WO2017030249A1 - 철-에틸렌디아민사아세트산을 이용한 질소화합물 포집용 전기분해장치 - Google Patents

철-에틸렌디아민사아세트산을 이용한 질소화합물 포집용 전기분해장치 Download PDF

Info

Publication number
WO2017030249A1
WO2017030249A1 PCT/KR2015/013825 KR2015013825W WO2017030249A1 WO 2017030249 A1 WO2017030249 A1 WO 2017030249A1 KR 2015013825 W KR2015013825 W KR 2015013825W WO 2017030249 A1 WO2017030249 A1 WO 2017030249A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
compound
chelating agent
electrolysis device
divalent metal
Prior art date
Application number
PCT/KR2015/013825
Other languages
English (en)
French (fr)
Inventor
한종인
김동연
이나라
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to US15/751,870 priority Critical patent/US10711354B2/en
Priority claimed from KR1020150180430A external-priority patent/KR102566436B1/ko
Publication of WO2017030249A1 publication Critical patent/WO2017030249A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an electrolysis device for collecting nitrogen compounds using iron-ethylenediaminetetraacetic acid (Fe-EDTA), and more particularly, to supply the electric energy to cause the redox reaction of Fe-EDTA to cause nitrogen of exhaust gas.
  • Fe-EDTA iron-ethylenediaminetetraacetic acid
  • the present invention relates to an electrolysis device for collecting a compound.
  • SCR selective catalytic reduction
  • SNCR selective non-catalytic reduction
  • electron beam pulse corona spraying a reducing agent (NH 3, etc.) on the catalyst Discharge processes
  • Nitrogen oxide emissions have been slightly reduced in recent decades with the development of nitrogen oxide abatement techniques, but still around 30 million tons of nitrogen oxides are emitted annually in the United States alone, and the most widely used selective catalytic reductin, SCR) requires an astronomical amount of about $ 24 billion.
  • the BioDeNox process which processes nitrogen oxides (NOX) using microorganisms, has been newly developed and is in the spotlight.
  • the BioDeNox method is the latest technology and unlike other processes, it uses a microorganism at room temperature.
  • it is possible to treat nitrogen oxides (NOX) has the advantage that the energy consumption is significantly lower.
  • the key to this technology is the excellent selective binding capacity and binding rate of divalent iron-ethylenediaminetetraacetic acid to nitrogen monoxide (NO), which is determined by the oxygen contained in the exhaust gas during the reaction.
  • the regeneration process must be included because it becomes trivalent iron-ethylenediaminetetraacetic acid in this oxidized, inactive form.
  • BioDeNox method uses microorganisms that can reduce trivalent iron ions in this regeneration process, so the reduction rate is remarkably slow, and it consumes a lot of energy and cost to process separated NOx. Has the disadvantage of being.
  • Republic of Korea Patent No. 1522857 describes a complex selective reduction catalyst.
  • This patent relates to a catalyst having improved purification ability at low temperature by using a double-layered composite SCR catalyst coated on a carrier, wherein a V2O5 / TiO2 layer is formed on the upper layer, and a metal-containing zeolite layer is formed on the lower layer.
  • a V2O5 / TiO2 layer is formed on the upper layer
  • a metal-containing zeolite layer is formed on the lower layer.
  • Republic of Korea Patent No. 1189238 discloses a nitrogen oxide occlusion-reduction catalyst.
  • This patent discloses a carrier comprising Li and Al; Nitrogen oxide occlusion elements of alkali metals, alkaline earth metals or rare earth elements; And one or more precious metals selected from the group consisting of Pt, Pd, Ru, Ag, Au, and Rh, and discloses a catalyst having excellent occlusion ability before and after deterioration and before and after sulfation, but using a rare earth precious metal in a large amount. Since it is a catalyst, it has a disadvantage in that a large cost is consumed for nitrogen oxide adsorption.
  • the present inventors have made efforts to solve the above problems, and as a result, developed an electrolysis device for collecting nitrogen compounds using Fe-EDTA, and conducted a nitrogen oxide capture experiment using the electrolysis device, resulting in a high-value rare earth element. While minimizing the use of, it was confirmed that the nitrogen compound in the exhaust gas can be efficiently collected, and the present invention was completed.
  • An object of the present invention is to provide an electrolysis device for collecting nitrogen compounds.
  • Another object of the present invention to provide a method for collecting nitrogen compounds using the electrolysis device.
  • the present invention (a) a reactor body comprising a compound of a divalent metal ion and a chelating agent (in); (b) anodes and cathodes; (c) a collecting tube for collecting the nitrogen compound, the anode containing the inside; (d) a gas inlet for supplying a source gas containing a nitrogen compound to the reactor body; And (e) an outlet for discharging the nitrogen compound from which the nitrogen compound has been removed by collecting the inside of the reactor.
  • a reactor body comprising a compound of a divalent metal ion and a chelating agent (in); (b) anodes and cathodes; (c) a collecting tube for collecting the nitrogen compound, the anode containing the inside; (d) a gas inlet for supplying a source gas containing a nitrogen compound to the reactor body; And (e) an outlet for discharging the nitrogen compound from which the nitrogen compound has been removed by collecting the inside of the reactor.
  • the present invention also provides (i) nitrogen compounds to compounds of divalent metal ions and chelating agents by supplying a source gas containing nitrogen compounds to a reactor containing a compound of divalent metal ions and a chelating agent. Adsorbing; (ii) the anode and the cathode are supplied with electricity so that the compounds of the divalent metal ion and the chelating agent adsorbed by the nitrogen compound are oxidized to the compounds of the trivalent metal ion and the chelating agent by the oxidation reaction of the anode electrode.
  • FIG 1 illustrates an electrolysis device for collecting nitrogen compounds using Fe-EDTA according to the present invention.
  • Figure 2 is a schematic diagram applying the electrolysis device for collecting nitrogen compounds using Fe-EDTA according to the present invention in the actual process, (a) NO2 removal step for removing NO2, (b) NO collection step for removing NO, ( c) Electrolysis device for nitrogen compound collection using Fe-EDTA.
  • an exhaust gas was supplied to an electrolysis device for collecting nitrogen compounds using iron-ethylenediaminetetraacetic acid (Fe-EDTA) to carry out nitrogen compound capture experiments.
  • Fe-EDTA iron-ethylenediaminetetraacetic acid
  • the present invention (a) a reactor body comprising a compound of a divalent metal ion and a chelating agent (in); (b) anodes and cathodes; (c) a collecting tube for collecting the nitrogen compound, the anode containing the inside; (d) a gas inlet for supplying a source gas containing a nitrogen compound to the reactor body; And (e) an outlet for discharging the nitrogen compound having been removed in the reactor to remove the nitrogen compound.
  • a reactor body comprising a compound of a divalent metal ion and a chelating agent (in); (b) anodes and cathodes; (c) a collecting tube for collecting the nitrogen compound, the anode containing the inside; (d) a gas inlet for supplying a source gas containing a nitrogen compound to the reactor body; And (e) an outlet for discharging the nitrogen compound having been removed in the reactor to remove the nitrogen compound.
  • the electrolytic apparatus of the present invention is composed of a reactor body, an anode and a cathode, a collecting tube, a gas inlet, an outlet.
  • a compound of a divalent metal ion and a chelating agent is contained in an aqueous solution, and one side of the anode and the cathode is supported in the aqueous solution.
  • the other side of the anode and cathode is located outside the reactor body to supply power, and the anode is surrounded by a collecting tube so that the nitrogen compound separated from the anode is discharged to the top of the collecting tube.
  • it includes a gas inlet for supplying the source gas and an outlet for discharging the gas from which nitrogen compounds have been removed, and thus can be operated continuously.
  • the electrochemical reaction occurring at the anode and the cathode when nitrogen monoxide is supplied is as follows.
  • nitrogen monoxide in the exhaust gas supplied through the exhaust gas injection port 60 of FIG. 1 is formed by a divalent iron-ethylenediaminetetraacetic acid (Fe (II) EDTA) solution contained in the reactor body 10. It is adsorbed and is present as liquid Fe (II) EDTA-NO (Equ. 5).
  • Fe (II) EDTA which is adsorbed NO, is oxidized to Fe (II) EDTA-NO. (III) converted to EDTA and electrons (Equ. 2), and the adsorbed NO is separated.
  • the electrolysis device may further comprise means for producing nitric acid (HNO 3) using the collected nitrogen compound.
  • HNO 3 nitric acid
  • the trapped nitrogen compounds can cause other environmental problems if they are discharged as air. Therefore, it is preferable to use it for manufacturing an ammonia type compound, nitric acid, etc. using the collected nitrogen compound.
  • the nitrogen compound to be collected as described above is preferably nitrogen oxide, nitric acid can be obtained at a low price when adding a means for producing nitric acid using such nitrogen oxide.
  • the electrolysis device for collecting nitrogen compounds comprises: (g) NO 2 removal means for separating nitric acid by reacting water with NO 2 in the source gas; And (h) NO collecting means for reacting the NO 2 removed source gas with a divalent metal ion and a chelating agent compound to separate NO and supply it to the reactor body.
  • raw material gases including CO 2, CO, NOx, SOx, dust, and the like are introduced into the NO 2 removal unit, and NO 2, which accounts for about 5% of the total NO x, is reacted with water through nitric acid (HNO 3). Is converted to).
  • most dusts such as dust can be separated by contact with water.
  • the source gas from which NO2 has been removed flows into the NO collection means.
  • the NO collecting means selectively collects only NO in the source gas by using the property of Fe (II) EDTA, which is a chelating agent, to selectively adsorb nitrogen monoxide (NO), thereby removing more than 95% of NO from the source gas. Can be.
  • the source gas discharged from the NO collecting means contains a small amount of nitrogen monoxide, which may be supplied to the reactor body to further remove nitrogen compounds.
  • the divalent metal ion may be aluminum, magnesium, potassium, copper, zinc, nickel, cobalt, manganese, lead, silver, gold or chromium in addition to iron.
  • Divalent metal ions combine with chelating agents to form compounds, which serve to trap nitrogen compounds. It is preferable to use the ion of iron or aluminum which is excellent in affinity with a nitrogen compound among these, More preferably, iron ion can be used.
  • the chelating agent may be characterized in that the ethylene diamine tetraacetic acid (ethlenediamine-tetraacetic acid, EDTA).
  • the chelating agent is a generic name for a compound that combines with a metal to form a chelating compound.
  • EDTA 1,2cyclohexanediamine tetraacetic acid
  • NTA nitrilodiacetic acid disodium acetate
  • chelating agents that react with metals to form bivalent compounds can be used without limitation, it is preferable to use EDTA which is excellent in reactivity with metals and can react with various metals. Therefore, the compound of the divalent metal ion and the chelating agent is preferably a compound of divalent iron or aluminum ions and EDTA, more preferably a compound of divalent iron ions and EDTA.
  • the reactor may be characterized in that the reactor top cover that can be injected to the compound of the divalent metal ion and the chelating agent is installed on the top.
  • the reactor can be continuously used by recycling the compound of the divalent metal ion and the chelating agent, but at the start of the reaction, the compound of the divalent metal ion and the chelating agent is newly introduced or the compound of the divalent metal ion and the chelating agent is replaced. If necessary, injection and replacement can be performed using the top cover.
  • the top cover may be formed in a part of the upper part of the reactor for the injection or replacement of the compound of the divalent metal ion and the chelating agent, but the entire upper part of the reactor is composed of the top cover, the anode, cathode, trapping A tube, gas injection section or gas may be formed.
  • the concentration of the compound of the divalent metal ion and the chelating agent may be characterized in that 10mM ⁇ 0.5M. If the concentration is 10mM or less, the concentration of divalent metal ions and chelating agent compounds that can adsorb nitrogen compounds may be lowered, and thus the collection amount of nitrogen compounds may be lowered. It may precipitate without melting and adhere to the electrode or to the wall. However, since the trapping amount of the nitrogen compound is proportional to the amount of the compound of the divalent metal ion and the chelating agent, the concentration of the divalent metal ion, the chelating agent and the compound is more preferably 0.5M.
  • the anode is a mixture of at least one conductive metal selected from graphite, platinum, titanium, nickel and gold and at least one catalyst selected from platinum, ruthenium, osmium, palladium, iridium, carbon and transition metals.
  • the cathode may be composed of one or more conductive metals selected from graphite, platinum, titanium, nickel, gold, iron, copper and aluminum, and platinum, ruthenium, osmium, palladium, iridium, carbon, and transition metals. It may be characterized by consisting of a mixture of one or more catalysts selected from.
  • the electrode material of the anode and the cathode can be used without limitation as long as it is a mixture of a conductive metal and a catalyst metal, but iron or aluminum, which undergoes an oxidation reaction when electrical energy is introduced into the electrode material of the anode, cannot be used.
  • the collecting tube lower end portion may be characterized in that the porous line plate is provided.
  • the collecting tube may be made of glass to collect nitrogen compounds generated from the anode.
  • a porous plate may be disposed at the bottom of the collecting tube for contact between the anode located inside the collecting tube and the compound of the divalent metal ion and the chelating agent. It is desirable to install.
  • the upper part of the collecting pipe is provided with a nitrogen compound collecting port for discharging the nitrogen compound separated from the anode to the outside it is preferable to discharge the separated nitrogen compound to the outside.
  • the nitrogen compound may be characterized in that the nitrogen oxides (NOX).
  • the material that affects the atmosphere is nitrogen oxide, and among them, nitrogen monoxide, which has high reactivity, has the most influence. Therefore, the nitrogen compound is preferably nitrogen oxide (NOX), more preferably may be nitrogen monoxide (NO).
  • the present invention provides (i) supplying a source gas containing a nitrogen compound to a reactor containing a compound of divalent metal ions and a chelating agent to a compound of divalent metal ions and a chelating agent. Adsorbing nitrogen compounds; (ii) the anode and the cathode are supplied with electricity so that the compounds of the divalent metal ion and the chelating agent adsorbed by the nitrogen compound are oxidized to the compounds of the trivalent metal ion and the chelating agent by the oxidation reaction of the anode electrode.
  • Nitrogen compound capture method may be characterized in that it further comprises the step of preparing nitric acid (HNO 3) using the collected nitrogen oxides.
  • HNO 3 nitric acid
  • the trapped nitrogen oxide is released to the outside, it may cause another pollution, and it is difficult to store in the gas phase, it is preferable to convert to other compounds to be treated.
  • nitric acid is produced by reaction with water, and thus nitric acid is preferably prepared using the collected nitrogen oxides.
  • nitric acid is produced by the above method, it is possible to produce nitric acid at a lower price than conventional nitric acid production.
  • Nitrogen compound collection method before the step (i), 1 spraying water in the raw material gas NO2 removal step of reacting the NO2 and the water in the raw material gas to obtain nitric acid; And 2 a NO collection step of separating the NO by reacting the source gas from which the NO 2 has been removed with a divalent metal ion and a chelating agent compound.
  • the concentration of nitrogen oxides in the source gas is high, and the divalent metal is formed by other components. Since there may be damage to the ions, the compound of the chelating agent, the anode and the cathode, it is preferable to supply the raw material gas by pretreatment.
  • Carbon monoxide capture experiment was conducted using an electrolysis device comprising the reactor body, anode and cathode, collection tube, gas inlet, outlet.
  • Divalent iron ions and EDTA were injected into the reactor using the top cover at the top of the reactor body, and then the cover was sealed. After that, the exhaust gas was supplied to the gas inlet, and the experiment was conducted by supplying electricity to the anode and the cathode.
  • the actual exhaust gas treatment process was performed using the electrolysis device for collecting nitrogen compounds prepared in Example 1. As shown in Figure 2, the exhaust gas containing CO2, CO, NOx, SOx, dust, etc. flowed into the NO2 removal means, NO2 which occupies about 5% of the total NOx through water spray reacts with water to nitric acid ( HNO3). In addition, most dusts such as dust were separated by contact with water.
  • NO capture means selectively collects NO in the exhaust gas by using Fe (II) EDTA, a chelate agent, to selectively adsorb nitrogen monoxide (NO). Removed.
  • the exhaust gas passed through the NO trapping means contains a small amount of nitrogen monoxide, which was supplied to the electrolytic apparatus for collecting nitrogen compounds of Example 1 to remove nitrogen compounds.
  • reactor body 20 reactor top cover
  • cathode electrode 40 anode electrode
  • the electrolytic apparatus for collecting nitrogen compounds according to the present invention uses an expensive rare earth catalyst to a minimum, and can simultaneously collect nitrogen compounds because regeneration of the adsorbent is performed at the same time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treating Waste Gases (AREA)

Abstract

본 발명은 철-에틸렌디아민사아세트산(Fe-EDTA)을 이용한 질소화합물 포집용 전기분해장치에 관한 것으로, 더욱 상세하게는 전기에너지를 공급하여 Fe-EDTA의 산화환원반응을 일으킴으로써 배기가스의 질소화합물을 포집하는 전기분해장치에 관한 것이다.

Description

철-에틸렌디아민사아세트산을 이용한 질소화합물 포집용 전기분해장치
본 발명은 철-에틸렌디아민사아세트산(Fe-EDTA)을 이용한 질소화합물 포집용 전기분해장치에 관한 것으로, 더욱 상세하게는 전기에너지를 공급하여 Fe-EDTA의 산화환원반응을 일으킴으로써 배기가스의 질소화합물을 포집하는 전기분해장치에 관한 것이다.
발전시설, 산업용 보일러, 소각시설 등의 화석연료 사용시설과 자동차 엔진의 연소과정에서는 인체에 유해한 다량의 질소산화물(NOX)이 발생되고 있으며, 이러한 질소산화물(NOX)의 배출은 산성비, 오존층의 감소 및 광화학적 스모그를 생성하는 등 대기오염에도 큰 영향을 미친다.
이를 제거하기 위한 공정으로는 촉매에 환원제(NH3등)를 분사하는 선택적 촉매환원법(SCR, Selective catalytic reduction)과 선택적 비촉매환원법(SNCR, Selective non-catalytic reduction), 전자빔을 이용한 공정, 그리고 펄스 코로나 방전공정 등이 연구 개발되어 왔다. 질소산화물 저감기술의 개발에 따라 최근 10년 동안 질소산화물의 배출량은 조금 감소하여 왔으나 여전히 미국에서만 매년 약 3000만톤의 질소산화물이 배출되고 있으며 이를 제거하기 위해 가장 널리 쓰이는 선택적 촉매 환원법 (Selective catalytic reductin, SCR)을 이용할 경우 약 240억달러라는 천문학적인 금액이 요구된다.
또한 미생물을 이용하여 질소산화물(NOX)를 처리하는 바이오디녹스(BioDeNox) 공정이 새롭게 개발되어 각광받고 있는데, 바이오디녹스(BioDeNox)법은 가장 최근의 기술로써 다른 공정들과는 달리 미생물을 이용하여 상온에서도 질소산화물(NOX)의 처리가 가능하여 에너지 소비가 현저히 적다는 장점이 있다. 이 기술의 핵심은 2가 철-에틸렌디아민사아세트산의 일산화질소(NO)에 대한 탁월한 선택적 결합능 및 결합속도에 있는데, 반응 과정에서 배기가스에 포함되어 있는 산소에 의해 2가 철-에틸렌디아민사아세트산이 산화, 비활성 형태인 3가 철-에틸렌디아민사아세트산으로 되기 때문에 재생 과정이 반드시 포함되어야 한다. 바이오디녹스(BioDeNox)법은 이 재생과정에 3가 철이온을 환원할 수 있는 미생물을 이용하고 있으므로, 그 환원속도가 현저히 느리며, 분리된 질소산화물(NOX)를 처리하는데 많은 에너지와 비용이 소모된다는 단점을 가진다.
대한민국 등록특허 제 1522857호에서는 복합형 선택적 환원촉매에 관하여 기재하고 있다. 이 특허는 캐리어 (substrate)에 코팅되되, 상층에 V2O5/TiO2 층이 형성되고, 하층에 금속 내포된 제올라이트층이 형성되는 이중층 구조의 복합 SCR 촉매를 이용하여 저온에서 정화능력이 개선된 촉매에 관하여 기재하고 있지만, 고가의 희토류 귀금속인 바나듐과 티타늄을 사용하고 있어 제작에 많은 비용이 소모된다는 단점을 가진다.
대한민국 등록특허 제 1189238호에서는 질소산화물 흡장-환원 촉매에 관하여 기재하고 있다. 이 특허는 Li 및 Al을 포함하는 담체; 알칼리금속, 알칼리토금속 또는 희토류 원소의 질소산화물 흡장 원소; 및 Pt, Pd, Ru, Ag, Au 및 Rh로 이루어진 군에서 선택되는 1 종 이상의 귀금속을 포함하여 열화 전후 및 황산화 전후에도 흡장능력이 우수한 촉매에 관하여 개시하고 있지만, 희토류 귀금속을 다량으로 사용하는 촉매이므로 질소산화물 흡착에 많은 비용이 소모된다는 단점을 가진다.
이에, 본 발명자들은 상기 문제점을 해결하기 위하여 예의 노력한 결과, Fe-EDTA를 이용한 질소화합물 포집용 전기분해장치를 개발하고, 상기 전기분해장치를 이용하여 질소산화물 포집실험을 수행한 결과, 고가 희토류 원소의 사용을 최소화하면서도, 배기가스내 질소화합물을 효율적으로 포집할 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다.
본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.
발명의 요약
본 발명의 목적은 질소화합물 포집용 전기분해장치를 제공하는데 있다.
본 발명의 다른 목적은 상기 전기분해장치를 이용한 질소화합물의 포집방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 (a) 내부에 2가 금속이온과 킬레이팅 에이전트(chelating agent)의 화합물을 포함하는 반응기 몸체; (b) 애노드 및 캐소드; (c) 상기 애노드를 내부에 포함하는, 질소화합물 포집을 위한 포집관; (d) 상기 반응기 몸체에 질소 화합물을 함유하는 원료가스를 공급하는 가스 주입구; 및 (e) 상기 반응기 내부에서 포집 완료되어 질소화합물이 제거된 가스를 배출하는 배출구;를 포함하는 질소화합물 포집용 전기분해장치를 제공한다.
본 발명은 또한, (i) 2가 금속이온과 킬레이팅 에이전트의 화합물을 함유하는 반응기에 질소화합물을 함유하는 원료가스를 공급하여 2가 금속이온과 킬레이팅 에이전트(chelating agent)의 화합물에 질소화합물을 흡착하는 단계; (ii) 애노드와 캐소드에 전기를 공급하여 애노드 전극의 산화반응에 의해 상기 질소화합물이 흡착된 2가 금속이온과 킬레이팅 에이전트의 화합물이 3가 금속이온과 킬레이팅 에이전트의 화합물로 산화되면서 방출되는 질소화합물을 포집하는 단계; (iii) 상기 포집된 질소화합물을 회수하는 단계; 및 (iv) 상기 산화된 3가 금속이온과 킬레이팅 에이전트(chelating agent)의 화합물을 캐소드 전극에서 발생하는 전자에 의해 2가 금속이온과 킬레이팅 에이전트(chelating agent)의 화합물로 환원시키는 단계를 포함하는 상기 전기분해장치를 이용한 질소화합물의 포집방법을 제공한다.
도 1은 본 발명에 따른 Fe-EDTA를 이용한 질소화합물 포집용 전기분해장치를 도시한 것이다.
도 2는 본 발명에 따른 Fe-EDTA를 이용한 질소화합물 포집용 전기분해장치를 실제공정에 적용한 모식도로, (a) NO2를 제거하는 NO2 제거공정, (b) NO를 제거하는 NO 포집공정, (c) Fe-EDTA를 이용한 질소화합물 포집용 전기분해장치이다.
발명의 상세한 설명 및 구체적인 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서는, 철-에틸렌디아민사아세트산(Fe-EDTA)을 이용한 질소화합물 포집용 전기분해장치에 배기가스를 공급하여 질소화합물 포집실험을 수행하였다. 그 결과 미생물을 이용하는 질소화합물 포집방법에 비하여 Fe-EDTA의 재생속도가 빨라 신속한 질소화합물 포집이 가능한 것을 확인하였다.
따라서, 본 발명은 일 관점에서, (a) 내부에 2가 금속이온과 킬레이팅 에이전트(chelating agent)의 화합물을 포함하는 반응기 몸체; (b) 애노드 및 캐소드; (c) 상기 애노드를 내부에 포함하는, 질소화합물 포집을 위한 포집관; (d) 상기 반응기 몸체에 질소 화합물을 함유하는 원료가스를 공급하는 가스 주입구; 및 (e) 상기 반응기 내부에서 포집 완료되어 질소화합물이 제거된 가스를 배출하는 배출구;를 포함하는 질소화합물 포집용 전기분해장치에 관한 것이다.
하기 첨부 도면을 참조하여 본 발명에 따른 질소화합물 포집용 전기분해장치를 상세히 설명한다.
본 발명의 전기분해장치는 반응기 몸체, 애노드 및 캐소드, 포집관, 가스주입구, 배출구로 구성된다. 반응기 몸체에는 내부에 2가 금속이온과 킬레이팅 에이전트(chelating agent)의 화합물이 수용액상으로 들어 있으며, 애노드와 캐소드의 일측면이 상기 수용액에 담지되어 있다. 애노드와 캐소드의 타측면은 전력을 공급하기 위하여 반응기 몸체 외부에 위치하고 있으며, 애노드는 포집관으로 둘러싸여 있어 애노드에서 분리된 질소 화합물은 포집관의 상부로 배출된다. 이밖에 원료가스를 공급하는 가스주입구와 질소화합물이 제거된 가스를 배출하는 배출구를 포함하고 있어 연속적으로 작동할 수 있다.
본 발명의 일 실시예에 있어서, 일산화질소 공급시 애노드와 캐소드에서 일어나는 전기화학적 반응은 다음과 같다.
3H2O → 6H+ + 3/2 O2 + 6e- at anode[Equ.1]
6Fe(II)EDTA-NO(aq) → 6Fe(III)EDTA(aq) + 6NO(g) + 6e- at anode[Equ.2]
6H++6e- → 3H2 at cathode[Equ.3]
6Fe(III)EDTA(aq) + 6e → 6Fe(II)EDTA(aq) at cathode[Equ.4]
6Fe(II)EDTA(aq) + 6NO(g) → 6Fe(II)EDTA-NO(aq) [Equ. 5]
본 발명에 있어서, 도 1의 배기가스 주입구(60)를 통해 공급되는 배기가스 중 일산화질소는 반응기 몸체(10)에 들어있는 2가 철-에틸렌디아민사아세트산(Fe(II)EDTA)용액에 의해 흡착되어 액상의 Fe(II)EDTA-NO로 존재하게 된다 (Equ. 5). 외부 전기에너지 공급 시, 애노드 전극(40)에서 물이 산화되어 수소이온과 전자, 산소기체로 전환됨과 동시에 NO를 흡착한 Fe(II)EDTA, 즉, Fe(II)EDTA-NO가 산화되어 Fe(III)EDTA와 전자로 전환되고 (Equ. 2), 흡착되었던 NO가 분리되게 된다. 이때, 애노드를 둘러싸고 있는 유리관(70)에 의해 배기가스와의 접촉 없이 NO 가스를 순수하게 분리하는 것이 가능하다. 한편, NO에 대한 흡착성능을 잃은 Fe(III)EDTA는 반응기의 캐소드에서 전자를 받아 다시 Fe(II)EDTA로 환원되어 NO의 포집에 재사용 된다 (Equ. 4 and 5). 이와 동시에, 캐소드 전극에서는 수소이온이 전자를 받아 수소기체를 생성하는 반응이 진행된다. 생성된 수소기체는 배기가스 배출구(90)로 NO를 제외한 배기가스와 함께 배출되며 필요해 의해 포집할 수 있다.
본 발명에 따른 전기분해장치는 상기 포집된 질소화합물을 이용하여 질산(HNO3)를 제조하는 수단을 추가로 포함하는 것을 특징으로 할 수 있다. 포집된 질소화합물은 그대로 공기로 배출하는 경우 또 다른 환경문제를 일으킬 수 있다. 따라서 상기 포집된 질소화합물을 이용하여 암모니아계 화합물이나 질산 등을 제조하는 것에 이용하는 것이 바람직하다. 또한 위에서 기술된 바와 같이 포집되는 질소화합물은 질소산화물인 것이 바람직하므로, 이러한 질소산화물을 이용하여 질산을 제조하는 수단을 추가하는 경우 저렴한 가격으로 질산을 수득가능하다.
본 발명에 따른 질소화합물 포집용 전기분해장치는 (g) 원료가스내의 NO2와 물을 반응시켜 질산을 분리하는 NO2 제거수단; 및 (h) 상기 NO2 제거된 원료가스를 2가 금속이온과 킬레이팅 에이전트화합물을 반응시켜 NO을 분리하고 상기 반응기 몸체로 공급하는 NO 포집수단을 추가로 포함할 수 있다.
도 2에 나타난 바와 같이 CO2, CO, NOx, SOx, dust등을 포함하는 원료가스는 NO2 제거수단으로 유입되고, water spray를 통하여 전체 NOx의 5% 정도를 차지하는 NO2가 물과 반응하여 질산(HNO3)으로 전환된다. 또한 Dust와 같은 분진들도 대부분 물과 접촉하여 분리될 수 있다.
NO2가 제거된 원료가스는 NO 포집수단으로 유입된다. 상기 NO 포집수단에서는 킬레이팅 에이전트인 Fe(II)EDTA가 일산화질소(NO)를 선택적으로 흡착하는 성질을 이용하여 원료가스 중 NO만을 선택적으로 포집하며, 이를 통해 95% 이상의 NO가 원료가스에서 제거될 수 있다.
NO 포집수단에서 배출되는 원료가스는 미량의 일산화질소가 포함되는데 이를 상기 반응기 몸체에 공급하여 질소화합물을 추가적으로 제거할 수 있다.
본 발명에 있어서, 상기 2가의 금속이온은 철 이외에 알루미늄, 마그네슘, 칼륨, 구리, 아연, 니켈, 코발트, 망간, 납, 은, 금 또는 크롬을 사용할 수도 있다. 2가의 금속이온은 킬레이팅 에이전트와 결합하여 화합물을 형성하며, 이 화합물은 질소화합물을 포집하는 역할을 한다. 이들 중 질소화합물과의 친화성이 뛰어난 철 또는 알루미늄의 이온을 사용하는 것이 바람직하며, 더욱 바람직하게는 철이온을 사용할 수 있다.
본 발명에 있어서, 상기 킬레이팅 에이전트는 에틸렌디아민사아세트산(ethlenediamine-tetraacetic acid, EDTA)인 것을 특징으로 할 수 있다. 킬레이팅 에이전트는 금속과 결합하여 킬레이트 화합물을 만드는 화합물을 통칭하는 것으로 일반적으로 EDTA, 1,2시클로헥산디아민 4아세트산(CyDTA), 니트리로3아세트산2나트륨(NTA) 등이 많이 사용된다. 금속과 반응하여 2가의 화합물을 형성하는 킬레이팅 에이전트는 제한없이 사용가능하지만, 금속과의 반응성이 뛰어나며, 다양한 금속과 반응이 가능한 EDTA를 사용하는 것이 바람직하다. 따라서 2가의 금속이온과 킬레이팅 에이전트의 화합물은 2가의 철 또는 알루미늄 이온과 EDTA의 화합물인 것이 바람직하며, 더욱 바람직하게는 2가의 철이온과 EDTA의 화합물일 수 있다.
본 발명에 있어서, 상기 반응기는 상단에 상기 2가 금속이온과 킬레이팅 에이전트의 화합물을 주입할 수 있는 반응기 상단 덮개가 설치되어 있는 것을 특징으로 할 수 있다. 상기 반응기는 2가 금속이온과 킬레이팅 에이전트의 화합물이 재순환되어 연속적으로 사용가능하지만 반응 시작 시 2가 금속이온과 킬레이팅 에이전트의 화합물을 새로 주입하거나 2가 금속이온과 킬레이팅 에이전트의 화합물의 교체가 필요한 경우, 상기 상단 덮개를 이용하여 주입 및 교체를 할 수 있다. 또한 상기 상단 덮개는 2가 금속이온과 킬레이팅 에이전트의 화합물의 주입 또는 교체를 위하여 반응기 상단부의 일부에 형성되어 있을 수도 있지만, 반응기 상단부의 전체가 상단 덮개로 이루어져 있어 상기 덮개에 애노드, 캐소드, 포집관, 가스주입부 또는 가스가 형성되어 있을 수도 있다.
본 발명에 있어서, 상기 2가 금속이온과 킬레이팅 에이전트의 화합물의 농도는 10mM~0.5M인 것을 특징으로 할 수 있다. 농도가 10mM 이하인 경우 질소화합물을 흡착할 수 있는 2가 금속이온과 킬레이팅 에이전트의 화합물의 농도가 낮아져 질소화합물의 포집량이 떨어질 수 있으며, 0.5M 이상에서는 2가 금속이온과 킬레이팅 에이전트의 화합물이 녹지 않고 침전되어 전극에 부착되거나 벽면에 부착될 수 있다. 다만 질소화합물의 포집량은 2가 금속이온과 킬레이팅 에이전트의 화합물의 양에 비례하게 되므로 2가 금속이온과 킬레이팅 에이전트와 화합물의 농도는 0.5M인 것이 더욱 바람직하다.
본 발명에 있어서, 상기 애노드는 흑연, 백금, 티타늄, 니켈 및 금에서 선택되는 1종 이상의 전도성 금속과 백금, 루테늄, 오스뮴, 팔라듐, 이리듐, 탄소, 전이금속에서 선택되는 1종 이상의 촉매의 혼합물로 구성되는 것을 특징으로 할 수 있으며, 상기 캐소드는 흑연, 백금, 티타늄, 니켈, 금, 철, 구리 및 알루미늄에서 선택되는 1종 이상의 전도성 금속과 백금, 루테늄, 오스뮴, 팔라듐, 이리듐, 탄소, 전이금속에서 선택되는 1종 이상의 촉매의 혼합물로 구성되는 것을 특징으로 할 수 있다. 애노드와 캐소드의 전극소재는 전도성금속과 촉매금속의 혼합물이면 제한없이 사용가능하지만, 애노드의 전극소재로 전기에너지 유입시 산화반응이 진행되는 철이나 알루미늄을 사용할 수 없다. 또한 촉매소재는 백금이 탄소지지체에 부착된 Pt/C 촉매를 사용하는 것이 바람직하다.
본 발명에 있어서, 상기 포집관 하단부에는 다공선 판이 설치되어 있는 것을 특징으로 할 수 있다. 포집관은 애노드에서 발생하는 질소화합물을 포집하기 위하여 유리로 제작될 수 있다, 따라서 상기 포집관 내부에 위치한 애노드와 2가 금속이온과 킬레이팅 에이전트의 화합물의 접촉을 위하여 포집관 하단부에 다공성판을 설치하는 것이 바람직하다. 또한 상기 포집관 상부에는 애노드에서 분리된 질소화합물을 외부로 배출시키는 질소화합물 포집구가 설치되어 있어 분리된 질소화합물을 외부로 배출하는 것이 바람직하다.
본 발명에 있어서, 상기 질소화합물은 질소산화물(NOX)인 것을 특징으로 할 수 있다. 질소화합물중 대기에 영향을 주는 물질은 질소산화물이며, 이들 중 반응성이 큰 일산화질소가 가장 많은 영향을 준다. 따라서 상기 질소화합물은 질소산화물(NOX)인 것이 바람직하며, 더욱 바람직하게는 일산화질소(NO)일 수 있다.
본 발명은 다른 관점에서, (i) 2가 금속이온과 킬레이팅 에이전트의 화합물을 함유하는 반응기에 질소화합물을 함유하는 원료가스를 공급하여 2가 금속이온과 킬레이팅 에이전트(chelating agent)의 화합물에 질소화합물을 흡착하는 단계; (ii) 애노드와 캐소드에 전기를 공급하여 애노드 전극의 산화반응에 의해 상기 질소화합물이 흡착된 2가 금속이온과 킬레이팅 에이전트의 화합물이 3가 금속이온과 킬레이팅 에이전트의 화합물로 산화되면서 방출되는 질소화합물을 포집하는 단계; (iii) 상기 포집된 질소화합물을 회수하는 단계; 및 (iv) 상기 산화된 3가 금속이온과 킬레이팅 에이전트(chelating agent)의 화합물을 캐소드 전극에서 발생하는 전자에 의해 2가 금속이온과 킬레이팅 에이전트(chelating agent)의 화합물로 환원시키는 단계를 포함하는 전기분해장치를 이용한 질소화합물의 포집방법에 관한 것이다.
질소화합물과 결합한 2가 금속이온과 킬레이팅 에이전트의 화합물이 애노드에서 산화되어 질소 화합물을 분리하고 3가 금속이온과 킬레이팅 에이전트의 화합물로 전환된 뒤, 캐소드에서 환원되어 2가 금속이온과 킬레이팅 에이전트의 화합물로 재생된다는 것은 위에서 기술한 바와 같다.
본 발명에 따른 질소화합물 포집방법은 (v) 상기 포집된 질소산화물을 이용하여 질산(HNO3)을 제조하는 단계를 추가로 포함하는 것을 특징으로 할 수 있다. 상기 포집된 질소산화물은 외부로 방출되는 경우, 또 다른 오염을 유발시킬 수 있고, 기체상으로 보관이 어려우므로, 다른 화합물로 전환하여 처리하는 것이 바람직하다. 질소 산화물의 경우 물과 반응하여 질산을 생성하므로 포집된 질소 산화물을 이용하여 질산을 제조하는 것이 바람직하다. 또한 상기와 같은 방법으로 질산을 제조하는 경우 기존의 질산 제조방법에 비하여 저렴한 가격으로 질산의 제조가 가능하다.
본 발명에 따른 질소화합물 포집방법은 상기 (i) 단계 이전에, ① 원료가스에 물을 분무하여 원료가스내의 NO2와 물을 반응시켜 질산을 수득하는 NO2 제거단계; 및 ② 상기 NO2가 제거된 원료가스를 2가 금속이온과 킬레이팅 에이전트 화합물과 반응시켜 NO를 분리하는 NO 포집단계를 추가로 포함할 수 있다.
도 2에 나타난 바와 같이, CO2, CO, NOx, SOx, dust 등을 포함하는 원료가스를 직접 공급하여 질소산화물을 제거하려면, 원료가스내의 질소산화물의 농도가 높고, 다른 성분들에 의한 2가 금속이온, 킬레이팅 에이전트의 화합물, 애노드 및 캐소드의 손상이 있을 수 있으므로 원료가스를 전처리하여 공급하는 것이 바람직하다.
실시예
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: 2가 Fe-EDTA를 이용한 일산화질소의 포집
상기 반응기 몸체, 애노드 및 캐소드, 포집관, 가스주입구, 배출구로 구성되는 전기분해장치를 이용하여 일산화탄소 포집 실험을 진행하였다.
2가의 철 이온과 EDTA를 반응기 몸체 상부의 상부덮개를 이용하여 반응기 내부에 주입한 다음, 덮개를 밀봉하였다. 이후 가스주입구에 배기가스를 공급하였으며, 애노드와 캐소드에 전기를 공급하여 실험을 진행하였다.
실험 진행 결과 배출구에서는 일산화질소가 최소한으로 검출되었으며, 대부분의 일산화질소는 포집관상부의 질소화합물 포집구를 통하여 분리되어 배출되는 것을 확인할 수 있었다.
실시예 2: 질소화합물 포집용 전기분해장치를 이용한 실제 배기가스 처리
실시예 1에서 제조된 질소화합물 포집용 전기분해장치를 이용하여 실제 배기가스 처리공정을 수행하였다. 도 2에 나타난 바와 같이, CO2, CO, NOx, SOx, dust등을 포함하는 배기가스는 NO2 제거수단으로 유입하였고, water spray를 통하여 전체 NOx의 5%정도를 차지하는 NO2가 물과 반응하여 질산(HNO3)으로 전환되었다. 또한 Dust와 같은 분진들도 대부분 물과 접촉하여 분리되었다.
NO2와 분진이 제거된 배기가스는 NO포집수단으로 유입되었다. NO포집수단은 착화합물(chealate agent)인 Fe(II)EDTA가 일산화질소(NO)를 선택적으로 흡착하는 성질을 이용하여 배기가스 중 NO만을 선택적으로 포집하며, 이를 통해 95%이상의 NO가 배기가스에서 제거하였다.
NO포집수단을 통과한 배기가스는 미량의 일산화질소가 포함되는데 이를 실시예 1의 질소화합물 포집용 전기분해장치에 공급하여 질소화합물을 제거하였다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
부호의 설명
10: 반응기 몸체 20: 반응기 상단 덮개
30: 캐소드 전극 40: 애노드 전극
50: 질소화합물 포집구 60: 가스 주입구
70: 포집관 80: 다공성 판
90: 배출구
본 발명에 따른 질소화합물 포집용 전기분해장치는 고가의 희토류 촉매를 최소한으로 사용하며, 흡착제의 재생이 동시에 이루어지므로 효율적으로 질소화합물을 포집할 수 있다.

Claims (18)

  1. 다음의 구성을 포함하는 질소화합물 포집용 전기분해장치:
    (a) 내부에 2가 금속이온과 킬레이팅 에이전트(chelating agent)의 화합물을 포함하는 반응기 몸체;
    (b) 애노드 및 캐소드;
    (c) 상기 애노드를 내부에 포함하는, 질소화합물 포집을 위한 포집관;
    (d) 상기 반응기 몸체에 질소 화합물을 함유하는 원료가스를 공급하는 가스 주입구; 및
    (e) 상기 반응기 내부에서 포집 완료되어 질소화합물이 제거된 가스를 배출하는 배출구.
  2. 제1항에 있어서,
    (f) 포집된 질소화합물을 이용하여 질산(HNO3)를 제조하는 수단;
    을 추가로 포함하는 것을 특징으로 하는 전기분해장치.
  3. 제1항에 있어서,
    (g) 원료가스내의 NO2와 물을 반응시켜 질산을 분리하는 NO2 제거수단; 및
    (h) 상기 NO2가 제거된 원료가스를 2가 금속이온과 킬레이팅 에이전트화합물을 반응시켜 NO을 분리하고 상기 반응기 몸체로 공급하는 NO 포집수단;
    을 추가로 포함하는 질소화합물 포집용 전기분해장치.
  4. 제1항에 있어서,
    상기 2가의 금속이온은 철, 알루미늄, 마그네슘, 칼륨, 구리, 아연, 니켈, 코발트, 망간, 납, 은, 금 또는 크롬의 이온인 것을 특징으로 하는 전기분해장치.
  5. 제1항에 있어서,
    상기 킬레이팅 에이전트는 에틸렌디아민사아세트산(ethlenediamine-tetraacetic acid, EDTA)인 것을 특징으로 하는 전기분해장치.
  6. 제1항에 있어서,
    상기 2가 금속이온과 킬레이팅 에이전트의 화합물은 Fe(II)EDTA인 것을 특징으로 하는 전기분해장치.
  7. 제1항에 있어서,
    상기 반응기는 상단에 상기 2가 금속이온과 킬레이팅 에이전트의 화합물을 주입할 수 있는 반응기 상단 덮개가 설치되어 있는 것을 특징으로 하는 전기분해장치.
  8. 제1항에 있어서,
    상기 2가 금속이온과 킬레이팅 에이전트 화합물의 농도는 10mM~0.5M인 것을 특징으로 하는 전기분해장치.
  9. 제1항에 있어서,
    상기 애노드는 흑연, 백금, 티타늄, 니켈 및 금으로 구성된 군에서 선택되는 1종 이상의 전도성 금속과 백금, 루테늄, 오스뮴, 팔라듐, 이리듐, 탄소 및 전이금속으로 구성된 군에서 선택되는 1종 이상의 촉매의 혼합물로 구성되는 것을 특징으로 하는 전기분해장치.
  10. 제1항에 있어서,
    상기 캐소드는 흑연, 백금, 티타늄, 니켈, 금, 철, 구리 및 알루미늄으로 구성된 군에서 선택되는 1종 이상의 전도성 금속과 백금, 루테늄, 오스뮴, 팔라듐, 이리듐, 탄소 및 전이금속으로 구성된 군에서 선택되는 1종 이상의 촉매의 혼합물로 구성되는 것을 특징으로 하는 전기분해장치.
  11. 제1항에 있어서,
    상기 포집관 하단부에는 다공성 판이 설치되어 있는 것을 특징으로 하는 전기분해장치.
  12. 제1항에 있어서,
    상기 질소화합물은 질소산화물(NOX)인 것을 특징으로 하는 전기분해장치.
  13. 제12항에 있어서,
    상기 질소산화물은 일산화질소(NO)인 것을 특징으로 하는 전기분해장치.
  14. 다음의 단계를 포함하는 제1항 내지 제13항 중 어느 한 항의 전기분해 장치를 이용한 질소화합물의 포집방법:
    (i) 2가 금속이온과 킬레이팅 에이전트의 화합물을 함유하는 반응기에 질소화합물을 함유하는 원료가스를 공급하여 2가 금속이온과 킬레이팅 에이전트(chelating agent)의 화합물에 질소화합물을 흡착하는 단계;
    (ii) 애노드와 캐소드에 전기를 공급하여 애노드 전극의 산화반응에 의해 상기 질소화합물이 흡착된 2가 금속이온과 킬레이팅 에이전트의 화합물이 3가 금속이온과 킬레이팅 에이전트의 화합물로 산화되면서 방출되는 질소화합물을 포집하는 단계;
    (iii) 상기 포집된 질소화합물을 회수하는 단계; 및
    (iv) 상기 산화된 3가 금속이온과 킬레이팅 에이전트(chelating agent)의 화합물을 캐소드 전극에서 발생하는 전자에 의해 2가 금속이온과 킬레이팅 에이전트(chelating agent)의 화합물로 환원시키는 단계.
  15. 제14항에 있어서,
    상기 질소화합물은 질소산화물(NOX)인 것을 특징으로 하는 질소화합물의 포집방법.
  16. 제15항에 있어서,
    상기 질소산화물은 일산화질소(NO)인 것을 특징으로 하는 질소화합물의 포집방법.
  17. 제14항에 있어서,
    (v) 상기 포집된 질소화합물을 이용하여 질산(HNO3)을 제조하는 단계를 추가로 포함하는 것을 특징으로 하는 질소화합물의 포집방법.
  18. 제14항에 있어서,
    상기 (i) 단계 이전에,
    ① 원료가스에 물을 분무하여 원료가스내의 NO2와 물을 반응시켜 질산을 수득하는 NO2 제거단계; 및
    ② 상기 NO2가 제거된 원료가스를 2가 금속이온과 킬레이팅 에이전트 화합물과 반응시켜 NO를 분리하는 NO 포집단계;
    를 추가로 포함하는 질소화합물의 포집방법.
PCT/KR2015/013825 2015-08-18 2015-12-16 철-에틸렌디아민사아세트산을 이용한 질소화합물 포집용 전기분해장치 WO2017030249A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/751,870 US10711354B2 (en) 2015-08-18 2015-12-16 Electrolysis apparatus for collecting nitrogen compound using ferric-ethylenediamine tetraacetic acid

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150116167 2015-08-18
KR10-2015-0116167 2015-08-18
KR1020150180430A KR102566436B1 (ko) 2015-08-18 2015-12-16 철-에틸렌디아민사아세트산을 이용한 질소화합물 포집용 전기분해장치
KR10-2015-0180430 2015-12-16

Publications (1)

Publication Number Publication Date
WO2017030249A1 true WO2017030249A1 (ko) 2017-02-23

Family

ID=58051890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013825 WO2017030249A1 (ko) 2015-08-18 2015-12-16 철-에틸렌디아민사아세트산을 이용한 질소화합물 포집용 전기분해장치

Country Status (1)

Country Link
WO (1) WO2017030249A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111514712A (zh) * 2020-05-06 2020-08-11 青岛理工大学 新型阴阳极电催化协同烟气脱硝的方法
CN110566319B (zh) * 2018-06-05 2021-05-18 丰田自动车株式会社 电化学反应器
CN114210182A (zh) * 2021-11-15 2022-03-22 郑州轻工业大学 一种生物协同电催化反应器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354436A (en) * 1989-08-07 1994-10-11 European Atomic Energy Community (Euratom) Process for removing nitrogen compounds from a liquid
KR20110101452A (ko) * 2010-03-08 2011-09-16 한국과학기술원 바이오 매스 전처리 시스템 및 이를 이용한 전처리 방법
KR101366183B1 (ko) * 2012-09-19 2014-02-24 한국과학기술원 3가 철-에틸렌디아민사아세트산을 이용하는 산화환원 연료전지 및 이를 이용한 일산화질소 분리방법
KR20140131401A (ko) * 2013-05-02 2014-11-13 희성촉매 주식회사 복합형 선택적 환원 촉매
KR20150060978A (ko) * 2013-09-06 2015-06-03 페르메렉덴꾜꾸가부시끼가이샤 전해용 전극의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354436A (en) * 1989-08-07 1994-10-11 European Atomic Energy Community (Euratom) Process for removing nitrogen compounds from a liquid
KR20110101452A (ko) * 2010-03-08 2011-09-16 한국과학기술원 바이오 매스 전처리 시스템 및 이를 이용한 전처리 방법
KR101366183B1 (ko) * 2012-09-19 2014-02-24 한국과학기술원 3가 철-에틸렌디아민사아세트산을 이용하는 산화환원 연료전지 및 이를 이용한 일산화질소 분리방법
KR20140131401A (ko) * 2013-05-02 2014-11-13 희성촉매 주식회사 복합형 선택적 환원 촉매
KR20150060978A (ko) * 2013-09-06 2015-06-03 페르메렉덴꾜꾸가부시끼가이샤 전해용 전극의 제조 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110566319B (zh) * 2018-06-05 2021-05-18 丰田自动车株式会社 电化学反应器
CN111514712A (zh) * 2020-05-06 2020-08-11 青岛理工大学 新型阴阳极电催化协同烟气脱硝的方法
CN111514712B (zh) * 2020-05-06 2021-10-01 青岛理工大学 新型阴阳极电催化协同烟气脱硝的方法
CN114210182A (zh) * 2021-11-15 2022-03-22 郑州轻工业大学 一种生物协同电催化反应器
CN114210182B (zh) * 2021-11-15 2023-11-03 郑州轻工业大学 一种生物协同电催化反应器

Similar Documents

Publication Publication Date Title
KR102566436B1 (ko) 철-에틸렌디아민사아세트산을 이용한 질소화합물 포집용 전기분해장치
CN104383812B (zh) VOCs低温等离子复合处理系统
KR102250321B1 (ko) 질소 산화물로부터 암모니아를 제조하는 전기화학 시스템 및 제조방법
WO2017030249A1 (ko) 철-에틸렌디아민사아세트산을 이용한 질소화합물 포집용 전기분해장치
CN109675436A (zh) 一种烟气污染物联合脱硫脱硝的系统及方法
CN115141660B (zh) 一种高炉煤气干式精脱硫系统及精脱硫方法
CN102908884A (zh) 精对苯二甲酸生产废气的净化方法
CN109925850A (zh) 电化学协同液相催化硫硝尘一体化净化方法及装置
KR20060089277A (ko) 복합형 세라믹필터
KR20190017475A (ko) 철-에틸렌다이아민테트라아세트산을 이용한 질소산화물 및 황산화물 동시 처리방법
CN109364659A (zh) 一种冶炼烟气中铊的净化及回收方法及装置
CN206229137U (zh) 一种微光谐振废气处理器
CN105879566B (zh) 一种介质阻挡放电诱导还原脱除烟气中NOx的方法与装置
CN211098418U (zh) 一种uv光氧废气处理设备
KR20200090668A (ko) 질소 산화물로부터 암모니아를 제조하는 전기화학 시스템 및 제조방법
JP2005034705A (ja) 吸着材の再生方法及び再生装置
KR102315001B1 (ko) 질소산화물의 전기화학적 전환 시스템 및 이를 이용한 질소산화물의 전환방법
CN211246104U (zh) 一种工业生产VOCs废气净化设备
CN210079217U (zh) 一种微波紫外光氧化烟气脱硫脱硝处理装置
CN113318595A (zh) 一种含汞废气净化及汞回收处理系统及处理方法
CN106179451A (zh) 一种改性炭基脱硝催化剂的制备方法
CN202921169U (zh) 一种用于电辅助催化还原no脱除氮氧化物的反应器
CN103143222A (zh) 预处理石灰窑尾气及提高该尾气中二氧化碳浓度的方法
CN217398831U (zh) 一种高炉煤气硫磺回收系统
KR102025918B1 (ko) 미세먼지 저감을 위한 배기가스 정화 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901789

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15751870

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15901789

Country of ref document: EP

Kind code of ref document: A1