  • the gas outlet 2 overflow.
  • the system uses a lift pump to lift the solution to the top of the reaction device, and the spray nozzle 3 of the spray device forms a spray, which further increases the contact time and contact area of NO with the solution and improves the treatment efficiency.
  • the chemical (ionic) equation of the reaction is:
  • the technology operates at room temperature and pressure, and can be applied to the treatment of room temperature and low concentration NOx, and the process has no chemical reagents added, no secondary pollution, low cost, low consumption, and high safety performance.
  • Figure 1 Schematic diagram of the denitration reaction device of the present invention, in which, in the figure: 1-outlet hose, 2-gas outlet, 3-spray nozzle, 4-flange, 5-circulation hose, 6-cathode connection port, 7-cylinder cathode, 8-circulating water opening, 9-inlet hose, 10-anode, 11-anode connection port, 12-microporous aeration tray.
  • Use Ti/IrO 2 -RuO 2 as the anode, metal copper as the cathode, and the electrode spacing is 5 cm.
  • the NO concentration is 500ppm, and the flow rate is 1L/min into the solution through the membrane microporous aerator.
  • the electrolyte is sprayed from the spray device on the top through the lift pump, and part of the gas overflowing from the solution is brought back to the solution.
  • the treated gas is introduced into a gas cylinder after overflowing from the top of the reactor, and its concentration is measured with a flue gas analyzer to monitor the degree of treatment of NOx in real time.
  • the lead oxide electrode is used as the anode, the metal Pd coating is used as the cathode, and the electrode spacing is 5 cm.
  • the NO concentration is 500ppm, and the flow rate is 1.2L/min into the solution through the membrane microporous aerator.
  • the electrolyte is sprayed from the spray device on the top through the lift pump, and part of the gas overflowing from the solution is brought back to the solution.
  • the treated gas is introduced into a gas cylinder after overflowing from the top of the reactor, and its concentration is measured with a flue gas analyzer to monitor the degree of treatment of NOx in real time.
  • the Sb-SnO 2 electrode is used as the anode, and the metal cobalt is used as the cathode, and the distance between the electrodes is 6 cm.
  • 0.08M NaCl as the electrolyte, the initial pH value was adjusted to 7.
  • the NO concentration is 500ppm, and the flow rate is 1.3L/min into the solution through the membrane microporous aerator. No spraying device is used. After the treated gas overflows from the top of the reactor, it is introduced into a gas cylinder, and its concentration is measured by a flue gas analyzer to monitor the degree of treatment of NOx in real time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种阴阳极电催化协同烟气脱硝的方法,在反应器中设置阴阳电极,以NaCl溶液做电解质,待脱硝的烟气经微孔曝气装置,从反应器底部进入溶液,阳极氧化产生的强氧化性羟基自由基和活性氯将烟气中NO氧化为易溶于水体的高价态的NOx,被水相吸收的NOx转化为亚硝酸盐和硝酸盐,同时溶解的硝氮可在阴极上通过催化还原作用转化为氮气或者铵根,产生的铵根最终可被阳极电解生成的次氯酸氧化为氮气,以此完成电催化脱硝反应。

Description

新型阴阳极电催化协同烟气脱硝的方法 技术领域
本发明属于大气处理技术领域,具体涉及一种新型阴阳极电催化协同烟气脱硝的方法。
背景技术
我国能源结构以煤炭为主,其燃烧过程产生的烟气中含有大量的NOx,其中90-95%为难溶性的NO,会引发臭氧层空洞、光化学烟雾、酸雨、雾霾等一系列环境问题。因此,近些年烟气脱硫脱硝是我国能源与环境领域的战略要点,特别是对于治理当前备受关注的雾霾污染具有重要的环境与社会意义。
NOx的控制技术起步比较晚,目前主要有两种:一种是采用低NOx燃烧技术,如空气分级燃烧技术等,可在一定程度上降低NOx排放浓度。但随着环保要求日趋严格,单一采用该技术并不能达到环保要求;另一种是从燃烧后的烟气中脱除NOx,主要方法有干法烟气脱硝和湿法烟气脱硝。目前,大规模商业应用的干法烟气脱硝主要有:选择性催化还原法(SCR)和选择性非催化还原法(SNCR)两种。SCR脱硝原理:在一定温度和催化剂的作用下,以NH 3、CO、H 2等作为还原剂,可选择性的与烟气中的NOx反应,将其还原成无污染的N 2和H 2O。主要优点是脱硝效率高,反应温度低,并且产物不会造成环境的二次污染。另一方面,SCR法则存在催化剂易失活,操作温度范围窄,氨泄漏以及投资成本高等缺点。SNCR中,作为还原剂的尿素或氨类化合物可将NOx转化为无污染的N 2。选择性非催化还原法的脱硝过程是在锅炉燃烧室内完成,由于高温环境,无需催化剂,无需改造烟道,投资小,并且不影响机组运行。但其脱硝效率比较低下,操作温度高、氨易泄漏。湿法烟气脱硝技术主要利用酸或碱等氧化剂将NO x进行氧化吸收等过程而除去氮氧化物。常用的方法有:硝酸吸收法、络合吸收法、氧化吸收法、碱液吸收法、酸吸收法等。湿法烟气脱硝技术具有设备及流程简单、易操作、节约人工成本等优点,但是该法的吸收液再生问题及再生后的脱硝效率下降也是该技术的一项难题。以臭氧、高锰酸钾、双氧水、次氯酸为代表的NOx强氧化剂由于试剂消耗大、增加了对废液的后续处理,因此该技术应用受到限制。
发明内容
根据以上现有技术的不足,本发明的目的在于提供一种阴阳极电催化协同烟气脱硝方法,该技术常温常压运行,易操作,可应用于常温、低浓度NOx的治理,脱销效率高,且该过程无化学试剂添加,无二次污染,低成本低消耗安全性能高。
为了达到上述目的,本发明采用如下技术方案:
一种新型阴阳极电催化协同烟气脱硝的方法,在反应器中设置阴阳电极,以NaCl溶液做电解质,待脱硝的烟气经微孔曝气装置,从反应器底部的进入溶液,阳极氧化产生的强氧化性羟基自由基和活性氯将烟气中NO氧化为易溶于水体的高价态的NOx,被水相吸收的NOx转化为亚硝酸盐和硝酸盐,同时溶解的硝氮可在阴极上通过催化还原作用转化为氮气或者铵根,产生的铵根最终可被阳极电解生成的次氯酸氧化为氮气,以此完成电催化脱硝反应。
在上述方案的基础上,所述电催化脱硝反应中工作电流密度为1-50mA/cm 2;输入电压波形为直流或者脉冲。
在上述方案的基础上,所述阳极为钌铱电极、氧化铅、Sb-SnO 2中的一种。
在上述方案的基础上,所述阴极为硝氮还原催化剂,优选地,所述阴极为贵金属或者廉价金属及其氧化物中的一种;更加优选地,所述阴极为Pd、P、铜、铟、钴或其氧化物中的一种。
在上述方案的基础上,所述的阳极、阴极之间电极间距为1-10cm。
在上述方案的基础上,所述的NaCl溶液的浓度为0.001-1.0M。
在上述方案的基础上,所述的微孔曝气装置为膜片式微孔曝气器、管式曝气器、盘式曝气器、微孔陶瓷曝气器中的一种。
在上述方案的基础上,所述反应器的顶部还设置有喷淋装置,通过提升泵将部分电解液提升至喷淋装置,形成喷雾,吸收和降解部分溢出的NO。
本发明的技术方案的原理是:NO经过微孔曝气盘12微孔曝气,从反应器底部进口软管9进入溶液。以NaCl溶液做电解质,Cl -会在阳极10氧化生成Cl自由基和ClO -,利用阳极氧化将烟气中NO氧化为易溶于水体的高价态的NOx,被水相吸收的NOx转化为亚硝酸盐和硝酸盐,同时溶解的硝氮可在阴极7上通过催化还原作用转化为氮气或者铵根,产生的铵根最终可被阳极电解生成的次氯酸氧化为氮气从装置顶部气体出口2溢出。该体系利用提升泵将溶液提升至反应装置顶部,经喷淋装置的喷淋喷头3形成喷雾,进一步增加了NO与溶液的接触时间和接触面积,提升了处理效率。反应的化学(离子)方程式为:
NO+HClO→NO 2+HCl    3NO 2+H 2O→2HNO 3+NO
NO 2+H 2O→HNO 3+HNO 2    HNO 2+HClO→HNO 3+HCl
NO 3 -+2e -+2H +→NO 2 -+3H 2O    NO 2 -+6e -+8H +→NH 4 ++2H 2O
2NO 2 -+10e -+12H +→N 2+6H 2O    2NH 4 ++3HOCl→N 2+3H 2O+3Cl -+5H +
本发明的优点在于:
(1)利用阳极氧化、阴极还原协同处理NOx,将NOx(主要是NO)转化为无毒无害的N 2,简单方便,脱销效率高。
(2)该技术常温常压运行,可应用于常温、低浓度NOx的治理,且该过程无化学试剂添加,无二次污染,低成本低消耗安全性能高。
附图说明
图1本发明脱硝反应装置示意图,其中,图中:1-出口软管,2-气体出口,3-喷淋喷头,4-法兰盘,5-循环软管,6-阴极接电口,7-圆筒阴极,8-循环水开口,9-进口软管,10-阳极,11-阳极接电口,12-微孔曝气盘。
具体实施方式
在本发明中所使用的术语,除非有另外说明,一般具有本领域普通技术人员通常理解的含义。
下面接合具体实施例,并参照数据进一步详细的描述本发明。以下实施例只是为了举例说明本发明,而非以任何方式限制本发明的范围。
实施例1
采用Ti/IrO 2-RuO 2为阳极,金属铜为阴极,电极间距为5cm。采用0.05M NaCl为电解液,初始pH值调节为7。NO浓度为500ppm,以流量为1L/min通过膜片式微孔曝气器进入溶液中。电解液通过提升泵从顶部的喷淋装置形成喷雾,将部分溢出溶液的气体重新带回溶液。经过处理后的气体,从反应器的顶部溢出后引入一个气瓶,使用烟气分析仪测其浓度,实时监测NOx的处理程度。
工作电流密度为20mA/cm 2时,NO转化率为90%。
实施例2
采用氧化铅电极为阳极,金属Pd涂层为阴极,电极间距为5cm。采用0.07M NaCl为电解液,初始pH值调节为7。NO浓度为500ppm,以流量为1.2L/min通过膜片式微孔曝气器进入溶液中。电解液通过提升泵从顶部的喷淋装置形成喷雾,将部分溢出溶液的气体重新带回溶液。经过处理后的气体,从反应器的顶部溢出后引入一个气瓶,使用烟气分析仪测其浓度,实时监测NOx的处理程度。
工作电流密度为25mA/cm 2时,NO转化率为92%。
实施例3
采用Sb-SnO 2电极为阳极,金属钴为阴极,电极间距为6cm。采用0.08M NaCl为电解 液,初始pH值调节为7。NO浓度为500ppm,以流量为1.3L/min通过膜片式微孔曝气器进入溶液中。不采用喷淋装置,经过处理后的气体,从反应器的顶部溢出后引入一个气瓶,使用烟气分析仪测其浓度,实时监测NOx的处理程度。
工作电流密度为30mA/cm 2时,NO转化率为80%。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

  1. 一种新型阴阳极电催化协同烟气脱硝的方法,其特征在于,在反应器中设置阴阳电极,以NaCl溶液做电解质,待脱硝的烟气经微孔曝气装置,从反应器底部的进入溶液,阳极氧化产生的强氧化性羟基自由基和活性氯将烟气中NO氧化为易溶于水体的高价态的NOx,被水相吸收的NOx转化为亚硝酸盐和硝酸盐,同时溶解的硝氮可在阴极上通过催化还原作用转化为氮气或者铵根,产生的铵根最终可被阳极电解生成的次氯酸氧化为氮气,以此完成电催化脱硝反应。
  2. 根据权利要求1所述新型阴阳极电催化协同烟气脱硝的方法,其特征在于,所述电催化脱硝反应中工作电流密度为1-50mA/cm 2;输入电压波形为直流或者脉冲。
  3. 根据权利要求1所述新型阴阳极电催化协同烟气脱硝的方法,其特征在于,所述阳极为钌铱电极、氧化铅、Sb-SnO 2中的一种。
  4. 根据权利要求1所述新型阴阳极电催化协同烟气脱硝的方法,其特征在于,所述阴极为硝氮还原催化剂。
  5. 根据权利要求4所述新型阴阳极电催化协同烟气脱硝的方法,其特征在于,所述阴极为贵金属或者廉价金属及其氧化物中的一种。
  6. 根据权利要求5所述新型阴阳极电催化协同烟气脱硝的方法,其特征在于,所述阴极为Pd、P、铜、铟、钴或其氧化物中的一种。
  7. 根据权利要求1所述新型阴阳极电催化协同烟气脱硝的方法,其特征在于,所述的阳极、阴极之间电极间距为1-10cm。
  8. 根据权利要求1所述新型阴阳极电催化协同烟气脱硝的方法,其特征在于,所述的NaCl溶液的浓度为0.001-1.0M。
  9. 根据权利要求1所述新型阴阳极电催化协同烟气脱硝的方法,其特征在于,所述的微孔曝气装置为膜片式微孔曝气器、管式曝气器、盘式曝气器、微孔陶瓷曝气器中的一种。
  10. 根据权利要求1~9任一项所述新型阴阳极电催化协同烟气脱硝的方法,其特征在于,所述反应器的顶部还设置有喷淋装置,通过提升泵将部分电解液提升至喷淋装置,形成喷雾,吸收和降解部分溢出的NO。
PCT/CN2020/089711 2020-05-06 2020-05-12 新型阴阳极电催化协同烟气脱硝的方法 WO2021223249A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010370894.9 2020-05-06
CN202010370894.9A CN111514712B (zh) 2020-05-06 2020-05-06 新型阴阳极电催化协同烟气脱硝的方法

Publications (1)

Publication Number Publication Date
WO2021223249A1 true WO2021223249A1 (zh) 2021-11-11

Family

ID=71906439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089711 WO2021223249A1 (zh) 2020-05-06 2020-05-12 新型阴阳极电催化协同烟气脱硝的方法

Country Status (2)

Country Link
CN (1) CN111514712B (zh)
WO (1) WO2021223249A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113953088A (zh) * 2021-11-23 2022-01-21 昆明理工大学 冶炼烟气高效除尘协同选择性催化还原脱硝一体化方法
CN114345127A (zh) * 2021-12-31 2022-04-15 中国海洋大学 一种船舶烟气电催化还原脱硝方法
CN115779910A (zh) * 2022-11-30 2023-03-14 华北电力大学(保定) 一种钴基钙钛矿类催化剂的制备及其热催化脱硝方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177894A (ja) * 2013-03-14 2014-09-25 Toyota Central R&D Labs Inc 排ガス浄化システム及び排ガス浄化方法
CN107469597A (zh) * 2017-09-21 2017-12-15 马加德 一种基于电化学的废气废水耦合净化系统及其净化方法
CN107970768A (zh) * 2017-11-20 2018-05-01 南开大学 一种气体扩散电极及其制备方法和NOx转化装置
CN108163934A (zh) * 2018-02-27 2018-06-15 湖北君集水处理有限公司 一种采用铑电极进行电解脱氮的系统及方法
CN108211687A (zh) * 2018-03-08 2018-06-29 武汉光谷环保科技股份有限公司 基于电极催化氧化剂的湿法烟气氧化脱硫脱硝脱汞工艺
CN109772165A (zh) * 2018-12-14 2019-05-21 深圳大学 一种尾气净化反应器及其制备方法与尾气净化反应电堆

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1263683C (zh) * 2004-09-29 2006-07-12 浙江大学 一种阴阳两极协同电催化处理有机废水的装置及方法
CN100503012C (zh) * 2006-05-24 2009-06-24 黄立维 一种从气流中去除有害气体的方法
CN104163479B (zh) * 2014-08-25 2016-06-29 上海理工大学 一种采用三维电极去除水中硝态氮的方法及其装置
CN104817142B (zh) * 2015-04-24 2017-01-25 青岛双瑞海洋环境工程股份有限公司 去除污水中硝酸盐的电化学方法及装置
WO2017030249A1 (ko) * 2015-08-18 2017-02-23 한국과학기술원 철-에틸렌디아민사아세트산을 이용한 질소화합물 포집용 전기분해장치
CN105536532A (zh) * 2016-02-26 2016-05-04 中国电力工程顾问集团东北电力设计院有限公司 一种电催化低温湿法全负荷脱硝系统
CN108423772B (zh) * 2018-04-18 2020-08-04 南京大学 一种基于载纳米零价铁导电复合树脂为催化剂的阴阳两极协同降解硝酸盐的装置及方法
CN109966917B (zh) * 2019-04-22 2023-09-26 华能国际电力股份有限公司 一种节电型烟气no电催化氧化系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177894A (ja) * 2013-03-14 2014-09-25 Toyota Central R&D Labs Inc 排ガス浄化システム及び排ガス浄化方法
CN107469597A (zh) * 2017-09-21 2017-12-15 马加德 一种基于电化学的废气废水耦合净化系统及其净化方法
CN107970768A (zh) * 2017-11-20 2018-05-01 南开大学 一种气体扩散电极及其制备方法和NOx转化装置
CN108163934A (zh) * 2018-02-27 2018-06-15 湖北君集水处理有限公司 一种采用铑电极进行电解脱氮的系统及方法
CN108211687A (zh) * 2018-03-08 2018-06-29 武汉光谷环保科技股份有限公司 基于电极催化氧化剂的湿法烟气氧化脱硫脱硝脱汞工艺
CN109772165A (zh) * 2018-12-14 2019-05-21 深圳大学 一种尾气净化反应器及其制备方法与尾气净化反应电堆

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113953088A (zh) * 2021-11-23 2022-01-21 昆明理工大学 冶炼烟气高效除尘协同选择性催化还原脱硝一体化方法
CN114345127A (zh) * 2021-12-31 2022-04-15 中国海洋大学 一种船舶烟气电催化还原脱硝方法
CN114345127B (zh) * 2021-12-31 2023-07-07 中国海洋大学 一种船舶烟气电催化还原脱硝方法
CN115779910A (zh) * 2022-11-30 2023-03-14 华北电力大学(保定) 一种钴基钙钛矿类催化剂的制备及其热催化脱硝方法

Also Published As

Publication number Publication date
CN111514712A (zh) 2020-08-11
CN111514712B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2021223249A1 (zh) 新型阴阳极电催化协同烟气脱硝的方法
CN102343212B (zh) 臭氧和过氧化氢协同氧化结合湿法吸收的脱硝工艺
CN108355483B (zh) 一种基于臭氧催化氧化吸收烟气的湿法脱硝系统及方法
CN107469597A (zh) 一种基于电化学的废气废水耦合净化系统及其净化方法
CN108465376B (zh) 一种基于空气催化氧化吸收烟气的湿法脱硝系统及方法
US10730010B2 (en) Device and method for purifying sulfur dioxide and nitrogen oxide in flue gas
CN102553406B (zh) 直流电晕放电协同催化氧化脱硝方法及其装置
Huang et al. Mechanistic research on NO removal by K2S2O8 with electrochemical catalysis
CN112920087B (zh) 脱硝耦合电催化还原制备尿素的方法及系统
JPH02172590A (ja) 水溶液から亜硝酸塩および硝酸塩を無残渣で除去する方法
CN205832945U (zh) 一种回收氮氧化物废气制备稀硝酸的装置
CN107051168A (zh) 一种烟气低温脱硝的一体化装置及方法
CN207307579U (zh) 一种基于电化学的废气废水耦合净化系统
CN105396626B (zh) 一种scr脱硝催化剂再生液及scr脱硝催化剂的再生方法
CN113797733A (zh) 一种循环净化烟气中二氧化硫和氮氧化物的方法和装置
CN106512681A (zh) 一种脱硝装置
CN107837800B (zh) 一种二氧化钛催化臭氧化催化剂及制备、脱硝应用
CN113648812A (zh) 光电协同催化氧化及湿法吸收汞硝一体化脱除系统及方法
CN104028103A (zh) 一种锅炉烟气二氧化氯催化氧化同时脱硫脱硝方法
CN111111401A (zh) 一种工业废气中氮氧化物的无害化高效处理方法
CN111644029A (zh) 一种湿法脱硫后低温脱硝除尘脱白工艺装置
CN105664700A (zh) 一种含氮氧化物工业废气的处理方法及处理装置
CN203408631U (zh) 一种用于含nox废气的选择性催化还原脱硝装置
CN106925117A (zh) 一种工业尾气氧化脱硝循环水中硝酸盐的脱除装置与方法
CN211987967U (zh) 一种烧结烟气脱硫脱硝系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934423

Country of ref document: EP

Kind code of ref document: A1